WO2017200066A1 - がん検査装置、がん検査方法、および、がん検査用の染色剤 - Google Patents

がん検査装置、がん検査方法、および、がん検査用の染色剤 Download PDF

Info

Publication number
WO2017200066A1
WO2017200066A1 PCT/JP2017/018755 JP2017018755W WO2017200066A1 WO 2017200066 A1 WO2017200066 A1 WO 2017200066A1 JP 2017018755 W JP2017018755 W JP 2017018755W WO 2017200066 A1 WO2017200066 A1 WO 2017200066A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
related gene
stained
cell group
staining
Prior art date
Application number
PCT/JP2017/018755
Other languages
English (en)
French (fr)
Inventor
明 溝口
光司 田中
直之 片山
哲哉 野阪
匡介 田中
淑杰 王
愛加 垣内
煌植 崔
一志 木村
Original Assignee
国立大学法人三重大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2017/006962 external-priority patent/WO2017146184A1/ja
Application filed by 国立大学法人三重大学 filed Critical 国立大学法人三重大学
Priority to US16/301,939 priority Critical patent/US11555819B2/en
Priority to JP2018518367A priority patent/JPWO2017200066A1/ja
Priority to EP17799490.2A priority patent/EP3459424A4/en
Priority to CN201780036233.9A priority patent/CN109414151B/zh
Publication of WO2017200066A1 publication Critical patent/WO2017200066A1/ja
Priority to US17/964,758 priority patent/US11852632B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57496Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving intracellular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N1/31Apparatus therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N2001/302Stain compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures

Definitions

  • the present invention relates to a cancer testing apparatus for testing cancer of living cells, a cancer testing method, and a staining agent for cancer testing.
  • a method for confirming a lesion inside a living body for example, the digestive tract
  • a method for confirming the presence or absence of a lesion such as a cancer cell by imaging the morphology of a cell group inside the living body is known.
  • Patent Document 1 discloses that a predetermined cell group inside a living body is stained by living body staining using a specific edible dye such as curcumin or sulfretin, and then a multiphoton laser is applied to the stained cell group.
  • a method is described in which cancer cells are stained more densely than normal cells, thereby facilitating detection of cancer cells, and a method for fluorescence imaging of individual cell morphology inside a living body.
  • the living body-stained cell group emits fluorescence by being irradiated with a multiphoton laser, so that it is possible to obtain clear images of individual cell morphology and nucleus morphology inside the living body. Thereby, the presence or absence of lesions such as cancer cells can be accurately confirmed and pathological diagnosis can be performed.
  • Patent Document 1 By using the method described in Patent Document 1, it is possible to accurately confirm the presence or absence of canceration of living cells, but as a request of the world, it is possible to grasp the canceration of living cells as soon as possible. It has been demanded.
  • the present invention solves the above-described problems, and an object of the present invention is to provide a cancer testing apparatus and the like that can grasp canceration of living cells at an early stage.
  • a cancer test apparatus applies (1) a stain that selectively stains a cancer-related gene product of a living cell to a living cell group.
  • An application unit (2) an imaging unit that images the biological cell group to which the stain is applied; and (3) the biological cell group based on a staining state of the biological cell group of an image obtained by the imaging.
  • a determination unit that determines a malignancy level of canceration based on an expression pattern.
  • the laser used for imaging may be a multiphoton laser for a multiphoton laser microscope or a continuous wave (CW) laser for a confocal laser microscope.
  • the malignancy level here refers to the high metastasis / invasion ability of cancer cells as high malignancy, and is resistant to radiation therapy and chemotherapy in terms of treatment. Cancer with is defined as high grade.
  • the malignancy level of canceration is determined based on the staining state of the cancer-related gene product in the biological cell group, the canceration of the biological cell group can be grasped at an early stage. Moreover, since the malignancy level of canceration can be grasped, the prognosis of cancer patients can be known.
  • the application unit may apply the staining agent that stains a ras-based cancer-related gene product that transmits a signal that promotes the growth of the living cells.
  • the application unit may apply the staining agent containing phloxine, erythrosine, merbromine, fast green FCF, or meclocycline sulfosaltylate.
  • the application unit may apply the staining agent that stains a STAT3-based cancer-related gene product that transmits a signal that promotes the growth of the living cells.
  • the application unit may apply the stain containing curcumin.
  • ⁇ / RTI> By using the staining agent in this embodiment, it is possible to stain STAT3-based cancer-related gene products and to grasp the occurrence of cancer cells in a living cell group at an early stage.
  • the application unit after applying the stain containing curcumin to the group of biological cells, the Phloxine, erythrosine, merbromine, fast green FCF or meclocycline sulfosartylate to the group of biological cells A staining agent may be applied.
  • the application unit applies the staining agent that stains a STAT3-based cancer-related gene product that transmits a signal that promotes the growth of the living cells to the group of living cells, and then propagates the living cells.
  • the stain may be applied to stain a cancer-related gene product of the ras system that transmits a promoting signal.
  • the determination unit may perform the determination based on the area of the stained region of the living cell group.
  • the malignancy level of canceration can be accurately grasped.
  • the determination unit may perform the determination based on the number of cells in the stained region of the living cell group.
  • the malignancy level of canceration can be accurately grasped.
  • the determination unit may perform the determination based on the number and average diameter of stained cell groups within a certain area including the stained region of the living cell group.
  • the imaging unit may image the living cell group by irradiating the living cell group coated with the stain with a multiphoton laser or a confocal laser.
  • the malignancy level of canceration inside the living body at a depth of 10 ⁇ m or more and 1000 ⁇ m or less from the mucosal surface can be easily grasped.
  • the malignancy level of canceration inside the living body at a depth of 10 ⁇ m or more and 70 ⁇ m or less from the mucosal surface can be easily grasped.
  • the prognosis of the cancer patient can be known in the very early stage before the cancer cell population appears on the mucosal surface.
  • the imaging unit may image the cancer-related gene expression pattern of a cell population having a diameter of 0.1 mm to 0.4 mm stained with the stain.
  • the prognosis of the cancer patient can be known at an early stage before the cancer cell population is greatly manifested.
  • the application unit dyes the plurality of cancer-related gene products in different colors by applying a plurality of different stains to the biological cell group, and the imaging unit is dyed in different colors.
  • the plurality of cancer-related gene expression patterns may be imaged by irradiating the plurality of cancer-related gene expression patterns with a plurality of excitation lights corresponding to the respective stains.
  • a plurality of cancer-related gene expression patterns are accurately detected by irradiating a plurality of stained cancer-related gene expression patterns with a plurality of excitation lights according to the respective staining agents. Can do.
  • the excitation light irradiated on the plurality of cancer-related gene expression patterns may be selected according to the type of the staining agent.
  • At least two types of cancer-related gene expression patterns can be detected by using at least two types of stains and irradiating excitation light corresponding to these stains.
  • the imaging unit includes a focal position control unit, and is present at a depth of 10 ⁇ m or more and 1000 ⁇ m or less from the internal surface of the living body stained with the staining agent by controlling the focal position control unit.
  • a cancer-related gene expression pattern may be imaged.
  • the malignancy level of canceration inside a living body at a depth of 10 ⁇ m or more and 1000 ⁇ m or less from the mucosal surface can be grasped, and an early stage before the cancer cell population appears on the mucosal surface, Can know the prognosis of cancer patients.
  • the focal position control unit is controlled from the surface, the focal point is changed at a constant interval, and imaging is performed at focal positions at different depths.
  • the image may be a three-dimensional image, and the determination may be performed based on the penetration degree of the staining agent in the three-dimensional image.
  • the malignancy level of canceration inside the living body can be grasped based on the penetrance of the staining agent in the stereoscopic image, and at a very early stage before the cancer cell population appears on the mucosal surface. Can know the prognosis of cancer patients.
  • the cancer testing method includes a coating step of applying a stain for selectively staining a cancer-related gene product of a living cell to a chromatic color on a living cell group; and An imaging step of imaging the applied biological cell group, and a determination step of determining a malignancy level of canceration of the biological cell group based on a staining state of the biological cell group of an image obtained by the imaging. Including.
  • the malignancy level of canceration is determined based on the staining state of the cancer-related gene expression pattern of the biological cell group, the canceration of the biological cell group can be grasped at an early stage. Moreover, since the malignancy level of canceration can be grasped, the prognosis of cancer patients can be known.
  • the staining agent for cancer testing is a phloxine, erythrosin, merbromine, fast green FCF, or dye that stains a ras-based cancer-related gene product that transmits a signal that promotes the growth of living cells. It contains meculocycline sulfosaltylate or curcumin that stains the STAT3 cancer-related gene product that transmits a signal that promotes the growth of living cells, and within 10 minutes after the start of staining, the living cells It has a concentration that penetrates into the cytoplasm but does not penetrate into the cell nucleus.
  • the stain for cancer examination according to this embodiment does not penetrate into the nucleus in the cell even if it penetrates into the cytoplasm within 10 minutes after the start of staining, so the nucleus surrounded by the cytoplasm is clearly visualized. And the analysis of canceration can be made clearer.
  • canceration of living cells can be grasped at a very early stage of about 1 mm in diameter and at a very early stage of cancer.
  • the expression pattern of a cancer-related gene can be analyzed, and the risk level (life prognosis) of a cancer tumor on a patient can be determined.
  • the observation targets up to this point were all epithelial cells, glandular cells, connective tissue, and capillaries of the inner wall mucosa of the digestive tract of the living body. However, using fresh tissue within 20 minutes immediately after surgery as a material. In addition, a cell morphology image equivalent to that of a living tissue can be taken.
  • FIG. 1A is a schematic diagram showing a state in which a cancer-related gene product of a living cell is functioning normally.
  • FIG. 1B is a schematic diagram showing a state in which a cancer-related gene product of a living cell functions abnormally.
  • the cross mark in FIG. 1B indicates a cancerous mutation occurring in the cancer-related gene product.
  • FIG. 1C is a schematic diagram showing a stepwise canceration process of a group of living cells on the inner wall of the digestive tract.
  • FIG. 1D is a diagram showing an example of a growth curve of human cancer cells.
  • FIG. 2A is an image of a cancer-related gene expression pattern of a living cell related to sample 1
  • (a) is an image of a cancer-related gene expression pattern of STAT3 stained with curcumin
  • (b) is stained with phloxine.
  • Image of ras cancer-related gene expression pattern (c) is a superimposed image of (a) and (b).
  • FIG. 2B is an image showing a cancer-related gene expression pattern of a living cell related to sample 2 in the same manner as FIG. 2A.
  • FIG. 2C is an image showing a cancer-related gene expression pattern of a living cell related to sample 3 in the same manner as FIG. 2A.
  • FIG. 3 is an image of a normal living cell group related to the sample 4.
  • the upper three panels (a), (b), and (c) in FIG. 4A are obtained by double-staining the inner wall of the mouse gastrointestinal tract with a stain containing acid red and a stain containing curcumin, The results of digital imaging of cell images from the inner wall surface of the digestive tract and from the surface to the interior of the living body using a focused laser microscope are shown.
  • (A) is a vital staining image with a stain containing acid red
  • (b) is a vital staining image with a stain containing curcumin
  • (c) is a superimposed image of (a) and (b). .
  • FIG. 4B is an image of a cell group of ultra-early cancer of the normal colon mucosa of a mouse by curcumin vital staining and a confocal laser microscope.
  • FIG. 4C is an image obtained by extracting a color region stained with a curcumin dye, in which a sample immediately after surgical removal of a human gastric adenoma was stained with a curcumin and imaged with a multiphoton laser microscope.
  • FIG. 4D shows a sample immediately after surgical removal of human gastric adenoma, double-stained with curcumin and acid red, and imaged with a multiphoton laser microscope.
  • FIG. 4E is an image when the inner wall of the digestive tract is double-stained with a stain containing curcumin and a stain containing acid red, and then the inner wall of the digestive tract is imaged using a multiphoton laser microscope, (A) is an image of a normal gastrointestinal tract, and (b) is an image of an extremely early stage cancer.
  • FIG. 5A is a schematic diagram showing the arrangement of cells of the large intestine that is an example of the digestive tract.
  • FIG. 5B is a diagram schematically showing cancer cells in the very early cancer that occurs in the gastrointestinal tract.
  • 5C shows imaging of the inner wall of the gastrointestinal tract using a multiphoton laser microscope and a confocal laser microscope, and at the same time the focal plane (a) of the mucosal surface and a depth of about 50 ⁇ m (b) from the mucosal surface.
  • 6A shows the STAT3 expression pattern of cancer-related gene STAT3 and curoxin biostaining of the lesion (circular structure visible in the center) called ACF (Atypical Crypt Foci), which was positioned as one form of precancerous state.
  • FIG. 6B is an enlarged view of FIG. 6A, which is obtained by curcumin vital staining of a lesion part (circular structure visible in the center) called ACF (Atypical Crypt Foci), which was positioned as one form of the precancerous state.
  • FIG. 7 is a diagram showing a state in which the insertion tube is inserted into the digestive tract in the cancer test apparatus according to Embodiment 1, (a) is a state immediately after the insertion tube is inserted, and (b) is a view in the digestive tract.
  • FIG. 8 is a diagram illustrating an example of an application unit of the cancer test apparatus according to the first embodiment.
  • FIG. 9A is a diagram showing a state in which the inner wall of the gastrointestinal tract is flattened using the cancer test apparatus according to Embodiment 1
  • FIG. 9B is the front side of the cancer test apparatus.
  • FIG. 10 is a schematic diagram illustrating the structure of the distal end portion of the endoscope in the cancer testing apparatus according to the first embodiment.
  • FIG. 11 is a block diagram illustrating a control configuration of the cancer test apparatus according to the first embodiment.
  • FIG. 12 is a flowchart showing an example of the operation of the cancer testing apparatus according to the first embodiment.
  • FIG. 13 is a block diagram illustrating a control configuration of the cancer test apparatus according to the second embodiment.
  • FIG. 14 is a schematic diagram showing a cancer test apparatus according to the second embodiment.
  • FIG. 15 is a schematic diagram illustrating an end portion on the distal end side of the endoscope of the cancer test apparatus according to the third embodiment.
  • FIG. 16 is a schematic diagram illustrating the entire endoscope.
  • FIG. 17 is a block diagram illustrating a control configuration of the cancer testing apparatus.
  • FIG. 18 is a flowchart illustrating an example of the operation of the cancer testing apparatus according to the third embodiment.
  • FIG. 19A is a composite image of the inner wall of the digestive tract stained with a stain containing curcumin and a stain containing acid red.
  • FIG. 19A is a composite image of the inner wall of the digestive tract stained with a stain containing curcumin and a stain containing acid red.
  • FIG. 19B is a composite image of the inner wall of the digestive tract stained with a stain containing curcumin and a stain containing acid red, and is a diagram showing the positional relationship between the imaging axis and the developed image.
  • FIG. 20A is a three-dimensional data image showing the cell morphology at a depth within a predetermined range from the inner wall surface (mucosal surface), and is an image obtained by extracting color regions stained with both the curcumin dye and the acid red dye.
  • FIG. 20B is an image obtained by extracting the color region stained with the curcumin dye from the image shown in FIG. 20A.
  • FIG. 20C is an image obtained by extracting the color region stained with the acid red pigment from the image shown in FIG. 20A.
  • FIG. 1A is a schematic diagram showing a state in which a cancer-related gene product of a living cell is functioning normally.
  • FIG. 1B is a schematic diagram showing a state in which a cancer-related gene product of a living cell functions abnormally. Cross marks indicate cancerous mutations in each cancer-related gene product.
  • Living cells are composed of a nucleus containing cell proliferation genes and a cytoplasm surrounding the nucleus.
  • the cell contains multiple types of cancer-related genes consisting of proteins.
  • cancer-related genes include those belonging to the ras (rat sarcoma) system, STAT3 (Signal Transducer and Activator of Transcription 3) system, and the growth suppression system, as shown in FIG. 1A. Some of them belong to the APC (antigen presenting cell) / ⁇ -catenin system and p53 (protein 53) system that transmit signals.
  • ras and STAT3 cancer-related gene products are classified as accelerator-related gene products that transmit cell growth-promoting signals, and APC / ⁇ -catenin and p53 cancer-related gene products It is classified as a gene product of the brake system that transmits a suppression signal.
  • EGF cell growth factor
  • the accelerator-related ras and STAT3 cancer-related gene products are activated.
  • the proliferation promoting signal is transmitted to the nucleus, genes necessary for cell proliferation are activated in the nucleus.
  • the APC / ⁇ -catenin and p53 cancer-related gene products of the brake system are always activated at a certain level in the cells, and these growth suppression signals activate the cell proliferation genes in the nucleus. Try to suppress cell growth.
  • the cancer-related gene of a living cell is functioning normally, the action of promoting cell growth and the action of suppressing the cell work in a balanced manner, so that the cell in the living body is appropriately grown.
  • a cancer-related gene product of ras or STAT3 system functions abnormally, as shown in FIG. 1B, a cancer-related gene of ras system or STAT3 system of growth promoting signal system Product activity increases and cell proliferation is increased more than necessary.
  • an APC / ⁇ -catenin or p53 cancer-related gene product is functioning abnormally, an APC / ⁇ -catenin or p53-type growth-inhibitory signal cancer-related gene product The function of inhibiting cell growth is reduced. In this way, any of the multiple types of cancer-related genes works differently from normal, causing failure in proper growth in normal cells, and abnormal cell growth enhancement in cancer cells. Begins.
  • FIG. 1C is a schematic diagram showing a stepwise canceration process of a living cell group on the inner wall of the digestive tract.
  • the process of canceration of the biological cell group is shown in order of a first stage, a second stage, a third stage, and a fourth stage.
  • the first stage is a stage in which canceration is about to begin in a part of the living cell group.
  • the first stage is considered to occur when the activity of the APC / ⁇ -catenin cancer-related gene is weakened and the function of suppressing cell growth is reduced.
  • cell proliferation is slightly enhanced, indicating that at least a precancerous condition that can become a cancer cell in the future is expressed.
  • the second stage is a precancerous state that has become more cancerous than the first stage.
  • the activity of ras-related cancer-related genes is strengthened and cell proliferation is promoted.
  • STAT3 cancer-related genes may be activated at this stage.
  • the size of the cancer cell population is small, and its diameter is, for example, from 0.1 mm to 0.4 mm.
  • the diameter of the cancer cell population is a diameter when the cancer cell population is regarded as a circle having the same area as the area of the cancer cell population. This stage is not a stage that immediately threatens the patient's life, but it is desirable to prepare a treatment plan for the future.
  • ACF typically Crypt Foci
  • ACF is the shape of glandular opening and lumen in the cell group belonging to the first and second stages. However, it has a special name corresponding to what is normally circular, but has an elongated slit-like opening and a clear morphological feature that the goblet cells in the glandular cells are less than normal. It is thought that it was defined in.
  • the third stage is a stage in which a part of the living cell group becomes infiltrated and cancer cells become apparent.
  • the third stage is considered to occur when the activity of p53 cancer-related genes is weakened and the function of suppressing cell growth is reduced.
  • the activity of both the brake system tumor suppressor gene products of the p53 system and the APC / ⁇ -catenin system is weakened, and the function of suppressing cell growth is greatly reduced.
  • Progressing at an accelerated rate cancer cells infiltrate surrounding tissues.
  • the diameter reaches 0.5 mm or more, and if left as it is, a cancer causing death of the individual is completed.
  • the fourth stage is a stage in which the cancer cells completed in the third stage have developed into a malignant cancer that is susceptible to further cell mutation, invasion, and metastasis after the cancer cells have become cancerous.
  • This stage is a stage where cancer metastasis to other distant organs other than the gastrointestinal tract begins, and is a dangerous stage that threatens the patient's life.
  • the speed of progression from the first stage to the fourth stage is considered to depend on the active state of the cancer-related gene.
  • FIG. 1D is a diagram showing an example of a proliferation curve of human cancer cells.
  • the number of cancer cells increases according to a predetermined growth curve.
  • the slope of the growth curve is small for 3 years when canceration is about to begin (when the diameter of the cancer cell population is less than 0.2 mm), but after 4 years (the diameter of the cancer cell population is 0).
  • the slope of the growth curve increases.
  • the slope of the growth curve becomes smaller.
  • cancer is clinically discovered and treated after 7 years. This is because the cancer cell population can be detected only after the diameter becomes 10 mm or more.
  • the number of cells increases exponentially in the range indicated by the broken line A in the growth curve.
  • This exponential increase indicates that these cancer cells have undergone cancer gene mutations from stage 1 to stage 3 that should take place, and the cancer cells repeat division at a uniform rate. It means that In the early stage of this exponential increase, that is, the cancer-related gene expression pattern is abnormal, but the cancer cell population itself is as small as 1 mm or less in diameter, and these cancer cell populations ( If ultra-early cancers can be detected, these ultra-early cancers are sufficiently small and can be completely removed, so that they can be cured. In this way, if the malignancy level of canceration can be grasped as an abnormality in the expression pattern of cancer-related genes at an extremely early stage, cancer can be fundamentally treated before it becomes a dangerous stage. It becomes.
  • the inventors have captured the cancer-related gene expression pattern of living cells with a multiphoton laser microscope or a confocal laser microscope, and visualized the active state of the cancer-related gene, so that the malignancy of canceration Tried to figure out the level.
  • the inventors performed imaging by staining a cancer-related gene product in a chromatic color using a stain containing an edible dye.
  • the edible pigment is a pigment that is permitted to be administered to humans (for example, a pigment for food coloring or a pigment that can be taken as a supplement) among natural pigments or artificially synthesized pigments.
  • a staining agent containing curcumin (Curcumin, C 21 H 20 O 6 ) was prepared as a staining agent that selectively stains STAT3 cancer-related gene products. Further, as the staining agent for selectively staining the cancer-associated gene expression patterns of the ras system was prepared dye containing phloxine (Phloxine, C 20 H 2 Br 4 Cl 4 Na 2 O 5).
  • a curcumin-containing solution containing 1% by weight of curcumin was prepared as a staining agent containing curcumins
  • a phloxine-containing solution containing 1% by weight of phloxine was prepared as a staining agent containing phloxine.
  • the staining agent containing curcumin is a curcumin solution (for example, the stock solution is a liquid containing 5%, 45% glycerol, and 50% ethanol of curcumin) diluted 1/5 to 1/100 with physiological saline. But you can.
  • a staining agent containing 1% phloxine a phloxine solution (stock solution 10 mg / mL) diluted to its original concentration to 1/10 may be used.
  • the imaging object is the inner wall of the large intestine of a mouse, and a plurality of portions (samples 1, 2, and 3) in which cancer cells are generated on the inner wall of the large intestine and portions of normal cells in which no cancer cells are generated (sample 4) ) And observed separately.
  • FIG. 2A is an image of a cancer-related gene expression pattern of a group of living cells of the mouse large intestine related to sample 1, and (a) shows that cancer cells are stained deeper than normal cells using a stain containing curcumin. Images of STAT3 cancer-related gene products, (b) images of ras cancer-related gene expression patterns stained with a dye containing phloxine, (c) are (a) and (b) Is a superimposed image. Note that FIG. 2A and FIGS. 2B, 2C, and 3 described later are black and white but are originally color images.
  • the STAT3 cancer-related gene product is expressed in green fluorescent color.
  • the proportion of the green fluorescent color stained area in the screen, that is, the proportion of cells in which STAT3 cancer-related gene expression is dominant is 30%.
  • the ras cancer-related gene is expressed in red fluorescent color.
  • the ratio of the stained region of red fluorescent color in the screen, that is, the ratio of cells predominating in ras cancer-related gene expression is 80%.
  • the coexistence region of the STAT3 cancer-related gene product and the ras cancer-related gene expression pattern is yellow fluorescent color, and the region where only the STAT3 cancer-related gene expression is green The region of only ras cancer-related gene expression is expressed in red fluorescent color.
  • the ratio of the yellow fluorescent color stained area in the screen is 10%.
  • a group of living cell populations related to Sample 1 is considered to be the second to third stages (super-early cancer) shown in FIG. 1C in terms of the malignancy level of canceration. That is, for stage diagnosis of this group of living cell populations, 10% of cells are positive for both the STAT3 system and the ras system, and this cell group has passed through at least the second stage. Is 0.2 mm or more (see FIG. 1D), it is estimated that there is a high possibility that the patient has already entered the third stage (super-early cancer).
  • FIG. 2B is an image showing the cancer-related gene expression pattern of a group of living cell populations related to sample 2 in the same manner as FIG. 2A.
  • the ratio of the green fluorescent color staining area in the screen that is, the ratio of the STAT3-based cancer-related gene expression area is 50%.
  • the ratio of the red fluorescent color staining area in the screen that is, the ratio of the ras cancer-related gene expression area is 90%.
  • the ratio of the yellow fluorescent color stained area in the screen that is, the ratio of the co-expression area of the STAT3 cancer-related gene and the ras cancer-related gene is 20%.
  • STAT3 and ras cancer-related genes are activated, and canceration with gene expression diversity is observed, similar to Sample 1 (see FIG. 2A).
  • FIG. 2C is an image showing a cancer-related gene expression pattern of a group of living cell populations related to sample 3 as in FIG. 2A.
  • the proportion of the green fluorescent color staining region in the screen is 30%.
  • the ratio of the red fluorescent color stained area in the screen that is, the ratio occupied by the ras-based cancer-related gene expression area is 75%.
  • the ratio of the yellow fluorescent color staining area in the screen that is, the ratio of the co-expression area of the STAT3 cancer-related gene and the ras cancer-related gene is 5%.
  • the ras cancer-related gene is not activated, and the diversification of gene expression of cancer cells does not proceed as compared to sample 1 (see FIG. 2A).
  • metastatic cancers can be incorporated into analysis methods with a small average size (diameter). In such a case, it is desirable that the malignancy level is classified into 3 to 5 metastatic levels, and the malignancy level according to the ras, STAT3 stained area, etc. is also described.
  • FIG. 3 is an image of a normal mouse large intestine living cell group relating to the sample 4.
  • FIG. 3 there are no green, red, and yellow fluorescent colors in the screen, and they are expressed in dark colors.
  • the expression level of the STAT3 and ras cancer-related gene products is not enhanced.
  • the malignancy level of canceration can be determined. That is, according to the main configuration of the present invention, an ultra-early cancer that is too small to be noticed even by a current examination apparatus (endoscope, etc.) is detected at an early stage, and malignant cancer cells are detected. Through the evaluation of the degree, it becomes possible to know the prognosis of cancer patients. Cancer can be cured by removing it completely at this early stage.
  • FIG. 4B shows normal colonic mucosa and colorectal cancer stained with curcumin and imaged with a confocal laser microscope, because curcumin is taken up into the cytoplasm but not into the nucleus. This clearly shows that pathological diagnosis can be performed because the outline of each cell and the morphology of the nucleus can be clearly visualized.
  • the crypts cannot be confirmed because of the colorectal cancer portion, and therefore can be used for cancer determination.
  • FIG. 4C shows a surgically isolated fresh specimen of human stomach adenoma stained with curcumin in vitro and imaged with a multiphoton laser microscope.
  • FIG. 4D (a) is an image obtained by double-staining a fresh specimen of a surgically removed human stomach adenoma in vitro with curcumin and acid red. In this case as well, the outline of each cell and the morphology of the nucleus can be clearly visualized, which indicates that pathological diagnosis can be reliably performed.
  • FIG. 4D is an image obtained by double-staining a fresh specimen of a surgically removed human stomach adenoma in vitro with curcumin and acid red.
  • the filter wavelength width when measuring fluorescence is indicated by the filter 1 and filter 2 hatching
  • E 2 is the fluorescence characteristic of curcumin
  • E 7 is acid. It shows the fluorescence characteristics of red. Therefore, in FIG. 4D (a), the difference in fluorescence wavelength that can be brought about by two-color staining is expressed as a difference in color. Although this figure looks like a difference in contrast due to black and white, it is originally captured as an image that is clearly divided by wavelength.
  • the region where canceration is about to start indicated by II in both the figures of FIG. 4C and FIG. 4D is a kind of cell atypia, the nuclei in the gland are arranged in two rows, and division by cancer is about to start . That is, since the nucleus can be visualized, it can be clearly understood that canceration is about to begin in cell units.
  • the inventors select a STAT3-based cancer-related gene product by using a stain containing curcumin as shown in FIG. 4A.
  • a stain containing curcumin as shown in FIG. 4A.
  • FIG. 4A is black and white but originally a color image. This imaging can be done with a confocal laser microscope or a multiphoton laser microscope.
  • FIG. 4A (a), (b), (c) shows the intestinal inner wall of a living mouse stained with 1% curcumin solution, and then 1% Acid Red (C 27 H 29 N 2 NaO). 7 S 2 ) is a sample in which a group of living cells on the inner wall of the intestine is stained twice. A confocal laser microscope was used as the imaging device.
  • FIG. 4A (a), the area stained with acid red is shown in dark red, and the structure of capillaries and connective tissue (network structure) around the glands of the large intestine is visualized.
  • FIG. 4A (b) the area stained with curcumin is shown in dark green.
  • (C) of FIG. 4A is a superimposed image of (a) and (b). From the image of (c) of FIG. 4A, the structures of the glands stained with acid red and the capillaries / connective tissues (crypt structures) around the glands disappeared and are distorted in the region stained darkly with curcumins. Therefore, it is considered that very early cancer has occurred in this region.
  • the lower three panels (d), (e), and (f) show the same part of the large intestine of the mouse gastrointestinal tract imaged by vital staining in the upper stage, after fixing with formalin, and using the fluorescent antibody method, (d) cells with Alexa488 labeled phalloidin The inner actin fibers were visualized and simultaneously (e) stained with anti-STAT3 antibody and Alexa594-labeled secondary antibody to show the distribution of the cancer-related gene product STAT3.
  • F is (d) and (e) It is a superposition image.
  • FIG. 4A show the above-mentioned mouse intestine fixed in formalin, and then immunostained with an anti-STAT3 antibody that binds to a STAT3 cancer-related gene product.
  • b) and (c) are images taken at the same location as that surrounded by the white frame. Since (d) to (f) are formalin-fixed, the sample is slightly contracted.
  • the upper 3 panel white line rectangle is taken by the lower 3 panel.
  • the cell group that is stained deeply with curcumin in the upper part (b) is consistent with the distribution of the cell group that is highly expressed in the cancer-related gene product STAT3 in the lower part (e). Live cell staining suggests that the cancer-related gene product STAT3 has been detected.
  • the lower three panels show that the central cell group lacking actin fibers has become cancerous, and these cell groups coincide with the cell group with high expression of the cancer-related gene product STAT3. From the panel, it is proved that the cell group with high expression of this cancer-related gene product STAT3 is an ultra-early cancer cell that is stained darker in cancer cells than in normal cells by vital staining with curcumin.
  • This image is a confocal laser microscope, but a similar image can be captured by a multiphoton laser microscope image.
  • FIG. 4A (d) the outline of the cell is mainly shown by actin fluorescence.
  • FIG. 4A (e) shows an immunostained anti-STAT3 antibody.
  • (F) in FIG. 4A is a superimposed image of (d) and (e), in which the white actin reaction is reduced in the island-shaped part in the center of the screen, and the green STAT3 protein immune reaction is increased. . This suggests that many STAT3 cancer-related gene products are expressed in these islands.
  • the number of repeated shades in the dark part and (a) and (b) in FIG. 4E are stained images of the intestine of the mouse. There are cases where images are formed as different patterns due to differences in focus, multi-photon laser imaging depth, wavelength, and staining agent.
  • a diagnostic method such as measuring the density of island patterns by glands and capillaries and recognizing island pattern disturbances can be used.
  • distance measurement such as the pitch between dark parts, the diameter of the dark part, and the pitch of island patterns and the diameter of island patterns in FIG. It is valid.
  • metastatic cancers can be incorporated into analytical methods with a small average size.
  • the inside of a living body includes organs such as the digestive tract, respiratory organs, renal urinary organs, uterine ovarian genital organs, and cerebrospinal nerves.
  • organs such as the digestive tract, respiratory organs, renal urinary organs, uterine ovarian genital organs, and cerebrospinal nerves.
  • the digestive tract include the esophagus, stomach, small intestine, and large intestine.
  • FIG. 5A is a schematic diagram showing the arrangement of cells of the large intestine, which is an example of the digestive tract 112.
  • the inner wall of the large intestine is composed of a gland 130 that secretes mucus and an epithelium 120 that is in contact with food and absorbs water on the inner wall surface (mucosal surface) 113 side of the gland 130.
  • the epithelium 120 is composed of a plurality of epithelial cells 121 arranged along the inner wall surface 113.
  • the epithelial cell 121 has a nucleus 125 and a cytoplasm 126.
  • the gland 130 has a shape in which a part of the epithelium 120 is recessed in a pot shape.
  • the gland 130 is composed of a plurality of gland cells 131, and the gland cells 131 have a nucleus 135 and a cytoplasm 136.
  • the portion where the gland 130 is depressed is called the crypt 138 of the gland 130.
  • a basement membrane 137, capillaries 132, and connective tissue 133 are formed inside the epithelial cells 121 and around the gland cells 131.
  • a thin mucus layer secreted from the gland 130 is formed on the surface of the epithelial cell 121, and the epithelial cell 121 is protected by this mucus layer.
  • FIG. 5B is a diagram schematically showing a cancer cell population 152 that occurs in the digestive tract 112. It is said that the very early stage cancer cell population 152 occurring in the digestive tract 112 is generally generated at a position within a depth of about 1 mm from the inner wall surface (mucosal surface) 113 of the digestive tract 112. If the cancer cell population 152 in an early stage, which is in a state before reaching and exceeding the mucosal muscle plate 160, can be found over a wide area of the digestive tract mucosa without leakage, it expands beyond the mucosal muscle plate 160 to other organs. The number of cases that lead to advanced cancer, which is a state of generating metastasis, can be reduced.
  • FIG. 5C is a schematic diagram showing a state in which the inner wall of the digestive tract 112 is imaged using a multiphoton laser microscope and a confocal laser microscope.
  • the objective lens 16 of the multiphoton laser microscope and the confocal laser microscope irradiates the inner wall of the digestive tract 112 that is the imaging target with the laser L, so that it faces the inner wall surface 113 of the digestive tract 112. Be placed.
  • the left half of FIG. 5C shows a state in which the inner wall of the digestive tract is imaged using a multiphoton laser microscope or a confocal laser microscope, while the right half of FIG. 5C shows the focal plane aa of the mucosal surface.
  • FIG. 1 It is a schematic diagram illustrating an example of a cell image captured in the focal plane of the cross-sectional view (a) and the cross-sectional view (b) on the bb line having a depth of about 50 ⁇ m from the surface of the mucous membrane.
  • a multiphoton laser microscope it is possible to image from a mucosal surface to a depth of about 500 ⁇ m or a depth of 1000 ⁇ m
  • a confocal laser microscope it is possible to image from a mucosal surface to a depth of about 50 ⁇ m or a depth of 100 ⁇ m.
  • the objective lens 16 When mainly imaging epithelial cells 121, the objective lens 16 is arranged so that the focal point of the objective lens 16 is tied to the inner wall surface (mucosal surface) 113. Thereby, the epithelial cells 121 and the like appear as shown in FIG. 5C (a), which is a schematic diagram cut along the aa line in FIG. 5C. Further, when mainly imaging the gland cells 131, the capillaries 132 and the connective tissue 133, the objective lens 16 is disposed so that the focal point of the objective lens 16 is deeper than the inner wall surface (mucosal surface) 113 by 10 ⁇ m or more. To do. As a result, the gland cells 131, the capillaries 132, and the connective tissue 133 appear as shown in FIG. 5C (b), which is a schematic view cut along the line bb in FIG. 5C.
  • the cancer malignancy level can be determined at an extremely early stage in which the diameter of the cancer cell population is 0.5 mm or more and 1 mm or less.
  • FIG. 6A is an image of cancer-related gene expression patterns in living cells.
  • FIG. 6B is an enlarged view of FIG. 6A. 6A and 6B are black and white, but are originally color images.
  • FIG. 6A shows the STAT3 expression pattern of cancer-related gene STAT3 and curoxin biostaining of the lesion (circular structure visible in the center) called ACF (Atypical Crypt Foci), which was positioned as one form of precancerous state.
  • ACF Advanced Crypt Foci
  • 6A and 6B are images obtained by actually imaging the cancer-related gene expression pattern stained with the staining agent 45 using a multiphoton laser microscope (Olympus FV1000MPE).
  • the wavelength of the laser was 840 nm, and the imaging target was a mouse.
  • the staining agent is the same as that shown in Knowledge 1, and a staining agent containing curcumin (Curcumin, C 21 H 20 O 6 ) is used as a staining agent that selectively stains STAT3-based cancer-related gene products.
  • a staining agent containing Phloxine C 20 H 2 Br 4 Cl 4 Na 2 O 5
  • FIGS. 6A and 6B show a state in which a part of the crypt 138 is stained green and the STAT3 cancer-related gene product is expressed in the crypt 138.
  • the structure in the center of this figure is called an ACF (Atypical Crypto Foci) precancerous state.
  • the central structure in this figure is a gland-like structure with a line of glandular cells, but the central gland opening and lumen are circular in the normal colonic mucosa.
  • the central structure has an elongate slit-like opening and has obvious ACF morphological features because goblet cells in glandular cells are less than normal.
  • the shape of the crypt 138 in a normal state is substantially circular.
  • two adjacent crypts 138 are elongated and deformed. It can be determined that the cell is in an abnormal state.
  • the cancer test apparatus is an apparatus that can detect cancer cells generated in the digestive tract, respiratory tract, renal urinary tract, uterine ovarian genitalia, and cerebrospinal nerve at an early stage. In addition to cancer testing, it is possible to treat cancer cells occurring in the living body. Furthermore, it is possible to carry out pathological diagnosis of cancer and expression analysis of cancer-related genes by the same method while keeping a fresh in-vitro sample within about 20 minutes immediately after surgical removal without being limited to the inside of the living body.
  • the cancer test apparatus and test method of the present invention can be applied even in a cultured state with cells such as ips cells, ES cells or MUSE cells other than the extracted living body.
  • the cancer inspection apparatus of the present embodiment is an endoscope type inspection apparatus.
  • the case where the digestive tract inside a living body is inspected will be described as an example.
  • the cancer test apparatus includes an insertion tube that expands the digestive tract.
  • FIG. 7A and 7B are views showing a state in which the insertion tube 20 is inserted into the digestive tract 112.
  • FIG. 7A shows a state immediately after the insertion tube 20 is inserted
  • FIG. 7B shows a space S formed in the digestive tract 112. Indicates the state.
  • the insertion tube 20 is provided with a supply port 42 for supplying a fluid and a recovery port 43 for recovering the supplied fluid.
  • the insertion tube 20 is provided with a first balloon 21 and a second balloon 22.
  • the first balloon 21 and the second balloon 22 are expanded and contracted when fluid (gas or liquid) is taken in and out of the balloons 21 and 22.
  • the first balloon 21 is provided on the distal end side of the insertion tube 20 with respect to the supply port 42
  • the second balloon 22 is provided on the rear side (opposite side of the distal end) with respect to the recovery port 43.
  • the first balloon 21 and the second balloon 22 are inflated in the digestive tract 112 so that the digestive tract 112 is sandwiched between the first balloon 21 and the second balloon 22. Is a closed space S.
  • FIG. 8 is a diagram illustrating an example of the application unit 40 of the cancer test apparatus 1.
  • the cancer test apparatus 1 includes an application unit 40 that applies the stain 45 to the inner wall of the digestive tract 112 in the closed space S.
  • the cancer testing apparatus 1 supplies the staining agent 45 into the space S through the insertion tube 20 and the supply port 42 from the application unit 40 in which the staining agent 45 is stored.
  • a stain 45 is applied to the inner wall of the tube 112.
  • the cancer-related gene product of living cells of the digestive tract 112 is stained with a chromatic color by the applied stain 45.
  • the staining agent 45 may be, for example, one type of staining agent including a staining agent containing curcumin or a staining agent containing phloxine. However, there are two types of staining agents including a staining agent containing curcumin and a staining agent containing phloxine. It is desirable to use a staining agent. Understanding the status of the expression pattern of STAT3 cancer-related genes by using a staining agent 45 containing curcumin, and the expression state of ras-related cancer-related gene products using a staining agent 45 containing phloxine Can do.
  • Curcumin includes not only curcumin but also curcuminoids (a mixture of several kinds of curcumin derivatives) with high water solubility.
  • a staining agent for staining a ras-based cancer-related gene expression pattern in addition to the above-mentioned Phloxin, a staining agent containing the following materials can also be used.
  • the inside of the digestive tract 112 may be wash
  • FIG. 9 (A) of FIG. 9 is a figure which shows a mode that the inner wall of the digestive tract 112 is planarized using the cancer test
  • the staining agent 45 is applied to the cells inside the living body, for example, gas is supplied from the supply port 42 to inflate the digestive tract 112 as shown in FIG. Thereby, the inner wall of the digestive tract 112 is extended and flattened.
  • the unevenness of the inner wall surface 113 when flattened is desirably such that the height difference between the concave and convex is within 0.2 mm, for example.
  • FIG. 10 is a schematic view showing the structure of the rotating portion at the distal end of the endoscope 2.
  • FIG. 11 is a block diagram showing a control configuration of the cancer test apparatus 1.
  • the cancer testing apparatus 1 includes an imaging unit 10 having an endoscope 2 and a control unit 50 that controls the movement of the imaging unit 10 and the application unit 40 in addition to the application unit 40 described above.
  • the control unit 50 includes a determination unit 52 that determines a malignancy level of canceration and a storage unit 51 that stores information serving as a determination criterion when determining the malignancy level of canceration.
  • the determination unit 52 and the storage unit 51 will be described later.
  • the cancer testing apparatus 1 includes a laser oscillator 60, an optical component 65, and an image processing unit 70.
  • the laser L oscillated from the laser oscillator 60 is reflected by the dichroic mirror 66 that is the optical component 65, and further reflected by the mirror 19 in the endoscope 2 to irradiate the living body.
  • the cancer-related gene product of the living cell irradiated with the laser L generates fluorescence, and the light due to the fluorescence is reflected by the mirror 19, passes through the dichroic mirror 66, and is detected by the photodetector 35.
  • the light detected by the photodetector 35 is converted into an electrical signal, and an image is formed by the image processing unit 70.
  • the two-dimensional scanner 67 is built in between the laser oscillator 60 and the dichroic mirror 66 (FIG. 11).
  • the two-dimensional scanner 67 scans the irradiated laser beam in the XY direction within a certain area of the imaging target region, thereby imaging the laser beam as a point as a plane. Since the fluorescence color varies depending on the staining agent, a plurality of photodetectors 35 are provided, and an optical filter for separating the colors can be placed in front of the photodetectors 35 to separate them. Note that the color can also be separated using a CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Devices) as the photodetector 35.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Devices
  • the laser oscillator 60 a multi-photon laser microscope having a pulse width of tens to hundreds of femtoseconds and a pulse frequency of tens to hundreds of MHz is used.
  • the laser L in the present embodiment is a two-photon laser that is a kind of multi-photon laser, and the laser oscillator 60 uses, for example, a pulse laser having a wavelength of 800 nm and an output of up to 3.2 W. The laser output during imaging of this laser is emitted in the range of 0.16 to 0.32 W.
  • the wavelength By setting the wavelength to 800 nm or more, it is possible to prevent generation of photons in the ultraviolet region (wavelength of less than 400 nm) in half-wavelength light generated by the multiphoton excitation process.
  • a continuous wave (CW) laser having a visible light wavelength for a normal confocal laser microscope is used.
  • the dichroic mirror 66 that is the optical component 65 reflects the same wavelength as the laser L and transmits light of other wavelengths. Therefore, the laser L oscillated from the laser oscillator 60 is reflected toward the mirror 19 by the dichroic mirror 66. On the other hand, the fluorescence generated in the cancer-related gene product is reflected by the mirror 19, passes through the dichroic mirror 66, and reaches the photodetector 35.
  • the optical component 65 can also be configured by a prism, a 4 / ⁇ plate, or the like.
  • the imaging unit 10 includes an endoscope 2 and a light detector 35, and applies a laser L to the inside of a living body (a group of living cells) to reflect cells of a living stain that reflects a specific cancer-related gene product expression pattern. Imaging of internal fluorescence intensity and intracellular distribution pattern.
  • the imaging unit 90 includes a focal position control unit, and images the cancer-related gene expression pattern stained with the staining agent by controlling the focal position control unit.
  • the photodetector 35 detects the fluorescence generated by applying the laser L, and converts the fluorescence into an electrical signal corresponding to the fluorescence intensity.
  • a photomultiplier tube, a CCD semiconductor image sensor, or the like can be used as the photodetector 35.
  • the endoscope 2 includes an inner cylinder 12 and an outer cylinder 13 that surrounds a portion of the inner cylinder 12. A part of the inner cylinder 12 and the outer cylinder 13 are inserted into the living body.
  • the length of the inner cylinder 12 is, for example, 50 mm, and the outer diameter of the inner cylinder 12 is, for example, 3 to 10 mm.
  • a linear actuator is attached to the inner cylinder 12, and the inner cylinder 12 can move about 25 mm in the axial direction X with respect to the outer cylinder 13.
  • the inner cylinder 12 is equipped with an ultrasonic motor, and the inner cylinder 12 can rotate 360 ° with respect to the outer cylinder 13.
  • the operation of the inner cylinder 12 in the axial direction X or the operation in the rotation direction R is controlled by the control unit 50.
  • An imaging head 11 is provided at the end of the endoscope 2 on the distal end side of the inner cylinder 12. As shown in FIG. 9B, the imaging head 11 passes through the side of the insertion tube 20 and is inserted into the living body together with the inner cylinder 12. The imaging head 11 is controlled to move inside the living body by operations in the axial direction X and the rotation direction R of the inner cylinder 12.
  • the imaging head 11 has an objective lens 16, a focus variable unit 18, a spacer 17, and a mirror 19.
  • the mirror 19 changes the direction of the laser L output from the laser oscillator 60 toward the objective lens 16 or directs the light fluorescent by the cancer-related gene product toward the photodetector 35. It is a part to be converted.
  • the objective lens 16 is provided to face the inner wall surface 113 of the living body.
  • a lens having a diameter of 3 mm to 5 mm that can be easily inserted into a living body can be used.
  • the focus variable unit 18 is, for example, a piezoelectric actuator, and changes the focus position of the objective lens 16 by moving the objective lens 16 in the direction of the optical axis.
  • the focus variable section 18 is controlled in operation by the control section 50 so that the focus can be adjusted within a range of 0 to 1000 ⁇ m from the surface of the inner wall surface 113.
  • the spacer 17 has, for example, a ring shape and is provided around the space between the objective lens 16 and the inner wall surface 113.
  • the spacer 17 is a component for preventing the objective lens 16 from touching the inner wall of the living body and for maintaining the distance between the objective lens 16 and the inner wall surface 113 constant.
  • the image processing unit 70 stores the electrical signal (fluorescence intensity) converted by the photodetector 35 and the coordinate position of the imaging unit 10 sent from the control unit 50 in association with each other, and processes these data to perform digital processing. Generate an image.
  • the generated digital image is displayed on a monitor, printed out, or recorded in the storage unit 51 of the control unit 50, for example.
  • a distance from a location (for example, throat or anus) serving as a reference for the patient, a rotation angle of the imaging head 11, and the like can be used.
  • the control unit 50 includes a CPU, a ROM, a RAM, and the like.
  • the control unit 50 controls the operation of the imaging head 11 via the inner cylinder 12. Specifically, the control unit 50 controls the imaging head 11 to move in the rotation direction R so as to follow the inner circumference of the inner wall of the digestive tract 112, and the direction of the digestive tract 112 (digestive tract axis X). ) To move along.
  • the control unit 50 controls the operation of the focus changing unit 18 to change the position of the objective lens 16 in the optical axis direction and to control the focal position connected to the inside of the living body.
  • the control unit 50 can also adjust the laser output by controlling the laser oscillator 60.
  • control unit 50 determines the malignancy level of canceration, and the storage unit 51 stores information serving as a determination criterion when determining the malignancy level of canceration. And have.
  • the malignancy level of canceration and information related to the staining state of the biological cell group are stored in association with each other.
  • the malignancy level of canceration is each stage from the first stage to the fourth stage divided according to the activity state of the cancer-related gene.
  • the information regarding the staining state of the biological cell group is, for example, information such as the area or the number of cells of the stained region (region stained in chromatic color) of the biological cell group in each of the above stages. Since the area or the number of cells of these staining regions varies depending on the type of staining agent used, it is necessary to acquire data corresponding to the staining agent to be used in advance.
  • the determination unit 52 determines the malignancy level of canceration by comparing the staining state of the image obtained by imaging with the information regarding the staining state stored in the storage unit 51. For example, by comparing the area or the number of cells in the captured image with the area or the number of cells in each stage stored in the storage unit 51, the staining state of the biological cell group is To which stage of the
  • an application unit 40 that applies a staining agent 45 that selectively stains a cancer-related gene expression pattern of living cells to a chromatic color, and a staining agent 45.
  • An imaging unit 10 that captures a biological cell group to which a coating is applied, and a determination unit 52 that determines a malignancy level of canceration of the biological cell group based on a staining state of the biological cell group of an image obtained by imaging I have.
  • the image information in addition to the area of the stained region or the number of cells, the brightness of the stained region, the difference in fluorescent color, or the difference in geometric pattern is used.
  • a method in which an expression location is identified with high accuracy in luminance and a malignancy level is determined in a mixed state of fluorescent colors.
  • the pattern differs for each organ, but the density of the dark part (dark hole-like pattern) is quantified as explained with reference to (c) in FIG. 4A and (a) in FIG. 4E.
  • a diagnostic method can be taken, such as digitizing the density of the island pattern and recognizing the disorder of the island pattern.
  • distance measurement such as the pitch between dark portions, the dark portion diameter, the pitch of the island pattern, the diameter of the island pattern, etc. is also effective for determining pattern disturbance and using it for diagnosis.
  • the malignancy level of canceration is determined based on the staining state of the cancer-related gene expression pattern of the biological cell group, the canceration of the biological cell group can be grasped at an early stage. Moreover, since the malignancy level of canceration can be grasped, the prognosis of cancer patients can be known.
  • the cancer test apparatus 1 in the cancer test apparatus 1 according to the present embodiment, in a cell population having an average diameter of at least 0.1 mm to 0.4 mm, It is possible to image the gene-related gene expression pattern. According to this, since the malignancy level of canceration of living cells in the precancerous state can be grasped, the prognosis of the cancer patient is known at an extremely early stage before the cancer cell population 152 is greatly manifested. be able to.
  • the diameter of the cancer-related gene expression pattern is a diameter when the shape of the cancer-related gene expression pattern is regarded as a circle having the same area as the area of the cancer-related gene expression pattern. The above diameter is measured in a group of stained cells existing within a certain area, and the average diameter is obtained by dividing the number by the number of stained cell groups.
  • stained with the staining agent 45 and exists in the depth of 10 micrometers or more and 1000 micrometers or less from the mucosal surface inside a biological body is imaged.
  • the cell population can be detected without oversight, and the prognosis of the cancer patient can be known (FIG. 19A). For example, as shown in FIG.
  • FIG. 19A is a diagram illustrating the endoscope 2 of the cancer test apparatus 1A.
  • the endoscope 2 of the cancer testing apparatus 1 ⁇ / b> A includes an inner cylinder 12 and an outer cylinder 13 that surrounds a part of the inner cylinder 12.
  • a linear actuator is attached to the inner cylinder 12, and the inner cylinder 12 is movable in the axial direction X with respect to the outer cylinder 13.
  • the inner cylinder 12 is equipped with an ultrasonic motor, and the inner cylinder 12 can rotate 360 ° with respect to the outer cylinder 13.
  • the operation of the inner cylinder 12 in the axial direction X or the operation in the rotation direction R is controlled by the control unit 50.
  • the cancer testing apparatus 1A can know the distance in the axial direction X to the lesion and the angle in the rotation direction R with reference to a predetermined position, such as the anus for the large intestine and the mouth for the stomach. The position can be specified.
  • FIG. 12 is a flowchart showing an example of the operation of the cancer testing apparatus 1.
  • the cleaning liquid is supplied from the supply port 42 to the closed space S (not shown). Thereby, the inner wall surface 113 of the digestive tract 112 is washed. Thereafter, the cleaning liquid is sucked from the recovery port 43 and recovered.
  • the pronase solution is supplied from the supply port 42 to the closed space S. Thereby, excess mucus attached to the inner wall surface 113 of the digestive tract 112 is removed. Thereafter, the pronase solution is sucked through the collection port 43 and collected.
  • a stain 45 containing curcumin is applied to the biological cell group (S11a: application step). Specifically, the staining agent 45 containing curcumin is supplied and filled into the closed space S from the supply port 42. Then, after standing for 2 to 5 minutes, wash with a cleaning solution. Thereby, the STAT3-based cancer-related gene product of the living cell group of the digestive tract 112 is stained with the staining agent 45 containing curcumin.
  • the staining agent 45 containing phloxine is applied to the living cell group (S11b: application step). Specifically, the staining agent 45 containing phloxine is supplied from the supply port 42 to the closed space S and filled. Then, after standing for 2 to 5 minutes, wash with a cleaning solution. As a result, the ras cancer-related gene expression pattern of the living cell group of the digestive tract 112 is stained with the staining agent 45 containing phloxine. By applying these two types of staining agents 45, the biological cell group on the inner wall of the digestive tract 112 is stained in two colors.
  • the imaging unit 10 images the cancer-related gene expression pattern of the living cell group stained with the staining agent (S12: imaging step).
  • the control unit 50 controls the imaging head 11 to move in the rotation direction R along the inner wall of the digestive tract 112, and in the direction of the digestive tract 112 (digestive tract axis X). An image is taken while moving along the line.
  • the determination unit 52 determines the malignancy level and prognosis of canceration based on the staining state of the image obtained by imaging (S13: determination step).
  • the area and the number of cells of the stained region stained with the stain 45 are obtained.
  • the area of the stained region is determined based on a predetermined threshold value whether or not each pixel of the obtained image is stained, and the number of pixels determined to be stained is replaced with the area. Desired.
  • the number of cells in the stained region is determined by the number of cell nuclei or the number of sections separated by the cell membrane in the stained region. And the data regarding the area or the number of cells obtained by these and the data regarding the area or the number of cells memorize
  • the area of stained region was stained by the staining agent 45 containing phloxine, if it is less than 0.0075mm 2 or 3 mm 2, the expression of the ras system cancer-related gene products is enhanced, cancer It may be determined that the malignant maturity level is equal to or higher than the second stage (see FIG. 1C). For example, if the number of cells in the stained region stained with the dye 45 containing phloxine is 8 or more and less than 512, it is considered that the expression of the ras cancer-related gene product is enhanced, and the canceration It may be determined that the grade of malignancy is at the second stage or higher. Further, the second stage or more may be further subdivided to determine the malignancy level and prognosis of canceration.
  • the malignancy level of canceration may be determined based on the expression state of the ras cancer-related gene product.
  • the malignancy level of canceration may be determined based on the activity state of the STAT3 cancer-related gene using a staining agent 45 containing curcumin.
  • the APC / ⁇ -catenin or p53 cancer-related gene expression pattern is stained with a predetermined staining agent to examine whether the growth suppression signal is decreased, and the malignancy level and prognosis of canceration May be determined.
  • cancerous part can also be removed with a laser using the cancer inspection apparatus 1 using the multiphoton laser microscope according to the present embodiment.
  • the output of the laser L is increased compared to when imaging with a multiphoton laser microscope, and the laser L is applied to the cancerous part. Apply and specifically remove only the part that has become cancerous (transpiration).
  • the laser output at the time of removal is 2 to 3 W, 10 to 20 times that at the time of imaging. According to this, the cancerous part can be removed early and reliably.
  • the cancer inspection apparatus according to Embodiment 2 is a stationary inspection apparatus, and is used when examining a patient from the outside, or when examining tissue cells within about 20 minutes immediately after being taken out of the patient.
  • the cancer testing apparatus 201 includes a laser oscillator 213, a beam diameter adjuster 215, a two-dimensional scanner 217, a dichroic mirror 219, an objective lens 221, and a collecting lens.
  • a light depth adjuster 223, a light detector 225, a fluorescence image generation unit 227, a monitor 229, and a control unit 231 are provided.
  • the laser oscillator 213 can adjust the output of pulsed laser light within a pulse width of several tens to several hundreds of femtoseconds and a pulse repetition frequency of several tens to several hundreds of MHz, or for an ordinary confocal laser microscope.
  • a CW laser having a visible light wavelength of, for example, is used.
  • the beam diameter adjuster 215 is a beam expander that changes the beam diameter of the pulsed laser light in accordance with a beam diameter adjustment signal from the control unit 231.
  • the two-dimensional scanner 217 is composed of, for example, two galvanometer mirrors, and changes the condensing position of the pulse laser beam in two axial directions perpendicular to the optical axis.
  • the dichroic mirror 219 separates fluorescence generated in cancer-related gene products of living cells by irradiation with pulsed laser light.
  • the objective lens 221 condenses the pulsed laser light emitted from the laser oscillator 213 onto a living cell, and condenses the fluorescence generated in the cancer-related gene product due to the multiphoton absorption phenomenon. Note that the objective lens 221 can be moved in the optical axis direction by the condensing depth adjuster 223 based on the control signal, and the condensing position can be adjusted.
  • the photodetector 225 detects the fluorescence generated in the cancer-related gene product and converts it into an electrical signal corresponding to the fluorescence intensity.
  • the scanning state of the two-dimensional scanner 217 and the adjustment position (position in the depth direction) of the condensing depth adjuster 223 are parameters representing the coordinates of the condensing position, and the fluorescence image generating unit 227 is a parameter representing these coordinates.
  • an electrical signal (ie, fluorescence intensity) sent from the photodetector 225 are stored in association with each other, and these data are processed to generate a fluorescence image.
  • the generated fluorescence image is displayed on the monitor 229.
  • the control unit 231 includes an operation control unit 233, an inspection pulse intensity setting unit 235, an irradiation range setting unit 239, and an irradiation time setting unit 241.
  • the operation control unit 233 controls the operations of the laser oscillator 213, the beam diameter adjuster 215, the two-dimensional scanner 217, and the focusing depth adjuster 223.
  • the inspection pulse intensity setting unit 235 sets the intensity of the pulse laser beam suitable for acquiring a fluorescence image of a cancer-related gene expression pattern in order to perform an inspection.
  • the irradiation range setting unit 239 sets a range in which a biological cell is irradiated with pulsed laser light. Then, the operation control unit 233 controls the operations of the two-dimensional scanner 217 and the condensing depth adjuster 223 to irradiate and condense the pulsed laser light to the set irradiation range and depth.
  • the irradiation time setting unit 241 sets the time for irradiating the living cells with pulsed laser light. Then, the operation control unit 233 controls the output of the laser oscillator 213 to irradiate the pulse laser beam for a set time.
  • the control unit 231 includes a storage unit 51 and a determination unit 52 similar to those in the first embodiment. That is, the cancer testing apparatus 201 determines the malignancy level and prognosis of canceration of a biological cell group based on the staining state of the biological cell group of an image obtained by imaging.
  • this cancer test apparatus 201 since the malignancy level of canceration is determined based on the staining state of the cancer-related gene expression pattern of the living cell group, grasping the canceration of the living cell group at an early stage. Can do. Moreover, since the malignancy level of canceration can be grasped by the expression state of cancer-related genes, the prognosis of cancer patients can be known.
  • inspection apparatus 201 is provided with the therapeutic pulse intensity
  • cancer test apparatus 201 of the present embodiment can be realized in various forms.
  • a laser beam irradiation head 243 includes a beam diameter adjuster 215, a two-dimensional scanner 217, a dichroic mirror 219, an objective lens 221, and an optical path therebetween. While providing the condensing depth adjuster 223, a patient fixing base 245 for placing a patient and a moving device 247 may be further provided to perform a cancer test.
  • the staining agent 45 may be applied to the biological cell group before the biological cell group is scraped off, or after the biological cell group is scraped off and before imaging.
  • Embodiment 3 [1. Basic configuration of cancer testing equipment] Next, with reference to FIGS. 15 to 18, a basic configuration of a cancer test apparatus 301 according to Embodiment 3, which is a case where a CW laser having a visible light wavelength for a normal confocal laser microscope, is used will be described. .
  • FIG. 15 is a schematic diagram showing an end portion on the distal end side of the endoscope 2 of the cancer test apparatus 301 in FIG.
  • FIG. 16 is a schematic view showing the entire endoscope 2.
  • FIG. 17 is a block diagram illustrating a control configuration of the cancer test apparatus 301.
  • the cancer testing apparatus 301 includes an imaging unit 10 having an endoscope 2, a control unit 50, and an image processing unit 70.
  • the cancer testing apparatus 301 includes a laser oscillator 60C and an optical component 65C.
  • inspection apparatus 301 is provided with the application part 40 which supplies a dyeing agent to the inside of a biological body (refer FIG. 8).
  • the laser L1 oscillated from the laser oscillator 60C is reflected by the dichroic mirror 66C, which is the optical component 65C, and further reflected by the mirror 19C in the endoscope 2 to irradiate the living body.
  • the living cells irradiated with the laser L1 generate fluorescence, and the light due to the fluorescence is reflected by the mirror 19C, passes through the dichroic mirror 66C, and is detected by the photodetector 35C.
  • the light detected by the photodetector 35C is converted into an electrical signal, and an image is formed by the image processing unit 70.
  • a plurality of photodetectors 35C can be provided, and an optical filter that separates the colors can be placed in front of the photodetectors 35C to separate them.
  • the laser oscillator 60C includes a plurality of types of lasers that can be stepwise varied in the wavelength range of 405 to 980 nm, and the wavelength is selected according to the characteristics of the fluorescence reaction to be measured. It may be pulse drive or continuous oscillation drive. In the case of pulse driving, a range in which a clear image can be obtained is selected in relation to the sweep frequency of imaging with a duty of 5% to 50% or more and several tens of kHz.
  • the laser L1 in the present embodiment is a confocal laser, and the laser oscillator 60C uses, for example, a laser that has a peak wavelength of 488 nm, 594 nm, or 647 nm, respectively, and can output up to 30 mW.
  • the laser output during imaging of this laser is emitted in the range of 5 to 10 mW, but is not limited to this.
  • the intensity of the laser L1 can be adjusted according to the degree of staining and the degree of fluorescence.
  • the dichroic mirror 66C which is the optical component 65, reflects the same wavelength as the laser L1 and transmits light of other wavelengths. Therefore, the laser L1 oscillated from the laser oscillator 60C is reflected toward the mirror 19C by the dichroic mirror 66C. On the other hand, the fluorescence generated in the living cells is reflected by the mirror 19C, passes through the dichroic mirror 66C, and reaches the photodetector 35C.
  • the optical component 65C can also be configured by a prism, a 4 / ⁇ plate, or the like.
  • the imaging unit 10 includes the endoscope 2 and the photodetector 35C, and images the cell morphology inside the living body by applying the laser L1 to the inside of the living body.
  • the photodetector 35C detects the fluorescence generated by applying the laser L1, and converts the fluorescence into an electrical signal corresponding to the fluorescence intensity.
  • a photomultiplier tube, a CCD semiconductor image sensor, or the like can be used as the photodetector 35C.
  • a pinhole is provided as a confocal laser function.
  • the endoscope 2 includes an inner cylinder 12 and an outer cylinder 13 that surrounds a part of the inner cylinder 12 as shown in FIG. A part of the inner cylinder 12 and the outer cylinder 13 are inserted into the living body.
  • the length of the inner cylinder 12 is, for example, 50 mm, and the outer diameter of the inner cylinder 12 is, for example, 3 to 10 mm.
  • a linear actuator is attached to the inner cylinder 12, and the inner cylinder 12 can move about 25 mm in the axial direction X with respect to the outer cylinder 13.
  • the inner cylinder 12 is equipped with an ultrasonic motor, and the inner cylinder 12 can rotate 360 ° with respect to the outer cylinder 13.
  • the operation of the inner cylinder 12 in the axial direction X or the operation in the rotation direction R is controlled by the control unit 50.
  • An imaging head 11 ⁇ / b> C is provided at an end portion on the distal end side of the inner cylinder 12 of the endoscope 2. As shown in FIG. 15, the imaging head 11 ⁇ / b> C passes through the insertion tube 20 and is inserted into the living body together with the inner cylinder 12. The imaging head 11 ⁇ / b> C is controlled to move inside the living body by operations in the axial direction X and the rotation direction R of the inner cylinder 12.
  • the imaging head 11C has an objective lens 16C, a focus variable unit 18, a spacer 17, and a mirror 19C.
  • the mirror 19C changes the direction of the laser L1 output from the laser oscillator 60C toward the objective lens 16C, or changes the direction of the light fluorescent by the living cells toward the photodetector 35C. It is.
  • the objective lens 16C is provided to face the inner wall surface 113 of the living body.
  • the objective lens 16 has, for example, a diameter of 10 mm, a magnification of 10 times, a resolution of 5 ⁇ m, and an imaging field of view of 3 mm ⁇ 3 mm.
  • the objective lens 16 has a diameter of 12 mm, a magnification of 40 times, a resolution of 10 ⁇ m, and a visual field of 7.5 mm ⁇ 7.5 mm. The wider the field of view, the better.
  • the objective lens 16C a lens having a diameter of 3 mm to 5 mm that can be easily inserted into a living body can be used as an objective lens that cuts a part of the lens having the diameter described on the left or obtains the same resolution.
  • the objective lens 16C may be inclined with respect to the inner wall surface 113.
  • the focus variable unit 18 is, for example, a piezoelectric actuator or an electromagnetic actuator, and changes the focus position of the objective lens 16C by moving the objective lens 16C in the direction of the optical axis.
  • the focus variable section 18 is controlled in operation by the control section 50 so that the focus can be adjusted from the inner wall surface (mucosal surface) 113 within a depth range of 0 to 75 ⁇ m. By changing the focal position, it is possible to image the state of the living body at a predetermined depth from the inner wall surface 113 of the digestive tract 112.
  • the spacer 17 is, for example, annular, and is provided around the space between the objective lens 16C and the inner wall surface 113.
  • the spacer 17 is a component for preventing the objective lens 16C from touching the inner wall of the living body and for maintaining a constant distance between the objective lens 16C and the inner wall surface 113.
  • the distance between the objective lens 16C and the inner wall surface (mucosal surface) 113 can be appropriately set within a range of, for example, 1 mm or more and 10 mm or less by replacing the spacer 17 before starting imaging or adding a mechanism that can be changed by an actuator or the like. Set to a value.
  • the controller 50 controls the movement of the imaging head 11C (inner cylinder 12) while bringing the spacer 17 into contact with the inner wall surface 113, and maintains the distance of the objective lens 16C with respect to the inner wall surface 113 constant.
  • the control unit 50 includes a CPU, a ROM, a RAM, and the like.
  • the control unit 50 controls the operation of the imaging head 11C via the inner cylinder 12. Specifically, the control unit 50 controls the imaging head 11C to move in the circumferential direction along the inner circumference of the inner wall of the digestive tract 112, and in the duct direction (digestive tract axis) of the digestive tract 112. Move control along. Further, the control unit 50 controls the operation of the focus changing unit 18 to change the position of the objective lens 16C in the optical axis direction and control the focus position connected to the inside of the living body.
  • the controller 50 can also adjust the laser output by controlling the laser oscillator 60C.
  • the image processing unit 70 stores the electrical signal (fluorescence intensity) converted by the photodetector 35C and the coordinate position of the imaging unit 10 sent from the control unit 50 in association with each other, and processes these data to perform digital processing. Generate an image.
  • the generated digital image is displayed on a monitor, printed out, or recorded in a storage device, for example.
  • a distance from a location (for example, throat or anus) serving as a reference for the patient, a rotation angle of the imaging head 11C, and the like can be used.
  • a cancer testing apparatus 301 having a confocal laser endoscope according to the present embodiment has an imaging head 11C inserted into a living body, and applies a laser to the living body via the imaging head 11C.
  • An imaging unit 10 that images a living body and a control unit 50 that controls the operation of the imaging head 11C are provided.
  • the imaging head 11C includes an objective lens 16C and a focus variable unit 18 that can change the focal position of the objective lens 16C in the depth direction of the living body.
  • the control unit 50 has a focal position that is a mucosa inside the living body.
  • the focus varying unit 18 is operated so as to have a predetermined depth within a depth of 10 ⁇ m or more and 100 ⁇ m or less (preferably 10 ⁇ m or more and 70 ⁇ m or less) from the surface, and the imaging unit 10 selectively has a cell group inside the living body.
  • a laser is applied to the cell group stained with the staining agent 45 that is stained in color, and the stained cell group at a predetermined depth is imaged.
  • Reference numeral 171 shown in FIG. 17 denotes a second laser oscillator, which oscillates continuous parallel light as reference light L2 having a wavelength of about 680 nm and an output of about 5 mW, for example.
  • a beam splitter, a half mirror, or the like is inserted into the same optical path as the laser oscillator 60C.
  • the optical path of the reference light L ⁇ b> 2 is indicated by a broken line whose position is slightly shifted for easy understanding.
  • the reference light L2 follows substantially the same path as the inspection laser L1, but the optical path is changed by the beam splitter 173 and enters the focus control optical unit 174.
  • the optical lens configuration is such that when the focal position of the objective lens 16C is changed by a cylindrical lens and a beam splitter, the amount of change can be detected.
  • 175 is a photodetector, and the light detected by the photodetector usually divided into two or four blocks is converted into an electric signal proportional to the relative position fluctuation of the objective lens 16C and the mucosa surface by a differential amplifier or the like.
  • the Such position control of the objective lens is used in an optical disc apparatus or the like, and can be sufficiently applied to an endoscope apparatus.
  • the imaging laser L1 and the reference light L2 have different wavelengths as much as possible so as to be easily separated.
  • the focus position can be finely adjusted by applying a bias voltage in the control system. By changing this bias voltage stepwise, the focal position of the laser L1 can be automatically controlled in the depth direction.
  • optical parts 11C, 35C, 65C, 66C, 172, 173, and 174 are greatly affected by the transmittance and reflectance depending on the L1 and L2 laser wavelengths. By preparing, even when the laser wavelength is changed depending on the staining agent to be used or the site to be inspected, it can be easily handled.
  • the cancer testing apparatus 301 having the confocal laser endoscope can acquire an image at a depth of 10 ⁇ m or more and 70 ⁇ m or less from the inner wall surface (mucosal surface) 113 of the living body. .
  • an image can be acquired without giving a load such as photocell damage due to laser irradiation to the patient.
  • FIG. 18 is a flowchart showing an example of the operation of the cancer test apparatus 301.
  • two different stains 45 are applied to a living cell group, and two cancer-related gene expression patterns are stained in different colors, and then imaged.
  • the cleaning liquid is supplied from the supply port 42 to the closed space S (not shown). Thereby, the inner wall surface 113 of the digestive tract 112 is washed. Thereafter, the cleaning liquid is sucked from the recovery port 43 and recovered.
  • the pronase solution is supplied from the supply port 42 to the closed space S. Thereby, excess mucus attached to the inner wall surface 113 of the digestive tract 112 is removed. Thereafter, the pronase solution is sucked through the collection port 43 and collected.
  • a stain 45 containing curcumin is applied to the biological cell group (S11a: application step). Specifically, the staining agent 45 containing curcumin is supplied and filled into the closed space S from the supply port 42. Then, after standing for 2 to 5 minutes, wash with a cleaning solution. Thereby, the STAT3-based cancer-related gene product of the living cell group of the digestive tract 112 is stained with the staining agent 45 containing curcumin.
  • the staining agent 45 containing phloxine is applied to the living cell group (S11b: application step). Specifically, the staining agent 45 containing phloxine is supplied from the supply port 42 to the closed space S and filled. Then, after standing for 2 to 5 minutes, wash with a cleaning solution. As a result, the ras cancer-related gene expression pattern of the living cell group of the digestive tract 112 is stained with the staining agent 45 containing phloxine.
  • the imaging unit 10 is used to image the cancer-related gene expression pattern of the living cell group stained with the two types of staining agents 45 (S12: imaging step). Specifically, the imaging unit 10 irradiates the cancer-related gene expression patterns dyed in two different colors with two types of excitation light having different wavelengths, thereby generating a plurality of cancer-related gene expression patterns. Take an image.
  • the laser L1 having a wavelength of 488 nm is irradiated as excitation light for fluorescing the cancer-related gene expression pattern stained with the staining agent 45 containing curcumin, and the staining is performed with the staining agent 45 containing phloxine.
  • Laser light L1 having a wavelength of 594 nm is irradiated as excitation light for fluorescence of the cancer-related gene expression pattern. Then, two types of lasers L1 are sequentially irradiated to the cancer-related gene expression patterns stained in two colors, and each fluorescence generated by the irradiation is detected by the photodetector 35C.
  • the determination unit 52 determines the malignancy level and prognosis of canceration based on the staining state of the image obtained by imaging (S13: determination step).
  • the active states of a plurality of cancer-related genes are detected, The malignancy level of canceration can be determined. Moreover, the fluorescence emitted from a cancer-related gene expression pattern can be stably detected by irradiating the cancer-related gene expression pattern with each laser L1 having a single wavelength as described above.
  • the staining agent 45 is not limited to curcumin and phloxine, and for example, high red V80, sulfretin, erythrosin, epigallocatechin galard, indocyanine green, malvidin, ⁇ -carotene, high red BL, 6-gingeoor, myricetin, trisenidine or Staining agent 45 containing petunidin or the like may be used.
  • a staining agent 45 that stains an expression pattern of a cancer-related gene of the APC / ⁇ -catenin system or p53 system, which is a brake system gene, it is possible to examine whether or not the cell growth suppression signal is reduced. it can. Thus, it is possible to detect the gene of the brake system and determine the malignancy level and prognosis of canceration.
  • the cell morphology inside the living body is imaged using a multiphoton laser microscope (FV1000MPE manufactured by Olympus) at different depths of focus, and a plurality of images obtained are captured.
  • a cross-sectional image tomographic image
  • a mouse was used as the living body.
  • FIGS. 20A to 20C are images showing cell morphology at a predetermined range of depth from the inner wall surface (mucosal surface), from the mucosal surface (depth 0) to the depth of 150 ⁇ m at a depth of 2 ⁇ m. This is a three-dimensional data image obtained by capturing and combining a total of 75 images.
  • (a) is an image obtained by planarly viewing a cell group from a direction perpendicular to the inner wall surface 113
  • (b) is a cross section when (a) is cut along the line bb.
  • (C) is a cross-sectional image when (a) is cut along the line cc.
  • staining agent for staining the cell group both staining agents including curcumin and staining agent including acid red (red No. 106) were used.
  • the staining time was 5 minutes.
  • the staining time is a period of time when the staining agent is brought into contact with the cell group and the staining dye is permeated between the cells themselves or each cell.
  • FIGS. 20A to 20C are images in which the same cell group is simultaneously imaged and different colors (wavelengths) are extracted by filtering.
  • FIG. 20A is an image obtained by extracting the color region stained with both the curcumin dye and the acid red dye.
  • FIG. 20B is an image obtained by extracting a color region stained with a curcumin pigment.
  • FIG. 20C is an image obtained by extracting a color region stained with an acid red dye.
  • FIGS. 20A to 20C are black and white but are originally color images. Due to the difference in dyeing tendency due to the staining agent, the region stained with curcumin dye is green fluorescent color, and the region stained with acid red dye is light red It is represented by a fluorescent color close to orange, and the color difference is more clearly represented.
  • the curcumin pigment shows higher permeability in cancer tissue than in normal mucosal tissue. Specifically, in the case of curcumin pigment, the depth of staining is about 40 ⁇ m inside the cancer tissue, whereas it is about 20 ⁇ m inside the normal mucosal tissue.
  • the acid red pigment shows lower permeability in cancer tissue than in normal mucosal tissue. Specifically, in the case of Acid Red dye, the depth of staining is about 40 ⁇ m inside the cancer tissue, while it is about 70 ⁇ m inside the normal mucosal tissue.
  • the cell group is a normal cell group or a cancer cell group by measuring the depth at which the cell group shown in the cross-sectional image is stained. It is done. By performing control in the depth direction from the cell surface at the time of imaging, a suspected lesion is determined based on the depth at which the cell group represented in the cross-sectional image is stained.
  • the depth at which the cell group is stained with the curcumin dye is larger than that of normal mucosal tissue (for example, 1.5 times or more), it is determined that cancer cells are generated, and if they are equivalent (for example, 1 (Less than 5 times) Judge that no cancer cells have developed. Further, if the depth at which the cell group is stained with the acid red dye is smaller than that of normal mucosal tissue (for example, less than 0.6 times), it is determined that cancer cells are generated, and if they are equivalent (for example, (0.6 times or more) Judge that cancer cells have not developed. In addition, after determining the presence or absence of cancer cells by monochromatic or double staining or the like, the above-described cross-sectional image determination can be further improved.
  • curcumin which stains STAT3 cancer-related gene products with higher penetration
  • Acid Red which has higher penetration into normal cells.
  • the present invention when the cancer-related gene expression pattern is stained, staining is sequentially performed using one type of staining agent.
  • staining agent may be made and dyed simultaneously using this mixed dyeing agent.
  • the digestive tract can be stained by including a mucosal cleaning agent or a staining agent in an oral cleaning solution.
  • the expression of staining the cancer-related gene expression pattern and the expression of staining the cancer-related gene product are mixed. The state to be observed is the cancer-related gene expression pattern.
  • the living body is stained and imaged using two color stains.
  • the present invention is not limited thereto, and the living body can be stained and imaged using three or more colorants. .
  • the multiphoton laser is used as the laser of the cancer testing apparatus 1, but the present invention is not limited to this, and a confocal laser can also be used. If a wavelength is selected, it is possible to use a normal CW laser microscope or a fluorescence microscope using monochromatic light. In terms of imaging and resolution in the depth direction, it is desirable to use a multiphoton laser with a wavelength of 600 nm to 1600 nm.
  • a certain degree of analysis can be performed using a confocal laser microscope having a wavelength of 400 to 700 nm, a normal wavelength 400 to 700 nm CW laser, or a wavelength of 400 It is within the scope of the present invention to be realized by a fluorescence microscope with ⁇ 700 nm monochromatic light. Further, as described above, the wavelength of the laser to be irradiated is changed and the filter for imaging is changed according to the fluorescence wavelength of the staining agent.
  • the cancer testing apparatuses 1, 201, and 301 in the first and second embodiments can be applied to luminal organs (bronchi, bladder, ureter, etc.) other than the digestive tract, and further, a depth of 1 mm from the surface. It is possible to visualize cell structures of kidney, liver, brain, retina, etc.
  • luminal organs bronchi, bladder, ureter, etc.
  • the image is not limited to a still image, and may be a moving image or a mixed image of a still image and a moving image.
  • the magnification scale at the time of shooting is not limited to the range described above.
  • the cell tissue to be stained may be a cell tissue in vivo (in vivo) or a fresh in vitro cell tissue (ex vivo) within 20 minutes immediately after excision by surgery or the like. .
  • the staining unit the imaging unit including the endoscope, the storage unit, and the determination unit have been described, but the staining unit and the determination unit are not necessarily provided in the same apparatus, It is within the scope of the present invention to perform staining with another device, and to perform analysis and determination with another device or computer by sharing the contents of the storage unit.
  • the imaging unit is not limited to the endoscope depending on the part to be analyzed, and it may be a microscope having a fixed objective lens. included.
  • the cancer test apparatus is used for early detection of cancer in the digestive tract, respiratory tract, renal urinary tract, uterine ovarian genitalia, cerebrospinal nerve and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Hospice & Palliative Care (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Endoscopes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

がん検査装置(1)は、生体細胞のがん関連遺伝子産物を選択的に有彩色に染色する染色剤(45)を、生体細胞群に塗布する塗布部(40)と、染色剤(45)が塗布された生体細胞群を撮像する撮像部(10)と、撮像で得られた画像の生体細胞群のがん関連遺伝子発現パターン染色状態に基づき、生体細胞群のがん化の悪性度レベルを判定する判定部(52)とを備える。

Description

がん検査装置、がん検査方法、および、がん検査用の染色剤
 本発明は、生体細胞のがんを検査するがん検査装置、がん検査方法、および、がん検査用の染色剤に関する。
 近年、生体内部(例えば消化管)の病変を確認する方法として、生体内部の細胞群の形態を撮像して、がん細胞などの病変の有無を確認する方法が知られている。
 その一例として、特許文献1には、クルクミンやスルフレチンなどの特定の可食性色素を用いた生体染色によって、生体内部にある所定の細胞群を染色した後、染色した細胞群に多光子レーザを当てると、がん細胞が正常細胞より濃く染まることでがん細胞の検出が容易になり、さらに生体内部の個々の細胞形態を蛍光撮像する方法が記載されている。この方法によれば、生体染色された細胞群が多光子レーザを当てられることで蛍光を発生するので、生体内部の個々の細胞形態および核の形態の鮮明な画像を得ることができる。これにより、がん細胞などの病変の有無を的確に確認し、病理診断することができる。
国際公開第2014/157703号
 特許文献1に記載されている方法を用いることで、生体細胞のがん化の有無を的確に確認することができるが、世の中の要望として、生体細胞のがん化をできるだけ早く把握することが求められている。
 本発明は、上述した課題を解決するものであり、生体細胞のがん化を早い段階で把握することができる、がん検査装置等を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係るがん検査装置は、(1)生体細胞のがん関連遺伝子産物を選択的に有彩色に染色する染色剤を生体細胞群に塗布する塗布部と、(2)前記染色剤が塗布された前記生体細胞群を撮像する撮像部と、(3)前記撮像で得られた画像の前記生体細胞群の染色状態に基づき前記生体細胞群のがん化の悪性度レベルを発現パターンによって判定する判定部とを備える。なお、撮像に用いるレーザは、多光子レーザ顕微鏡用の多光子レーザであっても、共焦点レーザ顕微鏡用の連続波(CW)レーザであっても良いものとする。また、ここで言う悪性度レベルとは、がん細胞が本来もつ転移・浸潤能力においてそれらの高いものは悪性度が高いと判断し、また、治療面において放射線療法や化学療法に対して抵抗性のあるがんは悪性度が高いと定義する。
 本態様によれば、生体細胞群のがん関連遺伝子産物の染色状態に基づき、がん化の悪性度レベルを判定するので、生体細胞群のがん化を早い段階で把握することができる。また、がん化の悪性度レベルを把握できるので、がん患者の予後を知ることができる。
 例えば、前記塗布部は、前記生体細胞の増殖を促進するシグナルを伝達するras系のがん関連遺伝子産物を染色する前記染色剤を塗布してもよい。
 本態様のように、ras系のがん関連遺伝子産物を染色する染色剤を用いることで、生体細胞の増殖化傾向を知ることができ、生体細胞群におけるがん細胞の発生を早い段階で把握することができる。
 例えば、前記塗布部は、フロキシン、エリスロシン、メルブロミン、ファストグリーンFCFまたはメクロサイクリンスルフォサルチル酸塩を含む前記染色剤を塗布してもよい。
 本態様に示す染色剤を用いることで、ras系のがん関連遺伝子産物を染色することができ、生体細胞群におけるがんの発現を早い段階で把握することができる。
 例えば、前記塗布部は、前記生体細胞の増殖を促進するシグナルを伝達するSTAT3系のがん関連遺伝子産物を染色する前記染色剤を塗布してもよい。
 本態様のように、STAT3系のがん関連遺伝子産物を染色する染色剤を用いることで、生体細胞の増殖化傾向を知ることができ、生体細胞群におけるがん細胞の発生を早い段階で把握することができる。
 例えば、前記塗布部は、クルクミン類を含む前記染色剤を塗布してもよい。
 本態様における染色剤を用いることで、STAT3系のがん関連遺伝子産物を染色することができ、生体細胞群におけるがん細胞の発生を早い段階で把握することができる。
 例えば、前記塗布部は、前記生体細胞群にクルクミン類を含む前記染色剤を塗布した後、前記生体細胞群にフロキシン、エリスロシン、メルブロミン、ファストグリーンFCFまたはメクロサイクリンスルフォサルチル酸塩を含む前記染色剤を塗布してもよい。
 本態様のように、クルクミン類を含む染色剤を、フロキシン、エリスロシン、メルブロミン、ファストグリーンFCFまたはメクロサイクリンスルフォサルチル酸塩を含む染色剤よりも先に塗布することで、各細胞の輪郭や核の形態が明確化され、鮮明な画像を得ることができる。
 例えば、前記塗布部は、前記生体細胞群に、前記生体細胞の増殖を促進するシグナルを伝達するSTAT3系のがん関連遺伝子産物を染色する前記染色剤を塗布した後、前記生体細胞の増殖を促進するシグナルを伝達するras系のがん関連遺伝子産物を染色する前記染色剤を塗布してもよい。
 本態様のように、STAT3系のがん関連遺伝子産物を染色する染色剤を、ras系のがん関連遺伝子産物を染色する染色剤よりも先に塗布することで、STAT3系のがん関連遺伝子産物が明確化され、鮮明な画像を得ることができる。
 例えば、前記判定部は、前記生体細胞群の染色領域の面積に基づき前記判定を行ってもよい。
 本態様によれば、がん関連遺伝子発現の亢進状態を染色領域の面積により知ることができるので、がん化の悪性度レベルを的確に把握することができる。
 例えば、前記判定部は、前記生体細胞群の染色領域の細胞数に基づき前記判定を行ってもよい。
 本態様によれば、がん関連遺伝子発現の亢進状態を染色領域の細胞数により知ることができるので、がん化の悪性度レベルを的確に把握することができる。
 例えば、前記判定部は、前記生体細胞群の染色領域を含む一定面積内の染色された細胞群の数と平均直径に基づき前記判定を行ってもよい。
 本態様によれば、がん関連遺伝子発現の亢進状態を一定面積内の染色された細胞群の数と平均直径に基づいて知ることができるので、がん化の悪性度レベルを的確に把握することができる。
 例えば、前記撮像部は、前記染色剤が塗布された前記生体細胞群に多光子レーザ、または共焦点レーザを照射することで、前記生体細胞群を撮像してもよい。
 本態様のように多光子レーザを照射することで、粘膜表面から10μm以上1000μm以下の深さにおける生体の内部のがん化の悪性度レベルを容易に把握することができる。また、共焦点レーザを照射することで、粘膜表面から10μm以上70μm以下の深さにおける生体の内部のがん化の悪性度レベルを容易に把握することができる。これにより、がん細胞集団が粘膜表面に現れる前の超早期段階において、がん患者の予後を知ることができる。
 例えば、前記撮像部は、前記染色剤によって染色された、0.1mm以上0.4mm以下の直径を有する細胞集団の前記がん関連遺伝子発現パターンを撮像してもよい。
 本態様によれば、前がん状態における生体細胞のがん化の悪性度レベルを把握できるので、がん細胞集団が大きく顕在化される前の早期にがん患者の予後を知ることができる。
 例えば、前記塗布部は、複数の異なる前記染色剤を前記生体細胞群に塗布することで、複数の前記がん関連遺伝子産物を互いに異なる色に染色し、前記撮像部は、異なる色に染色された複数の前記がん関連遺伝子発現パターンに、それぞれの前記染色剤に応じた複数の励起光を照射することで、複数の前記がん関連遺伝子発現パターンを撮像してもよい。
 本態様のように、染色された複数のがん関連遺伝子発現パターンに、それぞれの染色剤に応じた複数の励起光を照射することで、複数のがん関連遺伝子発現パターンを精度よく検出することができる。
 例えば、前記染色剤の種類は少なくとも2種類であり、複数の前記がん関連遺伝子発現パターンに照射される前記励起光は、前記染色剤の種類に対応して選択されていてもよい。
 本態様のように、少なくとも2種類の染色剤を用い、これらの染色剤に対応する励起光を照射することで、少なくとも2つのがん関連遺伝子発現パターンを検出することができる。このように多くのがん関連遺伝子発現パターンを検出することで、がん化の悪性度レベルを多岐の視点で把握することができる。
 例えば、前記撮像部は、焦点位置制御部を有し、前記焦点位置制御部を制御することにより、前記染色剤によって染色された生体の内部の表面から10μm以上1000μm以下の深さに存在する前記がん関連遺伝子発現パターンを撮像してもよい。
 本態様によれば、粘膜表面から10μm以上1000μm以下の深さにおける生体の内部のがん化の悪性度レベルを把握することができ、がん細胞集団が粘膜表面に現れる前の早期に、がん患者の予後を知ることができる。
 例えば、前記染色剤によって染色された生体内部の同一の撮像位置において、表面から前記焦点位置制御部を制御して、一定間隔で焦点を変更して異なる深さの焦点位置における撮像を行い、前記撮像された複数の画像を焦点位置情報順に重ね合わせることで、画像を立体的画像とし、前記立体画像における、染色剤の浸透度に基づき前記判定を行ってもよい。
 本態様によれば、立体画像における染色剤の浸透度に基づいて生体の内部のがん化の悪性度レベルを把握することができ、がん細胞集団が粘膜表面に現れる前の超早期段階において、がん患者の予後を知ることができる。
 また、本発明の一態様に係るがん検査方法は、生体細胞のがん関連遺伝子産物を選択的に有彩色に染色する染色剤を、生体細胞群に塗布する塗布工程と、前記染色剤が塗布された前記生体細胞群を撮像する撮像工程と、前記撮像で得られた画像の前記生体細胞群の染色状態により、前記生体細胞群のがん化の悪性度レベルを判定する判定工程とを含む。
 本態様によれば、生体細胞群のがん関連遺伝子発現パターンの染色状態に基づき、がん化の悪性度レベルを判定するので、生体細胞群のがん化を早い段階で把握することができる。また、がん化の悪性度レベルを把握できるので、がん患者の予後を知ることができる。
 また、本発明の一態様に係るがん検査用の染色剤は、生体細胞の増殖を促進するシグナルを伝達するras系のがん関連遺伝子産物を染色するフロキシン、エリスロシン、メルブロミン、ファストグリーンFCFまたはメクロサイクリンスルフォサルチル酸塩、もしくは、前記生体細胞の増殖を促進するシグナルを伝達するSTAT3系のがん関連遺伝子産物を染色するクルクミン類を含み、染色開始後10分以内は、前記生体細胞の細胞質には浸透するが、細胞の核には浸透しない濃度を有する。
 本態様に係るがん検査用の染色剤は、染色開始後から10分以内であれば細胞質に浸透しても細胞内の核に浸透しないため、細胞質に囲まれている核を鮮明に視覚化することができ、がん化の分析をより明瞭にすることができる。
 本発明によれば、生体細胞のがん化を直径1mm程度の非常に早い段階、超早期がんの段階で把握することができる。
 また、本発明の主要構成によれば、がん関連遺伝子の発現パターンを解析することができ、がん腫瘤が患者に及ぼす危険度(生命予後)を判定することができる。
 なお、上記までの観察対象は、すべて生体の消化管内壁粘膜の上皮細胞、腺細胞、結合組織、毛細血管であったが、材料として、手術で摘出された直後20分以内の新鮮組織を用いても、生体組織と同等の細胞形態画像を撮像できる。
図1Aは、生体細胞のがん関連遺伝子産物が正常な働きをしている状態を示す模式図である。 図1Bは、生体細胞のがん関連遺伝子産物が異常な働きをしている状態を示す模式図である。なお、図1B中における十字星の印は、がん関連遺伝子産物に生じたがん性の変異を示す。 図1Cは、消化管内壁面における生体細胞群の段階的がん化過程を示した模式図である。 図1Dは、人のがん細胞の増殖曲線の一例を示す図である。 図2Aは、試料1に関する生体細胞のがん関連遺伝子発現パターンの画像であり、(a)はクルクミンで染色されたSTAT3のがん関連遺伝子発現パターンの画像、(b)はフロキシンで染色されたras系のがん関連遺伝子発現パターンの画像、(c)は(a)と(b)との重ね合わせ画像である。 図2Bは、試料2に関する生体細胞のがん関連遺伝子発現パターンを図2Aと同様に示した画像である。 図2Cは、試料3に関する生体細胞のがん関連遺伝子発現パターンを図2Aと同様に示した画像である。 図3は、試料4に関する正常な生体細胞群の画像である。 図4Aの上段3パネル(a)、(b)、(c)は、アシッドレッドを含む染色剤とクルクミン類を含む染色剤とで、マウス消化管大腸の内壁を2重生体染色した後、共焦点レーザ顕微鏡を用いて消化管の内壁表面および表面から約30μm生体内部までの細胞画像を撮像し、デジタル画像化した結果を示す。(a)は、アシッドレッドを含む染色剤による生体染色画像、(b)は、クルクミン類を含む染色剤による生体染色画像、(c)は、(a)と(b)の重ね合わせ画像である。下段の3パネル(d)、(e)、(f)は、上段の生体染色で撮像したマウス消化管大腸の同じ部位を、ホルマリン固定後、蛍光抗体法で、(d)Alexa488標識ファロイジンで細胞内アクチン繊維を可視化し、同時に(e)抗STAT3抗体とAlexa594標識二次抗体で、染色し、がん関連遺伝子産物STAT3の分布を示したもので、(f)は、(d)と(e)の重ね合わせ画像である。 図4Bは、マウスの正常大腸粘膜の超早期がんの細胞群をクルクミン生体染色と共焦点レーザ顕微鏡によって画像化したものである。 図4Cは、ヒト胃アデノーマの手術摘出直後のサンプルをクルクミンで生体染色し、多光子レーザ顕微鏡で画像化したものであって、クルクミン色素によって染色された色領域を抽出した画像である。 図4Dは、ヒト胃アデノーマの手術摘出直後のサンプルをクルクミンおよびアシッドレッドで2重生体染色し、多光子レーザ顕微鏡で画像化したものである。 図4Eは、クルクミンを含む染色剤とアシッドレッドを含む染色剤とで消化管の内壁を2重染色した後、多光子レーザ顕微鏡を用いて消化管の内壁を撮像した場合の画像であって、(a)は正常な消化管の画像、(b)は超早期段階のがんの画像である。 図5Aは、消化管の一例である大腸の細胞の配列を示す模式図である。 図5Bは、消化管に発生する超早期がんにおけるがん細胞を模式的に示す図である。 図5Cは、多光子レーザ顕微鏡および共焦点レーザ顕微鏡を用いて消化管の内壁を撮像する様子を示すと同時に、粘膜の表面の焦点面(a)および粘膜の表面から深さ約50μm(b)の焦点面において撮像される細胞画像の例を図示する模式図である。 図6Aは、前がん状態の一つの形態として位置づけられていたACF(Atypical Crypt Foci)と呼ばれる病変部(中央部に見える円形の構造)のクルクミン生体染色によるがん関連遺伝子STAT3発現パターンとフロキシン生体染色によるras系のがん関連遺伝子発現パターンの2種類のパターンを同時に多光子レーザ顕微鏡画像によって解析した図である。(a)はクルクミン生体染色されたSTAT3のがん関連遺伝子発現パターンの画像、(b)はフロキシン生体染色によるras系のがん関連遺伝子発現パターンの画像、(c)は(a)と(b)との重ね合わせ画像である。 図6Bは、図6Aの拡大図であって、前がん状態の一つの形態として位置づけられていたACF(Atypical Crypt Foci)と呼ばれる病変部(中央部に見える円形の構造)のクルクミン生体染色によるがん関連遺伝子STAT3発現パターンとフロキシン生体染色によるras系のがん関連遺伝子発現パターンの2種類のパターンを同時に多光子レーザ顕微鏡画像によって解析した図である。(a)はクルクミン生体染色されたSTAT3のがん関連遺伝子発現パターンの画像、(b)はフロキシン生体染色によるras系のがん関連遺伝子発現パターンの画像、(c)は(a)と(b)との重ね合わせ画像である。 図7は、実施の形態1に係るがん検査装置において、消化管内に挿入管を挿入した状態を示す図であり、(a)は挿入管を挿入した直後の状態、(b)は消化管内に空間を形成した状態を示す図である。 図8は、実施の形態1に係るがん検査装置の塗布部の一例を示す図である。 図9の(a)は、実施の形態1に係るがん検査装置を用いて消化管の内壁を平坦化する様子を示す図であり、図9の(b)はがん検査装置の先端側の端部を示す模式図である。 図10は、実施の形態1に係るがん検査装置における内視鏡の先端部の構造を示す概略図である。 図11は、実施の形態1に係るがん検査装置の制御構成を示すブロック図である。 図12は、実施の形態1に係るがん検査装置の動作の一例を示すフローチャートである。 図13は、実施の形態2に係るがん検査装置の制御構成を示すブロック図である。 図14は、実施の形態2に係るがん検査装置を示す模式図である。 図15は、実施の形態3に係るがん検査装置の内視鏡の先端側の端部を示す概略図である。 図16は、内視鏡の全体を示す概略図である。 図17は、がん検査装置の制御構成を示すブロック図である。 図18は、実施の形態3に係るがん検査装置の動作の一例を示すフローチャートである。 図19Aは、クルクミンを含む染色剤とアシッドレッドを含む染色剤で染色された消化管の内壁の合成画像である。 図19Bは、クルクミンを含む染色剤とアシッドレッドを含む染色剤で染色された消化管の内壁の合成画像であり、撮像軸と展開した画像の位置関係を示す図である。 図20Aは内壁面(粘膜表面)から所定範囲の深さにおける細胞形態を示す3次元データ画像であって、クルクミン色素およびアシッドレッド色素の両方の色素によって染色された色領域を抽出した画像である。 図20Bは、図20Aに示す画像からクルクミン色素によって染色された色領域を抽出した画像である。 図20Cは、図20Aに示す画像からからアシッドレッド色素によって染色された色領域を抽出した画像である。
 (本発明の基礎となった知見1)
 本発明の基礎となった知見1および知見2のうち、まず、本発明の基礎となった知見1、および、知見1に関する発明の主要構成について説明する。
 まず、正常な生体細胞が、がん細胞に変わって増殖していくがん化のメカニズムについて説明する。図1Aは、生体細胞のがん関連遺伝子産物が正常な働きをしている状態を示す模式図である。細胞内には、細胞の分裂・増殖を正と負の方向に制御する2方向の情報伝達シグナル系が存在する。すなわち、細胞増殖を加速する機能のある増殖促進系シグナルと増殖を阻止する機能のある増殖抑制系シグナル系がある。図1Bは、生体細胞のがん関連遺伝子産物が異常な働きをしている状態を示す模式図である。十字星の印はそれぞれのがん関連遺伝子産物に生じたがん性の変異を示す。
 生体細胞は、細胞増殖遺伝子を含む核と、核を取り囲む細胞質とで構成される。細胞には、タンパク質からなる複数種類のがん関連遺伝子が含まれている。がん関連遺伝子としては、例えば、図1Aに示されるように、増殖促進系シグナルを伝達するras(rat sarcoma)系、STAT3(Signal Transducer and Activator of Transcription 3)系に属するものと、増殖抑制系シグナルを伝達するAPC(antigen presenting cell)/β-catenin系、p53(protein 53)系に属するものとがある。すなわちras系およびSTAT3系のがん関連遺伝子産物は、細胞の増殖促進シグナルを伝達するアクセル系の遺伝子産物として分類され、APC/β-catenin系およびp53系のがん関連遺伝子は、細胞の増殖抑制シグナルを伝達するブレーキ系の遺伝子産物として分類されている。
 細胞の分裂・増殖の制御機構について説明する。まず、生体細胞の細胞膜にある受容体に細胞外からの増殖制御物質である細胞増殖因子(EGF)が結合すると、アクセル系のras系およびSTAT3系のがん関連遺伝子産物が活性化され、これらの増殖促進シグナルが核に伝達されると、核内で細胞増殖に必要な遺伝子群が活性化される。一方、細胞内には、ブレーキ系のAPC/β-catenin系およびp53系のがん関連遺伝子産物も常に一定レベル活性化されており、これらの増殖抑制シグナルが核内の細胞増殖遺伝子の活性化を抑制し、細胞の増殖を抑制しようとする。生体細胞のがん関連遺伝子が正常な働きをしている場合は、細胞の増殖を促進する作用と抑制する作用とが互いにバランス良く働くことで、生体内の細胞の増殖が適度に行われる。
 それに対し、例えば、ras系またはSTAT3系のがん関連遺伝子産物が異常な働きをしている場合は、図1Bに示されるように、増殖促進シグナル系のras系またはSTAT3系のがん関連遺伝子産物の活性が強まり、細胞の増殖が必要以上に亢進される。また、例えば、APC/β-catenin系またはp53系のがん関連遺伝子産物が異常な働きをしている場合は、APC/β-catenin系またはp53系の増殖抑制シグナル系のがん関連遺伝子産物の活性が弱まり、細胞の増殖を抑制する機能が低下する。このように、複数種類のがん関連遺伝子のいずれかが、正常とは異なる働きをすることで、正常細胞における適度な増殖に破綻をきたし、がん細胞におけるような異常な細胞増殖の亢進が始まる。
 図1Cは、消化管内壁面における生体細胞群の段階的がん化過程を示した模式図である。図1Cでは、生体細胞群のがん化の過程が、第1段階、第2段階、第3段階および第4段階に順に分けて示されている。
 第1段階は、生体細胞群の一部においてがん化が始まろうとしている段階である。第1段階は、APC/β-catenin系のがん関連遺伝子の活性が弱まり、細胞の増殖を抑制する機能が低下することで起こると考えられる。この段階では、細胞の増殖はやや亢進し、少なくとも、将来的にがん細胞となり得る前がん状態が発現していることを示している。
 第2段階は、第1段階よりもがん化が進んだ前がん状態である。第2段階は、ras系のがん関連遺伝子の活性が強まり、細胞の増殖が亢進していると考えられる。また、STAT3系のがん関連遺伝子もこの段階で活性化される可能性があると考えられる。がん細胞集団の大きさは小さく、その直径は、例えば0.1mm以上0.4mm以下である。がん細胞集団の直径とは、がん細胞集団を、がん細胞集団の面積と同じ面積を有する円とみなした場合の直径である。この段階は、患者の生命をすぐに脅かす段階ではないが、今後に備えて治療計画等を立てておくことが望ましい。
 なお、後述する前記の前がん状態の一つの形態として位置づけられていたACF(Atypical Crypt Foci)は、第1段階と第2段階に属する細胞群の中で、腺の開口部、ルーメンの形が、正常では円形になるが、細長いスリット状開口部を持ち、さらに腺細胞の中における杯細胞が正常よりも減少しているという明確な形態学的特長を持つものに対応して、特別の名称で定義されたものであると考えられる。
 第3段階は、生体細胞群の一部が浸潤状態となり、がん細胞が顕在化した段階である。第3段階は、p53系のがん関連遺伝子の活性も弱まり、細胞の増殖を抑制する機能が低下することで起こると考えられる。この段階は、p53系およびAPC/β-catenin系の両方のブレーキ系がん抑制遺伝子産物の活性が弱まり、細胞の増殖を抑制する機能が大きく低下した状態にあるので、がん細胞の増殖が加速的に進み、がん細胞が、周囲組織に浸潤してゆく。第3段階まで進むと、その直径は0.5mm以上に達し、そのまま放置すると個体の死を惹起するがんが完成する。
 第4段階は、第3段階で完成したがん細胞が、がんになった後、さらなる遺伝子変異を生じ、さらに細胞増殖、浸潤、転移が起こりやすい悪性のがんに進展した段階である。この段階は、消化管以外の他の遠隔臓器へのがん転移が始まる段階であり、患者の生命を脅かす危険な段階である。これら第1段階から第4段階への進行スピードは、がん関連遺伝子の活性状態により左右されると考えられる。
 図1Dは、人のがん細胞の増殖曲線の一例を示す図である。
 図1Dに示されるように、一般的に、がん細胞の数は所定の増殖曲線に従って増加する。例えば、がん化が始まろうとしている段階の3年間(がん細胞集団の直径が0.2mm未満の時期)は増殖曲線の傾きが小さいが、4年以降(がん細胞集団の直径が0.5mm以上の時期)では増殖曲線の傾きが大きくなる。そして、7年以降になると増殖曲線の傾きは小さくなる。なお、一般的にがんが臨床的に発見され、治療が行われるのは7年以降の時期である。これは、がん細胞集団の直径が10mm以上となってからでないと検出できないからである。
 ここで注目すべきは、増殖曲線の破線Aで示す範囲において、細胞の数が指数関数的に増加している点である。この指数関数的な増加は、これらのがん細胞には、起こるべき第1段階から第3段階までのがん性遺伝子変異が完了し、がん細胞が一定の均一な速度で分裂を繰り返していることを意味している。この指数関数的な増加の初期の段階、すなわち、がん関連遺伝子発現パターンに異常をきたしているが、がん細胞集団自体は直径1mm以下と小型である段階で、これらのがん細胞集団(超早期がん)を検出できれば、これらの超早期がんは十分小さく、完全摘出が容易なので、がんを根治できる。このように、超早期の段階で、がん化の悪性度レベルをがん関連遺伝子発現パターンの異常として把握することができれば、危険な段階となる前に、がんを根本治療することが可能となる。
 そこで発明者らは、生体細胞群のがん関連遺伝子発現パターンを多光子レーザ顕微鏡または共焦点レーザ顕微鏡で撮像し、がん関連遺伝子の活性状態を視覚化することで、がん化の悪性度レベルを把握することを試みた。
 また、発明者らは、生体細胞のがん関連遺伝子発現パターンを視覚化するにあたり、可食性の色素を含む染色剤を用いてがん関連遺伝子産物を有彩色に染色して撮像を行った。なお、可食性の色素とは、自然色素または人工合成色素のうち、人への投与が許可されている色素(例えば食品着色用の色素やサプリメントで服用可能な色素)である。
 具体的には、STAT3系のがん関連遺伝子産物を選択的に染色する染色剤として、クルクミン類(Curcumin、C2120)を含む染色剤を準備した。また、ras系のがん関連遺伝子発現パターンを選択的に染色する染色剤として、フロキシン(Phloxine、C20BrClNa)を含む染色剤を準備した。
 より具体的には、クルクミン類を含む染色剤として、クルクミンを1重量%含むクルクミン含有溶液を準備し、フロキシンを含む染色剤として、フロキシンを1重量%含むフロキシン含有溶液を準備した。なお、クルクミン類を含む染色剤としては、クルクミン溶液(例えば、原液は、クルクミンを5%、45%グリセロール、50%エタノールを含む液体)を生理食塩水で1/5~1/100希釈したものでもよい。1%フロキシンを含む染色剤としては、フロキシン溶液(原液10mg/mL)をそのままの濃度~1/10希釈したものでもよい。
 そして、クルクミン類を含む染色剤を用いて、生体細胞内のSTAT3系のがん関連遺伝子産物の発現を染色した後、生理食塩水で約10秒間の洗浄を3回行った。次に、フロキシンを含む染色剤を用いて生体細胞内のras系のがん関連遺伝子発現パターンを染色した後、生理食塩水で約10秒間の洗浄を3回行った。このような2重染色によって、STAT3系とras系のがん関連遺伝子産物の発現量の解析が、同時に可能になった。なお、各染色剤の染色時間はそれぞれ2~5分間とした。上記した濃度においては、染色開始後から10分以内であれば細胞質に浸透しても細胞内の核に浸透しないため、細胞質に囲まれている核を鮮明に視覚化できることで、分析がより明瞭にできるようになる。
 次に、これらの染色剤を用いて染色されたSTAT3系およびras系のがん関連遺伝子産物の発現パターンを、多光子レーザ顕微鏡(オリンパス社製FV1000MPE)を用いて撮像した。レーザの波長は840nmとした。撮像対象はマウスの大腸内壁であり、大腸内壁においてがん細胞が発生している複数の部分(それぞれ試料1、2、3)と、がん細胞が発生していない正常細胞の部分(試料4)とに分けて観察した。
 図2Aは、試料1に関するマウス大腸の一群の生体細胞集団のがん関連遺伝子発現パターンの画像であり、(a)はクルクミン類を含む染色剤を用いて正常細胞よりがん細胞が濃く染色されたSTAT3系のがん関連遺伝子産物の画像、(b)はフロキシンを含む染色剤を用いて染色されたras系のがん関連遺伝子発現パターンの画像、(c)は(a)と(b)との重ね合わせ画像である。なお、図2Aおよび後述する図2B、図2C、図3は、白黒であるが本来カラー画像である。
 図2Aの(a)では、STAT3系のがん関連遺伝子産物は緑の蛍光色に表現されている。画面中における緑の蛍光色の染色領域の割合、すなわちSTAT3系のがん関連遺伝子発現が優勢な細胞が占める割合は30%である。
 図2Aの(b)では、ras系のがん関連遺伝子は赤の蛍光色に表現されている。画面中における赤の蛍光色の染色領域の割合、すなわちras系のがん関連遺伝子発現が優勢な細胞が占める割合は80%である。
 図2Aの(c)では、STAT3系のがん関連遺伝子産物とras系のがん関連遺伝子発現パターンとの共存領域が黄色の蛍光色に、STAT3系のがん関連遺伝子発現のみの領域は緑の蛍光色に、ras系のがん関連遺伝子発現のみの領域は赤の蛍光色に表現されている。画面中における黄色の蛍光色の染色領域の割合は10%である。
 試料1に関するマウス大腸の一群の生体細胞集団では、STAT3系のがん関連遺伝子発現が優勢な細胞の領域が30%、ras系のがん関連遺伝子発現が優勢な細胞の領域が80%、両者の共存領域が10%であった。試料1に関する一群の生体細胞集団は、がん化の悪性度レベルでいうと図1Cに示す第2段階~第3段階(超早期がん)であると考えられる。すなわち、この一群の生体細胞集団のステージ診断としては、STAT3系とras系の両方が陽性の細胞が10%を占め、この細胞群は少なくとも第2段階は通過しており、この細胞集団の直径が0.2mm以上あることから(図1D参照)、すでに第3段階(超早期がん)に入っている可能性が高いと推定される。
 図2Bは、試料2に関する一群の生体細胞集団のがん関連遺伝子発現パターンを図2Aと同様に示した画像である。
 図2Bの(a)では、画面中における緑の蛍光色の染色領域の割合、すなわちSTAT3系のがん関連遺伝子発現領域が占める割合が50%である。図2Bの(b)では、画面中における赤の蛍光色の染色領域の割合、すなわちras系のがん関連遺伝子発現領域が占める割合が90%である。図2Bの(c)では、画面中における黄色の蛍光色の染色領域の割合、すなわちSTAT3系のがん関連遺伝子とras系のがん関連遺伝子との共発現領域の割合が20%である。生体細胞群では、STAT3系およびras系のがん関連遺伝子が活性化され、試料1(図2A参照)と同様に、遺伝子発現に多様性があるがん化が認められる。この試料2に関する一群の生体細胞集団のステージ診断としては、STAT3系とras系の両方が陽性の細胞が20%を占め、この細胞群は少なくとも第2段階は通過しており、この細胞集団の直径が0.2mm以上あることから(図1D参照)、すでに第3段階(超早期がん)に入っている可能性が高いと推定される。
 図2Cは、試料3に関する一群の生体細胞集団のがん関連遺伝子発現パターンを図2Aと同様に示した画像である。
 図2Cの(a)では、画面中における緑の蛍光色の染色領域の割合、すなわちSTAT3系のがん関連遺伝子発現領域が占める割合が30%である。図2Cの(b)では、画面中における赤の蛍光色の染色領域の割合、すなわちras系のがん関連遺伝子発現領域が占める割合が75%である。図2Cの(c)では、画面中における黄色の蛍光色の染色領域の割合、すなわちSTAT3系のがん関連遺伝子とras系のがん関連遺伝子との共発現領域の割合が5%である。試料3に関する生体細胞群では、ras系のがん関連遺伝子が活性化しておらず、試料1(図2A参照)に比べて、がん細胞の遺伝子発現の多様化が進行していない。
 試料3に関する一群の生体細胞集団のステージ診断としては、STAT3系とras系の両方が陽性の細胞が5%を占め、この細胞群は少なくとも第2段階は通過しており、この細胞集団の0.1mm程度あることから(図1D参照)、また、STAT3系陽性細胞が多くの島状に点在している状態から判断すると、これらの細胞の移動性が亢進し、浸潤性が高まっていることが予想され、すでに第3段階(超早期がん)に入っている可能性が高いと推定される。このように、多くのがん関連遺伝子産物の発現状態を細胞レベルで詳細に分析することにより、がんのステージ診断および悪性度診断が可能となる。がん細胞の分散性で転移を判断し、細胞集団の大きさは増殖性を示すと考えられる。
 例えば図2C(a)に示すように、単位面積あたりの個々のがん集団の径は小さいが、分散して多数存在するような場合、転移が進むことを示していると考えられる。上記の様に、転移性のがんは平均サイズ(直径)が小さいことを分析手法に組み入れることが可能となる。このような場合の悪性度レベルは、転移性レベルを3~5段階に分類し、ras、STAT3による染色面積などによる悪性度と共に転移性レベルを併記する事が望ましい。
 図3は、試料4に関する正常なマウス大腸生体細胞群の画像である。図3の(a)~(c)では、画面中における緑、赤、黄色の蛍光色がなく暗い色に表現されている。がん細胞が存在しない試料4に関する生体細胞群では、STAT3系およびras系のがん関連遺伝子産物の発現量が亢進していない。
 このように、生体細胞群におけるがん関連遺伝子の発現を解析することで、がん化の悪性度レベルを判定することができる。すなわち、本発明の主要構成によれば、病変が小さすぎて現行の検査装置(内視鏡等)ではその存在にさえ気づかない超早期がんを、早い段階で発見し、がん細胞の悪性度の評価を通して、がん患者の予後を知ることが可能となる。このように早い段階で完全摘出することで、がんを根治することができる。
 ここで図4Bは、正常大腸粘膜と、大腸がんをクルクミンで生体染色し共焦点レーザ顕微鏡で画像化したもので有り、クルクミンが細胞質には取り込まれるが、核には取り込まれないことから、個々の細胞の輪郭と核の形態が明瞭に可視化できるため、病理診断が確実に行えることを示している。図4Bの(a)に比べ図4Bの(b)では、大腸がん部分のため陰窩が確認できないため、がんの判定に使うことができる。
 さらに、図4Cの(a)はヒトの胃のアデノーマの手術摘出新鮮標本を生体外でクルクミンで生体染色し、多光子レーザ顕微鏡で画像化したものである。図4Dの(a)は、ヒトの胃のアデノーマの手術摘出新鮮標本を生体外でクルクミンとアシッドレッドで2重生体染色した画像である。この場合も個々の細胞の輪郭と核の形態が明瞭に可視化できるため、病理診断が確実に行えることを示している。図4Cおよび図4Dの右に書かれた(b)に示すグラフ中、蛍光を測定する際のフィルタの波長幅をFilter1、Filter2のハッチングで帯域を示し、E2はクルクミンの蛍光特性、E7はアシッドレッドの蛍光特性を示している。そのため図4Dの(a)では、2色染色によってもたらせる蛍光波長の違いを、色の違いとして表現している。本図は白黒のためコントラストの違いに見えるが、本来明確に波長で分けられる画像として取り込めているものである。図4Cおよび図4Dの両図においてIIで示すがん化が始まろうとしている領域は、細胞異型の一種であり、腺における核が2列に並んでおり、がんによる分裂が始まろうとしている。すなわち、核が可視化できることにより、細胞単位でがん化が始まろうとしていることが明瞭に把握できる。
 なお、発明者らは、がん関連遺伝子発現パターンが選択的に染色される一例として、図4Aに示すように、クルクミン類を含む染色剤を用いることでSTAT3系のがん関連遺伝子産物が選択的に有彩色に染色されることを確認済みである。図4Aは、白黒であるが本来カラー画像である。この画像化は、共焦点レーザ顕微鏡でも、多光子レーザ顕微鏡でも可能である。
 図4Aの(a)、(b)、(c)は、生きた状態のマウスの腸の内壁を1%クルクミン溶液で染色した後、1%アシッドレッド(Acid Red、C2729NaO)で染色することで、腸の内壁の生体細胞群を2重に染色したサンプルである。撮像装置としては、共焦点レーザ顕微鏡を用いた。
 図4Aの(a)では、アシッドレッドで染色された領域が濃い赤色で示され、大腸の腺の周囲の毛細血管・結合組織の構造(網の目構造)が可視化されている。図4Aの(b)では、クルクミン類で染色された領域が濃い緑色で示されている。図4Aの(c)は、(a)と(b)の重ね合わせ画像である。図4Aの(c)の画像より、クルクミン類で濃く染色された領域において、アシッドレッドで染色された腺および腺周囲の毛細血管・結合組織の構造(陰窩構造)が消失し、乱れていることから、この領域で超早期がんが発生していると考えられる。
 上段3パネルでは、(b)クルクミン類を含む染色剤による生体染色で正常細胞よりがん細胞でより濃く染まっている、白線の長方形で囲む細胞群が存在し、同じ部位を(a)アシッドレッドを含む染色剤による生体染色画像と比較すると、アシッドレッドで染まる毛細血管が腺の周囲を囲む網の目上のパターン(陰窩パターン)が消失していることから、このクルクミン染色で濃く染まる細胞群を含む部位が、超早期がんであることが判る。下段の3パネル(d)、(e)、(f)は、上段の生体染色で撮像したマウス消化管大腸の同じ部位を、ホルマリン固定後、蛍光抗体法で、(d)Alexa488標識ファロイジンで細胞内アクチン繊維を可視化し、同時に(e)抗STAT3抗体とAlexa594標識二次抗体で、染色し、がん関連遺伝子産物STAT3の分布を示したもので、(f)は(d)と(e)の重ね合わせ画像である。
 図4Aの(d)、(e)、(f)は、上記マウスの腸をホルマリン固定した後、STAT3系のがん関連遺伝子産物と結合する抗STAT3抗体で免疫染色し、(a)、(b)、(c)の白い枠で囲んだ場所と同じ場所をそれぞれ撮像したものである。なお、(d)~(f)は、ホルマリン固定しているので、サンプルがやや収縮している。
 上段3パネルの白線の長方形の場所を、下段3パネルで撮影している。この上段(b)の生体染色でクルクミンによって濃く染まる細胞群は、下段の(e)の、がん関連遺伝子産物STAT3の発現が高い細胞群の分布と一致しており、このことから、クルクミンによる生きた細胞の生体染色は、がん関連遺伝子産物STAT3を検出していると示唆される。
 さらに、下段3パネル(e)の、がん関連遺伝子産物STAT3の発現が高い細胞群の分布と、(d)の、細胞内アクチン繊維の分布を比較すると、STAT3の発現が高い細胞群では、アクチン繊維の分布が疎になり、細胞同士の接着が疎になっていることを示唆しており、一般にがん化細胞では細胞同士の接着が疎になっていることが知られていることから、STAT3の発現が高い細胞群ががん化細胞であることが示唆される。
 まとめると、下段3パネルは、アクチン繊維に乏しい中央部の細胞群はがん化しており、それらの細胞群は、がん関連遺伝子産物STAT3の発現が高い細胞群と一致し、さらに、上段3パネルから、このがん関連遺伝子産物STAT3の発現が高い細胞群がクルクミンによる生体染色で正常細胞よりがん細胞でより濃く染まっている超早期がん細胞であることが証明されている。
 この画像は、共焦点レーザ顕微鏡であるが、同様の画像は、多光子レーザ顕微鏡画像によっても撮像可能である。
 図4Aの(d)では、アクチン蛍光により、主に細胞の輪郭が示されている。図4Aの(e)では、抗STAT3抗体で免疫染色されたものが示されている。図4Aの(f)は、(d)と(e)の重ね合わせ画像であり、画面中央部の島状の部分で白いアクチン反応が減少し、緑色のSTAT3系タンパク質免疫反応が増加している。これにより、この島状の部分に、STAT3系のがん関連遺伝子産物が多く発現していると考えられる。
 図4Aのそれぞれの画像を参照し、図4Aの(c)にてがん細胞が発生している領域と、図4Aの(f)にてSTAT3系のがん関連遺伝子産物が検出される領域とが一致することから、生きた状態の細胞においてクルクミン類で濃く染色される領域には、超早期がんが発生し、また、超早期がんに関係するがん関連遺伝子産物が発現していることがわかる。上記したように輝度や蛍光色の違い、または幾何学パターンの違いで超早期段階のがん関連遺伝子の発現を画像上で検出し、悪性度レベルの分析を行なうことができ、コンピュータによる自動診断も可能となる。自動診断に際しては、確度の高い輝度で発現場所の特定や、陰窩構造の規則的分布の解析を行い、構造の消失度合いや蛍光色の混合状態で悪性度レベルの判断を行なうなどの方法がとられる。幾何学パターン利用の方法としては臓器ごとにパターンが異なるが、図4Aの(c)による例では、500μm角の一定面積内の暗部(暗い孔状のパターン)の数を計数し、密度を数値化するなどの方法がある。また、多くのがん関連遺伝子発現パターン並びに正常細胞パターン画像を記憶した画像から認識する人工知能による診断にも役立てられるものである。陰窩構造の孔状のパターン以外に暗部の濃淡繰り返し数や、図4Eの(a)および(b)もマウスの腸の染色画像であるが、生体染色剤の生体細胞への浸透深度、共焦点および多光子レーザによる撮影深度、波長、染色剤の差などから、異なったパターンとして画像化される場合がある。図4Eの(a)のような腺と毛細血管による島状パターンの密度を計測する、島状パターンの乱れを認識させる等の診断方法がとれる。更には、図4Aの(c)では暗部間ピッチ、暗部直径など、また図4Eの(a)における島状パターンのピッチ、島状パターンの直径等の距離測定もパターンの乱れを判断するには有効である。
 このように、多くのがん関連遺伝子産物の発現状態を細胞レベルで詳細に分析することにより、がんのステージ診断および悪性度診断が可能となる。がん細胞の分散性で転移を判断し、細胞集団の大きさは増殖性を示すと考えられる。
 例えば、単位面積あたりの個々のがん集団の径は小さいが、点在する島状に分散して多数存在するような場合、転移が進むことを示していると考えられる。上記の様に、転移性のがんは平均サイズが小さいことを分析手法に組み入れることが可能となる。
 (本発明の基礎となった知見2)
 次に、本発明の基礎となった知見2、および、知見2に関する発明の主要構成について説明する。
 まず、生体の内部構造とがん細胞との関係について説明する。
 生体の内部には、消化管、呼吸器、腎泌尿器、子宮卵巣生殖器などの臓器や、脳脊髄神経などが含まれている。消化管としては、食道、胃、小腸、大腸などが挙げられる。
 図5Aは、消化管112の一例である大腸の細胞の配列を示す模式図である。例えば、大腸の内壁は、粘液を分泌する腺130と、腺130よりも内壁面(粘膜表面)113側で食物に接して水分を吸収する上皮120とにより構成されている。上皮120は、内壁面113に沿って並んだ複数の上皮細胞121により構成されている。上皮細胞121は、核125と細胞質126を有している。腺130は、上皮120の一部がつぼ状に窪んだ形状をしている。腺130は、複数の腺細胞131により構成され、腺細胞131は、核135と細胞質136を有している。腺130が窪んだ部分は、腺130の陰窩(いんか)138と呼ばれる。上皮細胞121の内側および腺細胞131の周囲には、基底膜137、毛細血管132および結合組織133が形成されている。上皮細胞121の表面には、腺130から分泌された薄い粘液層が形成されており、上皮細胞121はこの粘液層により保護されている。
 図5Bは、消化管112に発生するがん細胞集団152を模式的に示す図である。消化管112に発生する超早期段階のがん細胞集団152は、一般的に、消化管112の内壁面(粘膜表面)113から深さ約1mm以内の位置にて発生すると言われている。粘膜筋板160に到達して超える前の状態である早期段階のがん細胞集団152を、消化管粘膜の広範囲にわたり漏れなく発見することができれば、粘膜筋板160を超えて拡大し他の臓器に転移を発生する状態である進行がんにつながるケースを少なくすることができる。
 図5Cは、多光子レーザ顕微鏡および共焦点レーザ顕微鏡を用いて消化管112の内壁を撮像する様子を示す模式図である。図5Cに示すように、多光子レーザ顕微鏡および共焦点レーザ顕微鏡の対物レンズ16は、撮像対象である消化管112の内壁にレーザLを照射するため、消化管112の内壁面113に対向して配置される。図5Cの左半面では、多光子レーザ顕微鏡または共焦点レーザ顕微鏡を用いて消化管の内壁を撮像する様子を示すと同時に、同図の右半面では、粘膜表面の焦点面a-a線上での断面図(a)および粘膜の表面から深さ約50μmのb-b線上での断面図(b)の焦点面において撮像される細胞画像の例を図示する模式図である。多光子レーザ顕微鏡では粘膜の表面から深さ約500μmmまたは深さ1000μmまで撮像可能であり、共焦点レーザ顕微鏡では粘膜の表面から深さ約50μmまたは深さ100μmまで撮像可能である。
 主に上皮細胞121を撮像する場合は、対物レンズ16の焦点が内壁面(粘膜表面)113に結ばれるように、対物レンズ16を配置する。これにより、上皮細胞121等は、図5Cのa-aラインで切断した模式図である図5Cの(a)のように表れる。また、主に腺細胞131、毛細血管132および結合組織133を撮像する場合は、対物レンズ16の焦点が内壁面(粘膜表面)113よりも10μm以上深い位置に結ばれるように、対物レンズ16を配置する。これにより、腺細胞131、毛細血管132および結合組織133は、図5Cのb-bラインで切断した模式図である図5Cの(b)のように表れる。
 例えば、核125、135または腺130の陰窩138などに現れるがん関連遺伝子発現パターンの大きさおよび形状を、前がん状態(図1Cに示す第2段階)にて検出することができれば、がん細胞集団の直径が0.5mm以上1mm以下の超早期段階においてがんの悪性度レベルを判断することができる。
 図6Aは、生体細胞のがん関連遺伝子発現パターンの画像である。図6Bは、図6Aの拡大図である。なお、図6Aおよび図6Bは、白黒であるが本来カラー画像である。
 図6Aは、前がん状態の一つの形態として位置づけられていたACF(Atypical Crypt Foci)と呼ばれる病変部(中央部に見える円形の構造)のクルクミン生体染色によるがん関連遺伝子STAT3発現パターンとフロキシン生体染色によるras系のがん関連遺伝子発現パターンの2種類のパターンを同時に多光子レーザ顕微鏡画像によって解析した例である。(a)はクルクミン生体染色されたSTAT3のがん関連遺伝子発現パターンの画像、(b)はフロキシン生体染色によるras系のがん関連遺伝子発現パターンの画像、(c)は(a)と(b)との重ね合わせ画像である。
 図6Aおよび図6Bは、染色剤45にて染色されたがん関連遺伝子発現パターンを、多光子レーザ顕微鏡(オリンパス社製FV1000MPE)を用いて実際に撮像した画像である。レーザの波長は840nmであり、撮像対象はマウスとした。染色剤は知見1に示した染色剤と同じであり、STAT3系のがん関連遺伝子産物を選択的に染色する染色剤としてクルクミン類(Curcumin、C2120)を含む染色剤を用い、また、ras系のがん関連遺伝子発現パターンを選択的に染色する染色剤としてフロキシン(Phloxine、C20BrClNa)を含む染色剤を用いた。
 図6Aおよび図6Bでは、陰窩138の一部が緑色に染色され、陰窩138にSTAT3系のがん関連遺伝子産物が発現している状態が示されている。この図中央部の構造は、ACF(Atypical Crypt Foci)前がん状態と呼ばれる。この図の中央部の構造は、腺細胞が並んで腺のような構造を形成しているが、中央部の腺の開口部、ルーメンの形が、正常大腸粘膜では円形になるが、この図の中央の構造は、細長いスリット状開口部を持ち、さらに腺細胞の中における杯細胞が正常よりも減少していることから、明らかなACFの形態学的な特徴を持っている。この前がん状態ACFにおいて、(a)クルクミン生体染色されたSTAT3のがん関連遺伝子発現の軽度な亢進と、(b)フロキシン生体染色によるras系のがん関連遺伝子発現の中等度な亢進が認められる。また、正常状態における陰窩138の形状はほぼ円形であるが、図6Aおよび図6Bに示すACF前がん状態では、隣り合う2つの陰窩138が細長い形状となって変形しており、生体細胞が異常な状態にあると判断できる。このように、前がん状態のがん関連遺伝子発現パターンの大きさや形状を検出することで、早期段階におけるがん化の悪性度レベルを判断し、がん患者の予後を知ることができる。
 (実施の形態1)
 以下、実施の形態1について、図面を用いて詳細に説明する。
 なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定するものではない。本発明は、請求の範囲によって特定される。よって、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は、省略または簡略化する。
 [1.がん検査装置の全体構成]
 本実施の形態に係るがん検査装置は、消化管、呼吸器、腎泌尿器、子宮卵巣生殖器および脳脊髄神経などにおいて発生したがん細胞を、早期に発見することのできる装置である。また、がん検査にとどまらず、生体に発生しているがん細胞に対して治療を施すことができる。さらに、生体内部にとどまらず、手術摘出直後約20分以内の新鮮な生体外サンプルもその状態のまま、同様の方法で、がんの病理診断およびがん関連遺伝子の発現解析が可能である。例えば、従来は冷凍化し、薄切し、HE(ヘマトキシリン・エオジン)染色する必要があり、少なくとも20分以上かかって切除断端におけるがん細胞の有無を病理検査していたが、本実施の形態に関する手法では、3分~5分で見落としのない正確な診断(術中迅速診断)が可能である。また、摘出された生体以外のips細胞、ES細胞又はMUSE細胞等のような細胞で、培養された状態であっても本発明のがん検査装置、検査方法を適用できる。
 また、本実施の形態のがん検査装置は、内視鏡型の検査装置である。ここでは、生体内部の消化管を検査する場合を例に挙げて説明する。
 [1.1.検査準備のための構成]
 まず、検査準備のためのがん検査装置の構成について説明する。
 消化管の内壁は、実際には凹凸があるので、がん検査装置を用いて撮像する前に、消化管内を押し広げ、撮像できる状態にすることが望ましい。そのため、本実施の形態に係るがん検査装置は、消化管内を押し広げる挿入管を備えている。
 図7は、消化管112内に挿入管20を挿入した状態を示す図であり、(a)は挿入管20を挿入した直後の状態、(b)は消化管112内に空間Sを形成した状態を示す。
 図7の(a)に示すように、挿入管20には、流体を供給する供給口42と、供給した流体を回収する回収口43が形成されている。また、挿入管20には、第1バルーン21と第2バルーン22とが設けられている。第1バルーン21および第2バルーン22は、バルーン21、22内に流体(気体または液体)が出し入れされることで、膨らんだり縮んだりする。第1バルーン21は、供給口42よりも挿入管20の先端側に設けられ、第2バルーン22は、回収口43よりも後ろ側(先端とは反対側)に設けられている。図7の(b)に示すように、消化管112内にて、第1バルーン21および第2バルーン22を膨らますことで、第1バルーン21と第2バルーン22とに挟まれた消化管112内の空間が、閉じた空間Sとなる。
 [1.2.がん検査装置の基本構成]
 次に、図8~図11を参照しながら、がん検査装置1の基本構成について説明する。図8は、がん検査装置1の塗布部40の一例を示す図である。
 本実施の形態に係るがん検査装置1は、閉じた空間Sの消化管112の内壁に染色剤45を塗布する塗布部40を備えている。
 がん検査装置1は、図8に示すように、染色剤45が貯留された塗布部40から、挿入管20および供給口42を介して染色剤45を空間S内に供給することで、消化管112の内壁に染色剤45を塗布する。消化管112の生体細胞のがん関連遺伝子産物は、塗布された染色剤45により有彩色に染色される。
 染色剤45としては、例えば、クルクミン類を含む染色剤またはフロキシンを含む染色剤からなる1種類の染色剤であっても良いが、クルクミン類を含む染色剤およびフロキシンを含む染色剤の2種類の染色剤を用いることが望ましい。クルクミン類を含む染色剤45を用いることでSTAT3系のがん関連遺伝子の発現パターンの状態を、フロキシンを含む染色剤45を用いることでras系のがん関連遺伝子産物の発現状態を把握することができる。
 なお、クルクミン類には、クルクミンはもちろん、水溶性の高いクルクミノイド(数種類のクルクミン誘導体の混合物)が含まれる。
 ras系のがん関連遺伝子発現パターンを染色する染色剤としては、上記フロキシンの他に、以下に示す材料を含む染色剤を用いることもできる。
 エリスロシン(Erythrosine、C20)
 メルブロミン(Merbromin、C20BrHgNa)
 ファストグリーンFCF(Fast Green FCF、C3734Na10)
 メクロサイクリンスルフォサルチル酸塩(Meclocycline sulfosalicylate、C2927ClN14S)
 なお、染色する前に、供給口42および回収口43を用いて消化管112の内部を洗浄したり、粘液を除去したりしてもよい。
 図9の(a)は、がん検査装置1を用いて消化管112の内壁を平坦化する様子を示す図である。
 生体内部の細胞群に染色剤45が塗布された後、図9の(a)に示すように、供給口42から、例えば、気体を供給し消化管112内を膨らます。これにより、消化管112の内壁が伸びて平坦化される。平坦化された場合の内壁面113の凹凸は、凹と凸の高低差が、例えば0.2mm以内であることが望ましい。消化管112の内壁を平坦化することで、内壁面113、および、内壁面113から所定深さの位置にある生体細胞群のがん関連遺伝子を的確に把握することができる。
 図9の(b)は、図11におけるがん検査装置1の内視鏡2の先端側の端部を示す概略図である。図10は、内視鏡2の先端の回転部分の構造を示す概略図である。図11は、がん検査装置1の制御構成を示すブロック図である。
 がん検査装置1は、図11に示すように、前述した塗布部40に加え、内視鏡2を有する撮像部10と、撮像部10および塗布部40の動きを制御する制御部50とを備えている。制御部50は、がん化の悪性度レベルを判定する判定部52と、がん化の悪性度レベルを判定する際の判定基準となる情報を記憶する記憶部51とを有している。これら判定部52および記憶部51については後述する。
 また、がん検査装置1は、レーザ発振器60、光学部品65および画像処理部70を備えている。
 レーザ発振器60から発振されたレーザLは、光学部品65であるダイクロイックミラー66により反射され、さらに、内視鏡2内のミラー19により反射されて生体に照射される。レーザLが照射された生体細胞のがん関連遺伝子産物は蛍光を発生し、その蛍光による光がミラー19で反射され、ダイクロイックミラー66を透過して光検出器35で検出される。光検出器35で検出された光は電気信号に変換され、画像処理部70にて画像形成される。二次元走査器67は、レーザ発振器60とダイクロイックミラー66との間に内蔵されている(図11)。二次元走査器67は、照射したレーザ光を、撮像対象領域の一定面積内でX-Y方向にスキャンすることで、点としてのレーザ光を、面として画像化するためのものである。蛍光の色は染色剤によって変わるため、光検出器35を複数備え、光検出器35の前に色を分離する光学フィルタを置いて分離することができる。なお、光検出器35として、CMOS(Complementary Metal Oxide Semiconductor、相補性金属酸化膜半導体)またはCCD(Charge Coupled Devices、電荷結合素子)を用いて色を分離することもできる。
 レーザ発振器60としては、多光子レーザ顕微鏡では、パルス幅が数十~数百フェムト秒、パルス周波数が数十~数百MHzのものが用いられる。本実施の形態におけるレーザLは、多光子レーザの一種である二光子レーザであり、レーザ発振器60は、例えば、波長が800nmで、出力が3.2Wまで出せるパルスレーザを用いている。このレーザの撮像時のレーザ出力は0.16~0.32Wの範囲で出射している。波長を800nm以上とすることで、多光子励起過程によって発生する1/2波長の光において、紫外線域(波長400nm未満)の光子が生じることを防ぐことができる。レーザ発振器60としては、共焦点レーザ顕微鏡では、通常の共焦点レーザ顕微鏡用の可視光波長の連続波(CW)レーザなどを用いる。
 光学部品65であるダイクロイックミラー66は、レーザLと同一の波長については反射し、その他の波長の光を透過させる。したがって、レーザ発振器60から発振されたレーザLは、ダイクロイックミラー66によってミラー19に向かって反射される。一方、がん関連遺伝子産物において発生した蛍光は、ミラー19を反射した後、ダイクロイックミラー66を通過し、光検出器35に到達する。なお、光学部品65は、プリズムや4/λ板などで構成することもできる。
 撮像部10は、内視鏡2および光検出器35を備えており、生体の内部(生体細胞群)にレーザLを当て、特定のがん関連遺伝子産物発現パターンを反映する生体染色剤の細胞内蛍光強度と細胞内分布様式を撮像する。撮像部90は、焦点位置制御部を有し、この焦点位置制御部を制御することにより、染色剤によって染色されたがん関連遺伝子発現パターンを撮像する。
 光検出器35は、レーザLを当てることで発生した蛍光を検出し、その蛍光を蛍光強度に応じた電気信号に変換する。光検出器35としては、例えば、光電子増倍管、CCD半導体イメージセンサなどを用いることができる。
 内視鏡2は、図10に示すように、内筒12と、内筒12の一部の外側を囲む外筒13とを備えている。内筒12、および、外筒13の一部は、生体の内部に挿入される。内筒12の長さは、例えば50mmであり、内筒12の外径は、例えば3~10mmである。内筒12には直動アクチュエータが取付けられており、内筒12は、外筒13に対して軸方向Xに25mmほど移動可能となっている。また、内筒12には超音波モータが取りけられており、内筒12は、外筒13に対して360°回転可能となっている。内筒12の軸方向Xの動作、または、回転方向Rの動作は制御部50により制御される。
 内視鏡2の内筒12の先端側の端部には撮像ヘッド11が設けられている。撮像ヘッド11は、図9の(b)に示すように、挿入管20の脇を通って、内筒12とともに生体の内部に挿入される。撮像ヘッド11は、内筒12の軸方向Xおよび回転方向Rの動作により、生体の内部を移動するように制御される。
 撮像ヘッド11は、対物レンズ16、焦点可変部18、スペーサ17およびミラー19を有している。
 ミラー19は、前述したように、レーザ発振器60から出力されたレーザLを対物レンズ16に向けて方向転換し、または、がん関連遺伝子産物により蛍光された光を光検出器35に向けて方向転換する部品である。
 対物レンズ16は、生体の内壁面113に対向して設けられる。対物レンズ16は、生体内に挿入しやすい3mm~5mmの直径を有するレンズを用いることができる。
 焦点可変部18は、例えば圧電アクチュエータであり、対物レンズ16を光軸の方向に移動させることで、対物レンズ16の焦点位置を変える。焦点可変部18は、制御部50により動作制御され、焦点を内壁面113の表面から深さ0~1000μmの範囲で調整できるようになっている。
 スペーサ17は、例えば環状であり、対物レンズ16と内壁面113との間の空間の周囲に設けられる。スペーサ17は、対物レンズ16が生体の内壁に触れないようにするため、また、対物レンズ16と内壁面113との距離を一定に維持するための部品である。
 画像処理部70は、光検出器35により変換された電気信号(蛍光強度)と、制御部50から送られる撮像部10の座標位置とを対応づけて記憶し、これらのデータを処理してデジタル画像を生成する。生成されたデジタル画像は、例えば、モニタに表示されたり、プリントアウトされたり、制御部50の記憶部51に記録されたりする。撮像部10の座標位置の例としては、患者の基準となる箇所(例えば喉や肛門など)からの距離と、撮像ヘッド11の回転角度などを用いることができる。
 制御部50は、CPU、ROM、RAMなどにより構成される。制御部50は、内筒12を介して撮像ヘッド11の動作を制御する。具体的には、制御部50は、撮像ヘッド11を、消化管112の内壁の内周を沿うように回転方向Rに移動制御し、また、消化管112の管路方向(消化管の軸X)に沿うように移動制御する。また、制御部50は、焦点可変部18の動作を制御することで、対物レンズ16の光軸方向の位置を変え、生体の内部に結ばれる焦点位置を制御する。また、制御部50は、レーザ発振器60を制御することで、レーザ出力を調整することもできる。
 また、制御部50は、前述したように、がん化の悪性度レベルを判定する判定部52と、がん化の悪性度レベルを判定する際の判定基準となる情報を記憶する記憶部51とを有している。
 記憶部51では、がん化の悪性度レベルと生体細胞群の染色状態に関する情報とが対応付けて記憶されている。がん化の悪性度レベルは、例えば図1Cに示すように、がん関連遺伝子の活性状態により分けられた第1段階から第4段階までの各段階である。生体細胞群の染色状態に関する情報は、例えば、上記各段階における生体細胞群の染色領域(有彩色に染色された領域)の面積または細胞数などの情報である。これら染色領域の面積または細胞数は、使用する染色剤の種類により異なる値となるので、使用する染色剤に応じたデータを予め取得しておく必要がある。
 判定部52は、撮像して得られた画像の染色状態と、記憶部51に記憶されている染色状態に関する情報とを比較することで、がん化の悪性度レベルを判定する。例えば、撮像した画像における染色領域の面積または細胞数と、記憶部51に記憶された各段階における染色領域の面積または細胞数とを比較することで、生体細胞群の染色状態が各段階のうちのどの段階に属するかを判定する。
 本実施の形態に係るがん検査装置1では、生体細胞のがん関連遺伝子発現パターンを選択的に有彩色に染色する染色剤45を、生体細胞群に塗布する塗布部40と、染色剤45が塗布された生体細胞群を撮像する撮像部10と、撮像で得られた画像の生体細胞群の染色状態に基づき、生体細胞群のがん化の悪性度レベルを判定する判定部52とを備えている。画像情報の中では染色領域の面積または細胞数以外にも、染色領域の輝度や蛍光色の違い、または幾何学パターンの違いを利用する。自動診断に際しては、確度の高い輝度で発現場所の特定を行い、蛍光色の混合状態で悪性度レベルの判断を行なうなどの方法がとられる。幾何学パターン利用の方法としては臓器ごとにパターンが異なるが、図4Aの(c)、図4Eの(a)を例に取り説明したように暗部(暗い孔状のパターン)の密度を数値化する、島状パターンの密度を数値化し、島状パターンの乱れを認識させる等の診断方法がとれる。更には、暗部間ピッチ、暗部直径、島状パターンのピッチ、島状パターンの直径等の距離測定もパターンの乱れを判断すし、診断に用いるには有効である。
 これによれば、生体細胞群のがん関連遺伝子発現パターンの染色状態に基づき、がん化の悪性度レベルを判定するので、生体細胞群のがん化を早い段階で把握することができる。また、がん化の悪性度レベルを把握できるので、がん患者の予後を知ることができる。
 また、本実施の形態に係るがん検査装置1では、染色剤45によって染色されたがん関連遺伝子発現パターンのうち、少なくとも0.1mm以上0.4mm以下の平均直径を有する細胞集団において、がん関連遺伝子発現パターンを撮像することが可能である。これによれば、前がん状態における生体細胞のがん化の悪性度レベルを把握できるので、がん細胞集団152が大きく顕在化される前の超早期段階において、がん患者の予後を知ることができる。なお、がん関連遺伝子発現パターンの直径とは、がん関連遺伝子発現パターンの形状を、がん関連遺伝子発現パターンの面積と同じ面積を有する円とみなした場合の直径である。一定面積内に存在する染色された細胞群において上記直径を測定し、染色されている細胞群の数で割ったものが平均直径である。
 また、本実施の形態に係るがん検査装置1では、染色剤45によって染色された、生体の内部の粘膜表面から10μm以上1000μm以下の深さに存在するがん関連遺伝子発現パターンを撮像することが可能である。これによれば、粘膜表面から10μm以上1000μm以下の深さにおける生体の内部のがん化の悪性度レベルを把握することができ、がん細胞集団152が粘膜表面に現れる前の超早期に、見落としなく当該細胞集団を検出し、がん患者の予後を知ることができる(図19A)。例えば、図19Aに示すように、消化管粘膜表面から10μm~50μm内部の蛍光細胞形態画像を消化管全周性に完全パノラマ画像化できる。その結果この画像に基づいて、全周性の保証から『見落としなしのがん検出』が可能となる。図19Bは、がん検査装置1Aの内視鏡2を示す図である。
 がん検査装置1Aの内視鏡2は、内筒12と、内筒12の一部の外側を囲む外筒13とを備えている。内筒12には直動アクチュエータが取付けられており、内筒12は、外筒13に対して軸方向Xに移動可能となっている。また、内筒12には超音波モータが取りけられており、内筒12は、外筒13に対して360°回転可能となっている。内筒12の軸方向Xの動作、または、回転方向Rの動作は制御部50により制御される。がん検査装置1Aでは、例えば大腸であれば肛門、胃であれば口など、所定の位置を基準として、病変までの軸方向Xの距離、回転方向Rの角度を知ることができ、病変の位置を特定することができる。
 [2.がん検査装置の動作の一例]
 次に、本実施の形態に係るがん検査装置1の動作の一例について説明する。図12は、がん検査装置1の動作の一例を示すフローチャートである。
 まず、図8の染色剤45を塗布する前に、洗浄液を供給口42から閉じた空間Sに供給する(図示省略)。これにより消化管112の内壁面113を洗う。その後、洗浄液を回収口43から吸い込んで回収する。次に、プロナーゼ液を供給口42から閉じた空間Sに供給する。これにより、消化管112の内壁面113についた余分な粘液を除去する。その後、プロナーゼ液を回収口43から吸い込んで回収する。
 次に、塗布部40にて、生体細胞群にクルクミン類を含む染色剤45を塗布する(S11a:塗布工程)。具体的には、クルクミン類を含む染色剤45を供給口42から閉じた空間Sに供給し充填する。そして、2~5分間静置した後、洗浄液で洗う。これにより、消化管112の生体細胞群のSTAT3系のがん関連遺伝子産物が、クルクミン類を含む染色剤45により染色される。
 次に、フロキシンを含む染色剤45が入った塗布部40を用いて、生体細胞群にフロキシンを含む染色剤45を塗布する(S11b:塗布工程)。具体的には、フロキシンを含む染色剤45を供給口42から閉じた空間Sに供給し充填する。そして、2~5分間静置した後、洗浄液で洗う。これにより、消化管112の生体細胞群のras系のがん関連遺伝子発現パターンがフロキシンを含む染色剤45により染色される。これら2種類の染色剤45を塗布することで、消化管112の内壁の生体細胞群が2色に染色される。
 次に、撮像部10によって、染色剤で染色された生体細胞群のがん関連遺伝子発現パターンを撮像する(S12:撮像工程)。具体的には、制御部50にて、撮像ヘッド11を、消化管112の内壁に沿うように回転方向Rに移動制御し、また、消化管112の管路方向(消化管の軸X)に沿うように移動制御しながら撮像する。
 次に、判定部52によって、撮像で得られた画像の染色状態に基づき、がん化の悪性度レベルや予後を判定する(S13:判定工程)。
 具体的には、染色剤45で染色された染色領域の面積および細胞数を求める。染色領域の面積は、得られた画像の画素ごとに染色されているか否かを、所定のしきい値に基づいて判断し、染色されていると判断された画素の数を面積に置き換えることで求められる。また、染色領域の細胞数は、染色領域内における細胞の核の数または細胞膜で区切られた区域数により求められる。そして、これらにより得た面積または細胞数に関するデータと、記憶部51にて記憶されている面積または細胞数に関するデータとを比較し、がん化の悪性度レベルや予後を判定する。
 例えば、フロキシンを含む染色剤45により染色された染色領域の面積が、0.0075mm以上3mm未満であれば、ras系のがん関連遺伝子産物の発現が亢進しているとみなし、がん化の悪性度レベルが第2段階(図1C参照)以上であると判定してもよい。例えば、フロキシンを含む染色剤45により染色された染色領域の細胞数が、8個以上512個未満であれば、ras系のがん関連遺伝子産物の発現が亢進しているとみなし、がん化の悪性度レベルが第2段階以上であると判定してもよい。また、第2段階以上をさらに細分化し、がん化の悪性度レベルや予後を判定してもよい。
 なお、上記のように、ras系のがん関連遺伝子産物の発現状態によりがん化の悪性度レベルを判定してもよい。それに限られず、クルクミン類を含む染色剤45を用いてSTAT3系のがん関連遺伝子の活性状態により、がん化の悪性度レベルを判定してもよい。また、所定の染色剤を用いてAPC/β-catenin系またはp53系のがん関連遺伝子発現パターンを染色し、増殖抑制シグナルが低下していないかを調べ、がん化の悪性度レベルや予後を判定してもよい。
 また、本実施の形態に係る多光子レーザ顕微鏡によるがん検査装置1を用いて、がん化した部分(がん細胞集団)をレーザで除去することもできる。
 例えば、撮像部10により得られた画像の中にがん化した部分が存在する場合に、多光子レーザ顕微鏡による撮像時よりもレーザLの出力をあげて、がん化した部分にレーザLを当て、がん化した部分だけを特異的に除去(蒸散)させる。除去時のレーザ出力は撮像時の10~20倍で、2~3Wである。これによれば、がん化した部分を早期にかつ確実に除去することができる。
 (実施の形態2)
 実施の形態2に係るがん検査装置は、据置型の検査装置であり、患者を外部から検査する場合、または、患者から取り出した直後約20分以内の組織細胞を検査する場合に用いられる。
 本実施の形態に係るがん検査装置201は、図13に示すように、レーザ発振器213と、ビーム径調節器215と、二次元走査器217と、ダイクロイックミラー219と、対物レンズ221と、集光深さ調節器223と、光検出器225と、蛍光画像生成部227と、モニタ229と、制御部231とを備える。
 レーザ発振器213としては、パルス幅が数十~数百フェムト秒、パルスの繰り返し周波数が数十~数百MHzの範囲でパルスレーザ光の出力を調節できるもの、または、通常の共焦点レーザ顕微鏡用の可視光波長のCWレーザなどが用いられる。
 多光子レーザ用パルスレーザを使用する場合は、ビーム径調節器215は、制御部231からのビーム径調節信号に応じて、パルスレーザ光のビーム径を変化させるビームエクスパンダである。
 二次元走査器217は、例えば、2枚のガルバノミラーにより構成され、パルスレーザ光の集光位置を光軸に対して垂直な2軸方向に変化させる。
 ダイクロイックミラー219は、パルスレーザ光の照射により生体細胞のがん関連遺伝子産物において発生する蛍光を分離する。
 対物レンズ221は、レーザ発振器213から出射されたパルスレーザ光を生体細胞に集光させる一方、多光子吸収現象によりがん関連遺伝子産物において発生した蛍光を集光する。なお、対物レンズ221は、制御信号に基づいて集光深さ調節器223によって光軸方向へ移動可能となっており、集光位置を調節することができる。
 光検出器225は、がん関連遺伝子産物において発生した蛍光を検出し、蛍光強度に応じた電気信号に変換する。
 二次元走査器217の走査状態および集光深さ調節器223の調節位置(深さ方向の位置)は、集光位置の座標を表すパラメータとなり、蛍光画像生成部227は、これら座標を表すパラメータと光検出器225から送られた電気信号(すなわち蛍光強度)とを対応付けて記憶し、これらのデータを処理して、蛍光画像を生成する。生成された蛍光画像は、モニタ229上に表示される。
 制御部231は、動作制御部233と、検査用パルス強度設定部235と、照射範囲設定部239と、照射時間設定部241とを含む。動作制御部233は、レーザ発振器213、ビーム径調節器215、二次元走査器217、集光深さ調節器223の動作を制御する。
 検査用パルス強度設定部235は、検査を行うために、がん関連遺伝子発現パターンの蛍光画像を取得するのに適した強度のパルスレーザ光強度を設定する。
 照射範囲設定部239は、生体細胞にパルスレーザ光を照射する範囲の設定を行う。そして、動作制御部233が、二次元走査器217や集光深さ調節器223の動作を制御することによって、設定された照射範囲および深さにパルスレーザ光を照射、集光させる。照射時間設定部241は、生体細胞にパルスレーザ光を照射する時間の設定を行う。そして、動作制御部233がレーザ発振器213の出力を制御することによって、設定された時間だけ、パルスレーザ光を照射させる。
 本実施の形態の制御部231は、実施の形態1と同様の記憶部51および判定部52を有している。すなわち、がん検査装置201は、撮像で得られた画像の生体細胞群の染色状態に基づき、生体細胞群のがん化の悪性度レベルや予後を判定する。
 このがん検査装置201では、生体細胞群のがん関連遺伝子発現パターンの染色状態に基づき、がん化の悪性度レベルを判定するので、生体細胞群のがん化を早い段階で把握することができる。また、がん化の悪性度レベルをがん関連遺伝子の発現状態で把握できるので、がん患者の予後を知ることができる。
 なお、このがん検査装置201は、治療用パルス強度設定部237を備え、治療を行うために生体細胞を破壊するに十分な強度のパルスレーザ光強度を設定することができる。これにより、発見したがん細胞集団に対して、早期にがん治療を行うことができる。
 その他、本実施の形態のがん検査装置201は、様々な形態で実現することができる。
 例えば、図14に示されているように、レーザ光照射ヘッド243内に、ビーム径調節器215、二次元走査器217、ダイクロイックミラー219と対物レンズ221とその間の光路から構成される光学系、集光深さ調節器223とを設けるとともに、患者を載せるための患者固定台245と移動装置247とをさらに設け、がん検査を行ってもよい。
 また、例えば、患者から生体細胞群の一部を削り取り、削り取った生体細胞群をトレー(試料台)に入れた状態で、がん検査装置201を用いて撮像を行い、がん化の悪性度レベルを判定してもよい。この場合、生体細胞群への染色剤45の塗布は、生体細胞群を削り取る前に行ってもよいし、生体細胞群を削り取った後、撮像する前に行ってもよい。
 (実施の形態3)
 [1.がん検査装置の基本構成]
 次に、図15~図18を参照しながら、通常の共焦点レーザ顕微鏡用の可視光波長のCWレーザを用いる場合である、実施の形態3に係るがん検査装置301の基本構成について説明する。
 図15は、図17におけるがん検査装置301の内視鏡2の先端側の端部を示す概略図である。図16は、内視鏡2の全体を示す概略図である。図17は、がん検査装置301の制御構成を示すブロック図である。
 図17に示すように、がん検査装置301は、内視鏡2を有する撮像部10、制御部50および画像処理部70を備えている。また、がん検査装置301は、レーザ発振器60C、光学部品65Cを有している。また、がん検査装置301は、染色剤を、生体の内部に供給する塗布部40を備えている(図8参照)。
 レーザ発振器60Cから発振されたレーザL1は、光学部品65Cであるダイクロイックミラー66Cにより反射され、さらに、内視鏡2内のミラー19Cにより反射されて生体に照射される。レーザL1が照射された生体細胞は蛍光を発生し、その蛍光による光がミラー19Cで反射され、ダイクロイックミラー66Cを透過して光検出器35Cで検出される。光検出器35Cで検出された光は電気信号に変換され、画像処理部70にて画像形成される。蛍光の色は染色剤によって変わるため、光検出器35Cを複数備え、光検出器35Cの前に色を分離する光学フィルタを置いて分離することができる。これらの動作や各部品の機能、役割は図11のものとほぼ同一であるが、共焦点レーザ装置が多光子レーザ装置とは原理的に異なるため、それぞれの構成番号にCWレーザの頭文字を示す「C」を付けて区別している。
 レーザ発振器60Cとしては、波長405~980nmの範囲で段階的可変できるレーザを複数種類備え、測定対象の蛍光反応の特性に応じて波長が選ばれる。パルス駆動であっても連続発振駆動であってもよい。パルス駆動の場合は数十キロHz以上、デューティが5%~50%で撮像の掃引周波数との関係で、鮮明な画像が得られる範囲が選択される。本実施の形態におけるレーザL1は、共焦点レーザであり、レーザ発振器60Cは、例えば、ピーク波長がそれぞれ488nm、594nmまたは647nmで、出力が30mWまで出せるレーザを用いている。このレーザの撮像時のレーザ出力は5~10mWの範囲で出射しているがこれに限定されない。なお、レーザ発振器60Cでは、レーザL1の強度を染色度合い、蛍光の度合いに応じて調整することも可能である。
 光学部品65であるダイクロイックミラー66Cは、レーザL1と同一の波長については反射し、その他の波長の光を透過させる。したがって、レーザ発振器60Cから発振されたレーザL1は、ダイクロイックミラー66Cによってミラー19Cに向かって反射される。一方、生体細胞において発生した蛍光は、ミラー19Cを反射した後、ダイクロイックミラー66Cを通過し、光検出器35Cに到達する。なお、光学部品65Cは、プリズムや4/λ板などで構成することもできる。
 撮像部10は、内視鏡2および光検出器35Cを備えており、生体の内部にレーザL1を当てることで生体の内部の細胞形態を撮像する。
 光検出器35Cは、レーザL1を当てることで発生した蛍光を検出し、その蛍光を蛍光強度に応じた電気信号に変換する。光検出器35Cとしては、例えば、光電子増倍管、CCD半導体イメージセンサなどを用いることができる。共焦点レーザ機能としてピンホールなどを備えている。
 内視鏡2は、図16に示すように、内筒12と、内筒12の一部の外側を囲む外筒13とを備えている。内筒12、および、外筒13の一部は、生体の内部に挿入される。内筒12の長さは、例えば50mmであり、内筒12の外径は、例えば3~10mmである。内筒12には直動アクチュエータが取付けられており、内筒12は、外筒13に対して軸方向Xに25mmほど移動可能となっている。また、内筒12には超音波モータが取りけられており、内筒12は、外筒13に対して360°回転可能となっている。内筒12の軸方向Xの動作、または、回転方向Rの動作は制御部50により制御される。
 内視鏡2の内筒12の先端側の端部には撮像ヘッド11Cが設けられている。撮像ヘッド11Cは、図15に示すように、挿入管20の脇を通って、内筒12とともに生体の内部に挿入される。撮像ヘッド11Cは、内筒12の軸方向Xおよび回転方向Rの動作により、生体の内部を移動するように制御される。
 撮像ヘッド11Cは、対物レンズ16C、焦点可変部18、スペーサ17およびミラー19Cを有している。
 ミラー19Cは、前述したように、レーザ発振器60Cから出力されたレーザL1を対物レンズ16Cに向けて方向転換し、または、生体細胞により蛍光された光を光検出器35Cに向けて方向転換する部品である。
 対物レンズ16Cは、生体の内壁面113に対向して設けられる。対物レンズ16は、例えば、直径が10mm、倍率が10倍、解像度が5μm、撮像視野が3mm×3mmである。または、対物レンズ16は、直径が12mm、倍率が40倍、解像度が10μm、視野が7.5mm×7.5mmmである。撮像視野は広いほどよい。また、対物レンズ16Cは左記した直径のレンズの一部をカットするか、同様の解像度を得られる対物レンズとして生体内に挿入しやすい3mm~5mmの直径としたものを用いることができる。なお、対物レンズ16Cを内壁面113に対して傾けて配置してもよい。対物レンズ16Cを傾けた状態で撮像することで、上皮120および腺130の両方の細胞形態を同時に観察することが可能となる。
 焦点可変部18は、例えば圧電アクチュエータ、または電磁アクチュエータであり、対物レンズ16Cを光軸の方向に移動させることで、対物レンズ16Cの焦点位置を変える。焦点可変部18は、制御部50により動作制御され、焦点を内壁面(粘膜表面)113から深さ0~75μmの範囲で調整できるようになっている。焦点位置を変えることで、消化管112の内壁面113から所定の深さにおける生体の状態を撮像することができる。
 スペーサ17は、例えば環状であり、対物レンズ16Cと内壁面113との間の空間の周囲に設けられる。スペーサ17は、対物レンズ16Cが生体の内壁に触れないようにするため、また、対物レンズ16Cと内壁面113との距離を一定に維持するための部品である。対物レンズ16Cと内壁面(粘膜表面)113との距離は、撮像開始前にスペーサ17を取り替えるか、アクチュエータなどで可変とする機構を付加することにより、例えば、1mm以上10mm以下の範囲の適切な値に設定される。制御部50は、スペーサ17を内壁面113に当接させながら撮像ヘッド11C(内筒12)を移動制御し、内壁面113に対する対物レンズ16Cの距離を一定に維持する。
 制御部50は、CPU、ROM、RAMなどにより構成される。制御部50は、内筒12を介して撮像ヘッド11Cの動作を制御する。具体的には、制御部50は、撮像ヘッド11Cを、消化管112の内壁の内周を沿うように周方向に移動制御し、また、消化管112の管路方向(消化管の軸)に沿うように移動制御する。また、制御部50は、焦点可変部18の動作を制御することで、対物レンズ16Cの光軸方向の位置を変え、生体の内部に結ばれる焦点位置を制御する。また、制御部50は、レーザ発振器60Cを制御することで、レーザ出力を調整することもできる。
 画像処理部70は、光検出器35Cにより変換された電気信号(蛍光強度)と、制御部50から送られる撮像部10の座標位置とを対応づけて記憶し、これらのデータを処理してデジタル画像を生成する。生成されたデジタル画像は、例えば、モニタに表示されたり、プリントアウトされたり、記憶装置に記録されたりする。撮像部10の座標位置の例としては、患者の基準となる箇所(例えば喉や肛門など)からの距離と、撮像ヘッド11Cの回転角度などを用いることができる。
 本実施の形態に係る共焦点型のレーザ内視鏡を有するがん検査装置301は、生体の内部に挿入される撮像ヘッド11Cを有し、撮像ヘッド11Cを介して生体にレーザを当てることで生体を撮像する撮像部10と、撮像ヘッド11Cの作動を制御する制御部50とを備えている。撮像ヘッド11Cは、対物レンズ16Cと、対物レンズ16Cの焦点位置を生体の深さ方向に変えることのできる焦点可変部18とを有し、制御部50は、焦点位置が、生体の内部の粘膜表面から10μm以上100μm以下(望ましくは10μm以上70μm以下)の深さのうち、所定深さとなるように焦点可変部18を作動し、撮像部10は、生体の内部の細胞群を選択的に有彩色に染色する染色剤45によって染色された細胞群にレーザを当てるとともに、所定深さにおける染色された細胞群を撮像する。
 ここで対物レンズ16Cと粘膜表面の位置を一定に保ち焦点を制御する方法について説明する。図17に示す171は第2のレーザ発振器であり、例えば波長680nm、出力5mW程度の参照光L2として連続平行光を発振している。ビームスプリッターまたハーフミラー等で、レーザ発振器60Cと同じ光路に挿入される。図17では理解しやすくするために少し位置をずらした破線でその参照光L2の光路を示している。前記参照光L2は検査用のレーザL1とほぼ同じ経路をたどるが、ビームスプリッター173で光路を変え、焦点制御光学部174に入る。ここでは円柱レンズとビームスプリッター等で、対物レンズ16Cの焦点位置が変動した場合、その変動量が検出できるような光学部品構成になっている。175は光検出器であり通常2個または4個のブロックに分かれた光検出器で検出された光は、差動アンプなどで対物レンズ16Cと粘膜表面相対位置変動に比例した電気信号に変換される。このような対物レンズの位置制御は光ディスク装置等で用いられており、内視鏡装置への応用は十分に可能である。ここで、がん検査装置として注意すべきことは、撮像用のレーザL1と参照光L2が、分離しやすいようになるべく波長を違えておくことが好ましい。波長を100nm以上離すことで分離特性の良い、撮像系、焦点制御系の光特性を得ることができる。また上記のような焦点制御系を有する場合は、その制御系内にバイアス電圧を加えることで、焦点位置を微調整することができる。このバイアス電圧を段階的に変えることにより自動的にレーザL1の焦点位置を深さ方向に制御する事ができる。
 また光学部品である11C、35C、65C、66C、172、173、174は、L1、L2のレーザ波長によって透過率や反射率が大きく左右されるため、レーザ波長に合わせたモジュール化を行い複数種類準備することで、使用する染色剤や被検査部位によってレーザ波長を変えた場合でも、容易に対応する事ができる。
 このように共焦点型のレーザ内視鏡を有するがん検査装置301であっても、生体の内壁面(粘膜表面)113から10μm以上70μm以下の深さにおける画像を取得することが可能である。これにより、容易に、病変を見つけることが可能であり、また、波長やレーザ強度を選ぶことで患者に対してレーザ照射による光細胞ダメージなどの負荷を与えずに画像を取得することができる。
 [2.がん検査装置の動作]
 次に、本実施の形態に係るがん検査装置301の動作について説明する。図18は、がん検査装置301の動作の一例を示すフローチャートである。本実施の形態に係るがん検査装置301では、2つの異なる染色剤45を生体細胞群に塗布して、2つのがん関連遺伝子発現パターンを互いに異なる色に染色した後、撮像する。
 まず、染色剤45を塗布する前に、洗浄液を供給口42から閉じた空間Sに供給する(図示省略)。これにより消化管112の内壁面113を洗う。その後、洗浄液を回収口43から吸い込んで回収する。次に、プロナーゼ液を供給口42から閉じた空間Sに供給する。これにより、消化管112の内壁面113についた余分な粘液を除去する。その後、プロナーゼ液を回収口43から吸い込んで回収する。
 次に、塗布部40にて、生体細胞群にクルクミン類を含む染色剤45を塗布する(S11a:塗布工程)。具体的には、クルクミン類を含む染色剤45を供給口42から閉じた空間Sに供給し充填する。そして、2~5分間静置した後、洗浄液で洗う。これにより、消化管112の生体細胞群のSTAT3系のがん関連遺伝子産物が、クルクミン類を含む染色剤45により染色される。
 次に、フロキシンを含む染色剤45が入った塗布部40を用いて、生体細胞群にフロキシンを含む染色剤45を塗布する(S11b:塗布工程)。具体的には、フロキシンを含む染色剤45を供給口42から閉じた空間Sに供給し充填する。そして、2~5分間静置した後、洗浄液で洗う。これにより、消化管112の生体細胞群のras系のがん関連遺伝子発現パターンがフロキシンを含む染色剤45により染色される。
 次に、撮像部10を用いて、上記2種類の染色剤45で染色された生体細胞群のがん関連遺伝子発現パターンを撮像する(S12:撮像工程)。具体的には、撮像部10は、2種類の異なる波長の励起光を、2種類の異なる色に染色されたがん関連遺伝子発現パターンに照射することで、複数のがん関連遺伝子発現パターンを撮像する。本実施の形態では、クルクミン類を含む染色剤45で染色されたがん関連遺伝子発現パターンを蛍光させるための励起光として波長488nmのレーザL1を照射し、フロキシンを含む染色剤45で染色されたがん関連遺伝子発現パターンを蛍光させるための励起光として波長594nmのレーザL1を照射する。そして、2色に染色されたがん関連遺伝子発現パターンに2種類のレーザL1を順に照射し、照射によって発生したそれぞれの蛍光を光検出器35Cで検出する。
 次に、判定部52によって、撮像で得られた画像の染色状態に基づき、がん化の悪性度レベルや予後を判定する(S13:判定工程)。
 このように2種類の染色剤45で染色されたがん関連遺伝子発現パターンに、それぞれの染色剤45に応じた励起光を照射することで、複数のがん関連遺伝子の活性状態を検出し、がん化の悪性度レベルを判定することができる。また、上記のように単一波長からなる各レーザL1をがん関連遺伝子発現パターンに照射することで、がん関連遺伝子発現パターンから発せられる蛍光を安定して検出することができる。
 上記では、2種類の染色剤45およびそれに対応する励起光を用いて2種類のがん関連遺伝子発現パターンを検出する例について示したが、それに限られず、3種類以上の染色剤45およびそれに対応する励起光を用いて3種類以上のがん関連遺伝子発現パターンを検出してもよい。染色剤45としては、クルクミン類、フロキシンに限られず、例えば、ハイレッドV80、スルフレチン、エリスロシン、エピガロカテキンガラード、インドシアニングリーン、マルビジン、βカロテン、ハイレッドBL、6-ギンゲオール、ミリセチン、トリセニジンまたはペツニジンなどを含む染色剤45であってもよい。
 例えば、ブレーキ系の遺伝子であるAPC/β-catenin系またはp53系のがん関連遺伝子発現パターンを染色する染色剤45を用いると、細胞の増殖抑制シグナルが低下しているか否かを調べることができる。このようにブレーキ系の遺伝子を検出し、がん化の悪性度レベルや予後を判定することもできる。
 このように多種類の染色剤45でがん関連遺伝子発現パターンを染色し、それぞれの染色剤45に応じた励起光を照射することで、多種類のがん関連遺伝子を検出することが可能となる。これにより、がん化の悪性度レベルを多岐の視点で分析することができ、予後の判定確率を高めることができる。
 次に、生体染色剤の浸透性の際によるがんと正常部位の判定について説明する。
 図20A、図20Bおよび図20Cを参照して、生体の内部の細胞形態を、多光子レーザ顕微鏡(オリンパス社製FV1000MPE)を用いて焦点の深さを変えて撮像し、撮像した複数の画像を所定の位置で切断して断面画像(断層画像)を作成した例について説明する。生体としてはマウスを用いた。
 図20A~図20Cの各図は、内壁面(粘膜表面)から所定範囲の深さにおける細胞形態を示す画像であって、粘膜表面(深さ0)から深さ150μmまでを深さ2μmピッチで撮像し、合計75枚の画像を積み重ねて合成した3次元データ画像である。図20A~図20Cのそれぞれにおいて、(a)は、細胞群を内壁面113に垂直な方向から平面視した画像であり、(b)は(a)をb-b線で切断した場合の断面画像であり、(c)は(a)をc-c線で切断した場合の断面画像である。
 細胞群を染色するための染色剤としては、クルクミンを含む染色剤およびアシッドレッド(赤色106号)を含む染色剤の両方の染色剤を用いた。染色時間は、5分間とした。染色時間は、細胞群に染色剤を接触させて、細胞自体または各細胞の間に染色剤の色素を浸透させる時間である。
 図20A~図20Cは、同じ細胞群を同時に撮像し、フィルタをかけて異なる色(波長)を抽出した画像である。図20Aは、クルクミン色素およびアシッドレッド色素の両方の色素によって染色された色領域を抽出した画像である。図20Bは、クルクミン色素によって染色された色領域を抽出した画像である。図20Cは、アシッドレッド色素で染色された色領域を抽出した画像である。図20A~図20Cは白黒であるが本来カラー画像であり、染色剤による染色傾向の違いにより、クルクミン色素で染色した領域は緑の蛍光色に、アシッドレッド色素で染色された領域は、薄い赤色からオレンジ色に近い蛍光色で表わされ、より鮮明に色の違いが表わされている。
 図20A~図20Cでは、がん組織および正常粘膜組織が示されているが、それぞれの色素によって浸透性に差があることがわかる。図20Bに示すように、クルクミン色素は、がん組織において正常粘膜組織よりも高い浸透性を示している。具体的にはクルクミン色素の場合、染色されている深さが、がん組織内部では約40μmであるのに対し、正常粘膜組織内部では約20μmである。図20Cに示すように、アシッドレッド色素は、がん組織において正常粘膜組織よりも低い浸透性を示している。具体的にはアシッドレッド色素の場合、染色されている深さが、がん組織内部では約40μmであるのに対し、正常粘膜組織内部では約70μmである。
 このように、細胞形態が、がん組織か正常粘膜組織かによって色素の浸透性に違いがある。この性質を利用し、断面画像に表わされた細胞群が染色されている深さを計測することで、その細胞群が正常細胞群か、がん細胞群かを判別することができると考えられる。撮影時における細胞表面からの深度方向の制御を行うことで、断面画像に表わされた細胞群が染色されている深さに基づいて、病変の疑いを判断する。例えば、クルクミン色素によって細胞群が染色されている深さが、正常粘膜組織よりも大きいと(例えば1.5倍以上)がん細胞が発生していると判断し、同等であると(例えば1.5倍未満)がん細胞が発生していないと判断する。また、アシッドレッド色素によって細胞群が染色されている深さが、正常粘膜組織よりも小さいと(例えば0.6倍未満)がん細胞が発生していると判断し、同等であると(例えば0.6倍以上)がん細胞が発生していないと判断する。なお、単色または2重染色等によってがん細胞の有無を判断後に、上記の断面画像判断をすることで、より信頼性を高めることができる。本例ではSTAT3系のがん関連遺伝子産物に対してより浸透度が高く染色するクルクミンと、正常細胞への浸透度が高いアシッドレッドを用いたが、更にras系のがん遺伝子産物への浸透度が高いフロキシン、エリスロシン等を用いて染色することで、STAT3系、ras系の進行度合いを、染色の浸透度合いで比較することができるようになる。
 (その他の例)
 以上、本実施の形態に係るがん検査装置1、201、301について説明したが、本発明は、上記実施の形態およびその変形例には限定されない。例えば、上記実施の形態およびその変形例に次のような変形を施した態様も、本発明に含まれ得る。
 例えば、実施の形態1では、がん関連遺伝子発現パターンの染色を行う場合に、染色剤を1種類ずつ用いて順に染色したが、それに限られず、複数の色素を予め混合して両方を含む混合染色剤を作り、この混合染色剤を用いて同時に染色してもよい。さらに経口の洗浄液に粘膜洗浄剤や染色剤などを含ませることで消化管を染色することも可能である。がん関連遺伝子発現パターンを染色するという表現と、がん関連遺伝子産物を染色するという表現を混在して記載したが、がん関連遺伝子産物を染色した結果であって、ある程度増殖をした状態を観察対象としている状態をがん関連遺伝子発現パターンとしている。
 また、実施の形態1では、2色の染色剤を用いて生体を染色して撮像したが、それに限られず、3色以上の染色剤を用いて生体を染色して撮像することも可能である。
 また、実施の形態1、2では、がん検査装置1のレーザとして多光子レーザを用いたが、これに限られず、共焦点レーザを用いることも可能である。また、波長を選べば通常のCWレーザ顕微鏡を用いたり、単色光による蛍光顕微鏡を用いることも可能である。深さ方向の撮像および解像度という点では、波長600nm~1600nmの多光子レーザを用いることが望ましい。しかし、染色によって細胞の核が見える倍率、解像度をレンズや波長によって工夫することで、ある程度の分析を、波長400~700nmの共焦点レーザ顕微鏡や通常の波長400~700nmCWレーザを用いたり、波長400~700nm単色光による蛍光顕微鏡によって実現することは、本発明の範囲に含まれる。さらに染色剤の蛍光波長に応じて、照射するレーザの波長を変える、画像化するためのフィルターを変えることは上記で説明してきたとおりある。
 また、実施の形態1、2におけるがん検査装置1、201、301は、消化管以外の管腔臓器(気管支、膀胱・尿管など)にも適応可能であり、さらに、表面から深さ1mm以内という制約はあるが、腎臓、肝臓、脳、網膜などの細胞構造も可視化できる。
 さらに画像は静止画に限定されず、動画であっても、静止画と動画が混在した画像であっても良い。例えば予備的診断や手術後定期検査時等には動画で撮影し、精密診断時には静止画を用いることも可能である。撮影時の拡大倍率スケールも上記で説明した範囲に限定されるものでは無い。
 また、生体染色する細胞組織は、生体内の細胞組織(in vivo)でも良く、また、手術などで生体外へ切除した直後20分以内の新鮮生体外細胞組織(ex vivo)であっても良い。
 さらに、上記したがん検査装置では、染色部、内視鏡を含む撮像部、記憶部、判定部を含めて説明したが、必ずしも染色部、判定部は同一の装置内に備える必要は無く、別の装置で染色を行うこと、記憶部の内容を共有することによって別の装置やコンピュータで、分析、判定を行うことは、本発明の範囲である。また、分析対象の部位によって撮像部も内視鏡に限定されず、固定の対物レンズを有する顕微鏡であっても良いものであることは、両者を併記していることからも本発明の範囲に含まれる。
 本発明に係るがん検査装置は、消化管、呼吸器、腎泌尿器、子宮卵巣生殖器および脳脊髄神経などにおいて、早期にがんを発見する場合に利用される。
1、1A、201、301 がん検査装置
2   内視鏡
10  撮像部
11、11C 撮像ヘッド
12  内筒
13  外筒
16、16C 対物レンズ
17  スペーサ
18  焦点可変部
19、19C ミラー
20  挿入管
21  第1バルーン
22  第2バルーン
35、35C 光検出器
40  塗布部
42  供給口
43  回収口
45  染色剤
50、231 制御部
51  記憶部
52  判定部
60、60C レーザ発振器
65、65C 光学部品
66、66C ダイクロイックミラー
67  二次元走査器
70  画像処理部
112 消化管
113 消化管の内壁面(粘膜表面)
120 上皮
121 上皮細胞
125 上皮細胞の核
126 上皮細胞の細胞質
130 腺
131 腺細胞
132 毛細血管
133 結合組織
135 腺細胞の核
136 腺細胞の細胞質
137 基底膜
138 陰窩(いんか)
152 がん細胞集団
160 粘膜筋板
L、L1 レーザ
L2  参照光
S   閉じた空間

Claims (21)

  1.  生体細胞のがん関連遺伝子産物を選択的に有彩色に染色する染色剤を、生体細胞群に塗布する塗布部と、
     前記染色剤が塗布された前記生体細胞群を撮像する撮像部と、
     前記撮像で得られた画像の前記生体細胞群の染色状態に基づき、前記生体細胞群のがん化の悪性度レベルを判定する判定部と
     を備える、がん検査装置。
  2.  前記塗布部は、前記生体細胞の増殖を促進するシグナルを伝達するras系のがん関連遺伝子産物を染色する前記染色剤を塗布する
     請求項1に記載のがん検査装置。
  3.  前記塗布部は、フロキシン、エリスロシン、メルブロミン、ファストグリーンFCFまたはメクロサイクリンスルフォサルチル酸塩を含む前記染色剤を塗布する
     請求項2に記載のがん検査装置。
  4.  前記塗布部は、前記生体細胞の増殖を促進するシグナルを伝達するSTAT3系のがん関連遺伝子産物を染色する前記染色剤を塗布する
     請求項1~3のいずれか1項に記載のがん検査装置。
  5.  前記塗布部は、クルクミン類を含む前記染色剤を塗布する
     請求項4に記載のがん検査装置。
  6.  前記塗布部は、前記生体細胞群にクルクミン類を含む前記染色剤を塗布した後、前記生体細胞群にフロキシン、エリスロシン、メルブロミン、ファストグリーンFCFまたはメクロサイクリンスルフォサルチル酸塩を含む前記染色剤を塗布する
     請求項1~5のいずれか1項に記載のがん検査装置。
  7.  前記塗布部は、前記生体細胞群に、前記生体細胞の増殖を促進するシグナルを伝達するSTAT3系のがん関連遺伝子産物を染色する前記染色剤を塗布した後、前記生体細胞の増殖を促進するシグナルを伝達するras系のがん関連遺伝子産物を染色する前記染色剤を塗布する
     請求項1~5のいずれか1項に記載のがん検査装置。
  8.  前記判定部は、前記生体細胞群の染色領域の面積に基づき前記判定を行う
     請求項1~7のいずれか1項に記載のがん検査装置。
  9.  前記判定部は、前記生体細胞群の染色領域の染色された細胞数に基づき前記判定を行う
     請求項1~8のいずれか1項に記載のがん検査装置。
  10.  前記判定部は、前記生体細胞群の染色領域を含む一定面積内の染色された細胞群の数と平均直径に基づき前記判定を行う
     請求項1~9のいずれか1項に記載のがん検査装置。
  11.  前記撮像部は、前記染色剤が塗布された前記生体細胞群に多光子レーザ、または共焦点レーザを照射することで、前記生体細胞群を撮像する
     請求項1~10のいずれか1項に記載のがん検査装置。
  12.  前記撮像部は、前記染色剤によって染色された、0.1mm以上0.4mm以下の直径を有する前記がん関連遺伝子発現パターンを撮像する
     請求項1~11のいずれか1項に記載のがん検査装置。
  13.  前記塗布部は、複数の異なる前記染色剤を前記生体細胞群に塗布することで、複数の前記がん関連遺伝子発現パターンを互いに異なる色に染色し、
     前記撮像部は、異なる色に染色された複数の前記がん関連遺伝子発現パターンに、それぞれの前記染色剤に応じた複数の励起光を照射することで、複数の前記がん関連遺伝子発現パターンを撮像する
     請求項1~12のいずれか1項に記載のがん検査装置。
  14.  前記染色剤の種類は少なくとも2種類であり、
     複数の前記がん関連遺伝子発現パターンに照射される前記励起光は、前記染色剤の種類に対応して選択されている
     請求項13に記載のがん検査装置。
  15.  前記撮像部は、焦点位置制御部を有し、前記焦点位置制御部を制御することにより、前記染色剤によって染色された生体の内部の表面から10μm以上1000μm以下の深さに存在する前記がん関連遺伝子発現パターンを撮像する
     請求項1~14のいずれか1項に記載のがん検査装置。
  16.  前記染色剤によって染色された生体内部の同一の撮像位置において、表面から前記焦点位置制御部を制御して、一定間隔で焦点を変更して異なる深さの焦点位置における撮像を行い、前記撮像された複数の画像を焦点位置情報順に重ね合わせることで、画像を立体的画像とし、前記立体画像における、染色剤の浸透度に基づき前記判定を行う
     請求項15に記載のがん検査装置。
  17.  生体細胞のがん関連遺伝子産物を選択的に有彩色に染色する染色剤を、生体細胞群に塗布する塗布工程と、
     前記染色剤が塗布された前記生体細胞群を撮像する撮像工程と、
     前記撮像で得られた画像の前記生体細胞群の染色状態により、前記生体細胞群のがん化の悪性度レベルを判定する判定工程と
     を含む、がん検査方法。
  18.  前記判定工程において、前記生体細胞群の染色領域の面積に基づき前記判定を行う
     請求項17に記載のがん検査方法。
  19.  前記判定工程において、前記生体細胞群の染色領域の染色された細胞数に基づき前記判定を行う
     請求項17または18に記載のがん検査方法。
  20.  前記判定工程において、前記生体細胞群の染色領域を含む一定面積内の染色された細胞群の数と平均直径に基づき前記判定を行う
     請求項17~19のいずれか1項に記載のがん検査方法。
  21.  がん検査用の染色剤であって、
     生体細胞の増殖を促進するシグナルを伝達するras系のがん関連遺伝子産物を染色するフロキシン、エリスロシン、メルブロミン、ファストグリーンFCFまたはメクロサイクリンスルフォサルチル酸塩、もしくは、前記生体細胞の増殖を促進するシグナルを伝達するSTAT3系のがん関連遺伝子産物を染色するクルクミン類を含み、
     染色開始後10分以内は、前記生体細胞の細胞質には浸透するが、細胞の核には浸透しない濃度を有する、がん検査用の染色剤。
PCT/JP2017/018755 2016-05-18 2017-05-18 がん検査装置、がん検査方法、および、がん検査用の染色剤 WO2017200066A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/301,939 US11555819B2 (en) 2016-05-18 2017-05-18 Cancer test device, cancer test method, and staining agent for use in cancer test
JP2018518367A JPWO2017200066A1 (ja) 2016-05-18 2017-05-18 がん検査装置、がん検査方法、および、がん検査用の染色剤
EP17799490.2A EP3459424A4 (en) 2016-05-18 2017-05-18 CANCER TEST DEVICE, CANCER TEST METHOD AND COLORING AGENT FOR USE IN CANCER TESTING
CN201780036233.9A CN109414151B (zh) 2016-05-18 2017-05-18 癌症检测装置、癌症检测方法和用于癌症检测的染色剂
US17/964,758 US11852632B2 (en) 2016-05-18 2022-10-12 Cancer test device, cancer test method, and staining agent for use in cancer test

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-099997 2016-05-18
JP2016099997 2016-05-18
PCT/JP2017/006962 WO2017146184A1 (ja) 2016-02-23 2017-02-23 レーザ内視鏡装置
JPPCT/JP2017/006962 2017-02-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006962 Continuation WO2017146184A1 (ja) 2016-02-23 2017-02-23 レーザ内視鏡装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/301,939 A-371-Of-International US11555819B2 (en) 2016-05-18 2017-05-18 Cancer test device, cancer test method, and staining agent for use in cancer test
US17/964,758 Division US11852632B2 (en) 2016-05-18 2022-10-12 Cancer test device, cancer test method, and staining agent for use in cancer test

Publications (1)

Publication Number Publication Date
WO2017200066A1 true WO2017200066A1 (ja) 2017-11-23

Family

ID=60325950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018755 WO2017200066A1 (ja) 2016-05-18 2017-05-18 がん検査装置、がん検査方法、および、がん検査用の染色剤

Country Status (5)

Country Link
US (2) US11555819B2 (ja)
EP (1) EP3459424A4 (ja)
JP (2) JPWO2017200066A1 (ja)
CN (1) CN109414151B (ja)
WO (1) WO2017200066A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112552A (ja) * 2019-01-09 2020-07-27 国立大学法人九州大学 三次元形状情報生成装置、細胞判定システム
WO2021080007A1 (ja) 2019-10-23 2021-04-29 国立大学法人大阪大学 がん判定装置、がん判定方法、及びプログラム
WO2021152784A1 (ja) * 2020-01-30 2021-08-05 株式会社インキュビット 手術支援システム
EP3718462A4 (en) * 2017-11-28 2021-08-18 Mie University DETECTION PROCESS
WO2022059728A1 (ja) * 2020-09-17 2022-03-24 科研製薬株式会社 拡大内視鏡、超拡大内視鏡に用いる診断精度向上用組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3420885B1 (en) * 2016-02-23 2022-12-21 Mie University Laser endoscope device
CN113891673A (zh) * 2019-05-27 2022-01-04 国立大学法人三重大学 病变的检测方法
KR102449858B1 (ko) * 2021-07-08 2022-09-30 가톨릭대학교 산학협력단 암 세포 판정을 위한 핵이미지 선별 장치 및 핵이미지 선별 방법
WO2024181593A1 (ko) * 2023-02-27 2024-09-06 가톨릭대학교 산학협력단 암 세포 판정을 위한 핵이미지 선별 장치 및 핵이미지 선별 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518553A (ja) * 2001-09-06 2005-06-23 ジェノミック プロファイリング システムズ インコーポレイティッド 細胞およびウイルスの迅速かつ高感度な検出方法
JP2009545737A (ja) * 2006-08-04 2009-12-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 蛍光ベースのDNAイメージサイメトリーを用いたinvivoでの癌の検出及び/又は診断方法
WO2014157645A1 (ja) * 2013-03-29 2014-10-02 ソニー株式会社 レーザ走査型観察装置及びレーザ走査方法
WO2014157703A1 (ja) 2013-03-29 2014-10-02 国立大学法人三重大学 生体染色剤
WO2015190225A1 (ja) * 2014-06-12 2015-12-17 コニカミノルタ株式会社 診断支援情報生成方法、画像処理装置、診断支援情報生成システム及び画像処理プログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5490414B2 (ja) * 2006-01-13 2014-05-14 ベンタナ・メデイカル・システムズ・インコーポレーテツド 生体サンプル処理用組成物及び方法
JP2007195533A (ja) * 2006-01-27 2007-08-09 Toshiki Minami 細胞の評価方法、これを用いたる測定成分のがん化評価方法、がん診断キットおよびコンピュータ可読媒体
EP2450710B1 (en) * 2006-07-14 2020-09-02 The Regents of The University of California Cancer biomarkers and methods of use thereof
WO2008093528A1 (ja) * 2007-02-01 2008-08-07 Kurume University 癌の生体染色剤
US20100081666A1 (en) * 2008-07-14 2010-04-01 Wyeth Src activation for determining cancer prognosis and as a target for cancer therapy
US8620409B2 (en) * 2008-08-04 2013-12-31 University Of Utah Research Foundation Dye application for confocal imaging of cellular microstructure
JP5482057B2 (ja) * 2009-09-29 2014-04-23 オリンパス株式会社 細胞核を構成する構造体の解析方法
US8933050B2 (en) * 2010-09-02 2015-01-13 Institute National De La Sante Et De La Recherche Medicale (Inserm) Methods for the treatment and the diagnosis of cancer
US8977017B2 (en) * 2011-09-15 2015-03-10 The General Hospital Corporation System and method for support of medical diagnosis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518553A (ja) * 2001-09-06 2005-06-23 ジェノミック プロファイリング システムズ インコーポレイティッド 細胞およびウイルスの迅速かつ高感度な検出方法
JP2009545737A (ja) * 2006-08-04 2009-12-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 蛍光ベースのDNAイメージサイメトリーを用いたinvivoでの癌の検出及び/又は診断方法
WO2014157645A1 (ja) * 2013-03-29 2014-10-02 ソニー株式会社 レーザ走査型観察装置及びレーザ走査方法
WO2014157703A1 (ja) 2013-03-29 2014-10-02 国立大学法人三重大学 生体染色剤
WO2015190225A1 (ja) * 2014-06-12 2015-12-17 コニカミノルタ株式会社 診断支援情報生成方法、画像処理装置、診断支援情報生成システム及び画像処理プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3459424A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3718462A4 (en) * 2017-11-28 2021-08-18 Mie University DETECTION PROCESS
JP2020112552A (ja) * 2019-01-09 2020-07-27 国立大学法人九州大学 三次元形状情報生成装置、細胞判定システム
JP7420346B2 (ja) 2019-01-09 2024-01-23 国立大学法人九州大学 三次元形状情報生成装置、細胞判定システム
WO2021080007A1 (ja) 2019-10-23 2021-04-29 国立大学法人大阪大学 がん判定装置、がん判定方法、及びプログラム
WO2021152784A1 (ja) * 2020-01-30 2021-08-05 株式会社インキュビット 手術支援システム
WO2021153797A1 (ja) * 2020-01-30 2021-08-05 アナウト株式会社 コンピュータプログラム、学習モデルの生成方法、画像処理装置、及び手術支援システム
JPWO2021153797A1 (ja) * 2020-01-30 2021-08-05
JP7153974B2 (ja) 2020-01-30 2022-10-17 アナウト株式会社 コンピュータプログラム、学習モデルの生成方法、及び画像処理装置
WO2022059728A1 (ja) * 2020-09-17 2022-03-24 科研製薬株式会社 拡大内視鏡、超拡大内視鏡に用いる診断精度向上用組成物

Also Published As

Publication number Publication date
US20190285638A1 (en) 2019-09-19
EP3459424A4 (en) 2020-01-22
US20230037210A1 (en) 2023-02-02
CN109414151A (zh) 2019-03-01
JP7060891B2 (ja) 2022-04-27
US11555819B2 (en) 2023-01-17
CN109414151B (zh) 2022-11-25
JP2021063815A (ja) 2021-04-22
EP3459424A1 (en) 2019-03-27
US11852632B2 (en) 2023-12-26
JPWO2017200066A1 (ja) 2019-03-22

Similar Documents

Publication Publication Date Title
JP7060891B2 (ja) がん検査装置、がん検査方法、および、がん検査用の染色剤
US11896680B2 (en) Detection method
CN107076724B (zh) 生物体染色剂
Belykh et al. Scanning fiber endoscope improves detection of 5-aminolevulinic acid–induced protoporphyrin IX fluorescence at the boundary of infiltrative glioma
EP3420885B1 (en) Laser endoscope device
US20100134605A1 (en) In vivo spectral micro-imaging of tissue
JP2008521453A (ja) エンドスコープ
US20220211876A1 (en) Lesion detection method
JP2011185842A (ja) 光誘起自家蛍光の時間分解測定による生物試料の低酸素領域分析方法とその装置
JP2011185843A (ja) 蛍光寿命を利用した細胞内のpHイメージング方法とその装置
JP2008069107A (ja) 内視鏡用組織蛍光染色剤

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518367

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017799490

Country of ref document: EP

Effective date: 20181218