WO2017200337A1 - 플라즈마 버너 - Google Patents

플라즈마 버너 Download PDF

Info

Publication number
WO2017200337A1
WO2017200337A1 PCT/KR2017/005224 KR2017005224W WO2017200337A1 WO 2017200337 A1 WO2017200337 A1 WO 2017200337A1 KR 2017005224 W KR2017005224 W KR 2017005224W WO 2017200337 A1 WO2017200337 A1 WO 2017200337A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
fuel
chamber
air
plasma
Prior art date
Application number
PCT/KR2017/005224
Other languages
English (en)
French (fr)
Inventor
이상주
장현석
이상용
구동진
이봉주
Original Assignee
(주)그린사이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)그린사이언스 filed Critical (주)그린사이언스
Publication of WO2017200337A1 publication Critical patent/WO2017200337A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles

Definitions

  • the present invention relates to a plasma burner, and to a plasma burner having high efficiency and suppressing generation of contaminants.
  • Burners are used in various industrial fields for various purposes. Such burners are applied to industrial boilers that require high heat.
  • FIG. 1 is a view showing a conventional burner.
  • the conventional burner has an atomizing gun 20 protrudingly formed inside the main combustion chamber 10, fuel and air are supplied into the main combustion chamber 10, and the outside of the main combustion chamber 10.
  • the sub-combustion chamber 30 is formed in communication with the wind box 50 to supply the secondary air 55 to the sub-combustion chamber 30.
  • the atomizing gun 20 is an oil burner using oil, and is a primary flame 62 formed in the atomizing gun 20, and fuel supplied to the main combustion chamber 10.
  • Combustion (40) to produce a secondary flame (64) the fuel that is unburned due to the lack of heat and air during combustion of the secondary flame (64) is supplied from the wind box 50 in the sub-combustion chamber (30) Reaction with secondary air produces a tertiary flame (66).
  • preheating is required to raise the temperature of the peripheral device to a steady state, and this preheating is performed by the atomizing gun 20.
  • the calorie of the atomizing gun 20 using oil is small, preheating takes a day or two or more, and since the oil is continuously consumed during that time, the preheating takes a long time and the fuel is too much. There is a problem that is consumed.
  • the present invention is to solve the above problems, it is an object of the present invention to provide a plasma burner that can suppress the generation of contaminants and save fuel while exhibiting more high efficiency.
  • the ignition chamber for igniting the first fuel and air by using a plasma
  • the ignition chamber is in communication with the ignition flame generated in the ignition chamber air
  • a plasma burner including a main combustion chamber for inputting and burning a second fuel.
  • the first air inlet In communication with the ignition chamber, the first air inlet, the air is introduced into the ignition chamber, the first air inlet is in communication, the plasma generating unit for generating a plasma and the ignition chamber is in communication with the first fuel
  • the first fuel input unit may be further included.
  • a second fuel input unit communicating with the main combustion chamber and into which the second fuel and air flow into the main combustion chamber, wherein the main combustion chamber includes air and a second flame in the primary combustion flame generated in the ignition chamber. It is possible to form a combustion chamber in which the secondary combustion flame formed by the injection of fuel is formed.
  • the air supplied to the ignition chamber through the first air injection unit may form a swirl.
  • It may further include a steam injection unit for injecting steam into the main combustion chamber.
  • the steam injected from the steam injection unit may be injected toward the inner wall surface of the main combustion chamber to block the second combustion flame from directly contacting the inner wall surface of the main combustion chamber.
  • the steam may form a swirl.
  • the apparatus may further include an additional combustion chamber communicating with the main combustion chamber and forming a third combustion flame which is formed by supplying air to the second combustion flame combusted in the main combustion chamber.
  • a wind box may be further provided to supply external air to the additional combustion chamber.
  • the plasma burner has the following effects.
  • the secondary combustion flame can be formed more largely, thereby increasing the heat of the burner.
  • the generated oxygen and OH radicals can be used as an oxidizing agent to promote combustion and at the same time reduce the supply amount of air containing nitrogen can be suppressed the generation of nitrogen oxides.
  • FIG. 1 is a cross-sectional view showing a burner using a conventional oil
  • FIG. 2 is a side view showing a plasma burner according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of FIG. 2;
  • FIG. 4 is a graph illustrating a temperature change inside the plasma burner according to the flow rate of steam supplied to the plasma burner of FIG. 2.
  • the plasma burner 100 may include an ignition chamber 110 and a main combustion chamber 120 as shown in FIGS. 2 and 3.
  • the ignition chamber 110 is a component that ignites the first fuel and air using the plasma 152 to generate the primary combustion flame 154.
  • the main combustion chamber 120 is in communication with the ignition chamber 110, the secondary combustion flame by injecting air and the second fuel to the primary combustion flame 154 generated in the ignition chamber 110 to burn. 156 to form a component.
  • the calorific value of the primary combustion flame 154 may be significantly increased as compared with the conventional oil.
  • a first air inlet 112 may be coupled to the ignition chamber 110.
  • a first fuel inlet 116 may be coupled to the ignition chamber 110.
  • a plasma generator 114 may be coupled to the ignition chamber 110.
  • the first air inlet 112 may communicate with the interior of the ignition chamber 110, and may form a passage through which air enters the ignition chamber 110.
  • the air introduced through the first air inlet 112 may be air in the general atmosphere, or may be oxygen or steam. Of course, various gases may be mixed.
  • the first fuel input unit 116 may communicate with the interior of the ignition chamber 110, and may form a passage through which fuel is injected into the ignition chamber 110.
  • the fuel introduced into the ignition chamber 110 is described as an example of pulverized coal, but the present invention is not limited to the type of fuel.
  • the plasma generating unit 114 is a component for generating the plasma 152.
  • the plasma generating unit 114 communicates with the first air inlet 112, and the plasma is introduced into the air introduced through the first air inlet 112.
  • 152 may be a component for generating.
  • the plasma may be a microwave plasma, and the generated plasma 152 may be introduced into the ignition chamber 110 through the first air inlet 112.
  • the air introduced through the first air inlet 112 may form a swirl (swirl).
  • a combustion chamber 122 which is a space in which the secondary combustion flame 156 is generated, may be formed in the main combustion chamber 120.
  • the inner wall of the combustion chamber 122 may be made of a fireproofing agent to achieve thermal durability.
  • the combustion chamber 122 may be in communication with the interior of the ignition chamber 110 may enter a portion of the primary combustion flame 154 generated in the ignition chamber 110.
  • a second fuel input part 124 may be coupled to the main combustion chamber 120.
  • the second fuel input unit 124 may communicate with the interior of the combustion chamber 122 to form a passage through which air and fuel are introduced into the combustion chamber 122.
  • the fuel introduced into the second fuel input unit 124 may be pulverized coal similarly to the first fuel input unit 116, but the present invention is not limited thereto, and the fuel may be provided through the first fuel input unit 116. Different types of fuel may be added than the input fuel.
  • the first fuel input unit 116 and the second fuel input unit 124 May be formed branching from the same pipe.
  • the additional combustion chamber 130 may be further provided.
  • the additional combustion chamber 130 is in communication with the main combustion chamber 120, the third combustion flame 158 is formed by supplying air to the second combustion flame 156 burned in the main combustion chamber 120 It is a component to be formed, the additional combustion chamber 130 may be further provided with a wind box 132 for introducing external air.
  • the plasma generated by the plasma generator 114 is introduced into the ignition chamber 110, and the fuel introduced into the ignition chamber 110 through the first fuel input unit 116 is burned by the plasma and thus primary combustion. Flame 154 is created.
  • the primary combustion flame 154 generated in the ignition chamber 110 may flow into the main combustion chamber 120.
  • the fuel introduced into the main combustion chamber 120 through the second fuel input unit 124 is ignited by the primary combustion flame 154 to generate a secondary combustion flame 156.
  • the calorific value of the primary combustion flame 154 formed by the microwave plasma is very large, even if a larger amount of fuel is injected in the second fuel input unit 124 at a faster time, smooth combustion is possible. As a result, the calories of the burner may increase.
  • the secondary combustion flame 156 generated in the main combustion chamber 120 may flow into the additional combustion chamber 130.
  • Pulverized coal is also called char, which is a compound of carbon and hydrogen, and some of the pulverized coal may be present in a mixture of gaseous, liquid, and solid states. Ash, etc.
  • the volatile matter may include carbon monoxide generated by the reaction of hydrogen and some carbon with oxygen in the atmosphere.
  • the pulverized coal is heated by a plasma in the ignition chamber 110 through the first fuel input part 116, and thus, volatile matters in a gaseous state and a liquid state may react to generate a primary combustion flame 154.
  • volatile hydrogen and carbon monoxide react with oxygen in the air to produce moisture and carbon dioxide.
  • the components such as carbon grains that have not reacted and the second fuel input unit 124 are introduced into the main combustion chamber 120.
  • the fuel may react with the air by the primary combustion flame 154 to produce the secondary combustion flame 156.
  • components that do not react with the secondary combustion flame 156 among the components of the injected fuel react with the air introduced through the windbox 132 in the additional combustion chamber 130 to form the tertiary combustion flame 158. You can.
  • the steam injection unit 140 for injecting steam in the combustion chamber of the main combustion chamber 120 may be further provided.
  • the steam injection unit 140 may be configured to inject steam along a wall surface of the combustion chamber 122 of the main combustion chamber 120.
  • the injected steam is located between the secondary combustion flame 156 and the combustion chamber 122 wall surface to block the secondary combustion flame 156 formed in the combustion chamber 122 from directly contacting the combustion chamber 122 wall surface.
  • the thermal durability of 122 can be improved.
  • the steam H 2 O injected into the combustion chamber 122 may be decomposed into hydrogen H 2, oxygen O and OH radicals by the heat of the secondary combustion flame 156.
  • the hydrogen produced by decomposition may be used as fuel, thereby reducing the fuel input amount, and may not generate carbon dioxide, which is a greenhouse gas.
  • decomposed oxygen and OH radicals may be used as an oxidizing agent to promote combustion, thereby reducing the air input supplied through the second fuel input unit 124.
  • Air has a ratio of about 80% nitrogen and about 20% oxygen, of which nitrogen combines with oxygen at high temperature to produce nitrogen oxides (NOx).
  • the nitrogen oxide is a contaminant, in the present invention, since oxygen or OH radicals generated from the injected steam act as an oxidant, the input of air can be reduced by that amount, and thus the production of nitrogen oxide can be further reduced and more environmentally friendly.
  • FIG 4 is a graph showing a temperature change in the combustion chamber according to the flow rate of steam injected from the steam injection unit 140.
  • This graph measured the change of the temperature in the combustion chamber 122, changing only the flow volume of the steam injected from the said steam injection part 140, fixing all other conditions.
  • the temperature in the combustion chamber should be the highest when no steam is injected, but as shown in FIG. 4, the highest temperature is recorded when the steam is 10 kg / kr. have.
  • the combustion efficiency increases most when steam is injected at a proper flow rate than when steam is not injected, and if less or more, the temperature in the combustion chamber 122 falls.
  • the injection of the appropriate amount of steam is effective to exhibit the optimum combustion efficiency.
  • the injection amount of steam to exhibit the optimum efficiency may vary depending on the size of the combustion chamber 122, the fuel input amount and the heat amount of the burner 100.
  • the steam may be injected inclined in the circumferential direction to form a swirl that rotates along the wall of the combustion chamber 122 in the combustion chamber 122.
  • the combustion efficiency of the combustion chamber 122 can be controlled by controlling the injection amount of steam, stable operation may be possible.
  • controlling the injection amount of steam it is possible to operate the burner at a temperature lower than 1500 degrees to increase the nitrogen oxides rapidly to suppress the generation of pollutants can be operated more environmentally friendly while showing a higher efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

본 발명은 고효율을 가지면서도 오염물질의 생성이 억제되는 플라즈마 버너에 관한 것으로서, 본 발명의 일 실시예에 따르면, 제1연료와 공기를 플라즈마를 이용하여 점화시키는 이그니션 챔버, 상기 이그니션 챔버와 연통되며, 이그니션 챔버에서 발생된 1차연소화염에 공기와 제2연료를 투입하여 연소시키는 메인연소챔버를 포함하는 플라즈마 버너가 개시된다.

Description

플라즈마 버너
본 발명은 플라즈마 버너에 관한 것으로서, 고효율을 가지면서도 오염물질의 생성이 억제되는 플라즈마 버너에 관한 것이다.
산업현장에서는 여러가지 목적으로 버너가 사용되고 있다. 이러한 버너는 고열이 필요한 산업용 보일러 등에 적용되고 있다.
도 1은 종래의 버너를 도시한 도면이다.
도 1에 도시된 바와 같이, 종래의 버너는 주연소실(10) 내부에 아토마이징 건(20)이 돌출 형성되고, 주연소실(10) 내부에 연료와 공기가 공급되며, 주연소실(10) 외측에 부연소실(30)이 연통되어 형성되며, 부연소실(30)에 2차공기(55)를 공급하는 윈드박스(50)가 설치된다.
이 때, 상기 아토마이징 건(20)은 기름(Oil)을 사용하는 오일버너로서, 상기 아토마이징 건(20)에 형성되는 1차화염(62)으로서, 상기 주연소실(10)에 공급되는 연료(40)를 연소시켜 2차화염(64)을 생성시키며, 2차화염(64)의 연소 때 열량과 공기의 부족으로 미연소된 연료가 부연소실(30)에서 윈드박스(50)에서 공급되는 2차공기와 반응하여 3차화염(66)을 생성시킨다.
그러나, 이와 같은 종래의 버너는 다음과 같은 문제점이 있다.
첫째, 기름(Oil)을 사용하는 아토마이징 건(20)의 열량이 작아 2차화염(64)을 크게 형성시키기 어려워 버너에서 발생시킬 수 있는 열량에 한계가 있다.
둘째, 충분한 열량을 발생시키기 위해서는 주변 장치의 온도를 정상상태까지 상승시키기 위하여 예열이 필요한데, 이러한 예열은 아토마이징 건(20)이 담당한다. 그런데, 기름(Oil)을 사용하는 아토마이징 건(20)의 열량이 작아 예열에 하루나 이틀 이상의 시간이 소요되며, 그 시간동안 지속적으로 기름을 소모하게 되므로, 예열에 시간이 오래걸리고 연료가 지나치게 많이 소모되는 문제점이 있다.
셋째, 고열량을 발생시키기 위해서는 보다 많은 연료의 투입과 고열의 발생이 필요한데, 버너의 온도가 일정온도 이상으로 상승하게 되면, 질소산화물(NOx)등의 오염물질이 발생된다. 따라서, 오염물질이 발생되지 않는 온도 이하로 운전하거나 오염물질을 정화시키는 후처리장치가 요구되는데, 이는 버너에서 발생되는 열량의 부족 또는 비용의 상승을 야기할 수 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명은 보다 고효율을 발휘하면서도 오염물질의 발생을 억제시키고, 연료를 절감시킬 수 있는 플라즈마 버너를 제공하는 것이 목적이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않는 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 과제를 해결하기 위하여, 본 발명의 일 실시예에 따르면, 제1연료와 공기를 플라즈마를 이용하여 점화시키는 이그니션 챔버, 상기 이그니션 챔버와 연통되며, 이그니션 챔버에서 발생된 1차연소화염에 공기와 제2연료를 투입하여 연소시키는 메인연소챔버를 포함하는 플라즈마 버너가 개시된다.
상기 이그니션 챔버와 연통되며, 상기 이그니션 챔버로 공기가 유입되는 제1공기유입부, 상기 제1공기유입부와 연통되며, 플라즈마를 발생시키는 플라즈마 발생부 및 상기 이그니션 챔버와 연통되며, 제1연료가 투입되는 제1연료투입부를 더 포함할 수 있다.
상기 메인연소챔버와 연통되며, 상기 메인연소챔버로 제2연료 및 공기가 유입되는 제2연료투입부를 더 포함하며, 상기 메인연소챔버는, 상기 이그니션 챔버에서 발생된 1차연소화염에 공기와 제2연료가 투입되어 형성되는 제2차연소화염이 형성되는 연소실을 형성할 수 있다.
상기 제1공기주입부를 통해 이그니션 챔버로 공급되는 공기는 스월(swirl) 형성할 수 있다.
상기 메인연소챔버의 내부에 스팀을 분사하는 스팀 분사부를 더 포함할 수 있다.
상기 스팀 분사부에서 분사되는 스팀은 상기 메인연소챔버의 내벽면을 향하여 분사되어 제2차연소화염이 메인연소챔버의 내벽면에 직접 접촉되는 것을 차단할 수 있다.
상기 스팀은 스월을 형성할 수 있다.
상기 메인연소챔버와 연통되며, 상기 메인연소챔버에서 연소된 제2차연소화염에 공기가 공급되어 형성되는 제3차연소화염을 형성하는 추가연소챔버를 더 포함할 수 있다.
상기 추가연소챔버에 외부의 공기를 공급하는 윈드박스가 더 구비될 수 있다.
본 발명이 플라즈마 버너에 따르면 다음과 같은 효과가 있다.
첫째, 플라즈마를 이용한 1차연소화염의 화력과 열량이 크므로 2차연소화염을 더욱 크게 형성할 수 있어 버너의 열량이 증가시킬 수 있는 효과가 있다.
둘째, 플라즈마를 이용한 1차연소화염의 화력이 크므로 예열이 필요없거나 예열시간이 극히 짧아 버너의 운용이 보다 쉬우며, 즉각적인 대응이 가능한 효과가 있다.
셋째, 연소실 내부로 스팀이 분사되어, 고온의 2차연소화염이 연소실 벽면에 직접 닿는 것이 차단되어 열적 내구성이 향상될 수 있다.
또한, 스팀이 고온의 2차연소화염에 의해 수소와 산소로 분리되며, OH라디칼이 생성되는데, 이 때, 생성된 수소는 연료로 사용할 수 있어 탄소 계열의 연료 투입량을 줄일 수 있어 경제성이 향상됨과 동시에 탄소계열의 연료 대신 수소를 연료로 사용하므로 유독가스인 CO나 온실가스인 CO2의 발생이 억제될 수 있다.
또한, 생성된 산소 및 OH라디칼은 산화제로 쓰일 수 있어 연소를 촉진시킴과 동시에 질소가 포함된 공기의 공급량을 줄일 수 있어 질소산화물의 발생이 억제될 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
아래에서 설명하는 본 출원의 바람직한 실시예의 상세한 설명뿐만 아니라 위에서 설명한 요약은 첨부된 도면과 관련해서 읽을 때에 더 잘 이해될 수 있을 것이다. 본 발명을 예시하기 위한 목적으로 도면에는 바람직한 실시예들이 도시되어 있다. 그러나, 본 출원은 도시된 정확한 배치와 수단에 한정되는 것이 아님을 이해해야 한다.
도 1은 종래의 오일을 이용한 버너를 도시한 단면도;
도 2는 본 발명의 일 실시예에 따른 플라즈마 버너를 도시한 측면도;
도 3은 도 2의 단면도;
도 4는 도 2의 플라즈마 버너에 공급되는 스팀의 유량에 따른 플라즈마 버너 내부의 온도변화를 도시한 그래프 이다.
이하 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.
본 실시예에 따른 플라즈마 버너(100)는 도 2 및 도 3에 도시된 바와 같이, 이그니션 챔버(110)와 메인연소챔버(120)를 포함할 수 있다.
상기 이그니션 챔버(110)는 제1연료와 공기를 플라즈마(152)를 이용하여 점화하여 1차연소화염(154)을 생성시키는 구성요소이다.
또한, 상기 메인연소챔버(120)는, 상기 이그니션 챔버(110)와 연통되며, 상기 이그니션 챔버(110)에서 발생된 1차연소화염(154)에 공기와 제2연료를 투입하여 연소시켜 2차연소화염(156)을 형성하는 구성요소이다.
상기 1차연소화염(154)을 생성시키는 주체가 플라즈마(152)이므로 1차연소화염(154)의 열량이 기존의 오일을 사용할 때와 비교하여 현저하게 상승될 수 있다.
한편, 상기 이그니션 챔버(110)에는 제1공기유입부(112)와 제1연료투입부(116) 및 플라즈마 발생부(114)가 결합될 수 있다.
상기 제1공기유입부(112)는, 상기 이그니션 챔버(110)의 내부와 연통되며, 상기 이그니션 챔버(110)로 공기가 유입되는 통로를 형성할 수 있다.
이 때, 상기 제1공기유입부(112)를 통해 유입되는 공기는 일반 대기중의 공기일 수 도 있고, 또는 산소이거나 스팀(steam)일 수 있다. 물론, 여러가지 기체가 혼합된 것일 수 있다.
그리고, 상기 제1연료투입부(116)는 상기 이그니션 챔버(110)의 내부와 연통되며, 상기 이그니션 챔버(110)로 연료가 투입되는 통로를 형성할 수 있다.
이 때, 상기 이그니션 챔버(110)로 투입되는 연료는 미분탄인 것을 예로 들어 설명하나, 본 발명은 연료의 종류에 한정되는 것은 아니다.
그리고, 상기 플라즈마 발생부(114)는 플라즈마(152)를 발생시키는 구성요소로서, 상기 제1공기유입부(112)와 연통되어, 상기 제1공기유입부(112)를 통해 유입되는 공기에 플라즈마(152)를 생성시키는 구성요소일 수 있다. 상기 플라즈마는 마이크로 웨이브 플라즈마 일 수 있으며, 생성된 플라즈마(152)는 상기 제1공기유입부(112)를 통하여 상기 이그니션 챔버(110)로 유입될 수 있다.
이 때, 효율의 증대를 위하여, 상기 제1공기유입부(112)를 통해 유입되는 공기는 스월(swirl)을 형성할 수 있다.
한편, 상기 메인연소챔버(120)의 내부에는 2차연소화염(156)이 생성되는 공간인 연소실(122)이 형성될 수 있다. 상기 연소실(122)의 내벽은 내화제로 이루어져 열적 내구성을 도모할 수 있다. 이 때, 상기 연소실(122)은 상기 이그니션 챔버(110)의 내부와 연통되어 상기 이그니션 챔버(110)에서 생성된 1차연소화염(154)의 일부가 유입될 수 있다.
그리고, 상기 메인연소챔버(120)에는 제2연료투입부(124)가 결합될 수 있다. 상기 제2연료투입부(124)는 상기 연소실(122) 내부와 연통되어 공기와 연료가 연소실(122)로 투입되는 통로를 형성될 수 있다.
상기 제2연료투입부(124)로 투입되는 연료는 상기 제1연료투입부(116)와 마찬가지로 미분탄일 수 있으나, 본 발명은 반드시 이에 한정된 것은 아니며, 상기 제1연료투입부(116)를 통해 투입되는 연료와는 다른 종류의 연료가 투입될 수 있다.
상기 제1연료투입부(116)를 통해 투입되는 연료와 제2연료투입부(124)를 통해 투입되는 연료의 종류가 같은 경우, 제1연료투입부(116)와 제2연료투입부(124)는 같은 파이프에서 분기되어 형성될 수도 있다.
한편, 추가연소챔버(130)가 더 구비될 수 있다. 상기 추가연소챔버(130)는 상기 메인연소챔버(120)와 연통되며, 상기 메인연소챔버(120)에서 연소된 제2차연소화염(156)에 공기가 공급되어 형성되는 3차연소화염(158)을 형성하는 구성요소이며, 상기 추가연소챔버(130)에 외부공기를 유입시키는 윈드박스(132)가 더 구비될 수 있다.
따라서, 플라즈마 발생부(114)에서 발생된 플라즈마가 이그니션 챔버(110)로 유입되고, 제1연료투입부(116)를 통해 이그니션 챔버(110)로 유입된 연료가 상기 플라즈마에 의해 연소되어 1차연소화염(154)이 생성된다.
상기 이그니션 챔버(110)와 메인연소챔버(120)가 연통되어 있으므로, 상기 이그니션 챔버(110)에서 생성된 1차연소화염(154)은 상기 메인연소챔버(120)로 유입될 수 있다.
이 때, 상기 제2연료투입부(124)를 통해 메인연소챔버(120) 유입된 연료가 상기 1차연소화염(154)에 의해 점화되어 2차연소화염(156)이 생성된다.
마이크로웨이브 플라즈마에 의해 형성되는 1차연소화염(154)의 열량이 무척 크므로, 제2연료투입부(124)에서 보다 빠른 시간에 보다 많은 양이 연료를 투입하여도 원할한 연소가 가능하며, 그에 따라 버너의 열량이 커질 수 있다.
상기 메인연소챔버(120)와 추가연소챔버(130)가 연통되어 있으므로, 상기 메인연소챔버(120)에서 생성된 2차연소화염(156)은 상기 추가연소챔버(130)로 유입될 수 있다.
이 때, 상기 윈드박스(132)를 통해 추가연소챔버(130)로 유입된 공기와 2차연소화염(156)이 반응하여 3차연소화염(158)이 생성된다.
한편 미분탄은 촤(char)라는 명칭으로 불리우기도 하는데, 이러한 미분탄은 탄소와 수소의 화합물로서, 화합물 중 일부가 기체상태와 액체상태 및 고체상태로 혼합되어 존재할 수 있으며, 휘발분과 탄소알갱이 및 수분 및 회분 등으로 이루어진다. 또한, 휘발분은 수소와 탄소 일부가 대기중의 산소와 반응하여 발생된 일산화탄소를 포함할 수 있다.
이러한 미분탄은 상기 제1연료투입부(116)를 통해 이그니션 챔버(110)에서 플라즈마에 의해 가열되면서 먼저 가스상태 및 액체상태의 휘발분이 반응하여 1차연소화염(154)을 생성시킬 수 있다.
즉, 휘발분의 수소와 일산화탄소가 공기중의 산소와 반응하여 수분과 이산화탄소를 생성시키면서 연소되는 것이다.
또한, 상기 제1연료투입부(116)를 통해 이그니션 챔버(110)에 투입된 연료 중 미처 반응하지 못한 탄소알갱이등의 성분 및 제2연료투입부(124)를 통해 메인연소챔버(120)로 투입된 연료가 1차연소화염(154)에 의해 공기와 반응하면서 2차연소화염(156)을 생성시킬 수 있다.
또한, 투입된 연료의 구성성분 중 상기 2차연소화염(156)에 미처 반응되지 못한 성분들이 추가연소챔버(130)에서 윈드박스(132)를 통해 유입된 공기와 반응하면서 3차연소화염(158)을 형성시킬 수 있다.
한편, 상기 메인연소챔버(120)의 연소실 내부에 스팀을 분사하는 스팀분사부(140)가 더 구비될 수 있다.
상기 스팀분사부(140)는 스팀이 상기 메인연소챔버(120)의 연소실(122) 벽면을 따라 분사되도록 이루어질 수 있다.
따라서, 분사된 스팀이 2차연소화염(156)과 연소실(122) 벽면 사이에 위치되어 상기 연소실(122)내 형성되는 2차연소화염(156)이 연소실(122) 벽면에 직접 접촉되는 것을 차단 함으로써 연소실(122)의 열적 내구성 향상시킬 수 있다.
한편, 연소실(122)내에 분사된 스팀(H2O)은 2차연소화염(156)의 열기에 의해 수소(H2)와 산소(O) 및 OH라디칼로 분해될 수 있다.
이 때, 분해 생성된 수소는 연료로 사용될 수 있으며, 그에 따라 연료 투입량을 감소시킬 수 있으며, 온실가스인 이산화탄소를 생성하지 않을 수 있다.
또한, 분해 생성된 산소 및 OH라디칼은 산화제로 사용되어 연소를 촉진시킬 수 있으며 그에 따라 제2연료투입부(124)를 통해 공급되는 공기 투입량을 줄일 수 있다.
공기는 대락 80% 정도의 질소와 20%정도의 산소의 비율을 가지는데, 이 중 질소는 고온에서 산소와 결합하여 질소산화물(NOx)를 생성한다.
이러한 질소산화물은 오염물질인데, 본 발명에서는 투입된 스팀으로부터 발생된 산소 또는 OH라디칼이 산화제로 작용하므로 그만큼 공기의 투입을 줄일 수 있어 질소산화물의 생성이 보다 줄어들어 보다 친환경적일 수 있다.
도 4는 상기 스팀분사부(140)에서 분사되는 스팀의 유량에 따른 연소실 내 온도변화를 도시한 그래프이다.
본 그래프는 다른 조건은 모두 고정한 채, 상기 스팀분사부(140)에서 분사되는 스팀의 유량만을 변화시키면서, 연소실(122) 내 온도의 변화를 측정하였다.
일반적으로, 스팀은 냉각제의 역할을 수행하므로, 스팀을 주입하지 않았을 때 연소실 내 온도가 가장 높아야 하나, 도 4에 도시된 바와 같이, 스팀이 10kg/kr일 때 가장 높은 온도를 기록하는 것을 볼 수 있다.
따라서, 스팀을 주입하지 아니하였을 때 보다 적정 유량의 스팀을 주입하였을 때 연소 효율이 가장 증가하는 함을 알 수 있으며, 그보다 적거나 많을 경우 연소실(122) 내 온도가 떨어지는 것을 알 수 있다.
따라서, 최적의 연소효율을 발휘하기 위하여 적정량의 스팀의 주입이 효과적임을 알 수 있다. 이 때, 최적 효율의 발휘를 위한 스팀의 주입량은 연소실(122)의 크기나 연료투입량 및 버너(100)의 열량 등에 따라 다를 수 있다.
이 때, 상기 스팀이 연소실(122) 내에서 연소실(122) 벽면을 따라 회전되는 스월(Swirl)을 형성하도록 원주방향으로 경사지게 분사될 수 있다.
즉, 연소실(122)의 연소효율을 스팀의 주입량을 제어하여 조절할 수 있어 안정적인 운전이 가능할 수 있다. 또한, 스팀의 주입량을 제어함으로써 질소산화물이 급격히 증가하는 1500도 보다 낮은 온도로 버너를 운전할 수 있어 오염물질의 생성을 억제할 수 있어 보다 고효율을 발휘하면서도 보다 친환경적으로 운전할 수 있다.
이상과 같이 본 발명에 따른 바람직한 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화 될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로, 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.

Claims (6)

  1. 제1연료와 공기를 플라즈마를 이용하여 점화시키는 이그니션 챔버;
    상기 이그니션 챔버와 연통되며, 이그니션 챔버에서 발생된 1차연소화염에 공기와 제2연료를 투입하여 연소시켜 2차연소화염을 생성하는 메인연소챔버;
    를 포함하는 플라즈마 버너.
  2. 제1항에 있어서,
    상기 이그니션 챔버와 연통되며, 상기 이그니션 챔버로 공기가 유입되는 제1공기유입부;
    상기 제1공기유입부와 연통되며, 플라즈마를 발생시키는 플라즈마 발생부;
    상기 이그니션 챔버와 연통되며, 제1연료가 투입되는 제1연료투입부;
    를 더 포함하는 플라즈마 버너.
  3. 제1항에 있어서,
    상기 메인연소챔버와 연통되며, 상기 메인연소챔버로 제2연료 및 공기가 유입되는 제2연료투입부;
    를 더 포함하며,
    상기 메인연소챔버는,
    상기 이그니션 챔버에서 발생된 1차연소화염에 공기와 제2연료가 투입되어 형성되는 제2차연소화염이 형성되는 연소실을 형성하는 플라즈마 버너.
  4. 제3항에 있어서,
    상기 메인연소챔버의 내부에 스팀을 분사하는 스팀 분사부를 더 포함하는 플라즈마 버너.
  5. 제4항에 있어서,
    상기 스팀 분사부에서 분사되는 스팀은 상기 메인연소챔버의 내벽면을 향하여 분사되어 제2차연소화염이 메인연소챔버의 내벽면에 직접 접촉되는 것을 차단하는 플라즈마 버너.
  6. 제3항에 있어서,
    상기 메인연소챔버와 연통되며, 상기 메인연소챔버에서 연소된 제2차연소화염에 공기가 공급되어 형성되는 3차연소화염을 형성하는 추가연소챔버를 더 포함하는 플라즈마 버너.
PCT/KR2017/005224 2016-05-20 2017-05-19 플라즈마 버너 WO2017200337A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0062394 2016-05-20
KR20160062394 2016-05-20

Publications (1)

Publication Number Publication Date
WO2017200337A1 true WO2017200337A1 (ko) 2017-11-23

Family

ID=60326005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005224 WO2017200337A1 (ko) 2016-05-20 2017-05-19 플라즈마 버너

Country Status (1)

Country Link
WO (1) WO2017200337A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109899779A (zh) * 2019-01-14 2019-06-18 江苏河海新能源股份有限公司 一种等离子低氮燃烧装置与方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100806917B1 (ko) * 2007-06-29 2008-02-22 (주)씨맥스 플라즈마 반응장치
KR20110014766A (ko) * 2009-08-06 2011-02-14 주식회사 뉴프로테크 글라이딩 플라즈마를 이용한 가연성 폐가스 처리 장치
KR101063977B1 (ko) * 2009-11-24 2011-09-14 주식회사 한양인더스트리 재연소 연료 분사장치 및 이를 구비한 연소 시스템
KR20130026722A (ko) * 2011-09-06 2013-03-14 한국기초과학지원연구원 고효율 플라즈마 가스화기
KR20130143469A (ko) * 2012-06-21 2013-12-31 (주)플래닛 화염 분사 장치, 이를 이용한 소각 설비 및 이를 이용한 가스화 설비

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100806917B1 (ko) * 2007-06-29 2008-02-22 (주)씨맥스 플라즈마 반응장치
KR20110014766A (ko) * 2009-08-06 2011-02-14 주식회사 뉴프로테크 글라이딩 플라즈마를 이용한 가연성 폐가스 처리 장치
KR101063977B1 (ko) * 2009-11-24 2011-09-14 주식회사 한양인더스트리 재연소 연료 분사장치 및 이를 구비한 연소 시스템
KR20130026722A (ko) * 2011-09-06 2013-03-14 한국기초과학지원연구원 고효율 플라즈마 가스화기
KR20130143469A (ko) * 2012-06-21 2013-12-31 (주)플래닛 화염 분사 장치, 이를 이용한 소각 설비 및 이를 이용한 가스화 설비

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109899779A (zh) * 2019-01-14 2019-06-18 江苏河海新能源股份有限公司 一种等离子低氮燃烧装置与方法

Similar Documents

Publication Publication Date Title
YU23002A (sh) Gorionik za čvrsto gorivo i postupak sagorevanja u gorioniku za čvrsto gorivo
CA2510713A1 (en) Staged combustion system with ignition-assisted fuel lances
JP2018200144A (ja) 燃焼炉及びボイラ
WO2014061943A1 (ko) CO,NOx 개별 제어 방식을 이용한 저공해 연소방법
CN110107898B (zh) 一种焦炉煤气低氮燃烧器
WO2015137683A1 (ko) 연료 저감형 버너 장치
PL299345A1 (en) Fuel combusting method and apparatus therefor
WO2020140383A1 (zh) 一种两级燃烧式火排燃烧器
US4509915A (en) Liquid fuel combustion apparatus
WO2017200337A1 (ko) 플라즈마 버너
CA2036654C (en) Process and apparatus for reducing no_ emissions from combustion devices
CN217302790U (zh) 一种氨氢混合燃烧器
WO2014204198A1 (ko) 가연성 분말용 연소장치
WO2021006678A1 (ko) 열증폭 열발생장치
JP2008039365A (ja) 焼却炉
KR102504638B1 (ko) 바이오매스 버너
JP3680659B2 (ja) 燃焼装置および燃焼方法
CN220269371U (zh) 一种加热炉燃烧器
WO2021006431A1 (ko) 가압 순산소 연소 보일러
KR20030035777A (ko) 폐타이어 건류 소각 장치
JPS5926201B2 (ja) 二流体気化混焼バ−ナ−
KR100901267B1 (ko) 산소 부화식 합성가스 연소장치
CN109477636B (zh) 废气处理方法、废气处理装置及碳纤维制造系统
KR20040099512A (ko) 혼합가스의 연소시스템
WO2010123226A2 (ko) 연소기

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799694

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799694

Country of ref document: EP

Kind code of ref document: A1