WO2017201691A1 - 基于vcc电容的控制电路编程系统及方法 - Google Patents

基于vcc电容的控制电路编程系统及方法 Download PDF

Info

Publication number
WO2017201691A1
WO2017201691A1 PCT/CN2016/083332 CN2016083332W WO2017201691A1 WO 2017201691 A1 WO2017201691 A1 WO 2017201691A1 CN 2016083332 W CN2016083332 W CN 2016083332W WO 2017201691 A1 WO2017201691 A1 WO 2017201691A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
control
vcc
module
chip
Prior art date
Application number
PCT/CN2016/083332
Other languages
English (en)
French (fr)
Inventor
潘伟钢
喻明凡
陈嵘
顾耀葵
Original Assignee
无锡矽瑞微电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡矽瑞微电子股份有限公司 filed Critical 无锡矽瑞微电子股份有限公司
Priority to PCT/CN2016/083332 priority Critical patent/WO2017201691A1/zh
Publication of WO2017201691A1 publication Critical patent/WO2017201691A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current

Definitions

  • the invention relates to the technical field of control circuit programming, in particular to the technical field of control circuit programming, in particular to a control circuit programming system and method based on VCC capacitor.
  • LEDs have been widely used in various industries. LEDs are characteristically sensitive semiconductor devices that have negative temperature characteristics and thus require a protected stable operating state during application, resulting in the concept of driving. LED devices are not directly connected to 220V AC mains, and the requirements for the drive circuit are more stringent.
  • the constant current LED driving control circuit has the characteristics of being able to avoid the driving current exceeding the maximum rated value, thereby effectively improving the reliability, achieving the desired brightness requirement, and effectively extending the service life thereof.
  • the switching power supply topology has a dominant position in the high-performance LED constant current control system because of its high energy conversion efficiency and easy control.
  • the traditional LED constant current control system usually adopts the internal parameters of the fixed chip, sets the proportion of peripheral components or uses programmable pins and external components to achieve the cost, reliability and noise resistance. Both are poor.
  • Pins FB and RI of chip I1 are programming pins; pin FB is programmed to control OVP (over voltage protection) voltage, and pin RI is programmed to control internal maximum Ton time (on time).
  • the FB pin is compatible with different OVP voltage requirements by setting the ratio of Rfb1 and Rfb2. The change of the ratio does not affect the internal circuit parameters, which is the conventional Class A programming mode; the RI pin changes the maximum Ton time inside the chip by the value of Rton, which is the conventional B. Class programming.
  • the object of the present invention is to overcome the above disadvantages of the prior art, and to provide a control circuit programming system and method based on VCC capacitor, which can realize a highly integrated, noise-insensitive programmable technology solution, which is directly applied to switching power supply control. In the chip, it can reduce the cost of the chip and improve the reliability and anti-interference ability of the product.
  • the VCC capacitor-based control circuit programming system and method of the present invention has the following structure:
  • the main feature of the VCC capacitor-based control circuit programming system is that the system includes a control chip, and a capacitor C0 is connected to the VCC end of the control chip, and the control chip is internally provided.
  • a power supply, a capacitance control module, an encoder and a control unit are disposed, and the power supply is respectively connected to the VCC terminal and the capacitance control module, wherein:
  • the capacitor control module controls charging and discharging of the capacitor C0, and outputs voltage change data and control timing of the capacitor C0 to the encoding module;
  • the encoding module encodes according to the voltage change data of the capacitor C0, the control timing, and the preset coding and voltage mapping relationship of the system, and outputs the completed code to the control unit, preferably, the control unit. It can be a calibrator.
  • the capacitance control module comprises an analog to digital converter and a logic controller, wherein:
  • the analog-to-digital converter performs analog-to-digital conversion on the voltage change data of the capacitor C0, and outputs the same to the encoding module;
  • the logic controller controls charging and discharging of the capacitor C0 according to a preset rule of the system, and sends a control timing to the encoding module.
  • the capacitance control module comprises a comparator and a counter, wherein:
  • the comparator controls the counting of the counter and the charging and discharging of the capacitor according to the comparison value of the capacitor voltage and the system preset reference voltage, and outputs the control timing to the encoding module;
  • the counter counts according to the output of the comparator, and outputs the count value to the encoding module.
  • a variable resistor Rton is further connected between the RI end and the ground end of the control chip.
  • a variable resistor Rfb2 is connected between the FB terminal and the ground terminal of the control chip, and the FB terminal is connected to the external port through the variable resistor Rfb1.
  • the FB terminal is sequentially connected to the external port through the variable resistor Rfb1, the capacitor C1 and the capacitor C2.
  • control chip is a constant current chip or a constant current PFC control chip.
  • the invention also relates to a control circuit programming method based on VCC capacitor by the system described,
  • the method is characterized in that the method comprises the following steps:
  • the capacitor control module controls charging and discharging of the capacitor C0 and outputs a control timing to the encoding module
  • the capacitor control module outputs the voltage change data of the capacitor C0 to the encoding module
  • the encoding module encodes according to the voltage change data of the capacitor C0, the control timing, and the preset coding and voltage mapping relationship of the system;
  • the encoding module outputs the completed code to the calibrator.
  • the capacitor control module comprises an analog-to-digital converter and a logic controller, and the step (1) is specifically:
  • the logic controller controls charging and discharging of the capacitor C0 according to a preset rule of the system, and sends a control timing to the encoding module;
  • the step (2) is specifically as follows:
  • the analog-to-digital converter performs analog-to-digital conversion of the voltage change data of the capacitor C0 and outputs it to the encoding module.
  • the capacitor control module includes a comparator and a counter, and the step (1) is specifically:
  • the comparator controls the counting of the counter and the charging and discharging of the capacitor according to the comparison value of the capacitor voltage and the system preset reference voltage, and outputs the control timing to the encoding module;
  • the step (2) is specifically as follows:
  • the counter counts according to the output of the comparator, and outputs the count value to the encoding module.
  • the VCC capacitor-based control circuit programming system and method in the invention are used for programming parameters of the chip, which can improve product reliability and anti-interference ability; the technical solution of the present invention does not use the control core
  • the RI pin also eliminates the need to load external components, thereby saving cost; improving chip compatibility, can be applied to constant current chips and constant current PFC control chips, and can be directly applied to switching power supply control chips, suitable for Massive application.
  • FIG. 1 is a schematic structural view of an extremely simplified LED driving control circuit in the prior art.
  • FIG. 2 is a schematic structural view of a programmable LED drive control circuit in the prior art.
  • FIG. 3 is a schematic diagram of a first application mode of a programmable control circuit in the present invention.
  • FIG. 4 is a schematic diagram of a second application mode of a programmable control circuit in the present invention.
  • Figure 5 is a schematic diagram showing the first arrangement of the programmable control chip in the present invention.
  • FIG. 6 is a schematic diagram of a second arrangement of the programmable control chip in the present invention.
  • the system for implementing the control circuit of the present invention employs a VCC capacitor multiplexing technique.
  • the programmable scheme proposed by the invention can be programmed in the extremely simplified three-port control system (as shown in FIG. 1) to improve the compatibility of the chip, and can be applied to a constant current chip and a constant current PFC (Power Factor Correction). Correction) control chip.
  • PFC Power Factor Correction
  • the pin D of I1 charges the VCC terminal capacitor C0 through the internal power supply path. After the C0 voltage reaches a certain value V0, the internal circuit starts to program, and at the same time, a certain current value I0 is pulled down to C0, and the C0 voltage starts to decrease. After the C0 voltage drops to a certain value V1, the programming ends.
  • the internal ADC records the programming result and stores it to control the parameters inside the chip. The chip designer can flexibly choose to control a certain parameter. For example, the chip in FIG. 2 controls the OVP voltage, and the chip in FIG. 3 controls the maximum Ton value.
  • the Power tube of the chip is at rest during the entire programming process, and the noise is small.
  • pin D continues to charge the VCC terminal capacitor C0, and the chip starts to work normally after reaching a certain UVLO voltage.
  • the structure of the improved Class A control system of the present invention is shown in FIG. Compared with Figure 1 above, the FB pin and Rfb1 and Rfb2 resistors are omitted.
  • the system uses the ADC (analog-to-digital converter) to quantize its voltage according to the voltage of C0, directly controlling the value of the internal OVP, which can achieve high Anti-noise ability, saving cost and improving reliability; suitable for constant current chip or constant current PFC control chip.
  • ADC analog-to-digital converter
  • the invention adopts a unique programmable architecture to realize coding, and the schematic diagram is shown in FIG. 5.
  • the dotted line frame in Figure 5 is the working principle of the internal structure of the chip. After the chip is powered on, the voltage at the D terminal rises, and the external power supply module supplies power to the external capacitor of the VCC terminal; the VCC voltage is digitally processed by the internal ADC module, and is set according to the logic control module.
  • the rules (the rules set here may be the system preset rules set by the operating technicians as needed, thereby controlling the final encoding result), and controlling the power module to charge the VCC external capacitor according to the appropriate timing.
  • the encoding module encodes the charge and discharge information of the VCC capacitor according to the ADC output change and the timing of the logic control, the code corresponds to the voltage of the VCC external capacitor, and the code is in accordance with an appropriate mapping relationship Can be used to control the internal regulator to achieve the purpose of setting parameters.
  • VCC external capacitor encoding expression Where t ref is the internal reference time, I pull is the internal reference current; ⁇ ADC to the coding mapping relationship is completed by the coding module, and the coding module can be designed according to actual needs.
  • the charging and discharging of the capacitor by the logic controller is controlled according to the preset rule of the system, and the output of the ADC corresponds to the voltage change of the capacitor in real time, whereby the encoding module can acquire the required variables and preset according to the system.
  • the coding and capacitance voltage mapping relationship is encoded. Therefore, for each artificial control of the coding, in the setting of the system preset rule, different charging and discharging control rules are set, and different codes can be obtained, thereby controlling the calibrator.
  • the invention can also be implemented by a simplified solution, and the schematic diagram is shown in FIG. 6.
  • the dotted line frame in Fig. 6 is the working principle of the internal structure of the chip. After the chip is powered on, the voltage at the D terminal rises, and the external power supply module supplies power to the external capacitor of the VCC terminal; after the VCC voltage reaches a certain value V0, the output end of the comparator changes from 0 to 0. When 1, the power module stops supplying power, the 10mA current starts to pull down, and the counter starts counting.
  • VCC voltage drops from V0 to V1 (where the value of V1 can be the system preset reference set by the operating technician according to the need)
  • the comparator is flipped from 1 to 0
  • the power module starts to supply power
  • the counter count stops and the output of the counter at this time characterizes the voltage of the VCC capacitor.
  • the encoding module encodes the counter output digital signal according to the timing of the comparator, and the encoding corresponds to the voltage of the external capacitor of the VCC, and the encoding can be used for controlling the internal calibrator according to an appropriate mapping relationship to achieve the purpose of setting parameters.
  • VCC rises from V0 to UVLO voltage, and the chip enters the normal working state.
  • VCC external capacitor encoding expression Where t ref is the internal reference time, I pull is the internal reference current; the mapping relationship between the counter and the code is completed by the coding module, and the coding module can be designed according to actual needs.
  • the charge and discharge of the capacitor by the comparator is controlled according to the comparison result of the capacitor voltage and the system preset reference voltage, and the output of the counter corresponds to the voltage change of the capacitor in real time, whereby the encoding module can acquire the required
  • the variables are encoded according to the mapping between the system preset code and the capacitor voltage. Therefore, for each coded human operation control is set in the system preset reference voltage, By setting different system preset voltages, different codes can be obtained to control the calibrator.
  • the capacitor control module for controlling the charge and discharge of the capacitor in the present invention is not limited to the above two components (ADC and logic controller, comparator and counter), and other capacitors can be implemented in a specific timing.
  • the combination of the specific regular charging and discharging modules can employ and implement the technical effect of programming the control circuit of the present invention and is within the scope of the present invention.
  • the VCC capacitor-based control circuit programming system and method in the invention are used for programming parameters of the chip, which can improve product reliability and anti-interference ability; the technical solution of the invention does not use the control chip RI pin, and thus does not need The external components are loaded, thereby saving the cost; the compatibility of the chip is improved, and the constant current chip and the constant current PFC control chip can be applied to the switching power supply control chip, which is suitable for large-scale popularization and application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种基于VCC电容的控制电路编程系统及方法,所述的系统包括控制芯片,控制芯片的VCC端连接有一电容C0,控制芯片内部设置有电源、电容控制模块、编码器和校准器,所述的电源分别与所述的VCC端和电容控制模块相连接,所述的VCC端依次通过所述的电容控制模块、编码模块与所述的校准器相连接。采用该种结构的基于VCC电容的控制电路编程系统及方法,能提升产品可靠性和抗干扰能力;控制芯片无需使用RI引脚,也因此无需加载外挂元器件,进而节省了成本;可适用于恒流芯片和恒流PFC控制芯片,可以直接应用于开关电源中,适用于大规模推广应用。

Description

基于VCC电容的控制电路编程系统及方法 技术领域
本发明涉及控制电路编程技术领域,尤其涉及控制电路编程技术领域,具体是指一种基于VCC电容的控制电路编程系统及方法。
背景技术
现有技术中,LED在各行各业均得到了广泛的应用。LED是特性敏感的半导体器件,又具有负温度特性,因而在应用过程中需要具有受保护的稳定工作状态,从而产生了驱动的概念。LED器件并不能直接连接220V的交流市电,对于驱动电路的要求较为严格。而众多驱动电路中,恒流LED驱动控制电路具有能够避免驱动电流超出最大额定值,从而能够有效提升其可靠性,及达到预期亮度要求,有效延长其使用寿命的特点。其中开关电源拓扑结构因为其能量转换效率高,易于控制,在高性能LED恒流控制系统中,占据着主导地位。
现阶段对LED恒流控制系统的兼容性又提出新的要求,即单颗芯片兼容不同的输入电压、输出电压、输出功率等,这就需要芯片有可编程方案。同时,在极致精简的LED驱动方案中(如图1所示),为实现最低的成本,芯片只有3个引脚,外围器件非常精简,在这样的系统架构中,可编程方案将会非常关键。
然而传统的LED恒流控制系统通常采用固定芯片内部参数,设置外围元器件比例或利用可编程引脚外加外围元器件的方式来实现,这需要付出较大的成本,并且可靠性、抗噪声能力均较差。
传统的高性能LED恒流控制系统往往采用以下两种可编程方案(如图2所示)。
芯片I1的引脚FB和RI均为编程引脚;引脚FB编程控制OVP(Over voltage protection,过压保护)电压,引脚RI编程控制内部最大Ton时间(开通时间)。FB脚通过设置Rfb1和Rfb2的比例来兼容不同的OVP电压需求,比例的改变不影响内部电路参数,为常规A类编程方式;RI脚通过Rton的值,改变芯片内部最大Ton时间,为常规B类编程方式。
常规A类:固定芯片内部参数,设置外围元件比例,缺点如下:
1、需要芯片引脚及2颗外围元件,成本高;
2、需要焊接点5个,可靠性低;
3、工作时环境噪声大,对设计提出很高要求;
常规B类:利用可编程引脚及一颗外围编程器件,缺点如下:
1、需要芯片引脚及1颗性能较高的外围元件,成本高;
2、需要焊接点3个,可靠性较差。
发明内容
本发明的目的是克服了上述现有技术的缺点,提供了一种基于VCC电容的控制电路编程系统及方法,能够实现高度集成、对噪声不敏感的可编程技术方案,直接应用于开关电源控制芯片中,能降低芯片成本并提升产品可靠性和抗干扰能力。
为了实现上述目的,本发明的基于VCC电容的控制电路编程系统及方法具有如下构成:
该基于VCC电容的控制电路编程系统,其主要特点是,所述的系统包括控制芯片,所述的控制芯片的VCC端连接有一电容C0,所述的控制芯片内部设 置有电源、电容控制模块、编码器和控制单元,所述的电源分别与所述的VCC端和电容控制模块相连接,其中:
所述的电容控制模块控制所述的电容C0的充放电,并将所述的电容C0的电压变化数据和控制时序输出至所述的编码模块;
所述的编码模块根据所述的电容C0的电压变化数据、控制时序以及系统预设的编码和电压映射关系进行编码,并将完成的编码输出至所述的控制单元,较佳地,控制单元可以是校准器。
较佳地,所述的电容控制模块包括模数转换器和逻辑控制器,其中:
所述的模数转换器将所述的电容C0的电压变化数据进行模数转换,并输出至所述的编码模块;
所述的逻辑控制器根据系统预设的规则控制所述的电容C0的充放电,并将控制时序发送至所述的编码模块。
较佳地,所述的电容控制模块包括比较器和计数器,其中:
所述的比较器根据电容电压和系统预设基准电压的比较值控制所述的计数器的计数和电容的充放电,并将控制时序输出至所述的编码模块;
所述的计数器根据所述的比较器的输出进行计数,并将计数值输出至所述的编码模块。
较佳地,所述的控制芯片的RI端和接地端之间还连接有可变电阻Rton。
较佳地,所述的控制芯片的FB端和接地端之间还连接有可变电阻Rfb2,所述的FB端通过可变电阻Rfb1与外部端口相连接。
更佳地,所述的FB端依次通过可变电阻Rfb1、电容C1和电容C2与外部端口相连接。
较佳地,所述的控制芯片为恒流芯片或恒流PFC控制芯片。
本发明还涉及一种通过所述的系统基于VCC电容的控制电路编程方法,其 特征在于,所述的方法包括以下步骤:
(1)所述的电容控制模块控制所述的电容C0的充放电并将控制时序输出至所述的编码模块;
(2)所述的电容控制模块将所述的电容C0的电压变化数据输出至所述的编码模块;
(3)所述的编码模块根据所述的电容C0的电压变化数据、控制时序以及系统预设的编码和电压映射关系进行编码;
(4)所述的编码模块将完成的编码输出至所述的校准器。
较佳地,所述的电容控制模块包括模数转换器和逻辑控制器,所述的步骤(1),具体为:
所述的逻辑控制器根据系统预设的规则控制所述的电容C0的充放电,并将控制时序发送至所述的编码模块;
所述的步骤(2),具体为:
所述的模数转换器将所述的电容C0的电压变化数据进行模数转换,并输出至所述的编码模块。
较佳地,所述的电容控制模块包括比较器和计数器,所述的步骤(1),具体为:
所述的比较器根据电容电压和系统预设基准电压的比较值控制所述的计数器的计数和电容的充放电,并将控制时序输出至所述的编码模块;
所述的步骤(2),具体为:
所述的计数器根据所述的比较器的输出进行计数,并将计数值输出至所述的编码模块。
采用了该发明中的基于VCC电容的控制电路编程系统及方法,用于对芯片的参数编程,能提升产品可靠性和抗干扰能力;本发明技术方案未使用控制芯 片RI引脚,也因此无需加载外挂元器件,进而节省了成本;提高了芯片的兼容性,可适用于恒流芯片和恒流PFC控制芯片,可以直接应用于开关电源控制芯片中,适用于大规模推广应用。
附图说明
图1为现有技术中极致精简的LED驱动控制电路的结构示意图。
图2为现有技术中可编程的LED驱动控制电路的结构示意图。
图3为本发明中的可编程的控制电路的第一种应用方式的示意图。
图4为本发明中的可编程的控制电路的第二种应用方式的示意图。
图5为本发明中的可编程的控制芯片内部的第一种设置方式的示意图。
图6为本发明中的可编程的控制芯片内部的第二种设置方式的示意图。
具体实施方式
为了能够更清楚地描述本发明的技术内容,下面结合具体实施例来进行进一步的描述。
为了实现上述目的,本发明的实现控制电路可编程的系统采用了VCC电容复用技术。本发明所提出的可编程方案,可在极致精简的三端口控制系统(如图1)中实现编程,提高芯片的兼容性,可适用于恒流芯片和恒流PFC(Power Factor Correction,功率因数校正)控制芯片。
本发明的实现控制电路编程的基本原理为:
在系统上电之后,I1的引脚D通过内部供电通路对VCC端子电容C0充电,在C0电压达到一定值V0之后,内部电路开始进行编程,同时对C0下拉一定电流值I0,C0电压开始降低,当C0电压降低到一定值V1之后,编程结束, 内部ADC记录编程结果并存储,用于控制芯片内部的参数,芯片设计师可以灵活的选择控制某个参数,例如上面图2的芯片控制的是OVP电压,上面图3的芯片控制最大Ton值。整个编程过程中芯片的Power管处于静止状态,噪声小。编程结束后,引脚D继续对VCC端子电容C0充电,到达一定UVLO电压后芯片开始正常工作。
下面介绍本发明的采用VCC电容的控制电路的两个实施例:
本发明的改进型A类控制系统结构如图3所示。对比前面图1,省去了FB引脚及Rfb1和Rfb2电阻;该系统根据C0的电压不同,采用ADC(模数转换器)将其电压量化,直接控制内部OVP的值,可达到很高的抗噪声能力,节约了成本,并提高了可靠性;适用于恒流芯片或者恒流PFC控制芯片。
本发明的改进型B类控制系统结构如图4所示。对比前面图1,省去了RI引脚及Rton电阻,可控制内部Ton时间;同样也节约了成本,并提高了可靠性和抗干扰能力;适用于驱动芯片或者恒流PFC控制芯片。
下面对于采用VCC端电容来实现编码的芯片内部的工作方式进一步详细介绍如下,需要注意的是本发明的应用并不仅仅限于下面描述的两种方式,还可以根据使用者的需求进行自由匹配:
本发明采用独特的可编程架构来实现编码,原理图如图5所示。图5中虚线框为芯片内部结构工作原理,在芯片上电之后,D端电压升高,通过内部电源模块向VCC端子外接电容供电;VCC电压通过内部ADC模块数字化处理,按照逻辑控制模块设定的规则(此处设定的规则可以是根据需要由操作的技术人员进行设定的系统预设规则,由此来控制最终编码的结果),按照适当的时序控制电源模块对VCC外接电容充电,控制10mA下拉电流对VCC外接电容进行放电;编码模块根据ADC输出变化及逻辑控制的时序,将VCC电容的充放电信息进行编码,该编码对应于VCC外接电容的电压,该编码按照适当的映射关系可用于对内部regulator的控制,达到设置参数的目的。编码完成之后,当VCC电压上升至UVLO(低电压锁定)电压,芯片进入正常工作状态。
此技术方案中对VCC外接电容编码表达式:
Figure PCTCN2016083332-appb-000001
其中tref是内部基准时间,Ipull是内部基准电流;△ADC到编码的映射关系由编码模块完成,可根据实际需要对编码模块进行设计。
在此方案中,由逻辑控制器对电容的充放电根据系统预设规则进行控制,而ADC的输出则实时的对应于电容的电压变化,由此编码模块可以获取需要的变量并根据系统预设的编码和电容电压的映射关系进行编码。因此,对于每次编码的人为操作控制在系统预设规则的设定之中,设定不同的充放电控制规则,可以得到不同的编码,进而控制校准器。
本发明也可以采用一套精简的方案来实现,原理图如图6所示。图6中虚线框为芯片内部结构工作原理,在芯片上电之后,D端电压升高,通过内部电源模块向VCC端子外接电容供电;VCC电压达到一定值V0之后,比较器输出端由0变为1,此时电源模块停止供电,10mA电流开始下拉,并且计数器开始计数,当VCC电压由V0下降到V1(此处V1的值可以是由操作的技术人员根据需要设定的系统预设基准电压,由此来控制最终编码的结果)之后,比较器由1翻转为0,电源模块开始供电,10mA电流停止下拉,计数器计数停止,此时的计数器的输出表征了VCC电容的电压。编码模块根据比较器的时序,将计数器输出数字信号进行编码,该编码对应于VCC外接电容的电压,该编码按照适当的映射关系可用于对内部校准器的控制,达到设置参数的目的。编码完成之后,VCC由V0上升至UVLO电压,芯片进入正常工作状态。
此技术方案中对VCC外接电容编码表达式:
Figure PCTCN2016083332-appb-000002
其中tref是内部基准时间,Ipull是内部基准电流;计数器到编码的映射关系由编码模块完成,可根据实际需要对编码模块进行设计。
在此方案中,由比较器对电容的充放电根据电容电压与系统预设基准电压的比较结果进行控制,而计数器的输出则实时的对应于电容的电压变化,由此编码模块可以获取需要的变量并根据系统预设的编码和电容电压的映射关系进行编码。因此,对于每次编码的人为操作控制在系统预设基准电压的设定之中, 设定不同的系统预设基准电压,可以得到不同的编码,进而控制校准器。
在实际应用中,本发明中对电容充放电进行控制的电容控制模块并不仅仅限于有上面的两种组成(ADC和逻辑控制器、比较器和计数器),其他可以在特定的时序中实现电容特定规则的充放电的模块的组合均可以采用并实现本发明的对控制电路进行编程的技术效果,并且属于本发明的保护范围之中。
采用了该发明中的基于VCC电容的控制电路编程系统及方法,用于对芯片的参数编程,能提升产品可靠性和抗干扰能力;本发明技术方案未使用控制芯片RI引脚,也因此无需加载外挂元器件,进而节省了成本;提高了芯片的兼容性,可适用于恒流芯片和恒流PFC控制芯片,可以直接应用于开关电源控制芯片中,适用于大规模推广应用。
在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。

Claims (10)

  1. 一种基于VCC电容的控制电路编程系统,其特征在于,所述的系统包括控制芯片,所述的控制芯片的VCC端连接有一电容C0,所述的控制芯片内部设置有电源、电容控制模块、编码器和控制单元,所述的电源分别与所述的VCC端和电容控制模块相连接,其中:
    所述的电容控制模块控制所述的电容C0的充放电,并将所述的电容C0的电压变化数据和控制时序输出至所述的编码模块;
    所述的编码模块根据所述的电容C0的电压变化数据、控制时序以及系统预设的编码和电压映射关系进行编码,并将完成的编码输出至所述的控制单元。
  2. 根据权利要求1所述的基于VCC电容的控制电路编程系统,其特征在于,所述的电容控制模块包括模数转换器和逻辑控制器,其中:
    所述的模数转换器将所述的电容C0的电压变化数据进行模数转换,并输出至所述的编码模块;
    所述的逻辑控制器根据系统预设的规则控制所述的电容C0的充放电,并将控制时序发送至所述的编码模块。
  3. 根据权利要求1所述的基于VCC电容的控制电路编程系统,其特征在于,所述的电容控制模块包括比较器和计数器,其中:
    所述的比较器根据电容电压和系统预设基准电压的比较值控制所述的计数器的计数和电容的充放电,并将控制时序输出至所述的编码模块;
    所述的计数器根据所述的比较器的输出进行计数,并将计数值输出至所述的编码模块。
  4. 根据权利要求1所述的基于VCC电容的控制电路编程系统,其特征在于,所述的控制芯片的RI端和接地端之间还连接有电阻Rton。
  5. 根据权利要求1所述的基于VCC电容的控制电路编程系统,其特征在于,所述的控制芯片的FB端和接地端之间还连接有电阻Rfb2,所述的FB端通过电阻Rfb1与外部端口相连接。
  6. 根据权利要求5所述的基于VCC电容的控制电路编程系统,其特征在于,所述的FB端依次通过电阻Rfb1、电容C1和电容C2与外部端口相连接。
  7. 根据权利要求1所述的基于VCC电容的控制电路编程系统,其特征在于,所述的控制芯片为恒流芯片或恒流PFC控制芯片。
  8. 一种通过权利要求1至7中任一项所述的系统基于VCC电容的控制电路编程方法,其特征在于,所述的方法包括以下步骤:
    (1)所述的电容控制模块控制所述的电容C0的充放电并将控制时序输出至所述的编码模块;
    (2)所述的电容控制模块将所述的电容C0的电压变化数据输出至所述的编码模块;
    (3)所述的编码模块根据所述的电容C0的电压变化数据、控制时序以及系统预设的编码和电压映射关系进行编码;
    (4)所述的编码模块将完成的编码输出至所述的控制单元。
  9. 根据权利要求8所述的基于VCC电容的控制电路编程方法,其特征在于,所述的电容控制模块包括模数转换器和逻辑控制器,所述的步骤(1),具体为:
    所述的逻辑控制器根据系统预设的规则控制所述的电容C0的充放电,并将控制时序发送至所述的编码模块;
    所述的步骤(2),具体为:
    所述的模数转换器将所述的电容C0的电压变化数据进行模数转换,并输出至所述的编码模块。
  10. 根据权利要求8所述的基于VCC电容的控制电路编程方法,其特征在于,所述的电容控制模块包括比较器和计数器,所述的步骤(1),具体为:
    所述的比较器根据电容电压和系统预设基准电压的比较值控制所述的计数器的计数和电容的充放电,并将控制时序输出至所述的编码模块;
    所述的步骤(2),具体为:
    所述的计数器根据所述的比较器的输出进行计数,并将计数值输出至所述的编码模块。
PCT/CN2016/083332 2016-05-25 2016-05-25 基于vcc电容的控制电路编程系统及方法 WO2017201691A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/083332 WO2017201691A1 (zh) 2016-05-25 2016-05-25 基于vcc电容的控制电路编程系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/083332 WO2017201691A1 (zh) 2016-05-25 2016-05-25 基于vcc电容的控制电路编程系统及方法

Publications (1)

Publication Number Publication Date
WO2017201691A1 true WO2017201691A1 (zh) 2017-11-30

Family

ID=60411127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083332 WO2017201691A1 (zh) 2016-05-25 2016-05-25 基于vcc电容的控制电路编程系统及方法

Country Status (1)

Country Link
WO (1) WO2017201691A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100118573A1 (en) * 2008-11-07 2010-05-13 Power Integrations, Inc. Method and apparatus to increase efficiency in a power factor correction circuit
CN104053283A (zh) * 2014-06-20 2014-09-17 陕西亚成微电子股份有限公司 一种led调光控制电路
CN105528008A (zh) * 2014-09-30 2016-04-27 华润矽威科技(上海)有限公司 一种不改变芯片引脚调整芯片输出参数的方法及系统
CN205210746U (zh) * 2015-07-01 2016-05-04 华润矽威科技(上海)有限公司 恒流控制器及恒流控制电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100118573A1 (en) * 2008-11-07 2010-05-13 Power Integrations, Inc. Method and apparatus to increase efficiency in a power factor correction circuit
CN104053283A (zh) * 2014-06-20 2014-09-17 陕西亚成微电子股份有限公司 一种led调光控制电路
CN105528008A (zh) * 2014-09-30 2016-04-27 华润矽威科技(上海)有限公司 一种不改变芯片引脚调整芯片输出参数的方法及系统
CN205210746U (zh) * 2015-07-01 2016-05-04 华润矽威科技(上海)有限公司 恒流控制器及恒流控制电路

Similar Documents

Publication Publication Date Title
US9263939B2 (en) Capacitor discharging circuit and converter
CN104619077A (zh) 一种led恒流控制电路及其控制方法
TWI508410B (zh) 電源管理電路
CN102480824B (zh) 级联式发光二极管驱动电路
WO2015185300A1 (en) Boost power factor correction circuit, driving circuit for light-emitting diode and lighting device
CN102196621A (zh) 一种led调光电路
CN103260310A (zh) 一种led调光驱动电路
CN102307015B (zh) 开关式电源供应装置及其暂态峰值电流补偿方法
CN103152939A (zh) 一种led电源四合一调光电路
CN101600277A (zh) 一种led电路
CN209824076U (zh) 一种ic芯片、驱动电路及灯具控制系统
WO2017201691A1 (zh) 基于vcc电容的控制电路编程系统及方法
TWI448191B (zh) Feedback control to reduce power consumption light-emitting diode driving device
CN203504823U (zh) 一种led驱动器
CN204191009U (zh) Led调色温芯片及其应用电路
CN108270250A (zh) 充电系统
CN107969054A (zh) Led驱动电源、电源输出电压的控制方法及led灯具
CN207399047U (zh) 供电电压转换电路和led供电系统
CN203912269U (zh) 一种自激式triac调光电路
CN107592108A (zh) 一种控制器ic
CN209375979U (zh) 一种led驱动电源芯片
CN206164935U (zh) Led驱动电路
CN206517633U (zh) 可以通过调光关断的led驱动电源
CN108770133B (zh) 一种积分电容等效电路、led照明控制芯片及其控制电路
CN209016726U (zh) 一种高精度降压型充电电路

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902681

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.05.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16902681

Country of ref document: EP

Kind code of ref document: A1