WO2017200329A1 - Washing machine driving device, washing machine having same, and washing machine driving method - Google Patents

Washing machine driving device, washing machine having same, and washing machine driving method Download PDF

Info

Publication number
WO2017200329A1
WO2017200329A1 PCT/KR2017/005197 KR2017005197W WO2017200329A1 WO 2017200329 A1 WO2017200329 A1 WO 2017200329A1 KR 2017005197 W KR2017005197 W KR 2017005197W WO 2017200329 A1 WO2017200329 A1 WO 2017200329A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulsator
washing
driving
rotor
stator
Prior art date
Application number
PCT/KR2017/005197
Other languages
French (fr)
Korean (ko)
Inventor
김병수
Original Assignee
주식회사 아모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모텍 filed Critical 주식회사 아모텍
Priority to CN201780025443.8A priority Critical patent/CN109072530B/en
Publication of WO2017200329A1 publication Critical patent/WO2017200329A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/44Control of the operating time, e.g. reduction of overall operating time
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/46Control of the energy or water consumption
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/02Rotary receptacles, e.g. drums
    • D06F37/12Rotary receptacles, e.g. drums adapted for rotation or oscillation about a vertical axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/20Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
    • D06F37/24Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations in machines with a receptacle rotating or oscillating about a vertical axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/304Arrangements or adaptations of electric motors
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/40Driving arrangements  for driving the receptacle and an agitator or impeller, e.g. alternatively
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/24Spin speed; Drum movements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/38Time, e.g. duration
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/46Drum speed; Actuation of motors, e.g. starting or interrupting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a washing machine, and in particular, to form a strong three-dimensional three-dimensional washing water flow with high cleaning, which can minimize energy consumption when forming washing water flows in opposite directions by the reverse driving of the pulsator and the washing tank. It relates to a washing machine drive device and a washing machine and a washing machine driving method having the same.
  • the washing motor has a low speed high torque motor characteristic, and the dehydration motor has a high speed low torque motor characteristic than the washing motor.
  • the motor is of an outer rotor type and configured to have a larger diameter than the dewatering motor, and the dewatering motor is configured of an inner rotor type so that the washing motor is on the outside and the dehydrating motor is on the inside.
  • the washing machine of the patent document 1 has a washing motor having an outer rotor type and having a larger diameter than the dewatering motor, but there is a problem in that a driving torque is insufficient to process a large amount of laundry in a large washing machine of 8 kg or more.
  • the washing machine of the said patent document 1 proposes the structure which drives a stirring body by the outer rotor type washing motor which has a larger diameter than the dehydration motor, is arranged outside, and has a low speed high-torque motor characteristic, There is a problem in that it is difficult to implement a strong washing water flow by driving the rotating tub which is required torque in the opposite direction to the stirring body.
  • Patent Document 1 discloses a structure capable of independently driving the stirring body and the rotating tank by using two driving motors, but it is proposed to make various types of washing water streams using high torque in a large-capacity washing machine. It is not.
  • the dehydration motor is set to the energization mode of the rotational direction opposite to the washing motor during the washing process, or only by driving the stirring body by the washing motor in a state in which the rotating tank is prevented from idling by the electric brake. Since the washing water flow is formed, it is impossible to generate a stronger water flow (laundry force) capable of washing a large load of laundry in a large-capacity washing machine.
  • the washing machine of the patent document 1 is an inner rotor having a small diameter and a small driving torque when the pulsator (stirrer) and the washing tank (rotary bath) are rotated in opposite directions to form a strong flow of water to increase the degree of cleaning.
  • Patent Document 2 combines a double rotor-double stator type twin-power drive motor and a planetary gear device, and a dehydration tank and a pulsator A technique for forming a variety of laundry streams by simultaneously driving independently is proposed.
  • the Patent Document 2 proposes a washing method for forming washing water flows in opposite directions by a twin force by rotating the pulsator and the washing tank in the same direction or in the opposite direction during the washing stroke, but reducing the current consumption and the washing machine. There is no suggestion for the formation of water streams with increased efficiency.
  • Patent Document 2 simultaneously driving the washing tanks in different directions and at the same speed as the pulsator when forming washing water flows in opposite directions due to the bi-directional force in the washing stroke, the large current is consumed when driving the washing tank. May cause a problem.
  • the operation method of the conventional fully automatic washing machine using the single-force power generates a vertical rising / falling water flow by changing the direction while repeating the pulsator forward, stop, reverse rotation, stop, so that water and detergent contact the laundry well. This is done.
  • A.C. as the drive motor. Induction motor is used, and the driving time and the stopping time are repeatedly driven and operated at short time intervals within the range of 0.5 seconds to 2 seconds at the preset RPM according to the application of the drive signal, or the stopping time for the short time during the running time.
  • the intermittent driving method to give a seal is used. In this case, the driving rate is 50%.
  • Induction motor is characterized by low noise and low vibration, but it has low torque characteristics at low speed and has a slow dynamic response. Therefore, it is difficult to form strong washing water flow while changing the direction of rotation in the forward and reverse direction quickly during the washing stroke. have.
  • the BLDC motor has a fast dynamic response, low rotor inertia, and is easy to control the speed of the synchronous motor.
  • a driving method for utilizing the characteristics of the BLDC motor as a driving device for a washing machine has not been proposed.
  • the present invention has been made to solve the above problems, the object of which is to use the double rotor-double stator type twin-power drive motor, to form a strong three-dimensional three-dimensional washing water flow with high cleaning
  • the present invention provides a washing machine driving device and a washing machine using the same, which can minimize energy consumption when forming washing water flows in opposite directions by reverse driving of the pulsator and the washing tank.
  • Still another object of the present invention is to set the operating time longer than the stop time so as to make good use of the characteristics of the BLDC motor to increase the operation rate while reducing the overall washing time to reduce the overall power consumption washing machine and washing machine driving method To provide.
  • Another object of the present invention is to increase the drive torque of the inner rotor by increasing the drive torque of the inner rotor by adopting a rare earth magnet having a high magnetic flux density of the magnet of the inner rotor having a small diameter and a small driving torque when forming the washing water flow in the opposite direction
  • the present invention provides a washing machine driving device and a washing machine using the same, which do not follow even when the initial start of the washing tank filled with water.
  • Another object of the present invention is to equalize the driving torque of a small diameter inner rotor using a high-magnet magnetic magnet of a rare earth system and a large diameter outer rotor having a large driving torque to increase driving torque in washing and rinsing stroke.
  • An object of the present invention is to provide a washing machine driving device capable of simultaneously driving an pulsator and a washing tank to form various washing streams and rinsing patterns, and a washing machine using the same.
  • the present invention has a double rotor-double stator type drive motor having an inner rotor and an outer rotor that can be independently controlled by a double stator, and selectively generating an inner rotor output and an outer rotor output. ;
  • An inner shaft which transmits the outer rotor output or the inner rotor output to a pulsator;
  • An outer shaft rotatably coupled to an outer circumference of the inner shaft and transmitting the inner rotor output or the outer rotor output to a washing tub;
  • a control unit for independently applying first and second driving signals to the double stator to control the inner rotor and the outer rotor, wherein the pulsator is clockwise and counterclockwise during the washing stroke. It has a stop time when switching the rotation direction, the washing tank is started before the driving time of the clockwise and counterclockwise direction of the pulsator is characterized in that the drive is controlled in the opposite direction to the rotation direction of the pulsator do.
  • the driving of the washing tank may be extended by the stop time of the pulsator.
  • the washing tank may be driven in a direction opposite to the rotation direction of the pulsator at the same time as the clockwise and counterclockwise starting of the pulsator, and may be shorter than the driving time of the pulsator.
  • the driving time and the stopping time of the pulsator may be set in the range of 1.5: 1 to 10: 1.
  • An overshooting drive may be performed at the start and stop operations of the pulsator, and a ramp-up drive may be performed at the start of the pulsator.
  • the pulsator may be driven at a variable speed.
  • the stop time may increase.
  • the pulsator may be stopped by electromagnetic brake using a driver for driving the outer rotor.
  • the driving torque of the inner rotor may be set to be equal to the driving torque of the outer rotor.
  • the inner rotor may use a rare earth magnet
  • the outer rotor may use a ferrite magnet.
  • the outer rotor includes a plurality of second magnets having a predetermined gap on the outer surface of the stator, and the N pole and the S pole are alternately disposed; A second back yoke disposed on a rear surface of the second magnet; And it may include an outer rotor support for supporting the second magnet and the second back yoke.
  • the outer rotor support has an outer flat portion having a cross section facing the inner and outer stator coils of the stator in the cup-shaped bottom surface, an inner flat portion which is engaged with the inner shaft, and the outer flat portion and the inner flat surface.
  • an inclined connecting portion for connecting the portions, and the outer flat portion may include first and second through holes for discharging heat generated from the inner and outer stator coils to the outside at portions facing the inner and outer stator coils, respectively.
  • the outer rotor support may include a plurality of radial reinforcing ribs protruding radially at predetermined angles on the outer and inner circumferential surfaces thereof, respectively; And first to third circumferential reinforcing ribs formed at intervals in the circumferential direction on the inner circumferential surface thereof.
  • the control unit rotates the pulsator in a first direction for a first period, drives the washing tub to rotate in a direction opposite to the first direction for a second period before the first period ends, and the first period. Stop the pulsator according to the elapse of, and stop the washing tank according to the elapse of the second period after the elapse of the first period.
  • the present invention provides an outer tub for receiving wash water; A washing tank rotatably disposed in the outer tub to perform washing and dehydration; A pulsator rotatably disposed in the washing tank to form a washing stream; And the washing machine driving device for simultaneously or selectively driving the washing tank and the pulsator.
  • a device comprising: a first step of rotationally driving a pulsator in a first direction during a first period; A second step of rotating the washing tub in a direction opposite to the first direction for a second period before the first period ends; Stopping the pulsator in accordance with the passage of the first period; A fourth step of stopping the washing tub according to the passage of the second period after the passage of the first period; And a fifth step of sequentially setting rotation directions of the pulsator and the washing tank in the first to fourth steps, respectively, when the stoppage time of the pulsator elapses after the elapse of the second period. It provides a washing machine driving method characterized in that.
  • a strong vortex with high cleaning power can be formed by improving the starting method and the stopping method of the twin-power drive motor when the pulsator and the washing tank are driven in the reverse direction using the twin-force.
  • the operation rate is increased by setting an appropriate ratio of the operating time and the stopping time of the inner rotor and the outer rotor during the two-way water washing washing stroke in which the pulsator and the washing tank are rotated in the opposite directions by using the twin power.
  • a large diameter outer rotor is used to drive a washing tank requiring high torque
  • a small diameter inner rotor with a small drive torque is similar to an outer rotor by using a rare earth type high magnetic magnet.
  • the pulsator can be driven by increasing.
  • the present invention implements equally the drive torque of a small diameter inner rotor using a high-magnet magnetic magnet of a rare earth system and a large diameter outer rotor having a large driving torque in order to increase the driving torque, so that the washing stroke and the rinse stroke
  • the pulsator and the wash tub can be driven simultaneously to form various water streams and rinsing patterns, such as countercurrent wash streams.
  • the laundry torque of the inner rotor is increased to increase the amount of laundry and water. There is no strain on the initial start-up of a filled washing tank.
  • the outer rotor having a large driving torque is connected to a washing tank requiring high torque
  • the inner rotor having a small driving torque is connected to a pulsator capable of driving at low torque while employing a rare earth magnet.
  • the drive torque can be increased to form various water streams and rinsing patterns, such as mutually opposite washing water streams.
  • the structure is simplified by removing the planetary gear device for torque shift, it is possible to increase assembly productivity and reduce manufacturing cost, and to eliminate noise generated during torque shift.
  • the present invention can be applied to large-capacity washing machines by equally implementing the drive torques of the inner rotor and the outer rotor.
  • FIG. 1 is an axial cross-sectional view of a washing machine having a washing machine driving device according to a first embodiment of the present invention.
  • FIG. 2 is an axial partial cutaway sectional view of the washing machine drive shown in FIG. 1.
  • FIG. 2 is an axial partial cutaway sectional view of the washing machine drive shown in FIG. 1.
  • 3A to 3D are a rear view, an inner side view, a right side view, and a cross-sectional view along the line A-A of FIG. 3A, respectively, of the outer rotor shown in FIG.
  • Figure 4a is a sectional view in the radial direction of the drive motor according to the present invention.
  • FIG. 4B is a schematic cross-sectional view of the stator core assembly used for stator assembly.
  • 4C is a plan view of the split core constituting the stator core.
  • 5 is a graph showing a comparison between torque and efficiency when a ferrite magnet and an Nd magnet are used in the inner rotor.
  • FIG. 6 is a block circuit diagram of a washing machine control apparatus according to the present invention.
  • FIG. 7 is a flow chart showing the overall washing machine driving method according to the present invention.
  • 8A and 8B are flowcharts illustrating a method of forming mutually opposite washing water streams according to the present invention.
  • 9 to 12 are RPM timing diagrams of a pulsator and a washing tank for implementing mutually opposite washing water flow forming methods according to the present invention, respectively.
  • FIG 13 is an axial sectional view of the washing machine driving apparatus according to the second embodiment of the present invention.
  • the washing machine includes a case 100 forming an external appearance, an outer tub 110 disposed inside the case 100 to accommodate washing water, and A washing tank 120 rotatably disposed in the outer tub 110 to perform washing and dehydration, a pulsator 130 rotatably disposed at the bottom of the washing tub 120 to form a stream of laundry; Washing machine driving device installed at the lower portion of the washing tank 120 and the outer tank 110 to provide the driving force necessary for washing, rinsing, loosening and dewatering stroke to the washing tank 120 and the pulsator 130 simultaneously or selectively. And 150.
  • the washing machine driving device 150 is mounted to the lower portion of the outer tub 110 and the drive motor 140 of the double rotor-double stator method for generating a twin force from the inner rotor 40 and the outer rotor 50, and the drive
  • the outer shaft 20 and the inner shaft 30 which receive the bi-directional force provided by the inner rotor 40 and the outer rotor 50 of the motor 150 and transmit them to the pulsator 130 and the washing tank 120.
  • the driving motor 140 includes an inner rotor 40 connected to the outer shaft 20, an outer rotor 50 connected to the inner shaft 30, and an inner rotor 40. It includes a stator 60 disposed with a gap between the outer rotor 50 to drive the inner rotor 40 and the outer rotor 50 to rotate.
  • the stator 60 has a double stator structure for independently driving the inner rotor 40 and the outer rotor 50, respectively.
  • the stator 60 may perform the outer stator as shown in FIG. 4A to selectively / independently drive the inner rotor 40 and the outer rotor 50 using the first and second drivers 530 and 540 shown in FIG. 6.
  • 60b and the inner stator 60a are provided.
  • the outer stator and the inner stator are illustrated as being integrally formed. However, the outer stator and the inner stator may have a separate structure.
  • the outer shaft 20 is rotatably coupled to the outer circumference of the inner shaft 30, one end of which is connected to the center of the inner rotor 40, and one end of which is the other end of the first shaft 22.
  • the second shaft 24 is coupled to the other end is coupled to the washing tank 120.
  • the first shaft 22 and the second shaft 24 may be integrally formed.
  • a cylindrical first sleeve bearing 80 is installed between the outer circumferential surface of the inner shaft 30 and the inner circumferential surface of the first shaft 22, and the second sleeve bearing 82 is provided on the upper inner surface of the second shaft 24. It is installed to rotatably support the inner shaft (30).
  • the outer surface of the first shaft 22 is formed with a first connecting portion 90 through which the inner rotor support 46 of the inner rotor 40 is connected through the bushing 48, and the outer rotor at the lower end of the inner shaft 30.
  • a second connecting portion 92 is formed to which the outer rotor support 56 of 50 is connected via the bushing 58.
  • the first connecting portion 90 and the second connecting portion 92 may have a structure that is serration-coupled or spline-coupled by protrusions formed on the outer surfaces of the outer shaft 20 and the inner shaft 30, and has a key groove. It can have a structure that is formed and keyed together.
  • first fixing nut 34 is screwed to the lower end of the outer shaft 20 to prevent the inner rotor support 46 from being separated from the outer shaft 20, and the outer end of the outer shaft 30 is screwed.
  • the second fixing nut 36 is screwed to prevent the outer rotor support 56 of the rotor 50 from being separated.
  • a third connecting portion 94 is formed on the upper outer surface of the second shaft 22 to connect the washing tub 120, and a fourth connecting portion 96 is connected to the pulsator 130 on the upper outer surface of the inner shaft 30. Is formed.
  • the third connecting portion 94 and the fourth connecting portion 96 may have a structure that is serration-coupled or spline-coupled by protrusions formed on the outer surfaces of the second shaft 22 and the inner shaft 30, and the key groove. It may have a structure that forms a key combination with each other.
  • a first seal 220 is installed between the second shaft 22 and the inner shaft 30 to prevent the wash water from leaking, and the wash water is leaked between the second shaft 22 and the second bearing housing 10.
  • the second seal 221 is mounted to prevent the second seal 221.
  • the first bearing 26 is disposed on the outer surface of the first shaft 22, and the second bearing 28 is disposed on the outer surface of the second shaft 24, so that the first and second shafts 22 and 24 are disposed. Support rotatably.
  • the first bearing 26 is installed in the first bearing housing 102, and the second bearing 28 is installed in the second bearing housing 10.
  • the first bearing housing 102 extends inwardly from the stator support 270, and a first bearing seating portion 104 in which the first bearing is seated is formed on an inner surface thereof.
  • the second bearing housing 10 is formed of a metal material, and extends outwardly from the second bearing seat 12 and the second bearing seat 12 on which the second bearing 28 is seated.
  • the flat plate portion 18 is fixed to the stator support 270 and the outer tub 110 by bolts 260.
  • the second bearing housing 10 has a central portion protruded through the opening of the outer tub 110, and the flat plate 18 of the outer tub 110 is disposed.
  • the stator support 270 is laminated on the second bearing housing 10 and then fastened to the outer tub 110 by one bolt 260.
  • the washing tank 120 and the pulsator 130 are rotated at the same time or selectively and in the same direction or the opposite direction by a drive motor 140 having a twin-torque double stator structure. It is possible to form laundry streams in a variety of ways.
  • a driving motor 140 having a twin-force structure composed of a double rotor-double stator will be described in detail with reference to FIGS. 2 to 4C.
  • the drive motor 140 includes an outer rotor 50, an inner rotor 40, and a stator 60, and the stator 60 selectively / independently includes the outer rotor 50 and the inner rotor 40.
  • An outer stator 60b and an inner stator 60a are provided to drive.
  • the stator may be configured as an integral structure or a separate structure of the outer stator and the inner stator as shown in Figure 4a.
  • the inner rotor 40 is disposed with a predetermined gap on the inner surface of the stator 60, and a plurality of first magnets 42 having an N pole and an S pole alternately arranged.
  • the first back yoke 44 disposed on the rear surface of the first magnet 42 and the inner rotor support 46 formed integrally with the first magnet 42 and the first back yoke 44 by insert molding. It includes.
  • the inner rotor support 46 is molded with a thermosetting resin, for example, a BMC (Bulk Molding Compound) molding material such as polyester or a thermoplastic resin, so that the first magnet 42 and the first back yoke 44 at one end thereof. It is formed integrally with a BMC (Bulk Molding Compound) molding material such as polyester or a thermoplastic resin, so that the first magnet 42 and the first back yoke 44 at one end thereof. It is formed integrally with
  • the inner rotor support 46 has an inner end connected to the first connecting portion 90 of the first shaft 22 through the first bushing 48, and the outer end is bent at a right angle so that the outer surface thereof has a first magnet 42. ) And the first back yoke 44 are fixed to form a cup.
  • the inner rotor 40 has a smaller diameter and has a smaller driving torque than the outer rotor 50. Therefore, as will be described later, when the pulsator and the washing tank are strongly rotated in opposite directions to form a three-dimensional three-dimensional washing water flow having high cleaning degree, the inner rotor 40 driving the washing tank 120 has a high magnetic flux density.
  • Rare earth magnets such as neodymium (Nd) magnets are adopted to increase driving torque.
  • the initial starting current may be excessively consumed due to excessive force during initial startup.
  • this problem does not occur by increasing the driving torque of the inner rotor. .
  • outer rotor 50 is disposed on the outer surface of the stator 60 with a plurality of second magnets 52 and N and S poles alternately arranged on the rear surface of the second magnet 52.
  • the second back yoke 54 is disposed, and the outer rotor support 56 formed integrally with the second magnet 52 and the second back yoke 54 by insert molding.
  • the outer rotor support 56 is molded with a thermosetting resin, for example, a BMC (Bulk Molding Compound) molding material such as polyester or a thermoplastic resin to be integral with the second magnet 52 and the second back yoke 54. Is formed.
  • a thermosetting resin for example, a BMC (Bulk Molding Compound) molding material such as polyester or a thermoplastic resin to be integral with the second magnet 52 and the second back yoke 54. Is formed.
  • the outer rotor support 56 has an inner end connected to the second connecting portion 92 of the inner shaft 30 to rotate like the inner shaft 30, and the outer end is bent at a right angle so that the second magnet 52 is disposed on the inner surface thereof. ) And the second back yoke 54 are fixed to form a cup shape to accommodate the stator 60 and the inner rotor 40.
  • the pulsator 130 may be rotated sufficiently by the outer rotor 50 having a large driving torque, because the required rotation torque is not large compared with the washing tank 120 and the diameter is large. Therefore, the second magnet 52 of the outer rotor 50 may use hard ferrite, which is inexpensive and hard magnetic material.
  • the outer rotor 50 considers the thickness of the first fixing nut 34 screwed to fix the inner rotor support 46 to the first shaft 22, as shown in Figs. 3a to 3d.
  • the outer rotor support 56 is spaced apart from the inner rotor support 46 at a greater distance than the first fixing nut 34.
  • the outer rotor support 56 has an outer flat portion 56a facing the inner and outer stator coils 66 and 68 in the cup-shaped bottom surface, and an inner flat portion which is engaged with the inner shaft 30 ( And an inclined connecting portion 56c connecting the outer flat portion 56a and the inner flat portion 56b.
  • a plurality of radial reinforcing ribs 51, 51a are projected radially at regular angles on the outer circumferential surface and the inner circumferential surface, respectively, to maintain the strength while the inner circumferential surface further includes first to third circumferential reinforcing ribs 53a-53c. Are formed at intervals in the circumferential direction.
  • the inner stator coil 66 constituting the stator 60 in the outer rotor support 56 and the outer flat portion 56a facing the outer stator coil 68 respectively have first and second through holes 55 communicating with the outside. 57 is formed.
  • the first and second through holes 55 and 57 serve as air circulation passages for discharging heat generated from the inner and outer stator coils 66 and 68 to the outside.
  • stator of this invention is demonstrated below.
  • the stator 60 includes a plurality of stator core assemblies 61 arranged in an annular shape, a plurality of stator core assemblies 61 arranged in an annular shape, and an outer circumferential portion thereof is fixed to the outer tub 110.
  • a stator support 270 (see FIG. 2) having a through hole formed therein.
  • the plurality of stator core assemblies 61 are formed of an insulating material on the outer side of the divided stator core 62 and the divided stator core 62 which are arranged in an annular shape and coupled to each other as shown in FIGS. 4A and 4B, respectively.
  • a bobbin 64 defining a coil winding area on the inner side and the outer side, an inner stator coil 66 wound around one side (inside) bobbin of the stator core 62, and the other side (outside) bobbin of the stator core 62. It includes an outer stator coil 68 wound on.
  • the stator support 270 is formed integrally with the plurality of stator core assemblies 61 by insert molding after arranging the plurality of stator core assemblies 61 in the circumferential direction in a mold.
  • the stator core assembly 61 is disposed in the middle of the stator support 270, and the inside of the stator support 270 is bent in two stages to extend to form the first bearing housing 102, and the first bearing seating portion at the inner end thereof. 104 is disposed.
  • the first bearing 26 As the first bearing 26 is installed on the first bearing seating part 104, the first bearing 26 may rotatably support the outer shaft 20, and improve the assemblability of the driving motor 140.
  • a separate bearing housing for mounting the bearing 26 is unnecessary, so that the number of parts can be reduced and the structure can be simplified.
  • the outer circumferential portion of the stator support 270 is bent in one stage and extended, and the tip portion is fixed to the outer tub 110 by the bolt 260 together with the second bearing housing 10.
  • stator support 270 is integrally formed with the stator core assembly 61 by insert molding
  • stator support 270 and the bolt are manufactured separately from the stator core assembly 61 by using a resin or metal material.
  • the fastening structure can also be applied.
  • the stator 60 according to the present invention is configured by assembling a plurality of stator core assemblies 61 configured using a plurality of split stator cores as shown in FIG. 4B in an annular shape, as shown in FIG. 4A. Can be.
  • stator cores to which the inner and outer stator coils 66 and 68 are wound are configured as a plurality of split stator cores 62 that are arranged in an annular shape and interconnected.
  • the present invention is not limited to this, and it is also possible that the stator core is composed of an integral or partially split core.
  • the split stator core 62 has the advantage that the coil winding can be easily manufactured at low cost using a low cost general purpose winding machine as compared to the integral stator core, and it is possible to reduce the loss of the core material.
  • a split stator core one for each tooth, or to assemble several teeth, for example, three teeth as one split stator core.
  • three teeth are divided into one split stator core when the coil is wound continuously in three teeth for one phase of U, V, and W. It is also preferable to produce with.
  • the split stator core 62 is disposed on the outer side as shown in FIGS. 4A to 4C and on the opposite side and the inner side of the first tooth portion 312 and the first tooth portion 312 on which the outer stator coil 66 is wound.
  • a second tooth portion 310 formed to wind the inner stator coil 68, a partition portion 314 that partitions between the first tooth portion 312 and the second tooth portion 310, and a partition portion 314.
  • And coupling portions 320 and 322 formed at both ends of the lateral sides thereof to interconnect the split stator cores 62.
  • the outer stator coil 68 wound around the first teeth 312 of the stator core 62 to drive the outer rotor 50 and the inner rotor 40 is the outer stator 60b.
  • the inner stator coil 66 wound around the second tooth portion 310 of the stator core 62 forms the inner stator 60a to form a double stator.
  • the core is separated for each slot to be configured as a plurality of split stator cores 62.
  • the stator for the outer stator is separated based on the annular back yoke. It is also possible to separate the core and the stator core for the inner stator, and then to assemble them.
  • the driving signal is transmitted from the first and second drivers 530 and 540 to the inner stator coil 66 constituting the inner stator 60a and the outer stator coil 68 constituting the outer stator 60b.
  • the outer rotor 50 and the inner rotor 40 are respectively driven.
  • the inner rotor 50 is provided only when the driving signal is applied to the inner stator coil 66.
  • the outer stator 40 is rotated, when the drive signal is applied to the inner and outer stator coils (66, 68) at the same time the inner rotor 40 and the outer The rotor 50 is rotated at the same time.
  • a through hole 332 is formed in the center of the partition 314 and may be used for bolting for integration with the stator support 270.
  • a first flange portion 318 disposed to face the first magnet 52 is formed at an end portion of the first tooth portion 312, and a second magnet 42 is formed at the end portion of the second tooth portion 310.
  • a second flange portion 316 is disposed to face each other.
  • the first flange 318 and the second flange portion 316 are inwardly and at a predetermined curvature so as to correspond to the first magnet 52 of the outer rotor 50 and the second magnet 42 of the inner rotor 40, respectively. It forms an outwardly curved surface. Therefore, since the roundness of the inner circumferential surface and the outer circumferential surface of the stator core 62 is increased, the gap between the inner circumferential surface and the outer circumferential surface of the stator 60 and the first magnet 52 and the second magnet 42 is close to a constant magnetic gap. Can be maintained.
  • the coupling parts 320 and 322 have a structure in which adjacent stator cores 62 are directly connected to each other.
  • the coupling parts 320 and 322 are formed such that the coupling protrusion 322 protrudes on one side of the partition 314, and the coupling groove 320 into which the coupling protrusion 322 is fitted to the other side of the partition 314. ) Is formed, and when the coupling protrusion 322 is inserted into the coupling groove 320 to assemble, a plurality of split stator cores 62 are arranged in an annular shape and have a structure directly connected to each other.
  • the driving motor 140 of the present invention forms a first magnetic circuit (L1) between one side (that is, the inner stator) of the stator 60 to which the inner rotor 40 and the inner stator coil 66 are wound, Since the second magnetic circuit L2 is formed between the outer rotor 50 and the other side of the stator 60 on which the outer stator coil 68 is wound (that is, the outer stator), each of the outer rotor 50 forms an independent magnetic circuit. 40 and the outer rotor 50 may be driven separately, respectively.
  • the first magnetic circuit L1 includes a first tooth portion 310 on which the first magnet 42 of the N pole, the inner stator coil 66 is wound, an inner portion of the partition 314, and an N pole of the first magnetic circuit L1. Via the first magnet 42 and the first back yoke 44 of the S pole adjacent to the first magnet 42.
  • the second magnetic circuit L2 is divided into a second tooth portion 312 facing the second magnet 52 of the N pole and the second magnet 52 of the N pole and having the outer stator coil 68 wound thereon. Via the outer portion of the portion 314, the second magnet 52 and the second back yoke 54 of the S pole.
  • the first and second magnetic circuits L1 and L2 may have the U, V, and W phases of the inner and outer stator coils 66 and 68 wound around the first and second tooth portions 310 and 312 for each tooth.
  • One-winding coil method for winding with different phases, U, V, W phase winding every two teeth, U, V, W phase for every three teeth Alternatively, the winding may be changed depending on the three-winding coil method and driving method.
  • the drive motor 140 has a structure in which the output of the inner rotor 40 is transmitted to the outer shaft 20, and the output of the outer rotor 50 is transmitted to the inner shaft 30.
  • a larger high torque drive is required to drive the washing tub 120 having a larger contact area with the laundry and the washing water than the pulsator 130 having a small contact area with the laundry and the washing water.
  • a larger diameter outer rotor 50 has a higher torque output than a smaller diameter inner rotor 40.
  • the washing machine driving device 150 using the driving motor 140 according to the present invention shown in FIG. 2 includes an inner shaft 30 that outputs a high torque output generated from a large diameter outer rotor 50. It transmits to the pulsator 130 to drive the pulsator 130, the inner rotor (40) of the small diameter (Inner Rotor) 40, the drive torque of the inner rotor by adopting a rare earth magnet having a high magnetic flux density By increasing and driving the washing tub 120 through the outer shaft 20, it is possible to drive a washing tub which requires a large driving torque at first.
  • a ferrite magnet is used for the outer rotor 50 and the inner rotor 40 of the small diameter, as shown in Table 1, for the driving motor 140 shown in FIG. 2.
  • the motor characteristic values were obtained when the rotor rotation speed was 200 rpm.
  • the inner rotor using the Nd magnet when the rotation speed of the rotor is 120rpm to calculate the value for the torque and efficiency is shown in the graph in FIG.
  • the number of slots of the inner stator 60a and the outer stator 60b is 27, and the number of poles of the inner rotor 40 and the outer rotor 50 are the same.
  • 24, core stacking 27mm, the inner side and the outer side is set to be the same, the coil wound on the stator core is wound around the inner stator (60a) wire of 0.65mm diameter 130 times and the outer stator (60b) 180 times It was.
  • the inner rotor 40 using the Nd magnet has a larger torque than the inner rotor using the ferrite magnet.
  • the torque constant Kt and the motor constant Km are both proportional to the back EMF (back EMF), and it can be seen that the inner rotor 40 using the Nd magnet exhibits superior motor characteristics than the inner rotor using the ferrite magnet.
  • the inner rotor 40 using the Nd magnet exhibits almost the same efficiency as the outer rotor 50 using the ferrite magnet when the torque value is the same, while the inner rotor using the ferrite magnet is shown. 40 shows that the efficiency is significantly low.
  • the Nd magnet is used for the inner rotor 40
  • the outer rotor 50 using the ferrite magnet has the same torque and efficiency, and therefore, the washing tank (not only the pulsator 130) during the washing and rinsing stroke. 120 can also form a variety of washing and rinsing water streams utilized simultaneously.
  • the stator 60 prepares the plurality of stator core assemblies 61 by using the plurality of split stator cores 62, and then the plurality of stator core assemblies 61.
  • the number of slots of the outer stator and the inner stator by the combination with the stator supporter 270 is illustrated to be manufactured in the same configuration, the present invention is not limited thereto and various modifications are possible.
  • FIG. 6 is a block circuit diagram of a washing machine control apparatus according to the present invention
  • Figure 7 is a flow chart briefly showing the overall washing machine control method according to the present invention.
  • a washing machine control apparatus includes a first driver 530 for generating a first driving signal applied to an inner stator coil 66 wound around an inner stator core 310, and an outer stator core.
  • the second driver 540 for generating a second drive signal applied to the outer stator coil 68 wound on the 312, and the first driver 530, the second driver 540 and the entire washing machine to control And a control unit 500.
  • the control unit 500 acts as a system controller to control the entire washing machine simultaneously with the control of the first and second drivers 530 and 540 as described above, or according to the washing course set by the user from the system controller of the washing machine body. After receiving the determined washing control signal may be configured as a driver-specific control device for applying a separate control signal to the first and second drivers (530, 540) based on this.
  • the control unit 500 may be configured as a signal processing device such as a microcomputer or a microprocessor.
  • the control unit 500 may include a PWM controller or a separate PWM controller to generate a pulse width modulation (PWM) control signal.
  • PWM pulse width modulation
  • the drive motor 140 of the present invention is composed of a BLDC motor of a twin-force structure composed of a double rotor-double stator, for example, the motor control is performed in U, V, W three-phase driving method. Therefore, the inner and outer stator coils 66 and 68 of the stator 60 also consist of U, V, and W three-phase coils, respectively.
  • the stator 60 of the present invention includes an inner stator 60a including an inner stator coil 66 and an outer stator coil 68 to drive the inner rotor 40 and the outer rotor 50, respectively.
  • a double stator including 60b is formed.
  • the inner stator 60a and the inner rotor 40 which are rotated by the inner stator 60a form an inner motor
  • the outer stator 60b and the outer stator 60b are rotated by the outer stator 60b.
  • the rotor 50 forms an outer motor
  • the motor structure is designed such that the inner motor and the outer motor are controlled in a BLDC manner, respectively, and in the first and second drivers 530 and 540, for example, in a six-step manner. Drive control is made.
  • the first and second drivers 530 and 540 may each include an inverter including three pairs of switching transistors connected in a totem pole structure, and the U, V, and W three-phase outputs of each inverter may include an inner and an outer stator coil ( 66, 68) is applied to the U, V, W three-phase coil.
  • the control unit 500 is based on the rotational position of the inner rotor 40 and the outer rotor 50 detected from the first and second rotor position sensors 510 and 520, respectively, which are made of, for example, a Hall sensor.
  • PWM control signals are applied to the first and second drivers 530 and 540, and the first and second drivers 530 and 540 receive the control signals and output the U, V, and W three-phase outputs to the inner and outer coils 66, respectively.
  • the inner rotor 40 and the outer rotor 50 are rotationally driven by being applied to the U, V, and W three-phase coils of 68).
  • the control unit 500 has a program for executing various washing courses in the memory device, and all washing courses basically include washing strokes, rinsing strokes, and dehydrating strokes. Is included before and after, depending on the washing course is performed repeatedly at least one of the washing stroke, rinsing stroke, dehydration stroke.
  • the washing machine according to the present invention first turns on the washing machine in step S200.
  • control unit 500 determines whether to perform the current washing or rinsing stroke through the washing control signal input according to the user's selection (S202).
  • the control unit 500 detects the weight (load amount) of the laundry (not shown), sets the water level step according to the detected laundry weight (load amount), and supplies water. To start.
  • the washing administration step is set according to the washing course set by the user.
  • the set washing administration starts.
  • the inverters of the first driver 530 and the second driver 540 are driven in accordance with the set washing or rinsing stroke (S204).
  • the first driver 530 and the second driver 540 selectively and independently generate three-phase AC power
  • the generated three-phase AC power is the inner stator coil 66 and the outer stator of the stator 60
  • the washing is driven by any one of a variety of washing courses.
  • the washing or rinsing stroke is repeatedly performed a plurality of times according to various washing courses, and the washing stroke may be performed by combining various washing water streams.
  • control unit 500 determines whether to perform the current dehydration stroke in the state where all the rotors are stopped, or if it is not the washing stroke or the rinsing stroke in step S202, It is determined whether or not (S208).
  • the control unit 500 drives only the inner rotor 40 or rotates the inner rotor 40 and the outer rotor 50 in the same direction / same RPM.
  • the same driver signal is applied to the inner stator coil 66 and the outer stator coil 68 by controlling the first driver 530 and the second driver 540. Accordingly, the rotational force generated by the inner rotor 40 and the outer rotor 50 is transmitted to the washing tub 120 and the pulsator 130 through the outer shaft 20 and the inner shaft 30 to rotate at the same speed in one direction.
  • S212 a dehydration stroke
  • control unit 500 determines whether the execution time of the dehydration stroke has elapsed (S214), and when the time of the dehydration stroke has elapsed, the washing operation of the laundry is terminated.
  • washing or rinsing stroke according to the present invention described above is as follows.
  • control unit 500 drives the inverters of the first driver 530 and the second driver 540 according to the washing or rinsing stroke.
  • the first driver 530 and the second driver 540 generates three-phase AC power
  • the generated three-phase AC power is the inner stator coil 66 and the outer stator coil 68 of the stator 60
  • the outputs of the inner rotor 40 and the outer rotor 50 driven by the inner stator coil 66 and the outer stator coil 68 of the stator 60 provide rotational forces having similar high torque characteristics, respectively.
  • the inner rotor 40 and the outer rotor 50 of the drive motor 40 may have first and second bearings 26 and 28 capable of bidirectional rotation, and the first and second sleeve bearings 80 and 82, it is possible to control the rotation direction and the rotation speed of the pulsator 130 and the washing tank 120 in a variety of ways and to form a variety of washing water flow.
  • the pulsator 130 is rotationally driven in one direction, for example, in a forward direction, that is, in a clockwise direction CW by driving the outer rotor 50, and in advance. After the motor ON time is maintained for the set time, the motor has a predetermined OFF time for changing the direction.
  • the laundry and the washing water rotated in conjunction with this are also strongly rotated. 9 to 11, if the rapid rise within a short time is a strong water is generated and a large friction force is applied to the laundry, and gradually increasing the rotational speed as shown in Figure 12 can be avoided to apply a large friction force to the laundry ( soft washing, such as wool) may be applied.
  • a method of raising the outer rotor 50 to 160 RPM may include an overshooting driving as shown in FIG. 9, a sequential starting method of gradually increasing the RPM according to the time as shown in FIG. 10, and a multi-step ramp of FIG. 12.
  • One of the starting methods, such as ramp-up driving, may be applied.
  • the outer rotor 50 is stopped to have a predetermined OFF TIME for changing the direction.
  • the method of stopping the outer rotor 50 may be selected from a method of stopping driving power to the outer stator and a method of applying an electromagnetic brake to the outer rotor 50 using the second driver 540. have.
  • the rolling of the upper laundry may occur.
  • the laundry and detergent can be mixed and at the same time a strong three-dimensional solid water stream is formed.
  • the washing tank 120 driven by the inner rotor 40 is driven at a different cycle from the driving of the pulsator 130.
  • the washing tank 120 remains stopped until immediately before the driving time of the pulsator 130, that is, the motor ON time, and starts before the driving of the pulsator 130 ends.
  • the rotational drive is made in a direction opposite to the rotational direction of the 130, the drive is performed for a short period after the driving of the pulsator 130 ends.
  • the reverse driving of the inner rotor 40 for rotating the washing tank 120 in the reverse direction is made to a minimum, for example, the driving is performed at ( ⁇ ) 50 RPM.
  • the outer rotor 50 when the outer rotor 50 is driven by the outer stator 60b to drive the pulsator 130 in the forward direction CW, that is, clockwise CW for a predetermined period of time, the laundry inside the washing tank 120. And the washing water is rotated and at the same time as the rise of the waterfall after the wall surface of the washing tank 120 by the centrifugal force falls to the center portion is generated.
  • the movement of the laundry and the wash water is performed by mixing and washing the laundry and the detergent by friction and potential energy when the rotation and the drop are made.
  • the washing tank 120 is also rotated in the reverse direction.
  • a second stream of water flowing in an opposite direction that is, counterclockwise (CCW)
  • CCW counterclockwise
  • RPM for example, ( ⁇ ) 50 RPM
  • the large vortices generated by the mutually opposite driving forms a strong three-dimensional three-dimensional washing water stream having high cleaning degree.
  • the pulsator 130 is driven to rotate in the reverse direction, that is, counterclockwise (CCW) for driving in the opposite direction, and the motor ON TIME for a preset time.
  • the washing machine 120 has a predetermined stop time (OFF TIME) for the change of direction, and the washing tank 120 is also started before the reverse driving of the pulsator 130 ends and a short period of time after the driving of the pulsator 130 ends. While rotating in the forward direction, that is, clockwise (CCW), a large vortex with high cleaning degree is generated by driving in the opposite direction.
  • the motor ON time may be set, for example, within a range of 2.5 seconds to 10 seconds, and the stop time may be set within a range of 0.5 seconds to 2.0 seconds.
  • control unit 500 drives the second driver 540 to apply the three-phase AC power to the outer stator coil 68 to forward the outer rotor 50, that is, the clock.
  • the pulsator 130 is rotated in the forward direction by rotating in the direction CW (S81).
  • the method of rotating the outer rotor 50 to a predetermined RPM, for example, 160 RPM, is an overshooting drive as shown in FIG. 9, a sequential starting method of gradually increasing the RPM according to a time as shown in FIG. 10, and a multi-step ramp of FIG. 12.
  • One of the starting methods, such as ramp-up driving, may be applied.
  • the rotation speed of the outer rotor 50 (that is, the pulsator) is maintained at 160 RPM for the first predetermined time T1 (S82).
  • the pulsator 130 is rotated in one direction, the laundry and the washing water inside the washing tank 120 are rotated and at the same time ascending the wall surface of the washing tank 120 by centrifugal force and descending to the center (free fall).
  • the waterfall is moved, the laundry rotates and free falls repeatedly, and washing is performed by free fall due to friction and potential energy.
  • the control unit 500 drives the first driver 530 to apply the three-phase AC power to the inner stator coil 66 so that the inner rotor 40 may operate.
  • the washing tank is filled with a lot of laundry and water, and the weight and volume of the washing tank is higher than that of the pulsator, so high torque driving is required at the initial start-up, and the inner rotor driving the washing tank is disposed inside the outer rotor. Compared with the rotor, the driving torque is obtained small.
  • the magnet used in the inner rotor is adopted as a rare earth magnet having a high magnetic flux density, thereby driving the inner rotor.
  • the washing tub 120 can be driven without difficulty through the outer shaft 20.
  • step S86 it is determined whether the turn-on time of the inner rotor 40, that is, the ON time of the inner rotor has elapsed (S86). If the ON time of the inner rotor has passed as a result of the determination, the process proceeds to step S87 of stopping the inner rotor 40 to stop the washing tank 120.
  • step S97 when the preset stop time has elapsed, it is determined whether the inflated stroke is scheduled (S98). If the inflated stroke is scheduled, the process proceeds to step S99 to perform the inflated stroke. Proceed.
  • Foaming may occur when washing water streams are generated by mutually opposite driving using twin-force forces. Therefore, if snagging is detected or snagging is anticipated, a bulging stroke is performed. The inflated stroke releases the tangling of the laundry by rotating the pulsator 130 and the washing tank 120 at the same speed in the same direction.
  • the washing stroke completes the one cycle washing stroke including the steps (S81 to S97), and the driving of two cycles according to the washing course proceeds in the same manner as the one cycle described above, or another method using a single force or a twin force.
  • the washing water flow forming method may be combined.
  • washing time is ended (S100). If the washing time is ended, the washing process is terminated and proceeds to a subsequent processing stroke. If the washing time is not finished, the process proceeds to step S81. Repeat the procedure.
  • the mutually opposite washing water flow forming method basically, the pulsator 130 in one direction, For example, after rotationally driving in the forward direction, that is, clockwise direction CW, and maintaining the motor ON TIME for a predetermined time, it has a predetermined OFF TIME for changing the direction.
  • the graph P shows the RPM of the outer rotor 50 for driving the pulsator 130
  • the graph S shows the inner rotor 40 for driving the spin basket 120. RPM is shown.
  • the pulsator 130 is rotationally driven in the other direction, for example, the reverse direction, that is, the counterclockwise direction (CCW), maintains the motor ON TIME for a preset time, and then It has a predetermined OFF TIME.
  • the reverse direction that is, the counterclockwise direction (CCW)
  • the driving of the pulsator 130 is an example in which the motor ON time (Ton) is set to 2.9 seconds and the stop time (TOFF) to 1.0 second.
  • the drive for) is set to about 1.2 seconds.
  • the motor ON time may be set, for example, in the range of 2.5 seconds to 10 seconds, and the stop time may be set in the range of 0.5 seconds to 2.0 seconds.
  • the washing tank 120 is driven at a different cycle from the driving of the pulsator 130.
  • the washing tank 120 maintains the stopped state until the driving time of the pulsator 130, that is, the motor ON time ends, and then rotates in the opposite direction to the rotation direction of the pulsator 130. .
  • the inner rotor 40 is driven by the first driver 530.
  • the electromagnetic brake is made, the outer shaft 20 and the washing tank 120 connected to the suspension state are also stopped.
  • the outer rotor 50 it is preferable to drive the outer rotor 50 at 200 RPM by using the overshooting method to strongly start the initial driving of the pulsator 130, and then decelerate and maintain the state of 160 RPM for a predetermined time.
  • Embodiment 1 of the present invention when the pulsator 130 is rotated in one direction with a strong maneuverability, the laundry and the washing water are also strongly connected to the laundry.
  • the pulsator 130 when the pulsator 130 is rotated for at least 2.9 seconds, and then stops, the laundry and the wash water continue to rotate by inertia. That is, when the electronic brake is applied to the outer rotor 50 by using the second driver 540 to stop the pulsator 130 in the shortest possible time, the rolling of the laundry located on the upper part of the washing tank is lowered. As it occurs, a strong three-dimensional stream of water is formed.
  • the outer rotor 50 is overshooted from 160 RPM to 200 RPM before the pulsator 130 is stopped. can do.
  • the washing tank 120 which was stopped about 0.7 seconds before the driving time of the pulsator 130, that is, the motor ON time, was ended, the direction opposite to the rotation direction of the pulsator 130.
  • the reverse driving of the washing tank 120 is continued for at least about 0.5 seconds after the driving of the pulsator 130 is stopped to continue the vortex generation.
  • the rotation of one direction at the center of the laundry and the washing water is strongly driven using the pulsator 130, and the washing tank 120 is driven in the reverse direction before the end of the driving of the pulsator.
  • Example 2 a method of forming mutually opposite washing water streams according to Example 2 is similar to Example 1 shown in FIG. 9.
  • the outer rotor 50 is overshooted from 160 RPM to 200 RPM before the initial driving and the end of the motor ON time, and then stopped.
  • the overshoot driving is not performed.
  • the washing tank 120 is driven in a direction opposite to the rotational direction of the pulsator 130 to generate the vortex within the range of about 1 second during the initial driving of the motor ON time and before the end of the vortex.
  • the driving method is changed to increase the number of occurrences once more.
  • the washing tank 120 to 50 RPM in the reverse direction is rotated and extended to 0.5 seconds after the end of the motor ON time starting from 0.7 seconds before the end of the motor ON time of the outer rotor 50 as in the first embodiment.
  • Drive for 1.2 seconds in the reverse direction to rotate the washing tank 120 in 50RPM in the reverse direction.
  • Example 1 when the driving of the outer rotor 50 is stopped, the electronic brake is decelerated by 120 RPM, 80 RPM, and 40 RPM at 0.1 RPM for every 0.1 seconds. However, in Example 2, the electronic brake is applied. Electronic brakes are applied while decelerating by 60 RPM and 50 RPM every 0.1 sec. To 100 RPM and 50 RPM.
  • Example 1 since the electronic brake is applied in the state of deceleration to 40 RPM over 0.3 seconds at 160 RPM, the OFF time is assigned to 1.0 seconds, and in Example 2, the electron is decelerated to 50 RPM over 0.2 seconds at 160 RPM. As the brake is applied, the OFF TIME is assigned to 1.1 seconds. In other words, when the outer rotor 50 is suddenly driven to stop, it is preferable to set the OFF TIME relatively longer.
  • the method of forming the opposite washing direction of the water stream according to the second embodiment after the one-cycle washing stroke of the forward rotation, stop, reverse rotation, and stop of the pulsator 130 is completed, the same washing stroke as the one-cycle washing stroke is applied to the washing course. It can be applied repeatedly according to the above, and it is also possible to combine different types of washing water flow and inflated stroke.
  • Example 2 after the washing cycle of one cycle is completed, the washing water flow method of varying the speed is applied to the drive RPM of the pulsator 130 of the motor ON time (ON TIME) during the washing cycle of the second cycle.
  • Example 3 the method of forming mutually opposite washing water streams according to Example 3 is generally similar to those of Examples 1 and 2.
  • the difference between Examples 1 and 2 and 3 is that the rotational speed is 160 RPM instead of overshooting the outer rotor 50 from 160 RPM to 200 RPM during the initial driving of the motor ON TIME and before the end thereof.
  • the rotational speed is 160 RPM instead of overshooting the outer rotor 50 from 160 RPM to 200 RPM during the initial driving of the motor ON TIME and before the end thereof.
  • the motor ON time is set shorter than the first and second embodiments, and the OFF time is set longer.
  • the RPM of the pulsator 130 of the motor ON TIME is stopped at a rotational speed of 100 RPM higher than that of the first embodiment and the second embodiment, and the stop time is set to 1.8 seconds in consideration of this. .
  • Example 3 the motor ON time is set to 2.7 seconds, the OFF time to 1.8 seconds, and the drive to the washing tank 120 is set to about 1.2 seconds.
  • the motor brake is applied to the stationary state in a state where the speed is reduced to 100 RPM over 0.3 seconds at 160 RPM. That is, the control is made so that the RPM of the pulsator 130 is decelerated with at least two inclination inclinations in consideration of the stop at a high rotational speed of 100 RPM and the stop state is reached.
  • the OFF TIME is also assigned to 1.8 seconds longer than Example 1 and 2 by adding 0.5 seconds of free-wheeling and 0.3 seconds of starting preparation to 1.0 seconds of the electromagnetic brake.
  • the free wheeling is to release all control so that the inertia rotation is performed after the electromagnetic brake of the pulsator 130.
  • the rapid stop is performed at a high rotational speed of 100 RPM and the washing tank 120 is the embodiment described above.
  • the pulsator 130 is rotated at 50 RPM in the reverse direction, starting from the end of the drive and ending after the drive.
  • the rotation of the one direction at the center of the laundry and the washing water is driven shortly strongly using the pulsator 130, and then before the end point of the pulsator driving while rapidly braking the pulsator.
  • the washing tank 120 in the reverse direction to induce a reverse water current from the outer periphery of the laundry and wash water can form a strong vortex.
  • the driving time of the pulsator 130 is minimized, thereby minimizing power consumption and forming a three-dimensional washing stream having strong washing power, thereby increasing washing efficiency.
  • Example 4 the method of forming mutually opposite washing water streams according to Example 4 is similar to those of Examples 1 to 3 as a whole.
  • the difference between the fourth embodiment and the first embodiment is that the initial driving of the outer rotor 50 at the time of motor ON TIME is performed by increasing the rotational speed of the outer rotor 50 to a maximum of 200 RPM instead of overshooting the pulsing force.
  • the rotation speed and driving torque for driving the eater 130 are increased.
  • the RPM of the outer rotor 50 is increased to a preset 200 RPM in a multi-step ramp-up manner, and the rotation direction is changed.
  • the pulsator 130 in order to stop the pulsator 130 in a short time by controlling to reach the stop state can form a strong water flow.
  • the method of rotating the outer rotor 50 to a predetermined RPM applies one of the well-known starting methods, such as the ramp-up starting and the sequential starting method of gradually increasing the RPM over time. can do.
  • the stop time is preferably set to be longer than those of the first to third embodiments in consideration of the stop by the sudden braking of the pulsator 130. Accordingly, the off time is also controlled by the electromagnetic brake. 1.5 seconds plus 0.5 second start up time are allocated to 2.0 seconds longer than the first to third embodiments.
  • Example 4 the motor ON TIME is 4.5 seconds considering that the RPM of the pulsator 130 having the motor ON TIME higher than that of Example 3 is stopped at a high rotational speed of 200 RPM. , The OFF TIME is 2.0 seconds, the drive to the washing tank 120 is set to 1.2 seconds.
  • the one-way rotation in the center of the laundry and the washing water is driven strongly using the pulsator 130, and then before the end of the pulsator's driving while rapidly braking the pulsator.
  • By driving the washing tank 120 in the reverse direction to induce a reverse water current from the outer periphery of the laundry and wash water can form a strong vortex.
  • the strong braking of the pulsator 130 and the reverse driving of the washing tank 120 to form a three-dimensional washing water stream having a strong washing power to increase the washing efficiency.
  • Example 1 is 74%, Example 2 is 73%, Example 3 is 60%, Example 4 is 67%.
  • the operating rate is at least 60% or more to increase the efficiency while minimizing the power consumption
  • the RPM of the pulsator (outer rotor) and the RPM of the washing tank (inner rotor) are preferably set larger than 3: 1.
  • the pulsator 130 when the pulsator 130 is driven at a variable speed in the motor driving torque adjustment and rotation maintenance section during the formation of the washing water flow, it is possible to form a rhythm water flow and save energy consumption.
  • the rotation RPM of the pulsator 130 by varying the rotation RPM of the pulsator 130 to mix the strong, medium, and weak water flow, such as strong-> medium-> weak-> medium-> weak, etc., high cleaning and rinsing degree can be achieved with less energy. You can expect
  • the stopping method of the motor driving the pulsator and the washing tank is exemplified by using an electromagnetic brake.
  • a free-wheeling method requiring a long stopping time is combined with the electromagnetic brake. It is also possible to stop just by freewheeling.
  • other well-known methods other than the electromagnetic brake can be used when the motor is stopped.
  • the present invention is to reduce the twist of the laundry by appropriately setting the stop time of the pulsator during the forward and reverse rotation, to allow the laundry to spread evenly in the washing tank while rotating, by changing the attitude and position of the laundry Improve the cleaning effect
  • the rhythm flow can be formed by varying the rotational speed of the pulsator 130, and as a result, rhythm washing can be implemented. That is, when the rotational speed of the pulsator 130 is controlled to be sharply variable, it is possible to prevent damage to the laundry while forming a strong stream and a rhythm stream.
  • the rotation speed of the washing tub 120 and the pulsator 130 is controlled by the control unit 500 to be applied to the inner and outer coils 66 and 68 by controlling the first driver 530 and the second driver 540. This can be achieved by varying the voltage magnitude and the current amount of the first drive signal and the second drive signal.
  • washing machine driving method using the washing machine driving device 150 according to the first embodiment employing the driving motor 140 has been described, but the present invention provides a second embodiment employing the driving motor 140a. The same may be applied to a washing machine driving method using the washing machine driving device 150a according to an example.
  • the washing machine driving device 150a includes an outer shaft 20 connected to the washing tub 120, and an inside of the outer shaft 20.
  • An inner shaft 30 rotatably disposed on the inner shaft 30 connected to the pulsator 130, an outer rotor 50 connected to the outer shaft 20, and an inner rotor 40 connected to the inner shaft 30;
  • a stator 60 disposed with a gap between the inner rotor 40 and the outer rotor 50.
  • the washing machine driving device 150a according to the second embodiment has a difference in the output structure of the washing machine driving device 150 and the rotor according to the first embodiment, and with this, the bearing support structure may be changed.
  • the structure of the drive motor 140a of the inner rotor 40, the outer rotor 50, and the stator 60 is the same as that of the drive motor 140 of the first embodiment, and the second bearing 28 and the The two bearing housings 10 are also the same as in the first embodiment.
  • the outer shaft 20 may be configured as a single body as in the second embodiment, or may be made of a coupling structure of the first and second shafts 22 and 24 as in the first embodiment.
  • first bearing 26 is installed in the first bearing housing 102 separated from the stator support.
  • first bearing 26 can also be installed in the first bearing housing which extends from the stator support.
  • the first bearing housing 102 is formed of a metal material, and extends outwardly from the first bearing seating portion 104 and the first bearing seating portion 104 on which the first bearing 26 is seated, and upwards.
  • the connecting portion 106 is bent to form a cylindrical shape and a flat plate portion 108 extending outward from the upper end of the connecting portion 106 and fixed to the outer tub 110.
  • the flat plate 108 is fixed to the outer tub 110 together with the flat plate 18 of the second bearing housing 10 by bolts 250.
  • the outer shaft 20 is formed with a first connecting portion 90 to which the outer rotor support 56 of the outer rotor 50 is connected, and the inner rotor support 46 of the inner rotor 40 under the inner shaft 30. ) Is connected to the second connection portion 92 is formed.
  • the first connecting portion 90 is disposed below the first bearing 26, but when the first bearing 26 is installed in the first bearing housing formed extending from the stator support, the first connecting portion ( 90) may be formed between the first bearing and the second bearing to reduce the overall height of the motor.
  • the outer shaft is as long as the length of the first connecting portion formed under the first bearing 26 of the existing outer shaft. It is possible to reduce the length of, thereby reducing the height of the washing machine motor.
  • the overall height of the washing machine can be reduced by that amount, which is easy and convenient for the user to top-load the laundry. If the overall height is the same, the size of the washing tub can be increased, thereby increasing the washing machine capacity.
  • the stator 60 includes a plurality of stator cores 62 arranged radially, a bobbin 64 which is a nonmagnetic material wrapped around the outer circumferential surface of the stator core 62, and an inner stator coil wound around one side of the stator core 62. (66), an outer stator coil (68) wound on the other side of the stator core (62), and a stator support (230) on which the stator core (62) is arranged in an annular shape and fixed to the outer tub (110).
  • the stator support 230 is formed integrally with the stator core 62 by insert molding after arranging the stator core 62 in the mold in the circumferential direction at regular intervals.
  • the stator support 230 includes a core fixing portion 232 integrally formed with the stator core 62, and a connecting portion 234 extending upward from the lower end of the core fixing portion 232 and bent at a right angle to extend upward. And an outer tub fixing portion 236 that is bent at an upper side of the connecting portion 234 and extended outward and fixed to the outer tub 110.
  • the inner rotor 40 has a smaller driving torque than the outer rotor 50, and the pulsator 130 requires less torque than the washing tub 120.
  • the inner rotor 40 can sufficiently rotate the pulsator 130.
  • the outer rotor 50 is designed to have a greater torque than the inner rotor 40, and the washing tub 120 requires a larger torque than the pulsator 130.
  • the drive motor 140a is connected to the washing tank 120 in which the outer rotor 50 having a large drive torque requires a large torque, and has a relatively smaller torque than the outer rotor 50. Since the inner rotor 40 is connected to the pulsator 130 which requires a relatively small torque compared to the washing tank, the inner rotor 40 may improve the performance of the washing machine and reduce the current consumption.
  • the drive torque of the outer rotor using a low-cost ferrite magnet can be equally implemented by using a high-magnet magnet of a rare earth system such as an Nd magnet to increase the drive torque of the inner rotor 40.
  • the pulsator and the washing tank may be simultaneously driven during the washing stroke and the rinsing stroke to form various washing water streams and rinsing patterns using the twin power.
  • a BLDC motor having a radial gap type double rotor-double stator structure is used as a driving motor, but a BLDC motor having an axial gap type double rotor double stator structure is used as a driving power source. It can be used as a drive motor, and any drive motor of different structure and different way can be used as long as the power source generates a pair of outputs.
  • the present invention can be used to form a variety of washing water flows including washing water flow in the opposite direction without using an expensive torque converter using a twin-drive drive motor that implements the drive torque of the inner rotor and the outer rotor similarly Washing machine drive and its control, in particular fully automatic washing machine.

Abstract

The present invention relates to a washing machine driving device, a washing machine having the same, and a washing machine driving method, wherein energy consumption can be minimized when washing water streams are formed in opposite directions by driving a pulsator and a washing tub in opposite directions in order to form a powerful three-dimensional washing water stream having a high degree of cleaning action. The washing machine driving device comprises: a double rotor/double stator type driving motor having an inner rotor and an outer rotor that can be independently controlled by double stators; an inner shaft for transferring an outer rotor output to the pulsator; an outer shaft for transferring an inner rotor output to the washing tub; and a control unit for controlling the inner rotor and the outer rotor, wherein the control unit has a time of stop when the pulsator switches the direction of rotation to clockwise and counterclockwise directions during a washing stroke, and the washing tub is controlled to be activated before the time of driving of the pulsator in the clockwise and counterclockwise directions ends such that driving occurs in the opposite direction to the direction of rotation of the pulsator.

Description

세탁기 구동장치와 이를 구비한 세탁기 및 세탁기 구동방법Washing machine driving device, washing machine and washing machine driving method
본 발명은 세탁기에 관한 것으로, 구체적으로는 세정도가 높은 강력한 3차원 입체 세탁수류를 형성하기 위하여 펄세이터와 세탁조의 역방향 구동에 의한 상호 반대방향 세탁 수류를 형성할 때 에너지 소모를 최소화할 수 있는 세탁기 구동장치와 이를 구비한 세탁기 및 세탁기 구동방법에 관한 것이다. The present invention relates to a washing machine, and in particular, to form a strong three-dimensional three-dimensional washing water flow with high cleaning, which can minimize energy consumption when forming washing water flows in opposite directions by the reverse driving of the pulsator and the washing tank. It relates to a washing machine drive device and a washing machine and a washing machine driving method having the same.
한국 공개특허공보 제10-1999-0076570호(특허문헌 1)에 개시된 탈수 겸용 세탁기에서 세탁모터는 저속 고토크 모터 특성을 가지고, 탈수모터는 세탁모터보다 고속 저토크 모터 특성을 가지도록, 상기 세탁모터는 아우터 로터형으로 탈수 모터보다 대직경으로 구성되고, 탈수모터는 이너 로터형으로 구성되어 세탁모터가 외측, 탈수모터가 내측 관계가 되도록 구성되어 있다. In the dehydration combined washing machine disclosed in Korean Patent Laid-Open Publication No. 10-1999-0076570 (Patent Document 1), the washing motor has a low speed high torque motor characteristic, and the dehydration motor has a high speed low torque motor characteristic than the washing motor. The motor is of an outer rotor type and configured to have a larger diameter than the dewatering motor, and the dewatering motor is configured of an inner rotor type so that the washing motor is on the outside and the dehydrating motor is on the inside.
상기 특허문헌 1의 세탁기는 세탁모터가 아우터 로터형으로 탈수 모터보다 대직경으로 구성되어 있으나, 8kg 이상의 대용량 세탁기에서 대용량 세탁물을 처리하기에는 구동토크가 부족한 문제가 있다. The washing machine of the patent document 1 has a washing motor having an outer rotor type and having a larger diameter than the dewatering motor, but there is a problem in that a driving torque is insufficient to process a large amount of laundry in a large washing machine of 8 kg or more.
더욱이, 상기 특허문헌 1의 세탁기는 탈수 모터보다 대직경으로 구성되고 외측에 배치되어 저속 고토크 모터 특성을 가지는 아우터 로터형의 세탁모터에 의해 교반체를 구동하는 구조를 제안하고 있어, 더 큰 기동토크가 요구되는 회전조를 교반체와 상호 역방향으로 구동시킴에 의해 강한 세탁수류를 구현하기 어려운 문제가 있다. Moreover, the washing machine of the said patent document 1 proposes the structure which drives a stirring body by the outer rotor type washing motor which has a larger diameter than the dehydration motor, is arranged outside, and has a low speed high-torque motor characteristic, There is a problem in that it is difficult to implement a strong washing water flow by driving the rotating tub which is required torque in the opposite direction to the stirring body.
따라서, 상기 특허문헌 1의 세탁기는 2개의 구동모터를 사용하여 교반체와 회전조를 독립적으로 구동시킬 수 있는 구조를 개시하고 있으나, 대용량 세탁기에서 고토크를 이용한 다양한 방식의 세탁 수류를 만드는 것은 제안되지 않고 있다.Therefore, the washing machine of Patent Document 1 discloses a structure capable of independently driving the stirring body and the rotating tank by using two driving motors, but it is proposed to make various types of washing water streams using high torque in a large-capacity washing machine. It is not.
상기 특허문헌 1의 세탁기는 세탁공정시에 탈수모터를 세탁모터와 반대방향 회전의 통전모드로 설정하거나 전기 브레이크에 의해 회전조가 공회전하는 것을 방지한 상태에서 단지 세탁모터에 의한 교반체의 구동에 의해 세탁수류를 형성하고 있어, 대용량 세탁기에 큰 부하의 세탁물을 세탁할 수 있는 보다 강력한 수류(세탁력)를 발생할 수 없다.In the washing machine of Patent Document 1, the dehydration motor is set to the energization mode of the rotational direction opposite to the washing motor during the washing process, or only by driving the stirring body by the washing motor in a state in which the rotating tank is prevented from idling by the electric brake. Since the washing water flow is formed, it is impossible to generate a stronger water flow (laundry force) capable of washing a large load of laundry in a large-capacity washing machine.
더욱이, 상기 특허문헌 1의 세탁기는 펄세이터(교반체)와 세탁조(회전조)를 서로 반대방향으로 회전시켜서 세정도를 높이는 강한 수류를 형성하려고 할 때, 직경이 작아서 구동 토크가 작은 인너 로터로 많은 세탁물과 물이 채워진 세탁조를 초기 기동하면 인너 로터의 구동 토크 부족으로 초기 기동전류가 과도하게 소모되어 효율 저하가 발생되는 문제가 있다.Furthermore, the washing machine of the patent document 1 is an inner rotor having a small diameter and a small driving torque when the pulsator (stirrer) and the washing tank (rotary bath) are rotated in opposite directions to form a strong flow of water to increase the degree of cleaning. Initially starting a washing tank filled with a large amount of laundry and water has a problem in that the initial starting current is excessively consumed due to a lack of driving torque of the inner rotor, resulting in a decrease in efficiency.
이러한 종래의 전자동 세탁기의 문제점을 고려하여 한국 공개특허공보 제10-2015-0008347호(특허문헌 2)에 더블 로터-더블 스테이터 방식의 쌍동력 구동모터와 유성기어장치를 조합하여, 탈수조와 펄세이터를 동시에 독립적으로 구동시킴에 의해 다양한 세탁 수류를 형성하는 기술이 제안되어 있다.In consideration of the problems of the conventional automatic washing machine, Korean Patent Laid-Open Publication No. 10-2015-0008347 (Patent Document 2) combines a double rotor-double stator type twin-power drive motor and a planetary gear device, and a dehydration tank and a pulsator A technique for forming a variety of laundry streams by simultaneously driving independently is proposed.
상기 특허문헌 2에서는 세탁 행정시에 펄세이터와 세탁조를 서로 동일방향 또는 역방향으로 회전시키는 방법으로 쌍동력에 의한 상호 반대방향 세탁 수류 등을 형성하는 세탁방법을 제안하고 있으나, 소모전류 절감과 세탁기의 효율 상승을 고려한 수류 형성방법은 제안하고 있지 않다.The Patent Document 2 proposes a washing method for forming washing water flows in opposite directions by a twin force by rotating the pulsator and the washing tank in the same direction or in the opposite direction during the washing stroke, but reducing the current consumption and the washing machine. There is no suggestion for the formation of water streams with increased efficiency.
특히, 특허문헌 2에서는 세탁 행정시에 쌍동력에 의한 상호 반대방향 세탁 수류를 형성할 때 세탁조를 펄세이터와 서로 다른 방향 및 동일한 속도로 동시에 구동시키는 것은 세탁조를 구동할 때 대전류가 소모되어 에너지 소모가 커지는 문제가 발생할 수 있다.Particularly, in Patent Document 2, simultaneously driving the washing tanks in different directions and at the same speed as the pulsator when forming washing water flows in opposite directions due to the bi-directional force in the washing stroke, the large current is consumed when driving the washing tank. May cause a problem.
한편, 단동력을 이용한 종래의 전자동세탁기의 운전방법은 펄세이터를 순방향 회전, 정지, 역방향 회전, 정지를 반복하면서 방향전환에 의해 수직 상승/하강 수류 물살을 발생시켜서 세탁물에 물과 세제가 잘 접촉이 이루어지도록 하고 있다.On the other hand, the operation method of the conventional fully automatic washing machine using the single-force power generates a vertical rising / falling water flow by changing the direction while repeating the pulsator forward, stop, reverse rotation, stop, so that water and detergent contact the laundry well. This is done.
이 경우, 구동모터로서 A.C. 인덕션 모터를 사용하며, 구동신호의 인가에 따라 미리 설정된 RPM으로 가동시간과 정지시간이 각각 0.5초 내지 2초 범위 내에서 짧은 시간 주기로 가동과 정지를 반복 구동하거나 또는 가동시간 중에 짧은 시간 동안 정지시간을 부여하는 간헐구동방법 등을 사용하고 있다. 이 경우 운전율은 50%를 적용하고 있다.In this case, A.C. as the drive motor. Induction motor is used, and the driving time and the stopping time are repeatedly driven and operated at short time intervals within the range of 0.5 seconds to 2 seconds at the preset RPM according to the application of the drive signal, or the stopping time for the short time during the running time. The intermittent driving method to give a seal is used. In this case, the driving rate is 50%.
인덕션 모터는 저소음, 저진동 등의 특징이 있으나, 저속에서 저토크 특성을 나타내며 동적 반응이 느린 비동기 전동기이기 때문에 세탁 행정시에 순방향과 역방향으로 회전 방향을 빠르게 전환하면서 강한 세탁 수류를 형성하는 데 어려움이 있다.Induction motor is characterized by low noise and low vibration, but it has low torque characteristics at low speed and has a slow dynamic response. Therefore, it is difficult to form strong washing water flow while changing the direction of rotation in the forward and reverse direction quickly during the washing stroke. have.
이에 반해 BLDC 모터는 동적 반응이 빠르고, 낮은 로터 관성을 가지고 있으며, 속도 제어가 용이한 동기 전동기이나, 종래에는 세탁기용 구동장치로서 이러한 BLDC 모터의 특징을 잘 살리는 구동방법이 제안되지 못하였다.On the contrary, the BLDC motor has a fast dynamic response, low rotor inertia, and is easy to control the speed of the synchronous motor. However, a driving method for utilizing the characteristics of the BLDC motor as a driving device for a washing machine has not been proposed.
따라서, 본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 그 목적은 더블 로터-더블 스테이터 방식의 쌍동력 구동모터를 이용하여, 세정도가 높은 강력한 3차원 입체 세탁수류를 형성하기 위하여 펄세이터와 세탁조의 역방향 구동에 의한 상호 반대방향 세탁 수류를 형성할 때 에너지 소모를 최소화할 수 있는 세탁기 구동장치 및 이를 이용한 세탁기를 제공하는 데 있다.Accordingly, the present invention has been made to solve the above problems, the object of which is to use the double rotor-double stator type twin-power drive motor, to form a strong three-dimensional three-dimensional washing water flow with high cleaning The present invention provides a washing machine driving device and a washing machine using the same, which can minimize energy consumption when forming washing water flows in opposite directions by reverse driving of the pulsator and the washing tank.
본 발명의 다른 목적은 쌍동력을 이용하여 펄세이터와 세탁조를 서로 역방향 구동시에 쌍동력 구동모터의 기동방법과 정지방법을 개선함에 의해 세정력이 높은 강한 와류를 형성할 수 있는 세탁기 구동방법을 제공하는 데 있다. It is another object of the present invention to provide a washing machine driving method capable of forming a strong vortex with high cleaning power by improving the starting method and stopping method of the twin power drive motor when the pulsator and the washing tank are driven in reverse direction using the twin power. There is.
본 발명의 또 다른 목적은 BLDC 모터의 특징을 잘 활용할 수 있도록 정지시간보다 가동시간을 충분히 길게 설정하여 운전율을 높이면서 전체적인 세탁시간을 단축하여 전체적인 소비전력을 최소화할 수 있는 세탁기 및 세탁기 구동방법을 제공하는 데 있다. Still another object of the present invention is to set the operating time longer than the stop time so as to make good use of the characteristics of the BLDC motor to increase the operation rate while reducing the overall washing time to reduce the overall power consumption washing machine and washing machine driving method To provide.
본 발명의 다른 목적은 상호 반대방향 세탁 수류를 형성할 때, 직경이 작아서 구동 토크가 작은 인너 로터의 자석을 높은 자속밀도를 갖는 희토류계 자석을 채용함에 따라 인너 로터의 구동 토크를 증대시켜서 많은 세탁물과 물이 채워진 세탁조의 초기 기동시에도 무리가 따르지 않는 세탁기 구동장치 및 이를 이용한 세탁기를 제공하는 데 있다.Another object of the present invention is to increase the drive torque of the inner rotor by increasing the drive torque of the inner rotor by adopting a rare earth magnet having a high magnetic flux density of the magnet of the inner rotor having a small diameter and a small driving torque when forming the washing water flow in the opposite direction The present invention provides a washing machine driving device and a washing machine using the same, which do not follow even when the initial start of the washing tank filled with water.
본 발명의 또 다른 목적은 구동 토크가 큰 대직경의 아우터 로터로 세탁조를 구동하고, 구동 토크가 작은 소직경의 인너 로터는 희토류계의 고자력 자석을 사용하여 아우터 로터와 유사하게 구동 토크를 증대시켜서 펄세이터를 구동하는 세탁기 구동장치 및 이를 이용한 세탁기를 제공하는 데 있다.It is still another object of the present invention to drive a washing tank with a large diameter outer rotor with a large driving torque, and a small diameter inner rotor with a small driving torque increases driving torque similarly to an outer rotor by using a high-magnet magnet of rare earth type. It is to provide a washing machine driving device for driving a pulsator by using the same and a washing machine using the same.
본 발명의 다른 목적은 구동 토크를 증대시키도록 희토류계의 고자력 자석을 사용하는 소직경의 인너 로터와 구동 토크가 큰 대직경의 아우터 로터의 구동 토크를 동등하게 구현하여 세탁 행정 및 행굼 행정시에 펄세이터와 세탁조를 동시에 구동하여 다양한 세탁 수류 및 헹굼 패턴을 형성할 수 있는 세탁기 구동장치 및 이를 이용한 세탁기를 제공하는 데 있다. Another object of the present invention is to equalize the driving torque of a small diameter inner rotor using a high-magnet magnetic magnet of a rare earth system and a large diameter outer rotor having a large driving torque to increase driving torque in washing and rinsing stroke. An object of the present invention is to provide a washing machine driving device capable of simultaneously driving an pulsator and a washing tank to form various washing streams and rinsing patterns, and a washing machine using the same.
본 발명의 제1특징에 따르면, 본 발명은 더블 스테이터에 의해 독립적으로 제어 가능한 인너 로터와 아우터 로터를 구비하고, 선택적으로 인너 로터 출력과 아우터 로터 출력을 발생하는 더블 로터-더블 스테이터 방식의 구동모터; 상기 아우터 로터 출력 또는 인너 로터 출력을 펄세이터에 전달하는 인너 샤프트; 상기 인너 샤프트의 외주에 회전 가능하게 결합되며, 상기 인너 로터 출력 또는 아우터 로터 출력을 세탁조에 전달하는 아우터 샤프트; 및 상기 더블 스테이터에 제1 및 제2 구동신호를 독립적으로 인가하여 인너 로터와 아우터 로터를 제어하는 제어유닛을 포함하며, 상기 제어유닛은 세탁 행정시에 상기 펄세이터가 시계방향 및 반시계방향으로 회전방향을 전환할 때 정지시간을 가지며, 상기 세탁조는 펄세이터의 시계방향 및 반시계방향의 구동시간이 종료되기 전에 기동하여 펄세이터의 회전 방향과 반대방향으로 구동이 이루어지도록 제어하는 것을 특징으로 한다. According to a first aspect of the present invention, the present invention has a double rotor-double stator type drive motor having an inner rotor and an outer rotor that can be independently controlled by a double stator, and selectively generating an inner rotor output and an outer rotor output. ; An inner shaft which transmits the outer rotor output or the inner rotor output to a pulsator; An outer shaft rotatably coupled to an outer circumference of the inner shaft and transmitting the inner rotor output or the outer rotor output to a washing tub; And a control unit for independently applying first and second driving signals to the double stator to control the inner rotor and the outer rotor, wherein the pulsator is clockwise and counterclockwise during the washing stroke. It has a stop time when switching the rotation direction, the washing tank is started before the driving time of the clockwise and counterclockwise direction of the pulsator is characterized in that the drive is controlled in the opposite direction to the rotation direction of the pulsator do.
상기 세탁조의 구동은 펄세이터의 정지시간까지 연장되어 구동될 수 있다. The driving of the washing tank may be extended by the stop time of the pulsator.
또한, 상기 세탁조는 펄세이터의 시계방향 및 반시계방향의 기동과 동시에 펄세이터의 회전 방향과 반대방향으로 구동된 후, 펄세이터의 구동시간보다 짧게 구동이 이루어질 수 있다. In addition, the washing tank may be driven in a direction opposite to the rotation direction of the pulsator at the same time as the clockwise and counterclockwise starting of the pulsator, and may be shorter than the driving time of the pulsator.
더욱이, 상기 펄세이터의 구동시간과 정지시간은 1.5:1 내지 10:1 범위로 설정될 수 있다. Furthermore, the driving time and the stopping time of the pulsator may be set in the range of 1.5: 1 to 10: 1.
상기 펄세이터의 기동 및 정지 동작시에 오버슈팅 구동이 이루어질 수 있으며, 상기 펄세이터의 기동시에 램프-업 구동이 이루어질 수 있다. 또한 상기 펄세이터는 가변속도로 구동될 수 있다.An overshooting drive may be performed at the start and stop operations of the pulsator, and a ramp-up drive may be performed at the start of the pulsator. In addition, the pulsator may be driven at a variable speed.
상기 펄세이터의 회전방향을 전환하기 위해 전자 브레이크가 이루어지는 시점의 펄세이터의 RPM이 높을수록 정지시간은 증가할 수 있다. 이 경우, 상기 펄세이터의 정지는 아우터 로터를 구동하는 드라이버를 이용하여 전자 브레이크를 실시할 수 있다.As the RPM of the pulsator becomes higher at the time when the electromagnetic brake is performed to change the rotation direction of the pulsator, the stop time may increase. In this case, the pulsator may be stopped by electromagnetic brake using a driver for driving the outer rotor.
또한, 상기 인너 로터의 구동 토크는 아우터 로터의 구동 토크와 동등하게 설정할 수 있으며, 이 경우, 상기 인너 로터는 희토류계 자석을 사용하고, 상기 아우터 로터는 페라이트 자석을 사용할 수 있다.In addition, the driving torque of the inner rotor may be set to be equal to the driving torque of the outer rotor. In this case, the inner rotor may use a rare earth magnet, and the outer rotor may use a ferrite magnet.
상기 아우터 로터는 상기 스테이터의 외면에 일정 갭을 두고 배치되며 N극 및 S극이 교대로 배치되는 다수의 제2자석; 상기 제2자석의 배면에 배치되는 제2백요크; 및 상기 제2자석 및 제2백요크를 지지하는 아우터 로터 지지체를 포함할 수 있다. The outer rotor includes a plurality of second magnets having a predetermined gap on the outer surface of the stator, and the N pole and the S pole are alternately disposed; A second back yoke disposed on a rear surface of the second magnet; And it may include an outer rotor support for supporting the second magnet and the second back yoke.
이 경우, 상기 아우터 로터 지지체는 단면이 컵 형상의 바닥면 중에 상기 스테이터의 인너 및 아우터 스테이터 코일과 대향한 외측평탄부와, 인너 샤프트와 결합이 이루어지는 내측평탄부와, 상기 외측평탄부와 내측평탄부를 연결하는 경사연결부를 포함하고, 상기 외측 평탄부에는 상기 인너 및 아우터 스테이터 코일과 대향한 부분에 각각 인너 및 아우터 스테이터 코일로부터 발생된 열을 외부로 배출하는 제1 및 제2 관통구멍을 구비할 수 있다.In this case, the outer rotor support has an outer flat portion having a cross section facing the inner and outer stator coils of the stator in the cup-shaped bottom surface, an inner flat portion which is engaged with the inner shaft, and the outer flat portion and the inner flat surface. And an inclined connecting portion for connecting the portions, and the outer flat portion may include first and second through holes for discharging heat generated from the inner and outer stator coils to the outside at portions facing the inner and outer stator coils, respectively. Can be.
또한, 상기 아우터 로터 지지체는 그의 외주면 및 내주면에 각각 일정한 각도마다 방사방향으로 돌출되어 있는 복수의 방사방향 보강리브; 및 그의 내주면에 원주방향으로 간격을 두고 형성되어 있는 제1 내지 제3 원주방향 보강리브를 포함할 수 있다. In addition, the outer rotor support may include a plurality of radial reinforcing ribs protruding radially at predetermined angles on the outer and inner circumferential surfaces thereof, respectively; And first to third circumferential reinforcing ribs formed at intervals in the circumferential direction on the inner circumferential surface thereof.
상기 제어유닛은 상기 펄세이터를 제1기간 동안 제1방향으로 회전 구동하고, 상기 제1기간이 종료되기 전에 세탁조를 제2기간 동안 상기 제1방향과 반대방향으로 회전 구동하며, 상기 제1기간의 경과에 따라 펄세이터를 정지시키고, 상기 제1기간의 경과 이후에 상기 제2기간의 경과에 따라 상기 세탁조를 정지시키도록 구성될 수 있다.The control unit rotates the pulsator in a first direction for a first period, drives the washing tub to rotate in a direction opposite to the first direction for a second period before the first period ends, and the first period. Stop the pulsator according to the elapse of, and stop the washing tank according to the elapse of the second period after the elapse of the first period.
본 발명의 제2특징에 따르면, 본 발명은 세탁수를 수용하는 외조; 상기 외조의 내부에 회전 가능하게 배치되어 세탁과 탈수가 이루어지는 세탁조; 상기 세탁조 내부에 회전 가능하게 배치되어 세탁 수류를 형성하는 펄세이터; 및 상기 세탁조와 펄세이터를 동시에 또는 선택적으로 구동시키는 상기 세탁기 구동장치를 포함하는 것을 특징으로 하는 세탁기를 제공한다.According to a second aspect of the invention, the present invention provides an outer tub for receiving wash water; A washing tank rotatably disposed in the outer tub to perform washing and dehydration; A pulsator rotatably disposed in the washing tank to form a washing stream; And the washing machine driving device for simultaneously or selectively driving the washing tank and the pulsator.
본 발명의 제3특징에 따르면, 본 발명은 펄세이터를 제1기간 동안 제1방향으로 회전 구동하는 제1단계; 상기 제1기간이 종료되기 전에 세탁조를 제2기간 동안 상기 제1방향과 반대방향으로 회전 구동하는 제2단계; 상기 제1기간의 경과에 따라 펄세이터를 정지시키는 제3단계; 상기 제1기간의 경과 이후에 상기 제2기간의 경과에 따라 상기 세탁조를 정지시키는 제4단계; 및 상기 제2기간의 경과 이후에 펄세이터의 정지시간이 경과하는 경우, 상기 제1 내지 제4 단계에서 펄세이터와 세탁조의 회전방향을 각각 반대로 설정하여 순차적으로 실행하는 제5단계;를 포함하는 것을 특징으로 하는 세탁기 구동방법을 제공한다.According to a third aspect of the present invention, there is provided a device comprising: a first step of rotationally driving a pulsator in a first direction during a first period; A second step of rotating the washing tub in a direction opposite to the first direction for a second period before the first period ends; Stopping the pulsator in accordance with the passage of the first period; A fourth step of stopping the washing tub according to the passage of the second period after the passage of the first period; And a fifth step of sequentially setting rotation directions of the pulsator and the washing tank in the first to fourth steps, respectively, when the stoppage time of the pulsator elapses after the elapse of the second period. It provides a washing machine driving method characterized in that.
상기한 바와 같이, 본 발명에서는 더블 로터-더블 스테이터 방식의 쌍동력 구동모터를 이용하여, 펄세이터와 세탁조를 서로 역방향 구동에 의한 세탁 수류를 형성할 때 에너지 소모를 최소화하면서도 세정도가 높은 강력한 3차원 입체 세탁수류를 형성할 수 있다. As described above, in the present invention, by using a double rotor-double stator-type twin-drive drive motor, a strong 3 with high cleaning while minimizing energy consumption when forming a washing water stream by reverse driving of the pulsator and the washing tank. Dimensional solid washing water can be formed.
또한, 본 발명에서는 쌍동력을 이용하여 펄세이터와 세탁조를 서로 역방향 구동시에 쌍동력 구동모터의 기동방법과 정지방법을 개선함에 의해 세정력이 높은 강한 와류를 형성할 수 있다. In addition, in the present invention, a strong vortex with high cleaning power can be formed by improving the starting method and the stopping method of the twin-power drive motor when the pulsator and the washing tank are driven in the reverse direction using the twin-force.
더욱이, 본 발명에서는 BLDC 모터의 특징을 잘 활용할 수 있도록 정지시간보다 가동시간을 충분히 길게 설정하여 운전율을 높이면서 전체적인 세탁시간을 단축하여 전체적인 소비전력을 최소화할 수 있다. Furthermore, in the present invention, it is possible to minimize the overall power consumption by shortening the overall washing time while increasing the operation rate by setting the operation time long enough to stop utilizing the features of the BLDC motor.
또한, 본 발명에서는 쌍동력을 이용하여 펄세이터와 세탁조를 서로 역방향으로 회전시키는 쌍방향 수류 세탁 행정시에 인너 로터와 아우터 로터의 가동시간과 정지시간의 적정한 비율을 설정함에 의해 운전율을 높이고 세탁수류를 개선하여 세탁기의 효율 상승을 도모할 수 있다. In addition, in the present invention, the operation rate is increased by setting an appropriate ratio of the operating time and the stopping time of the inner rotor and the outer rotor during the two-way water washing washing stroke in which the pulsator and the washing tank are rotated in the opposite directions by using the twin power. By improving the efficiency of the washing machine can be increased.
본 발명에서는 구동 토크가 큰 대직경의 아우터 로터로 고토크를 필요로 하는 세탁조를 구동하고, 구동 토크가 작은 소직경의 인너 로터는 희토류계의 고자력 자석을 사용하여 아우터 로터와 유사하게 구동 토크를 증대시켜서 펄세이터를 구동할 수 있다.In the present invention, a large diameter outer rotor is used to drive a washing tank requiring high torque, and a small diameter inner rotor with a small drive torque is similar to an outer rotor by using a rare earth type high magnetic magnet. The pulsator can be driven by increasing.
또한, 본 발명에서는 구동 토크를 증대시키도록 희토류계의 고자력 자석을 사용하는 소직경의 인너 로터와 구동 토크가 큰 대직경의 아우터 로터의 구동 토크를 동등하게 구현하여 세탁 행정 및 행굼 행정시에 펄세이터와 세탁조를 동시에 구동하여 상호 반대방향 세탁 수류와 같은 다양한 수류 및 헹굼 패턴을 형성할 수 있다. In addition, the present invention implements equally the drive torque of a small diameter inner rotor using a high-magnet magnetic magnet of a rare earth system and a large diameter outer rotor having a large driving torque in order to increase the driving torque, so that the washing stroke and the rinse stroke The pulsator and the wash tub can be driven simultaneously to form various water streams and rinsing patterns, such as countercurrent wash streams.
본 발명에서는 상호 반대방향 세탁 수류를 형성할 때, 직경이 작아서 구동 토크가 작은 인너 로터의 자석을 높은 자속밀도를 갖는 희토류계 자석을 채용함에 따라 인너 로터의 구동 토크를 증대시켜서 많은 세탁물과 물이 채워진 세탁조의 초기 기동시에도 무리가 따르지 않는다.In the present invention, when forming the washing water flow in the opposite direction, by employing a rare earth magnet having a high magnetic flux density of the magnet of the inner rotor having a small diameter and a small driving torque, the laundry torque of the inner rotor is increased to increase the amount of laundry and water. There is no strain on the initial start-up of a filled washing tank.
또한, 본 발명에서는 구동 토크가 큰 아우터 로터를 고토크를 필요로 하는 세탁조와 연결하고, 구동 토크가 작은 인너 로터를 저토크에서 구동 가능한 펄세이터와 연결하면서 희토류계 자석을 채용함에 따라 인너 로터의 구동 토크를 증대시켜서 상호 반대방향 세탁 수류와 같은 다양한 수류 및 헹굼 패턴을 형성할 수 있다. In addition, in the present invention, the outer rotor having a large driving torque is connected to a washing tank requiring high torque, and the inner rotor having a small driving torque is connected to a pulsator capable of driving at low torque while employing a rare earth magnet. The drive torque can be increased to form various water streams and rinsing patterns, such as mutually opposite washing water streams.
또한, 본 발명에서는 토크 변속을 위한 유성기어장치를 제거하여 구조가 간단해짐에 따라 조립 생산성을 높이고 제조비용을 절감할 수 있으며, 토크 변속시에 발생하는 소음을 제거할 수 있다.In addition, according to the present invention, as the structure is simplified by removing the planetary gear device for torque shift, it is possible to increase assembly productivity and reduce manufacturing cost, and to eliminate noise generated during torque shift.
본 발명은 인너 로터와 아우터 로터의 구동 토크를 동등하게 구현함에 의해 대용량 세탁기에도 적용 가능하다.The present invention can be applied to large-capacity washing machines by equally implementing the drive torques of the inner rotor and the outer rotor.
도 1은 본 발명의 제1실시예에 따른 세탁기 구동장치를 구비한 세탁기의 축방향 단면도이다. 1 is an axial cross-sectional view of a washing machine having a washing machine driving device according to a first embodiment of the present invention.
도 2는 도 1에 도시된 세탁기 구동장치의 축방향 부분 절단 단면도이다. FIG. 2 is an axial partial cutaway sectional view of the washing machine drive shown in FIG. 1. FIG.
도 3a 내지 도 3d는 각각 도 2에 도시된 아우터 로터의 배면도, 내측면도, 우측면도 및 도 3a의 A-A선 단면도이다.3A to 3D are a rear view, an inner side view, a right side view, and a cross-sectional view along the line A-A of FIG. 3A, respectively, of the outer rotor shown in FIG.
도 4a는 본 발명에 따른 구동모터의 직경방향 단면도이다.Figure 4a is a sectional view in the radial direction of the drive motor according to the present invention.
도 4b는 스테이터 조립에 사용되는 스테이터 코어 조립체의 개략 단면도이다.4B is a schematic cross-sectional view of the stator core assembly used for stator assembly.
도 4c는 스테이터 코어를 구성하는 분할 코어의 평면도이다. 4C is a plan view of the split core constituting the stator core.
도 5는 인너 로터에 페라이트 자석과 Nd 자석을 사용할 경우 토크와 효율 관계를 비교하여 나타낸 그래프이다.5 is a graph showing a comparison between torque and efficiency when a ferrite magnet and an Nd magnet are used in the inner rotor.
도 6은 본 발명에 따른 세탁기 제어장치의 블럭 회로도이다.6 is a block circuit diagram of a washing machine control apparatus according to the present invention.
도 7은 본 발명에 따른 전체적인 세탁기 구동방법을 나타낸 순서도이다.7 is a flow chart showing the overall washing machine driving method according to the present invention.
도 8a 및 도 8b는 본 발명에 따른 상호 반대방향 세탁 수류 형성방법을 나타낸 순서도이다.8A and 8B are flowcharts illustrating a method of forming mutually opposite washing water streams according to the present invention.
도 9 내지 도 12는 각각 본 발명에 따른 상호 반대방향 세탁 수류 형성방법을 구현하기 위한 펄세이터와 세탁조의 RPM 타이밍도이다.9 to 12 are RPM timing diagrams of a pulsator and a washing tank for implementing mutually opposite washing water flow forming methods according to the present invention, respectively.
도 13은 본 발명의 제2실시예에 따른 세탁기 구동장치의 축방향 단면도이다. 13 is an axial sectional view of the washing machine driving apparatus according to the second embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. 이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this process, the size or shape of the components shown in the drawings may be exaggerated for clarity and convenience of description.
도 1 내지 도 4c를 참조하면, 본 발명의 제1실시예에 따른 세탁기는 외형을 이루는 케이스(100)와, 케이스(100)의 내부에 배치되어 세탁수를 수용하는 외조(110)와, 상기 외조(110)의 내부에 회전 가능하게 배치되어 세탁과 탈수를 수행하는 세탁조(120)와, 상기 세탁조(120)의 바닥부에 회전 가능하게 배치되어 세탁 수류를 형성하는 펄세이터(130)와, 상기 세탁조(120)와 외조(110)의 하부에 설치되어 세탁 행정, 헹굼 행정, 풀림 행정 및 탈수 행정 등에 필요한 구동력을 세탁조(120)와 펄세이터(130)에 동시에 또는 선택적으로 제공하는 세탁기 구동장치(150)를 포함한다. 1 to 4C, the washing machine according to the first embodiment of the present invention includes a case 100 forming an external appearance, an outer tub 110 disposed inside the case 100 to accommodate washing water, and A washing tank 120 rotatably disposed in the outer tub 110 to perform washing and dehydration, a pulsator 130 rotatably disposed at the bottom of the washing tub 120 to form a stream of laundry; Washing machine driving device installed at the lower portion of the washing tank 120 and the outer tank 110 to provide the driving force necessary for washing, rinsing, loosening and dewatering stroke to the washing tank 120 and the pulsator 130 simultaneously or selectively. And 150.
상기 세탁기 구동장치(150)는 외조(110)의 하부에 장착되고 인너 로터(40)와 아우터 로터(50)로부터 쌍동력을 발생하는 더블 로터-더블 스테이터 방식의 구동모터(140)와, 상기 구동모터(150)의 인너 로터(40)와 아우터 로터(50)에 의해 제공되는 쌍동력을 받아서 상기 펄세이터(130)와 세탁조(120)에 전달하는 아우터 샤프트(20) 및 인너 샤프트(30)를 포함한다. The washing machine driving device 150 is mounted to the lower portion of the outer tub 110 and the drive motor 140 of the double rotor-double stator method for generating a twin force from the inner rotor 40 and the outer rotor 50, and the drive The outer shaft 20 and the inner shaft 30 which receive the bi-directional force provided by the inner rotor 40 and the outer rotor 50 of the motor 150 and transmit them to the pulsator 130 and the washing tank 120. Include.
구동모터(140)는 도 2에 도시된 바와 같이, 아우터 샤프트(20)와 연결되는 인너 로터(40)와, 인너 샤프트(30)와 연결되는 아우터 로터(50)와, 인너 로터(40)와 아우터 로터(50) 사이에 공극을 두고 배치되어 인너 로터(40)와 아우터 로터(50)를 회전 구동시키는 스테이터(60)를 포함한다. 상기 스테이터(60)는 인너 로터(40)와 아우터 로터(50)를 각각 독립적으로 구동시키는 더블 스테이터 구조를 갖는다.As shown in FIG. 2, the driving motor 140 includes an inner rotor 40 connected to the outer shaft 20, an outer rotor 50 connected to the inner shaft 30, and an inner rotor 40. It includes a stator 60 disposed with a gap between the outer rotor 50 to drive the inner rotor 40 and the outer rotor 50 to rotate. The stator 60 has a double stator structure for independently driving the inner rotor 40 and the outer rotor 50, respectively.
이에 따라 스테이터(60)는 인너 로터(40)와 아우터 로터(50)를 도 6에 도시된 제1 및 제2 드라이버(530,540)를 이용하여 선택적/독립적으로 구동할 수 있도록 도 4a와 같이 아우터 스테이터(60b)와 인너 스테이터(60a)를 구비하고 있다. 이하에 후술하는 실시예 설명에서는 아우터 스테이터와 인너 스테이터를 일체형으로 구성한 것을 예시하고 있으나, 분리된 구조로 이루어지는 것도 가능하다.Accordingly, the stator 60 may perform the outer stator as shown in FIG. 4A to selectively / independently drive the inner rotor 40 and the outer rotor 50 using the first and second drivers 530 and 540 shown in FIG. 6. 60b and the inner stator 60a are provided. In the following description of the embodiments described below, the outer stator and the inner stator are illustrated as being integrally formed. However, the outer stator and the inner stator may have a separate structure.
상기 아우터 샤프트(20)는 인너 샤프트(30)의 외주에 회전 가능하게 결합되며, 일단이 인너 로터(40)의 중심에 연결되는 제1샤프트(22)와 일단이 제1샤프트(22)의 타단에 결합되며 타단이 세탁조(120)에 결합되는 제2샤프트(24)를 포함한다. 이 경우 제1샤프트(22)와 제2샤프트(24)는 일체형으로 구성될 수 있다.The outer shaft 20 is rotatably coupled to the outer circumference of the inner shaft 30, one end of which is connected to the center of the inner rotor 40, and one end of which is the other end of the first shaft 22. The second shaft 24 is coupled to the other end is coupled to the washing tank 120. In this case, the first shaft 22 and the second shaft 24 may be integrally formed.
인너 샤프트(30)의 외주면과 제1샤프트(22)의 내주면 사이에는 원통 형태의 제1슬리브 베어링(80)이 설치되고, 제2샤프트(24)의 상단 내면에는 제2슬리브 베어링(82)이 설치되어 인너 샤프트(30)를 회전 가능하게 지지한다. A cylindrical first sleeve bearing 80 is installed between the outer circumferential surface of the inner shaft 30 and the inner circumferential surface of the first shaft 22, and the second sleeve bearing 82 is provided on the upper inner surface of the second shaft 24. It is installed to rotatably support the inner shaft (30).
제1샤프트(22)의 외면에는 인너 로터(40)의 인너 로터 지지체(46)가 부싱(48)을 통하여 연결되는 제1연결부(90)가 형성되고, 인너 샤프트(30)의 하단에는 아우터 로터(50)의 아우터 로터 지지체(56)가 부싱(58)을 통하여 연결되는 제2연결부(92)가 형성된다. The outer surface of the first shaft 22 is formed with a first connecting portion 90 through which the inner rotor support 46 of the inner rotor 40 is connected through the bushing 48, and the outer rotor at the lower end of the inner shaft 30. A second connecting portion 92 is formed to which the outer rotor support 56 of 50 is connected via the bushing 58.
제1연결부(90) 및 제2연결부(92)는 아우터 샤프트(20) 및 인너 샤프트(30)의 외면에 형성된 돌기에 의해 세레이션(Serration) 결합되거나 스플라인 결합되는 구조를 가질 수 있고, 키홈을 형성하여 상호 키 결합되는 구조를 가질 수 있다.The first connecting portion 90 and the second connecting portion 92 may have a structure that is serration-coupled or spline-coupled by protrusions formed on the outer surfaces of the outer shaft 20 and the inner shaft 30, and has a key groove. It can have a structure that is formed and keyed together.
여기에서, 아우터 샤프트(20)의 하단에는 인너 로터 지지체(46)가 아우터 샤프트(20)에서 이탈되는 것을 방지하는 제1고정너트(34)가 나사 체결되고, 인너 샤프트(30)의 하단에는 아우터 로터(50)의 아우터 로터 지지체(56)가 이탈되는 것을 방지하는 제2고정너트(36)가 나사 체결된다. Here, the first fixing nut 34 is screwed to the lower end of the outer shaft 20 to prevent the inner rotor support 46 from being separated from the outer shaft 20, and the outer end of the outer shaft 30 is screwed. The second fixing nut 36 is screwed to prevent the outer rotor support 56 of the rotor 50 from being separated.
제2샤프트(22)의 상단 외면에는 세탁조(120)가 연결되는 제3연결부(94)가 형성되고, 인너 샤프트(30)의 상단 외면에는 펄세이터(130)가 연결되는 제4연결부(96)가 형성된다. A third connecting portion 94 is formed on the upper outer surface of the second shaft 22 to connect the washing tub 120, and a fourth connecting portion 96 is connected to the pulsator 130 on the upper outer surface of the inner shaft 30. Is formed.
제3연결부(94) 및 제4연결부(96)는 제2샤프트(22) 및 인너 샤프트(30)의 외면에 형성된 돌기에 의해 세레이션(Serration) 결합되거나 스플라인 결합되는 구조를 가질 수 있고, 키홈을 형성하여 상호 키 결합되는 구조를 가질 수 있다. The third connecting portion 94 and the fourth connecting portion 96 may have a structure that is serration-coupled or spline-coupled by protrusions formed on the outer surfaces of the second shaft 22 and the inner shaft 30, and the key groove. It may have a structure that forms a key combination with each other.
제2샤프트(22)와 인너 샤프트(30) 사이에는 세탁수가 누수되는 것을 방지하는 제1시일(220)이 장착되고, 제2샤프트(22)와 제2베어링 하우징(10) 사이에는 세탁수가 누수되는 것을 방지하는 제2시일(221)이 장착된다. A first seal 220 is installed between the second shaft 22 and the inner shaft 30 to prevent the wash water from leaking, and the wash water is leaked between the second shaft 22 and the second bearing housing 10. The second seal 221 is mounted to prevent the second seal 221.
제1샤프트(22)의 외면에는 제1베어링(26)이 배치되고, 제2샤프트(24)의 외면에는 제2베어링(28)이 배치되어, 제1 및 제2 샤프트(22,24)를 회전 가능하게 지지한다. The first bearing 26 is disposed on the outer surface of the first shaft 22, and the second bearing 28 is disposed on the outer surface of the second shaft 24, so that the first and second shafts 22 and 24 are disposed. Support rotatably.
제1베어링(26)은 제1베어링 하우징(102)에 설치되고, 제2베어링(28)은 제2베어링 하우징(10)에 설치된다. The first bearing 26 is installed in the first bearing housing 102, and the second bearing 28 is installed in the second bearing housing 10.
제1베어링 하우징(102)은 스테이터 지지체(270)로부터 내측으로 연장되어 형성되고, 내면에 제1베어링이 안착되는 제1베어링 안착부(104)가 형성되어 있다. The first bearing housing 102 extends inwardly from the stator support 270, and a first bearing seating portion 104 in which the first bearing is seated is formed on an inner surface thereof.
제2베어링 하우징(10)은 금속재질로 형성되고, 제2베어링(28)이 안착되는 제2베어링 안착부(12)와, 제2베어링 안착부(12)에서 외측방향으로 연장되어 제2시일(221)이 고정되는 제2시일 고정부(14)와, 제2시일 고정부(14)에서 하측방향으로 절곡되어 원통 형태를 이루는 연결부(16)와, 연결부(16)의 하단에서 외측방향으로 연장되어 외조(110)에 고정되는 평판부(18)를 포함한다. 평판부(18)는 볼트(260)에 의해 스테이터 지지체(270) 및 외조(110)에 고정된다.The second bearing housing 10 is formed of a metal material, and extends outwardly from the second bearing seat 12 and the second bearing seat 12 on which the second bearing 28 is seated. The second seal fixing portion 14 to which the 221 is fixed, the connecting portion 16 bent downward from the second seal fixing portion 14 to form a cylindrical shape, and from the lower end of the connecting portion 16 to the outside direction. It extends to include a flat plate 18 fixed to the outer tub (110). The flat plate portion 18 is fixed to the stator support 270 and the outer tub 110 by bolts 260.
여기에서, 외조(110)의 중앙에는 개구부가 형성되고, 제2베어링 하우징(10)은 중앙부가 외조(110)의 개구부를 통과하여 내부로 돌출 배치되고 평판부(18)는 외조(110)의 배면에 접촉되고, 제2베어링 하우징(10)에 스테이터 지지체(270)를 적층한 후 하나의 볼트(260)에 의해 외조(110)에 체결된다. Here, an opening is formed in the center of the outer tub 110, the second bearing housing 10 has a central portion protruded through the opening of the outer tub 110, and the flat plate 18 of the outer tub 110 is disposed. In contact with the rear surface, the stator support 270 is laminated on the second bearing housing 10 and then fastened to the outer tub 110 by one bolt 260.
본 발명에서는 후술하는 바와 같이 더블 로터-더블 스테이터로 구성된 쌍동력 구조의 구동모터(140)에 의해 세탁조(120)와 펄세이터(130)를 동시에 또는 선택적으로, 그리고 동일방향 또는 상호 반대방향으로 회전시키면서 다양한 방식의 세탁 수류를 형성하는 것이 가능하게 된다.In the present invention, as described below, the washing tank 120 and the pulsator 130 are rotated at the same time or selectively and in the same direction or the opposite direction by a drive motor 140 having a twin-torque double stator structure. It is possible to form laundry streams in a variety of ways.
이하에 더블 로터-더블 스테이터로 구성된 쌍동력 구조의 구동모터(140)를 도 2 내지 도 4c를 참고하여 상세하게 설명한다. Hereinafter, a driving motor 140 having a twin-force structure composed of a double rotor-double stator will be described in detail with reference to FIGS. 2 to 4C.
구동모터(140)는 아우터 로터(50)와, 인너 로터(40)와, 스테이터(60)를 포함하고 있으며, 스테이터(60)는 아우터 로터(50)와 인너 로터(40)를 선택적/독립적으로 구동할 수 있도록 아우터 스테이터(60b)와 인너 스테이터(60a)를 구비하고 있다. 스테이터는 도 4a와 같이 아우터 스테이터와 인너 스테이터를 일체형으로 구성하거나 분리된 구조로 이루어질 수 있다.The drive motor 140 includes an outer rotor 50, an inner rotor 40, and a stator 60, and the stator 60 selectively / independently includes the outer rotor 50 and the inner rotor 40. An outer stator 60b and an inner stator 60a are provided to drive. The stator may be configured as an integral structure or a separate structure of the outer stator and the inner stator as shown in Figure 4a.
우선, 인너 로터(40)는 도 2에 도시된 바와 같이, 스테이터(60)의 내면에 일정 갭을 두고 배치되며, N극 및 S극이 교대로 배치되는 다수의 제1자석(42)과, 상기 제1자석(42)의 배면에 배치되는 제1백요크(44)와, 인서트 몰딩에 의해 제1자석(42) 및 제1백요크(44)와 일체로 형성되는 인너 로터 지지체(46)를 포함한다. First, as shown in FIG. 2, the inner rotor 40 is disposed with a predetermined gap on the inner surface of the stator 60, and a plurality of first magnets 42 having an N pole and an S pole alternately arranged. The first back yoke 44 disposed on the rear surface of the first magnet 42 and the inner rotor support 46 formed integrally with the first magnet 42 and the first back yoke 44 by insert molding. It includes.
여기에서, 인너 로터 지지체(46)는 열경화성 수지, 예를 들어 폴리에스터와 같은 BMC(Bulk Molding Compound) 몰딩재 또는 열가소성 수지로 몰딩하여 일측 단부에 제1자석(42) 및 제1백요크(44)와 일체로 형성된다. Here, the inner rotor support 46 is molded with a thermosetting resin, for example, a BMC (Bulk Molding Compound) molding material such as polyester or a thermoplastic resin, so that the first magnet 42 and the first back yoke 44 at one end thereof. It is formed integrally with
인너 로터 지지체(46)는 내측 단부가 제1부싱(48)을 통하여 제1샤프트(22)의 제1연결부(90)에 연결되고, 외측 단부는 직각으로 절곡되어 그의 외면에는 제1자석(42) 및 제1백요크(44)가 고정되며 컵 형상을 이루고 있다.The inner rotor support 46 has an inner end connected to the first connecting portion 90 of the first shaft 22 through the first bushing 48, and the outer end is bent at a right angle so that the outer surface thereof has a first magnet 42. ) And the first back yoke 44 are fixed to form a cup.
따라서, 인너 로터(40)가 회전되면 제1 및 제2 샤프트(22,24)가 회전되어, 인너 로터(40)의 회전력이 세탁조(120)에 전달된다. Therefore, when the inner rotor 40 is rotated, the first and second shafts 22 and 24 are rotated, and the rotational force of the inner rotor 40 is transmitted to the washing tank 120.
인너 로터(40)는 직경이 작아서 아우터 로터(50) 보다 구동 토크가 작다. 따라서, 후술하는 바와 같이, 펄세이터와 세탁조를 서로 반대방향으로 강하게 회전시켜서 세정도가 높은 3차원 입체 세탁수류를 형성하려고 할 때, 세탁조(120)를 구동하는 인너 로터(40)는 높은 자속 밀도를 갖도록 네오디뮴(Nd) 자석과 같은 희토류계 자석을 채용하여 구동 토크를 증대시킨다.The inner rotor 40 has a smaller diameter and has a smaller driving torque than the outer rotor 50. Therefore, as will be described later, when the pulsator and the washing tank are strongly rotated in opposite directions to form a three-dimensional three-dimensional washing water flow having high cleaning degree, the inner rotor 40 driving the washing tank 120 has a high magnetic flux density. Rare earth magnets such as neodymium (Nd) magnets are adopted to increase driving torque.
세탁조(120)는 많은 세탁물과 물이 채워진 경우 초기 기동시에 무리가 따르면 초기 기동전류가 과도하게 소모되어 효율 저하가 발생될 수 있으나, 인너 로터의 구동 토크를 증대시킴에 의해 이러한 문제가 발생되지 않는다.When the washing tank 120 is filled with a large amount of laundry and water, the initial starting current may be excessively consumed due to excessive force during initial startup. However, this problem does not occur by increasing the driving torque of the inner rotor. .
또한, 아우터 로터(50)는 스테이터(60)의 외면에 일정 갭을 두고 배치되며 N극 및 S극이 교대로 배치되는 다수의 제2자석(52)과, 제2자석(52)의 배면에 배치되는 제2백요크(54)와, 인서트 몰딩에 의해 제2자석(52) 및 제2백요크(54)와 일체로 형성되는 아우터 로터 지지체(56)를 포함한다. In addition, the outer rotor 50 is disposed on the outer surface of the stator 60 with a plurality of second magnets 52 and N and S poles alternately arranged on the rear surface of the second magnet 52. The second back yoke 54 is disposed, and the outer rotor support 56 formed integrally with the second magnet 52 and the second back yoke 54 by insert molding.
여기에서, 아우터 로터 지지체(56)는 열경화성 수지, 예를 들어 폴리에스터와 같은 BMC(Bulk Molding Compound) 몰딩재 또는 열가소성 수지로 몰딩하여 제2자석(52) 및 제2백요크(54)와 일체로 형성된다. Here, the outer rotor support 56 is molded with a thermosetting resin, for example, a BMC (Bulk Molding Compound) molding material such as polyester or a thermoplastic resin to be integral with the second magnet 52 and the second back yoke 54. Is formed.
아우터 로터 지지체(56)는 내측 단부가 인너 샤프트(30)의 제2연결부(92)에 연결되어 인너 샤프트(30)와 같이 회전되고, 외측 단부는 직각으로 절곡되어 그의 내면에 제2자석(52) 및 제2백요크(54)이 고정되며, 스테이터(60)와 인너 로터(40)를 수용하도록 컵 형상을 이루고 있다.The outer rotor support 56 has an inner end connected to the second connecting portion 92 of the inner shaft 30 to rotate like the inner shaft 30, and the outer end is bent at a right angle so that the second magnet 52 is disposed on the inner surface thereof. ) And the second back yoke 54 are fixed to form a cup shape to accommodate the stator 60 and the inner rotor 40.
여기에서, 펄세이터(130)는 요구되는 회전토크가 세탁조(120)와 비교하여 크지 않으며, 직경이 커서 큰 구동 토크를 갖는 아우터 로터(50)에 의해 충분히 회전될 수 있다. 따라서, 아우터 로터(50)의 제2자석(52)은 염가이며 경자성체인 하드 페라이트(ferrite)를 사용할 수 있다.Here, the pulsator 130 may be rotated sufficiently by the outer rotor 50 having a large driving torque, because the required rotation torque is not large compared with the washing tank 120 and the diameter is large. Therefore, the second magnet 52 of the outer rotor 50 may use hard ferrite, which is inexpensive and hard magnetic material.
또한, 아우터 로터(50)는 도 3a 내지 도 3d에 도시된 바와 같이, 인너 로터 지지체(46)를 제1샤프트(22)에 고정시키기 위해 나사 체결된 제1고정너트(34)의 두께를 고려하여 제1고정너트(34)보다 더 큰 간격을 두고 아우터 로터 지지체(56)가 인너 로터 지지체(46)와 간격을 두고 배치되어 있다. In addition, the outer rotor 50 considers the thickness of the first fixing nut 34 screwed to fix the inner rotor support 46 to the first shaft 22, as shown in Figs. 3a to 3d. The outer rotor support 56 is spaced apart from the inner rotor support 46 at a greater distance than the first fixing nut 34.
이에 따라, 아우터 로터 지지체(56)는 컵 형상의 바닥면 중에 인너 및 아우터 스테이터 코일(66,68)과 대향한 외측평탄부(56a)와, 인너 샤프트(30)와 결합이 이루어지는 내측평탄부(56b)와, 상기 외측평탄부(56a)와 내측평탄부(56b)를 연결하는 경사연결부(56c)를 포함하고 있다.Accordingly, the outer rotor support 56 has an outer flat portion 56a facing the inner and outer stator coils 66 and 68 in the cup-shaped bottom surface, and an inner flat portion which is engaged with the inner shaft 30 ( And an inclined connecting portion 56c connecting the outer flat portion 56a and the inner flat portion 56b.
박막이면서 강도를 유지하도록 외주면 및 내주면에 각각 복수의 방사방향 보강리브(51,51a)가 일정한 각도마다 방사방향으로 돌출되어 있고, 내주면에는 또한 제1 내지 제3 원주방향 보강리브(53a-53c)가 원주방향으로 간격을 두고 형성되어 있다.A plurality of radial reinforcing ribs 51, 51a are projected radially at regular angles on the outer circumferential surface and the inner circumferential surface, respectively, to maintain the strength while the inner circumferential surface further includes first to third circumferential reinforcing ribs 53a-53c. Are formed at intervals in the circumferential direction.
아우터 로터 지지체(56)에서 스테이터(60)를 구성하는 인너 스테이터 코일(66) 및 아우터 스테이터 코일(68)과 대향한 외측평탄부(56a)에는 각각 외부로 통하는 제1 및 제2 관통구멍(55,57)이 형성되어 있다. 제1 및 제2 관통구멍(55,57)은 인너 및 아우터 스테이터 코일(66,68)로부터 발생된 열을 외부로 배출하는 공기 순환통로 역할을 한다.The inner stator coil 66 constituting the stator 60 in the outer rotor support 56 and the outer flat portion 56a facing the outer stator coil 68 respectively have first and second through holes 55 communicating with the outside. 57 is formed. The first and second through holes 55 and 57 serve as air circulation passages for discharging heat generated from the inner and outer stator coils 66 and 68 to the outside.
이하에 본 발명의 스테이터에 대하여 설명한다.The stator of this invention is demonstrated below.
도 4a 내지 도 4c를 참조하면, 스테이터(60)는 환형으로 배열되는 다수의 스테이터 코어 조립체(61)와, 다수의 스테이터 코어 조립체(61)가 환형으로 배열되고 외주부가 외조(110)에 고정되며, 내부에 관통구멍이 형성되는 스테이터 지지체(270)(도 2 참조)를 포함한다. 상기 다수의 스테이터 코어 조립체(61)는 각각 도 4a 및 도 4b과 같이 환형으로 배열되어 상호 결합되는 분할형 스테이터 코어(62)와, 분할형 스테이터 코어(62)의 외측면에 절연물질로 형성되어 내측 및 외측에 각각 코일권선영역을 한정하는 보빈(64)과, 스테이터 코어(62)의 일측(내측) 보빈에 감겨지는 인너 스테이터 코일(66)과, 스테이터 코어(62)의 타측(외측) 보빈에 감겨지는 아우터 스테이터 코일(68)을 포함한다.4A to 4C, the stator 60 includes a plurality of stator core assemblies 61 arranged in an annular shape, a plurality of stator core assemblies 61 arranged in an annular shape, and an outer circumferential portion thereof is fixed to the outer tub 110. , A stator support 270 (see FIG. 2) having a through hole formed therein. The plurality of stator core assemblies 61 are formed of an insulating material on the outer side of the divided stator core 62 and the divided stator core 62 which are arranged in an annular shape and coupled to each other as shown in FIGS. 4A and 4B, respectively. A bobbin 64 defining a coil winding area on the inner side and the outer side, an inner stator coil 66 wound around one side (inside) bobbin of the stator core 62, and the other side (outside) bobbin of the stator core 62. It includes an outer stator coil 68 wound on.
스테이터 지지체(270)는 금형에 원주방향으로 다수의 스테이터 코어 조립체(61)를 환형으로 조립 배열한 후 인서트 몰딩에 의해 다수의 스테이터 코어 조립체(61)와 일체로 형성된다. 스테이터 지지체(270)의 중간에는 스테이터 코어 조립체(61)가 배치되고, 스테이터 지지체(270)의 내측은 2단 절곡되어 연장되어 제1베어링 하우징(102)을 형성하며 내측 단부에 제1베어링 안착부(104)가 배치되어 있다. The stator support 270 is formed integrally with the plurality of stator core assemblies 61 by insert molding after arranging the plurality of stator core assemblies 61 in the circumferential direction in a mold. The stator core assembly 61 is disposed in the middle of the stator support 270, and the inside of the stator support 270 is bent in two stages to extend to form the first bearing housing 102, and the first bearing seating portion at the inner end thereof. 104 is disposed.
상기 제1베어링(26)은 제1베어링 안착부(104)에 설치됨에 따라 아우터 샤프트(20)를 회전 가능하게 지지할 수 있고, 구동모터(140)의 조립성을 개선할 수 있으며, 제1베어링(26)을 장착하기 위한 별도의 베어링 하우징이 불필요하여 부품수를 줄일 수 있고, 구조를 단순화할 수 있다.As the first bearing 26 is installed on the first bearing seating part 104, the first bearing 26 may rotatably support the outer shaft 20, and improve the assemblability of the driving motor 140. A separate bearing housing for mounting the bearing 26 is unnecessary, so that the number of parts can be reduced and the structure can be simplified.
스테이터 지지체(270)의 외주부는 1단 절곡되어 연장된 후 선단부가 제2베어링 하우징(10)과 함께 볼트(260)에 의해 외조(110)에 고정된다.The outer circumferential portion of the stator support 270 is bent in one stage and extended, and the tip portion is fixed to the outer tub 110 by the bolt 260 together with the second bearing housing 10.
또한, 스테이터 지지체(270)는 인서트 몰딩에 의해 스테이터 코어 조립체(61)와 일체로 형성되는 구조 이외에, 수지 또는 금속재를 사용하여 스테이터 코어 조립체(61)와 별도로 제조된 후 스테이터 지지체(270)와 볼트 체결되는 구조도 적용이 가능하다. In addition to the structure in which the stator support 270 is integrally formed with the stator core assembly 61 by insert molding, the stator support 270 and the bolt are manufactured separately from the stator core assembly 61 by using a resin or metal material. The fastening structure can also be applied.
본 발명에 따른 스테이터(60)는 도 4b에 도시된 바와 같이 다수의 분할형 스테이터 코어를 사용하여 구성되는 다수의 스테이터 코어 어셈블리(61)를 도 4a에 도시된 바와 같이, 환형상으로 조립하여 구성될 수 있다. The stator 60 according to the present invention is configured by assembling a plurality of stator core assemblies 61 configured using a plurality of split stator cores as shown in FIG. 4B in an annular shape, as shown in FIG. 4A. Can be.
도 4a에 도시된 실시예 설명에서는 인너 및 아우터 스테이터 코일(66,68)이 권선되는 스테이터 코어가 환형으로 배열되어 상호 연결되는 다수의 분할형 스테이터 코어(62)로 구성된 것을 예를 들어 설명하나, 본 발명은 이에 제한되지 않고 스테이터 코어가 일체형 또는 부분 분할형 코어로 구성되는 것도 가능하다. In the exemplary embodiment illustrated in FIG. 4A, the stator cores to which the inner and outer stator coils 66 and 68 are wound are configured as a plurality of split stator cores 62 that are arranged in an annular shape and interconnected. The present invention is not limited to this, and it is also possible that the stator core is composed of an integral or partially split core.
분할형 스테이터 코어(62)는 일체형 스테이터 코어와 비교할 때 코일 권선이 저가의 범용 권선기를 사용하여 쉽게 저비용으로 제조 가능한 이점이 있고, 코어 재료의 로스를 줄이는 것이 가능하다.The split stator core 62 has the advantage that the coil winding can be easily manufactured at low cost using a low cost general purpose winding machine as compared to the integral stator core, and it is possible to reduce the loss of the core material.
도시된 실시예에서는 각각의 티스마다 한개씩 분할형 스테이터 코어를 사용하여 구성하거나, 몇개의 티스, 예를 들어, 3개 티스를 하나의 분할형 스테이터 코어로 제작하여 이를 조립하는 것도 가능하다. 특히, U, V, W 3상 구동방식의 BLDC 모터에서는 U, V, W의 어느 한상(phase)에 대하여 3개 티스에 연속하여 코일을 권선하는 경우에는 3개 티스를 하나의 분할형 스테이터 코어로 제작하는 것도 바람직하다.In the illustrated embodiment, it is possible to configure by using a split stator core, one for each tooth, or to assemble several teeth, for example, three teeth as one split stator core. Particularly, in the case of U, V, W three-phase driving type BLDC motor, three teeth are divided into one split stator core when the coil is wound continuously in three teeth for one phase of U, V, and W. It is also preferable to produce with.
상기 분할형 스테이터 코어(62)는 도 4a 내지 도 4c와 같이 외측에 배치되고 아우터 스테이터 코일(66)이 감겨지는 제1티스부(312)와, 제1티스부(312)의 반대쪽, 내측에 형성되어 인너 스테이터 코일(68)이 감겨지는 제2티스부(310)와, 제1티스부(312)와 제2티스부(310) 사이를 구획하는 구획부(314)와, 구획부(314)의 측방향 양쪽 끝부분에 형성되어 분할형 스테이터 코어(62) 사이를 상호 연결하는 결합부(320,322)를 포함한다. The split stator core 62 is disposed on the outer side as shown in FIGS. 4A to 4C and on the opposite side and the inner side of the first tooth portion 312 and the first tooth portion 312 on which the outer stator coil 66 is wound. A second tooth portion 310 formed to wind the inner stator coil 68, a partition portion 314 that partitions between the first tooth portion 312 and the second tooth portion 310, and a partition portion 314. And coupling portions 320 and 322 formed at both ends of the lateral sides thereof to interconnect the split stator cores 62.
본 발명의 스테이터(60)는 아우터 로터(50)와 인너 로터(40)를 각각 구동하도록 스테이터 코어(62)의 제1티스부(312)에 감겨지는 아우터 스테이터 코일(68)이 아우터 스테이터(60b)를 구성하고, 스테이터 코어(62)의 제2티스부(310)에 감겨지는 인너 스테이터 코일(66)이 인너 스테이터(60a)를 구성하여, 더블 스테이터를 형성한다.In the stator 60 of the present invention, the outer stator coil 68 wound around the first teeth 312 of the stator core 62 to drive the outer rotor 50 and the inner rotor 40 is the outer stator 60b. ), And the inner stator coil 66 wound around the second tooth portion 310 of the stator core 62 forms the inner stator 60a to form a double stator.
또한, 도 4a 내지 도 4c에 도시된 실시예 설명에서는 각 슬롯별로 코어가 분리되어 다수의 분할형 스테이터 코어(62)로 구성되는 것을 예시하였으나, 환형의 백요크를 기준으로 분리되어 아우터 스테이터용 스테이터 코어와 인너 스테이터용 스테이터 코어로 분리되어 제조된 후, 조립되는 것도 가능하다.In addition, in the embodiment illustrated in FIGS. 4A to 4C, the core is separated for each slot to be configured as a plurality of split stator cores 62. However, the stator for the outer stator is separated based on the annular back yoke. It is also possible to separate the core and the stator core for the inner stator, and then to assemble them.
본 발명에서는 도 6과 같이 제1 및 제2 드라이버(530,540)로부터 인너 스테이터(60a)를 구성하는 인너 스테이터 코일(66)과 아우터 스테이터(60b)를 구성하는 아우터 스테이터 코일(68)로 구동신호를 개별적으로 인가하여, 아우터 로터(50)와 인너 로터(40)를 각각 구동한다.In the present invention, as shown in FIG. 6, the driving signal is transmitted from the first and second drivers 530 and 540 to the inner stator coil 66 constituting the inner stator 60a and the outer stator coil 68 constituting the outer stator 60b. By applying separately, the outer rotor 50 and the inner rotor 40 are respectively driven.
여기에서, 인너 스테이터 코일(66)로는 제1구동신호가 인가되고, 아우터 스테이터 코일(68)에는 제2구동신호가 인가되기 때문에, 인너 스테이터 코일(66)로만 구동신호가 인가되면 인너 로터(50)만 회전되고, 아우터 스테이터 코일(68)로만 구동신호가 인가되면 아우터 로터(40)만 회전되며, 인너 및 아우터 스테이터 코일(66,68)에 동시에 구동신호가 인가되면 인너 로터(40)와 아우터 로터(50)가 동시에 회전된다. Here, since the first driving signal is applied to the inner stator coil 66 and the second driving signal is applied to the outer stator coil 68, the inner rotor 50 is provided only when the driving signal is applied to the inner stator coil 66. ) Is rotated, only when the drive signal is applied to the outer stator coil 68, only the outer rotor 40 is rotated, when the drive signal is applied to the inner and outer stator coils (66, 68) at the same time the inner rotor 40 and the outer The rotor 50 is rotated at the same time.
구획부(314)의 중앙에는 관통홀(332)이 형성되어 스테이터 지지체(270)와 일체화를 위해 볼트 체결 용도로 사용될 수 도 있다.A through hole 332 is formed in the center of the partition 314 and may be used for bolting for integration with the stator support 270.
제1티스부(312)의 끝부분에는 제1자석(52)과 마주보게 배치되는 제1플랜지부(318)가 형성되고, 제2티스부(310)의 끝부분에는 제2자석(42)과 마주보게 배치되는 제2플랜지부(316)가 형성된다. A first flange portion 318 disposed to face the first magnet 52 is formed at an end portion of the first tooth portion 312, and a second magnet 42 is formed at the end portion of the second tooth portion 310. A second flange portion 316 is disposed to face each other.
제1플랜지(318)와 제2플랜지부(316)는 아우터 로터(50)의 제1자석(52)과, 인너 로터(40)의 제2자석(42)에 각각 대응하도록 소정 곡률로 내향 및 외향 곡면을 이루고 있다. 따라서, 스테이터 코어(62)의 내주면 및 외주면의 진원도가 높아지므로 스테이터(60)의 내주면 및 외주면과 제1자석(52) 및 제2자석(42)과의 사이가 근접되면서도 일정한 자기갭(gap)을 유지할 수 있다. The first flange 318 and the second flange portion 316 are inwardly and at a predetermined curvature so as to correspond to the first magnet 52 of the outer rotor 50 and the second magnet 42 of the inner rotor 40, respectively. It forms an outwardly curved surface. Therefore, since the roundness of the inner circumferential surface and the outer circumferential surface of the stator core 62 is increased, the gap between the inner circumferential surface and the outer circumferential surface of the stator 60 and the first magnet 52 and the second magnet 42 is close to a constant magnetic gap. Can be maintained.
스테이터 코어(62) 사이는 자기회로를 형성할 수 있도록 상호 직접 연결된 구조를 가져야된다. 따라서, 결합부(320,322)는 인접한 스테이터 코어(62) 사이가 서로 직접 연결된 구조를 갖는다. Between the stator cores 62 should have a structure directly connected to each other to form a magnetic circuit. Accordingly, the coupling parts 320 and 322 have a structure in which adjacent stator cores 62 are directly connected to each other.
이러한 결합부(320,322)는 일 예로, 구획부(314)의 일측에 결합돌기(322)가 돌출되게 형성되고, 구획부(314)의 타측에 결합돌기(322)가 끼움 결합되는 결합홈(320)이 형성되어, 결합돌기(322)를 결합홈(320)에 끼워 조립하면 다수의 분할형 스테이터 코어(62)가 환형으로 배열되고, 상호 직접 연결된 구조를 갖게 된다.For example, the coupling parts 320 and 322 are formed such that the coupling protrusion 322 protrudes on one side of the partition 314, and the coupling groove 320 into which the coupling protrusion 322 is fitted to the other side of the partition 314. ) Is formed, and when the coupling protrusion 322 is inserted into the coupling groove 320 to assemble, a plurality of split stator cores 62 are arranged in an annular shape and have a structure directly connected to each other.
이와 같은 본 발명의 구동모터(140)는 인너 로터(40)와 인너 스테이터 코일(66)이 감겨지는 스테이터(60)의 일측(즉, 인너 스테이터) 간에 제1자기회로(L1)를 형성하고, 아우터 로터(50)와 아우터 스테이터 코일(68)이 감겨지는 스테이터(60)의 타측(즉, 아우터 스테이터) 간에 제2자기회로(L2)를 형성하여 각각 서로 독립적인 자기회로를 형성하므로 인너 로터(40)와 아우터 로터(50)가 각각 별도로 구동될 수 있다. The driving motor 140 of the present invention forms a first magnetic circuit (L1) between one side (that is, the inner stator) of the stator 60 to which the inner rotor 40 and the inner stator coil 66 are wound, Since the second magnetic circuit L2 is formed between the outer rotor 50 and the other side of the stator 60 on which the outer stator coil 68 is wound (that is, the outer stator), each of the outer rotor 50 forms an independent magnetic circuit. 40 and the outer rotor 50 may be driven separately, respectively.
구체적으로, 제1자기회로(L1)는 N극의 제1자석(42), 인너 스테이터 코일(66)이 감겨지는 제1티스부(310), 구획부(314)의 내측부분, N극의 제1자석(42)에 인접한 S극의 제1자석(42) 및 제1백요크(44)를 경유한다.Specifically, the first magnetic circuit L1 includes a first tooth portion 310 on which the first magnet 42 of the N pole, the inner stator coil 66 is wound, an inner portion of the partition 314, and an N pole of the first magnetic circuit L1. Via the first magnet 42 and the first back yoke 44 of the S pole adjacent to the first magnet 42.
그리고, 제2자기회로(L2)는 N극의 제2자석(52), N극의 제2자석(52)에 대향하고 아우터 스테이터 코일(68)이 감겨지는 제2티스부(312), 구획부(314)의 외측부분, S극의 제2자석(52) 및 제2백요크(54)를 경유한다. The second magnetic circuit L2 is divided into a second tooth portion 312 facing the second magnet 52 of the N pole and the second magnet 52 of the N pole and having the outer stator coil 68 wound thereon. Via the outer portion of the portion 314, the second magnet 52 and the second back yoke 54 of the S pole.
그러나, 상기 제1 및 제2 자기회로(L1,L2)는 제1 및 제2 티스부(310,312)에 권선되는 인너 및 아우터 스테이터 코일(66,68)을 1개의 티스마다 U,V,W 상(phase)을 달리하여 권선하는 1권선 코일방법, 2개의 티스마다 U,V,W 상(phase)을 달리하여 권선하는 2권선 코일방법, 3개의 티스마다 U,V,W 상(phase)을 달리하여 권선하는 3권선 코일방법과 구동방식에 따라 변경될 수 있다.However, the first and second magnetic circuits L1 and L2 may have the U, V, and W phases of the inner and outer stator coils 66 and 68 wound around the first and second tooth portions 310 and 312 for each tooth. One-winding coil method for winding with different phases, U, V, W phase winding every two teeth, U, V, W phase for every three teeth Alternatively, the winding may be changed depending on the three-winding coil method and driving method.
상기한 실시예에 따른 구동모터(140)는 인너 로터(40)의 출력이 아우터 샤프트(20)에 전달되고, 아우터 로터(50)의 출력이 인너 샤프트(30)에 전달되는 구조를 가지고 있다.The drive motor 140 according to the above embodiment has a structure in which the output of the inner rotor 40 is transmitted to the outer shaft 20, and the output of the outer rotor 50 is transmitted to the inner shaft 30.
전자동 세탁기에서는 세탁물 및 세탁수와 접촉면적이 작은 펄세이터(130)보다 세탁물 및 세탁수와 접촉면적이 큰 세탁조(120)를 구동하는 데 더 큰 고토크 구동이 요구된다. In the fully automatic washing machine, a larger high torque drive is required to drive the washing tub 120 having a larger contact area with the laundry and the washing water than the pulsator 130 having a small contact area with the laundry and the washing water.
또한, 일반적으로 대직경의 아우터 로터(Outor Rotor)(50)가 소직경의 인너 로터(Inner Rotor)(40)보다 고토크 출력이 얻어지게 된다.Also, in general, a larger diameter outer rotor 50 has a higher torque output than a smaller diameter inner rotor 40.
따라서, 도 2에 도시된 본 발명에 따른 구동모터(140)를 이용한 세탁기 구동장치(150)는, 대직경의 아우터 로터(Outor Rotor)(50)로부터 발생된 고토크 출력을 인너 샤프트(30)를 통하여 펄세이터(130)에 전달하여 펄세이터(130)를 구동하고, 소직경의 인너 로터(Inner Rotor)(40)는 높은 자속밀도를 갖는 희토류계 자석을 채용함에 따라 인너 로터의 구동 토크를 증대시켜서 아우터 샤프트(20)를 통하여 세탁조(120)를 구동함에 따라 초기에 큰 구동 토크가 요구되는 세탁조를 무리없이 구동할 수 있다.Accordingly, the washing machine driving device 150 using the driving motor 140 according to the present invention shown in FIG. 2 includes an inner shaft 30 that outputs a high torque output generated from a large diameter outer rotor 50. It transmits to the pulsator 130 to drive the pulsator 130, the inner rotor (40) of the small diameter (Inner Rotor) 40, the drive torque of the inner rotor by adopting a rare earth magnet having a high magnetic flux density By increasing and driving the washing tub 120 through the outer shaft 20, it is possible to drive a washing tub which requires a large driving torque at first.
이하의 실험에서는 도 2에 도시된 구동모터(140)에 하기 표 1에 기재한 조건과 같이, 아우터 로터(50)에는 페라이트 자석(Ferrite Magnet)을 사용하고, 소직경의 인너 로터(40)에 아우터 로터와 동일한 종류의 페라이트 자석을 사용하는 경우와 Nd 자석(Nd Magnet)을 사용하는 경우, 로터의 회전속도가 200rpm일 때 모터 특성값을 구하여 나타내었다.In the following experiment, a ferrite magnet is used for the outer rotor 50 and the inner rotor 40 of the small diameter, as shown in Table 1, for the driving motor 140 shown in FIG. 2. In the case of using the same type of ferrite magnet as the outer rotor and using the Nd magnet, the motor characteristic values were obtained when the rotor rotation speed was 200 rpm.
또한, 페라이트 자석을 사용한 인너 로터와 아우터 로터, Nd 자석을 사용한 인너 로터에 대하여 로터의 회전속도가 120rpm일 때 토크와 효율에 대한 값을 구하고 이를 도 5에 그래프로 나타내었다.In addition, for the inner rotor and the outer rotor using the ferrite magnet, the inner rotor using the Nd magnet when the rotation speed of the rotor is 120rpm to calculate the value for the torque and efficiency is shown in the graph in FIG.
스테이터 슬롯수Number of stator slots -- 2727
로터 폴수Rotor count -- 2424
코어 적층Core lamination mmmm 2727
인너 로터(페라이트 자석)Inner rotor (ferrite magnet) 인너 로터(Nd 자석)Inner rotor (Nd magnet) 아우터 로터(페라이트 자석)Outer rotor (ferrite magnet)
코일 직경/턴수Coil diameter / turns -- 0.65/1300.65 / 130 0.65/1800.65 / 180
권선 저항Winding resistance R_LL(mH) [Ω]R_LL (mH) [Ω] 15.715.7 23.923.9
권선 인덕턴스Winding inductance L_LL[mH]L_LL [mH] 9393 217217
모터 상수Motor constants KmKm 0.650.65 1.181.18 1.391.39
토크 상수Torque constant KtKt 3.153.15 5.735.73 8.318.31
Back EMF@200rpmBack EMF @ 200rpm E_ph[V]E_ph [V] 2222 4040 5858
상기한 표 1과 같이, 구동모터(140)는 인너 스테이터(60a)와 아우터 스테이터(60b)의 슬롯수는 동일하게 각각 27, 인너 로터(40)와 아우터 로터(50)의 폴수도 동일하게 각각 24, 코어 적층은 27mm로 인너 측과 아우터 측이 동일하게 설정하나, 스테이터 코어에 권선되는 코일은 인너 스테이터(60a)에는 0.65mm 직경의 와이어를 130회 권선하고 아우터 스테이터(60b)에는 180회 권선하였다.As shown in Table 1, the number of slots of the inner stator 60a and the outer stator 60b is 27, and the number of poles of the inner rotor 40 and the outer rotor 50 are the same. 24, core stacking 27mm, the inner side and the outer side is set to be the same, the coil wound on the stator core is wound around the inner stator (60a) wire of 0.65mm diameter 130 times and the outer stator (60b) 180 times It was.
이에 따라 인너 스테이터(60a)와 아우터 스테이터(60b)의 권선 저항과 권선 인덕턴스에 큰 차이가 발생하고, 동일한 페라이트 자석을 사용한 인너 로터(40) 모터와 아우터 로터(50) 모터에서는 Back EMF(200 rpm)가 각각 22V, 58V로 차이가 크게 발생하였다. 그러나, Nd 자석을 사용한 인너 로터(40)에서는 Back EMF(200 rpm)가 40V로 발생하여 페라이트 자석을 사용한 인너 로터(40)보다 1.8배 증가하였다.As a result, a large difference occurs in the winding resistance and the winding inductance of the inner stator 60a and the outer stator 60b. In the inner rotor 40 motor and the outer rotor 50 motor using the same ferrite magnet, the back EMF (200 rpm) is used. ) Was 22V and 58V, respectively. However, in the inner rotor 40 using the Nd magnet, Back EMF (200 rpm) was generated at 40V, which is 1.8 times higher than that of the inner rotor 40 using the ferrite magnet.
상기한 바와 같이, BLDC 모터에서 각 상의 토크는 역기전력(Back EMF)과 전류의 곱에 비례하므로 Nd 자석을 사용한 인너 로터(40)는 페라이트 자석을 사용한 인너 로터보다 더 큰 토크가 얻어지게 된다.As described above, since the torque of each phase in the BLDC motor is proportional to the product of the back EMF and the current, the inner rotor 40 using the Nd magnet has a larger torque than the inner rotor using the ferrite magnet.
토크 상수(Kt)와 모터 상수(Km)는 모두 Back EMF(역기전력)에 비례하며, Nd 자석을 사용한 인너 로터(40)는 페라이트 자석을 사용한 인너 로터보다 월등한 모터 특성을 나타내는 것을 알 수 있다.The torque constant Kt and the motor constant Km are both proportional to the back EMF (back EMF), and it can be seen that the inner rotor 40 using the Nd magnet exhibits superior motor characteristics than the inner rotor using the ferrite magnet.
또한, 도 5의 그래프를 참고하면, Nd 자석을 사용한 인너 로터(40)는 토크값이 동일할 때 페라이트 자석을 사용한 아우터 로터(50)와 거의 동등한 효율을 나타내고 있는 반면에 페라이트 자석을 사용한 인너 로터(40)는 효율이 크게 낮은 것을 알 수 있다.In addition, referring to the graph of FIG. 5, the inner rotor 40 using the Nd magnet exhibits almost the same efficiency as the outer rotor 50 using the ferrite magnet when the torque value is the same, while the inner rotor using the ferrite magnet is shown. 40 shows that the efficiency is significantly low.
따라서, 본 발명에서는 인너 로터(40)에 Nd 자석을 사용함에 따라 페라이트 자석을 사용한 아우터 로터(50)와 대등한 토크와 효율을 갖게 되므로 세탁 및 헹굼 행정시에 펄세이터(130) 뿐 아니라 세탁조(120)도 동시에 활용한 다양한 세탁 및 헹굼 수류를 형성할 수 있게 된다.Therefore, in the present invention, since the Nd magnet is used for the inner rotor 40, the outer rotor 50 using the ferrite magnet has the same torque and efficiency, and therefore, the washing tank (not only the pulsator 130) during the washing and rinsing stroke. 120 can also form a variety of washing and rinsing water streams utilized simultaneously.
도 4a 내지 도 4c에 도시된 실시예 설명에서는 스테이터(60)가 다수의 분할형 스테이터 코어(62)를 이용하여 다수의 스테이터 코어 조립체(61)를 준비한 후, 다수의 스테이터 코어 조립체(61)를 스테이터 지지체(270)와 결합시킴에 의해 아웃터 스테이터와 인너 스테이터의 슬롯(slot) 수가 서로 동일하게 설정된 구조로 제조되는 것을 예시하고 있으나, 본 발명은 이에 제한되지 않고 다양한 변경이 가능하다.4A to 4C, the stator 60 prepares the plurality of stator core assemblies 61 by using the plurality of split stator cores 62, and then the plurality of stator core assemblies 61. Although the number of slots of the outer stator and the inner stator by the combination with the stator supporter 270 is illustrated to be manufactured in the same configuration, the present invention is not limited thereto and various modifications are possible.
이하에 본 발명에 따른 세탁기의 제어방법을 도 6 및 도 7을 참고하여 설명한다.Hereinafter, a control method of the washing machine according to the present invention will be described with reference to FIGS. 6 and 7.
도 6은 본 발명에 따른 세탁기 제어장치의 블록 회로도이고, 도 7은 본 발명에 따른 전체적인 세탁기 제어방법을 간략하게 나타낸 순서도이다.6 is a block circuit diagram of a washing machine control apparatus according to the present invention, Figure 7 is a flow chart briefly showing the overall washing machine control method according to the present invention.
도 6을 참고하면, 본 발명에 따른 세탁기 제어장치는 인너 스테이터 코어(310)에 권선된 인너 스테이터 코일(66)로 인가되는 제1구동신호를 발생하는 제1드라이버(530)와, 아우터 스테이터 코어(312)에 권선된 아우터 스테이터 코일(68)로 인가되는 제2구동신호를 발생하는 제2드라이버(540)와, 상기 제1드라이버(530), 제2드라이버(540) 및 세탁기 전체를 제어하는 제어유닛(500)을 포함한다.Referring to FIG. 6, a washing machine control apparatus according to the present invention includes a first driver 530 for generating a first driving signal applied to an inner stator coil 66 wound around an inner stator core 310, and an outer stator core. The second driver 540 for generating a second drive signal applied to the outer stator coil 68 wound on the 312, and the first driver 530, the second driver 540 and the entire washing machine to control And a control unit 500.
상기 제어유닛(500)은 상기와 같이 제1 및 제2 드라이버(530,540)에 대한 제어와 동시에 세탁기 전체를 제어하도록 시스템 제어부 역할을 하거나, 또는 세탁기 본체의 시스템 제어부로부터 사용자가 설정한 세탁코스에 따라 결정되는 세탁 제어신호를 수신한 후 이에 기초하여 제1 및 제2 드라이버(530,540)에 개별적인 제어신호를 인가하는 드라이버 전용의 제어장치로 구성할 수 있다. 상기 제어유닛(500)은 마이콤이나 마이크로프로세서와 같은 신호처리장치로 구성될 수 있으며, PWM(Pulse Width Modulation) 제어신호를 발생하기 위하여 PWM 제어부를 내장하거나 별도로 구비한다.The control unit 500 acts as a system controller to control the entire washing machine simultaneously with the control of the first and second drivers 530 and 540 as described above, or according to the washing course set by the user from the system controller of the washing machine body. After receiving the determined washing control signal may be configured as a driver-specific control device for applying a separate control signal to the first and second drivers (530, 540) based on this. The control unit 500 may be configured as a signal processing device such as a microcomputer or a microprocessor. The control unit 500 may include a PWM controller or a separate PWM controller to generate a pulse width modulation (PWM) control signal.
상기한 바와 같이, 본 발명의 구동모터(140)는 더블 로터-더블 스테이터로 구성된 쌍동력 구조의 BLDC 모터로 이루어진 것이고, 예를 들어, U, V, W 3상 구동방식으로 모터 제어가 이루어진다. 따라서, 스테이터(60)의 인너 및 아우터 스테이터 코일(66,68)도 각각 U, V, W 3상 코일로 구성된다.As described above, the drive motor 140 of the present invention is composed of a BLDC motor of a twin-force structure composed of a double rotor-double stator, for example, the motor control is performed in U, V, W three-phase driving method. Therefore, the inner and outer stator coils 66 and 68 of the stator 60 also consist of U, V, and W three-phase coils, respectively.
본 발명의 스테이터(60)는 인너 로터(40)와 아우터 로터(50)를 각각 구동하도록 인너 스테이터 코일(66)을 구비하는 인너 스테이터(60a)와, 아우터 스테이터 코일(68)을 구비하는 아우터 스테이터(60b)를 포함하는 더블 스테이터를 형성한다.The stator 60 of the present invention includes an inner stator 60a including an inner stator coil 66 and an outer stator coil 68 to drive the inner rotor 40 and the outer rotor 50, respectively. A double stator including 60b is formed.
그 결과, 인너 스테이터(60a)와, 인너 스테이터(60a)에 의해 회전이 이루어지는 인너 로터(40)는 인너 모터를 형성하고, 아우터 스테이터(60b)와, 아우터 스테이터(60b)에 의해 회전이 이루어지는 아우터 로터(50)는 아우터 모터를 형성하며, 상기 인너 모터와 아우터 모터는 각각 BLDC 방식으로 제어가 이루어지도록 모터 구조가 설계되고 제1 및 제2 드라이버(530,540)에서는 예를 들어, 6-스텝 방식의 구동 제어가 이루어진다.As a result, the inner stator 60a and the inner rotor 40 which are rotated by the inner stator 60a form an inner motor, and the outer stator 60b and the outer stator 60b are rotated by the outer stator 60b. The rotor 50 forms an outer motor, and the motor structure is designed such that the inner motor and the outer motor are controlled in a BLDC manner, respectively, and in the first and second drivers 530 and 540, for example, in a six-step manner. Drive control is made.
상기 제1 및 제2 드라이버(530,540)는 각각 토템폴 구조로 접속된 3쌍의 스위칭 트랜지스터로 구성되는 인버터로 이루어질 수 있고, 각각의 인버터의 U, V, W 3상 출력은 인너 및 아우터 스테이터 코일(66,68)의 U, V, W 3상 코일로 인가된다.The first and second drivers 530 and 540 may each include an inverter including three pairs of switching transistors connected in a totem pole structure, and the U, V, and W three-phase outputs of each inverter may include an inner and an outer stator coil ( 66, 68) is applied to the U, V, W three-phase coil.
제어유닛(500)은 각각 예를 들어, 홀 센서(Hall sensor)로 이루어진 제1 및 제2 로터위치 감지센서(510,520)로부터 검출된 인너 로터(40)와 아우터 로터(50)의 회전위치에 기초하여 PWM 방식의 제어신호를 제1 및 제2 드라이버(530,540)로 인가하며, 제1 및 제2 드라이버(530,540)는 제어신호를 받아서 U, V, W 3상 출력을 인너 및 아우터 코일(66,68)의 U, V, W 3상 코일로 인가하여 인너 로터(40)와 아우터 로터(50)를 회전 구동한다.The control unit 500 is based on the rotational position of the inner rotor 40 and the outer rotor 50 detected from the first and second rotor position sensors 510 and 520, respectively, which are made of, for example, a Hall sensor. PWM control signals are applied to the first and second drivers 530 and 540, and the first and second drivers 530 and 540 receive the control signals and output the U, V, and W three-phase outputs to the inner and outer coils 66, respectively. The inner rotor 40 and the outer rotor 50 are rotationally driven by being applied to the U, V, and W three-phase coils of 68).
제어유닛(500)은 메모리장치에 각종 세탁코스를 실행하기 위한 프로그램을 보유하고 있으며, 모든 세탁코스는 기본적으로 세탁행정, 헹굼행정, 탈수행정을 포함하고 있으며, 또한 각 행정에는 급수행정과 배수행정이 전후로 포함되어 있으며, 세탁코스에 따라 세탁행정, 헹굼행정, 탈수행정 중 적어도 하나를 다수회 반복하여 수행한다.The control unit 500 has a program for executing various washing courses in the memory device, and all washing courses basically include washing strokes, rinsing strokes, and dehydrating strokes. Is included before and after, depending on the washing course is performed repeatedly at least one of the washing stroke, rinsing stroke, dehydration stroke.
이와 같이, 구성되는 본 발명에 따른 세탁기의 작용을 도 7을 참고하여 다음에 설명한다. Thus, the operation of the washing machine according to the present invention configured as follows will be described with reference to FIG.
도 7을 참조하면, 본 발명에 따른 세탁기는 먼저 단계(S200)에서 세탁기의 전원이 턴 온된다.Referring to FIG. 7, the washing machine according to the present invention first turns on the washing machine in step S200.
이와 같은 상태에서 제어유닛(500)은 사용자의 선택에 따라 입력되는 세탁 제어신호를 통해 현재 세탁 또는 헹굼 행정을 수행하는 지의 여부를 판단한다(S202).In this state, the control unit 500 determines whether to perform the current washing or rinsing stroke through the washing control signal input according to the user's selection (S202).
상기 판단 결과, 세탁 또는 헹굼 행정을 수행할 경우에 상기 제어유닛(500)은 도시되지 않은 세탁물의 무게(부하량)를 검출하고, 검출된 세탁물의 무게(부하량)에 따라 수위 단계를 설정하고 급수를 시작한다. As a result of the determination, when performing the washing or rinsing stroke, the control unit 500 detects the weight (load amount) of the laundry (not shown), sets the water level step according to the detected laundry weight (load amount), and supplies water. To start.
또한, 세탁물의 무게(부하량)와 세탁물의 종류에 따라 사용자가 설정한 세탁코스에 따라 세탁행정단계를 설정한다. 설정된 급수가 완료되고 세탁행정단계가 설정되면 설정된 세탁행정을 시작한다.In addition, according to the weight of the laundry (load amount) and the type of laundry, the washing administration step is set according to the washing course set by the user. When the set water supply is completed and the washing administration stage is set, the set washing administration starts.
즉, 설정된 세탁 또는 헹굼 행정에 따라 제1드라이버(530) 및 제2드라이버(540)의 인버터를 구동시킨다(S204).That is, the inverters of the first driver 530 and the second driver 540 are driven in accordance with the set washing or rinsing stroke (S204).
그러면, 상기 제1드라이버(530) 및 제2드라이버(540)가 선택적, 독립적으로 3상 교류전력을 발생시키고, 발생시킨 3상 교류전력은 스테이터(60)의 인너 스테이터 코일(66) 및 아우터 스테이터 코일(68)에 인가됨에 따라 다양한 세탁 코스 중 어느 하나의 방법으로 구동되어 세탁이 이루어진다. 상기한 세탁 또는 헹굼 행정은 다양한 세탁 코스에 따라 다수회 반복하여 진행되며, 다양한 세탁수류를 조합하여 세탁 행정이 진행될 수 있다.Then, the first driver 530 and the second driver 540 selectively and independently generate three-phase AC power, the generated three-phase AC power is the inner stator coil 66 and the outer stator of the stator 60 As applied to the coil 68, the washing is driven by any one of a variety of washing courses. The washing or rinsing stroke is repeatedly performed a plurality of times according to various washing courses, and the washing stroke may be performed by combining various washing water streams.
더블 로터-더블 스테이터 방식의 구동모터(140)를 이용한 세탁방법에 대하여는 이하에 상세하게 설명한다.The washing method using the drive motor 140 of the double rotor-double stator method will be described in detail below.
그 후, 상기 제어유닛(500)은 모든 로터를 정지시킨 상태에서 현재 탈수 행정을 수행하는지의 여부를 판단하거나 또는 상기 단계(S202)에서 세탁 행정 또는 헹굼 행정이 아닐 경우에 탈수 행정을 수행해야되는 지의 여부를 판단한다(S208).Thereafter, the control unit 500 determines whether to perform the current dehydration stroke in the state where all the rotors are stopped, or if it is not the washing stroke or the rinsing stroke in step S202, It is determined whether or not (S208).
상기 판단 결과 탈수 행정을 수행해야될 경우에 상기 제어유닛(500)은 인너 로터(40)만을 구동하거나 또는 인너 로터(40)와 아우터 로터(50)를 동일한 방향/동일한 RPM으로 회전할 수 있도록 제1드라이버(530) 및 제2드라이버(540)를 제어하여 인너 스테이터 코일(66)과 아우터 스테이터 코일(68)에 동일한 구동신호를 인가한다. 이에 따라 발생된 인너 로터(40)와 아우터 로터(50)의 회전력은 아우터 샤프트(20)와 인너 샤프트(30)를 통하여 세탁조(120)와 펄세이터(130)에 전달하여 일방향으로 동일한 속도로 회전되게 하여 탈수 행정을 수행한다(S212).When the dehydration stroke is to be performed as a result of the determination, the control unit 500 drives only the inner rotor 40 or rotates the inner rotor 40 and the outer rotor 50 in the same direction / same RPM. The same driver signal is applied to the inner stator coil 66 and the outer stator coil 68 by controlling the first driver 530 and the second driver 540. Accordingly, the rotational force generated by the inner rotor 40 and the outer rotor 50 is transmitted to the washing tub 120 and the pulsator 130 through the outer shaft 20 and the inner shaft 30 to rotate at the same speed in one direction. To perform a dehydration stroke (S212).
그리고 상기 제어유닛(500)은 탈수 행정의 수행시간이 경과되었는 지의 여부를 판단하고(S214), 탈수 행정의 시간이 경과되었을 경우에 세탁물의 세탁 동작을 종료한다.Then, the control unit 500 determines whether the execution time of the dehydration stroke has elapsed (S214), and when the time of the dehydration stroke has elapsed, the washing operation of the laundry is terminated.
상기한 본 발명에 따른 세탁 또는 헹굼 행정을 부연설명하면, 다음과 같다.More specifically, the washing or rinsing stroke according to the present invention described above is as follows.
세탁 또는 헹굼 행정을 수행할 경우에 상기 제어유닛(500)은 세탁 또는 헹굼 행정에 따라 제1드라이버(530) 및 제2드라이버(540)의 인버터를 구동시킨다.When the washing or rinsing stroke is performed, the control unit 500 drives the inverters of the first driver 530 and the second driver 540 according to the washing or rinsing stroke.
그러면, 상기 제1드라이버(530) 및 제2드라이버(540)가 3상 교류전력을 발생시키고, 발생된 3상 교류전력은 스테이터(60)의 인너 스테이터 코일(66) 및 아우터 스테이터 코일(68)에 선택적, 독립적으로 인가된다. 이에 따라 스테이터(60)의 인너 스테이터 코일(66) 및 아우터 스테이터 코일(68)에 의해 구동되는 인너 로터(40) 및 아우터 로터(50)의 출력은 각각 유사한 고토크 특성을 가지는 회전력을 제공한다.Then, the first driver 530 and the second driver 540 generates three-phase AC power, the generated three-phase AC power is the inner stator coil 66 and the outer stator coil 68 of the stator 60 Optionally, independently. Accordingly, the outputs of the inner rotor 40 and the outer rotor 50 driven by the inner stator coil 66 and the outer stator coil 68 of the stator 60 provide rotational forces having similar high torque characteristics, respectively.
세탁 또는 헹굼 행정을 수행할 때, 제1드라이버(530)로부터 인너 스테이터(60a)의 인너 스테이터 코일(66)로 3상 교류전력을 인가하면, 인너 로터(40)가 회전되고, 인너 로터(40)의 출력은 인너 로터(40)와 연결된 아우터 샤프트(20)로 전달된다. When performing washing or rinsing stroke, when three-phase AC power is applied from the first driver 530 to the inner stator coil 66 of the inner stator 60a, the inner rotor 40 is rotated and the inner rotor 40 is rotated. The output of) is transmitted to the outer shaft 20 connected to the inner rotor 40.
한편, 본 발명에서는 구동모터(40)의 인너 로터(40)와 아우터 로터(50)가 양방향 회전이 가능한 제1 및 제2 베어링(26,28)과, 제1 및 제2 슬리브 베어링(80,82)에 의해 지지되어 있기 때문에 펄세이터(130) 및 세탁조(120)의 회전방향과 회전속도를 다양하게 제어할 수 있고 다양한 세탁 수류를 형성할 수 있다. Meanwhile, in the present invention, the inner rotor 40 and the outer rotor 50 of the drive motor 40 may have first and second bearings 26 and 28 capable of bidirectional rotation, and the first and second sleeve bearings 80 and 82, it is possible to control the rotation direction and the rotation speed of the pulsator 130 and the washing tank 120 in a variety of ways and to form a variety of washing water flow.
특히, 펄세이터(130)와 세탁조(120)를 서로 다른 방향(반대 방향), 다른 속도, 다른 주기로 구동시킬 경우, 여러 가지 패턴의 강한 세탁 수류를 최소한의 에너지를 사용하여 형성할 수 있다. In particular, when the pulsator 130 and the washing tank 120 are driven in different directions (opposite directions), different speeds, and different cycles, various patterns of strong washing water streams may be formed using minimal energy.
본 발명에 따른 상호 반대방향 세탁 수류 형성방법은 기본적으로, 아우터 로터(50)의 구동에 의해 펄세이터(130)를 일방향, 예를 들어, 순방향, 즉 시계 방향(CW)으로 회전 구동하고, 미리 설정된 시간 동안 모터 온타임(ON TIME)을 유지한 후, 방향 전환을 위한 소정의 정지시간(OFF TIME)을 갖는다. In the method of forming mutually opposite washing water streams according to the present invention, the pulsator 130 is rotationally driven in one direction, for example, in a forward direction, that is, in a clockwise direction CW by driving the outer rotor 50, and in advance. After the motor ON time is maintained for the set time, the motor has a predetermined OFF time for changing the direction.
이 경우, 펄세이터(130)의 회전속도를 예를 들어, 160RPM의 목표 RPM까지 얼마나 빠르게 상승하는 지에 따라 이에 연동하여 회전되는 세탁물과 세탁수도 이에 연동하여 강한 회전이 이루어지게 된다. 도 9 내지 도 11과 같이 짧은 시간 내에 급상승시키면 강한 물살이 발생되어 세탁물에 큰 마찰력이 인가되게 되고, 도 12와 같이 점진적으로 회전속도를 상승시키면 세탁물에 큰 마찰력이 인가되는 것을 피할 수 있어 울(wool)과 같이 부드러운 세탁이 요구되는 경우에 적용될 수 있다. In this case, depending on how fast the rotational speed of the pulsator 130 rises to a target RPM of, for example, 160 RPM, the laundry and the washing water rotated in conjunction with this are also strongly rotated. 9 to 11, if the rapid rise within a short time is a strong water is generated and a large friction force is applied to the laundry, and gradually increasing the rotational speed as shown in Figure 12 can be avoided to apply a large friction force to the laundry ( soft washing, such as wool) may be applied.
또한, 아우터 로터(50)를 목표 RPM인 160RPM으로 상승시키는 방법은 도 9와 같은 오버슈팅(overshooting) 구동, 도 10과 같은 시간에 따라 서서히 RPM을 높이는 순차적인 기동방법, 도 12의 다단계의 램프-업(ramp-up) 구동 등의 기동방법 중 하나를 적용할 수 있다. In addition, a method of raising the outer rotor 50 to 160 RPM, which is a target RPM, may include an overshooting driving as shown in FIG. 9, a sequential starting method of gradually increasing the RPM according to the time as shown in FIG. 10, and a multi-step ramp of FIG. 12. One of the starting methods, such as ramp-up driving, may be applied.
본 발명에서는 펄세이터(130)가 적어도 2.5초간 회전이 이루어진 후, 방향 전환을 위한 소정의 정지시간(OFF TIME)을 갖기 위해 아우터 로터(50)를 정지시킨다.In the present invention, after the pulsator 130 is rotated for at least 2.5 seconds, the outer rotor 50 is stopped to have a predetermined OFF TIME for changing the direction.
아우터 로터(50)를 정지시키는 방법은 아우터 스테이터에 대한 구동전원을 차단하여 정지시키는 방법, 제2드라이버(540)를 이용하여 아우터 로터(50)에 대한 전자 브레이크를 실시하는 방법 중 하나를 선택할 수 있다.The method of stopping the outer rotor 50 may be selected from a method of stopping driving power to the outer stator and a method of applying an electromagnetic brake to the outer rotor 50 using the second driver 540. have.
이 경우, 펄세이터(130)의 정지를 가능한 짧은 시간에 구현되도록 제2드라이버(540)를 이용하여 아우터 로터(50)에 대한 전자 브레이크를 실시하면, 상부의 세탁물이 밑으로 들어가는 롤링이 발생하면서 세탁물과 세제의 혼합이 이루어질 수 있으며 동시에 강한 3차원 입체 수류가 형성된다. In this case, when the electronic brake is applied to the outer rotor 50 using the second driver 540 so that the pulsator 130 may be stopped in the shortest possible time, the rolling of the upper laundry may occur. The laundry and detergent can be mixed and at the same time a strong three-dimensional solid water stream is formed.
한편, 인너 로터(40)에 의해 역방향 구동되는 세탁조(120)는 펄세이터(130)의 구동과 다른 주기로 구동이 이루어진다. 세탁조(120)는 펄세이터(130)의 구동시간, 즉 모터 온타임(ON TIME)이 종료되기 직전까지 정지된 상태를 유지하고 있다가 펄세이터(130)의 구동이 종료되기 전에 기동하여 펄세이터(130)의 회전 방향과 반대방향으로 회전 구동이 이루어진 후, 펄세이터(130)의 구동 종료 후에 짧은 기간동안 구동이 이루어진다. On the other hand, the washing tank 120 driven by the inner rotor 40 is driven at a different cycle from the driving of the pulsator 130. The washing tank 120 remains stopped until immediately before the driving time of the pulsator 130, that is, the motor ON time, and starts before the driving of the pulsator 130 ends. After the rotational drive is made in a direction opposite to the rotational direction of the 130, the drive is performed for a short period after the driving of the pulsator 130 ends.
이 경우, 세탁조(120)를 역방향으로 회전시키는 인너 로터(40)의 역방향 구동은 최소한으로 이루어지며, 예를 들어, (-)50RPM으로 구동이 이루어진다.In this case, the reverse driving of the inner rotor 40 for rotating the washing tank 120 in the reverse direction is made to a minimum, for example, the driving is performed at (−) 50 RPM.
상기와 같이, 먼저 아우터 스테이터(60b)에 의해 아우터 로터(50)를 구동하여 펄세이터(130)를 일정 기간동안 순방향(CW), 즉 시계 방향(CW)으로 구동하면 세탁조(120) 내부의 세탁물과 세탁수는 회전이 이루어짐과 동시에 원심력에 의해 세탁조(120)의 벽면을 따고 상승한 후 중앙부로 낙하하는 폭포수 형태의 흐름이 발생된다. 이러한 세탁물과 세탁수의 이동은 회전과 낙하가 이루어질 때 마찰력과 위치 에너지에 의해 세탁물과 세제의 혼합 및 세탁이 이루어지게 된다.As described above, when the outer rotor 50 is driven by the outer stator 60b to drive the pulsator 130 in the forward direction CW, that is, clockwise CW for a predetermined period of time, the laundry inside the washing tank 120. And the washing water is rotated and at the same time as the rise of the waterfall after the wall surface of the washing tank 120 by the centrifugal force falls to the center portion is generated. The movement of the laundry and the wash water is performed by mixing and washing the laundry and the detergent by friction and potential energy when the rotation and the drop are made.
일정 기간 일정 속도로 펄세이터(130)를 회전시킨 후, 예를 들어, 아우터 스테이터에 대한 구동전원을 차단하거나 전자 브레이크를 적용하여 정지시키면 세탁물과 세탁수는 관성에 의해 짧은 시간 동안 계속 회전이 이루어지게 된다. After rotating the pulsator 130 at a constant speed for a certain period of time, for example, when the driving power to the outer stator is cut off or stopped by applying an electronic brake, the laundry and the washing water continue to rotate for a short time due to inertia. You lose.
이 경우, 펄세이터(130)의 구동이 종료되기 전에 기동하여 펄세이터(130)의 구동 종료 후까지 짧은 기간 동안 인너 로터(40)의 역방향 구동이 이루어지면, 세탁조(120)도 역방향으로 회전되면서 세탁조(120)의 내벽면을 따라 역방향, 즉 반시계방향(CCW)으로 흐르는 제2수류를 발생하게 된다. 그 결과, 펄세이터(130)의 구동에 따른 순방향(CW)과 원주방향의 제1수류와 세탁조(120)의 역회전 구동에 따른 역방향(CCW)의 제2수류가 부딪치면서 큰 와류가 발생된다. In this case, when the driving of the pulsator 130 is started before the driving of the inner rotor 40 is performed for a short period of time until after the driving of the pulsator 130 ends, the washing tank 120 is also rotated in the reverse direction. A second stream of water flowing in an opposite direction, that is, counterclockwise (CCW), is generated along the inner wall surface of the washing tank 120. As a result, a large vortex is generated while the forward current CW and the circumferential first water flow due to the driving of the pulsator 130 collide with the second water flow in the reverse direction CCW due to the reverse rotation driving of the washing tank 120. .
본 발명에서는 인너 로터(40)의 역방향 구동이 에너지 소비를 최소화하기 위해 최소한의 구동기간과 RPM으로, 예를 들어, (-)50RPM으로 약 1초 정도 구동이 이루어질지라도 펄세이터에 의한 강한 수직 상승/하강하는 제1방향의 제1수류와 세탁조에 의한 제2방향의 제2수류가 충돌하여 와류가 발생됨에 따라 에너지 소비를 최소화하면서 세정도 높은 수류를 형성할 수 있다.In the present invention, a strong vertical rise by the pulsator even if the reverse driving of the inner rotor 40 is performed for about 1 second at a minimum driving period and RPM, for example, (−) 50 RPM to minimize energy consumption. As the descending first water flow in the first direction collides with the second water flow in the second direction by the washing tank, vortices are generated, thereby minimizing energy consumption and thus forming a high water flow.
이와 같이 상호 반대방향 구동에 의해 발생되는 큰 와류는 세정도가 높은 강력한 3차원 입체 세탁수류를 형성한다.As such, the large vortices generated by the mutually opposite driving forms a strong three-dimensional three-dimensional washing water stream having high cleaning degree.
그 후, 소정의 정지시간(OFF TIME)을 가진 후 반대방향 구동을 위해 펄세이터(130)는 역방향, 즉 반시계 방향(CCW)으로 회전 구동되고, 미리 설정된 시간 동안 모터 온타임(ON TIME)을 유지한 후, 방향 전환을 위한 소정의 정지시간(OFF TIME)을 가지며, 세탁조(120)도 펄세이터(130)의 역방향 구동이 종료되기 전에 기동하여 펄세이터(130)의 구동 종료 후에 짧은 기간 동안 순방향, 즉 시계 방향(CCW)으로 회전 구동되면서, 상호 반대방향 구동에 의해 세정도가 높은 큰 와류를 발생한다.Thereafter, after the predetermined stop time (OFF TIME), the pulsator 130 is driven to rotate in the reverse direction, that is, counterclockwise (CCW) for driving in the opposite direction, and the motor ON TIME for a preset time. After the operation is performed, the washing machine 120 has a predetermined stop time (OFF TIME) for the change of direction, and the washing tank 120 is also started before the reverse driving of the pulsator 130 ends and a short period of time after the driving of the pulsator 130 ends. While rotating in the forward direction, that is, clockwise (CCW), a large vortex with high cleaning degree is generated by driving in the opposite direction.
상기한 펄세이터(130)의 시계 방향(CW) 및 반시계 방향(CCW) 구동이 완료되면 1주기가 완성되고, 2주기의 구동은 상기한 1주기와 동일하게 진행하거나 또는 다른 방식의 세탁수류 형성방법이 조합되어 진행될 수 있다.When the clockwise (CW) and counterclockwise (CCW) driving of the pulsator 130 is completed, one cycle is completed, and the driving of two cycles proceeds in the same manner as the above-described one cycle, or in another manner. The formation methods may be combined.
본 발명에서 모터 온타임(ON TIME)은, 예를 들어, 2.5초 내지 10초 범위로 설정되고, 정지시간(OFF TIME)은 0.5초 내지 2.0초 범위 내에서 설정될 수 있다. In the present invention, the motor ON time may be set, for example, within a range of 2.5 seconds to 10 seconds, and the stop time may be set within a range of 0.5 seconds to 2.0 seconds.
이하에 도 8a 및 도 8b를 참고하여 본 발명에 따른 쌍동력을 이용한 상호 방향 세탁수류 형성방법에 대하여 상세하게 설명한다.8A and 8B will be described in detail with respect to the method of forming a mutual direction washing water flow using a twin power according to the present invention.
도 8a 및 도 8b를 참고하면, 먼저 제어유닛(500)은 제2드라이버(540)를 구동시켜서 3상 교류전력을 아우터 스테이터 코일(68)에 인가함에 의해 아우터 로터(50)를 순방향, 즉 시계 방향(CW)으로 회전시킴에 의해 펄세이터(130)를 순방향으로 회전시킨다(S81). 8A and 8B, first, the control unit 500 drives the second driver 540 to apply the three-phase AC power to the outer stator coil 68 to forward the outer rotor 50, that is, the clock. The pulsator 130 is rotated in the forward direction by rotating in the direction CW (S81).
아우터 로터(50)를 미리 설정된 RPM, 예를 들어, 160RPM으로 회전시키는 방법은 도 9와 같은 오버슈팅 구동, 도 10과 같은 시간에 따라 서서히 RPM을 높이는 순차적인 기동방법, 도 12의 다단계의 램프-업(ramp-up) 구동 등의 기동방법 중 하나를 적용할 수 있다. The method of rotating the outer rotor 50 to a predetermined RPM, for example, 160 RPM, is an overshooting drive as shown in FIG. 9, a sequential starting method of gradually increasing the RPM according to a time as shown in FIG. 10, and a multi-step ramp of FIG. 12. One of the starting methods, such as ramp-up driving, may be applied.
그 후, 미리 설정된 제1시간(T1) 동안, 즉 아우터 로터(50)(즉, 펄세이터)의 회전속도를 160RPM으로 유지한다(S82). 이와 같이 펄세이터(130)가 일방향으로 회전되면, 세탁조(120) 내부의 세탁물과 세탁수는 회전이 이루어짐과 동시에 원심력에 의해 세탁조(120)의 벽면을 따고 상승한 후 중앙부로 하강(자유낙하)하는 폭포수 형태의 이동이 이루어지면서 세탁물은 회전과 자유낙하가 반복되어 마찰력과 위치 에너지에 의한 자유낙하에 의해 세탁이 이루어지게 된다.Thereafter, the rotation speed of the outer rotor 50 (that is, the pulsator) is maintained at 160 RPM for the first predetermined time T1 (S82). As such, when the pulsator 130 is rotated in one direction, the laundry and the washing water inside the washing tank 120 are rotated and at the same time ascending the wall surface of the washing tank 120 by centrifugal force and descending to the center (free fall). As the waterfall is moved, the laundry rotates and free falls repeatedly, and washing is performed by free fall due to friction and potential energy.
만약, 미리 설정된 제1시간(T1)이 경과한 경우, 제어유닛(500)은 제1드라이버(530)를 구동시켜서 3상 교류전력을 인너 스테이터 코일(66)에 인가함에 의해 인너 로터(40)를 역방향, 즉 반시계 방향(CCW)으로 (-)50RPM으로 회전시킴에 의해 세탁조(120)를 역방향으로 회전시킨다(S83). If the first predetermined time T1 has elapsed, the control unit 500 drives the first driver 530 to apply the three-phase AC power to the inner stator coil 66 so that the inner rotor 40 may operate. Rotate the washing tank 120 in the reverse direction by rotating (50) RPM in the reverse direction, that is, counterclockwise (CCW) (S83).
그 결과, 펄세이터(130)의 구동에 따른 순방향(CW)과 원주방향의 제1수류와 세탁조(120)의 구동에 따른 역방향(CCW)의 제2수류가 부딪치면서 큰 와류가 발생된다. 이와 같이 상호 반대방향 구동에 의해 발생되는 큰 와류는 세정도가 높은 강력한 3차원 입체 세탁수류를 형성한다.As a result, a large vortex is generated while the forward CW and the circumferential first stream of water along with the driving of the pulsator 130 collide with the second stream of CCW along the driving of the washing tank 120. As such, the large vortices generated by the mutually opposite driving forms a strong three-dimensional three-dimensional washing water stream having high cleaning degree.
일반적으로, 세탁조는 많은 세탁물과 물이 채워져 있으며 펄세이터와 비교하여 중량과 부피가 크기 때문에 초기 기동시에 고토크 구동이 요구되며, 세탁조를 구동하는 인너 로터는 아우터 로터의 내측에 배치되어 있기 때문에 아우터 로터와 비교하여 구동 토크가 작게 얻어진다.In general, the washing tank is filled with a lot of laundry and water, and the weight and volume of the washing tank is higher than that of the pulsator, so high torque driving is required at the initial start-up, and the inner rotor driving the washing tank is disposed inside the outer rotor. Compared with the rotor, the driving torque is obtained small.
본 발명에서는 소직경의 인너 로터(40)에 대한 토크 증대를 위해 고가의 유성기어장치를 사용하는 대신에 인너 로터에 사용되는 자석을 높은 자속밀도를 갖는 희토류계 자석을 채용함에 따라 인너 로터의 구동 토크를 증대시켜서 아우터 샤프트(20)를 통하여 세탁조(120)를 무리없이 구동할 수 있다.In the present invention, instead of using an expensive planetary gear device for increasing the torque of the inner rotor 40 of small diameter, the magnet used in the inner rotor is adopted as a rare earth magnet having a high magnetic flux density, thereby driving the inner rotor. By increasing the torque, the washing tub 120 can be driven without difficulty through the outer shaft 20.
그 후, 펄세이터(130)의 순방향(CW) 회전이 미리 설정된 아우터 로터(50)의 턴-온 시간, 즉 아우터 로터의 온타임(ON TIME)이 경과하였는 지를 판단한다(S84). Thereafter, it is determined whether the turn-on time of the outer rotor 50 in which the forward CW rotation of the pulsator 130 is preset, that is, the ON TIME of the outer rotor has elapsed (S84).
판단결과 아우터 로터의 온타임(ON TIME)이 경과한 경우는 아우터 로터(50)를 정지시키는 단계(S85)로 진행하여 펄세이터(130)를 정지시킨다.If the ON time of the outer rotor has passed as a result of the determination, the process proceeds to step S85 of stopping the outer rotor 50 to stop the pulsator 130.
본 발명에서는 아우터 로터(50)의 구동을 차단하여 펄세이터(130)를 정지시키는 경우에도 아우터 로터를 전자 브레이크 또는 프리휠링 상태로 설정하는 경우 아우터 로터는 관성력에 의해 소정시간 회전이 이루어지고 있고, 인너 로터(40)가 역방향 회전이 진행되는 동안 와류 발생은 계속된다. In the present invention, even when stopping the drive of the outer rotor 50 to stop the pulsator 130, when the outer rotor is set to the electromagnetic brake or freewheeling state, the outer rotor is rotated for a predetermined time by the inertial force, Vortex generation continues while the inner rotor 40 is rotating in reverse direction.
이와 같이 본 발명은 아우터 로터(50)의 구동을 차단하여 펄세이터(130)를 정지시키는 경우에도 인너 로터(40)에 역방향 회전을 인가하여 에너지 소모를 최소화하면서도 쌍동력 구동에 의한 상호 반대방향 구동 효과를 얻을 수 있다.As described above, in the present invention, even when the driving of the outer rotor 50 is stopped to stop the pulsator 130, a reverse rotation is applied to the inner rotor 40 to minimize energy consumption while driving in opposite directions by the driving force of the twin power. The effect can be obtained.
그 후 인너 로터(40)의 턴-온 시간, 즉 인너 로터의 온타임(ON TIME)이 경과하였는 지를 판단한다(S86). 판단결과 인너 로터의 온타임(ON TIME)이 경과한 경우는 인너 로터(40)를 정지시키는 단계(S87)로 진행하여 세탁조(120)를 정지시킨다.Thereafter, it is determined whether the turn-on time of the inner rotor 40, that is, the ON time of the inner rotor has elapsed (S86). If the ON time of the inner rotor has passed as a result of the determination, the process proceeds to step S87 of stopping the inner rotor 40 to stop the washing tank 120.
이어서, 아우터 로터(50)의 미리 설정된 정지시간이 경과하였는 지를 판단한다(S88).Next, it is determined whether the preset stop time of the outer rotor 50 has elapsed (S88).
판단결과, 미리 설정된 모터 정지시간이 경과한 경우, 펄세이터(130)를 역방향(CCW)으로 회전시키고, 세탁조(120)를 순방향(CW)으로 회전시키기 위한 절차를 상기한 단계(S81) 내지 단계(S88)와 반대로 단계(S89 내지 S97)를 진행한다.As a result of the determination, when the predetermined motor stop time has elapsed, a procedure for rotating the pulsator 130 in the reverse direction (CCW) and rotating the washing tank 120 in the forward direction (CW) is described above (S81). In contrast to S88, steps S89 to S97 are performed.
단계(S97)에서, 미리 설정된 정지시간이 경과한 경우, 포풀림 행정이 예정되어 있는 지를 판단하고(S98), 만약 포풀림 행정이 예정되어 있는 경우는 단계(S99)로 진행하여 포풀림 행정을 진행한다. In step S97, when the preset stop time has elapsed, it is determined whether the inflated stroke is scheduled (S98). If the inflated stroke is scheduled, the process proceeds to step S99 to perform the inflated stroke. Proceed.
쌍동력을 이용한 상호 반대방향 구동에 의해 세탁수류를 발생하는 경우 포 꼬임이 발생할 수 있다. 따라서, 포꼬임이 검출되거나 포꼬임이 예상되는 경우, 포풀림 행정을 진행한다. 포풀림 행정은 펄세이터(130)와 세탁조(120)를 동일방향으로 동일한 속도로 회전시킴에 의해 세탁물의 포꼬임을 풀어주게 된다.Foaming may occur when washing water streams are generated by mutually opposite driving using twin-force forces. Therefore, if snagging is detected or snagging is anticipated, a bulging stroke is performed. The inflated stroke releases the tangling of the laundry by rotating the pulsator 130 and the washing tank 120 at the same speed in the same direction.
상기한 세탁행정은 단계(S81 내지 S97)를 포함하는 1주기 세탁행정을 완료하고, 세탁코스에 따라 2주기의 구동은 상기한 1주기와 동일하게 진행하거나, 단동력 또는 쌍동력을 이용한 다른 방식의 세탁수류 형성방법이 조합되어 진행될 수 있다.The washing stroke completes the one cycle washing stroke including the steps (S81 to S97), and the driving of two cycles according to the washing course proceeds in the same manner as the one cycle described above, or another method using a single force or a twin force. The washing water flow forming method may be combined.
그 후, 세탁시간이 종료되었는 지를 판단하고(S100), 세탁시간이 종료된 경우는 세탁 행정을 종료하고 후속 처리 행정으로 진행하며, 세탁시간이 종료되지 않은 경우는 단계(S81)로 진행하여 상기 절차를 반복한다.Thereafter, it is determined whether the washing time has ended (S100). If the washing time is ended, the washing process is terminated and proceeds to a subsequent processing stroke. If the washing time is not finished, the process proceeds to step S81. Repeat the procedure.
이하의 실시예에서는 도 9 내지 도 12의 펄세이터와 세탁조의 RPM 타이밍도를 참고하여 본 발명에 따른 세탁기 구동장치(150)의 쌍동력을 이용한 상호 반대방향 세탁 수류 형성방법에 대하여 설명한다. In the following embodiment with reference to the RPM timing diagram of the pulsator and the washing tank of FIGS. 9 to 12 will be described a method of forming a mutually opposite washing water flow using the twin power of the washing machine drive device 150 according to the present invention.
(실시예 1)(Example 1)
도 9의 상호 반대방향 세탁 수류 형성을 위한 펄세이터와 세탁조의 RPM 타이밍도를 참고하면, 본 발명의 실시예 1에 따른 상호 반대방향 세탁 수류 형성방법은 기본적으로, 펄세이터(130)를 일방향, 예를 들어, 순방향, 즉 시계 방향(CW)으로 회전 구동하고, 미리 설정된 시간동안 모터 온타임(ON TIME)을 유지한 후, 방향 전환을 위한 소정의 정지시간(OFF TIME)을 갖는다. Referring to the RPM timing diagram of the pulsator and the washing tank for forming the mutually opposite washing water flow of Figure 9, the mutually opposite washing water flow forming method according to the first embodiment of the present invention, basically, the pulsator 130 in one direction, For example, after rotationally driving in the forward direction, that is, clockwise direction CW, and maintaining the motor ON TIME for a predetermined time, it has a predetermined OFF TIME for changing the direction.
도 9에서 그래프(P)는 펄세이터(130)를 구동하기 위한 아우터 로터(50)의 RPM을 나타낸 것이고, 그래프(S)는 세탁조(spin basket)(120)를 구동하기 위한 인너 로터(40)의 RPM을 나타낸 것이다.In FIG. 9, the graph P shows the RPM of the outer rotor 50 for driving the pulsator 130, and the graph S shows the inner rotor 40 for driving the spin basket 120. RPM is shown.
그 후, 펄세이터(130)는 타방향, 예를 들어, 역방향, 즉 반시계 방향(CCW)으로 회전 구동되고, 미리 설정된 시간동안 모터 온타임(ON TIME)을 유지한 후, 방향 전환을 위한 소정의 정지시간(OFF TIME)을 갖는다. Thereafter, the pulsator 130 is rotationally driven in the other direction, for example, the reverse direction, that is, the counterclockwise direction (CCW), maintains the motor ON TIME for a preset time, and then It has a predetermined OFF TIME.
상기한 펄세이터(130)의 시계 방향(CW) 및 반시계 방향(CCW) 구동이 완료되면 1주기가 완성되고, 2주기의 구동은 상기한 1주기와 동일하게 진행하거나 또는 다른 방식의 세탁수류 형성방법이 조합되어 진행될 수 있다.When the clockwise (CW) and counterclockwise (CCW) driving of the pulsator 130 is completed, one cycle is completed, and the driving of two cycles proceeds in the same manner as the above-described one cycle, or in another manner. The formation methods may be combined.
제1실시예에서는 펄세이터(130)에 대한 구동을 모터 온타임(ON TIME: Ton)을 예를 들어, 2.9초, 정지시간(OFF TIME: Toff)을 1.0초로 설정한 예이고, 세탁조(120)에 대한 구동은 약 1.2초로 설정된다.In the first embodiment, the driving of the pulsator 130 is an example in which the motor ON time (Ton) is set to 2.9 seconds and the stop time (TOFF) to 1.0 second. The drive for) is set to about 1.2 seconds.
본 발명에서 모터 온타임(ON TIME)은, 예를 들어, 2.5초 내지 10초 범위로 설정될 수 있고, 정지시간(OFF TIME)은 0.5초 내지 2.0초 범위 내에서 설정될 수 있다. In the present invention, the motor ON time may be set, for example, in the range of 2.5 seconds to 10 seconds, and the stop time may be set in the range of 0.5 seconds to 2.0 seconds.
이 경우, 세탁조(120)는 펄세이터(130)의 구동과 다른 주기로 구동이 이루어진다. 세탁조(120)는 펄세이터(130)의 구동시간, 즉 모터 온타임(ON TIME)이 종료되기 전까지 정지된 상태를 유지하고 있다가 펄세이터(130)의 회전 방향과 반대방향으로 회전 구동이 이루어진다. In this case, the washing tank 120 is driven at a different cycle from the driving of the pulsator 130. The washing tank 120 maintains the stopped state until the driving time of the pulsator 130, that is, the motor ON time ends, and then rotates in the opposite direction to the rotation direction of the pulsator 130. .
제2드라이버(540)에 의해 아우터 로터(50)가 순방향, 즉 시계 방향(CW)으로 예를 들어, 160RPM의 회전속도로 회전될 때, 인너 로터(40)는 제1드라이버(530)에 의해 전자 브레이크가 이루어짐에 따라 정지상태에 있고 이와 연결된 아우터 샤프트(20)와 세탁조(120)도 정지된 상태를 유지한다.When the outer rotor 50 is rotated by the second driver 540 in the forward direction, that is, clockwise CW, for example, at a rotational speed of 160 RPM, the inner rotor 40 is driven by the first driver 530. As the electromagnetic brake is made, the outer shaft 20 and the washing tank 120 connected to the suspension state are also stopped.
이 경우, 바람직하게는 펄세이터(130)의 초기 구동을 강하게 시작하도록 오버슈팅방법을 이용하여 아우터 로터(50)를 200RPM으로 구동한 후, 감속하여 160RPM의 상태를 미리 설정된 시간동안 유지할 수 있다. In this case, it is preferable to drive the outer rotor 50 at 200 RPM by using the overshooting method to strongly start the initial driving of the pulsator 130, and then decelerate and maintain the state of 160 RPM for a predetermined time.
이에 따라 펄세이터(130)가 강한 기동력으로 일방향의 회전이 이루어지면, 세탁물과 세탁수도 이에 연동하여 강한 회전이 이루어지게 된다. 본 발명의 실시예 1에서는 펄세이터(130)가 적어도 2.9초간 회전이 이루어진 후, 정지하게 되면, 세탁물과 세탁수는 관성에 의해 계속 회전이 이루어지게 된다. 즉, 펄세이터(130)의 정지를 가능한 짧은 시간에 구현되도록 제2드라이버(540)를 이용하여 아우터 로터(50)에 대한 전자 브레이크를 실시하면, 세탁조의 상부에 위치한 세탁물이 밑으로 들어가는 롤링이 발생하면서 강한 3차원 입체 수류가 형성된다. Accordingly, when the pulsator 130 is rotated in one direction with a strong maneuverability, the laundry and the washing water are also strongly connected to the laundry. In Embodiment 1 of the present invention, when the pulsator 130 is rotated for at least 2.9 seconds, and then stops, the laundry and the wash water continue to rotate by inertia. That is, when the electronic brake is applied to the outer rotor 50 by using the second driver 540 to stop the pulsator 130 in the shortest possible time, the rolling of the laundry located on the upper part of the washing tank is lowered. As it occurs, a strong three-dimensional stream of water is formed.
이 경우, 필요에 따라 펄세이터(130)를 정지시키기 전에 초기 구동시와 유사하게 아우터 로터(50)를 160RPM에서 200RPM으로 오버슈팅 구동한 후 정지를 진행함에 의해, 더욱 강한 3차원 입체 수류를 형성할 수 있다.In this case, as needed, the outer rotor 50 is overshooted from 160 RPM to 200 RPM before the pulsator 130 is stopped. can do.
더욱이, 본 발명에서는 펄세이터(130)의 구동시간, 즉 모터 온타임(ON TIME)이 종료되기 약 0.7초 전에 정지된 상태에 있던 세탁조(120)를 펄세이터(130)의 회전방향과 반대방향으로 50RPM으로 구동하여 일방향으로 회전되고 있는 세탁물과 세탁수에 외주로부터 역방향의 회전력을 인가하면, 세탁물과 세탁수에 강한 와류가 발생하게 된다. 이 경우, 세탁조(120)에 대한 역방향 구동은 펄세이터(130)의 구동이 정지된 이후에 적어도 약 0.5초간 지속되면서 와류발생을 지속한다.Furthermore, in the present invention, the washing tank 120, which was stopped about 0.7 seconds before the driving time of the pulsator 130, that is, the motor ON time, was ended, the direction opposite to the rotation direction of the pulsator 130. By applying a rotational force from the outer circumference to the laundry and the wash water rotated in one direction by driving at 50 RPM, a strong vortex occurs in the laundry and the wash water. In this case, the reverse driving of the washing tank 120 is continued for at least about 0.5 seconds after the driving of the pulsator 130 is stopped to continue the vortex generation.
이 경우, 상기 세탁조(120)에 대한 역방향의 회전은 인너 로터(40)를 아우터 로터(50)와 반대방향으로 구동함에 따라, 아우터 샤프트(20)를 통하여 세탁조(120)에 전달된다. In this case, the reverse rotation of the washing tub 120 is transmitted to the washing tub 120 through the outer shaft 20 as the inner rotor 40 is driven in the opposite direction to the outer rotor 50.
상기 실시예 1과 같이, 본 발명에서는 세탁물과 세탁수에 대한 중심에서의 일방향의 회전은 펄세이터(130)를 사용하여 강하게 구동하고, 펄세이터의 구동 종료시점 전에 세탁조(120)를 역방향으로 구동하여 세탁물과 세탁수의 외주로부터 역방향의 물살을 유도함에 따라 강한 와류를 형성시키며, 그 결과 본 발명에서는 세탁조(120)를 최소한으로 구동하여 강한 세탁력을 갖는 3차원 세탁 수류를 형성하면서도 전력소모를 최소화하면서 세탁 효율을 높일 수 있게 된다.As in the first embodiment, in the present invention, the rotation of one direction at the center of the laundry and the washing water is strongly driven using the pulsator 130, and the washing tank 120 is driven in the reverse direction before the end of the driving of the pulsator. By forming a strong vortex by inducing the opposite direction of water from the outer periphery of the laundry and the wash water, as a result of the present invention to drive the washing tank 120 to minimize the power consumption while forming a three-dimensional washing water stream having a strong washing power While increasing the washing efficiency.
(실시예 2)(Example 2)
도 10을 참고하면, 실시예 2에 따른 상호 반대방향 세탁 수류 형성방법은 도 9에 도시된 실시예 1과 유사하다. Referring to FIG. 10, a method of forming mutually opposite washing water streams according to Example 2 is similar to Example 1 shown in FIG. 9.
실시예 1에서는 모터 온타임(ON TIME)의 초기 구동시와 종료 전에 아우터 로터(50)를 160RPM에서 200RPM으로 오버슈팅 구동한 후 정지를 진행하였으나, 제2실시예에서는 오버슈팅 구동을 실시하지 않는다. 그대신, 와류 발생을 위해 세탁조(120)를 펄세이터(130)의 회전방향과 반대방향으로 구동하는 것을 모터 온타임(ON TIME)의 초기 구동시와 종료 전에 각각 약 1초 범위 이내로 실시하여 와류 발생 횟수를 1회 더 증가하도록 구동방법을 변경한 것이다. In the first embodiment, the outer rotor 50 is overshooted from 160 RPM to 200 RPM before the initial driving and the end of the motor ON time, and then stopped. However, in the second embodiment, the overshoot driving is not performed. . Instead, the washing tank 120 is driven in a direction opposite to the rotational direction of the pulsator 130 to generate the vortex within the range of about 1 second during the initial driving of the motor ON time and before the end of the vortex. The driving method is changed to increase the number of occurrences once more.
즉, 실시예 2에서는 아우터 로터(50)의 구동에 따라 펄세이터(130)를 순방향으로 160RPM으로 회전하면서 동시에 인너 로터(40)를 역방향으로 1.2초 동안 구동하여 세탁조(120)를 역방향으로 50RPM으로 회전시키고, 또한 실시예 1과 동일하게 아우터 로터(50)의 모터 온타임(ON TIME) 종료 전 0.7초 전에 시작하여 모터 온타임(ON TIME) 종료후 0.5초 동안까지 연장하여 인너 로터(40)를 역방향으로 1.2초 동안 구동하여 세탁조(120)를 역방향으로 50RPM으로 회전시킨다.That is, in the second embodiment, while rotating the pulsator 130 in the forward direction to 160 RPM in accordance with the drive of the outer rotor 50, while driving the inner rotor 40 in the reverse direction for 1.2 seconds, the washing tank 120 to 50 RPM in the reverse direction The inner rotor 40 is rotated and extended to 0.5 seconds after the end of the motor ON time starting from 0.7 seconds before the end of the motor ON time of the outer rotor 50 as in the first embodiment. Drive for 1.2 seconds in the reverse direction to rotate the washing tank 120 in 50RPM in the reverse direction.
상기 실시예 1에서는 방향 전환을 위해 아우터 로터(50)의 구동 정지시에 160RPM에서 0.1초마다 40RPM씩 감속하여 120RPM, 80RPM, 40RPM까지 감속한 상태에서 전자 브레이크를 적용하고 있으나, 실시예 2에서는 160RPM에서 0.1초마다 60RPM 및 50RPM씩 감속하여 100RPM, 50RPM까지 감속한 상태에서 전자 브레이크를 적용하고 있다.In Example 1, when the driving of the outer rotor 50 is stopped, the electronic brake is decelerated by 120 RPM, 80 RPM, and 40 RPM at 0.1 RPM for every 0.1 seconds. However, in Example 2, the electronic brake is applied. Electronic brakes are applied while decelerating by 60 RPM and 50 RPM every 0.1 sec. To 100 RPM and 50 RPM.
실시예 1에서는 160RPM에서 0.3초에 걸쳐서 40RPM까지 감속한 상태에서 전자 브레이크를 적용하므로 정지시간(OFF TIME)을 1.0초 할당하고, 실시예 2에서는 160RPM에서 0.2초에 걸쳐서 50RPM까지 감속한 상태에서 전자 브레이크를 적용하므로 정지시간(OFF TIME)을 1.1초 할당하고 있다. 즉, 급격하게 아우터 로터(50)를 구동 정지시키는 경우는 상대적으로 정지시간(OFF TIME)을 더 길게 설정하는 것이 바람직하다.In Example 1, since the electronic brake is applied in the state of deceleration to 40 RPM over 0.3 seconds at 160 RPM, the OFF time is assigned to 1.0 seconds, and in Example 2, the electron is decelerated to 50 RPM over 0.2 seconds at 160 RPM. As the brake is applied, the OFF TIME is assigned to 1.1 seconds. In other words, when the outer rotor 50 is suddenly driven to stop, it is preferable to set the OFF TIME relatively longer.
또한, 실시예 2에 따른 상호 반대방향 세탁 수류 형성방법은 펄세이터(130)의 순방향 회전, 정지, 역방향 회전, 정지의 1주기 세탁행정이 완료된 후, 1주기 세탁행정과 동일한 세탁행정을 세탁코스에 따라 반복하여 적용할 수 있고, 다른 종류의 세탁 수류나 포풀림 행정을 조합하는 것도 가능하다.In addition, the method of forming the opposite washing direction of the water stream according to the second embodiment, after the one-cycle washing stroke of the forward rotation, stop, reverse rotation, and stop of the pulsator 130 is completed, the same washing stroke as the one-cycle washing stroke is applied to the washing course. It can be applied repeatedly according to the above, and it is also possible to combine different types of washing water flow and inflated stroke.
실시예 2에서는 1주기 세탁행정이 완료된 후, 제2주기 세탁행정시에 모터 온타임(ON TIME)의 펄세이터(130)의 구동 RPM을 속도를 가변하는 세탁 수류방식을 적용한 것을 나타낸 것이다. In Example 2, after the washing cycle of one cycle is completed, the washing water flow method of varying the speed is applied to the drive RPM of the pulsator 130 of the motor ON time (ON TIME) during the washing cycle of the second cycle.
BLDC 모터를 사용한 구동장치에서는 로터의 RPM 가변을 쉽게 구현할 수 있어, 펄세이터(130)를 구동하기 위한 아우터 로터(50)의 회전속도를 160RPM에서 110RPM으로 낮추었다가 다시 160RPM으로 높이는 속도 조절을 적용할 수 있으며, 이에 의해 일정 간격으로 밀려오는 파도와 같은 세탁 수류를 발생할 수 있게 된다. In the drive device using the BLDC motor, it is possible to easily implement the RPM variable of the rotor, and to reduce the rotational speed of the outer rotor 50 for driving the pulsator 130 from 160RPM to 110RPM to apply a speed control to increase to 160RPM again. In this way, it is possible to generate washing water streams, such as waves coming at regular intervals.
실시예 2에 따른 상호 반대방향 세탁 수류 형성방법에서 나머지 부분은 실시예 1과 동일하므로 이에 대한 설명은 생략한다.In the method of forming a mutually opposite washing water stream according to the second embodiment is the same as the first embodiment, the description thereof will be omitted.
(실시예 3)(Example 3)
도 11을 참고하면, 실시예 3에 따른 상호 반대방향 세탁 수류 형성방법은 전체적으로 실시예 1 및 실시예 2와 유사하다. Referring to FIG. 11, the method of forming mutually opposite washing water streams according to Example 3 is generally similar to those of Examples 1 and 2.
실시예 1 및 실시예 2와 실시예 3 사이의 차이점은 모터 온타임(ON TIME)의 초기 구동시와 종료 전에 아우터 로터(50)를 160RPM에서 200RPM으로 오버슈팅 구동하는 것 대신에 회전속도를 160RPM로 높여서 펄세이터(130)를 구동하기 위한 회전속도와 구동 토크를 높였다.The difference between Examples 1 and 2 and 3 is that the rotational speed is 160 RPM instead of overshooting the outer rotor 50 from 160 RPM to 200 RPM during the initial driving of the motor ON TIME and before the end thereof. By increasing the rotational speed and driving torque for driving the pulsator 130.
또한, 모터 온타임(ON TIME)의 중간 부분에 아우터 로터(50)의 RPM을 160RPM에서 120RPM으로 낮추었다가 높이는 속도 조절 구간(Pd)을 삽입함에 의해 큰 파도와 같은 강한 파워를 갖는 세탁 수류를 발생할 수 있다.In addition, by inserting a speed control section (Pd) to lower the RPM of the outer rotor 50 from 160 RPM to 120 RPM in the middle portion of the motor ON TIME to generate a washing water with a strong power such as a surge Can be.
더욱이, 실시예 3에서 모터 온타임(ON TIME)은 실시예 1 및 실시예 2보다 더 짧게 설정하고 정지시간(OFF TIME)은 더 길게 설정한 것이다. 모터 온타임(ON TIME)의 펄세이터(130)의 RPM이 실시예 1 및 실시예 2보다 높은 100RPM의 회전속도에서 정지가 이루어지며, 이를 고려하여 정지시간(OFF TIME)을 1.8초로 길게 설정된다.Further, in the third embodiment, the motor ON time is set shorter than the first and second embodiments, and the OFF time is set longer. The RPM of the pulsator 130 of the motor ON TIME is stopped at a rotational speed of 100 RPM higher than that of the first embodiment and the second embodiment, and the stop time is set to 1.8 seconds in consideration of this. .
실시예 3에서 모터 온타임(ON TIME)을 2.7초, 정지시간(OFF TIME)을 1.8초, 세탁조(120)에 대한 구동은 약 1.2초로 설정된다.In Example 3, the motor ON time is set to 2.7 seconds, the OFF time to 1.8 seconds, and the drive to the washing tank 120 is set to about 1.2 seconds.
실시예 3에서는 160RPM에서 0.3초에 걸쳐서 100RPM까지 감속한 상태에서 전자 브레이크를 적용하여 정지상태에 도달한다. 즉, 펄세이터(130)의 RPM이 100RPM의 높은 회전속도에서 정지가 이루어지는 것을 고려하여 적어도 2단계의 경사 기울기를 가지고 감속되면서 정지상태에 도달하도록 제어가 이루어진다. In the third embodiment, the motor brake is applied to the stationary state in a state where the speed is reduced to 100 RPM over 0.3 seconds at 160 RPM. That is, the control is made so that the RPM of the pulsator 130 is decelerated with at least two inclination inclinations in consideration of the stop at a high rotational speed of 100 RPM and the stop state is reached.
또한, 정지시간(OFF TIME)도 전자 브레이크 1.0초에 프리 휠링(Free-wheeling) 0.5초와 기동준비 0.3초를 더하여 상기 실시예 1 및 실시예 2보다 더 긴 1.8초를 할당한다. 상기 프리 휠링은 펄세이터(130)의 전자 브레이크 이후에 관성회전이 이루어지도록 모든 제어를 해제하는 것이다.In addition, the OFF TIME is also assigned to 1.8 seconds longer than Example 1 and 2 by adding 0.5 seconds of free-wheeling and 0.3 seconds of starting preparation to 1.0 seconds of the electromagnetic brake. The free wheeling is to release all control so that the inertia rotation is performed after the electromagnetic brake of the pulsator 130.
상기한 바와 같이, 실시예 3에서는 펄세이터(130)를 구동하는 모터 온타임(ON TIME) 시간을 짧게 설정하면서도 100RPM의 높은 회전속도에서 급 정지를 실시하고 또한 세탁조(120)를 상기한 실시예 1 및 2와 동일하게 펄세이터(130)의 구동 종료 전부터 시작하여 구동 종료후까지 역방향으로 50RPM으로 회전시킨다.As described above, in the third embodiment, while the motor ON TIME time for driving the pulsator 130 is set short, the rapid stop is performed at a high rotational speed of 100 RPM and the washing tank 120 is the embodiment described above. Similarly to 1 and 2, the pulsator 130 is rotated at 50 RPM in the reverse direction, starting from the end of the drive and ending after the drive.
상기 실시예 3과 같이, 본 발명에서는 세탁물과 세탁수에 대한 중심에서의 일방향의 회전은 펄세이터(130)를 사용하여 강하게 짧게 구동한 후, 펄세이터를 급 제동하면서 펄세이터의 구동 종료시점 전에 세탁조(120)를 역방향으로 구동하여 세탁물과 세탁수의 외주로부터 역방향의 물살을 유도하면 강한 와류를 형성시킬 수 있다. 그 결과 본 발명에서는 펄세이터(130)의 구동시간을 최소한으로 진행하여 전력소모를 최소화하면서도 강한 세탁력을 갖는 3차원 세탁 수류를 형성하여 세탁 효율을 높일 수 있게 된다.As in the third embodiment, in the present invention, the rotation of the one direction at the center of the laundry and the washing water is driven shortly strongly using the pulsator 130, and then before the end point of the pulsator driving while rapidly braking the pulsator. By driving the washing tank 120 in the reverse direction to induce a reverse water current from the outer periphery of the laundry and wash water can form a strong vortex. As a result, in the present invention, the driving time of the pulsator 130 is minimized, thereby minimizing power consumption and forming a three-dimensional washing stream having strong washing power, thereby increasing washing efficiency.
(실시예 4)(Example 4)
도 12를 참고하면, 실시예 4에 따른 상호 반대방향 세탁 수류 형성방법은 전체적으로 실시예 1 내지 실시예 3과 유사하다. Referring to FIG. 12, the method of forming mutually opposite washing water streams according to Example 4 is similar to those of Examples 1 to 3 as a whole.
실시예 4와 실시예 1과의 차이점은 모터 온타임(ON TIME)시에 아우터 로터(50)의 초기 구동은 오버슈팅 구동하는 것 대신에 아우터 로터(50)의 회전속도를 최대 200RPM으로 높여서 펄세이터(130)를 구동하기 위한 회전속도와 구동 토크를 높인다.The difference between the fourth embodiment and the first embodiment is that the initial driving of the outer rotor 50 at the time of motor ON TIME is performed by increasing the rotational speed of the outer rotor 50 to a maximum of 200 RPM instead of overshooting the pulsing force. The rotation speed and driving torque for driving the eater 130 are increased.
또한, 모터 온타임(ON TIME)시에 펄세이터를 기동할 때 아우터 로터(50)의 RPM을 미리 설정된 200RPM까지 다단계의 램프-업(ramp-up) 방식으로 속도를 증가시키고, 회전방향의 전환을 위해 펄세이터(130)를 정지시킬 때 최단 시간에 급 제동하여 정지상태에 도달하도록 제어함에 의해 강한 수류를 형성할 수 있다.In addition, when the pulsator is started at the motor ON time, the RPM of the outer rotor 50 is increased to a preset 200 RPM in a multi-step ramp-up manner, and the rotation direction is changed. In order to stop the pulsator 130 in order to stop the pulsator 130 in a short time by controlling to reach the stop state can form a strong water flow.
실시예 4에서 아우터 로터(50)를 미리 설정된 RPM으로 회전시키는 방법은 상기한 램프업(ramp-up) 기동, 시간에 따라 서서히 RPM을 높이는 순차적인 기동방법 등의 주지된 기동방법 중 하나를 적용할 수 있다.In the fourth embodiment, the method of rotating the outer rotor 50 to a predetermined RPM applies one of the well-known starting methods, such as the ramp-up starting and the sequential starting method of gradually increasing the RPM over time. can do.
실시예 4에서는 펄세이터(130)의 급 제동에 의한 정지를 고려하여 정지시간(OFF TIME)은 실시예 1 내지 3보다 더 길게 설정하는 것이 바람직하며, 이에 따라 정지시간(OFF TIME)도 전자 브레이크 1.5초와 기동준비 0.5초를 더하여 상기 실시예 1 내지 실시예 3보다 더 긴 2.0초를 할당한다. In the fourth embodiment, the stop time is preferably set to be longer than those of the first to third embodiments in consideration of the stop by the sudden braking of the pulsator 130. Accordingly, the off time is also controlled by the electromagnetic brake. 1.5 seconds plus 0.5 second start up time are allocated to 2.0 seconds longer than the first to third embodiments.
더욱이, 실시예 4에서는 실시예 3보다도 더 높은 모터 온타임(ON TIME)의 펄세이터(130)의 RPM이 200RPM의 높은 회전속도에서 정지가 이루어지는 것을 고려하여 모터 온타임(ON TIME)을 4.5초, 정지시간(OFF TIME)을 2.0초, 세탁조(120)에 대한 구동은 1.2초로 설정된 것이다.Furthermore, in Example 4, the motor ON TIME is 4.5 seconds considering that the RPM of the pulsator 130 having the motor ON TIME higher than that of Example 3 is stopped at a high rotational speed of 200 RPM. , The OFF TIME is 2.0 seconds, the drive to the washing tank 120 is set to 1.2 seconds.
상기 실시예 4에서는 실시예 3과 유사하게 세탁물과 세탁수에 대한 중심에서의 일방향의 회전은 펄세이터(130)를 사용하여 강하게 구동한 후, 펄세이터를 급 제동하면서 펄세이터의 구동 종료시점 전에 세탁조(120)를 역방향으로 구동하여 세탁물과 세탁수의 외주로부터 역방향의 물살을 유도하면 강한 와류를 형성시킬 수 있다. 그 결과 본 발명에서는 펄세이터(130)의 강한 급 제동과 세탁조(120)의 역방향 구동을 조합하여 강한 세탁력을 갖는 3차원 세탁 수류를 형성하여 세탁 효율을 높일 수 있게 된다.In the fourth embodiment, similarly to the third embodiment, the one-way rotation in the center of the laundry and the washing water is driven strongly using the pulsator 130, and then before the end of the pulsator's driving while rapidly braking the pulsator. By driving the washing tank 120 in the reverse direction to induce a reverse water current from the outer periphery of the laundry and wash water can form a strong vortex. As a result, in the present invention, by combining the strong braking of the pulsator 130 and the reverse driving of the washing tank 120 to form a three-dimensional washing water stream having a strong washing power to increase the washing efficiency.
상기한 실시예 1은 운전율이 74%, 실시예 2는 73%, 실시예 3은 60%, 실시예 4는 67%이다. Example 1 is 74%, Example 2 is 73%, Example 3 is 60%, Example 4 is 67%.
수류 세탁 행정시에 모터 온타임(ON TIME)과 정지시간(OFF TIME)의 비율을 변경하여 세탁기의 운전율을 적절하게 설정하면, 소비전력 절감과 세정도의 향상을 도모할 수 있다.By changing the ratio of the motor ON time and the OFF time during the water washing operation, and setting the operation rate of the washing machine appropriately, it is possible to reduce power consumption and improve cleaning.
본 발명에서는 소비전력을 최소화하면서 효율 상승을 위해 운전율은 적어도 60% 이상이고, 펄세이터(아우터 로터)의 RPM과 세탁조(인너 로터)의 RPM은 3:1보다 더 크게 설정되는 것이 바람직하다.In the present invention, the operating rate is at least 60% or more to increase the efficiency while minimizing the power consumption, and the RPM of the pulsator (outer rotor) and the RPM of the washing tank (inner rotor) are preferably set larger than 3: 1.
한편, 상기 세탁 수류 형성 중 모터 구동 토크 조절과 회전유지 구간에서 펄세이터(130)를 가변 속도로 구동하면 리듬 수류를 형성할 수 있고, 에너지 소모를 절약할 수 있다. 또한 펄세이터(130)의 회전 RPM을 가변하여 강->중->약->강->중->약 등과 같이 강, 중, 약 수류를 혼용하면 보다 적은 에너지로 높은 세정도 및 헹굼도를 기대할 수 있다.On the other hand, when the pulsator 130 is driven at a variable speed in the motor driving torque adjustment and rotation maintenance section during the formation of the washing water flow, it is possible to form a rhythm water flow and save energy consumption. In addition, by varying the rotation RPM of the pulsator 130 to mix the strong, medium, and weak water flow, such as strong-> medium-> weak-> medium-> weak, etc., high cleaning and rinsing degree can be achieved with less energy. You can expect
상기 실시예 설명에서는 펄세이터와 세탁조를 구동하는 모터의 정지방법을 전자 브레이크를 이용하는 것을 예로 들었으나, 실시예 3과 같이 정지시간이 길게 소요되는 프리 휠링(Free-wheeling) 방식을 전자 브레이크와 조합하거나 프리 휠링만으로 정지하는 것도 가능하다. 또한, 모터의 정지시에 전자 브레이크 이외에 주지된 다른 방법을 사용할 수 있다.In the above description of the embodiment, the stopping method of the motor driving the pulsator and the washing tank is exemplified by using an electromagnetic brake. However, as in the third embodiment, a free-wheeling method requiring a long stopping time is combined with the electromagnetic brake. It is also possible to stop just by freewheeling. In addition, other well-known methods other than the electromagnetic brake can be used when the motor is stopped.
또한, 본 발명은 정역회전을 하는 사이에 펄세이터의 정지시간을 적절하게 설정함에 의해 세탁물의 꼬임을 줄여주고, 세탁물이 회전하면서 세탁조 내에서 고르게 퍼질 수 있도록 하며, 세탁물의 자세와 위치를 변경하여 세척효과를 향상시킨다.In addition, the present invention is to reduce the twist of the laundry by appropriately setting the stop time of the pulsator during the forward and reverse rotation, to allow the laundry to spread evenly in the washing tank while rotating, by changing the attitude and position of the laundry Improve the cleaning effect
또한, 본 발명에서는 펄세이터(130)의 회전 속도를 가변시킴에 의해 리듬 수류를 형성할 수 있고, 그 결과 리듬 세탁을 구현할 수 있다. 즉, 펄세이터(130)의 회전 속도가 급격하게 가변되도록 제어할 경우, 강한 수류 및 리듬 수류를 형성하면서 세탁물의 손상을 방지할 수 있다. In addition, in the present invention, the rhythm flow can be formed by varying the rotational speed of the pulsator 130, and as a result, rhythm washing can be implemented. That is, when the rotational speed of the pulsator 130 is controlled to be sharply variable, it is possible to prevent damage to the laundry while forming a strong stream and a rhythm stream.
세탁조(120)와 펄세이터(130)의 회전 속도 가변은 제어유닛(500)에서 제1드라이버(530) 및 제2드라이버(540)를 제어하여 인너 및 아우터 코일(66,68)로 인가되는 제1구동신호 및 제2구동신호의 전압 크기 및 전류량을 가변시킴에 의해 달성할 수 있다. The rotation speed of the washing tub 120 and the pulsator 130 is controlled by the control unit 500 to be applied to the inner and outer coils 66 and 68 by controlling the first driver 530 and the second driver 540. This can be achieved by varying the voltage magnitude and the current amount of the first drive signal and the second drive signal.
펄세이터(130)와 세탁조(120)의 회전 속도가 완만하게 가변되도록 제어할 경우 부드러운 리듬 수류를 형성할 수 있고 세탁물의 손상을 방지한다.When the rotational speed of the pulsator 130 and the washing tank 120 is controlled to be gently variable, a smooth rhythm of water can be formed and the damage of the laundry is prevented.
상기한 실시예 설명에서는 구동모터(140)를 채용한 제1실시예에 따른 세탁기 구동장치(150)를 이용하는 세탁기 구동방법에 대하여 설명하였으나, 본 발명은 구동모터(140a)를 채용한 제2실시예에 따른 세탁기 구동장치(150a)를 이용하는 세탁기 구동방법에 대하여도 같은 방식으로 적용될 수 있다.In the above description of the embodiment, a washing machine driving method using the washing machine driving device 150 according to the first embodiment employing the driving motor 140 has been described, but the present invention provides a second embodiment employing the driving motor 140a. The same may be applied to a washing machine driving method using the washing machine driving device 150a according to an example.
도 13에 도시된 바와 같이, 구동모터(140a)를 채용한 제2실시예에 따른 세탁기 구동장치(150a)는 세탁조(120)와 연결되는 아우터 샤프트(20)와, 아우터 샤프트(20)의 내부에 회전 가능하게 배치되고 펄세이터(130)와 연결되는 인너 샤프트(30)와, 아우터 샤프트(20)와 연결되는 아우터 로터(50)와, 인너 샤프트(30)와 연결되는 인너 로터(40)와, 인너 로터(40)와 아우터 로터(50) 사이에 공극을 두고 배치되는 스테이터(60)를 포함한다.As shown in FIG. 13, the washing machine driving device 150a according to the second embodiment employing the driving motor 140a includes an outer shaft 20 connected to the washing tub 120, and an inside of the outer shaft 20. An inner shaft 30 rotatably disposed on the inner shaft 30 connected to the pulsator 130, an outer rotor 50 connected to the outer shaft 20, and an inner rotor 40 connected to the inner shaft 30; And a stator 60 disposed with a gap between the inner rotor 40 and the outer rotor 50.
제2실시예에 따른 세탁기 구동장치(150a)는 제1실시예에 따른 세탁기 구동장치(150)와 로터의 출력 구조에서 차이가 있고, 이에 동반하여 베어링 지지구조가 변경될 수 있다.The washing machine driving device 150a according to the second embodiment has a difference in the output structure of the washing machine driving device 150 and the rotor according to the first embodiment, and with this, the bearing support structure may be changed.
제2실시예에서 인너 로터(40), 아우터 로터(50) 및 스테이터(60)의 구동모터(140a) 구조는 제1실시예의 구동모터(140)와 동일하고, 제2베어링(28)과 제2베어링 하우징(10)도 제1실시예와 동일하다.In the second embodiment, the structure of the drive motor 140a of the inner rotor 40, the outer rotor 50, and the stator 60 is the same as that of the drive motor 140 of the first embodiment, and the second bearing 28 and the The two bearing housings 10 are also the same as in the first embodiment.
아우터 샤프트(20)는 제2실시예와 같이 단일체로 구성하거나 제1실시예와 같이, 제1 및 제2 샤프트(22,24)의 결합구조로 이루어지는 것도 가능하다.The outer shaft 20 may be configured as a single body as in the second embodiment, or may be made of a coupling structure of the first and second shafts 22 and 24 as in the first embodiment.
따라서, 제1실시예와 제2실시예 사이에 동일한 부분은 동일한 부재번호를 부여하고 이에 대한 상세한 설명은 생략한다.Therefore, the same parts between the first embodiment and the second embodiment are given the same reference numerals and detailed description thereof will be omitted.
제1실시예와 제2실시예 사이에 차이점은 제1베어링(26)이 스테이터 지지체와 분리된 제1베어링 하우징(102)에 설치된 것이다. 그러나, 제1베어링(26)은 제1실시예와 유사하게 스테이터 지지체로부터 연장되어 형성되는 제1베어링 하우징에 설치되는 것도 가능하다.The difference between the first and second embodiments is that the first bearing 26 is installed in the first bearing housing 102 separated from the stator support. However, similarly to the first embodiment, the first bearing 26 can also be installed in the first bearing housing which extends from the stator support.
제1베어링 하우징(102)은 금속재질로 형성되고, 제1베어링(26)이 안착되는 제1베어링 안착부(104)와, 제1베어링 안착부(104)에서 외측방향으로 연장되어 상측방향으로 절곡되어 원통 형태를 이루는 연결부(106)와, 연결부(106)의 상단에서 외측방향으로 연장되어 외조(110)에 고정되는 평판부(108)를 포함한다. 평판부(108)는 볼트(250)에 의해 제2베어링 하우징(10)의 평판부(18)와 함께 외조(110)에 고정된다.The first bearing housing 102 is formed of a metal material, and extends outwardly from the first bearing seating portion 104 and the first bearing seating portion 104 on which the first bearing 26 is seated, and upwards. The connecting portion 106 is bent to form a cylindrical shape and a flat plate portion 108 extending outward from the upper end of the connecting portion 106 and fixed to the outer tub 110. The flat plate 108 is fixed to the outer tub 110 together with the flat plate 18 of the second bearing housing 10 by bolts 250.
아우터 샤프트(20)에는 아우터 로터(50)의 아우터 로터 지지체(56)가 연결되는 제1연결부(90)가 형성되고, 인너 샤프트(30)의 하측에는 인너 로터(40)의 인너 로터 지지체(46)가 연결되는 제2연결부(92)가 형성된다. The outer shaft 20 is formed with a first connecting portion 90 to which the outer rotor support 56 of the outer rotor 50 is connected, and the inner rotor support 46 of the inner rotor 40 under the inner shaft 30. ) Is connected to the second connection portion 92 is formed.
여기에서, 제1연결부(90)는 제1베어링(26)의 하부에 배치되어 있으나, 제1베어링(26)이 스테이터 지지체로부터 연장되어 형성되는 제1베어링 하우징에 설치되는 경우, 제1연결부(90)는 제1베어링과 제2베어링 사이에 형성되어 모터의 전체 높이를 줄일 수 있다. Here, the first connecting portion 90 is disposed below the first bearing 26, but when the first bearing 26 is installed in the first bearing housing formed extending from the stator support, the first connecting portion ( 90) may be formed between the first bearing and the second bearing to reduce the overall height of the motor.
즉, 제1연결부(90)가 제1베어링(26)과 제2베어링(28) 사이에 배치되면, 기존의 아우터 샤프트의 제1베어링(26) 하측에 형성되는 제1연결부의 길이만큼 아우터 샤프트의 길이를 줄일 수 있게 되고, 이에 따라 세탁기 모터의 높이를 줄일 수 있다. That is, when the first connecting portion 90 is disposed between the first bearing 26 and the second bearing 28, the outer shaft is as long as the length of the first connecting portion formed under the first bearing 26 of the existing outer shaft. It is possible to reduce the length of, thereby reducing the height of the washing machine motor.
모터의 높이가 줄어들면 그 만큼 세탁기의 전체 높이를 줄일 수 있어 사용자가 세탁물을 탑 로딩할 경우 쉽고 편리하며, 전체 높이가 동일할 경우 세탁조의 사이즈를 증대시킬 수 있어 세탁기 용량을 증대시킬 수 있다.If the height of the motor is reduced, the overall height of the washing machine can be reduced by that amount, which is easy and convenient for the user to top-load the laundry. If the overall height is the same, the size of the washing tub can be increased, thereby increasing the washing machine capacity.
스테이터(60)는 방사상으로 배열되는 다수의 스테이터 코어(62)와, 스테이터 코어(62)의 외주면에 감싸지는 비자성체인 보빈(64)과, 스테이터 코어(62)의 일측에 감겨지는 인너 스테이터 코일(66)과, 스테이터 코어(62)의 타측에 감겨지는 아우터 스테이터 코일(68)과, 스테이터 코어(62)가 환형으로 배열되고 외조(110)에 고정되는 스테이터 지지체(230)를 포함한다. The stator 60 includes a plurality of stator cores 62 arranged radially, a bobbin 64 which is a nonmagnetic material wrapped around the outer circumferential surface of the stator core 62, and an inner stator coil wound around one side of the stator core 62. (66), an outer stator coil (68) wound on the other side of the stator core (62), and a stator support (230) on which the stator core (62) is arranged in an annular shape and fixed to the outer tub (110).
스테이터 지지체(230)는 금형에 원주방향으로 스테이터 코어(62)를 일정 간격을 두고 배열한 후 인서트 몰딩에 의해 스테이터 코어(62)와 일체로 형성된다. The stator support 230 is formed integrally with the stator core 62 by insert molding after arranging the stator core 62 in the mold in the circumferential direction at regular intervals.
스테이터 지지체(230)는 스테이터 코어(62)와 일체로 형성되는 코어 고정부(232)와, 코어 고정부(232)의 하단에서 외측방향으로 연장된 후 직각으로 절곡되어 상측으로 연장되는 연결부(234)와, 연결부(234)의 상측에서 절곡되어 외측으로 연장되어 외조(110)에 고정되는 외조 고정부(236)를 포함한다.The stator support 230 includes a core fixing portion 232 integrally formed with the stator core 62, and a connecting portion 234 extending upward from the lower end of the core fixing portion 232 and bent at a right angle to extend upward. And an outer tub fixing portion 236 that is bent at an upper side of the connecting portion 234 and extended outward and fixed to the outer tub 110.
제2실시예에 따른 세탁기 구동장치(150a)에서도 인너 로터(40)는 구동토크가 아우터 로터(50)에 비해 작고, 펄세이터(130)는 세탁조(120)에 비해 작은 토크를 필요로 하므로, 인너 로터(40)는 펄세이터(130)를 충분히 회전시킬 수 있다. In the washing machine driving device 150a according to the second embodiment, the inner rotor 40 has a smaller driving torque than the outer rotor 50, and the pulsator 130 requires less torque than the washing tub 120. The inner rotor 40 can sufficiently rotate the pulsator 130.
따라서, 아우터 로터(50)가 회전되면 아우터 샤프트(20)가 회전되고 아우터 샤프트(20)와 연결된 세탁조(120)가 회전된다. Therefore, when the outer rotor 50 is rotated, the outer shaft 20 is rotated and the washing tub 120 connected to the outer shaft 20 is rotated.
아우터 로터(50)는 인너 로터(40)에 비해 큰 토크를 갖도록 설계되고, 세탁조(120)는 펄세이터(130)에 비해 큰 토크를 필요로 한다. The outer rotor 50 is designed to have a greater torque than the inner rotor 40, and the washing tub 120 requires a larger torque than the pulsator 130.
제2실시예에 따른 구동모터(140a)는 큰 구동토크를 갖는 아우터 로터(50)가 큰 토크를 필요로 하는 세탁조(120)와 연결되고, 아우터 로터(50)에 비해 상대적으로 작은 토크를 갖는 인너 로터(40)가 세탁조에 비해 상대적으로 작은 토크를 필요로 하는 펄세이터(130)와 연결되므로 세탁기의 성능을 향상시킬 수 있고, 전류 소비량을 줄일 수 있다. The drive motor 140a according to the second embodiment is connected to the washing tank 120 in which the outer rotor 50 having a large drive torque requires a large torque, and has a relatively smaller torque than the outer rotor 50. Since the inner rotor 40 is connected to the pulsator 130 which requires a relatively small torque compared to the washing tank, the inner rotor 40 may improve the performance of the washing machine and reduce the current consumption.
더욱이, 본 발명에서는 인너 로터(40)의 구동 토크를 증대시키도록 Nd 자석과 같은 희토류계의 고자력 자석을 사용하여 저가의 페라이트 자석을 사용하는 아우터 로터과 구동 토크를 동등하게 구현할 수 있다. 그 결과 본 발명에서는 실시예 1 내지 4와 같이 쌍동력을 이용하여 세탁 행정 및 행굼 행정시에 펄세이터와 세탁조를 동시에 구동하여 다양한 세탁 수류 및 헹굼 패턴을 형성할 수 있다. Further, in the present invention, the drive torque of the outer rotor using a low-cost ferrite magnet can be equally implemented by using a high-magnet magnet of a rare earth system such as an Nd magnet to increase the drive torque of the inner rotor 40. As a result, in the present invention, as shown in Examples 1 to 4, the pulsator and the washing tank may be simultaneously driven during the washing stroke and the rinsing stroke to form various washing water streams and rinsing patterns using the twin power.
상기한 실시예 설명에서는 한쌍의 출력을 발생하는 쌍동력원으로, 레이디얼 갭형의 더블 로터-더블 스테이터 구조의 BLDC 모터를 구동모터로 사용하고 있으나, 액시얼 갭형 더블 로터-더블 스테이터 구조의 BLDC 모터를 구동모터로 사용할 수 있으며, 한쌍의 출력을 발생하는 동력원이라면 다른 구조, 다른 방식의 어떤 구동모터도 사용할 수 있다. In the above description of the embodiment, a BLDC motor having a radial gap type double rotor-double stator structure is used as a driving motor, but a BLDC motor having an axial gap type double rotor double stator structure is used as a driving power source. It can be used as a drive motor, and any drive motor of different structure and different way can be used as long as the power source generates a pair of outputs.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다. In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments, and the present invention is not limited to the spirit of the present invention. Various changes and modifications will be possible by those who have the same.
본 발명은 인너 로터와 아우터 로터의 구동 토크를 유사하게 구현한 쌍동력 구동모터를 이용하여, 고가의 토크변환장치를 사용하지 않으면서도 상호 반대방향 세탁수류를 포함한 다양한 세탁 수류를 무리없이 형성할 수 있는 세탁기 구동장치 및 그의 제어, 특히 전자동 세탁기에 적용될 수 있다.The present invention can be used to form a variety of washing water flows including washing water flow in the opposite direction without using an expensive torque converter using a twin-drive drive motor that implements the drive torque of the inner rotor and the outer rotor similarly Washing machine drive and its control, in particular fully automatic washing machine.

Claims (15)

  1. 더블 스테이터에 의해 독립적으로 제어 가능한 인너 로터와 아우터 로터를 구비하고, 선택적으로 인너 로터 출력과 아우터 로터 출력을 발생하는 더블 로터-더블 스테이터 방식의 구동모터; A double rotor-double stator drive motor having an inner rotor and an outer rotor that can be independently controlled by a double stator, and selectively generating an inner rotor output and an outer rotor output;
    상기 아우터 로터 출력 또는 인너 로터 출력을 펄세이터에 전달하는 인너 샤프트; An inner shaft which transmits the outer rotor output or the inner rotor output to a pulsator;
    상기 인너 샤프트의 외주에 회전 가능하게 결합되며, 상기 인너 로터 출력 또는 아우터 로터 출력을 세탁조에 전달하는 아우터 샤프트; 및An outer shaft rotatably coupled to an outer circumference of the inner shaft and transmitting the inner rotor output or the outer rotor output to a washing tub; And
    상기 더블 스테이터에 제1 및 제2 구동신호를 독립적으로 인가하여 인너 로터와 아우터 로터를 제어하는 제어유닛을 포함하며,And a control unit for independently applying the first and second driving signals to the double stator to control the inner rotor and the outer rotor,
    상기 제어유닛은 세탁 행정시에 상기 펄세이터가 시계방향 및 반시계방향으로 회전방향을 전환할 때 정지시간을 가지며, 상기 세탁조는 펄세이터의 시계방향 및 반시계방향의 구동시간이 종료되기 전에 기동하여 펄세이터의 회전 방향과 반대방향으로 구동이 이루어지도록 제어하는 것을 특징으로 하는 세탁기 구동장치. The control unit has a stop time when the pulsator switches the rotational direction clockwise and counterclockwise during the washing stroke, and the washing tank is started before the clockwise and counterclockwise driving time of the pulsator is finished. Washing machine drive device characterized in that the control is made to drive in the direction opposite to the rotation direction of the pulsator.
  2. 제1항에 있어서, The method of claim 1,
    상기 세탁조의 구동은 펄세이터의 정지시간 이후까지 연장되어 구동되는 것을 특징으로 하는 세탁기 구동장치. The driving of the washing tank is a washing machine driving apparatus characterized in that it is extended to drive after the stop time of the pulsator.
  3. 제1항에 있어서, The method of claim 1,
    상기 세탁조는 펄세이터의 시계방향 및 반시계방향의 기동과 동시에 펄세이터의 회전 방향과 반대방향으로 구동된 후, 펄세이터의 구동시간보다 짧게 구동이 이루어지는 것을 특징으로 하는 세탁기 구동장치. The washing tank is driven in a direction opposite to the rotation direction of the pulsator at the same time as the clockwise and counterclockwise start of the pulsator, the washing machine driving device characterized in that the drive is shorter than the driving time of the pulsator.
  4. 제1항에 있어서, The method of claim 1,
    상기 펄세이터의 구동시간과 정지시간은 1.5:1 내지 10:1 범위로 설정되는 것을 특징으로 하는 세탁기 구동장치. Driving time and stop time of the pulsator is a washing machine drive device, characterized in that set in the range 1.5: 1 to 10: 1.
  5. 제1항에 있어서, The method of claim 1,
    상기 펄세이터의 기동 및 정지 동작시에 오버슈팅 구동이 이루어지는 것을 특징으로 하는 세탁기 구동장치. Washing machine drive device characterized in that the overshoot driving is performed during the start and stop operation of the pulsator.
  6. 제1항에 있어서, The method of claim 1,
    상기 펄세이터의 기동시에 램프-업 구동이 이루어지는 것을 특징으로 하는 세탁기 구동장치.Washing machine drive device characterized in that the ramp-up drive is performed at the time of starting the pulsator.
  7. 제1항에 있어서, The method of claim 1,
    상기 펄세이터는 가변속도로 구동되는 것을 특징으로 하는 세탁기 구동장치.The pulsator is driving the washing machine, characterized in that driven at a variable speed.
  8. 제1항에 있어서, The method of claim 1,
    상기 펄세이터의 정지는 아우터 로터를 구동하는 드라이버를 이용하여 전자 브레이크를 실시하는 것을 특징으로 하는 세탁기 구동장치. The stop of the pulsator is a washing machine drive device characterized in that to perform an electromagnetic brake using a driver for driving the outer rotor.
  9. 제1항에 있어서, The method of claim 1,
    상기 인너 로터의 구동 토크는 아우터 로터의 구동 토크와 동등하게 설정하는 것을 특징으로 하는 세탁기 구동장치. The driving torque of the inner rotor is set to be equal to the driving torque of the outer rotor.
  10. 제9항에 있어서, The method of claim 9,
    상기 인너 로터는 희토류계 자석을 사용하고, 상기 아우터 로터는 페라이트 자석을 사용하는 것을 특징으로 하는 세탁기 구동장치. The inner rotor uses a rare earth magnet, and the outer rotor uses a ferrite magnet.
  11. 제1항에 있어서, The method of claim 1,
    상기 아우터 로터는 The outer rotor
    상기 스테이터의 외면에 일정 갭을 두고 배치되며 N극 및 S극이 교대로 배치되는 다수의 제2자석; A plurality of second magnets arranged at an outer surface of the stator with a predetermined gap and N poles and S poles alternately arranged;
    상기 제2자석의 배면에 배치되는 제2백요크; 및 A second back yoke disposed on a rear surface of the second magnet; And
    상기 제2자석 및 제2백요크를 지지하는 아우터 로터 지지체를 포함하며,An outer rotor support for supporting the second magnet and the second back yoke,
    상기 아우터 로터 지지체는 The outer rotor support is
    컵 형상의 바닥면 중에 상기 스테이터의 인너 및 아우터 스테이터 코일과 대향한 외측평탄부와, An outer flat portion facing the inner and outer stator coils of the stator in a cup-shaped bottom surface;
    인너 샤프트와 결합이 이루어지는 내측평탄부와, Inner flat portion which is engaged with the inner shaft,
    상기 외측평탄부와 내측평탄부를 연결하는 경사연결부를 포함하고, It includes an inclined connecting portion connecting the outer flat portion and the inner flat portion,
    상기 외측 평탄부에는 상기 인너 및 아우터 스테이터 코일과 대향한 부분에 각각 인너 및 아우터 스테이터 코일로부터 발생된 열을 외부로 배출하는 제1 및 제2 관통구멍을 구비하는 것을 특징으로 하는 세탁기 구동장치.The outer flat portion is provided with a first and second through hole for discharging the heat generated from the inner and outer stator coil to the outside in the portion facing the inner and outer stator coil, respectively.
  12. 제11항에 있어서,The method of claim 11,
    상기 아우터 로터 지지체는 The outer rotor support is
    그의 외주면 및 내주면에 각각 일정한 각도마다 방사방향으로 돌출되어 있는 복수의 방사방향 보강리브; 및 A plurality of radial reinforcing ribs protruding radially at regular angles on the outer and inner circumferential surfaces thereof; And
    그의 내주면에 원주방향으로 간격을 두고 형성되어 있는 제1 내지 제3 원주방향 보강리브를 포함하는 것을 특징으로 하는 세탁기 구동장치.Washing machine drive device comprising a first to third circumferential reinforcing ribs formed on the inner circumferential surface at intervals in the circumferential direction.
  13. 제1항에 있어서,The method of claim 1,
    상기 제어유닛은 The control unit
    상기 펄세이터를 제1기간 동안 제1방향으로 회전 구동하고,The pulsator is driven to rotate in a first direction for a first period of time,
    상기 제1기간이 종료되기 전에 세탁조를 제2기간 동안 상기 제1방향과 반대방향으로 회전 구동하며,Before the first period ends, the washing tank is rotated in a direction opposite to the first direction for a second period,
    상기 제1기간의 경과에 따라 펄세이터를 정지시키고,Stopping the pulsator according to the passage of the first period,
    상기 제1기간의 경과 이후에 상기 제2기간의 경과에 따라 상기 세탁조를 정지시키도록 구성되는 것을 특징으로 하는 세탁기 구동장치.And a washing machine configured to stop the washing tank according to the elapse of the second period after the elapse of the first period.
  14. 세탁수를 수용하는 외조; A water bath containing wash water;
    상기 외조의 내부에 회전 가능하게 배치되어 세탁과 탈수가 이루어지는 세탁조;A washing tank rotatably disposed in the outer tub to perform washing and dehydration;
    상기 세탁조 내부에 회전 가능하게 배치되어 세탁 수류를 형성하는 펄세이터; 및A pulsator rotatably disposed in the washing tank to form a washing stream; And
    상기 세탁조와 펄세이터를 동시에 또는 선택적으로 구동시키는 청구항 1 내지 청구항 13 중 어느 한 항에 따른 세탁기 구동장치를 포함하는 세탁기. A washing machine comprising a washing machine driving device according to any one of claims 1 to 13, which simultaneously or selectively drives the washing tank and the pulsator.
  15. 펄세이터를 제1기간 동안 제1방향으로 회전 구동하는 제1단계;A first step of rotating the pulsator in the first direction during the first period;
    상기 제1기간이 종료되기 전에 세탁조를 제2기간 동안 상기 제1방향과 반대방향으로 회전 구동하는 제2단계;A second step of rotating the washing tub in a direction opposite to the first direction for a second period before the first period ends;
    상기 제1기간의 경과에 따라 펄세이터를 정지시키는 제3단계;Stopping the pulsator in accordance with the passage of the first period;
    상기 제1기간의 경과 이후에 상기 제2기간의 경과에 따라 상기 세탁조를 정지시키는 제4단계; 및A fourth step of stopping the washing tub according to the passage of the second period after the passage of the first period; And
    상기 제2기간의 경과 이후에 펄세이터의 정지시간이 경과하는 경우, 상기 제1 내지 제4 단계에서 펄세이터와 세탁조의 회전방향을 각각 반대로 설정하여 순차적으로 실행하는 제5단계;를 포함하는 것을 특징으로 하는 세탁기 구동방법.And a fifth step of sequentially setting rotation directions of the pulsator and the washing tank in the first to fourth steps, respectively, when the pulsator stop time elapses after the second period elapses. Washing machine driving method characterized in that.
PCT/KR2017/005197 2016-05-20 2017-05-19 Washing machine driving device, washing machine having same, and washing machine driving method WO2017200329A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780025443.8A CN109072530B (en) 2016-05-20 2017-05-19 Washing machine driving device, washing machine with same and washing machine driving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0062299 2016-05-20
KR1020160062299A KR101939204B1 (en) 2016-05-20 2016-05-20 Apparatus for Driving Washing Machine, Washing Machine Using the Same and Driving Method of Washing Machine

Publications (1)

Publication Number Publication Date
WO2017200329A1 true WO2017200329A1 (en) 2017-11-23

Family

ID=60325870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005197 WO2017200329A1 (en) 2016-05-20 2017-05-19 Washing machine driving device, washing machine having same, and washing machine driving method

Country Status (3)

Country Link
KR (1) KR101939204B1 (en)
CN (1) CN109072530B (en)
WO (1) WO2017200329A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107985A1 (en) * 2017-11-29 2019-06-06 엘지전자 주식회사 Washing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230055049A (en) * 2021-10-18 2023-04-25 삼성전자주식회사 Washing machine and controlling method for the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276777A (en) * 1998-03-31 1999-10-12 Toshiba Corp Washing machine used also as dry spinning machine
JP2003340189A (en) * 2002-05-21 2003-12-02 Samsung Electronics Co Ltd Rinsing control method of washer
KR20130074151A (en) * 2011-12-26 2013-07-04 주식회사 아모텍 Motor drive circuit for washing machine and control method thereof
KR20150008347A (en) * 2013-07-12 2015-01-22 주식회사 아모텍 Apparatus for Driving Washing Machine, Washing Machine Using the Same and Controlling Method thereof
KR20150042733A (en) * 2013-10-10 2015-04-21 주식회사 아모텍 Driving Apparatus for Washing Machine, Washing Machine Using the Same and Driving Method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101228043B1 (en) * 2011-06-08 2013-01-30 주식회사 아모텍 Driving apparatus for direct drive type washing machine
WO2017014588A1 (en) * 2015-07-22 2017-01-26 주식회사 아모텍 Apparatus for driving washing machine, washing machine having same, and method for driving washing machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276777A (en) * 1998-03-31 1999-10-12 Toshiba Corp Washing machine used also as dry spinning machine
JP2003340189A (en) * 2002-05-21 2003-12-02 Samsung Electronics Co Ltd Rinsing control method of washer
KR20130074151A (en) * 2011-12-26 2013-07-04 주식회사 아모텍 Motor drive circuit for washing machine and control method thereof
KR20150008347A (en) * 2013-07-12 2015-01-22 주식회사 아모텍 Apparatus for Driving Washing Machine, Washing Machine Using the Same and Controlling Method thereof
KR20150042733A (en) * 2013-10-10 2015-04-21 주식회사 아모텍 Driving Apparatus for Washing Machine, Washing Machine Using the Same and Driving Method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107985A1 (en) * 2017-11-29 2019-06-06 엘지전자 주식회사 Washing machine
US11208751B2 (en) 2017-11-29 2021-12-28 Lg Electronics Inc. Washing machine

Also Published As

Publication number Publication date
CN109072530B (en) 2021-03-12
KR20170131092A (en) 2017-11-29
CN109072530A (en) 2018-12-21
KR101939204B1 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
WO2016186353A1 (en) Washing machine drive apparatus, and washing machine comprising same
WO2014112839A1 (en) Multi-motor driving device and apparatus and method for driving motor for washing machine using same
KR101639021B1 (en) Apparatus for Driving Washing Machine and Washing Machine Using the Same
WO2017200329A1 (en) Washing machine driving device, washing machine having same, and washing machine driving method
KR101704742B1 (en) Driving apparatus and washing machine having the same
WO2016080770A1 (en) Washing machine and method for operating washing machine
US5146146A (en) Method and device for operating electric drives
EP3639363A1 (en) Motor and method of controlling motor, washing machine having motor
WO2017176062A1 (en) Slim-type stator, sensorless single-phase motor using same, and cooling fan
WO2017014588A1 (en) Apparatus for driving washing machine, washing machine having same, and method for driving washing machine
KR20150010925A (en) Motor for washing machine and washing machine using the same
WO2016122171A1 (en) Drum driving apparatus, drum washing machine having same, and method for operating same
GB2270580A (en) Washing machine
WO2016122170A1 (en) Drum driving apparatus, drum washing machine having same, and method for operating same
US20030052627A1 (en) Motor control for two motors
WO2015005752A1 (en) Washing machine driving device, washing machine having same, and control method therefor
KR20010097203A (en) Motor for pulsator type washing machine
AU2019239493B2 (en) Washing machine and method for controlling the same
EP3475476A1 (en) Washing machine
WO2019107985A1 (en) Washing machine
WO2020009533A1 (en) Laundry processing apparatus and control method therefor
WO2018021871A1 (en) Washing machine
EP3711141A1 (en) Motor
US5937467A (en) Method and apparatus for braking a washing machine
WO2015053591A1 (en) Washing machine driving device, and washing machine and driving method using same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799686

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799686

Country of ref document: EP

Kind code of ref document: A1