WO2017202120A1 - 一种ppg信号的采集方法及装置 - Google Patents

一种ppg信号的采集方法及装置 Download PDF

Info

Publication number
WO2017202120A1
WO2017202120A1 PCT/CN2017/077370 CN2017077370W WO2017202120A1 WO 2017202120 A1 WO2017202120 A1 WO 2017202120A1 CN 2017077370 W CN2017077370 W CN 2017077370W WO 2017202120 A1 WO2017202120 A1 WO 2017202120A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
signal
ppg
light
detection signal
Prior art date
Application number
PCT/CN2017/077370
Other languages
English (en)
French (fr)
Inventor
黄邦宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US16/304,050 priority Critical patent/US11197620B2/en
Publication of WO2017202120A1 publication Critical patent/WO2017202120A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • A61B5/02433Details of sensor for infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • A61B2562/0238Optical sensor arrangements for performing transmission measurements on body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal

Definitions

  • the present invention relates to the field of communications, and in particular, to a PPG (Photo Plethysmo Graphy) signal acquisition method and apparatus.
  • PPG Photo Plethysmo Graphy
  • PPG technology refers to a non-invasive detection technique for detecting changes in blood volume in living tissue by means of photoelectric means.
  • a beam of a certain wavelength When a beam of a certain wavelength is incident on the skin surface of the user being tested, the beam will be transmitted to the photosensor by transmission or reflection.
  • the blood volume in the blood vessel fluctuates under the action of systolic and diastolic function, when the heart contracts, the blood volume of the peripheral blood vessels of the heart increases, and the amount of light absorption also increases, then the light sensing
  • the intensity of the light detected by the device is small; when the heart is dilated, the blood volume of the peripheral blood vessels of the heart is reduced, and the light intensity detected by the light sensor is large. It can be seen that the light intensity detected by the light sensor is pulsating. Sexual change, this light intensity change signal can be converted into a digital electrical signal, that is, a PPG signal is obtained.
  • the PPG signal can obtain physiological parameter information such as blood pressure, blood oxygen, cerebral oxygen, muscle oxygen, blood sugar, pulse rate, and respiratory rate of the user to be tested. Therefore, most wearable devices currently use the above principles to track the health of the user. situation.
  • the PPG signal When the PPG signal is collected by using the green light source, the PPG signal with good signal quality can be obtained. For example, the pulsating component in the collected PPG signal is more obvious. Therefore, most of the wearable devices are provided with a green light source for PPG. Signal acquisition, however, the drive current required for green light as a light source is large, resulting in higher power consumption of the wearable device. Therefore, how to ensure the signal quality of the PPG signal and reduce the wearable device when collecting the PPG signal Power consumption has become an urgent problem to be solved.
  • Embodiments of the present invention provide a method and a device for collecting a PPG signal, which can select a light source with different characteristics to collect a PPG signal, and reduce the power consumption of the PPG signal while ensuring the signal quality of the PPG signal.
  • an embodiment of the present invention provides a method for collecting a PPG signal, including: acquiring, by using a photo sensor, a first PPG detection signal formed by a first light source, where the first light source is a green light source or a blue light source; The light sensor collects a second PPG detection signal formed by the second light source, and the second light source is a red light source or an infrared light source; and further, determining whether the first light source is based on the first PPG detection signal Satisfying the preset collection index; if the first light source meets the collection index, determining whether the second light source satisfies the collection index according to the second PPG detection signal; if the second light source meets the collection index, the light perception can be used
  • the detector collects the PPG signal formed by the second light source.
  • the green light source since the green light source has a wide application range when collecting the PPG signal, it can be determined that the first light source satisfies the above-mentioned collection index according to the first PPG detection signal, that is, firstly, the first light source can be tested.
  • the user provides a PPG signal with better signal quality; further, if the first light source satisfies the acquisition index, determining whether the second light source satisfies the acquisition index according to the second PPG detection signal, that is, whether the red light source or the infrared light source can determine whether the red light source or the infrared light source can Providing a PPG signal with better signal quality; if the second light source satisfies the acquisition index, the second light source is also applicable to the PPG signal acquisition process.
  • the first light source may be turned off. And using a light sensor to collect a PPG signal formed by a second light source that consumes less power.
  • the light intensity sensing range of the light sensor is (X, Y), 0 ⁇ X ⁇ Y; at this time, determining, according to the first PPG detection signal, that the first light source meets the collection index
  • the method includes: determining that the first light source meets the collection index if the light intensity indicated by the first PPG detection signal is between the first threshold and the second threshold (the first threshold is greater than the second threshold); The light intensity indicated by the first PPG detection signal has reached the first threshold, and the maximum value Y of the light intensity sensing range is increased until the light intensity indicated by the first PPG detection signal is located at the first threshold and the second If the intensity indicated by the first PPG detection signal has reached the second threshold, the minimum value X of the light intensity sensing range is lowered until the light intensity indicated by the first PPG detection signal is at the Between a threshold and the second threshold.
  • the method for determining that the first source meets the collection indicator according to the first PPG detection signal includes: calculating a signal to noise ratio of the first PPG detection signal; if a signal to noise ratio of the first PPG detection signal is located in a preset letter In the noise ratio interval, determining that the first light source meets the collection index; if the signal to noise ratio of the first PPG detection signal does not belong to the signal to noise ratio interval, adjusting the light intensity of the first light source until the first PPG The signal to noise ratio of the detected signal is within the signal to noise ratio interval.
  • the first light source that satisfies the collection index is determined, thereby ensuring that the first light source can provide better signal quality for the tested user. PPG signal.
  • determining, according to the second PPG detection signal, that the second light source meets the collection indicator comprises: calculating a signal to noise ratio of the second PPG detection signal; and if a signal to noise ratio of the second PPG detection signal And determining that the second light source meets the collection index; if the signal to noise ratio of the second PPG detection signal does not belong to the signal to noise ratio interval, adjusting the light intensity of the second light source, Until the signal to noise ratio of the second PPG detection signal is within the signal to noise ratio interval.
  • the second light source can provide a PPG signal with better signal quality for the user under test.
  • the method before determining that the first light source meets the collection index according to the first PPG detection signal, the method further includes: acquiring the light intensity of the ambient light; calculating the light intensity of the ambient light and the first PPG detection signal Calculating the light intensity of the ambient light and the second PPG detection signal by a first correlation coefficient between a second correlation coefficient; if the first correlation coefficient and the second correlation coefficient are both greater than a correlation coefficient threshold, turning off the first light source and the second light source.
  • the intensity of the ambient light is large, noise pollution is caused to the light beam emitted by the first light source or the second light source, thereby affecting the signal quality of the PPG signal collected by the light sensor, and the intensity of the ambient light and each PPG detection
  • the correlation coefficient between the signals may reflect the degree of noise pollution. Therefore, when the first correlation coefficient and the second correlation coefficient are both greater than the correlation coefficient threshold, it indicates that the light beams emitted by the first light source and the second light source are both contaminated by ambient light.
  • the collected PPG signal has poor signal quality, in order to reduce the power consumption when collecting the PPG signal, the first light source and the second light source can be turned off, and the PPG signal collecting function is exited.
  • the method further includes: establishing a correspondence between the light source information of the second light source and the identifier of the tested user, so that The light sensor subsequently collects a PPG signal for the measured user according to the light source information of the second light source, wherein the light source information of the second light source includes the light intensity of the second light source and the light intensity of the light sensor. Sensing range.
  • the light source information of the second light source corresponding to the identifier of the tested user may be searched according to the correspondence, and the second light source is directly configured according to the light source information of the second light source.
  • the light intensity and the light intensity sensing range of the light sensor can then be used to collect the PPG signal for the user under test, thereby greatly reducing the time it takes to acquire the PPG signal.
  • an embodiment of the present invention provides a PPG signal collecting apparatus, including: a processor, and a photo sensor and a memory connected to the processor.
  • the photo sensor is configured to acquire a first PPG detection signal formed by the first light source, the first light source is a green light source or a blue light source; and the second PPG detection signal formed by the second light source is collected.
  • the second light source is a red light source or an infrared light source;
  • the processor is configured to determine, according to the first PPG detection signal, whether the first light source meets a preset collection index; if the first light source meets the collection index, according to the The second PPG detection signal determines whether the second light source satisfies the acquisition index; if the second light source satisfies the collection index, the PPG signal formed by the second light source is collected by using the light sensor.
  • the light intensity sensing range of the light sensor is (X, Y), 0 ⁇ X ⁇ Y; the processor is specifically configured to: if the light indicated by the first PPG detection signal The first threshold is equal to the second threshold. The first source is determined to be greater than the second threshold.
  • the processor is further configured to: if the light intensity indicated by the first PPG detection signal has reached the first threshold, increase a maximum value Y of the light intensity sensing range until the The light intensity indicated by the first PPG detection signal is located between the first threshold and the second threshold; if the light intensity indicated by the first PPG detection signal has reached the second threshold, the light intensity sensing range is decreased.
  • the minimum value X is until the light intensity indicated by the first PPG detection signal is between the first threshold and the second threshold.
  • the processor is specifically configured to: calculate a signal to noise ratio of the first PPG detection signal; if a signal to noise ratio of the first PPG detection signal is in a preset signal to noise ratio interval, It is determined that the first light source satisfies the collection index.
  • the processor is further configured to: if the first PPG detection signal is signal-to-noise If the ratio does not belong to the signal to noise ratio interval, the light intensity of the first light source is adjusted until the signal to noise ratio of the first PPG detection signal is within the signal to noise ratio interval.
  • the processor is specifically configured to: calculate a signal to noise ratio of the second PPG detection signal; if a signal to noise ratio of the second PPG detection signal is within a preset signal to noise ratio interval, It is determined that the second light source satisfies the collection index.
  • the processor is further configured to: if the signal to noise ratio of the second PPG detection signal does not belong to the signal to noise ratio interval, adjust the light intensity of the second light source until the second PPG The signal to noise ratio of the detected signal is within the signal to noise ratio interval.
  • the light sensor is further configured to acquire the light intensity of the ambient light; the processor is further configured to: calculate a first between the light intensity of the ambient light and the first PPG detection signal a correlation coefficient, calculating a second correlation coefficient between the light intensity of the ambient light and the second PPG detection signal; if the first correlation coefficient and the second correlation coefficient are both greater than a correlation coefficient threshold, turning off the first light source And the second light source.
  • the processor is further configured to: establish a correspondence between the light source information of the second light source and the identifier of the tested user, and save the correspondence to the memory, where the The light source information of the two light sources includes the light intensity of the second light source and a light intensity sensing range of the light sensor.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in a collection device for the PPG signal, which includes a program designed to execute the above-described aspect for a collection device of a PPG signal.
  • the name of the above-mentioned PPG signal collection device is not limited to the device or the function module itself. In actual implementation, these devices or function modules may appear under other names. As long as the functions of the respective devices or functional modules are similar to the present invention, they are within the scope of the claims and equivalents thereof.
  • FIG. 1 is a schematic structural diagram of a device for collecting a PPG signal according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram 1 of a principle of a PPG signal collecting apparatus according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram 2 of a PPG signal collecting apparatus according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of interaction of a method for collecting a PPG signal according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart 1 of a method for collecting a PPG signal according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a principle for collecting a PPG detection signal according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the relationship between the signal-to-noise ratio of the PPG signal and the light intensity
  • FIG. 8 is a schematic flowchart 2 of a method for collecting a PPG signal according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly. In the description of the present invention, "a plurality” means two or more unless otherwise stated.
  • the embodiment of the present invention provides a method for collecting a PPG signal, and the method can be applied to a PPG signal collection device (hereinafter referred to as a collection device), and the collection device can be a wearable watch or a wearable device. Wearable devices such as bracelets.
  • FIG. 1 it is a schematic structural diagram of the collection device 100 , wherein the collection device 100 specifically includes a first light source 01 , a second light source 02 , a photo sensor 03 , a memory 04 , and a processor 05 .
  • the processor 05 is connected to both the photo sensor 03 and the memory 04, and the photo sensor 03 can be used to collect the PPG signal formed by any light source.
  • the first light source 01 is specifically a green light source or a blue light source
  • the second light source 02 is specifically a red light source or an infrared light source.
  • the first light source 01 is a blue LED (Light Emitting Diode), and the second light source 02 It is a red LED.
  • the light sensor 03 is configured to collect the PPG signal formed by the first light source 01 or the second light source 02. Specifically, when the light beam emitted by the first light source 01 or the second light source 02 is irradiated onto the skin surface of the user to be tested, the light beam is used. It can be transmitted to the photo sensor 03 through transmission or reflection.
  • the photo sensor 03 can detect the light intensity change signal of the received light beam and convert the light intensity change signal into a digital electric signal to obtain a PPG signal.
  • the light sensor 03 can also collect the light intensity of the ambient light, etc., which is not limited by the embodiment of the present invention.
  • the photo sensor 03 may be composed of a PD 11 (Photo Diode) and a sensing circuit 12.
  • the sensing circuit 12 specifically includes a current amplifying circuit and a digital processing circuit.
  • the PD 11 of the photo sensor 03 detects that the optical signal emitted by the first light source 01 or the second light source 02 is converted into a current signal, and further, the light sense.
  • the sensing circuit 12 of the detector 03 amplifies the current signal and performs digitization processing to obtain a digital electrical signal (ie, a PPG signal) including an alternating current component and a direct current component.
  • the subsequent processor 05 may further separate the AC component and the DC component from the PPG signal by using a filtering algorithm.
  • the filtering algorithm may be a FFT (Fast Fourier Transformation) digital filtering algorithm, or may be another filtering algorithm, which is not limited by the embodiment of the present invention.
  • the sensing circuit 12 may specifically include a current/voltage amplifying circuit and a Qualcomm.
  • the filter circuit and the AC amplifying circuit specifically, the current/voltage amplifying circuit is configured to convert the current signal obtained by the PD 11 into a voltage signal and amplify the voltage signal; the high-pass filter circuit is used to exchange the voltage signal.
  • the component is separated from the DC component; the AC amplifying circuit is used to amplify the separated AC component to make it suitable for subsequent digitization processing; thus, the AC component and the DC component have been separated from the obtained PPG signal, and can be separated separately.
  • the subsequent DC component and AC component are digitized.
  • the memory 04 is configured to store a correspondence between the light source information of each of the light sources and the identifier of the user to be tested, wherein the light source information of the first light source 01 specifically includes the light intensity of the first light source 01 and the light sensor 03
  • the light source sensing range of the second light source 02 specifically includes the light intensity of the second light source 02 and the light intensity sensing range of the light sensor 03. Since the identifier of the tested user can be used to indicate different users under test, Therefore, when the same user is not using the acquisition device 100 for the first time to collect the PPG signal, the PPG signal can be directly collected according to the light source information of the corresponding light source according to the above correspondence, which can effectively shorten the time taken for the PPG signal acquisition.
  • the default initial light source for example, the green light source whose light source is a certain light intensity when the acquisition device 100 is used for the first time
  • the light intensity sensing range of the default light sensor can be stored in the memory 04, etc.
  • the embodiment of the invention does not limit this.
  • the processor 05 is a control center of the collection device 100, which may be one or more general-purpose central processing units, a microprocessor, an application-specific integrated circuit (ASIC), or one or more for control. An integrated circuit executed by the program of the present invention.
  • ASIC application-specific integrated circuit
  • the processor 05 can set the light intensity sensing range of the light sensor 03 according to the PPG detection signal formed by the different light sources collected by the light sensor 03, and set the light source type used for collecting the PPG signal (ie, the first light source 01). Or the second light source 02), and the light intensity of any kind of light source is set.
  • the processor 05 can also be used to control the lighting and extinction of the respective light sources, which is not limited in the embodiment of the present invention.
  • the green light source has a wide range of applications when collecting PPG signals.
  • a pulsating component with better signal quality can be obtained, and the red light source is
  • the PPG signal is collected, the applicable range is narrow.
  • the pulsating component in the obtained PPG signal is not obvious. Therefore, the blood pressure and blood oxygen of the tested user are detected through the pulsating component. Errors may occur when physiological parameter information is used.
  • the driving current required for green light as a light source is large, resulting in higher power consumption of the acquisition device, and the driving current required for red light as a light source is smaller, so the power consumption of the acquisition device is lower.
  • the embodiment of the present invention provides a method for collecting a PPG signal, which can select a suitable light source for the PPG signal collection, and can ensure the PPG. Reduce the signal quality of the signal while reducing the acquisition of the PPG signal Power consumption.
  • the photo sensor 03 can separately collect the first light source 01.
  • the detection signal determines whether the first light source satisfies the acquisition index, that is, whether the green light source or the blue light can provide the PPG signal with better signal quality; and further, in the case that the first light source is determined to meet the collection index, the processor 05 further determines
  • the second PPG detection signal determines whether the second light source satisfies the acquisition index, that is, determines whether the red light source or the infrared light source can provide a PPG signal with better signal quality;
  • the two light sources satisfy the acquisition index, that is, the PPG signal with higher signal quality can also be obtained by using the second light source.
  • the processor 05 can use the light sensor 03 to collect less power consumption.
  • the collecting device may first determine the first light source that satisfies the acquisition index according to the first PPG detection signal, that is, first ensure that the first light source can be The tested user provides a PPG signal with better signal quality; further, if the first light source satisfies the acquisition index, determining whether the second light source satisfies the acquisition index according to the second PPG detection signal, that is, determining the red light source or the infrared light source Whether the PPG signal with better signal quality can be provided; if the second light source satisfies the acquisition index, the use of the second light source is also applicable to the acquisition process of the PPG signal. At this time, in order to reduce the power consumption of the acquisition device, the first light source can be turned off. And using a light sensor to collect a PPG signal formed by a second light source that consumes less power.
  • the second light source cannot be used as a collection device because the applicable range of the first light source when collecting the PPG signal is wider than when the second light source is used to collect the PPG signal.
  • the light source collects the PPG signal. At this time, the PPG signal acquisition function can be exited.
  • the PPG signal can be continuously collected using the first light source without switching the light source.
  • an embodiment of the present invention provides a method for collecting a PPG signal, as shown in FIG. 5, including:
  • the collecting device collects a first PPG detecting signal formed by the first light source by using a light sensor, and the first light source is a green light source or a blue light source.
  • the light source sensing range of the default initial light source and the default light sensor is pre-stored in the collection device.
  • the first light source whose initial light source is a certain light intensity may be set (ie, The green light source or the blue light source), the light intensity sensing range is (X, Y), 0 ⁇ X ⁇ Y, where X is the minimum light intensity value that the light sensor can sense, and Y is the light sensing The maximum light intensity that can be sensed by the device.
  • the PPG signal can be first used by using the default initial light source and the light intensity sensing range of the default light sensor.
  • the acquisition process however, the default light sensor's light intensity sensing range and the default initial light source may not be able to acquire a better quality PPG signal for the user under test.
  • the collecting device may first collect the first PPG detection signal formed by the default first light source by using the light sensor, so as to determine whether the first light source currently used is determined according to the first PPG detection signal.
  • a PPG signal with better signal quality can be collected for the user under test.
  • the light intensity sensing range refers to a range of light intensity that the light sensor can sense during the process of collecting the PPG signal, for example, the light intensity sensing range is (0, 1000), wherein the light intensity is The unit is cd, which is Candela.
  • the maximum value of the above-mentioned light intensity sensing range should be smaller than the maximum light intensity that the light sensor can sense.
  • the collecting device uses a photo sensor to collect a second PPG detecting signal formed by the second light source, where the second light source is a red light source or an infrared light source.
  • step 101 since multiple light sources, for example, a first light source and a second light source, are disposed in the collecting device, in order to determine whether the second light source can acquire a PPG signal with better signal quality for the tested user, the collecting is performed.
  • the device also needs to use the light sensor to collect the second PPG detection signal formed by the second light source, and the light intensity of the second light source is the default light intensity pre-stored in the collection device.
  • the above steps 101 and 102 can be performed simultaneously.
  • the first light source is a green light source
  • the second light source is a red light source.
  • the pulse can be pulsed.
  • the method sequentially lights up the green light source and the red light source, so that the light sensor collects the light intensity value of the green light source at each green light pulse moment, and collects the light of the red light source at each red light pulse moment.
  • a strong value, and further, the light intensity value collected at different green light pulse times in the detection period may be used as the first PPG detection signal, and the light intensity value collected at different red light pulse moments in the detection period is used as the second PPG. Detection signal.
  • the heartbeat period of the detection period is not less than two test users.
  • step 101 may be performed first and then step 102 may be performed first, or step 102 may be performed first, and then step 101 is performed to obtain the first PPG detection signal and the second PPG detection signal, or step 101 may be performed first, and then executed.
  • step 103 after determining that the first light source meets the collection index, step 102 is performed, which is not limited by the embodiment of the present invention.
  • the first PPG detecting signal formed by the first light source 01 and the second PPG detecting signal formed by the second light source 02 may be collected by the photo sensor 03. .
  • the collecting device determines, according to the first PPG detection signal, whether the first light source meets a preset collection index.
  • the method for determining whether the first light source meets the preset collection index specifically includes the following methods A and B.
  • Method A Since the signal quality of the PPG signal is largely determined by the signal-to-noise ratio of the PPG signal, that is, the signal-to-noise ratio of the PPG signal is larger, the signal quality of the PPG signal is higher, and therefore, it can be preset in the acquisition device.
  • the acquisition indicator is a signal to noise ratio interval when the first PPG check
  • the signal-to-noise ratio of the measured signal is located in the SNR interval
  • the signal to noise ratio of the signal does not belong to the signal to noise ratio interval
  • the frequency interval of a PPG detection signal for example, the frequency interval is 25.2 Hz-48 Hz, and further, the portion of the signal interval other than 0.5 Hz - 40 Hz is regarded as noise, and the frequency interval is located at 0.5 Hz - This portion of the signal within 40 Hz is considered a useful signal to calculate the ratio of the useful signal to the noise, ie the signal to noise ratio of the first PPG detection signal.
  • the first PPG detection signal is usually a digital signal, and can be used to indicate the intensity of the light reflected by the first light source after passing through the skin of the user under test, and the intensity of the light indicated by the first PPG detection signal can also be reflected.
  • the signal quality of the PPG signal is usually a digital signal, and can be used to indicate the intensity of the light reflected by the first light source after passing through the skin of the user under test, and the intensity of the light indicated by the first PPG detection signal can also be reflected.
  • the acquisition indicator may be a first intensity interval, where the intensity indicated by the first PPG detection signal is located at a first threshold and a second threshold (the first threshold is greater than a second threshold)
  • the first light source can be determined to meet the collection index, that is, the first light source can collect the PPG signal with better signal quality for the tested user; when the light intensity indicated by the first PPG detection signal is not When belonging to the first light intensity interval, it may be determined that the first light source does not satisfy the collection index.
  • the first PPG signal reflects the light intensity value of the first light source sensed by the light sensor at different times. Therefore, the light intensity indicated by the first PPG detection signal may be the first PPG. Any one of the light intensity values included in the signal may also be an average value of all light intensity values in the first PPG signal. Still taking FIG. 6 as an example, the intensity of the light indicated by the first PPG detection signal may be within the detection period. The minimum of the four light intensity values acquired at four different green light pulse moments, or the maximum of the four light intensity values, or the average of the sum of the four light intensity values.
  • the magnitude of the light intensity indicated by the second PPG signal may be any one of the light intensity values included in the second PPG signal, or the average value of all the light intensity values in the second PPG signal. This is not limited.
  • the acquisition device can also use the filtering algorithm to convert the AC component and the DC component in the first PPG detection signal.
  • the acquisition index may be a second light intensity interval, such that when the separated light intensity indicated by the DC component is located at a third threshold and a fourth threshold (the third threshold is greater than the fourth threshold)
  • the first light source can be determined to meet the collection index, that is, the first light source can collect the PPG signal with better signal quality for the tested user; when the light intensity indicated by the first PPG detection signal is not When belonging to the second light intensity interval, it may be determined that the first light source does not satisfy the collection index.
  • the method A or the method B may be selected to determine whether the first light source satisfies the collection index. For example, when the light indicated by the first PPG detection signal is stronger than the light intensity threshold, the method B may be selected to determine whether the first light source meets the collection index, and the light intensity indicated by the first PPG detection signal is less than the light intensity threshold.
  • the method A determines if the first source meets the acquisition criteria.
  • step 104a if it is determined that the first light source does not satisfy the collection index, the following step 104a is performed; if it is determined that the first light source meets the collection index, the following step 104b is performed.
  • the collection device adjusts the light intensity sensing range of the light sensor or adjusts the light intensity of the first light source.
  • step 104a if the first light source does not satisfy the collection index, it indicates that the light intensity of the first light source used in step 101 is inappropriate, or the light intensity sensing range of the light sensor used in step 101 Not suitable. Therefore, the collecting device can adjust the light intensity sensing range of the light sensor or adjust the light intensity of the first light source until the first light source satisfies the collecting index, and perform the following step 104b.
  • the acquisition device may follow the PPG signal shown in FIG. (the relationship between the signal-to-noise ratio of the first PPG detection signal and the second PPG detection signal belonging to the PPG signal) and the light intensity, adjusting the light intensity of the first light source, and then repeating steps 101 and 103 until the first PPG is collected.
  • the signal to noise ratio of the detection signal is within the signal to noise ratio interval, the following step 104b is performed.
  • the signal to noise ratio of the first PPG detection signal may specifically be a signal to noise ratio of an AC component in the first PPG detection signal.
  • the light intensity indicated by the first PPG detection signal when the light intensity indicated by the first PPG detection signal does not belong to the first threshold and the second threshold, it may be determined that the first light source does not meet the collection index.
  • the light intensity indicated by the first PPG detection signal has reached the first threshold, indicating that the first PPG detection signal has caused the photo sensor to reach a saturated state.
  • the maximum value Y of the light intensity sensing range can be increased, and then repeated.
  • Steps 101 and 103 are performed until the light intensity indicated by the collected first PPG detection signal is between the first threshold and the second threshold; correspondingly, if the intensity indicated by the first PPG detection signal has reached the second
  • the threshold value can be used to reduce the minimum value X of the light intensity sensing range, and then steps 101 and 103 are repeatedly performed until the light intensity indicated by the collected first PPG detection signal is between the first threshold and the second threshold. Step 104b is described.
  • the acquisition device cannot use the first light source to obtain the signal quality.
  • Good PPG signal and because the applicable range of the first light source when collecting the PPG signal is wider than that of the second light source when collecting the PPG signal, the second light source cannot be used as the light source of the collecting device to collect the PPG signal.
  • the acquisition device can turn off all light sources and exit the PPG signal acquisition function.
  • the collecting device determines, according to the second PPG detection signal, whether the second light source meets the collection index.
  • the current first light source can collect the PPG signal with better signal quality for the tested user. At this time, if the first light source is used to collect the PPG signal, the acquisition can be guaranteed. The signal quality of the PPG signal is higher, but the PPG is collected using the first source The signal may cause the power consumption of the collecting device to be high. Therefore, in the step 104b, under the condition that the first light source satisfies the collecting index, the collecting device determines that the power consumption is small according to the second PPG detecting signal obtained in step 102.
  • the first light source can be turned off, and the second light source is used to collect the PPG signal, so that the signal quality of the collected PPG signal can be ensured.
  • the PPG signal is collected by the second light source with less power consumption as much as possible, thereby reducing the power consumption of the acquisition device.
  • the method for determining whether the second light source satisfies the acquisition index according to the second PPG detection signal is similar to the method A in step 103, that is, calculating a signal to noise ratio of the second PPG detection signal; if the second PPG detection signal is a letter The noise ratio is located in the signal to noise ratio interval, and the second light source can be determined to meet the acquisition index, that is, the second light source can collect the PPG signal with better signal quality for the tested user, and when the second PPG detection signal is When the signal to noise ratio does not belong to the signal to noise ratio interval, it may be determined that the second light source does not satisfy the collection index.
  • the step 104a determines that the first light source satisfies the acquisition index
  • the light intensity sensing range of the photo sensor is also determined, and therefore, Whether the second light source satisfies the acquisition index does not need to determine whether the light intensity indicated by the second PPG detection signal is located in the first light intensity interval.
  • step 105a if the second light source does not satisfy the collection index, the following step 105a is performed; if the second light source satisfies the collection index, the following step 105b is performed.
  • the collecting device adjusts the light intensity of the second light source until the signal to noise ratio of the second PPG detection signal is within the signal to noise ratio interval.
  • step 105a if the second light source does not satisfy the collection index, the light intensity of the second light source used in step 102 is illustrated (ie, used in the above step 102). The default light intensity is not suitable.
  • the collecting device can adjust the light intensity of the second light source until the second light source meets the collection index, and the following step 105b is performed.
  • the acquisition device may still follow the signal and noise of the PPG signal shown in FIG. 7.
  • the light intensity of the second light source is adjusted in relation to the light intensity, and then steps 102 and 104b are repeatedly performed until the signal-to-noise ratio of the second PPG detection signal is within the signal-to-noise ratio interval, and the following step 105b is performed.
  • the signal-to-noise ratio of the collected second PPG detection signal cannot be located in the signal-to-noise ratio interval regardless of how the light intensity of the second light source is adjusted.
  • the work generated by the second light source is illustrated.
  • the second light source cannot meet the collection index, that is, the acquisition device cannot obtain the PPG signal with better signal quality by using the second light source, and the first light source that satisfies the collection index has been determined in step 104b.
  • the collecting device can continue to collect the PPG signal by using the first light source that satisfies the collecting index.
  • the collecting device turns off the first light source, and uses the light sensor to collect the PPG signal formed by the second light source.
  • the current second light source can collect the PPG signal with better signal quality for the tested user.
  • both the first light source and the second light source can be collected for the tested user.
  • the first light source can be turned off, and the PPG signal formed by the second light source can be collected using the light sensor.
  • the collecting device establishes a correspondence between the light source information of the second light source and the identifier of the tested user, so that the light sensor subsequently collects the PPG signal for the tested user according to the light source information of the second light source.
  • step 106 since the second light source with lower power consumption and capable of providing a PPG signal with better signal quality has been determined in the above step 105b, the second user may directly use the second light source to collect the second light source.
  • a PPG signal wherein the light intensity of the second light source and the determined light intensity sensing range of the light sensor are saved as the light source information of the second light source, and then the light source information of the second light source is established and the user of the tested user The correspondence between identifiers (such as user accounts).
  • the collecting device may search for the light source information of the second light source corresponding to the identifier of the tested user according to the corresponding relationship, and further directly according to the light source of the second light source.
  • the information configures the light intensity of the second light source and the light intensity sensing range of the light sensor, and then collects the PPG signal for the user under test, thereby greatly shortening the time taken for collecting the PPG signal.
  • the method of the above steps 101-107 may be used to determine a suitable light source for the user, which is not limited in the embodiment of the present invention.
  • the collection device may continue to use the satisfaction determined in step 104b.
  • the first light source of the acquisition indicator collects a PPG signal.
  • the correspondence between the light source information of the first light source and the identifier of the tested user may be established, so that the light sensor subsequently determines the light source information according to the first light source as the measured
  • the user collects the PPG signal.
  • the light source information of the first light source includes the light intensity of the first light source and the light intensity sensing range of the light sensor.
  • the steps involved in the execution of the acquisition device in steps 103-106 can be implemented by the processor 05 executing the corresponding program instructions stored in the memory 04.
  • the intensity of the ambient light has a great influence on the signal quality of the collected PPG signal, because when the first light source or the second light source emits a light beam, the light intensity is relatively high. Large ambient light will cause noise pollution to the beam, thereby affecting the signal quality of the PPG signal collected by the photo sensor. Therefore, in a collection device such as a wearable watch, the light source and the photo sensor are usually placed close to the skin of the user to be tested. The position, when the tested user is dressed, can avoid excessive ambient light from illuminating the light sensor because the light source can be in direct contact with the skin.
  • an embodiment of the present invention provides a method for collecting a PPG signal, as shown in FIG.
  • the collecting device uses a light sensor to obtain the light intensity of the ambient light.
  • the collecting device collects a first PPG detecting signal formed by the first light source by using a light sensor, where the first light source is a green light source or a blue light source.
  • the collecting device uses a photo sensor to collect a second PPG detecting signal formed by the second light source, where the second light source is a red light source or an infrared light source.
  • the collecting device can perform the steps 201-203 at the same time.
  • the first light source is still green light
  • the second light source is red light.
  • the green light source and the red light source are illuminated.
  • the photo sensor collects the green light intensity at the time of each green light pulse and the red light at the time of each red light pulse.
  • the acquisition device can calculate the average green light intensity, the average red light intensity, and the average ambient light during the detection period. The light intensity is used as the first PPG detection signal, and the average red light intensity is used as the second PPG detection signal, and the average ambient light intensity is used as the ambient light light acquired in step 201. Strong.
  • the collecting device can obtain the ambient light intensity, the first PPG detection signal and the second PPG detection signal at one time, and then select the measured user according to the ambient light intensity, the first PPG detection signal and the second PPG detection signal.
  • a suitable light source reduces the time it takes to select a suitable light source.
  • the step 201 involves the steps performed by the collecting device, and specifically, the light intensity of the ambient light can be obtained by the photo sensor 03.
  • the acquiring device calculates a first correlation coefficient between the light intensity of the ambient light and the first PPG detection signal, and calculates a second correlation coefficient between the light intensity of the ambient light and the second PPG detection signal.
  • the intensity of the ambient light is large, noise pollution is caused to the light beam emitted by the first light source or the second light source, thereby affecting the signal quality of the PPG signal collected by the light sensor, and the intensity of the ambient light and each PPG detection
  • the correlation coefficient between signals can reflect the degree of noise pollution. Generally, the higher the correlation coefficient, the more serious the noise pollution. The lower the correlation coefficient, the smaller the noise pollution.
  • the correlation coefficient r between the light beam emitted by the first light source and the ambient light can be calculated by the following formula:
  • x i is the value of the light intensity absorbed by the photodetector when the first light source is illuminated at the ith time in the detection period, The average value of n x i in the detection period; and y i is the light intensity value absorbed by the photodetector after the first light source is turned off after the first light source is turned on at the ith time (ie, the intensity of the ambient light) value), Is the mean of n y i .
  • the collecting device may first determine whether the first correlation coefficient and the second correlation coefficient need to be calculated according to the light intensity of the ambient light. For example, when the ambient light is stronger than the ambient light threshold, the probability of noise pollution is almost 100%. Therefore, the acquisition device can directly exit the PPG signal acquisition function, and when the ambient light intensity is less than the ambient light threshold.
  • the collecting device may calculate a first correlation coefficient between the intensity of the ambient light and the first PPG detection signal, and a second correlation between the intensity of the ambient light and the second PPG detection signal
  • the coefficient when the first correlation coefficient and the second correlation coefficient are relatively small, triggers the PPG signal acquisition function of the above steps 103-106, thereby ensuring the signal quality of the PPG signal collected by the photo sensor.
  • the acquiring device turns off the first light source and the second light source.
  • step 205a if the first correlation coefficient and the second correlation coefficient are both greater than the correlation coefficient threshold, it indicates that the light beams emitted by the first light source and the second light source are both contaminated by ambient light. At this time, the collected PPG signal The signal quality is relatively poor. Therefore, in order to reduce the power consumption of the acquisition device, the first light source and the second light source can be turned off, and the PPG signal acquisition function is exited.
  • the collecting device performs the above steps 103-106.
  • step 205b if at least one of the first correlation coefficient and the second correlation coefficient is less than the correlation coefficient threshold, it indicates that the light beam emitted by at least one of the first light source and the second light source is not contaminated by ambient light,
  • the PPG signal can be collected by using the light source that is not polluted by the ambient light according to the above steps 103-106.
  • For the method for collecting the PPG signal refer to the related descriptions of the above steps 103-106, and therefore no further details are provided herein.
  • steps involved in the acquisition by the acquisition means in steps 202-205a may be implemented by the processor 05 executing the corresponding program instructions stored in the memory 04.
  • an embodiment of the present invention provides a method and an apparatus for collecting a PPG signal, where the acquisition apparatus first acquires a first PPG detection signal and a second light source (ie, red light) formed by a first light source (ie, a green light source or a blue light source).
  • the second PPG detection signal formed by the light source or the infrared light source and further, since the green light source has a wide application range when collecting the PPG signal, the collecting device may first determine that the collection index is satisfied according to the first PPG detection signal.
  • the first light source that is, firstly, the first light source can provide the PPG signal with better signal quality for the tested user; and further, if the first light source satisfies the acquisition index, determine whether the second light source satisfies the second PPG detection signal.
  • the acquisition index determines whether the red light source or the infrared light source can provide a PPG signal with better signal quality; if the second light source satisfies the acquisition index, the use of the second light source is also applicable to the PPG signal acquisition process.
  • the first light source can be turned off, and the PPG letter formed by the second light source with low power consumption is collected by using the light sensor. No., in this way, while ensuring the signal quality of the PPG signal, the power consumption generated by the acquisition of the PPG signal is reduced.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division, and may actually have another The manner of division, for example, multiple units or components may be combined or integrated into another system, or some features may be omitted or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种PPG信号的采集方法及装置,涉及通信领域,可选择不同特性的光源采集PPG信号,在保证PPG信号的信号质量的同时,降低采集PPG信号产生的功耗。该方法包括:使用光感测器(03)采集第一光源(01)形成的第一PPG检测信号,该第一光源(01)为绿光光源或蓝光光源;使用该光感测器(03)采集第二光源(02)形成的第二PPG检测信号,该第二光源(02)为红光光源或红外光光源;进而,根据该第一PPG检测信号确定该第一光源(01)是否满足预设的采集指标;若第一光源(01)满足该采集指标,则根据该第二PPG检测信号确定该第二光源(02)是否满足该采集指标;若第二光源(02)满足该采集指标,则可使用该光感测器(03)采集该第二光源(02)形成的PPG信号。

Description

一种PPG信号的采集方法及装置
本申请要求于2016年5月26日提交中国专利局、申请号为201610363677.0、发明名称为“一种PPG信号的采集方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及一种PPG(Photo Plethysmo Graphy,光电容积脉搏波)信号的采集方法及装置。
背景技术
PPG技术是指借助光电手段在活体组织中检测血液容积变化的一种无创检测技术。当一定波长的光束照射到受测用户的皮肤表面时,光束将通过透射或反射方式传送到光感测器。在此过程中,由于血管内的血液容积在心脏收缩舒张作用下呈波动性变化,因此,当心脏收缩时,心脏的外周血管血容量增多,光吸收量也随之增加,那么,光感测器检测到的光强度较小;而在心脏舒张时,心脏的外周血管血容量减少,光感测器检测到的光强度较大,可以看出,光感测器检测到的光强度呈脉动性变化,可将此光强度变化信号转化成数字电信号,即得到PPG信号。
进而,通过上述PPG信号可得到受测用户的血压、血氧、脑氧、肌氧、血糖、脉率和呼吸率等生理参数信息,因此,目前大多数可穿戴设备利用上述原理追踪用户的健康状况。
而由于使用绿光光源采集PPG信号时,能够得到信号质量较好的PPG信号,例如,采集到的PPG信号中的脉动成分较为明显,因此,大多数可穿戴设备上都设置绿光光源进行PPG信号采集,但是,绿光作为光源时需要的驱动电流较大,导致可穿戴设备的功耗较高,因此,在采集PPG信号时,如何保证PPG信号的信号质量,并且,降低可穿戴设备的功耗成为亟需解决的问题。
发明内容
本发明的实施例提供一种PPG信号的采集方法及装置,可选择不同特性的光源采集PPG信号,在保证PPG信号的信号质量的同时,降低采集PPG信号产生的功耗。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明的实施例提供一种PPG信号的采集方法,包括:使用光感测器采集第一光源形成的第一PPG检测信号,该第一光源为绿光光源或蓝光光源;使用该光感测器采集第二光源形成的第二PPG检测信号,该第二光源为红光光源或红外光光源;进而,根据该第一PPG检测信号确定该第一光源是否 满足预设的采集指标;若第一光源满足该采集指标,则根据该第二PPG检测信号确定该第二光源是否满足该采集指标;若第二光源满足该采集指标,则可使用该光感测器采集该第二光源形成的PPG信号。
可以看出,由于使用绿光光源在采集PPG信号时的适用范围较广,因此,可以首先根据第一PPG检测信号确定出第一光源满足上述采集指标,即首先保证第一光源能够为受测用户提供信号质量较好的PPG信号;进而,在第一光源满足采集指标的条件下,根据第二PPG检测信号确定第二光源是否满足该采集指标,即确定红光光源或红外光光源是否能够提供信号质量较好的PPG信号;如果第二光源满足该采集指标,则第二光源也适用于PPG信号的采集过程,此时,为了降低PPG信号的采集装置的功耗,可以关闭第一光源,并使用光感测器采集功耗较小的第二光源形成的PPG信号。
在一种可能的设计中,该光感测器的光强感应范围为(X,Y),0≤X<Y;此时,根据该第一PPG检测信号确定该第一光源满足采集指标的方法包括:若该第一PPG检测信号所指示的光强位于第一阈值和第二阈值(该第一阈值大于该第二阈值)之间,则确定该第一光源满足该采集指标;若该第一PPG检测信号所指示的光强已达到该第一阈值,则提高该光强感应范围的最大值Y,直至该第一PPG检测信号所指示的光强位于该第一阈值和该第二阈值之间;若该第一PPG检测信号所指示的光强已达到该第二阈值,则降低该光强感应范围的最小值X,直至该第一PPG检测信号所指示的光强位于该第一阈值和该第二阈值之间。
又或者,根据该第一PPG检测信号确定该第一光源满足采集指标的方法包括:计算该第一PPG检测信号的信噪比;若该第一PPG检测信号的信噪比位于预设的信噪比区间内,则确定该第一光源满足该采集指标;若该第一PPG检测信号的信噪比不属于该信噪比区间,则调节该第一光源的光强,直至该第一PPG检测信号的信噪比位于该信噪比区间内。
这样,通过调整第一光源的光强大小,或者调整光感测器的光强感测范围,确定满足该采集指标的第一光源,从而保证第一光源能够为受测用户提供信号质量较好的PPG信号。
在一种可能的设计中,根据该第二PPG检测信号确定该第二光源满足该采集指标,包括:计算该第二PPG检测信号的信噪比;若该第二PPG检测信号的信噪比位于预设的信噪比区间内,则确定该第二光源满足该采集指标;若该第二PPG检测信号的信噪比不属于该信噪比区间,则调节该第二光源的光强,直至该第二PPG检测信号的信噪比位于该信噪比区间内。
这样,通过调整第二光源的光强大小,从而保证第二光源能够为受测用户提供信号质量较好的PPG信号。
在一种可能的设计中,在根据该第一PPG检测信号确定该第一光源满足采集指标之前,还包括:获取环境光的光强;计算该环境光的光强与该第一PPG检测信号之间的第一相关系数,计算该环境光的光强与该第二PPG检测信号之 间的第二相关系数;若该第一相关系数和该第二相关系数均大于相关系数阈值,则关闭该第一光源和该第二光源。
由于环境光的光强较大时会对第一光源或第二光源发射的光束造成噪声污染,从而影响光感测器采集到的PPG信号的信号质量,而环境光的光强与各个PPG检测信号之间相关系数可以反映噪声污染的程度,因此,当上述第一相关系数和第二相关系数均大于相关系数阈值时,则说明第一光源和第二光源发出的光束均被环境光污染,此时,采集到的PPG信号的信号质量比较差,因此,为了降低采集PPG信号时的功耗,可以关闭第一光源和第二光源,并退出PPG信号采集功能。
在一种可能的设计中,在使用该光感测器采集该第二光源形成的PPG信号之后,还包括:建立该第二光源的光源信息与受测用户的标识之间的对应关系,以便于该光感测器后续根据该第二光源的光源信息为该受测用户采集PPG信号,其中,该第二光源的光源信息包括该第二光源的光强和该光感测器的光强感应范围。
这样,当该受测用户再次采集PPG信号时,可以根据该对应关系,查找与该受测用户的标识对应的第二光源的光源信息,进而直接根据该第二光源的光源信息配置第二光源的光强和光感测器的光强感应范围,然后为该受测用户采集PPG信号即可,从而大大缩短采集PPG信号花费的时间。
第二方面,本发明的实施例提供一种PPG信号的采集装置,包括:处理器,以及与该处理器均相连的光感测器和存储器。
其中,该光感测器,用于采集第一光源形成的第一PPG检测信号,该第一光源为绿光光源或蓝光光源;以及,采集第二光源形成的第二PPG检测信号,该第二光源为红光光源或红外光光源;该处理器,用于根据该第一PPG检测信号确定该第一光源是否满足预设的采集指标;若该第一光源满足该采集指标,则根据该第二PPG检测信号确定该第二光源是否满足该采集指标;若该第二光源满足该采集指标,则使用该光感测器采集该第二光源形成的PPG信号。
在一种可能的设计中,该光感测器的光强感应范围为(X,Y),0≤X<Y;该处理器,具体用于:若该第一PPG检测信号所指示的光强位于第一阈值和第二阈值之间,则确定该第一光源满足该采集指标,该第一阈值大于该第二阈值。
在一种可能的设计中,该处理器,还用于:若该第一PPG检测信号所指示的光强已达到该第一阈值,则增大该光强感应范围的最大值Y,直至该第一PPG检测信号所指示的光强位于该第一阈值和该第二阈值之间;若该第一PPG检测信号所指示的光强已达到该第二阈值,则降低该光强感应范围的最小值X,直至该第一PPG检测信号所指示的光强位于该第一阈值和该第二阈值之间。
在一种可能的设计中,该处理器,具体用于:计算该第一PPG检测信号的信噪比;若该第一PPG检测信号的信噪比位于预设的信噪比区间内,则确定该第一光源满足该采集指标。
在一种可能的设计中,该处理器,还用于:若该第一PPG检测信号的信噪 比不属于该信噪比区间,则调节该第一光源的光强,直至该第一PPG检测信号的信噪比位于该信噪比区间内。
在一种可能的设计中,该处理器,具体用于:计算该第二PPG检测信号的信噪比;若该第二PPG检测信号的信噪比位于预设的信噪比区间内,则确定该第二光源满足该采集指标。
在一种可能的设计中,该处理器,还用于:若该第二PPG检测信号的信噪比不属于该信噪比区间,则调节该第二光源的光强,直至该第二PPG检测信号的信噪比位于该信噪比区间内。
在一种可能的设计中,该光感测器,还用于获取环境光的光强;该处理器,还用于:计算该环境光的光强与该第一PPG检测信号之间的第一相关系数,计算该环境光的光强与该第二PPG检测信号之间的第二相关系数;若该第一相关系数和该第二相关系数均大于相关系数阈值,则关闭该第一光源和该第二光源。
在一种可能的设计中,该处理器,还用于:建立该第二光源的光源信息与受测用户的标识之间的对应关系,并将该对应关系保存至该存储器,其中,该第二光源的光源信息包括该第二光源的光强和该光感测器的光强感应范围。
第三方面,本发明实施例提供了一种计算机存储介质,用于储存为上述PPG信号的采集装置所用的计算机软件指令,其包含用于执行上述方面为PPG信号的采集装置所设计的程序。
本发明中,上述PPG信号的采集装置的名字对设备或功能模块本身不构成限定,在实际实现中,这些设备或功能模块可以以其他名称出现。只要各个设备或功能模块的功能和本发明类似,属于本发明权利要求及其等同技术的范围之内。
另外,第二方面至第三方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明实施例提供的一种PPG信号的采集装置的结构示意图;
图2为本发明实施例提供的一种PPG信号的采集装置的原理示意图一;
图3为本发明实施例提供的一种PPG信号的采集装置的原理示意图二;
图4为本发明实施例提供的一种PPG信号的采集方法的交互示意图;
图5为本发明实施例提供的一种PPG信号的采集方法的流程示意图一;
图6为本发明实施例提供的采集PPG检测信号的原理示意图;
图7为PPG信号的信噪比与光强之间的变化关系示意图;
图8为本发明实施例提供的一种PPG信号的采集方法的流程示意图二。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
另外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
具体的,本发明的实施例提供一种PPG信号的采集方法,该方法可应用于PPG信号的采集装置(后续实施例中简称为采集装置),该采集装置具体可以为可穿戴手表、可穿戴手环等可穿戴设备。
如图1所示,为该采集装置100的结构示意图,其中,采集装置100具体包括第一光源01、第二光源02、光感测器03、存储器04以及处理器05。其中,处理器05与光感测器03和存储器04均相连,光感测器03可用于采集任意光源形成的PPG信号。
第一光源01具体为绿光光源或者蓝光光源,第二光源02具体为红光光源或者红外光光源,例如,第一光源01为蓝色LED(Light Emitting Diode,发光二极管),第二光源02为红色LED。
光感测器03,用于采集第一光源01或第二光源02形成的PPG信号,具体的,第一光源01或第二光源02发出的光束照射到受测用户的皮肤表面时,该光束可通过透射或反射方式传送到光感测器03,光感测器03可以检测出其接收到的光束的光强变化信号,并将该光强变化信号转化成数字电信号,从而得到PPG信号,当然,光感测器03还可以采集环境光的光强等,本发明实施例对此不做限定。
示例性的,如图2所示,光感测器03可以由PD 11(Photo Diode,光电二极管)和感测电路12构成。该感测电路12具体包括电流放大电路和数字处理电路,具体的,光感测器03的PD 11检测到第一光源01或第二光源02发出的光信号转换为电流信号,进而,光感测器03的感测电路12将该电流信号放大后,进行数字化处理,得到数字电信号(即PPG信号),该PPG信号中包括交流成分与直流成分。可选的,后续处理器05还可以通过滤波算法从上述PPG信号中分离出交流成分与直流成分。其中,该滤波算法可以是FFT(Fast Fourier Transformation,离散傅氏变换的快速算法)数字滤波算法,也可以是其他滤波算法,本发明实施例对此不做限定。
又或者,还可以采用两级的方式直接采集到PPG信号中的交流成分与直流成分,此时,如图3所示,感测电路12具体可以包括电流/电压放大电路、高通 滤波电路和交流放大电路,具体的,电流/电压放大电路用于将PD 11所获取的电流信号转换为电压信号,并对该电压信号进行放大;高通滤波电路用于将上述电压信号中的交流成分与直流成分进行分离;交流放大电路用于将分离后的交流成分放大,使其适合后续的数字化处理;这样,得到的PPG信号中已经分离出了交流成分与直流成分,后续可以分别对分离后的直流成分和交流成分进行数字化处理。
存储器04,用于存储每一种光源的光源信息与受测用户的标识之间的对应关系,其中,第一光源01的光源信息具体包括第一光源01的光强大小与光感测器03的光强感应范围,第二光源02的光源信息具体包括第二光源02的光强大小与光感测器03的光强感应范围,由于受测用户的标识可用于指示不同的受测用户,因此,相同的受测用户非首次使用采集装置100采集PPG信号时,可以根据上述对应关系直接根据相应光源的光源信息来采集PPG信号,可以有效缩短PPG信号采集时所花费的时间。当然,存储器04内还可以预先存储默认的初始光源(例如,默认首次使用采集装置100时的光源为一定光强的绿光光源)和默认的光感测器的光强感测范围等,本发明实施例对此不做限定。
处理器05,是采集装置100的控制中心,它可以是一个或多个通用中央处理器,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。
具体的,处理器05可以根据光感测器03采集到的不同光源形成的PPG检测信号,设置光感测器03的光强感应范围,设置采集PPG信号使用的光源种类(即第一光源01或第二光源02),以及设置任意种类的光源的光强大小,当然,处理器05还可以用于控制各个光源的点亮和熄灭等,本发明实施例对此不做限定。
需要说明的是,由于不同种类的光对黑色素、蛋白质、HbO2(oxyhemoglobin,氧合血红蛋白)、Hb(hemoglobin,血红蛋白)等皮肤组织成分的吸收度不一样,因此,不同种类的光源在采集PPG信号时的适用范围不同,即不同受测用户使用不同种类的光源采集PPG信号时,得到的PPG信号的信号质量可能不同。
通常情况下,绿光光源在采集PPG信号时的适用范围较广,对于绝大多数受测用户,使用绿光光源采集PPG信号时,能够得到信号质量较好的脉动成分,而红光光源在采集PPG信号时的适用范围较窄,部分受测用户使用红光光源采集PPG信号时,得到的PPG信号中的脉动成分不太明显,因此后续通过该脉动成分检测受测用户的血压、血氧等生理参数信息时可能会出现误差。但是,绿光作为光源时需要的驱动电流较大,导致采集装置的功耗较高,而红光作为光源时需要的驱动电流较小,因而采集装置的功耗较低。
因此,针对皮肤组织成分的吸收度不一样的不同受测用户,本发明的实施例提供一种PPG信号的采集方法,可为受测用户选择合适的光源进行PPG信号的采集,可以在保证PPG信号的信号质量的同时,降低采集PPG信号产生的 功耗。
具体的,如图4所示,在受测用户首次使用采集装置采集PPG信号时,由于第一光源01(即绿光光源或蓝光光源)在采集PPG信号时的适用范围较广,因此,可以默认使用第一光源01采集PPG信号,此时,为了确定出能够为该受测用户采集到信号质量较好的PPG信号的光源,光感测器03可以分别采集第一光源01形成的第一PPG检测信号,以及第二光源02形成的第二PPG检测信号,进而,光感测器03将第一PPG检测信号和第二PPG检测信号发送至处理器05,处理器05首先根据第一PPG检测信号确定该第一光源是否满足采集指标,即确定绿光光源或蓝光是否能够提供信号质量较好的PPG信号;进而,在确定该第一光源满足采集指标的情况下,处理器05进一步根据第二PPG检测信号确定第二光源是否满足该采集指标,即确定红光光源或红外光光源是否能够提供信号质量较好的PPG信号;如果第二光源满足该采集指标,即使用第二光源也可以得到信号质量较高的PPG信号,此时,为了降低采集装置的功耗,处理器05可以使用光感测器03采集功耗较小的第二光源02形成的PPG信号。
可以看出,由于使用绿光光源在采集PPG信号时的适用范围较广,因此,采集装置可以首先根据第一PPG检测信号确定出满足采集指标的第一光源,即首先保证第一光源能够为受测用户提供信号质量较好的PPG信号;进而,在第一光源满足采集指标的条件下,根据第二PPG检测信号确定第二光源是否满足该采集指标,即确定红光光源或红外光光源是否能够提供信号质量较好的PPG信号;如果第二光源满足该采集指标,即使用第二光源也适用于PPG信号的采集过程,此时,为了降低采集装置的功耗,可以关闭第一光源,并使用光感测器采集功耗较小的第二光源形成的PPG信号。
当然,如果第一光源不满足该采集指标,那么,由于第一光源在采集PPG信号时的适用范围比第二光源在采集PPG信号时的适用范围广,因此,第二光源也无法作为采集装置的光源进行PPG信号的采集,此时,可以退出PPG信号采集功能。
另外,如果第二光源不满足该采集指标,即只有第一光源适用于PPG信号的采集过程,此时,无需切换光源,可继续使用第一光源采集PPG信号。
具体的,基于图1-4所示的PPG信号的采集方法以及采集装置100,本发明的实施例提供一种PPG信号的采集方法,如图5所示,包括:
101、采集装置使用光感测器采集第一光源形成的第一PPG检测信号,该第一光源为绿光光源或蓝光光源。
具体的,采集装置内部会预先存储有默认的初始光源和默认的光感测器的光强感测范围,在本发明实施例中,可设置该初始光源为一定光强的第一光源(即绿光光源或蓝光光源),该光强感测范围为(X,Y),0≤X<Y,其中,X为光感测器能够感测到的最小光强值,Y为光感测器能够感测到的最大光强值。
而受测用户在首次使用采集装置(例如,可穿戴手环)采集PPG信号时,可先使用该默认的初始光源和默认的光感测器的光强感测范围进行PPG信号的 采集过程,但是,默认的光感测器的光强感测范围和该默认的初始光源可能并不能够为该受测用户采集到信号质量较好的PPG信号。
因此,在上述步骤101中,采集装置可以先使用光感测器采集上述默认的第一光源形成的第一PPG检测信号,以便于根据该第一PPG检测信号,确定目前使用的第一光源是否能够为该受测用户采集到信号质量较好的PPG信号。
其中,上述光强感测范围,是指光感测器在采集PPG信号的过程中能够感测到的光强的区间,例如,该光强感测范围为(0,1000)其中,光强的单位为cd,即坎德拉。当然,上述光强感测范围的最大值应小于光感测器能够感测到的最大光强。
102、采集装置使用光感测器采集第二光源形成的第二PPG检测信号,该第二光源为红光光源或红外光光源。
与步骤101类似的,由于采集装置内设置有多光源,例如,第一光源和第二光源,因此,为了确定第二光源是否能够为该受测用户采集到信号质量较好的PPG信号,采集装置还需要使用光感测器采集第二光源形成的第二PPG检测信号,此时第二光源的光强为采集装置内预先存储的默认光强。
示例性的,可以同时执行上述步骤101和102,具体的,如图6所示,以第一光源为绿光光源,第二光源为红光光源举例,在一个检测周期内,可以通过脉冲的方式依次点亮上述绿光光源和上述红光光源,以使得光感测器在每一个绿光脉冲时刻采集绿光光源的光强值,并在每一个红光脉冲时刻采集红光光源的光强值,进而,可以将该检测周期内不同绿光脉冲时刻采集到的光强值作为第一PPG检测信号,并将该检测周期内不同红光脉冲时刻采集到的光强值作为第二PPG检测信号。
其中,为保证第一PPG检测信号和第二PPG检测信号的准确性,可设置该检测周期不少于两个受测用户的心跳周期。
当然,也可以先执行步骤101再执行步骤102,或者先执行步骤102再执行步骤101,从而得到上述第一PPG检测信号和第二PPG检测信号,又或者,还可以先执行步骤101,再执行下述步骤103,当确定第一光源满足采集指标之后,再执行步骤102,本发明实施例对此不做限定。
另外,参见图1所示的采集装置,在步骤101-102中,具体可以由光感测器03采集第一光源01形成的第一PPG检测信号和第二光源02形成的第二PPG检测信号。
103、采集装置根据第一PPG检测信号,确定第一光源是否满足预设的采集指标。
具体的,确定第一光源是否满足预设的采集指标的方法具体包括以下方法A和方法B。
方法A:由于PPG信号的信号质量很大程度上决定于PPG信号的信噪比,即PPG信号的信噪比越大时,PPG信号的信号质量越高,因此,可以在采集装置内预先设置采集指标,例如,该采集指标为一个信噪比区间,当第一PPG检 测信号的信噪比位于该信噪比区间内时,可以确定上述第一光源满足该采集指标,即第一光源能够为受测用户采集到信号质量较好的PPG信号,当第一PPG检测信号的信噪比不属于该信噪比区间内时,可以确定第一光源不满足该采集指标。
其中,当PPG信号的频域范围在0.5Hz-40Hz时,适合用于对人体组织内的血液流动情况进行测量,因此,在确定该第一PPG检测信号的信噪比时,可以先计算第一PPG检测信号的频率区间,例如,该频率区间为25.2Hz-48Hz,进而,将该频率区间中位于0.5Hz-40Hz以外的这部分信号视为噪声,并将该频率区间中位于0.5Hz-40Hz之内的这部分信号视为有用信号,从而计算该有用信号与噪声之比,即第一PPG检测信号的信噪比。
方法B:第一PPG检测信号通常为数字信号,可以用于指示第一光源发出的光束经过受测用户皮肤后反射的光强大小,而第一PPG检测信号所指示的光强大小也可以反映PPG信号的信号质量,此时,该采集指标可以为第一光强区间,当第一PPG检测信号所指示的光强位于第一阈值和第二阈值(第一阈值大于第二阈值)所定义的第一光强区间内时,可以确定该第一光源满足采集指标,即第一光源能够为受测用户采集到信号质量较好的PPG信号;当第一PPG检测信号所指示的光强不属于该第一光强区间时,可以确定该第一光源不满足采集指标。
由于第一PPG信号所反映的是在不同时刻光感测器感测到的第一光源的光强值,因此,这里,上述第一PPG检测信号所指示的光强大小,可以为第一PPG信号中包括的任意一个光强值,也可以是第一PPG信号中所有光强值的平均值,仍以图6为例,第一PPG检测信号所指示的光强大小,可以为检测周期内4个不同绿光脉冲时刻采集到的4个光强值中的最小值,或4个光强值中的最大值,或4个光强值之和的平均值。
类似的,第二PPG信号所指示的光强大小,也可以为第二PPG信号中包括的任意一个光强值,或者是第二PPG信号中所有光强值的平均值,本发明实施例对此不做限定。
进一步地,在方法B中,由于第一PPG检测信号中的交流成分只占直流成分千分之一左右,因此,采集装置还可以通过滤波算法将第一PPG检测信号中的交流成分和直流成分分离出来,此时,该采集指标可以为第二光强区间,这样,当分离出来的该直流成分所指示的光强位于第三阈值和第四阈值(第三阈值大于第四阈值)所定义的第二光强区间内时,可以确定该第一光源满足采集指标,即第一光源能够为受测用户采集到信号质量较好的PPG信号;当第一PPG检测信号所指示的光强不属于该第二光强区间时,可以确定该第一光源不满足采集指标。
另外,还可以根据第一PPG检测信号所指示的光强的大小,选择上述方法A或者方法B确定第一光源是否满足采集指标。例如,当第一PPG检测信号所指示的光强大于光强阈值时,可以选择上述方法B,确定第一光源是否满足采集指标,当第一PPG检测信号所指示的光强小于该光强阈值时,可以选择上述方 法A确定第一光源是否满足采集指标。
进一步地,若确定第一光源不满足采集指标,则执行下述步骤104a;若确定第一光源满足采集指标,则执行下述步骤104b。
104a、若第一光源不满足采集指标,则采集装置调整光感测器的光强感测范围或者调整第一光源的光强。
具体的,在步骤104a中,若第一光源不满足采集指标,则说明步骤101中使用的第一光源的光强不合适,或者,步骤101中使用的光感测器的光强感测范围不合适。因此,采集装置可以调整光感测器的光强感测范围,或者调整第一光源的光强,直到第一光源满足该采集指标时,执行下述步骤104b。
仍以上述方法A为例,若第一PPG检测信号的信噪比不属于上述信噪比区间,即确定第一光源不满足该采集指标,则采集装置可以按照图7中所示的PPG信号(第一PPG检测信号和第二PPG检测信号均属于PPG信号)的信噪比与光强的关系,调节第一光源的光强,然后重复执行步骤101和103,直至采集到的第一PPG检测信号的信噪比位于该信噪比区间内时,执行下述步骤104b。
其中,该第一PPG检测信号的信噪比具体可以为第一PPG检测信号中交流成分的信噪比。
又或者,仍以上述方法B为例,当第一PPG检测信号所指示的光强不属于第一阈值和第二阈值之间时,可以确定该第一光源不满足采集指标,此时,若第一PPG检测信号所指示的光强已达到第一阈值,则说明第一PPG检测信号已使光感测器到达饱和状态,此时,可以提高上述光强感应范围的最大值Y,然后重复执行步骤101和103,直至采集到的第一PPG检测信号所指示的光强位于第一阈值和第二阈值之间;相应的,若第一PPG检测信号所指示的光强已达到该第二阈值,则可以降低光强感应范围的最小值X,然后重复执行步骤101和103,直至采集到的第一PPG检测信号所指示的光强位于第一阈值和第二阈值之间时,执行下述步骤104b。
当然,如果按照上述方法B调整光感测器的光强感测范围后,采集到的第一PPG检测信号所指示的光强均不属于该第一光强区间内,或者,如果按照上述方法A调整第一光源的光强后,采集到的第一PPG检测信号的信噪比均不属于该信噪比区间内,此时,则说明该采集装置无法使用第一光源采集得到信号质量较好的PPG信号,且由于第一光源在采集PPG信号时的适用范围比第二光源在采集PPG信号时的适用范围广,因此,第二光源也无法作为采集装置的光源进行PPG信号的采集,此时,采集装置可以关闭所有光源并退出PPG信号采集功能。
104b、若第一光源满足采集指标,则采集装置根据第二PPG检测信号确定第二光源是否满足采集指标。
若第一光源满足采集指标,即当前的第一光源可以为该受测用户采集到信号质量较好的PPG信号,此时,如果继续使用该第一光源采集PPG信号的话,虽然可以保证采集到的PPG信号的信号质量较高,但是使用第一光源采集PPG 信号时会导致采集装置的功耗较高,因此,在步骤104b中,在第一光源满足采集指标的条件下,采集装置根据步骤102中得到的第二PPG检测信号,确定功耗较小的第二光源是否满足该采集指标,如果该第二光源满足采集指标,那么可以关闭第一光源,并使用第二光源采集PPG信号,这样便可以在保证采集到的PPG信号的信号质量较高的前提下,尽可能利用功耗较小的第二光源采集PPG信号,从而降低采集装置的功耗。
类似的,根据第二PPG检测信号确定第二光源是否满足采集指标的方法与步骤103中的方法A类似,即计算该第二PPG检测信号的信噪比;若该第二PPG检测信号的信噪比位于上述信噪比区间内,可以确定该第二光源满足该采集指标,即该第二光源能够为受测用户采集到信号质量较好的PPG信号,而当该第二PPG检测信号的信噪比不属于该信噪比区间内时,可以确定第二光源不满足该采集指标。
这里,由于第一光源和第二光源共用一个光感测器,而在步骤104a确定第一光源满足该采集指标的同时,也确定了光感测器的光强感测范围,因此,在确定第二光源是否满足采集指标时无需判断第二PPG检测信号所指示的光强是否位于上述第一光强区间内。
进一步地,若第二光源不满足该采集指标,则执行下述步骤105a;若第二光源满足该采集指标,则执行下述步骤105b。
105a、若第二光源不满足该采集指标,则采集装置调节该第二光源的光强,直至第二PPG检测信号的信噪比位于该信噪比区间内。
由于光感测器的光强感测范围已经确定,因此,在步骤105a中,若第二光源不满足采集指标,则说明步骤102中使用的第二光源的光强(即上述步骤102中使用的默认光强)不合适,此时,采集装置可以调整该第二光源的光强,直到该第二光源满足采集指标时,执行下述步骤105b。
具体的,若确定第二光源不满足该采集指标,即第二PPG检测信号的信噪比不属于上述信噪比区间,那么,采集装置仍然可以按照图7中所示的PPG信号的信噪比与光强的关系,调节第二光源的光强,然后重复执行步骤102和104b,直至第二PPG检测信号的信噪比位于该信噪比区间内时,执行下述步骤105b。
当然,有可能无论怎样调整第二光源的光强,都无法使采集到的第二PPG检测信号的信噪比位于该信噪比区间内,此时,则说明:虽然第二光源产生的功耗较小,但第二光源无法满足该采集指标,即该采集装置无法使用第二光源采集得到信号质量较好的PPG信号,而步骤104b中已经确定了满足采集指标的第一光源,因此,此时采集装置可以继续使用上述满足该采集指标的第一光源采集PPG信号。
105b、若第二光源满足该采集指标,则采集装置关闭第一光源,并使用光感测器采集第二光源形成的PPG信号。
若第二光源满足该采集指标,即当前的第二光源可以为该受测用户采集到信号质量较好的PPG信号,此时,第一光源和第二光源均可以为该受测用户采集 到信号质量较好的PPG信号,那么,为了降低采集装置的功耗,可以关闭该第一光源,并使用光感测器采集第二光源形成的PPG信号。
106、采集装置建立上述第二光源的光源信息与受测用户的标识之间的对应关系,以便于光感测器后续根据该第二光源的光源信息为该受测用户采集PPG信号。
在步骤106中,由于上述步骤105b中已经确定了功耗较低,且能提供信号质量较好的PPG信号的第二光源,因此,为了使该受测用户后续可以直接使用上述第二光源采集PPG信号,可以将该第二光源的光强和已确定的光感测器的光强感应范围作为第二光源的光源信息进行保存,然后建立该第二光源的光源信息与该受测用户的标识(例如用户账号)之间的对应关系。
这样,当该受测用户再次使用采集装置采集PPG信号时,采集装置可以根据该对应关系,查找与该受测用户的标识对应的第二光源的光源信息,进而直接根据该第二光源的光源信息配置第二光源的光强和光感测器的光强感应范围,然后为该受测用户采集PPG信号即可,从而大大缩短采集PPG信号花费的时间。
需要说明的是,在后续受测用户再次使用采集装置采集PPG信号时,也可以采用上述步骤101-107的方法为用户确定合适的光源,本发明实施例对此不做限定。
另外,如上述步骤105a所述,当第二光源无法满足该采集指标,即该采集装置无法使用第二光源采集得到信号质量较好的PPG信号时,采集装置可以继续使用步骤104b中确定的满足该采集指标的第一光源采集PPG信号。
此时,与步骤106类似的,还可以建立上述第一光源的光源信息与受测用户的标识之间的对应关系,以便于光感测器后续根据该第一光源的光源信息为该受测用户采集PPG信号,类似的,该第一光源的光源信息包括上述第一光源的光强和光感测器的光强感应范围。
另外,参见图1所示的采集装置,步骤103-106中涉及采集装置执行的步骤,可以由处理器05执行存储器04中存储的相应的程序指令来实现。
进一步地,采集装置在采集PPG信号时,环境光的光强对采集到的PPG信号的信号质量会造成很大影响,这是因为,当第一光源或第二光源发射光束时,光强较大的环境光会对光束造成噪声污染,从而影响光感测器采集到的PPG信号的信号质量,因此,在可穿戴手表等采集装置中通常将光源和光感测器设置在靠近受测用户皮肤的位置,当受测用户穿戴好后,由于光源可以与皮肤直接接触,可以避免过多的环境光照射到光感测器。
基于上述原理,为了进一步地降低采集装置的功耗,并提高采集到的PPG信号的信号质量,本发明的实施例提供一种PPG信号的采集方法,如图8所示,包括:
201、采集装置使用光感测器获取环境光的光强。
202、采集装置使用光感测器采集第一光源形成的第一PPG检测信号,该第一光源为绿光光源或蓝光光源。
203、采集装置使用光感测器采集第二光源形成的第二PPG检测信号,该第二光源为红光光源或红外光光源。
其中,采集装置可以同时执行步骤201-203,具体的,可以参见步骤102中关于图6的相关描述,仍以第一光源为绿光,第二光源为红光举例,可以通过脉冲的方式依次点亮上述绿光光源和上述红光光源,此时,与步骤102不同的是,光感测器除了采集每一个绿光脉冲时刻的绿光光强和每一个红光脉冲时刻的红光光强之外,还可以同时采集每两个脉冲之间的脉冲间隔内环境光的光强,进而,采集装置可以计算该检测周期内的平均绿光光强、平均红光光强和平均环境光光强,并将该平均绿光光强作为第一PPG检测信号,将该平均红光光强作为第二PPG检测信号,将该平均环境光光强作为步骤201中获取到的环境光的光强。
这样,采集装置可以一次性得到环境光的光强、第一PPG检测信号和第二PPG检测信号,进而根据环境光的光强、第一PPG检测信号和第二PPG检测信号为受测用户选择合适光源,从而缩短该选择合适光源花费的时间。
另外,参见图1所示的采集装置,步骤201中涉及采集装置执行的步骤,具体可以由光感测器03获取上述环境光的光强。
204、采集装置计算环境光的光强与第一PPG检测信号之间的第一相关系数,并计算环境光的光强与第二PPG检测信号之间的第二相关系数。
由于环境光的光强较大时会对第一光源或第二光源发射的光束造成噪声污染,从而影响光感测器采集到的PPG信号的信号质量,而环境光的光强与各个PPG检测信号之间相关系数可以反映噪声污染的程度,通常,相关系数越高,则说明噪声污染越严重,相关系数越低,则说明噪声污染越越小。
具体的,以第一光源为例,可以通过下述公式计算第一光源发射的光束与环境光之间的相关系数r,该公式为:
Figure PCTCN2017077370-appb-000001
其中,xi为上述检测周期内第i个时刻点亮第一光源时,光检测器所吸收的光强值,
Figure PCTCN2017077370-appb-000002
为该检测周期内n个xi的均值;而yi为该第i个时刻点亮第一光源后,关闭该第一光源后光检测器所吸收的光强值(即环境光的光强值),
Figure PCTCN2017077370-appb-000003
为n个yi的均值。
通常,当环境光的光强较大时,发生噪声污染的几率非常高,因此,采集装置可以先根据环境光的光强判断是否需要计算该第一相关系数和第二相关系数。例如,当环境光的光强大于环境光阈值时,由于发生噪声污染的几率几乎是100%,因此,采集装置此时可以直接退出PPG信号采集功能,而当环境光的光强小于环境光阈值时,采集装置可以计算环境光的光强与第一PPG检测信号之间的第一相关系数,以及环境光的光强与第二PPG检测信号之间的第二相关 系数,当第一相关系数和第二相关系数比较小时,触发上述步骤103-106的PPG信号采集功能,从而保证光感测器采集到的PPG信号的信号质量。
205a、若第一相关系数和第二相关系数均大于相关系数阈值,则采集装置关闭第一光源和第二光源。
具体的,在步骤205a中,若上述第一相关系数和第二相关系数均大于相关系数阈值,则说明第一光源和第二光源发出的光束均被环境光污染,此时,采集到的PPG信号的信号质量比较差,因此,为了降低采集装置的功耗,可以关闭第一光源和第二光源,并退出PPG信号采集功能。
205b、若第一相关系数和第二相关系数至少有一个小于该相关系数阈值,则采集装置执行上述步骤103-106。
相应的,在步骤205b中,若第一相关系数和第二相关系数至少有一个小于该相关系数阈值,则说明第一光源和第二光源中至少有一个光源发出的光束没有被环境光污染,因此,可以采用没有被环境光污染的光源按照上述步骤103-106进行采集PPG信号,其中,采集PPG信号的方法具体可以参见上述步骤103-106的相关描述,故此处不再赘述。
另外,参见图1所示的采集装置,步骤202-205a(或202-205b)中涉及采集装置执行的步骤,可以由处理器05执行存储器04中存储的相应的程序指令来实现。
至此,本发明的实施例提供一种PPG信号的采集方法及采集装置,采集装置首先采集第一光源(即绿光光源或蓝光光源)形成的第一PPG检测信号和第二光源(即红光光源或红外光光源)形成的第二PPG检测信号,进而,由于使用绿光光源在采集PPG信号时的适用范围较广,因此,采集装置可以首先根据第一PPG检测信号确定出满足采集指标的第一光源,即首先保证第一光源能够为受测用户提供信号质量较好的PPG信号;进而,在第一光源满足采集指标的条件下,根据第二PPG检测信号确定第二光源是否满足该采集指标,即确定红光光源或红外光光源是否能够提供信号质量较好的PPG信号;如果第二光源满足该采集指标,即使用第二光源也适用于PPG信号的采集过程,此时,为了降低采集装置的功耗,可以关闭第一光源,并使用光感测器采集功耗较小的第二光源形成的PPG信号,这样,在保证PPG信号的信号质量的同时,降低了采集PPG信号产生的功耗。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外 的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种光电容积脉搏波PPG信号的采集方法,其特征在于,包括:
    使用光感测器采集第一光源形成的第一PPG检测信号,所述第一光源为绿光光源或蓝光光源;
    使用所述光感测器采集第二光源形成的第二PPG检测信号,所述第二光源为红光光源或红外光光源;
    根据所述第一PPG检测信号确定所述第一光源是否满足预设的采集指标;
    若所述第一光源满足所述采集指标,则根据所述第二PPG检测信号确定所述第二光源是否满足所述采集指标;
    若所述第二光源满足所述采集指标,则使用所述光感测器采集所述第二光源形成的PPG信号。
  2. 根据权利要求1所述的方法,其特征在于,所述光感测器的光强感应范围为(X,Y),0≤X<Y;
    其中,根据所述第一PPG检测信号确定所述第一光源是否满足预设的采集指标,包括:
    若所述第一PPG检测信号所指示的光强位于第一阈值和第二阈值之间,则确定所述第一光源满足所述采集指标,所述第一阈值大于所述第二阈值。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    若所述第一PPG检测信号所指示的光强已达到所述第一阈值,则增大所述光强感应范围的最大值Y,直至所述第一PPG检测信号所指示的光强位于所述第一阈值和所述第二阈值之间;
    若所述第一PPG检测信号所指示的光强已达到所述第二阈值,则降低所述光强感应范围的最小值X,直至所述第一PPG检测信号所指示的光强位于所述第一阈值和所述第二阈值之间。
  4. 根据权利要求1所述的方法,其特征在于,根据所述第一PPG检测信号确定所述第一光源是否满足预设的采集指标,包括:
    计算所述第一PPG检测信号的信噪比;
    若所述第一PPG检测信号的信噪比位于预设的信噪比区间内,则确定所述第一光源满足所述采集指标。
  5. 根据权利要求4所述的方法,其特征在于,在计算所述第一PPG检测信号的信噪比之后,还包括:
    若所述第一PPG检测信号的信噪比不属于所述信噪比区间,则调节所述第一光源的光强,直至所述第一PPG检测信号的信噪比位于所述信噪比区间内。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,根据所述第二PPG检测信号确定所述第二光源是否满足所述采集指标,包括:
    计算所述第二PPG检测信号的信噪比;
    若所述第二PPG检测信号的信噪比位于预设的信噪比区间内,则确定所述 第二光源满足所述采集指标。
  7. 根据权利要求6所述的方法,其特征在于,在计算所述第二PPG检测信号的信噪比之后,还包括:
    若所述第二PPG检测信号的信噪比不属于所述信噪比区间,则调节所述第二光源的光强,直至所述第二PPG检测信号的信噪比位于所述信噪比区间内。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,在根据所述第一PPG检测信号确定所述第一光源是否满足预设的采集指标之前,还包括:
    获取环境光的光强;
    计算所述环境光的光强与所述第一PPG检测信号之间的第一相关系数,计算所述环境光的光强与所述第二PPG检测信号之间的第二相关系数;
    若所述第一相关系数和所述第二相关系数均大于相关系数阈值,则关闭所述第一光源和所述第二光源。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,在使用所述光感测器采集所述第二光源形成的PPG信号之后,还包括:
    建立所述第二光源的光源信息与受测用户的标识之间的对应关系,所述第二光源的光源信息包括所述第二光源的光强和所述光感测器的光强感应范围。
  10. 一种光电容积脉搏波PPG信号的采集装置,其特征在于,包括:处理器,以及与所述处理器均相连的光感测器和存储器,其中,
    所述光感测器,用于采集第一光源形成的第一PPG检测信号,所述第一光源为绿光光源或蓝光光源;以及,采集第二光源形成的第二PPG检测信号,所述第二光源为红光光源或红外光光源;
    所述处理器,用于根据所述第一PPG检测信号确定所述第一光源是否满足预设的采集指标;若所述第一光源满足所述采集指标,则根据所述第二PPG检测信号确定所述第二光源是否满足所述采集指标;若所述第二光源满足所述采集指标,则使用所述光感测器采集所述第二光源形成的PPG信号。
  11. 根据权利要求10所述的采集装置,其特征在于,所述光感测器的光强感应范围为(X,Y),0≤X<Y;
    所述处理器,具体用于:若所述第一PPG检测信号所指示的光强位于第一阈值和第二阈值之间,则确定所述第一光源满足所述采集指标,所述第一阈值大于所述第二阈值。
  12. 根据权利要求11所述的采集装置,其特征在于,
    所述处理器,还用于:若所述第一PPG检测信号所指示的光强已达到所述第一阈值,则增大所述光强感应范围的最大值Y,直至所述第一PPG检测信号所指示的光强位于所述第一阈值和所述第二阈值之间;若所述第一PPG检测信号所指示的光强已达到所述第二阈值,则降低所述光强感应范围的最小值X,直至所述第一PPG检测信号所指示的光强位于所述第一阈值和所述第二阈值之间。
  13. 根据权利要求10所述的采集装置,其特征在于,
    所述处理器,具体用于:计算所述第一PPG检测信号的信噪比;若所述第 一PPG检测信号的信噪比位于预设的信噪比区间内,则确定所述第一光源满足所述采集指标。
  14. 根据权利要求13所述的采集装置,其特征在于,
    所述处理器,还用于:若所述第一PPG检测信号的信噪比不属于所述信噪比区间,则调节所述第一光源的光强,直至所述第一PPG检测信号的信噪比位于所述信噪比区间内。
  15. 根据权利要求10-14中任一项所述的采集装置,其特征在于,
    所述处理器,具体用于:计算所述第二PPG检测信号的信噪比;若所述第二PPG检测信号的信噪比位于预设的信噪比区间内,则确定所述第二光源满足所述采集指标。
  16. 根据权利要求15所述的采集装置,其特征在于,
    所述处理器,还用于:若所述第二PPG检测信号的信噪比不属于所述信噪比区间,则调节所述第二光源的光强,直至所述第二PPG检测信号的信噪比位于所述信噪比区间内。
  17. 根据权利要求10-16中任一项所述的采集装置,其特征在于,
    所述光感测器,还用于获取环境光的光强;
    所述处理器,还用于:计算所述环境光的光强与所述第一PPG检测信号之间的第一相关系数,计算所述环境光的光强与所述第二PPG检测信号之间的第二相关系数;若所述第一相关系数和所述第二相关系数均大于相关系数阈值,则关闭所述第一光源和所述第二光源。
  18. 根据权利要求10-17中任一项所述的采集装置,其特征在于,
    所述处理器,还用于:建立所述第二光源的光源信息与受测用户的标识之间的对应关系,并将所述对应关系保存至所述存储器,其中,所述第二光源的光源信息包括所述第二光源的光强和所述光感测器的光强感应范围。
PCT/CN2017/077370 2016-05-26 2017-03-20 一种ppg信号的采集方法及装置 WO2017202120A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/304,050 US11197620B2 (en) 2016-05-26 2017-03-20 PPG signal collection method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610363677.0 2016-05-26
CN201610363677.0A CN107432741B (zh) 2016-05-26 2016-05-26 一种ppg信号的采集方法及装置

Publications (1)

Publication Number Publication Date
WO2017202120A1 true WO2017202120A1 (zh) 2017-11-30

Family

ID=60412026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077370 WO2017202120A1 (zh) 2016-05-26 2017-03-20 一种ppg信号的采集方法及装置

Country Status (3)

Country Link
US (1) US11197620B2 (zh)
CN (1) CN107432741B (zh)
WO (1) WO2017202120A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113069089A (zh) * 2020-01-06 2021-07-06 华为技术有限公司 电子设备以及控制电子设备进行ppg检测的方法和介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109620195B (zh) * 2019-01-08 2023-11-17 研和智能科技(杭州)有限公司 基于可穿戴设备的多波长信号融合心率检测方法及系统
CN111685726A (zh) * 2019-03-12 2020-09-22 华为终端有限公司 一种血氧检测方法及装置
CN111093486B (zh) * 2019-11-25 2022-09-16 深圳市汇顶科技股份有限公司 生物特征检测方法、生物特征检测装置和电子装置
CN114073520A (zh) * 2020-08-12 2022-02-22 华为技术有限公司 基于绿光的血氧检测设备及其血氧检测方法和介质
CN114098668B (zh) * 2020-08-31 2022-11-11 荣耀终端有限公司 一种活体检测方法和电子设备
CN114533053B (zh) * 2020-11-27 2024-05-14 安徽华米健康科技有限公司 血氧测量方法和装置
GB2605856B (en) * 2021-11-23 2024-04-03 Haxha Shyqyri Apparatus and method of capturing physiological data

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103156591A (zh) * 2011-12-13 2013-06-19 史考契工业公司 心率监测器
CN104224144A (zh) * 2014-09-28 2014-12-24 成都金海鼎盛科技有限公司 光电容积脉搏波光电检测传感器
WO2015102588A1 (en) * 2013-12-30 2015-07-09 Apple Inc. User identification system based on plethysmography
CN105208924A (zh) * 2013-05-15 2015-12-30 普尔赛昂公司 便携式脉搏测量装置
CN105286845A (zh) * 2015-11-29 2016-02-03 浙江师范大学 一种适用于可穿戴式心率测量设备的运动噪声消除方法
WO2016040263A1 (en) * 2014-09-08 2016-03-17 Braintree Analytics Llc Wrist worn accelerometer for pulse transit time (ptt) measurements of blood pressure
US20160113526A1 (en) * 2014-10-23 2016-04-28 Dyansys, Inc. Generating user information from autonomic nervous system parameters

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8948832B2 (en) 2012-06-22 2015-02-03 Fitbit, Inc. Wearable heart rate monitor
WO2017190051A1 (en) * 2016-04-29 2017-11-02 Fitbit, Inc. Multi-channel photoplethysmography sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103156591A (zh) * 2011-12-13 2013-06-19 史考契工业公司 心率监测器
CN105208924A (zh) * 2013-05-15 2015-12-30 普尔赛昂公司 便携式脉搏测量装置
WO2015102588A1 (en) * 2013-12-30 2015-07-09 Apple Inc. User identification system based on plethysmography
WO2016040263A1 (en) * 2014-09-08 2016-03-17 Braintree Analytics Llc Wrist worn accelerometer for pulse transit time (ptt) measurements of blood pressure
CN104224144A (zh) * 2014-09-28 2014-12-24 成都金海鼎盛科技有限公司 光电容积脉搏波光电检测传感器
US20160113526A1 (en) * 2014-10-23 2016-04-28 Dyansys, Inc. Generating user information from autonomic nervous system parameters
CN105286845A (zh) * 2015-11-29 2016-02-03 浙江师范大学 一种适用于可穿戴式心率测量设备的运动噪声消除方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113069089A (zh) * 2020-01-06 2021-07-06 华为技术有限公司 电子设备以及控制电子设备进行ppg检测的方法和介质

Also Published As

Publication number Publication date
US20200315475A1 (en) 2020-10-08
CN107432741B (zh) 2019-07-09
US11197620B2 (en) 2021-12-14
CN107432741A (zh) 2017-12-05

Similar Documents

Publication Publication Date Title
WO2017202120A1 (zh) 一种ppg信号的采集方法及装置
JP6501760B2 (ja) 携帯脈拍測定装置
CN104968259B (zh) 用于确定对象的生命体征信息的系统和方法
RU2640006C2 (ru) Способ и система идентификации артефактов перемещения и повышения надежности измерений и сигналов тревоги в фотоплетизмографических измерениях
US20170156609A1 (en) Pulse cycle detection device and method, and wearable electronic device
KR102463076B1 (ko) 산소 포화도 측정장치 및 그의 산소 포화도 측정방법
CN110141197B (zh) 带有显示屏的电子设备
EP3380002A1 (en) Wearable device and system for acquiring physiological information of a subject
EP3419511A1 (en) Systems and methods for modified pulse transit time measurement
US20170215747A1 (en) Optical vital signs sensor
KR20200139039A (ko) 카메라를 이용한 비접촉 ppg 신호 측정 시스템 및 그 구동 방법
CN104739394A (zh) 一种便携式人体生理信号监控报警系统
JP6970840B2 (ja) 対象を含むシーンの画像の画像セグメンテーションのための装置、システム及び方法
CN110192846A (zh) 可穿戴设备
US20210219884A1 (en) System and method for determining at least one vital sign of a subject
JP3209577U (ja) 生理検出装置
KR101786014B1 (ko) 손목형 광전용적맥파 기반 산소포화도 측정시스템 및 방법
CN114947768A (zh) 呼吸率的处理方法、装置及计算机可读存储介质
Skrvan et al. Design of a cheap pulse Oximeter for home care systems
JP2002272708A (ja) 体調判定方法および体調判定装置
WO2017133883A1 (en) Optical vital signs sensor
EP3669763B1 (en) Apparatus and method for estimating cardiovascular information
CN110197186B (zh) 一种基于ppg的光照舒适度测量方法及系统
CN111297341A (zh) 一种动态血压检测设备及脉搏波特征提取设备
JP5691815B2 (ja) 信号処理装置、信号処理方法および生体情報測定装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17801968

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17801968

Country of ref document: EP

Kind code of ref document: A1