WO2017201664A1 - Method for purifiying sorbate - Google Patents

Method for purifiying sorbate Download PDF

Info

Publication number
WO2017201664A1
WO2017201664A1 PCT/CN2016/083102 CN2016083102W WO2017201664A1 WO 2017201664 A1 WO2017201664 A1 WO 2017201664A1 CN 2016083102 W CN2016083102 W CN 2016083102W WO 2017201664 A1 WO2017201664 A1 WO 2017201664A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
disorbate
sorbic acid
monosorbate
ion exchange
Prior art date
Application number
PCT/CN2016/083102
Other languages
French (fr)
Inventor
Selvanathan Arumugam
John ELL
Wei Wang
Steven Zhang
Original Assignee
Rohm And Haas Company
Dow Global Technologies Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm And Haas Company, Dow Global Technologies Llc filed Critical Rohm And Haas Company
Priority to PCT/CN2016/083102 priority Critical patent/WO2017201664A1/en
Publication of WO2017201664A1 publication Critical patent/WO2017201664A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/56Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption

Definitions

  • Sorbic acid esters, with boiling points above 350°C have been found to be effective reactive coalescents for ultra-low volatile organic content (VOC) architectural coatings.
  • Diesters of sorbic acid (disorbates) are ordinarily prepared by reacting sorbic acid and a diol using a stoichiometric excess of sorbic acid to drive the reaction to quantitative conversion.
  • the residual unreacted sorbic acid present in the crude sorbate product adversely impacts the storage stability of the disorbate, thereby requiring free radical inhibitor to maintain product stability.
  • the presence of residual free radical inhibitor slows down the cure rate of the coated material; moreover, the presence of residual sorbic acid adds unwanted color and results in gelation of the paint formulation.
  • the present invention addresses a need in the art by providing a method comprising the steps of a) contacting a mixture comprising sorbic acid and a sorbate with a macroporous ion exchange resin functionalized with ammonium hydroxide groups at a concentration of at least 1.01 equivalents based on the equivalents of acids in the mixture to reduce the concentration of the sorbic acid in the mixture by at least 50%; then b) separating the ion exchange resin from the mixture to form a purified sorbate with a reduced concentration of sorbic acid.
  • the method of the present invention addresses a need by providing a simple and cost effective way of substantially reducing levels of sorbic acid from a mixture containing a sorbate, preferably a disorbate, and sorbic acid without substantially impacting the recovery of the desired sorbate.
  • the present invention is a method comprising the steps of a) contacting a mixture comprising sorbic acid and a sorbate with a macroporous ion exchange resin functionalized with ammonium hydroxide groups at a concentration of at least 1.01 equivalents based on the equivalents of acids in the mixture to reduce the concentration of the sorbic acid in the mixture by at least 50%; then b) separating the ion exchange resin from the mixture to form a purified sorbate with a reduced concentration of sorbic acid.
  • the macroporous ion exchange resin functionalized with ammonium hydroxide groups can be obtained commercially, for example, as AMBERJET TM 9000 OH Ion Exchange Resin or DOWEX TM 550A Ion Exchange Resin (Trademarks of The Dow Chemical Company or its affiliates) .
  • concentration of the ammonium cations in the ion exchange resin is from 1.10, more preferably from 1.15 equivalents, to preferably 2.5, more preferably to 2.0, and most preferably to 1.5 equivalents, based on the equivalents of acids in the mixture.
  • equivalents of acids refers to residual sorbic acid and any residual acid catalyst present in the crude mixture.
  • the sorbate is either a monosorbate or a disorbate.
  • An example of a preferred monosorbate is tripropylene glycol n-butyl ether sorbate (TPnB-monosorbate) , as illustrated:
  • TEG-disorbate triethylene glycol disorbate
  • the sorbate can be prepared in a variety of ways.
  • sorbic acid can be contacted with an alcohol or diol at an elevated temperature, preferably in the range of from 60°C to 160°C, and in the presence of a solvent and an acid catalyst for a sufficient time (typically from 1 h to 24 h) to produce the desired sorbate.
  • suitable acids include sulfuric acid, hydrochloric acid, and toluene sulfonic acid
  • preferred solvents include those that are immiscible with water and preferably have a density of less than that of water.
  • preferred solvents include toluene, xylene, chlorobenzene, ethyl benzene, and dibutyl ether, with toluene and xylene being preferred.
  • the desired product is a disorbate
  • some amount of incompletely reacted monosorbate byproduct is typically formed during the process, and it is also often desirable to remove this byproduct without impacting the recovery of the disorbate.
  • the ion exchange resin functionalized with ammonium hydroxide groups achieves these goals.
  • the present invention is a method for increasing the purity of a disorbate from a mixture containing the disorbate, a monosorbate of the disorbate, and sorbic acid comprising the steps of contacting the mixture with a macroporous ion exchange resin functionalized with ammonium hydroxide groups at a concentration of at least 1.01 equivalents based on the equivalents of acids in the mixture to reduce the concentration of the sorbic acid and monosorbate in the mixture by at least 50%; then b) separating the ion exchange resin from the mixture to form a purified disorbate with a reduced concentration of sorbic acid and monosorbate of the disorbate.
  • TEG-monosorbate of the disorbate refers to an incompletely reacted glycol.
  • TEG-monosorbate is TEG-monosorbate, as illustrated:
  • the amount of residual acid is preferably reduced by at least 75%, more preferably by at least 90%, more preferably by at least 95%, and most preferably by at least 99%.
  • the amount of the desired sorbate recovered is preferably at least 90%, more preferably at least 95%, and most preferably at least 99%.
  • the process of the present invention provides a simple way to improve the purity of the disorbate and achieve almost total recovery of this desired product.
  • TEG-disorbate triethylene glycol disorbate
  • TEG-monosorbate triethylene glycol monosorbate
  • Example 1 The method of Example 1 was repeated except that DOWEX TM 550A OH Ion Exchange Resin was used as the ion exchange resin.
  • Tripropylene glycol n-butyl monosorbate was prepared by contacting DOWANOL TM TPnB Glycol Ether (A Trademark of The Dow Chemical Company) under conditions substantially as described in Intermediate Example 1.
  • the resulting product contained a mixture of the desired Tripropylene glycol n-butyl monosorbate (TPnB monosorbate) and unreacted sorbic acid at a w/w ratio of 72: 28.
  • the crude TPnB monosorbate was purified using AMBERJET 9000 OH substantially as described in Example 1.
  • the resulting purified product was free of sorbic acid with quantitative recovery of the purified monosorbate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Disclosed is a method of removing residual sorbic acid from a crude mixture containing a sorbate and sorbic acid comprising the steps of contacting a mixture comprising sorbic acid and a sorbate with a macroporous ion exchange resin functionalized with ammonium hydroxide groups at a concentration of at least 1.01 equivalents based on the equivalents of acids in the mixture to reduce the concentration of the sorbic acid in the mixture by at least 50%; then separating the ion exchange resin from the mixture to forma purified disorbate with a reduced concentration of sorbic acid. The method provides an efficient way of purifying and recovering sorbates, which are useful as low VOC coalescents for coatings formulations.

Description

METHOD FOR PURIFIYING A SORBATE
Sorbic acid esters, with boiling points above 350℃ have been found to be effective reactive coalescents for ultra-low volatile organic content (VOC) architectural coatings. Diesters of sorbic acid (disorbates) are ordinarily prepared by reacting sorbic acid and a diol using a stoichiometric excess of sorbic acid to drive the reaction to quantitative conversion. The residual unreacted sorbic acid present in the crude sorbate product adversely impacts the storage stability of the disorbate, thereby requiring free radical inhibitor to maintain product stability. However, the presence of residual free radical inhibitor slows down the cure rate of the coated material; moreover, the presence of residual sorbic acid adds unwanted color and results in gelation of the paint formulation. The complexities associated with excess sorbic acid warrant a removal step. Traditional workup approaches such as an aqueous base wash result in loss of valuable product; separation by vacuum distillation are impractical due to the high boiling points of the disorbate. Accordingly, it would be desirable to find a way to efficiently remove excess sorbic acid from a disorbate and the sorbic acid without impacting yield of the purified disorbate.
Summary of the Invention
The present invention addresses a need in the art by providing a method comprising the steps of a) contacting a mixture comprising sorbic acid and a sorbate with a macroporous ion exchange resin functionalized with ammonium hydroxide groups at a concentration of at least 1.01 equivalents based on the equivalents of acids in the mixture to reduce the concentration of the sorbic acid in the mixture by at least 50%; then b) separating the ion exchange resin from the mixture to form a purified sorbate with a reduced concentration of sorbic acid. The method of the present invention addresses a need by providing a simple and cost effective way of substantially reducing levels of sorbic acid from a mixture containing a sorbate, preferably a disorbate, and sorbic acid without substantially impacting the recovery of the desired sorbate.
Detailed Description of the Invention
The present invention is a method comprising the steps of a) contacting a mixture comprising sorbic acid and a sorbate with a macroporous ion exchange resin functionalized with ammonium hydroxide groups at a concentration of at least 1.01 equivalents based on the equivalents of acids in the mixture to reduce the concentration of the sorbic acid in the mixture by at least 50%; then  b) separating the ion exchange resin from the mixture to form a purified sorbate with a reduced concentration of sorbic acid.
The macroporous ion exchange resin functionalized with ammonium hydroxide groups can be obtained commercially, for example, as AMBERJETTM 9000 OH Ion Exchange Resin or DOWEXTM 550A Ion Exchange Resin (Trademarks of The Dow Chemical Company or its Affiliates) . Preferably the concentration of the ammonium cations in the ion exchange resin is from 1.10, more preferably from 1.15 equivalents, to preferably 2.5, more preferably to 2.0, and most preferably to 1.5 equivalents, based on the equivalents of acids in the mixture. As used herein “equivalents of acids” refers to residual sorbic acid and any residual acid catalyst present in the crude mixture.
The sorbate is either a monosorbate or a disorbate. An example of a preferred monosorbate is tripropylene glycol n-butyl ether sorbate (TPnB-monosorbate) , as illustrated:
Figure PCTCN2016083102-appb-000001
An example of a preferred disorbate is triethylene glycol disorbate (TEG-disorbate) , as illustrated:
Figure PCTCN2016083102-appb-000002
The sorbate can be prepared in a variety of ways. For example, sorbic acid can be contacted with an alcohol or diol at an elevated temperature, preferably in the range of from 60℃ to 160℃, and in the presence of a solvent and an acid catalyst for a sufficient time (typically from 1 h to 24 h) to produce the desired sorbate. Examples of suitable acids include sulfuric acid,  hydrochloric acid, and toluene sulfonic acid; preferred solvents include those that are immiscible with water and preferably have a density of less than that of water. Examples of preferred solvents include toluene, xylene, chlorobenzene, ethyl benzene, and dibutyl ether, with toluene and xylene being preferred.
Where the desired product is a disorbate, some amount of incompletely reacted monosorbate byproduct is typically formed during the process, and it is also often desirable to remove this byproduct without impacting the recovery of the disorbate. Fortuitously, it has been discovered that the ion exchange resin functionalized with ammonium hydroxide groups achieves these goals. Accordingly, in another aspect, the present invention is a method for increasing the purity of a disorbate from a mixture containing the disorbate, a monosorbate of the disorbate, and sorbic acid comprising the steps of contacting the mixture with a macroporous ion exchange resin functionalized with ammonium hydroxide groups at a concentration of at least 1.01 equivalents based on the equivalents of acids in the mixture to reduce the concentration of the sorbic acid and monosorbate in the mixture by at least 50%; then b) separating the ion exchange resin from the mixture to form a purified disorbate with a reduced concentration of sorbic acid and monosorbate of the disorbate.
As used herein, “monosorbate of the disorbate” refers to an incompletely reacted glycol. Thus, the monosorbate of TEG-disorbate is TEG-monosorbate, as illustrated:
Figure PCTCN2016083102-appb-000003
The amount of residual acid is preferably reduced by at least 75%, more preferably by at least 90%, more preferably by at least 95%, and most preferably by at least 99%. The amount of the desired sorbate recovered (disorbate in the case of TEG-disorbate, monosorbate in the case of TPnB-monosorbate) is preferably at least 90%, more preferably at least 95%, and most preferably at least 99%.
The process of the present invention provides a simple way to improve the purity of the disorbate and achieve almost total recovery of this desired product.
Intermediate Example 1–Preparation of a Crude Triethylene Glycol Disorbate
To a 500-mL three-neck flask equipped with a Dean Stark apparatus was added sorbic acid, triethylene glycol, and toluene. The reaction mixture was carried under N2 and the contents of the flask were heated to ~80℃ with stirring until the sorbic acid dissolved. Concentrated H2SO4 premixed with toluene was then added drop-wise to the flask and the mixture was heated to an internal kettle temperature of 120℃ to 130℃. The reaction proceeded until no additional water was observed to condense in the Dean-Stark apparatus from the toluene/water heterogeneous azeotrope. The contents were cooled to room temperature and the mixture was analyzed to reveal a mixture of triethylene glycol disorbate (TEG-disorbate) , which also contained triethylene glycol monosorbate (TEG-monosorbate) and unreacted sorbic acid.
Example 1–Purification of Crude TEG-disorbate with Ammonium Hydroxide Functionalized Ion Exchange Resin
A portion of the crude TEG-disorbate (1 g) prepared as described in Intermediate Example 1 was dissolved in acetone (20 mL) followed by addition of AMBERJETTM 9000 OH Ion Exchange Resin (4.24 g, 1.2 equivalents based on residual acid) . The mixture was stirred for 30 min at room temperature after which time the ion exchange resin was filtered out and washed twice with acetone (5 mL) . The dissolved fractions were combined and the solvent removed in vacuo.
Example 2–Purification of Crude TEG-disorbate with Ammonium Hydroxide Functionalized Ion Exchange Resin
The method of Example 1 was repeated except that DOWEXTM 550A OH Ion Exchange Resin was used as the ion exchange resin.
Comparative Examples 1-6
The method of Examples 1 was repeated except using other ion exchange resins or bases for removing residual sorbic acids. The results are shown in Table 1.
In each instance, 1.2 equivalents of ion exchange resin or base was used based on total acids in the crude mixture, except for silica gel, which was used at 50 wt%based on residual acids. The  w/w ratio of the TEG-disorbate to the sorbic acid to the TEG-monosorbate (Disorbate: SA: Monosorbate) prior to the purification procedure was 73.6: 25.3: 1.1.
Table 1–Purification of TEG-Disorbate
Figure PCTCN2016083102-appb-000004
As the data show, the treatment of the crude mixture with the ion exchange resin functionalized with ammonium hydroxide groups (Examples 1 and 2) resulted in complete removal of sorbic acid and nearly complete removal of the monosorbate, with quantitative or nearly quantitative recovery of the disorbate. In contrast, the other methods of purifying the disorbate were significantly less effective for removing the impurities and all suffered substantial recovery loss.
Intermediate Example 2–Preparation of Tripropylene Glycol n-Butyl Sorbate
Tripropylene glycol n-butyl monosorbate was prepared by contacting DOWANOLTM TPnB Glycol Ether (A Trademark of The Dow Chemical Company) under conditions substantially as described in Intermediate Example 1. The resulting product contained a mixture of the desired Tripropylene glycol n-butyl monosorbate (TPnB monosorbate) and unreacted sorbic acid at a w/w ratio of 72: 28.
Example 3–Purification of Crude TPnB Monosorbate
The crude TPnB monosorbate was purified using AMBERJET 9000 OH substantially as described in Example 1. The resulting purified product was free of sorbic acid with quantitative recovery of the purified monosorbate.

Claims (9)

  1. A method comprising the steps of a) contacting a mixture comprising sorbic acid and a sorbate with a macroporous ion exchange resin functionalized with ammonium hydroxide groups at a concentration of at least 1.01 equivalents based on the equivalents of acids in the mixture to reduce the concentration of the sorbic acid in the mixture by at least 50%; then b) separating the ion exchange resin from the mixture to form a purified disorbate with a reduced concentration of sorbic acid.
  2. The method of Claim 1 wherein the concentration of the ammonium hydroxide groups in the ion exchange resin is from 1.10 to preferably 2.5 equivalents of acids in the mixture.
  3. The method of Claim 2 wherein the concentration of the ammonium hydroxide groups in the ion exchange resin is from 1.10 to preferably 2.0 equivalents of acids in the mixture.
  4. The method of Claim 3 wherein the concentration of the sorbic acid in the mixture is reduced by at least 90% after contact with the ion exchange resin.
  5. The method of any of Claims 4 wherein the sorbate is a disorbate and the mixture further comprises a monosorbate of the disorbate.
  6. The method of Claim 5 wherein the disorbate is triethylene glycol disorbate and the monosorbate is triethylene glycol monosorbate, wherein the amount of disorbate recovered is at least 90% after contact with the ion exchange resin.
  7. The method of Claim 4 wherein the sorbate is tripropylene glycol n-butyl ether monosorbate.
  8. A method for increasing the purity of a disorbate from a mixture containing the disorbate, a monosorbate of the disorbate, and sorbic acid comprising the steps of contacting the mixture with a macroporous ion exchange resin functionalized with ammonium hydroxide groups at a concentration of at least 1.01 equivalents based on the equivalents of acids in the mixture to reduce the concentration of the sorbic acid and monosorbate in the mixture by at least 50%; then b) separating the ion exchange resin from the mixture to form a purified disorbate with a reduced concentration of sorbic acid and monosorbate.
  9. The method of Claim 8 wherein the disorbate is triethylene glycol disorbate and the monosorbate is triethylene glycol monosorbate.
PCT/CN2016/083102 2016-05-24 2016-05-24 Method for purifiying sorbate WO2017201664A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/083102 WO2017201664A1 (en) 2016-05-24 2016-05-24 Method for purifiying sorbate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/083102 WO2017201664A1 (en) 2016-05-24 2016-05-24 Method for purifiying sorbate

Publications (1)

Publication Number Publication Date
WO2017201664A1 true WO2017201664A1 (en) 2017-11-30

Family

ID=60410977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083102 WO2017201664A1 (en) 2016-05-24 2016-05-24 Method for purifiying sorbate

Country Status (1)

Country Link
WO (1) WO2017201664A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015124458A1 (en) * 2014-02-18 2015-08-27 Evonik Röhm Gmbh Method for the production of high-purity glycerol dimethacrylate
US20150361290A1 (en) * 2014-06-16 2015-12-17 Rohm And Haas Company Remediation of yellowing in a coatings formulation containing a sorbate ester or a sorbamide coalescent
WO2016061756A1 (en) * 2014-10-22 2016-04-28 Dow Global Technologies Llc Preparation of a sorbate ester

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015124458A1 (en) * 2014-02-18 2015-08-27 Evonik Röhm Gmbh Method for the production of high-purity glycerol dimethacrylate
US20150361290A1 (en) * 2014-06-16 2015-12-17 Rohm And Haas Company Remediation of yellowing in a coatings formulation containing a sorbate ester or a sorbamide coalescent
WO2016061756A1 (en) * 2014-10-22 2016-04-28 Dow Global Technologies Llc Preparation of a sorbate ester

Similar Documents

Publication Publication Date Title
KR101896755B1 (en) Production of propylene monoalkyl ether
EP0999214B1 (en) Process for preparing alkoxy silanes with low chlorine content
US7553994B2 (en) Method for producing ditrimethylolpropane
CN1827592A (en) Process for producing cyclohexanone oxime
JP2783772B2 (en) Method for producing diacetyl-free methyl methacrylate
KR101269493B1 (en) Process for recovering valued compounds from a stream derived from purification of methyl methacrylate
CN107868053B (en) Preparation method of alkyl sulfate
JP6770005B2 (en) Method for Producing 1-Methylpyrrolidine-3-ol
WO2017201664A1 (en) Method for purifiying sorbate
CN1181039C (en) Improved method of preparing acrylic acid-2-ethyl caproite
US8471059B2 (en) Method for preparing a trifluoromethanesulfinic acid salt
CN112739675A (en) Method for recovering high-quality 3-methyl-but-3-en-1-ol
JP2021004227A (en) Method for recovering excess anilines
JP6922890B2 (en) A method for producing a solution composition containing a monoetherified product, a method for producing a solution composition, and a method for producing a polymerizable compound.
JPH10158208A (en) Separation and recovery of cyclohexyl vinyl ether
JPH04187682A (en) Purification of glycidyl acrylate or glycidyl methacrylate
JPS59152367A (en) Purification of mercaptocarboxylic acid polyhydric alcohol ester
US20170305832A1 (en) Preparation of a sorbate ester
JPH05186391A (en) Method for purifying ethyl acetate
JPS63190862A (en) Recovery of n-vinylformamide
WO2014115638A1 (en) Manufacturing process for memantine
JPS6244537B2 (en)
JPH07126214A (en) Production of 4-hydroxybutyl acrylate
JPH06279376A (en) Production of n-(alpha-alkoxyethyl)formamide
DE1917032A1 (en) Process for the production of Percarbonsaeurelösungen

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902654

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16902654

Country of ref document: EP

Kind code of ref document: A1