WO2017200035A1 - Cdte epitaxial growth method - Google Patents

Cdte epitaxial growth method Download PDF

Info

Publication number
WO2017200035A1
WO2017200035A1 PCT/JP2017/018627 JP2017018627W WO2017200035A1 WO 2017200035 A1 WO2017200035 A1 WO 2017200035A1 JP 2017018627 W JP2017018627 W JP 2017018627W WO 2017200035 A1 WO2017200035 A1 WO 2017200035A1
Authority
WO
WIPO (PCT)
Prior art keywords
cdte
substrate
single crystal
crystal
reactor
Prior art date
Application number
PCT/JP2017/018627
Other languages
French (fr)
Japanese (ja)
Inventor
憲司 磯
纐纈 明伯
尚 村上
Original Assignee
三菱ケミカル株式会社
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社, 国立大学法人東京農工大学 filed Critical 三菱ケミカル株式会社
Priority to JP2018518347A priority Critical patent/JPWO2017200035A1/en
Publication of WO2017200035A1 publication Critical patent/WO2017200035A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material

Definitions

  • the present invention mainly relates to an epitaxial growth method of CdTe (cadmium telluride).
  • CdTe is useful as a semiconductor for radiation detectors.
  • a bulk CdTe crystal grown by a traveling heater method is in practical use for this application.
  • bulk CdTe crystals are difficult to increase in size, and it is said that the uniformity of crystallinity and electrical characteristics is not sufficient.
  • Non-patent Document 1 a report that a good quality CdTe layer can be epitaxially grown on a (211) Si substrate together with a GaAs piece by MOVPE (Metal-Organic Vapor Phase Epitaxy) method.
  • MOVPE Metal-Organic Vapor Phase Epitaxy
  • an organometallic compound is used for both the Cd source and the Te source.
  • DMCd dimethylcadmium
  • DETe diethyl tellurium
  • CdTe crystals are produced at a low temperature of 230 ° C. (DETe is stable) when elemental Cd vapor is introduced into the reactor of the MOVPE apparatus together with DETe instead of DMCd (Non-patent Document 2).
  • DETe is stable
  • Non-patent Document 3 There is a report that a CdTe film oriented along the (111) axis was deposited on an alumina (aluminum oxide) substrate by the Elemental-Vapor-Transport method using simple Cd and simple Te as raw materials.
  • the main object of the present invention is to provide a novel method for epitaxially growing CdTe on a single crystal Si substrate. Another object of the present invention is to provide a novel method for epitaxially growing CdTe on a single crystal CdTe substrate. Another object of the present invention is to provide a novel method for epitaxially growing CdTe on a single crystal (GaAs, sapphire, CdZnTe, CdHgTe, GaN, etc.) substrate other than CdTe. Another object of the present invention is to provide a vapor deposition apparatus for depositing CdTe on a substrate.
  • Embodiments of the present invention include the following [A1] to [A14].
  • [A1] A method of epitaxially growing CdTe on a single crystal Si substrate, the method including the following steps: (i) a first step of preparing a single crystal Si substrate, (ii) a single unit prepared in the first step A second step of baking the crystalline Si substrate in a flow of baking gas containing H 2 and cleaning its surface; and (iii) using elemental Cd and an organic Te compound as the Cd source and Te source, respectively.
  • [A2] The method according to [A1], wherein the baking gas flow does not contain one or both of Ga and As.
  • [A4] The method according to [A3], wherein the elemental Cd vapor is generated from metal Cd placed in the reactor.
  • the single crystal Si substrate is baked in the reactor, and the single crystal Si substrate is not removed from the reactor between the end of the second step and the start of the third step.
  • [A6] The method according to any one of [A1] to [A5], wherein the single crystal Si substrate prepared in the first step has a surface oxide film.
  • [A7] The method according to any one of [A1] to [A6], wherein the CdTe crystal grows two-dimensionally in the third step.
  • [A8] The method according to any one of [A1] to [A7], wherein the single crystal Si substrate is a ⁇ 211 ⁇ Si substrate.
  • the strongest peak is the CdTe ⁇ 422 ⁇ peak
  • the intensity of the second strongest peak is the CdTe ⁇ 422 ⁇
  • the method according to [A8] which is 1/10 or less of the intensity of the peak.
  • the method according to [A8] or [A9] above, wherein the peak of the XRD pattern obtained from the 2 ⁇ / ⁇ scan of the CdTe crystal formed in the third step is only the CdTe ⁇ 422 ⁇ peak.
  • [A11] The method according to any one of [A8] to [A10], wherein the (422) reflection ⁇ -scan X-ray rocking curve obtained from the CdTe crystal is a single peak.
  • [A12] The method according to any one of [A1] to [A11], wherein the organic Te compound includes diisopropyl tellurium.
  • [A13] A method for manufacturing a semiconductor for a radiation detector, comprising a step of epitaxially growing CdTe on a single crystal Si substrate by the method according to any one of [A1] to [A12].
  • a vapor deposition apparatus for depositing CdTe on a substrate, a hot wall type reactor, a susceptor disposed in the reactor to support the substrate, and a substrate supported by the susceptor
  • a first heater disposed outside the reactor to heat the Cd, a Cd reservoir disposed within the reactor, and a metal Cd contained in the Cd reservoir disposed outside the reactor.
  • a vapor deposition apparatus comprising: a second heater; and a bubbler disposed outside the reactor for vaporizing the organic Te compound supplied into the reactor via a pipe.
  • [B1] A method of epitaxially growing CdTe on a single crystal CdTe substrate, the method including the following steps: (I) a first step of preparing a single crystal CdTe substrate; and (Ii) A second step of depositing CdTe from the vapor phase on the surface of the single-crystal CdTe substrate using simple Cd and an organic Te compound as a Cd source and a Te source, respectively.
  • the single crystal CdTe substrate is placed in a reactor before the second step, and simple Cd vapor and organic Te compound vapor are supplied into the reactor in the second step. the method of.
  • [B3] The method according to [B2], wherein the elemental Cd vapor is generated from metal Cd placed in the reactor.
  • [B4] The method according to any one of [B1] to [B3], wherein the CdTe crystal is grown two-dimensionally in the second step.
  • [B5] The method according to any one of [B1] to [B4], wherein the single crystal CdTe substrate is a ⁇ 211 ⁇ CdTe substrate.
  • the strongest peak is the CdTe ⁇ 422 ⁇ peak
  • the intensity of the second strongest peak is the CdTe ⁇ 422 ⁇
  • the method according to [B5] which is 1/10 or less of the intensity of the peak.
  • the method according to [B5] or [B6], wherein the peak of the XRD pattern obtained from the 2 ⁇ / ⁇ scan of the CdTe crystal formed in the second step is only the CdTe ⁇ 422 ⁇ peak.
  • [B11] The method according to [B9] or [B10] above, wherein the peak of the XRD pattern obtained from the 2 ⁇ / ⁇ scan of the CdTe crystal formed in the second step is only the CdTe ⁇ 111 ⁇ peak.
  • [B12] The method according to any one of [B9] to [B11], wherein the ⁇ 111 ⁇ reflection ⁇ -scan X-ray rocking curve obtained from the CdTe crystal formed in the second step is a single peak.
  • [B13] The method according to any one of [B1] to [B4], wherein the single crystal CdTe substrate is a ⁇ 100 ⁇ CdTe substrate.
  • the strongest peak is the CdTe ⁇ 400 ⁇ peak
  • the intensity of the second strongest peak is the CdTe ⁇ 400 ⁇
  • the method according to [B13] which is 1/10 or less of the intensity of the peak.
  • the method according to [B13] or [B14], wherein the peak of the XRD pattern obtained from the 2 ⁇ / ⁇ scan of the CdTe crystal formed in the second step is only the CdTe ⁇ 400 ⁇ peak.
  • [B16] The method according to any one of [B13] to [B15], wherein the ⁇ 400 ⁇ reflection ⁇ -scan X-ray rocking curve obtained from the CdTe crystal formed in the second step is a single peak.
  • [B17] The method according to any one of [B1] to [B16], wherein the organic Te compound contains diisopropyl tellurium.
  • [B18] A method for manufacturing a semiconductor for a radiation detector, comprising a step of epitaxially growing CdTe on a CdTe substrate by the method according to any one of [B1] to [B17].
  • embodiments of the present invention include the following [C1] to [C17].
  • [C1] A method of epitaxially growing CdTe on a single crystal substrate other than CdTe, the method including the following steps: (I) a first step of preparing a single crystal substrate other than CdTe, and (Ii) A second step of depositing CdTe from the vapor phase on the surface of a single crystal substrate other than CdTe using simple Cd and an organic Te compound as a Cd source and a Te source, respectively.
  • [D1] A method of epitaxially growing CdTe on a single-crystal Si substrate, using simple Cd and simple Te or an organic Te compound as a Cd source and a Te source, respectively, and removing CdTe on the surface of the single-crystal Si substrate. A growth step of depositing from the phase.
  • [D2] The method according to [D1], including a preparation step of preparing a single crystal Si substrate, and a baking step of baking the prepared single crystal Si substrate in a reducing gas or an inert gas.
  • [D3] The method according to [D2], wherein the baking step is performed without volume of other components on the surface of the single crystal Si substrate.
  • [D4] The method according to [D2] or [D3], wherein the baking step cleans a surface of the single crystal Si substrate.
  • [D5] The method according to any one of [D2] to [D4], wherein the single crystal Si substrate prepared in the preparation step has a surface oxide film.
  • [D6] The method according to any one of [D1] to [D5], wherein the single crystal Si substrate is a ⁇ 211 ⁇ Si substrate.
  • [D7] The method according to any one of [D2] to [D5], wherein the gas used in the baking step is a gas containing H 2 .
  • [D8] The method according to any one of [D1] to [D7], wherein the Te source is an organic Te compound.
  • a CdTe deposition temperature in the growth step is 570 ° C. or higher.
  • [D10] The method according to any one of [D1] to [D9], wherein the strongest peak of the CdTe crystal obtained in the growth step is a CdTe ⁇ 422 ⁇ peak in an XRD pattern obtained from a 2 ⁇ / ⁇ scan.
  • [D11] The method according to any one of [D1] to [D10], wherein the single crystal Si substrate and the CdTe crystal obtained in the growth step have the same crystal plane.
  • [D12] A method for manufacturing a semiconductor for a radiation detector, comprising a step of epitaxially growing CdTe on a single crystal Si substrate by the method according to any one of [D1] to [D11].
  • [D13] A vapor deposition apparatus for depositing CdTe on a substrate, A hot wall reactor, A susceptor disposed in the reactor to support a substrate; A first heater disposed outside the reactor to heat a substrate supported by the susceptor; A Cd reservoir disposed in the reactor; A second heater disposed outside the reactor to heat the metal Cd contained in the Cd reservoir; A vapor deposition apparatus comprising: a bubbler disposed outside the reactor for vaporizing an organic Te compound supplied into the reactor through a pipe.
  • [D14] A method of epitaxially growing CdTe on a single-crystal CdTe substrate, using simple Cd and simple Te or an organic Te compound as a Cd source and a Te source, respectively, and removing CdTe on the surface of the single-crystal CdTe substrate. A growth step of depositing from the phase.
  • the method according to [D14] including a preparation step of preparing a single crystal CdTe substrate, and a baking step of baking the prepared single crystal CdTe substrate in a reducing gas or an inert gas.
  • [D16] The method according to [D15], wherein the baking step is performed without depositing other components on the surface of the single crystal CdTe substrate.
  • [D17] The method according to [D15] or [D16], wherein the baking step cleans a surface of the single crystal CdTe substrate.
  • [D18] The method according to any one of [D15] to [D17], wherein the single crystal CdTe substrate prepared in the preparation step has a surface oxide film.
  • the single crystal CdTe substrate is a ⁇ 211 ⁇ CdTe substrate.
  • the gas used in the baking step is a gas containing H 2 .
  • the Te source is an organic Te compound.
  • [D22] The method according to any one of [D14] to [D21], wherein the CdTe deposition temperature in the growth step is 570 ° C. or higher.
  • [D23] The method according to any one of [D14] to [D22], wherein the strongest peak of the CdTe crystal obtained in the growth step is a CdTe ⁇ 422 ⁇ peak in an XRD pattern obtained from a 2 ⁇ / ⁇ scan.
  • [D24] The method according to any one of [D14] to [D23], wherein the single crystal CdTe substrate and the CdTe crystal obtained in the growth step have the same crystal plane.
  • [D25] A method for manufacturing a semiconductor for a radiation detector, comprising a step of epitaxially growing CdTe on a single crystal CdTe substrate by the method according to any one of [D14] to [D24].
  • [D26] A method of epitaxially growing CdTe on a single crystal substrate other than CdTe, A growth step of depositing CdTe from the vapor phase on the surface of a single crystal substrate other than CdTe using simple Cd and simple Te or organic Te compound as the Cd source and Te source, respectively.
  • [D27] The method according to [D26], including a preparation step of preparing a single crystal substrate other than CdTe, and a baking step of baking the prepared single crystal substrate other than CdTe in a reducing gas or an inert gas.
  • Method. [D28] The method according to [D27], wherein the baking step is performed without depositing other components on the single crystal substrate other than the CdTe.
  • [D30] The method according to any one of [D27] to [D29], wherein the single crystal substrate other than CdTe prepared in the preparation step has a surface oxide film.
  • [D31] The method according to any one of [D27] to [D30], wherein the gas used in the baking step is a gas containing H 2 .
  • [D32] The method according to any one of [D26] to [D31], wherein the Te source is an organic Te compound.
  • [D33] The method according to any one of [D26] to [D32], wherein a CdTe deposition temperature in the growth step is 570 ° C. or higher.
  • [D34] The method according to any one of [D26] to [D33], wherein the single crystal substrate other than the CdTe and the CdTe crystal obtained in the growth step have the same crystal plane.
  • a method for manufacturing a semiconductor for a radiation detector comprising the step of epitaxially growing CdTe on a single crystal substrate other than CdTe by the method according to any one of [D26] to [D34].
  • a novel method is provided for epitaxially growing CdTe on a single crystal Si substrate. Also provided is a novel method for epitaxially growing CdTe on a single crystal CdTe substrate. Also provided is a novel method for epitaxially growing CdTe on a single crystal substrate other than CdTe.
  • FIG. 1 shows a schematic diagram of a vapor deposition apparatus.
  • FIG. 2 shows a schematic diagram of a vapor deposition apparatus.
  • FIG. 3 shows a schematic diagram of a vapor deposition apparatus.
  • FIG. 4 shows a schematic view of a vapor deposition apparatus.
  • FIGS. 5A to 5E show bird's-eye SEM images of the CdTe film, respectively (drawing substitute photos).
  • 6A and 6B show cross-sectional SEM images of the CdTe film, respectively (drawing substitute photograph).
  • FIG. 7 is a diagram showing an arrangement of an X-ray generator, a sample (CdTe film), and an X-ray detector in XRD analysis.
  • FIG. 1 shows a schematic diagram of a vapor deposition apparatus.
  • FIG. 2 shows a schematic diagram of a vapor deposition apparatus.
  • FIG. 3 shows a schematic diagram of a vapor deposition apparatus.
  • FIG. 4 shows a schematic view of a vapor de
  • FIG. 8A shows the XRD pattern of the CdTe film obtained from the 2 ⁇ / ⁇ scan.
  • FIG. 8B shows the XRD pattern of the CdTe film obtained from the 2 ⁇ / ⁇ scan.
  • FIG. 8C shows the XRD pattern of the CdTe film obtained from the 2 ⁇ / ⁇ scan.
  • FIG. 8D shows the XRD pattern of the CdTe film obtained from the 2 ⁇ / ⁇ scan.
  • FIG. 8E shows the XRD pattern of the CdTe film obtained from the 2 ⁇ / ⁇ scan.
  • FIG. 9 shows a (422) reflection ⁇ -scan X-ray rocking curve (source: CuK ⁇ ) obtained from a (211) CdTe film deposited on a Si substrate.
  • FIG. 9 shows a (422) reflection ⁇ -scan X-ray rocking curve (source: CuK ⁇ ) obtained from a (211) CdTe film deposited on a Si substrate.
  • FIG. 10A shows the XRD pattern of the CdTe film obtained from the 2 ⁇ / ⁇ scan.
  • FIG. 10B shows the XRD pattern of the CdTe film obtained from the 2 ⁇ / ⁇ scan.
  • FIG. 10C shows an XRD pattern of the CdTe film obtained from the 2 ⁇ / ⁇ scan.
  • FIG. 11 shows a bird's-eye SEM image (left) and a cross-sectional SEM image (right) of the CdTe film of Experiment 1 (drawing substitute photograph).
  • FIG. 12 is a drawing showing the arrangement of an X-ray generator, a sample (CdTe film), and an X-ray detector in XRD analysis.
  • FIG. 12 is a drawing showing the arrangement of an X-ray generator, a sample (CdTe film), and an X-ray detector in XRD analysis.
  • FIG. 13 shows the XRD pattern of the CdTe film obtained from the 2 ⁇ / ⁇ scan of Experiment 1.
  • FIG. 14 shows the (422) reflection ⁇ -scan X-ray rocking curve (source: CuK ⁇ ) obtained from the CdTe film of Experiment 1.
  • FIG. 15 shows a bird's-eye SEM image (left) and a cross-sectional SEM image (right) of the CdTe film of Experiment 2 (drawing substitute photograph).
  • FIG. 16 shows the XRD pattern of the CdTe film obtained from the 2 ⁇ / ⁇ scan of Experiment 2.
  • FIG. 17 shows the (422) reflection ⁇ -scan X-ray rocking curve (source: CuK ⁇ ) obtained from the CdTe film of Experiment 2.
  • FIG. 18 shows a bird's-eye SEM image (left) and a cross-sectional SEM image (right) of the CdTe film of Experiment 3 (drawing substitute photograph).
  • FIG. 19 shows the XRD pattern of the CdTe film obtained from the 2 ⁇ / ⁇ scan of Experiment 3.
  • FIG. 20 shows the (422) reflection ⁇ -scan X-ray rocking curve (source: CuK ⁇ ) obtained from the CdTe film of Experiment 3.
  • FIG. 21 shows a bird's-eye SEM image (left) and a cross-sectional SEM image (right) of the CdTe film of Experiment 4 (drawing substitute photograph).
  • FIG. 19 shows the XRD pattern of the CdTe film obtained from the 2 ⁇ / ⁇ scan of Experiment 3.
  • FIG. 20 shows the (422) reflection ⁇ -scan X-ray rocking curve (source: CuK ⁇ ) obtained from the CdTe film of Experiment 3.
  • FIG. 22 shows the XRD pattern of the CdTe film obtained from the 2 ⁇ / ⁇ scan of Experiment 4.
  • FIG. 23 shows the (422) reflection ⁇ -scan X-ray rocking curve (source: CuK ⁇ ) obtained from the CdTe film of Experiment 4.
  • FIG. 24 shows a bird's-eye SEM image (left) and a cross-sectional SEM image (right) of the CdTe film of Experiment 5 (drawing substitute photograph).
  • FIG. 25 shows the XRD pattern of the CdTe film obtained from the 2 ⁇ / ⁇ scan of Experiment 5.
  • FIG. 26 shows the (422) reflection ⁇ -scan X-ray rocking curve (source: CuK ⁇ ) obtained from the CdTe film of Experiment 5.
  • FIG. 27 shows a bird's-eye SEM image (left) and a cross-sectional SEM image (right) of the CdTe film of Experiment 6 (drawing substitute photograph).
  • FIG. 28 shows the XRD pattern of the CdTe film obtained from the 2 ⁇ / ⁇ scan of Experiment 6.
  • FIG. 29 shows the (422) reflection ⁇ -scan X-ray rocking curve (source: CuK ⁇ ) obtained from the CdTe film of Experiment 6.
  • a vapor deposition apparatus 100 includes a hot wall reactor 111, a susceptor 112 disposed in the reactor to support the substrate, and a substrate supported by the susceptor.
  • a heater 115 and a bubbler 120 disposed outside the reactor for vaporizing the organic Te compound supplied into the reactor via a pipe are provided.
  • the reactor 111 can be a quartz tube chamber, but is not limited thereto.
  • the susceptor 112 can be formed of, for example, quartz, SiC (silicon carbide) or the like.
  • the first heater 113 surrounds the zone where the susceptor 112 is disposed in an annular shape.
  • the Cd reservoir 114 is made of, for example, quartz and can store molten metal Cd. In other words, the metal Cd is a simple substance Cd.
  • the second heater 115 surrounds the zone where the Cd reservoir 114 is disposed in an annular shape.
  • the reactor 111 is connected to one end of a first carrier gas supply pipe 116 whose other end is connected to a first carrier gas supply source (not shown).
  • a first carrier gas for transporting single Cd vapor generated from the metal Cd accommodated in the Cd reservoir is supplied into the reactor 111 through the first carrier gas supply pipe 116.
  • a bubbler 120 for vaporizing the organic Te compound is disposed outside the reactor 111.
  • the organic Te compound vaporized by the bubbler 120 is transported into the reactor 111 through a Te source supply pipe 117 together with a second carrier gas (bubbling gas) supplied to the bubbler from a second carrier gas source (not shown).
  • the In the middle of the Te source supply pipe 117 one end of a third carrier gas supply pipe 121 whose other end is connected to a third carrier gas source (not shown) is connected, and the organic Te supplied to the reactor 111 is connected.
  • the compound vapor can be diluted with a third carrier gas.
  • the reactor 111 is further connected to one end of a barrier gas supply pipe 118 having the other end connected to a barrier gas source (not shown).
  • the Te source supply pipe 117 and the barrier gas sharing pipe 118 constitute a double pipe having the former as an inner pipe and the latter as an outer pipe, and the Te source-containing gas flow released from the inner pipe is It is surrounded by a barrier gas flow released from the outer tube.
  • the reactor 111 is further provided with an exhaust port 119.
  • the exhaust port 119 is usually connected to a scrubber.
  • FIGS. 2 to 4 Modification examples of the vapor deposition apparatus shown in FIG. 1 are illustrated in FIGS. 2 to 4, the same reference numerals are given to the components corresponding to those shown in FIG.
  • the vapor deposition apparatus shown in FIG. 2 is configured such that the susceptor 112 supports the substrate perpendicular to the bottom surface of the apparatus.
  • the reactor 111 is a vertical type, and the gas flow is directed from above to below in the reactor.
  • a vapor deposition apparatus 200 includes a hot wall type reactor 211, a susceptor 212 disposed in the reactor to support the substrate, and a substrate supported by the susceptor.
  • a first heater 213 arranged outside the reactor is provided, and a bubbler 220 arranged outside the reactor for vaporizing the organic Te compound supplied into the reactor via a pipe.
  • the Cd reservoir 231 is a chamber type, and the metal Cd accommodated in the Cd reservoir is heated by the second heater 232 disposed outside the Cd reservoir.
  • the single Cd vapor generated in the Cd reservoir 231 is fed into the reactor 211 through the Cd source supply pipe 233 together with the first carrier gas supplied from the first carrier gas source (not shown) through the carrier gas supply pipe 234 to the Cd reservoir.
  • a mechanism for rotating the susceptor can be arbitrarily provided.
  • An epitaxial growth method of CdTe on a single crystal Si substrate uses single Cd and single Te or an organic Te compound as a Cd source and a Te source, respectively.
  • the growth method preferably further includes a preparation step of preparing a single crystal Si substrate, and a baking step of baking the prepared single crystal Si substrate in a reducing gas or an inert gas. The preparation step and the baking step are preferably performed before the growth step.
  • the CdTe epitaxial growth method according to the embodiment may include the following three steps as main steps.
  • Three A steps. The first A step and the second A step may be omitted. Each step will be specifically described below.
  • a single crystal Si substrate is prepared as a substrate on which CdTe is to be epitaxially grown.
  • a preferred single crystal Si substrate is a ⁇ 211 ⁇ substrate, but is not limited.
  • the single crystal Si substrate prepared in the first A step can have a surface oxide film.
  • the surface oxide film here includes all silicon oxide films formed by reacting silicon derived from the Si substrate with oxygen supplied from the outside of the substrate.
  • the surface oxide film that the single crystal Si substrate prepared in the first A step may have can be either an unintentionally formed oxide film or an intentionally formed oxide film, and how it is formed.
  • the oxide film formed may be an oxide film formed under any conditions.
  • An example of the surface oxide film that the single crystal Si substrate prepared in the first A step may have is a natural oxide film (an unintentionally formed oxide film).
  • a natural oxide film an unintentionally formed oxide film.
  • an oxide film formed at room temperature in air, an oxide film formed by chemical cleaning such as RCA cleaning, an oxide film formed in the process of cleaning an Si wafer with ultrapure water, and the like are natural oxide films. are categorized.
  • Another example of the surface oxide film that the single crystal Si substrate prepared in the first A step may have is an intentional oxidation treatment such as a thermal oxide film, an oxide film formed by a treatment with an oxidizing agent such as a hot nitric acid solution, etc. This is an oxide film formed by the above.
  • the surface oxide film that the single crystal Si substrate prepared in the first step A may have includes a part made of silicon oxide generated by unintentional oxidation, and a part made of silicon oxide formed by intentional oxidation treatment. May be included. Furthermore, the single crystal Si substrate prepared in the first step A has a deposited film made of silicon oxide, silicon nitride, or silicon oxynitride on the surface instead of or in addition to the above-described surface oxide film. It may be formed.
  • Second A Step the single crystal Si substrate prepared in the first A step described above is baked in a reducing gas or an inert gas, preferably in a baking gas flow containing H 2 , and the surface is baked. Clean. By executing this step, it becomes easy to epitaxially grow CdTe in the subsequent third A step.
  • the baking gas is preferably a reducing gas or an inert gas, more preferably only H 2 (100% H 2 ) as the reducing gas, but is not limited to N 2 , noble gases (He, Ne, An inert gas such as Ar) may be contained. As long as it is not difficult to clean the surface of the single crystal Si substrate, the baking gas is allowed to contain not only H 2 and inert gas but also other gases.
  • the second A step is preferably performed without depositing other components on the surface of the single crystal Si substrate from the viewpoint of easy control of the carrier type of the crystal due to impurities and the carrier concentration.
  • the aspect of baking in the atmosphere which does not contain the component containing elements, such as Ga and As, is mentioned.
  • the baking step it is preferable to clean the surface of the single crystal Si substrate.
  • cleaning refers to removing unnecessary components in the CdTe deposition on the surface of the substrate, for example, removing a surface oxide film that may exist on the surface of the Si substrate. By sufficiently cleaning the surface of the Si substrate by the baking step, it becomes easy to deposit CdTe. If the single crystal Si substrate has a surface oxide film, it is preferable to remove the surface oxide film, and the baking temperature and baking time are set according to the thickness.
  • the baking temperature which is the temperature of the single crystal Si substrate during baking, is usually 500 ° C. or higher, preferably 700 ° C. or higher, more preferably 800 ° C.
  • baking time is 1 minute or more normally, Preferably it is 5 minutes or more, More preferably, it is 10 minutes or more, More preferably, it is 15 minutes or more, Most preferably, it is 20 minutes or more.
  • etching solution that can be used in the wet method include an HF aqueous solution (hydrofluoric acid) and an aqueous solution containing NH 4 F (ammonium fluoride).
  • CdTe is deposited from the vapor phase on the single crystal Si substrate prepared in the first A step by using simple Cd and simple Te or organic Te compound as the Cd source and Te source, respectively. .
  • single Cd vapor and single Te vapor or organic Te compound vapor are supplied into a reactor in which a single crystal Si substrate is installed.
  • the single crystal Si substrate is heated to a temperature higher than the minimum temperature required for crystallization of the deposited CdTe.
  • epitaxial growth of CdTe crystals is likely to occur on the surface.
  • the XRD pattern obtained from the 2 ⁇ / ⁇ scan of the epitaxially grown CdTe crystal has a strong specific peak.
  • the ⁇ 422 ⁇ peak is the strongest in the XRD pattern obtained from the 2 ⁇ / ⁇ scan, and the intensity of the second strongest peak is 1 / of the ⁇ 422 ⁇ peak. It can be less than 10 or even less than 1/100. The smaller the ratio, the higher the crystallinity of the grown CdTe, which is preferable.
  • two-dimensional growth of CdTe crystals occurs in the third A step.
  • Two-dimensional growth refers to a growth mode in which a crystal grows so as to form a layer that seamlessly covers the substrate surface.
  • the in-plane variation of the layer thickness in the CdTe crystal layer formed by two-dimensional growth is preferably ⁇ 50% with respect to the median value.
  • the two-dimensional growth of CdTe crystal can be realized, for example, by optimizing the deposition temperature.
  • the simple Te or organic Te compound used for the Te source is not particularly limited, but preferred examples of the organic Te compound include dimethyl tellurium [(CH 3 ) 2 Te], diethyl tellurium [(C 2 H 5 ) 2 Te], and diisopropyl.
  • Tellurium [(CH 3 ) 2 CH—Te—CH (CH 3 ) 2 ]
  • ditertiary butyl tellurium [(CH 3 ) 3 C—Te—C (CH 3 ) 3 ]
  • diisopropyl ditellurium [(CH 3 ) 2 CH-Te-Te-CH ( CH 3) 2] and the like.
  • the thermal decomposition temperatures of the organic Te compounds listed here are all 500 ° C. or lower.
  • the deposition temperature of CdTe is not particularly limited, but is usually 570 ° C. or higher, more preferably 600 ° C. or higher, and usually 730 ° C. or lower, more preferably 720 ° C. or lower.
  • a ⁇ 211 ⁇ Si substrate having a surface oxide film is prepared.
  • the surface oxide film may be a natural oxide film or a chemical oxide film formed by the procedure used in the Ishizaka-Shiraki method.
  • the susceptor is placed in a zone surrounded by the first heater 113 in an annular shape in the reactor 111.
  • the metal Cd is introduced into the Cd reservoir before the Si substrate is installed in the reactor.
  • a baking gas containing H 2 is supplied into the reactor. It is not necessary to provide piping for baking gas in the vapor deposition apparatus 100, and the baking gas is supplied into the reactor 111 by using piping for supplying the first carrier gas, the third carrier gas, and / or the barrier gas. be able to.
  • the composition of the first carrier gas, the third carrier gas, and / or the barrier gas may be the same as the composition of the baking gas.
  • the pressure in the reactor 111 is controlled within a range of 0.8 to 1.0 atm, for example, using an external exhaust means connected to the exhaust port 119, for example, a fan.
  • the baking temperature is preferably 900 ° C. or higher, more preferably 1000 ° C. or higher.
  • the baking temperature is preferably 1300 ° C. or lower. The object can be achieved even when the baking temperature is 1100 ° C. or lower.
  • the baking time is preferably 30 minutes or more.
  • the metal Cd in the Cd reservoir 114 is heated to a predetermined temperature higher than the melting point by the second heater 115 and melted.
  • the temperature of the metal Cd is preferably set lower than the substrate temperature, and more preferably the temperature difference between the metal Cd and the substrate is 100 ° C. or more. By doing so, it is possible to prevent the metal Cd from being deposited on the substrate.
  • the compositions and flow rates of the first carrier gas, the third carrier gas, and the barrier gas are set to predetermined compositions and values, respectively, and the supply of the second carrier gas is started. .
  • compositions of the first carrier gas, the second carrier gas, the third carrier gas, and the barrier gas are each preferably 100% H 2 , but are not limited thereto.
  • Each gas may contain a gas other than H 2 as long as the epitaxial growth of the CdTe crystal is not inhibited.
  • An example of a gas other than H 2 is an inert gas, that is, N 2 or a rare gas (He, Ne, Ar, etc.), but is not limited thereto.
  • the organic Te compound vapor generated in the bubbler 120 is transported into the reactor 111 through the Te source supply pipe 117.
  • the organic Te compound vapor carried into the reactor 111 is decomposed by being heated by the first heater 113, and reacts with simple Cd vapor generated by vaporization of the metal Cd to generate CdTe. At least a part of the generated CdTe is deposited on the ⁇ 211 ⁇ Si substrate.
  • the deposition temperature at this time may be 570 ° C. or higher, and may be 600 ° C. or higher.
  • CdTe crystals grow epitaxially on the ⁇ 211 ⁇ Si substrate.
  • two-dimensional growth of CdTe crystals occurs.
  • the peak of the XRD pattern obtained from the 2 ⁇ / ⁇ scan of the two-dimensionally grown CdTe crystal is only the CdTe ⁇ 422 ⁇ peak.
  • An epitaxial growth method of CdTe on a single crystal CdTe substrate uses single Cd and single Te or an organic Te compound as a Cd source and a Te source, respectively.
  • the growth method further includes a preparation step of preparing a single crystal CdTe substrate and a baking step of baking the prepared single crystal CdTe substrate in a reducing gas or an inert gas. The preparation step and the baking step are preferably performed before the growth step.
  • the CdTe epitaxial growth method according to the embodiment may include the following two steps as main steps.
  • a single crystal CdTe substrate is prepared as a substrate on which CdTe is to be epitaxially grown.
  • Preferred single crystal CdTe substrates are ⁇ 211 ⁇ CdTe substrate, ⁇ 111 ⁇ CdTe substrate, and ⁇ 100 ⁇ CdTe substrate from the viewpoint of availability of the substrate, but are not limited thereto.
  • CdTe may be a CdTe bulk substrate or a CdTe layer grown on a different substrate, and can be obtained by a commercially available method or a known method described in Non-Patent Documents 1 to 3.
  • single Cd and simple Te or organic Te compound may be used for a single crystal Si substrate as in the second B step, respectively, as a Cd source and a Te source.
  • the second B step is applied to a single crystal Si substrate, the single crystal Si substrate is previously baked in a reducing gas or an inert gas, preferably in a baking gas flow containing H 2 , and the surface is cleaned. Turn into. By executing this step, it becomes easy to epitaxially grow CdTe from simple Cd and simple Te or organic Te compound.
  • the baking gas is preferably a reducing gas or an inert gas, and is preferably only H 2 (100% H 2 ) as the reducing gas, but is not limited thereto.
  • the first B step is preferably performed without depositing other components on the surface of the single crystal CdTe substrate from the viewpoint of easy control of the carrier type and carrier concentration of the crystal due to impurities.
  • the aspect of baking in the atmosphere which does not contain the component containing elements, such as Ga and As, is mentioned.
  • the baking temperature which is the temperature of the single crystal CdTe substrate during baking, is less than the melting point of CdTe. It should be noted that the higher the baking temperature, the shorter the time required to clean the surface, but the faster the baking vessel will heat. If the single crystal CdTe substrate has a surface oxide film, it is preferable to remove the surface oxide film, and therefore the baking temperature and baking time are set according to the thickness. At least a part of the surface oxide film included in the single crystal CdTe substrate may be removed by wet or dry chemical etching before the above-described baking.
  • Preferred examples of the etching solution that can be used in the wet method include an HF aqueous solution (hydrofluoric acid) and an aqueous solution containing NH 4 F (ammonium fluoride).
  • Second B Step CdTe is deposited from the vapor phase on the CdTe substrate prepared in the first B step using simple substance Cd and organic Te compound as the Cd source and Te source, respectively. Specifically, single Cd vapor and organic Te compound vapor are supplied into a reactor in which a single crystal CdTe substrate is installed. The single crystal CdTe substrate is heated to a temperature higher than the minimum temperature required for crystallization of the deposited CdTe.
  • the XRD pattern obtained from the 2 ⁇ / ⁇ scan of the epitaxially grown CdTe crystal has a strong specific peak.
  • the ⁇ 422 ⁇ peak is the strongest in the XRD pattern obtained from the 2 ⁇ / ⁇ scan, and the intensity of the second strongest peak is 1 / of the ⁇ 422 ⁇ peak. It can be less than 10 or even less than 1/100. The smaller the ratio, the higher the crystallinity of the grown CdTe, which is preferable.
  • the ⁇ 111 ⁇ peak is the strongest in the XRD pattern obtained from the 2 ⁇ / ⁇ scan, and the intensity of the second strongest peak is the ⁇ 111 ⁇ peak. It can be less than 1/10, or even less than 1/100. The smaller the ratio, the higher the crystallinity of the grown CdTe, which is preferable.
  • the ⁇ 400 ⁇ peak is the strongest in the XRD pattern obtained from the 2 ⁇ / ⁇ scan, and the intensity of the second strongest peak is the ⁇ 400 ⁇ peak It can be less than 1/10, or even less than 1/100. The smaller the ratio, the higher the crystallinity of the grown CdTe, which is preferable.
  • two-dimensional growth of CdTe crystals occurs in the second B step.
  • Two-dimensional growth refers to a growth mode in which a crystal grows so as to form a layer that seamlessly covers the substrate surface.
  • the in-plane variation of the layer thickness in the CdTe crystal layer formed by two-dimensional growth is preferably ⁇ 50% with respect to the median value.
  • the two-dimensional growth of CdTe crystal can be realized, for example, by optimizing the deposition temperature.
  • the simple Te or organic Te compound used for the Te source is not particularly limited, but preferred examples of the organic Te compound include dimethyl tellurium [(CH 3 ) 2 Te], diethyl tellurium [(C 2 H 5 ) 2 Te], and diisopropyl.
  • Tellurium [(CH 3 ) 2 CH—Te—CH (CH 3 ) 2 ]
  • ditertiary butyl tellurium [(CH 3 ) 3 C—Te—C (CH 3 ) 3 ]
  • diisopropyl ditellurium [(CH 3 ) 2 CH-Te-Te-CH (CH 3 ) 2 ].
  • the thermal decomposition temperatures of the organic Te compounds listed here are all 500 ° C. or lower.
  • the deposition temperature of CdTe is not particularly limited, but is usually 570 ° C. or higher, more preferably 600 ° C. or higher, and usually 730 ° C. or lower, more preferably 720 ° C. or lower.
  • the CdTe epitaxial growth method is a method of epitaxially growing CdTe on a single crystal substrate (GaAs, sapphire, CdZnTe, CdHgTe, GaN, etc.) other than CdTe. And has the following two steps as main steps.
  • a single crystal substrate other than CdTe is prepared as a substrate on which CdTe is to be epitaxially grown.
  • a preferable single crystal substrate is a substrate of GaAs, sapphire, CdZnTe, CdHgTe, GaN or the like, but is not limited thereto.
  • Si single crystal is not contained in single crystals other than CdTe in a 1st C step.
  • Second C Step CdTe is deposited from the vapor phase on the substrate prepared in the first C step using simple Cd and simple Te or organic Te compound as the Cd source and Te source, respectively. Specifically, single Cd vapor and organic Te compound vapor are supplied into a reactor in which a substrate is installed. The substrate is heated to a temperature higher than the minimum temperature required for crystallization of the CdTe to be deposited.
  • the XRD pattern obtained from the 2 ⁇ / ⁇ scan of the epitaxially grown CdTe crystal has a strong specific peak.
  • the ⁇ 422 ⁇ peak is the strongest in the XRD pattern obtained from the 2 ⁇ / ⁇ scan, and the intensity of the second strongest peak is 1 / of the ⁇ 422 ⁇ peak. It can be less than 10 or even less than 1/100. The smaller the ratio, the higher the crystallinity of the grown CdTe, which is preferable.
  • the ⁇ 111 ⁇ peak is the strongest in the XRD pattern obtained from the 2 ⁇ / ⁇ scan, and the intensity of the second strongest peak is the ⁇ 111 ⁇ peak. It can be less than 1/10, or even less than 1/100. The smaller the ratio, the higher the crystallinity of the grown CdTe, which is preferable.
  • the ⁇ 400 ⁇ peak is the strongest in the XRD pattern obtained from the 2 ⁇ / ⁇ scan, and the intensity of the second strongest peak is the ⁇ 400 ⁇ peak. It can be less than 1/10, or even less than 1/100. The smaller the ratio, the higher the crystallinity of the grown CdTe, which is preferable.
  • two-dimensional growth of CdTe crystals occurs in the second C step.
  • Two-dimensional growth refers to a growth mode in which a crystal grows so as to form a layer that seamlessly covers the substrate surface.
  • the in-plane variation of the layer thickness in the CdTe crystal layer formed by two-dimensional growth is preferably ⁇ 50% with respect to the median value.
  • the two-dimensional growth of CdTe crystal can be realized, for example, by optimizing the deposition temperature.
  • the simple Te or organic Te compound used for the Te source is not particularly limited, but preferred examples of the organic Te compound include dimethyl tellurium [(CH 3 ) 2 Te], diethyl tellurium [(C 2 H 5 ) 2 Te], and diisopropyl.
  • Tellurium [(CH 3 ) 2 CH—Te—CH (CH 3 ) 2 ]
  • ditertiary butyl tellurium [(CH 3 ) 3 C—Te—C (CH 3 ) 3 ]
  • diisopropyl ditellurium [(CH 3 ) 2 CH-Te-Te-CH (CH 3 ) 2 ].
  • the thermal decomposition temperatures of the organic Te compounds listed here are all 500 ° C. or lower.
  • the deposition temperature of CdTe is not particularly limited, but is usually 570 ° C. or higher, more preferably 600 ° C. or higher, and usually 730 ° C. or lower, more preferably 720 ° C. or lower.
  • the metal Cd in the Cd reservoir 114 is heated to a predetermined temperature higher than the melting point by the second heater 115 and melted.
  • the temperature of the metal Cd is preferably set lower than the substrate temperature, and more preferably the temperature difference between the metal Cd and the substrate is 100 ° C. or more. By doing so, it is possible to prevent the metal Cd from being deposited on the substrate.
  • the compositions and flow rates of the first carrier gas, the third carrier gas, and the barrier gas are set to predetermined compositions and values, respectively, and the supply of the second carrier gas is started. .
  • compositions of the first carrier gas, the second carrier gas, the third carrier gas, and the barrier gas are each preferably 100% H 2 , but are not limited thereto.
  • Each gas may contain a gas other than H 2 as long as the epitaxial growth of the CdTe crystal is not inhibited.
  • An example of a gas other than H 2 is an inert gas, that is, N 2 or a rare gas (He, Ne, Ar, etc.), but is not limited thereto.
  • the organic Te compound vapor generated in the bubbler 120 is transported into the reactor 111 through the Te source supply pipe 117.
  • the organic Te compound vapor carried into the reactor 111 is decomposed by being heated by the first heater 113, and reacts with simple Cd vapor generated by vaporization of the metal Cd to generate CdTe. At least a portion of the generated CdTe is deposited on the ⁇ 211 ⁇ CdTe substrate.
  • the deposition temperature at this time may be 570 ° C. or higher, and may be 600 ° C. or higher.
  • CdTe crystals grow epitaxially on a ⁇ 211 ⁇ CdTe substrate.
  • two-dimensional growth of CdTe crystals occurs.
  • the peak of the XRD pattern obtained from the 2 ⁇ / ⁇ scan of the two-dimensionally grown CdTe crystal is only the CdTe ⁇ 422 ⁇ peak.
  • CdTe crystal layers having various thicknesses can be grown on a single crystal Si substrate.
  • a bulk CdTe crystal that can be used as a free-standing substrate can be obtained by removing the single crystal Si substrate from the CdTe crystal layer that has been grown thick by the method according to the embodiment.
  • a CdTe crystal layer grown by the method according to the embodiment can be used in a state of being bonded to a single crystal Si substrate to form a semiconductor device such as a radiation detector or a solar cell. .
  • the use of the method according to the embodiment for the growth of CdTe crystals is advantageous in terms of cost compared to the method of growing CdTe crystals using an organic Cd compound as a Cd source. This is because simple Cd is used as a raw material as it is without going through the synthesis process of the organic Cd compound. High-purity simple substance Cd can be obtained at a low price of about 1/10 compared to an organic Cd compound having the same purity.
  • a CdTe film formed on a Si substrate using the CdTe epitaxial growth method according to the embodiment can be used as a buffer layer. That is, after a CdTe epitaxial film is grown on the single crystal Si substrate by the method according to the embodiment, another semiconductor crystal layer is grown on the CdTe epitaxial film. A target bulk semiconductor crystal or semiconductor device is manufactured from this other semiconductor crystal layer.
  • Another semiconductor crystal layer here may be a semiconductor having a composition different from that of CdTe, such as HgCdTe, or may be CdTe grown using a method different from the present invention.
  • a semiconductor device such as an infrared detector can be manufactured.
  • a semiconductor device such as a radiation detector or a solar cell can be manufactured from a CdTe crystal grown using the CdTe crystal film grown by the method according to the embodiment as a buffer layer.
  • CdTe crystal layers having various thicknesses can be grown on a single crystal CdTe substrate or a single crystal substrate other than CdTe.
  • a semiconductor device such as a radiation detector or a solar cell can be configured using the CdTe crystal layer grown by the method according to the embodiment.
  • using the method according to the embodiment for growing a CdTe crystal is advantageous in terms of cost compared to a method of growing a CdTe crystal using an organic Cd compound as a Cd source. This is because simple Cd is used as a raw material as it is without going through the synthesis process of the organic Cd compound. High-purity simple substance Cd can be obtained at a low price of about 1/10 compared to an organic Cd compound having the same purity.
  • semiconductor crystal layers having different structures are grown on the epitaxial crystals using the present invention.
  • a target bulk semiconductor crystal or semiconductor device is manufactured from this other semiconductor crystal layer.
  • the heater output was controlled with H 2 flowing in the reactor to lower the substrate temperature to a predetermined deposition temperature.
  • the metal Cd in the reservoir installed in the reactor was heated to 455 ° C. higher than the melting point.
  • the flow rates of the carrier gas and the barrier gas flowing into the reactor were adjusted to predetermined values.
  • Supply of the carrier gas (bubble gas) to the bubbler was started at this timing.
  • the bubbling temperature was 29 ° C.
  • the carrier gas and barrier gas supplied into the reactor were all H 2 and the total flow rate was set to 4420 sccm.
  • the DiPTe partial pressure in the reactor was set to 1.2 ⁇ 10 ⁇ 4 atm, and the Cd partial pressure was set to 2.3 ⁇ 10 ⁇ 3 atm.
  • the gas partial pressure referred to here is a value calculated by multiplying the total pressure by the ratio of the flow rate of the gas to the sum of the flow rates of all the gases flowing in the reactor.
  • the DiPTe flow rate was calculated from the vapor pressure of DiPTe at the bubbling temperature and the flow rate of the bubbling gas under the assumption that the internal pressure of the bubbler was 800 Torr (slightly pressurized state).
  • the flow rate of Cd vapor was calculated from the vapor pressure of Cd at 455 ° C. and the flow rate of the carrier gas supplied to transport the Cd vapor.
  • the CdTe film deposited at 500 ° C. and 550 ° C. was an aggregate of fine crystal particles having a size of less than 1 ⁇ m.
  • FIGS. 5C and 5D it was confirmed from the cross-sectional SEM images measured separately that the crystals were two-dimensionally grown.
  • 6A and 6B are cross-sectional SEM images of CdTe films deposited at 600 ° C. and 650 ° C., respectively, and (211) a CdTe crystal layer that seamlessly covers the surface of the Si substrate is formed. I understand that.
  • the CdTe films deposited at 700 ° C. were aggregates of coarse crystal grains each having a size on the order of 10 ⁇ m.
  • FIGS. 8A to 8E show XRD patterns (ray source: CuK ⁇ ) of the five types of CdTe films obtained from the 2 ⁇ / ⁇ scan. As shown in FIGS.
  • the peak of the XRD pattern of the CdTe film deposited at 600 ° C. was only the CdTe (422) peak.
  • a ⁇ -scan X-ray rocking curve (source: CuK ⁇ ) of (422) reflection was measured in this CdTe film, a single peak was obtained as shown in FIG. (422)
  • the reflection ⁇ -scan X-ray rocking curve was measured, the CdTe film deposited at 650 ° C. had the narrowest half width.
  • a (331) peak was also observed in the XRD pattern of this CdTe film.
  • the thicknesses of the CdTe films deposited at 600 ° C. and 650 ° C. were both 2.5 ⁇ m.
  • the deposition rate calculated from the time from the start of supply of DiPTe to the reactor to the stop of supply as the deposition time was 10 ⁇ m / h.
  • the CdTe film deposited at 550 to 700 ° C. was confirmed to contain CdTe crystals by XRD analysis. However, a plurality of peaks were observed in the XRD pattern, and the intensity ratio between the plurality of peaks was in good agreement with that in the powder XRD pattern of CdTe. From this, it was found that the orientation of the CdTe crystal constituting the film was random and epitaxial growth did not occur.
  • One reason why the epitaxial growth did not occur in the experiment A2 is that the (211) natural oxide film on the surface of the Si substrate could not be removed under the baking conditions used in the experiment A2. Guess.
  • Experiment A3 As substrate A, a commercially available (211) Si substrate prepared by chemical oxidation treatment according to the procedure used in the Ishizaka-Shiraki method was prepared as in Experiment A1. As the substrate B, a substrate A was immersed in IPA (isopropanol) heated to 100 ° C. and washed for 10 minutes, then immersed in a 1% HF aqueous solution for 30 seconds, and then washed with pure water. The surface of the substrate B was hydrophobic and repelled water well. As substrate C, a commercially available (211) Si substrate was immersed in IPA (isopropanol) heated to 100 ° C. and washed for 10 minutes, then immersed in a 1% HF aqueous solution for 30 seconds, and then washed with pure water. Got ready. The surface of the substrate C was hydrophobic and repelled water well.
  • IPA isopropanol
  • CdTe was deposited at 600 ° C. on each of the substrates A to C.
  • the procedure and conditions were the same as in Experiment A1, except that the substrate before CdTe deposition was not baked or was performed using any of baking conditions 1 to 3 shown in Table 1.
  • the baking gas was only H 2 and the flow rate was the same as in Experiment A1.
  • polycrystalline growth indicates that the CdTe film deposited on the (211) Si substrate is a polycrystalline film
  • epitaxial growth indicates that the CdTe film is an epitaxially grown film.
  • the substrate was not baked before CdTe deposition, the CdTe films deposited on the substrates A to C were all polycrystalline films. The same was true when the substrate was baked under baking conditions 1.
  • the substrate was baked under baking condition 3 before CdTe deposition, epitaxial growth of CdTe crystals occurred on any of the substrates A to C.
  • FIGS. 10A to 10C show XRD patterns (radiation source: CuK ⁇ ) obtained from the 2 ⁇ / ⁇ scan of the CdTe films grown on the substrates A to C, respectively.
  • the heater output was controlled with H 2 flowing in the reactor to lower the substrate temperature to a predetermined deposition temperature.
  • the metal Cd in the reservoir installed in the reactor was heated to 455 ° C. higher than the melting point.
  • the flow rates of the carrier gas and the barrier gas flowing into the reactor were adjusted to predetermined values.
  • Supply of the carrier gas (bubble gas) to the bubbler was started at this timing.
  • the bubbling temperature was 29 ° C.
  • the deposition temperature was 625 ° C.
  • the carrier gas and barrier gas supplied into the reactor were all H 2 and the total flow rate was set to 4420 sccm.
  • the DiPTe partial pressure in the reactor was set to 1.2 ⁇ 10 ⁇ 4 atm, and the Cd partial pressure was set to 2.3 ⁇ 10 ⁇ 3 atm.
  • the gas partial pressure referred to here is a value calculated by multiplying the total pressure by the ratio of the flow rate of the gas to the sum of the flow rates of all the gases flowing in the reactor.
  • the DiPTe flow rate was calculated from the vapor pressure of DiPTe at the bubbling temperature and the flow rate of the bubbling gas under the assumption that the internal pressure of the bubbler was 800 Torr (slightly pressurized state).
  • the flow rate of Cd vapor was calculated from the vapor pressure of Cd at 455 ° C. and the flow rate of the carrier gas supplied to transport the Cd vapor. After the deposition for 1 hour, the supply of DiPTe into the reactor was stopped and the heating of the reactor was stopped by stopping the supply of the bubbling gas to the bubbler.
  • FIG. 11 shows a bird's-eye view and a cross-sectional SEM image of the deposited CdTe film.
  • the (211) CdTe substrate obtained in Experiment B1 was set in the reactor of the vapor deposition apparatus, and then H 2 was introduced into the reactor through the carrier gas pipe and the barrier gas pipe.
  • the flow rate was 4460 sccm.
  • the heater output was controlled to raise the substrate temperature to a predetermined deposition temperature.
  • the metal Cd in the reservoir installed in the reactor was heated to 455 ° C. higher than the melting point.
  • the flow rates of the carrier gas and the barrier gas flowing into the reactor were adjusted to predetermined values.
  • Supply of the carrier gas (bubble gas) to the bubbler was started at this timing.
  • the bubbling temperature was 29 ° C.
  • the deposition temperature was 625 ° C.
  • the carrier gas and barrier gas supplied into the reactor were all H 2 and the total flow rate was set to 4420 sccm.
  • the DiPTe partial pressure in the reactor was set to 1.2 ⁇ 10 ⁇ 4 atm, and the Cd partial pressure was set to 2.3 ⁇ 10 ⁇ 3 atm.
  • the gas partial pressure referred to here is a value calculated by multiplying the total pressure by the ratio of the flow rate of the gas to the sum of the flow rates of all the gases flowing in the reactor.
  • the DiPTe flow rate was calculated from the vapor pressure of DiPTe at the bubbling temperature and the flow rate of the bubbling gas under the assumption that the internal pressure of the bubbler was 800 Torr (slightly pressurized state).
  • the flow rate of Cd vapor was calculated from the vapor pressure of Cd at 455 ° C. and the flow rate of the carrier gas supplied to transport the Cd vapor. After the deposition for 1 hour, the supply of DiPTe into the reactor was stopped and the heating of the reactor was stopped by stopping the supply of the bubbling gas to the bubbler.
  • FIG. 15 shows a bird's eye view and a cross-sectional SEM image of the deposited CdTe film.
  • FIGS. 16 and 17 show the XRD pattern (source: CuK ⁇ ) and the ⁇ -scan X-ray rocking curve of the CdTe film obtained from the 2 ⁇ / ⁇ scan, respectively.
  • source: CuK ⁇ CuK ⁇
  • ⁇ -scan X-ray rocking curve of the CdTe film obtained from the 2 ⁇ / ⁇ scan, respectively.
  • the half width of the (422) reflection ⁇ -scan X-ray rocking curve was 596 seconds, and the CdTe layer deposited in Experiment B2 showed a half width of almost the same as (211) CdTe used as the substrate. It was shown that the crystallinity was not deteriorated.
  • Experiment B3 In Experiment B1, a (211) CdTe substrate was obtained in the same manner as in Experiment B1, except that the deposition time was 30 minutes.
  • FIG. 18 shows a bird's-eye view and a cross-sectional SEM image of the deposited CdTe film.
  • FIGS. 19 and 20 show the XRD pattern (source: CuK ⁇ ) and the ⁇ -scan X-ray rocking curve of the CdTe film obtained from the 2 ⁇ / ⁇ scan, respectively.
  • source: CuK ⁇ source: CuK ⁇
  • ⁇ -scan X-ray rocking curve of the CdTe film obtained from the 2 ⁇ / ⁇ scan, respectively.
  • FIG. 19 only the CdTe (422) peak was detected, and no reflection from other plane orientations was observed. This result shows that CdTe crystals are epitaxially grown on (211) Si.
  • the half width of the (422) reflection ⁇ -scan X-ray rocking curve was 605 seconds.
  • Experiment B4 CdTe was deposited on the (211) CdTe substrate obtained in Experiment B3 by the same method as in Experiment B2.
  • FIG. 21 shows a bird's-eye view and a cross-sectional SEM image of the deposited CdTe film.
  • FIGS. 22 and 23 show the XRD pattern (source: CuK ⁇ ) and the ⁇ -scan X-ray rocking curve of the CdTe film obtained from the 2 ⁇ / ⁇ scan, respectively.
  • source: CuK ⁇ CuK ⁇
  • ⁇ -scan X-ray rocking curve of the CdTe film obtained from the 2 ⁇ / ⁇ scan, respectively.
  • the (422) reflection ⁇ -scan X-ray rocking curve had a full width at half maximum of 460 seconds, and the CdTe layer deposited in Experiment B4 showed a half width smaller than (211) CdTe used as the substrate. It was shown that the sex did not deteriorate.
  • Experiment B5 In the vapor deposition apparatus to be used, the distance between the Te source supply pipe and the substrate is 5 mm away from Experiment B1, and in Experiment B1, the deposition time is set to 30 minutes (211). A CdTe substrate was obtained.
  • FIG. 24 shows a bird's-eye view and a cross-sectional SEM image of the deposited CdTe film.
  • the XRD pattern (source: CuK ⁇ ) and the ⁇ -scan X-ray rocking curve of the CdTe film obtained from the 2 ⁇ / ⁇ scan are shown in FIGS. 25 and 26, respectively.
  • FIG. 25 only the CdTe (422) peak was detected, and no reflection from other plane orientations was observed. This result shows that CdTe crystals are epitaxially grown on (211) Si.
  • the half width of the (422) reflection ⁇ -scan X-ray rocking curve was 693 seconds.
  • Experiment B6 CdTe was deposited on the (211) CdTe substrate obtained in Experiment B5 by the same method as in Experiment B2.
  • FIG. 27 shows a bird's-eye view and a cross-sectional SEM image of the deposited CdTe film.
  • FIGS. 28 and 29 show the XRD pattern (source: CuK ⁇ ) and the ⁇ -scan X-ray rocking curve of the CdTe film obtained from the 2 ⁇ / ⁇ scan, respectively.
  • source: CuK ⁇ source: CuK ⁇
  • ⁇ -scan X-ray rocking curve of the CdTe film obtained from the 2 ⁇ / ⁇ scan, respectively.
  • the half width of the (422) reflection ⁇ -scan X-ray rocking curve was 378 seconds, and the CdTe layer deposited in Experiment B6 showed a half width that was much smaller than (211) CdTe used as the substrate. It was shown that the crystallinity was improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The primary objective of the present invention is to provide a novel method for epitaxially growing CdTe on a single-crystal Si substrate. Another objective of the present invention is to provide a novel method for epitaxially growing CdTe on a single-crystal CdTe substrate. In order to achieve the abovementioned objectives, a method is provided for epitaxially growing CdTe on a single-crystal Si substrate or a single-crystal CdTe substrate, wherein the method has a growth step for depositing CdTe from a gas phase onto the surface of the single-crystal Si substrate or the single-crystal CdTe substrate using simple Cd and simple Te or an organic Te compound as the respective Cd source and Te source.

Description

CdTeのエピタキシャル成長方法CdTe epitaxial growth method
 本発明は、主としてCdTe(テルル化カドミウム)のエピタキシャル成長方法に関する。 The present invention mainly relates to an epitaxial growth method of CdTe (cadmium telluride).
 CdTeは放射線検出器用の半導体として有用である。現在この用途で実用化されているのは、トラベリングヒータ法で成長されるバルクCdTe結晶である。しかし、バルクCdTe結晶は大型化が難しく、また、結晶性や電気特性の均一性が十分ではないといわれている。
 かかる問題点を解決するために、Si基板やGaAs基板のような大面積基板上に、CdTe厚膜をヘテロエピタキシャル成長により形成する試みが行われている。例えば、(211)Si基板をGaAs片と共にアニールすることにより、その上にMOVPE(Metal-Organic Vapor Phase Epitaxy)法で良質なCdTe層をエピタキシャル成長させることができたという報告がある(非特許文献1)。
CdTe is useful as a semiconductor for radiation detectors. Currently, a bulk CdTe crystal grown by a traveling heater method is in practical use for this application. However, bulk CdTe crystals are difficult to increase in size, and it is said that the uniformity of crystallinity and electrical characteristics is not sufficient.
In order to solve such problems, attempts have been made to form a CdTe thick film on a large area substrate such as a Si substrate or a GaAs substrate by heteroepitaxial growth. For example, there is a report that a good quality CdTe layer can be epitaxially grown on a (211) Si substrate together with a GaAs piece by MOVPE (Metal-Organic Vapor Phase Epitaxy) method (Non-patent Document 1). ).
 MOVPE法によるCdTeのエピタキシャル成長では、Cd源およびTe源の両方に有機金属化合物が用いられている。例えば、上記非特許文献1に開示された方法では、Cd源にジメチルカドミウム(DMCd)が、また、Te源にジエチルテルル(DETe)が使用されている。
 DMCdの代わりに単体Cd蒸気(elemental Cd vapor)をDETeと共にMOVPE装置のリアクターに導入したところ、230℃という低温(DETeが安定な温度)でCdTe結晶が生成したという報告がある(非特許文献2)。しかし、CdTeのエピタキシャル成長にこれらの原料(単体Cdと有機Te化合物)を用いる試みはなされていない。
In the epitaxial growth of CdTe by the MOVPE method, an organometallic compound is used for both the Cd source and the Te source. For example, in the method disclosed in Non-Patent Document 1, dimethylcadmium (DMCd) is used as the Cd source, and diethyl tellurium (DETe) is used as the Te source.
There is a report that CdTe crystals are produced at a low temperature of 230 ° C. (DETe is stable) when elemental Cd vapor is introduced into the reactor of the MOVPE apparatus together with DETe instead of DMCd (Non-patent Document 2). ). However, no attempt has been made to use these raw materials (single Cd and organic Te compound) for epitaxial growth of CdTe.
 単体Cdと単体Teを原料に用いたElemental Vapor Transport法により、(111)軸に沿って配向したCdTe膜をアルミナ(酸化アルミニウム)基板上に堆積させたという報告がある(非特許文献3)。 There is a report that a CdTe film oriented along the (111) axis was deposited on an alumina (aluminum oxide) substrate by the Elemental-Vapor-Transport method using simple Cd and simple Te as raw materials (Non-patent Document 3).
 本発明は、単結晶Si基板上にCdTeをエピタキシャル成長させるための新規な方法を提供することを主たる目的とする。
 本発明は、単結晶CdTe基板上にCdTeをエピタキシャル成長させるための新規な方法を提供することを別の目的とする。
 また本発明は、CdTe以外の単結晶(GaAs、サファイア、CdZnTe、CdHgTe、GaN等)基板上にCdTeをエピタキシャル成長させるための新規な方法を提供することを別の目的とする。
 また本発明は、基板上にCdTeを堆積させるための気相堆積装置を提供することを別の目的とする。
The main object of the present invention is to provide a novel method for epitaxially growing CdTe on a single crystal Si substrate.
Another object of the present invention is to provide a novel method for epitaxially growing CdTe on a single crystal CdTe substrate.
Another object of the present invention is to provide a novel method for epitaxially growing CdTe on a single crystal (GaAs, sapphire, CdZnTe, CdHgTe, GaN, etc.) substrate other than CdTe.
Another object of the present invention is to provide a vapor deposition apparatus for depositing CdTe on a substrate.
 本発明の実施形態には以下の[A1]~[A14]が含まれる。
[A1]単結晶Si基板上にCdTeをエピタキシャル成長させる方法であって、次のステップを有する方法:(i)単結晶Si基板を準備する第一ステップ、(ii)該第一ステップで準備した単結晶Si基板を、Hを含むベーキングガス流中でベークし、その表面を清浄化する第二ステップ、および、(iii)単体Cdと有機Te化合物をそれぞれCd源およびTe源に用いて、該単結晶Si基板の該第二ステップで清浄化された表面上にCdTeを気相から堆積させる第三ステップ。
[A2]前記ベーキングガス流が、GaおよびAsのいずれか一方または両方を含まない、前記[A1]に記載の方法。
[A3]前記第三ステップの前に前記単結晶Si基板がリアクター内に置かれ、前記第三ステップでは該リアクター内に単体Cd蒸気と有機Te化合物蒸気が供給される、前記[A1]または[A2]に記載の方法。
[A4]前記単体Cd蒸気を、前記リアクター内に置いた金属Cdから発生させる、前記[A3]に記載の方法。
[A5]前記第二ステップでは前記リアクター内で前記単結晶Si基板をベークするとともに、前記第二ステップの終了から前記第三ステップの開始までの間に前記単結晶Si基板を前記リアクターから取り出さない、前記[A3]または[A4]に記載の方法。
[A6]前記第一ステップで準備する単結晶Si基板が表面酸化膜を有する、前記[A1]~[A5]のいずれかに記載の方法。
[A7]前記第三ステップではCdTe結晶が二次元的に成長する、前記[A1]~[A6]のいずれかに記載の方法。
[A8]前記単結晶Si基板が{211}Si基板である、前記[A1]~[A7]のいずれかに記載の方法。
[A9]前記第三ステップで形成されるCdTe結晶の2θ/ωスキャンから得られるXRDパターンにおいて、最も強いピークがCdTe{422}ピークであり、かつ、2番目に強いピークの強度が該CdTe{422}ピークの強度の1/10以下である、前記[A8]に記載の方法。
[A10]前記第三ステップで形成されるCdTe結晶の2θ/ωスキャンから得られるXRDパターンが有するピークがCdTe{422}ピークのみである、前記[A8]または[A9]に記載の方法。
[A11]前記CdTe結晶から得られる(422)反射のωスキャンX線ロッキングカーブがシングルピークである、前記[A8]~[A10]のいずれかに記載の方法。
[A12]前記有機Te化合物がジイソプロピルテルルを含む、前記[A1]~[A11]のいずれかに記載の方法。
[A13]前記[A1]~[A12]のいずれかに記載の方法で単結晶Si基板上にCdTeをエピタキシャル成長させる工程を含む、放射線検出器用半導体の製造方法。
[A14]基板上にCdTeを堆積させるための気相堆積装置であって、ホットウォール型のリアクターと、基板を支持するために該リアクター内に配置されたサセプタと、該サセプタによって支持される基板を加熱するために該リアクターの外部に配置された第一ヒーターと、該リアクター内に配置されたCdリザーバーと、該Cdリザーバーに収容される金属Cdを加熱するために該リアクターの外部に配置された第二ヒーターと、配管を介して該リアクター内に供給される有機Te化合物を気化させるために該リアクターの外部に配置されたバブラーと、を備える気相堆積装置。
Embodiments of the present invention include the following [A1] to [A14].
[A1] A method of epitaxially growing CdTe on a single crystal Si substrate, the method including the following steps: (i) a first step of preparing a single crystal Si substrate, (ii) a single unit prepared in the first step A second step of baking the crystalline Si substrate in a flow of baking gas containing H 2 and cleaning its surface; and (iii) using elemental Cd and an organic Te compound as the Cd source and Te source, respectively. A third step of depositing CdTe from the vapor phase on the surface cleaned in the second step of the single crystal Si substrate.
[A2] The method according to [A1], wherein the baking gas flow does not contain one or both of Ga and As.
[A3] Before the third step, the single crystal Si substrate is placed in a reactor, and in the third step, simple Cd vapor and organic Te compound vapor are supplied into the reactor. A2].
[A4] The method according to [A3], wherein the elemental Cd vapor is generated from metal Cd placed in the reactor.
[A5] In the second step, the single crystal Si substrate is baked in the reactor, and the single crystal Si substrate is not removed from the reactor between the end of the second step and the start of the third step. The method according to [A3] or [A4].
[A6] The method according to any one of [A1] to [A5], wherein the single crystal Si substrate prepared in the first step has a surface oxide film.
[A7] The method according to any one of [A1] to [A6], wherein the CdTe crystal grows two-dimensionally in the third step.
[A8] The method according to any one of [A1] to [A7], wherein the single crystal Si substrate is a {211} Si substrate.
[A9] In the XRD pattern obtained from the 2θ / ω scan of the CdTe crystal formed in the third step, the strongest peak is the CdTe {422} peak, and the intensity of the second strongest peak is the CdTe { 422} The method according to [A8], which is 1/10 or less of the intensity of the peak.
[A10] The method according to [A8] or [A9] above, wherein the peak of the XRD pattern obtained from the 2θ / ω scan of the CdTe crystal formed in the third step is only the CdTe {422} peak.
[A11] The method according to any one of [A8] to [A10], wherein the (422) reflection ω-scan X-ray rocking curve obtained from the CdTe crystal is a single peak.
[A12] The method according to any one of [A1] to [A11], wherein the organic Te compound includes diisopropyl tellurium.
[A13] A method for manufacturing a semiconductor for a radiation detector, comprising a step of epitaxially growing CdTe on a single crystal Si substrate by the method according to any one of [A1] to [A12].
[A14] A vapor deposition apparatus for depositing CdTe on a substrate, a hot wall type reactor, a susceptor disposed in the reactor to support the substrate, and a substrate supported by the susceptor A first heater disposed outside the reactor to heat the Cd, a Cd reservoir disposed within the reactor, and a metal Cd contained in the Cd reservoir disposed outside the reactor. A vapor deposition apparatus comprising: a second heater; and a bubbler disposed outside the reactor for vaporizing the organic Te compound supplied into the reactor via a pipe.
 また、本発明の実施形態には以下の[B1]~[B17]が含まれる。
[B1]単結晶CdTe基板上にCdTeをエピタキシャル成長させる方法であって、次のステップを有する方法:
(i)単結晶CdTe基板を準備する第一ステップ、および、
(ii)単体Cdと有機Te化合物をそれぞれCd源およびTe源に用いて、該単結晶CdTe基板の表面上にCdTeを気相から堆積させる第二ステップ。
[B2]前記第二ステップの前に前記単結晶CdTe基板がリアクター内に置かれ、前記第二ステップでは該リアクター内に単体Cd蒸気と有機Te化合物蒸気が供給される、前記[B1]に記載の方法。
[B3]前記単体Cd蒸気を、前記リアクター内に置いた金属Cdから発生させる、前記[B2]に記載の方法。
[B4]前記第二ステップではCdTe結晶が二次元的に成長する、前記[B1]~[B3]のいずれかに記載の方法。
[B5]前記単結晶CdTe基板が{211}CdTe基板である、前記[B1]~[B4]のいずれかに記載の方法。
[B6]前記第二ステップで形成されるCdTe結晶の2θ/ωスキャンから得られるXRDパターンにおいて、最も強いピークがCdTe{422}ピークであり、かつ、2番目に強いピークの強度が該CdTe{422}ピークの強度の1/10以下である、前記[B5]に記載の方法。
[B7]前記第二ステップで形成されるCdTe結晶の2θ/ωスキャンから得られるXRDパターンが有するピークがCdTe{422}ピークのみである、前記[B5]または[B6]に記載の方法。
[B8]前記第二ステップで形成されるCdTe結晶から得られる{422}反射のωスキャンX線ロッキングカーブがシングルピークである、前記[B5]~[B7]のいずれかに記載の方法。
[B9]前記単結晶CdTe基板が{111}CdTe基板である、前記[B1]~[B4]のいずれかに記載の方法。
[B10]前記第二ステップで形成されるCdTe結晶の2θ/ωスキャンから得られるXRDパターンにおいて、最も強いピークがCdTe{111}ピークであり、かつ、2番目に強いピークの強度が該CdTe{111}ピークの強度の1/10以下である、前記[B9]に記載の方法。
[B11]前記第二ステップで形成されるCdTe結晶の2θ/ωスキャンから得られるXRDパターンが有するピークがCdTe{111}ピークのみである、前記[B9]または前記[B10]に記載の方法。
[B12]前記第二ステップで形成されるCdTe結晶から得られる{111}反射のωスキャンX線ロッキングカーブがシングルピークである、前記[B9]~[B11]のいずれかに記載の方法。
[B13]前記単結晶CdTe基板が{100}CdTe基板である、前記[B1]~[B4]のいずれかに記載の方法。
[B14]前記第二ステップで形成されるCdTe結晶の2θ/ωスキャンから得られるXRDパターンにおいて、最も強いピークがCdTe{400}ピークであり、かつ、2番目に強いピークの強度が該CdTe{400}ピークの強度の1/10以下である、前記[B13]に記載の方法。
[B15]前記第二ステップで形成されるCdTe結晶の2θ/ωスキャンから得られるXRDパターンが有するピークがCdTe{400}ピークのみである、前記[B13]または[B14]に記載の方法。
[B16]前記第二ステップで形成されるCdTe結晶から得られる{400}反射のωスキャンX線ロッキングカーブがシングルピークである、前記[B13]~[B15]のいずれかに記載の方法。
[B17]前記有機Te化合物がジイソプロピルテルルを含む、前記[B1]~[B16]のいずれかに記載の方法。
[B18]前記[B1]~[B17]のいずれかに記載の方法でCdTe基板上にCdTeをエピタキシャル成長させる工程を含む、放射線検出器用半導体の製造方法。
Further, the following [B1] to [B17] are included in the embodiment of the present invention.
[B1] A method of epitaxially growing CdTe on a single crystal CdTe substrate, the method including the following steps:
(I) a first step of preparing a single crystal CdTe substrate; and
(Ii) A second step of depositing CdTe from the vapor phase on the surface of the single-crystal CdTe substrate using simple Cd and an organic Te compound as a Cd source and a Te source, respectively.
[B2] The single crystal CdTe substrate is placed in a reactor before the second step, and simple Cd vapor and organic Te compound vapor are supplied into the reactor in the second step. the method of.
[B3] The method according to [B2], wherein the elemental Cd vapor is generated from metal Cd placed in the reactor.
[B4] The method according to any one of [B1] to [B3], wherein the CdTe crystal is grown two-dimensionally in the second step.
[B5] The method according to any one of [B1] to [B4], wherein the single crystal CdTe substrate is a {211} CdTe substrate.
[B6] In the XRD pattern obtained from the 2θ / ω scan of the CdTe crystal formed in the second step, the strongest peak is the CdTe {422} peak, and the intensity of the second strongest peak is the CdTe { 422} The method according to [B5], which is 1/10 or less of the intensity of the peak.
[B7] The method according to [B5] or [B6], wherein the peak of the XRD pattern obtained from the 2θ / ω scan of the CdTe crystal formed in the second step is only the CdTe {422} peak.
[B8] The method according to any one of [B5] to [B7], wherein the ω-scan X-ray rocking curve of {422} reflection obtained from the CdTe crystal formed in the second step is a single peak.
[B9] The method according to any one of [B1] to [B4], wherein the single crystal CdTe substrate is a {111} CdTe substrate.
[B10] In the XRD pattern obtained from the 2θ / ω scan of the CdTe crystal formed in the second step, the strongest peak is the CdTe {111} peak, and the intensity of the second strongest peak is the CdTe { 111} The method according to [B9], which is 1/10 or less of the intensity of the peak.
[B11] The method according to [B9] or [B10] above, wherein the peak of the XRD pattern obtained from the 2θ / ω scan of the CdTe crystal formed in the second step is only the CdTe {111} peak.
[B12] The method according to any one of [B9] to [B11], wherein the {111} reflection ω-scan X-ray rocking curve obtained from the CdTe crystal formed in the second step is a single peak.
[B13] The method according to any one of [B1] to [B4], wherein the single crystal CdTe substrate is a {100} CdTe substrate.
[B14] In the XRD pattern obtained from the 2θ / ω scan of the CdTe crystal formed in the second step, the strongest peak is the CdTe {400} peak, and the intensity of the second strongest peak is the CdTe { 400} The method according to [B13], which is 1/10 or less of the intensity of the peak.
[B15] The method according to [B13] or [B14], wherein the peak of the XRD pattern obtained from the 2θ / ω scan of the CdTe crystal formed in the second step is only the CdTe {400} peak.
[B16] The method according to any one of [B13] to [B15], wherein the {400} reflection ω-scan X-ray rocking curve obtained from the CdTe crystal formed in the second step is a single peak.
[B17] The method according to any one of [B1] to [B16], wherein the organic Te compound contains diisopropyl tellurium.
[B18] A method for manufacturing a semiconductor for a radiation detector, comprising a step of epitaxially growing CdTe on a CdTe substrate by the method according to any one of [B1] to [B17].
 また、本発明の実施形態には以下の[C1]~[C17]が含まれる。
[C1]CdTe以外の単結晶基板上にCdTeをエピタキシャル成長させる方法であって、次のステップを有する方法:
(i)CdTe以外の単結晶基板を準備する第一ステップ、および、
(ii)単体Cdと有機Te化合物をそれぞれCd源およびTe源に用いて、該CdTe以外の単結晶基板の表面上にCdTeを気相から堆積させる第二ステップ。
[C2]前記第二ステップの前に前記CdTe以外の単結晶基板がリアクター内に置かれ、前記第二ステップでは該リアクター内に単体Cd蒸気と有機Te化合物蒸気が供給される、前記[C1]に記載の方法。
[C3]前記単体Cd蒸気を、前記リアクター内に置いた金属Cdから発生させる、前記[C2]に記載の方法。
[C4]前記第二ステップではCdTe結晶が二次元的に成長する、前記[C1]~[C3]のいずれかに記載の方法。
[C5]前記有機Te化合物がジイソプロピルテルルを含む、前記[C1]~[C4]のいずれかに記載の方法。
[C6]前記[C1]~[C5]のいずれかに記載の方法でCdTe以外の単結晶基板上にCdTeをエピタキシャル成長させる工程を含む、放射線検出器用半導体の製造方法。
Further, embodiments of the present invention include the following [C1] to [C17].
[C1] A method of epitaxially growing CdTe on a single crystal substrate other than CdTe, the method including the following steps:
(I) a first step of preparing a single crystal substrate other than CdTe, and
(Ii) A second step of depositing CdTe from the vapor phase on the surface of a single crystal substrate other than CdTe using simple Cd and an organic Te compound as a Cd source and a Te source, respectively.
[C2] Before the second step, a single crystal substrate other than CdTe is placed in a reactor, and in the second step, simple Cd vapor and organic Te compound vapor are supplied into the reactor, [C1] The method described in 1.
[C3] The method according to [C2], wherein the elemental Cd vapor is generated from metal Cd placed in the reactor.
[C4] The method according to any one of [C1] to [C3], wherein in the second step, CdTe crystals are grown two-dimensionally.
[C5] The method according to any one of [C1] to [C4], wherein the organic Te compound includes diisopropyl tellurium.
[C6] A method for manufacturing a semiconductor for a radiation detector, comprising a step of epitaxially growing CdTe on a single crystal substrate other than CdTe by the method according to any one of [C1] to [C5].
 また、本発明の実施形態には以下の[D1]~[D35]が含まれる。
[D1]単結晶Si基板上にCdTeをエピタキシャル成長させる方法であって、単体Cdと単体Te又は有機Te化合物をそれぞれCd源およびTe源に用いて、該単結晶Si基板の表面上にCdTeを気相から堆積させる成長ステップ、を有する方法。
[D2]単結晶Si基板を準備する準備ステップ、及び
該準備した単結晶Si基板を、還元性ガス又は不活性ガス中でベークするベーキングステップ、を含む、[D1]に記載の方法。
[D3]前記ベーキングステップは、前記単結晶Si基板の表面上に他の成分を体積させることなく行われる、[D2]に記載の方法。
[D4]前記ベーキングステップは、前記単結晶Si基板の表面を清浄化する、[D2]または[D3]に記載の方法。
[D5]前記準備ステップで準備された単結晶Si基板は、表面酸化膜を有する、[D2]~[D4]のいずれかに記載の方法。
[D6]前記単結晶Si基板は、{211}Si基板である、[D1]~[D5]のいずれかに記載の方法。
[D7]前記ベーキングステップにおいて用いられるガスは、Hを含むガスである、[D2]~[D5]のいずれかに記載の方法。
[D8]前記Te源は、有機Te化合物である、[D1]~[D7]のいずれかに記載の方法。
[D9]前記成長ステップにおけるCdTe堆積温度が570℃以上である、[D1]~[D8]のいずれかに記載の方法。
[D10]成長ステップで得られるCdTe結晶は、2θ/ωスキャンから得られるXRDパターンにおいて、最も強いピークがCdTe{422}ピークである、[D1]~[D9]のいずれかに記載の方法。
[D11]前記単結晶Si基板と、前記成長ステップで得られるCdTe結晶は、同一の結晶面を有する、[D1]~[D10]のいずれかに記載の方法。
[D12][D1]~[D11]のいずれかに記載の方法で単結晶Si基板上にCdTeをエピタキシャル成長させる工程を含む、放射線検出器用半導体の製造方法。
[D13]基板上にCdTeを堆積させるための気相堆積装置であって、
ホットウォール型のリアクターと、
基板を支持するために該リアクター内に配置されたサセプタと、
該サセプタによって支持される基板を加熱するために該リアクターの外部に配置された第一ヒーターと、
該リアクター内に配置されたCdリザーバーと、
該Cdリザーバーに収容される金属Cdを加熱するために該リアクターの外部に配置された第二ヒーターと、
配管を介して該リアクター内に供給される有機Te化合物を気化させるために該リアクターの外部に配置されたバブラーと、を備える気相堆積装置。
In addition, the following [D1] to [D35] are included in the embodiment of the present invention.
[D1] A method of epitaxially growing CdTe on a single-crystal Si substrate, using simple Cd and simple Te or an organic Te compound as a Cd source and a Te source, respectively, and removing CdTe on the surface of the single-crystal Si substrate. A growth step of depositing from the phase.
[D2] The method according to [D1], including a preparation step of preparing a single crystal Si substrate, and a baking step of baking the prepared single crystal Si substrate in a reducing gas or an inert gas.
[D3] The method according to [D2], wherein the baking step is performed without volume of other components on the surface of the single crystal Si substrate.
[D4] The method according to [D2] or [D3], wherein the baking step cleans a surface of the single crystal Si substrate.
[D5] The method according to any one of [D2] to [D4], wherein the single crystal Si substrate prepared in the preparation step has a surface oxide film.
[D6] The method according to any one of [D1] to [D5], wherein the single crystal Si substrate is a {211} Si substrate.
[D7] The method according to any one of [D2] to [D5], wherein the gas used in the baking step is a gas containing H 2 .
[D8] The method according to any one of [D1] to [D7], wherein the Te source is an organic Te compound.
[D9] The method according to any one of [D1] to [D8], wherein a CdTe deposition temperature in the growth step is 570 ° C. or higher.
[D10] The method according to any one of [D1] to [D9], wherein the strongest peak of the CdTe crystal obtained in the growth step is a CdTe {422} peak in an XRD pattern obtained from a 2θ / ω scan.
[D11] The method according to any one of [D1] to [D10], wherein the single crystal Si substrate and the CdTe crystal obtained in the growth step have the same crystal plane.
[D12] A method for manufacturing a semiconductor for a radiation detector, comprising a step of epitaxially growing CdTe on a single crystal Si substrate by the method according to any one of [D1] to [D11].
[D13] A vapor deposition apparatus for depositing CdTe on a substrate,
A hot wall reactor,
A susceptor disposed in the reactor to support a substrate;
A first heater disposed outside the reactor to heat a substrate supported by the susceptor;
A Cd reservoir disposed in the reactor;
A second heater disposed outside the reactor to heat the metal Cd contained in the Cd reservoir;
A vapor deposition apparatus comprising: a bubbler disposed outside the reactor for vaporizing an organic Te compound supplied into the reactor through a pipe.
[D14]単結晶CdTe基板上にCdTeをエピタキシャル成長させる方法であって、単体Cdと単体Te又は有機Te化合物をそれぞれCd源およびTe源に用いて、該単結晶CdTe基板の表面上にCdTeを気相から堆積させる成長ステップ、を有する方法。
[D15]単結晶CdTe基板を準備する準備ステップ、及び
該準備した単結晶CdTe基板を、還元性ガス又は不活性ガス中でベークするベーキングステップ、を含む、[D14]に記載の方法。
[D16]前記ベーキングステップは、前記単結晶CdTe基板の表面上に他の成分を堆積させることなく行われる、[D15]に記載の方法。
[D17]前記ベーキングステップは、前記単結晶CdTe基板の表面を清浄化する、[D15]又は[D16]に記載の方法。
[D18]前記準備ステップで準備された単結晶CdTe基板は、表面酸化膜を有する、[D15]~[D17]のいずれかに記載の方法。
[D19]前記単結晶CdTe基板は、{211}CdTe基板である、[D14]~[D18]のいずれかに記載の方法。
[D20]前記ベーキングステップにおいて用いられるガスは、Hを含むガスである、[D15]~[D18]のいずれかに記載の方法。
[D21]前記Te源は、有機Te化合物である、[D14]~[D20]のいずれかに記載の方法。
[D22]前記成長ステップにおけるCdTe堆積温度が570℃以上である、[D14]~[D21]のいずれかに記載の方法。
[D23]成長ステップで得られるCdTe結晶は、2θ/ωスキャンから得られるXRDパターンにおいて、最も強いピークがCdTe{422}ピークである、[D14]~[D22]のいずれかに記載の方法。
[D24]前記単結晶CdTe基板と、前記成長ステップで得られるCdTe結晶は、同一の結晶面を有する、[D14]~[D23]のいずれかに記載の方法。
[D25][D14]~[D24]のいずれかに記載の方法で単結晶CdTe基板上にCdTeをエピタキシャル成長させる工程を含む、放射線検出器用半導体の製造方法。
[D26]CdTe以外の単結晶基板上にCdTeをエピタキシャル成長させる方法であって、
単体Cdと単体Te又は有機Te化合物をそれぞれCd源およびTe源に用いて、CdTe以外の単結晶基板の表面上にCdTeを気相から堆積させる成長ステップ、を有する方法。
[D27]CdTe以外の単結晶基板を準備する準備ステップ、及び
該準備したCdTe以外の単結晶基板を、還元性ガス又は不活性ガス中でベークするベーキングステップ、を含む、[D26]に記載の方法。
[D28]前記ベーキングステップは、前記CdTe以外の単結晶基板に他の成分を堆積させることなく行われる、[D27]に記載の方法。
[D29]前記ベーキングステップは、前記CdTe以外の単結晶基板の表面を清浄化する、[D27]又は[D28]に記載の方法。
[D30]前記準備ステップで準備されたCdTe以外の単結晶基板は、表面酸化膜を有する、[D27]~[D29]のいずれかに記載の方法。
[D31]前記ベーキングステップにおいて用いられるガスは、Hを含むガスである、[D27]~[D30]のいずれかに記載の方法。
[D32]前記Te源は、有機Te化合物である、[D26]から[D31]のいずれかに記載の方法。
[D33]前記成長ステップにおけるCdTe堆積温度が570℃以上である、[D26]から[D32]のいずれかに記載の方法。
[D34]前記CdTe以外の単結晶基板と、前記成長ステップで得られるCdTe結晶は、同一の結晶面を有する、[D26]~[D33]のいずれかに記載の方法。
[D35][D26]~[D34]のいずれかに記載の方法でCdTe以外の単結晶基板上にCdTeをエピタキシャル成長させる工程を含む、放射線検出器用半導体の製造方法。
[D14] A method of epitaxially growing CdTe on a single-crystal CdTe substrate, using simple Cd and simple Te or an organic Te compound as a Cd source and a Te source, respectively, and removing CdTe on the surface of the single-crystal CdTe substrate. A growth step of depositing from the phase.
[D15] The method according to [D14], including a preparation step of preparing a single crystal CdTe substrate, and a baking step of baking the prepared single crystal CdTe substrate in a reducing gas or an inert gas.
[D16] The method according to [D15], wherein the baking step is performed without depositing other components on the surface of the single crystal CdTe substrate.
[D17] The method according to [D15] or [D16], wherein the baking step cleans a surface of the single crystal CdTe substrate.
[D18] The method according to any one of [D15] to [D17], wherein the single crystal CdTe substrate prepared in the preparation step has a surface oxide film.
[D19] The method according to any one of [D14] to [D18], wherein the single crystal CdTe substrate is a {211} CdTe substrate.
[D20] The method according to any one of [D15] to [D18], wherein the gas used in the baking step is a gas containing H 2 .
[D21] The method according to any one of [D14] to [D20], wherein the Te source is an organic Te compound.
[D22] The method according to any one of [D14] to [D21], wherein the CdTe deposition temperature in the growth step is 570 ° C. or higher.
[D23] The method according to any one of [D14] to [D22], wherein the strongest peak of the CdTe crystal obtained in the growth step is a CdTe {422} peak in an XRD pattern obtained from a 2θ / ω scan.
[D24] The method according to any one of [D14] to [D23], wherein the single crystal CdTe substrate and the CdTe crystal obtained in the growth step have the same crystal plane.
[D25] A method for manufacturing a semiconductor for a radiation detector, comprising a step of epitaxially growing CdTe on a single crystal CdTe substrate by the method according to any one of [D14] to [D24].
[D26] A method of epitaxially growing CdTe on a single crystal substrate other than CdTe,
A growth step of depositing CdTe from the vapor phase on the surface of a single crystal substrate other than CdTe using simple Cd and simple Te or organic Te compound as the Cd source and Te source, respectively.
[D27] The method according to [D26], including a preparation step of preparing a single crystal substrate other than CdTe, and a baking step of baking the prepared single crystal substrate other than CdTe in a reducing gas or an inert gas. Method.
[D28] The method according to [D27], wherein the baking step is performed without depositing other components on the single crystal substrate other than the CdTe.
[D29] The method according to [D27] or [D28], wherein the baking step cleans a surface of a single crystal substrate other than the CdTe.
[D30] The method according to any one of [D27] to [D29], wherein the single crystal substrate other than CdTe prepared in the preparation step has a surface oxide film.
[D31] The method according to any one of [D27] to [D30], wherein the gas used in the baking step is a gas containing H 2 .
[D32] The method according to any one of [D26] to [D31], wherein the Te source is an organic Te compound.
[D33] The method according to any one of [D26] to [D32], wherein a CdTe deposition temperature in the growth step is 570 ° C. or higher.
[D34] The method according to any one of [D26] to [D33], wherein the single crystal substrate other than the CdTe and the CdTe crystal obtained in the growth step have the same crystal plane.
[D35] A method for manufacturing a semiconductor for a radiation detector, comprising the step of epitaxially growing CdTe on a single crystal substrate other than CdTe by the method according to any one of [D26] to [D34].
 単結晶Si基板上にCdTeをエピタキシャル成長させるための新規な方法が提供される。
 また、単結晶CdTe基板上にCdTeをエピタキシャル成長させるための新規な方法が提供される。
 また、CdTe以外の単結晶基板上にCdTeをエピタキシャル成長させるための新規な方法が提供される。
A novel method is provided for epitaxially growing CdTe on a single crystal Si substrate.
Also provided is a novel method for epitaxially growing CdTe on a single crystal CdTe substrate.
Also provided is a novel method for epitaxially growing CdTe on a single crystal substrate other than CdTe.
図1は、気相堆積装置の模式図を示す。FIG. 1 shows a schematic diagram of a vapor deposition apparatus. 図2は、気相堆積装置の模式図を示す。FIG. 2 shows a schematic diagram of a vapor deposition apparatus. 図3は、気相堆積装置の模式図を示す。FIG. 3 shows a schematic diagram of a vapor deposition apparatus. 図4は、気相堆積装置の模式図を示す。FIG. 4 shows a schematic view of a vapor deposition apparatus. 図5(a)~(e)は、それぞれ、CdTe膜の鳥瞰SEM像を示す(図面代用写真)。FIGS. 5A to 5E show bird's-eye SEM images of the CdTe film, respectively (drawing substitute photos). 図6(a)および(b)は、それぞれ、CdTe膜の断面SEM像を示す(図面代用写真)。6A and 6B show cross-sectional SEM images of the CdTe film, respectively (drawing substitute photograph). 図7は、XRD分析におけるX線発生器と試料(CdTe膜)とX線検出器の配置を示す図面である。FIG. 7 is a diagram showing an arrangement of an X-ray generator, a sample (CdTe film), and an X-ray detector in XRD analysis. 図8(a)は、2θ/ωスキャンから得たCdTe膜のXRDパターンを示す。FIG. 8A shows the XRD pattern of the CdTe film obtained from the 2θ / ω scan. 図8(b)は、2θ/ωスキャンから得たCdTe膜のXRDパターンを示す。FIG. 8B shows the XRD pattern of the CdTe film obtained from the 2θ / ω scan. 図8(c)は、2θ/ωスキャンから得たCdTe膜のXRDパターンを示す。FIG. 8C shows the XRD pattern of the CdTe film obtained from the 2θ / ω scan. 図8(d)は、2θ/ωスキャンから得たCdTe膜のXRDパターンを示す。FIG. 8D shows the XRD pattern of the CdTe film obtained from the 2θ / ω scan. 図8(e)は、2θ/ωスキャンから得たCdTe膜のXRDパターンを示す。FIG. 8E shows the XRD pattern of the CdTe film obtained from the 2θ / ω scan. 図9は、(211)Si基板上に堆積されたCdTe膜から得た(422)反射のωスキャンX線ロッキングカーブ(線源:CuKα)を示す。FIG. 9 shows a (422) reflection ω-scan X-ray rocking curve (source: CuKα) obtained from a (211) CdTe film deposited on a Si substrate. 図10(a)は、2θ/ωスキャンから得たCdTe膜のXRDパターンを示す。FIG. 10A shows the XRD pattern of the CdTe film obtained from the 2θ / ω scan. 図10(b)は、2θ/ωスキャンから得たCdTe膜のXRDパターンを示す。FIG. 10B shows the XRD pattern of the CdTe film obtained from the 2θ / ω scan. 図10(c)は、2θ/ωスキャンから得たCdTe膜のXRDパターンを示す。FIG. 10C shows an XRD pattern of the CdTe film obtained from the 2θ / ω scan. 図11は、実験1のCdTe膜の鳥瞰SEM像(左)と断面SEM像(右)を示す(図面代用写真)。FIG. 11 shows a bird's-eye SEM image (left) and a cross-sectional SEM image (right) of the CdTe film of Experiment 1 (drawing substitute photograph). 図12は、XRD分析におけるX線発生器と試料(CdTe膜)とX線検出器の配置を示す図面である。FIG. 12 is a drawing showing the arrangement of an X-ray generator, a sample (CdTe film), and an X-ray detector in XRD analysis. 図13は、実験1の2θ/ωスキャンから得たCdTe膜のXRDパターンを示す。FIG. 13 shows the XRD pattern of the CdTe film obtained from the 2θ / ω scan of Experiment 1. 図14は、実験1のCdTe膜から得た(422)反射のωスキャンX線ロッキングカーブ(線源:CuKα)を示す。FIG. 14 shows the (422) reflection ω-scan X-ray rocking curve (source: CuKα) obtained from the CdTe film of Experiment 1. 図15は、実験2のCdTe膜の鳥瞰SEM像(左)と断面SEM像(右)を示す(図面代用写真)。FIG. 15 shows a bird's-eye SEM image (left) and a cross-sectional SEM image (right) of the CdTe film of Experiment 2 (drawing substitute photograph). 図16は、実験2の2θ/ωスキャンから得たCdTe膜のXRDパターンを示す。FIG. 16 shows the XRD pattern of the CdTe film obtained from the 2θ / ω scan of Experiment 2. 図17は、実験2のCdTe膜から得た(422)反射のωスキャンX線ロッキングカーブ(線源:CuKα)を示す。FIG. 17 shows the (422) reflection ω-scan X-ray rocking curve (source: CuKα) obtained from the CdTe film of Experiment 2. 図18は、実験3のCdTe膜の鳥瞰SEM像(左)と断面SEM像(右)を示す(図面代用写真)。FIG. 18 shows a bird's-eye SEM image (left) and a cross-sectional SEM image (right) of the CdTe film of Experiment 3 (drawing substitute photograph). 図19は、実験3の2θ/ωスキャンから得たCdTe膜のXRDパターンを示す。FIG. 19 shows the XRD pattern of the CdTe film obtained from the 2θ / ω scan of Experiment 3. 図20は、実験3のCdTe膜から得た(422)反射のωスキャンX線ロッキングカーブ(線源:CuKα)を示す。FIG. 20 shows the (422) reflection ω-scan X-ray rocking curve (source: CuKα) obtained from the CdTe film of Experiment 3. 図21は、実験4のCdTe膜の鳥瞰SEM像(左)と断面SEM像(右)を示す(図面代用写真)。FIG. 21 shows a bird's-eye SEM image (left) and a cross-sectional SEM image (right) of the CdTe film of Experiment 4 (drawing substitute photograph). 図22は、実験4の2θ/ωスキャンから得たCdTe膜のXRDパターンを示す。FIG. 22 shows the XRD pattern of the CdTe film obtained from the 2θ / ω scan of Experiment 4. 図23は、実験4のCdTe膜から得た(422)反射のωスキャンX線ロッキングカーブ(線源:CuKα)を示す。FIG. 23 shows the (422) reflection ω-scan X-ray rocking curve (source: CuKα) obtained from the CdTe film of Experiment 4. 図24は、実験5のCdTe膜の鳥瞰SEM像(左)と断面SEM像(右)を示す(図面代用写真)。FIG. 24 shows a bird's-eye SEM image (left) and a cross-sectional SEM image (right) of the CdTe film of Experiment 5 (drawing substitute photograph). 図25は、実験5の2θ/ωスキャンから得たCdTe膜のXRDパターンを示す。FIG. 25 shows the XRD pattern of the CdTe film obtained from the 2θ / ω scan of Experiment 5. 図26は、実験5のCdTe膜から得た(422)反射のωスキャンX線ロッキングカーブ(線源:CuKα)を示す。FIG. 26 shows the (422) reflection ω-scan X-ray rocking curve (source: CuKα) obtained from the CdTe film of Experiment 5. 図27は、実験6のCdTe膜の鳥瞰SEM像(左)と断面SEM像(右)を示す(図面代用写真)。FIG. 27 shows a bird's-eye SEM image (left) and a cross-sectional SEM image (right) of the CdTe film of Experiment 6 (drawing substitute photograph). 図28は、実験6の2θ/ωスキャンから得たCdTe膜のXRDパターンを示す。FIG. 28 shows the XRD pattern of the CdTe film obtained from the 2θ / ω scan of Experiment 6. 図29は、実験6のCdTe膜から得た(422)反射のωスキャンX線ロッキングカーブ(線源:CuKα)を示す。FIG. 29 shows the (422) reflection ω-scan X-ray rocking curve (source: CuKα) obtained from the CdTe film of Experiment 6.
1.気相堆積装置
 実施形態に係るCdTeのエピタキシャル成長方法を実施するうえで、好ましく用いることのできる気相堆積装置の一例を、図1に模式的に示す。
 図1を参照すると、気相堆積装置100は、ホットウォール型のリアクター111と、基板を支持するために該リアクター内に配置されたサセプタ112と、該サセプタによって支持される基板を加熱するために該リアクターの外部に配置された第一ヒーター113と、該リアクター内に配置されたCdリザーバー114と、該Cdリザーバーに収容される金属Cdを加熱するために該リアクターの外部に配置された第二ヒーター115と、配管を介して該リアクター内に供給される有機Te化合物を気化させるために該リアクターの外部に配置されたバブラー120と、を備えている。
1. Vapor Deposition Apparatus An example of a vapor deposition apparatus that can be preferably used for carrying out the epitaxial growth method of CdTe according to the embodiment is schematically shown in FIG.
Referring to FIG. 1, a vapor deposition apparatus 100 includes a hot wall reactor 111, a susceptor 112 disposed in the reactor to support the substrate, and a substrate supported by the susceptor. A first heater 113 disposed outside the reactor, a Cd reservoir 114 disposed within the reactor, and a second heater disposed outside the reactor to heat the metal Cd contained in the Cd reservoir. A heater 115 and a bubbler 120 disposed outside the reactor for vaporizing the organic Te compound supplied into the reactor via a pipe are provided.
 リアクター111は石英管チャンバーであり得るが、限定はされない。サセプタ112は、例えば石英、SiC(炭化珪素)等で形成され得る。
 第一ヒーター113は、サセプタ112が配置されたゾーンを環状に取り囲んでいる。
 Cdリザーバー114は、例えば石英で形成されており、溶融した金属Cdを収容することが可能である。金属Cdは換言すれば単体Cdである。
 第二ヒーター115は、Cdリザーバー114が配置されたゾーンを環状に取り囲んでいる。
The reactor 111 can be a quartz tube chamber, but is not limited thereto. The susceptor 112 can be formed of, for example, quartz, SiC (silicon carbide) or the like.
The first heater 113 surrounds the zone where the susceptor 112 is disposed in an annular shape.
The Cd reservoir 114 is made of, for example, quartz and can store molten metal Cd. In other words, the metal Cd is a simple substance Cd.
The second heater 115 surrounds the zone where the Cd reservoir 114 is disposed in an annular shape.
 リアクター111には、他端が第一キャリアガス供給原(図示せず)に接続された第一キャリアガス供給管116の一端が接続されている。Cdリザーバーに収容される金属Cdから生じる単体Cd蒸気を輸送するための第一キャリアガスが、該第一キャリアガス供給管116を通してリアクター111内に供給される。 The reactor 111 is connected to one end of a first carrier gas supply pipe 116 whose other end is connected to a first carrier gas supply source (not shown). A first carrier gas for transporting single Cd vapor generated from the metal Cd accommodated in the Cd reservoir is supplied into the reactor 111 through the first carrier gas supply pipe 116.
 リアクター111の外部には、有機Te化合物を気化させるためのバブラー120が配置されている。バブラー120で気化された有機Te化合物は、第二キャリアガス源(図示せず)から該バブラーに供給される第二キャリアガス(バブリングガス)と共に、Te源供給管117を通じてリアクター111内に輸送される。
 Te源供給管117の途中には、他端が第三キャリアガス源(図示せず)に接続された第三キャリアガス供給管121の一端が接続されており、リアクター111に供給される有機Te化合物蒸気を第三キャリアガスによって希釈できるようになっている。
A bubbler 120 for vaporizing the organic Te compound is disposed outside the reactor 111. The organic Te compound vaporized by the bubbler 120 is transported into the reactor 111 through a Te source supply pipe 117 together with a second carrier gas (bubbling gas) supplied to the bubbler from a second carrier gas source (not shown). The
In the middle of the Te source supply pipe 117, one end of a third carrier gas supply pipe 121 whose other end is connected to a third carrier gas source (not shown) is connected, and the organic Te supplied to the reactor 111 is connected. The compound vapor can be diluted with a third carrier gas.
 リアクター111には、更に、他端がバリアガス源(図示せず)に接続されたバリアガス供給管118の一端が接続されている。リアクター111内において、Te源供給管117とバリアガス共有管118は、前者を内管、後者を外管とする二重管を構成しており、内管から放出されるTe源含有ガス流が、外管から放出されるバリアガス流により包囲されるようになっている。
 リアクター111には、更に、排気口119が設けられている。排気口119は通常、スクラバーに接続される。
The reactor 111 is further connected to one end of a barrier gas supply pipe 118 having the other end connected to a barrier gas source (not shown). In the reactor 111, the Te source supply pipe 117 and the barrier gas sharing pipe 118 constitute a double pipe having the former as an inner pipe and the latter as an outer pipe, and the Te source-containing gas flow released from the inner pipe is It is surrounded by a barrier gas flow released from the outer tube.
The reactor 111 is further provided with an exhaust port 119. The exhaust port 119 is usually connected to a scrubber.
 図1に示す気相堆積装置の変形例を図2~4に例示する。図2~4では、図1に示す構成と対応する構成に同じ符号を付与している。
 図2に示す気相堆積装置は、サセプタ112が基板を装置の底面に対して垂直に支持するように構成されている。
 図3に示す気相堆積装置では、リアクター111が縦型で、ガス流は該リアクター内を上方から下方に向かうようになっている。
Modification examples of the vapor deposition apparatus shown in FIG. 1 are illustrated in FIGS. 2 to 4, the same reference numerals are given to the components corresponding to those shown in FIG.
The vapor deposition apparatus shown in FIG. 2 is configured such that the susceptor 112 supports the substrate perpendicular to the bottom surface of the apparatus.
In the vapor deposition apparatus shown in FIG. 3, the reactor 111 is a vertical type, and the gas flow is directed from above to below in the reactor.
 実施形態に係るエピタキシャルCdTe膜の形成方法は、図4に示す構成を備える気相堆積装置を用いて実施することもできる。
 図4を参照すると、気相堆積装置200は、ホットウォール型のリアクター211と、基板を支持するために該リアクター内に配置されたサセプタ212と、該サセプタによって支持される基板を加熱するために該リアクターの外部に配置された第一ヒーター213と、配管を介して該リアクター内に供給される有機Te化合物を気化させるために該リアクターの外部に配置されたバブラー220とを備えている。
 Cdリザーバー231はチャンバー型となっており、該Cdリザーバーに収容される金属Cdは、該Cdリザーバーの外部に配置された第二ヒーター232によって加熱される。
The method of forming an epitaxial CdTe film according to the embodiment can also be performed using a vapor deposition apparatus having the configuration shown in FIG.
Referring to FIG. 4, a vapor deposition apparatus 200 includes a hot wall type reactor 211, a susceptor 212 disposed in the reactor to support the substrate, and a substrate supported by the susceptor. A first heater 213 arranged outside the reactor is provided, and a bubbler 220 arranged outside the reactor for vaporizing the organic Te compound supplied into the reactor via a pipe.
The Cd reservoir 231 is a chamber type, and the metal Cd accommodated in the Cd reservoir is heated by the second heater 232 disposed outside the Cd reservoir.
 Cdリザーバー231内で生じる単体Cd蒸気は、第一キャリアガス源(図示せず)からキャリアガス供給管234を通して該Cdリザーバーに供給される第一キャリアガスと共に、Cd源供給管233を通してリアクター211内に輸送される。
 その他、図1~4にそれぞれ示す気相堆積装置において、サセプタを回転させる機構は任意に設けることができる。
The single Cd vapor generated in the Cd reservoir 231 is fed into the reactor 211 through the Cd source supply pipe 233 together with the first carrier gas supplied from the first carrier gas source (not shown) through the carrier gas supply pipe 234 to the Cd reservoir. To be transported to.
In addition, in the vapor deposition apparatus shown in FIGS. 1 to 4, a mechanism for rotating the susceptor can be arbitrarily provided.
2.単結晶Si基板へのCdTeのエピタキシャル成長方法
 実施形態に係る単結晶Si基板へのCdTeのエピタキシャル成長方法は、単体Cdと単体Te又は有機Te化合物をそれぞれCd源およびTe源に用いて、該単結晶Si基板の表面上にCdTeを気相から堆積させる成長ステップ、を有する。
 前記成長方法は、さらに単結晶Si基板を準備する準備ステップ、及び
該準備した単結晶Si基板を、還元性ガス又は不活性ガス中でベークするベーキングステップを含むことが好ましい。準備ステップとベーキングステップは前記成長ステップの前に実施されることが好ましい。
2. CdTe Epitaxial Growth Method on Single Crystal Si Substrate An epitaxial growth method of CdTe on a single crystal Si substrate according to the embodiment uses single Cd and single Te or an organic Te compound as a Cd source and a Te source, respectively. A growth step of depositing CdTe from the vapor phase on the surface of the substrate.
The growth method preferably further includes a preparation step of preparing a single crystal Si substrate, and a baking step of baking the prepared single crystal Si substrate in a reducing gas or an inert gas. The preparation step and the baking step are preferably performed before the growth step.
 また、実施形態に係るCdTeのエピタキシャル成長方法は、主たるステップとして、次の3つのステップを有してもよい。
(i)単結晶Si基板を準備する第一Aステップ。
(ii)該第一ステップで準備した単結晶Si基板を、還元性ガス又は不活性ガス、好ましくはHを含むベーキングガス流中でベークし、その表面を清浄化する第二Aステップ。
(iii)単体Cdと単体Te又は有機Te化合物をそれぞれCd源およびTe源に用いて、該単結晶Si基板の該第二Aステップで清浄化された表面上にCdTeを気相から堆積させる第三Aステップ。第一Aステップ及び第二Aステップは省略してもよい。
 以下、各ステップを具体的に説明する。
Further, the CdTe epitaxial growth method according to the embodiment may include the following three steps as main steps.
(I) First A step of preparing a single crystal Si substrate.
(Ii) a single-crystal Si substrate prepared in said first step, a reducing gas or an inert gas, preferably baked at baking gas stream containing H 2, second A step of cleaning the surface.
(Iii) First, CdTe is deposited from the vapor phase on the surface cleaned in the second step A of the single-crystal Si substrate using simple Cd and simple Te or organic Te compound as the Cd source and Te source, respectively. Three A steps. The first A step and the second A step may be omitted.
Each step will be specifically described below.
2.1.第一Aステップ
 第一Aステップでは、その上にCdTeをエピタキシャル成長させるべき基板として単結晶Si基板を準備する。好ましい単結晶Si基板は{211}基板であるが、限定されない。
 第一Aステップで準備する単結晶Si基板は表面酸化膜を有し得る。ここでいう表面酸化膜は、当該Si基板に由来するケイ素が、該基板の外部から供給された酸素と反応して形成された、あらゆる酸化ケイ素膜を含む。
 第一Aステップで準備する単結晶Si基板が有し得る表面酸化膜は、非意図的に形成された酸化膜と意図的に形成された酸化膜のいずれでもあり得るし、どのようにして形成された酸化膜であっても、また、どのような条件下で形成された酸化膜であってもよい。
2.1. First A Step In the first A step, a single crystal Si substrate is prepared as a substrate on which CdTe is to be epitaxially grown. A preferred single crystal Si substrate is a {211} substrate, but is not limited.
The single crystal Si substrate prepared in the first A step can have a surface oxide film. The surface oxide film here includes all silicon oxide films formed by reacting silicon derived from the Si substrate with oxygen supplied from the outside of the substrate.
The surface oxide film that the single crystal Si substrate prepared in the first A step may have can be either an unintentionally formed oxide film or an intentionally formed oxide film, and how it is formed. The oxide film formed may be an oxide film formed under any conditions.
 第一Aステップで準備する単結晶Si基板が有し得る表面酸化膜の一例は、自然酸化膜(非意図的に形成された酸化膜)である。一般には、空気中で室温下形成される酸化膜、RCA洗浄のような化学洗浄に伴い形成される酸化膜、超純水によるSiウエハの洗浄過程で形成される酸化膜等が、自然酸化膜に分類される。
 第一Aステップで準備する単結晶Si基板が有し得る表面酸化膜の他の一例は、熱酸化膜、熱硝酸溶液などの酸化剤による処理で形成された酸化膜等、意図的な酸化処理により形成された酸化膜である。Si基板の表面クリーニング法として知られる石坂‐白木法で形成される化学酸化膜も、ここに分類することができる。石坂‐白木法の詳細はA. Ishizaka, et al, “Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE”, J. Electrochem. Soc., Vol. 133, pp 666-671 (1986)を参照されたい。
An example of the surface oxide film that the single crystal Si substrate prepared in the first A step may have is a natural oxide film (an unintentionally formed oxide film). In general, an oxide film formed at room temperature in air, an oxide film formed by chemical cleaning such as RCA cleaning, an oxide film formed in the process of cleaning an Si wafer with ultrapure water, and the like are natural oxide films. are categorized.
Another example of the surface oxide film that the single crystal Si substrate prepared in the first A step may have is an intentional oxidation treatment such as a thermal oxide film, an oxide film formed by a treatment with an oxidizing agent such as a hot nitric acid solution, etc. This is an oxide film formed by the above. Chemical oxide films formed by the Ishizaka-Shiraki method, which is known as a surface cleaning method for Si substrates, can also be classified here. For details of the Ishizaka-Shiraki method, see A. Ishizaka, et al, “Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE”, J. Electrochem. Soc., Vol. 133, pp 666-671 (1986). I want.
 第一Aステップで準備する単結晶Si基板が有し得る表面酸化膜は、非意図的な酸化により生じた酸化ケイ素からなる部分と、意図的な酸化処理で形成された酸化ケイ素からなる部分とを含むものであり得る。
 更に、第一Aステップで準備する単結晶Si基板は、上述の表面酸化膜に代えて、あるいは上述の表面酸化膜に加えて、酸化ケイ素、窒化ケイ素または酸窒化ケイ素からなる堆積膜が表面に形成されたものであってもよい。
The surface oxide film that the single crystal Si substrate prepared in the first step A may have includes a part made of silicon oxide generated by unintentional oxidation, and a part made of silicon oxide formed by intentional oxidation treatment. May be included.
Furthermore, the single crystal Si substrate prepared in the first step A has a deposited film made of silicon oxide, silicon nitride, or silicon oxynitride on the surface instead of or in addition to the above-described surface oxide film. It may be formed.
2.2.第二Aステップ
 第二Aステップでは、前述の第一Aステップで準備した単結晶Si基板を、還元性ガス又は不活性ガス、好ましくはHを含むベーキングガス流中でベークし、その表面を清浄化する。このステップを実行することによって、後の第三AステップにおいてCdTeをエピタキシャル成長させ易くなる。
 ベーキングガスは還元性ガス又は不活性ガスが好ましく、還元性ガスとしてHのみ(100%H)であることがより好ましいが、限定するものではなく、N、希ガス(He、Ne、Ar等)等の不活性ガスを含有してもよい。単結晶Si基板の表面の清浄化が困難とならない限りで、ベーキングガスがHと不活性ガスだけでなく他のガスを含有することも許容される。ベーキング雰囲気中にGaあるいはAsが存在する必要はない。
 第二Aステップは、単結晶Si基板の表面上に他の成分を堆積させることなく行われることが不純物による結晶のキャリアタイプ、およびキャリア濃度制御がしやすくなる点から好ましい。具体的には、GaやAs等の元素を含む成分を含まない雰囲気で、ベーキングするといった態様が挙げられる。
2.2. Second A Step In the second A step, the single crystal Si substrate prepared in the first A step described above is baked in a reducing gas or an inert gas, preferably in a baking gas flow containing H 2 , and the surface is baked. Clean. By executing this step, it becomes easy to epitaxially grow CdTe in the subsequent third A step.
The baking gas is preferably a reducing gas or an inert gas, more preferably only H 2 (100% H 2 ) as the reducing gas, but is not limited to N 2 , noble gases (He, Ne, An inert gas such as Ar) may be contained. As long as it is not difficult to clean the surface of the single crystal Si substrate, the baking gas is allowed to contain not only H 2 and inert gas but also other gases. Ga or As need not be present in the baking atmosphere.
The second A step is preferably performed without depositing other components on the surface of the single crystal Si substrate from the viewpoint of easy control of the carrier type of the crystal due to impurities and the carrier concentration. Specifically, the aspect of baking in the atmosphere which does not contain the component containing elements, such as Ga and As, is mentioned.
 また、ベーキングステップでは、単結晶Si基板の表面を清浄化することが好ましい。本発明でいう清浄化とは、基板の表面のCdTe堆積において不要な成分を除去することをいい、例えばSi基板の表面に存在し得る表面酸化膜を除去することが挙げられる。ベーキングステップにより、Si基板の表面を十分に清浄化することにより、CdTeを堆積することが容易となる。
 単結晶Si基板が表面酸化膜を有する場合には、これを除去することが好ましいことから、その厚さに応じてベーキング温度およびベーキング時間を設定する。
 ベーキング中の単結晶Si基板の温度であるベーキング温度は、通常500℃以上、好ましくは700℃以上、より好ましくは800℃以上、更に好ましくは850℃以上、特に好ましくは900℃以上、最も好ましくは950℃以上であり、Siの融点未満とする。ベーキング温度が高い程、表面の清浄化に必要な時間は短くなるが、ベーキング容器の熱劣化も速くなることに注意が必要である。
 また、ベーキング時間は、通常1分以上、好ましくは5分以上、より好ましくは10分以上、更に好ましくは15分以上、特に好ましくは20分以上である。
 単結晶Si基板が有する表面酸化膜の少なくとも一部は、上述のベーキングの前に、湿式または乾式の化学エッチングで除去してもよい。湿式法で用い得るエッチング溶液としては、HF水溶液(フッ化水素酸)や、NHF(フッ化アンモニウム)を含む水溶液が好ましく例示される。
In the baking step, it is preferable to clean the surface of the single crystal Si substrate. The term “cleaning” as used in the present invention refers to removing unnecessary components in the CdTe deposition on the surface of the substrate, for example, removing a surface oxide film that may exist on the surface of the Si substrate. By sufficiently cleaning the surface of the Si substrate by the baking step, it becomes easy to deposit CdTe.
If the single crystal Si substrate has a surface oxide film, it is preferable to remove the surface oxide film, and the baking temperature and baking time are set according to the thickness.
The baking temperature, which is the temperature of the single crystal Si substrate during baking, is usually 500 ° C. or higher, preferably 700 ° C. or higher, more preferably 800 ° C. or higher, more preferably 850 ° C. or higher, particularly preferably 900 ° C. or higher, most preferably. 950 ° C. or higher and lower than the melting point of Si. It should be noted that the higher the baking temperature, the shorter the time required to clean the surface, but the faster the baking vessel will heat.
Moreover, baking time is 1 minute or more normally, Preferably it is 5 minutes or more, More preferably, it is 10 minutes or more, More preferably, it is 15 minutes or more, Most preferably, it is 20 minutes or more.
At least a part of the surface oxide film of the single crystal Si substrate may be removed by wet or dry chemical etching before the above-described baking. Preferred examples of the etching solution that can be used in the wet method include an HF aqueous solution (hydrofluoric acid) and an aqueous solution containing NH 4 F (ammonium fluoride).
2.3.第三Aステップ
 第三Aステップでは、単体Cdと単体Te又は有機Te化合物をそれぞれCd源およびTe源に用いて、第一Aステップで準備した単結晶Si基板上にCdTeを気相から堆積させる。
 具体的には、単結晶Si基板を内部に設置したリアクター内に、単体Cd蒸気と単体Te蒸気又は有機Te化合物蒸気を供給する。単結晶Si基板は、堆積するCdTeの結晶化に必要な最低温度よりも高い温度に加熱する。該単結晶Si基板の表面が前述の第二ステップで清浄化されているとき、該表面上においてCdTe結晶のエピタキシャル成長が起こり易くなる。
2.3. Third A Step In the third A step, CdTe is deposited from the vapor phase on the single crystal Si substrate prepared in the first A step by using simple Cd and simple Te or organic Te compound as the Cd source and Te source, respectively. .
Specifically, single Cd vapor and single Te vapor or organic Te compound vapor are supplied into a reactor in which a single crystal Si substrate is installed. The single crystal Si substrate is heated to a temperature higher than the minimum temperature required for crystallization of the deposited CdTe. When the surface of the single crystal Si substrate is cleaned in the second step described above, epitaxial growth of CdTe crystals is likely to occur on the surface.
 エピタキシャル成長したCdTe結晶の2θ/ωスキャンから得られるXRDパターンは、特定のピークが強いものとなる。例えば、{211}Si基板上にエピタキシャル成長したCdTe結晶の場合、2θ/ωスキャンから得られるXRDパターンにおいて{422}ピークが最も強く、2番目に強いピークの強度は、{422}ピークの1/10未満、更には1/100未満であり得る。該比率が小さい程、成長したCdTeの結晶性が高く、好ましい。 The XRD pattern obtained from the 2θ / ω scan of the epitaxially grown CdTe crystal has a strong specific peak. For example, in the case of a CdTe crystal epitaxially grown on a {211} Si substrate, the {422} peak is the strongest in the XRD pattern obtained from the 2θ / ω scan, and the intensity of the second strongest peak is 1 / of the {422} peak. It can be less than 10 or even less than 1/100. The smaller the ratio, the higher the crystallinity of the grown CdTe, which is preferable.
 特に好ましい例では、第三Aステップにおいて、CdTe結晶の二次元成長が生じる。二次元成長とは、結晶が基板表面を切れ目なく覆う層を形成するように成長する成長モードのことをいう。
 二次元成長により形成されるCdTe結晶層における層厚の面内変動は、中央値に対して好ましくは±50%である。
 CdTe結晶の二次元成長は、例えば、堆積温度の最適化により実現することができる。
In a particularly preferred example, two-dimensional growth of CdTe crystals occurs in the third A step. Two-dimensional growth refers to a growth mode in which a crystal grows so as to form a layer that seamlessly covers the substrate surface.
The in-plane variation of the layer thickness in the CdTe crystal layer formed by two-dimensional growth is preferably ± 50% with respect to the median value.
The two-dimensional growth of CdTe crystal can be realized, for example, by optimizing the deposition temperature.
 Te源に用いる単体Te又は有機Te化合物は特に限定されないが、有機Te化合物の好適例としては、ジメチルテルル[(CHTe]、ジエチルテルル[(CTe]、ジイソプロピルテルル[(CHCH-Te-CH(CH]、ジターシャリーブチルテルル[(CHC-Te-C(CH]およびジイソプロピルジテルル[(CHCH-Te-Te-CH(CH]が挙げられる。ここに挙げた有機Te化合物の熱分解温度はいずれも500℃以下である。
 CdTeの堆積温度は特に限定されないが、通常570℃以上、より好ましくは600℃以上であり、通常730℃以下、より好ましくは720℃以下である。
The simple Te or organic Te compound used for the Te source is not particularly limited, but preferred examples of the organic Te compound include dimethyl tellurium [(CH 3 ) 2 Te], diethyl tellurium [(C 2 H 5 ) 2 Te], and diisopropyl. Tellurium [(CH 3 ) 2 CH—Te—CH (CH 3 ) 2 ], ditertiary butyl tellurium [(CH 3 ) 3 C—Te—C (CH 3 ) 3 ] and diisopropyl ditellurium [(CH 3 ) 2 CH-Te-Te-CH ( CH 3) 2] and the like. The thermal decomposition temperatures of the organic Te compounds listed here are all 500 ° C. or lower.
The deposition temperature of CdTe is not particularly limited, but is usually 570 ° C. or higher, more preferably 600 ° C. or higher, and usually 730 ° C. or lower, more preferably 720 ° C. or lower.
2.4.好ましい実施形態
 ここでは、図1に示す気相堆積装置100を用いて、{211}Si基板上にCdTe結晶をエピタキシャル成長させる例について説明する。
<基板の準備およびリアクター内への設置>
 表面酸化膜を有する{211}Si基板を準備する。表面酸化膜は自然酸化膜であってもよいし、石坂-白木法で用いられる手順により形成された化学酸化膜であってもよい。
 次いで、準備した{211}Si基板をサセプタ112上にセットしたうえで、そのサセプタをリアクター111内の、第一ヒーター113によって環状に取り囲まれたゾーンに置く。
 Cdリザーバーへの金属Cdの投入は、Si基板をリアクター内に設置する前に済ませておく。
2.4. Preferred Embodiment Here, an example in which CdTe crystals are epitaxially grown on a {211} Si substrate using the vapor deposition apparatus 100 shown in FIG. 1 will be described.
<Preparation of substrate and installation in reactor>
A {211} Si substrate having a surface oxide film is prepared. The surface oxide film may be a natural oxide film or a chemical oxide film formed by the procedure used in the Ishizaka-Shiraki method.
Next, after setting the prepared {211} Si substrate on the susceptor 112, the susceptor is placed in a zone surrounded by the first heater 113 in an annular shape in the reactor 111.
The metal Cd is introduced into the Cd reservoir before the Si substrate is installed in the reactor.
<基板のベーキング>
 リアクター111内にSi基板を設置した後、該リアクター内にHを含むベーキングガスを供給する。
 気相堆積装置100にベーキングガス用の配管を設ける必要はなく、第一キャリアガス、第三キャリアガスおよび/またはバリアガスを供給するための配管を利用して、ベーキングガスをリアクター111内に供給することができる。第一キャリアガス、第三キャリアガスおよび/またはバリアガスの組成と、ベーキングガスの組成とを、同じとすることもできる。
 ベーキングガスの供給開始以降は、排気口119に接続した外部の排気手段、例えばファンを用いて、リアクター111内の圧力を例えば0.8~1.0atmの範囲内に制御する。
<Baking of substrate>
After the Si substrate is installed in the reactor 111, a baking gas containing H 2 is supplied into the reactor.
It is not necessary to provide piping for baking gas in the vapor deposition apparatus 100, and the baking gas is supplied into the reactor 111 by using piping for supplying the first carrier gas, the third carrier gas, and / or the barrier gas. be able to. The composition of the first carrier gas, the third carrier gas, and / or the barrier gas may be the same as the composition of the baking gas.
After the start of the supply of the baking gas, the pressure in the reactor 111 is controlled within a range of 0.8 to 1.0 atm, for example, using an external exhaust means connected to the exhaust port 119, for example, a fan.
 リアクター内がベーキングガスで置換された後、第一ヒーター113による基板の加熱を開始する。
 ベーキング温度は、好ましくは900℃以上、より好ましくは1000℃以上である。リアクター111が石英管チャンバーである場合、ベーキング温度は1300℃以下とすることが好ましい。ベーキング温度は1100℃以下でも目的を達成することが可能である。
 {211}Si基板が有する表面酸化膜の厚さにもよるが、ベーキング時間は好ましくは30分以上である。
After the inside of the reactor is replaced with baking gas, heating of the substrate by the first heater 113 is started.
The baking temperature is preferably 900 ° C. or higher, more preferably 1000 ° C. or higher. When the reactor 111 is a quartz tube chamber, the baking temperature is preferably 1300 ° C. or lower. The object can be achieved even when the baking temperature is 1100 ° C. or lower.
Although depending on the thickness of the surface oxide film of the {211} Si substrate, the baking time is preferably 30 minutes or more.
<CdTeの堆積>
 ベーキング後、第一ヒーター113の出力を下げて、{211}Si基板の温度を所定の堆積温度まで下げる。ベーキングガスは、基板温度を降下させている間も流し続ける。基板をリアクター111から取り出す必要はなく、CdTeの堆積開始までの間、基板表面はベーキングにより清浄化されたままの状態に保たれる。基板をリアクターから取り出す必要がないことは、プロセスを簡略化できるという点でも好都合である。
<Deposition of CdTe>
After baking, the output of the first heater 113 is lowered to lower the temperature of the {211} Si substrate to a predetermined deposition temperature. The baking gas continues to flow while the substrate temperature is lowered. There is no need to remove the substrate from the reactor 111, and the substrate surface remains cleaned by baking until the beginning of CdTe deposition. The fact that the substrate does not have to be removed from the reactor is also advantageous in that the process can be simplified.
 基板温度の制御と同時に、第二ヒーター115によってCdリザーバー114内の金属Cdを融点より高い所定温度まで加熱し、融解させる。
 金属Cdの温度は、基板温度より低く設定することが好ましく、より好ましくは金属Cdと基板の温度差を100℃以上とする。そうすることによって、基板上に金属Cdが堆積することを防止できる。
 基板および金属Cdの温度がそれぞれ所定値に達したら、第一キャリアガス、第三キャリアガスおよびバリアガスの組成および流量を各々所定の組成および値に設定するとともに、第二キャリアガスの供給を開始する。
 第一キャリアガス、第二キャリアガス、第三キャリアガスおよびバリアガスの組成は、それぞれ100%Hであることが好ましいが、限定はされない。各ガスは、CdTe結晶のエピタキシャル成長が阻害されない限りで、H以外のガスを含んでもよい。H以外のガスの一例は不活性ガス、すなわちNまたは希ガス(He、Ne、Ar等)であるが、限定はされない。
Simultaneously with the control of the substrate temperature, the metal Cd in the Cd reservoir 114 is heated to a predetermined temperature higher than the melting point by the second heater 115 and melted.
The temperature of the metal Cd is preferably set lower than the substrate temperature, and more preferably the temperature difference between the metal Cd and the substrate is 100 ° C. or more. By doing so, it is possible to prevent the metal Cd from being deposited on the substrate.
When the temperatures of the substrate and the metal Cd reach predetermined values, the compositions and flow rates of the first carrier gas, the third carrier gas, and the barrier gas are set to predetermined compositions and values, respectively, and the supply of the second carrier gas is started. .
The compositions of the first carrier gas, the second carrier gas, the third carrier gas, and the barrier gas are each preferably 100% H 2 , but are not limited thereto. Each gas may contain a gas other than H 2 as long as the epitaxial growth of the CdTe crystal is not inhibited. An example of a gas other than H 2 is an inert gas, that is, N 2 or a rare gas (He, Ne, Ar, etc.), but is not limited thereto.
 第二キャリアガスの供給を開始すると、バブラー120で発生する有機Te化合物蒸気がTe源供給管117を通してリアクター111内に輸送される。リアクター111内に運ばれた有機Te化合物蒸気は、第一ヒーター113による加熱を受けて分解するとともに、金属Cdの気化により生じた単体Cd蒸気と反応してCdTeを生じる。生成したCdTeの少なくとも一部が、{211}Si基板上に堆積する。この際の堆積温度は570℃以上であってよく、600℃以上であってよい。 When the supply of the second carrier gas is started, the organic Te compound vapor generated in the bubbler 120 is transported into the reactor 111 through the Te source supply pipe 117. The organic Te compound vapor carried into the reactor 111 is decomposed by being heated by the first heater 113, and reacts with simple Cd vapor generated by vaporization of the metal Cd to generate CdTe. At least a part of the generated CdTe is deposited on the {211} Si substrate. The deposition temperature at this time may be 570 ° C. or higher, and may be 600 ° C. or higher.
 堆積条件が適切に設定されたとき、{211}Si基板上ではCdTe結晶がエピタキシャル成長する。好ましい例では、CdTe結晶の二次元成長が起こる。特に好ましい例では、二次元成長したCdTe結晶の2θ/ωスキャンから得られるXRDパターンが有するピークが、CdTe{422}ピークのみとなる。 When the deposition conditions are set appropriately, CdTe crystals grow epitaxially on the {211} Si substrate. In a preferred example, two-dimensional growth of CdTe crystals occurs. In a particularly preferable example, the peak of the XRD pattern obtained from the 2θ / ω scan of the two-dimensionally grown CdTe crystal is only the CdTe {422} peak.
3.単結晶CdTe基板へのCdTeのエピタキシャル成長方法
 実施形態に係る単結晶CdTe基板へのCdTeのエピタキシャル成長方法は、単体Cdと単体Te又は有機Te化合物をそれぞれCd源およびTe源に用いて、該単結晶CdTe基板の表面上にCdTeを気相から堆積させる成長ステップ、を有する。
 前記成長方法は、さらに単結晶CdTe基板を準備する準備ステップ、及び該準備した単結晶CdTe基板を、還元性ガス又は不活性ガス中でベークするベーキングステップ、を含むことが好ましい。準備ステップとベーキングステップは前記成長ステップの前に実施されることが好ましい。
3. CdTe Epitaxial Growth Method on Single Crystal CdTe Substrate An epitaxial growth method of CdTe on a single crystal CdTe substrate according to an embodiment uses single Cd and single Te or an organic Te compound as a Cd source and a Te source, respectively. A growth step of depositing CdTe from the vapor phase on the surface of the substrate.
Preferably, the growth method further includes a preparation step of preparing a single crystal CdTe substrate and a baking step of baking the prepared single crystal CdTe substrate in a reducing gas or an inert gas. The preparation step and the baking step are preferably performed before the growth step.
3A.単結晶CdTe基板上のCdTeのエピタキシャル成長方法
 実施形態に係るCdTeのエピタキシャル成長方法は、主たるステップとして、次の2つのステップを有してもよい。
(i)単結晶CdTe基板を準備する第一Bステップ。
(ii)単体Cdと単体Te又は有機Te化合物をそれぞれCd源およびTe源に用いて、該CdTe基板の表面上にCdTeを気相から堆積させる第二Bステップ。
 以下、各ステップを具体的に説明する。
3A. CdTe Epitaxial Growth Method on Single Crystal CdTe Substrate The CdTe epitaxial growth method according to the embodiment may include the following two steps as main steps.
(I) First B step of preparing a single crystal CdTe substrate.
(Ii) Second B step of depositing CdTe from the vapor phase on the surface of the CdTe substrate using simple Cd and simple Te or organic Te compound as the Cd source and Te source, respectively.
Each step will be specifically described below.
3A.1.第一Bステップ
 第一Bステップでは、その上にCdTeをエピタキシャル成長させるべき基板として単結晶CdTe基板を準備する。好ましい単結晶CdTe基板は、基板の入手しやすさの点から{211}CdTe基板、{111}CdTe基板、{100}CdTe基板であるが、限定されない。
 CdTeは、CdTeバルク基板でも、異種基板上に成長したCdTe層でもよく、市販のものや非特許文献1~3等に記載の公知の方法で得られる。また、単結晶Si基板に、第二Bステップと同様に単体Cdと単体Te又は有機Te化合物をそれぞれCd源およびTe源に用いて製造してもよい。
 単結晶のSi基板に第二Bステップを適用する場合は、事前に単結晶Si基板を、還元性ガス又は不活性ガス、好ましくはHを含むベーキングガス流中でベークし、その表面を清浄化する。このステップを実行することによって、単体Cdと単体Te又は有機Te化合物からCdTeをエピタキシャル成長させ易くなる。
 ベーキングガスは還元性ガス又は不活性ガスが好ましく、還元性ガスとしてHのみ(100%H)であることが好ましいが、限定するものではなく、N、希ガス(He、Ne、Ar等)等の不活性ガスを含有してもよい。単結晶CdTe基板の表面の清浄化が困難とならない限りで、ベーキングガスがHと不活性ガスだけでなく他のガスを含有することも許容される。ベーキング雰囲気中にGaあるいはAsが存在する必要はない。
 第一Bステップは、単結晶CdTe基板の表面上に他の成分を堆積させることなく行われることが不純物による結晶のキャリアタイプ、およびキャリア濃度制御がしやすくなる点から好ましい。具体的には、GaやAs等の元素を含む成分を含まない雰囲気で、ベーキングするといった態様が挙げられる。
3A. 1. First B Step In the first B step, a single crystal CdTe substrate is prepared as a substrate on which CdTe is to be epitaxially grown. Preferred single crystal CdTe substrates are {211} CdTe substrate, {111} CdTe substrate, and {100} CdTe substrate from the viewpoint of availability of the substrate, but are not limited thereto.
CdTe may be a CdTe bulk substrate or a CdTe layer grown on a different substrate, and can be obtained by a commercially available method or a known method described in Non-Patent Documents 1 to 3. Also, single Cd and simple Te or organic Te compound may be used for a single crystal Si substrate as in the second B step, respectively, as a Cd source and a Te source.
When the second B step is applied to a single crystal Si substrate, the single crystal Si substrate is previously baked in a reducing gas or an inert gas, preferably in a baking gas flow containing H 2 , and the surface is cleaned. Turn into. By executing this step, it becomes easy to epitaxially grow CdTe from simple Cd and simple Te or organic Te compound.
The baking gas is preferably a reducing gas or an inert gas, and is preferably only H 2 (100% H 2 ) as the reducing gas, but is not limited thereto. N 2 , noble gases (He, Ne, Ar) Etc.) may be contained. As long as it is not difficult to clean the surface of the single crystal CdTe substrate, the baking gas is allowed to contain not only H 2 and inert gas but also other gases. Ga or As need not be present in the baking atmosphere.
The first B step is preferably performed without depositing other components on the surface of the single crystal CdTe substrate from the viewpoint of easy control of the carrier type and carrier concentration of the crystal due to impurities. Specifically, the aspect of baking in the atmosphere which does not contain the component containing elements, such as Ga and As, is mentioned.
 ベーキング中の単結晶CdTe基板の温度であるベーキング温度は、CdTeの融点未満とする。ベーキング温度が高い程、表面の清浄化に必要な時間は短くなるが、ベーキング容器の熱劣化も速くなることに注意が必要である。
 単結晶CdTe基板が表面酸化膜を有する場合には、これを除去することが好ましいことから、その厚さに応じてベーキング温度およびベーキング時間を設定する。
 単結晶CdTe基板が有する表面酸化膜の少なくとも一部は、上述のベーキングの前に、湿式または乾式の化学エッチングで除去してもよい。湿式法で用い得るエッチング溶液としては、HF水溶液(フッ化水素酸)や、NHF(フッ化アンモニウム)を含む水溶液が好ましく例示される。
The baking temperature, which is the temperature of the single crystal CdTe substrate during baking, is less than the melting point of CdTe. It should be noted that the higher the baking temperature, the shorter the time required to clean the surface, but the faster the baking vessel will heat.
If the single crystal CdTe substrate has a surface oxide film, it is preferable to remove the surface oxide film, and therefore the baking temperature and baking time are set according to the thickness.
At least a part of the surface oxide film included in the single crystal CdTe substrate may be removed by wet or dry chemical etching before the above-described baking. Preferred examples of the etching solution that can be used in the wet method include an HF aqueous solution (hydrofluoric acid) and an aqueous solution containing NH 4 F (ammonium fluoride).
3A.2.第二Bステップ
 第二Bステップでは、単体Cdと有機Te化合物をそれぞれCd源およびTe源に用いて、第一Bステップで準備したCdTe基板上にCdTeを気相から堆積させる。
 具体的には、単結晶CdTe基板を内部に設置したリアクター内に、単体Cd蒸気と有機Te化合物蒸気を供給する。単結晶CdTe基板は、堆積するCdTeの結晶化に必要な最低温度よりも高い温度に加熱する。
3A. 2. Second B Step In the second B step, CdTe is deposited from the vapor phase on the CdTe substrate prepared in the first B step using simple substance Cd and organic Te compound as the Cd source and Te source, respectively.
Specifically, single Cd vapor and organic Te compound vapor are supplied into a reactor in which a single crystal CdTe substrate is installed. The single crystal CdTe substrate is heated to a temperature higher than the minimum temperature required for crystallization of the deposited CdTe.
 エピタキシャル成長したCdTe結晶の2θ/ωスキャンから得られるXRDパターンは、特定のピークが強いものとなる。例えば、{211}CdTe基板上にエピタキシャル成長したCdTe結晶の場合、2θ/ωスキャンから得られるXRDパターンにおいて{422}ピークが最も強く、2番目に強いピークの強度は、{422}ピークの1/10未満、更には1/100未満であり得る。該比率が小さい程、成長したCdTeの結晶性が高く、好ましい。 The XRD pattern obtained from the 2θ / ω scan of the epitaxially grown CdTe crystal has a strong specific peak. For example, in the case of a CdTe crystal epitaxially grown on a {211} CdTe substrate, the {422} peak is the strongest in the XRD pattern obtained from the 2θ / ω scan, and the intensity of the second strongest peak is 1 / of the {422} peak. It can be less than 10 or even less than 1/100. The smaller the ratio, the higher the crystallinity of the grown CdTe, which is preferable.
 また、例えば、{111}CdTe基板上にエピタキシャル成長したCdTe結晶の場合、2θ/ωスキャンから得られるXRDパターンにおいて{111}ピークが最も強く、2番目に強いピークの強度は、{111}ピークの1/10未満、更には1/100未満であり得る。該比率が小さい程、成長したCdTeの結晶性が高く、好ましい。 For example, in the case of a CdTe crystal epitaxially grown on a {111} CdTe substrate, the {111} peak is the strongest in the XRD pattern obtained from the 2θ / ω scan, and the intensity of the second strongest peak is the {111} peak. It can be less than 1/10, or even less than 1/100. The smaller the ratio, the higher the crystallinity of the grown CdTe, which is preferable.
 また、例えば、{100}CdTe基板上にエピタキシャル成長したCdTe結晶の場合、2θ/ωスキャンから得られるXRDパターンにおいて{400}ピークが最も強く、2番目に強いピークの強度は、{400}ピークの1/10未満、更には1/100未満であり得る。該比率が小さい程、成長したCdTeの結晶性が高く、好ましい。 Also, for example, in the case of a CdTe crystal epitaxially grown on a {100} CdTe substrate, the {400} peak is the strongest in the XRD pattern obtained from the 2θ / ω scan, and the intensity of the second strongest peak is the {400} peak It can be less than 1/10, or even less than 1/100. The smaller the ratio, the higher the crystallinity of the grown CdTe, which is preferable.
 特に好ましい例では、第二Bステップにおいて、CdTe結晶の二次元成長が生じる。二次元成長とは、結晶が基板表面を切れ目なく覆う層を形成するように成長する成長モードのことをいう。
 二次元成長により形成されるCdTe結晶層における層厚の面内変動は、中央値に対して好ましくは±50%である。
 CdTe結晶の二次元成長は、例えば、堆積温度の最適化により実現することができる。
In a particularly preferred example, two-dimensional growth of CdTe crystals occurs in the second B step. Two-dimensional growth refers to a growth mode in which a crystal grows so as to form a layer that seamlessly covers the substrate surface.
The in-plane variation of the layer thickness in the CdTe crystal layer formed by two-dimensional growth is preferably ± 50% with respect to the median value.
The two-dimensional growth of CdTe crystal can be realized, for example, by optimizing the deposition temperature.
 Te源に用いる単体Te又は有機Te化合物は特に限定されないが、有機Te化合物の好適例としては、ジメチルテルル[(CHTe]、ジエチルテルル[(CTe]、ジイソプロピルテルル[(CHCH-Te-CH(CH]、ジターシャリーブチルテルル[(CHC-Te-C(CH]およびジイソプロピルジテルル[(CHCH-Te-Te-CH(CH]が挙げられる。ここに挙げた有機Te化合物の熱分解温度はいずれも500℃以下である。
 CdTeの堆積温度は特に限定されないが、通常570℃以上、より好ましくは600℃以上であり、通常730℃以下、より好ましくは720℃以下である。
The simple Te or organic Te compound used for the Te source is not particularly limited, but preferred examples of the organic Te compound include dimethyl tellurium [(CH 3 ) 2 Te], diethyl tellurium [(C 2 H 5 ) 2 Te], and diisopropyl. Tellurium [(CH 3 ) 2 CH—Te—CH (CH 3 ) 2 ], ditertiary butyl tellurium [(CH 3 ) 3 C—Te—C (CH 3 ) 3 ] and diisopropyl ditellurium [(CH 3 ) 2 CH-Te-Te-CH (CH 3 ) 2 ]. The thermal decomposition temperatures of the organic Te compounds listed here are all 500 ° C. or lower.
The deposition temperature of CdTe is not particularly limited, but is usually 570 ° C. or higher, more preferably 600 ° C. or higher, and usually 730 ° C. or lower, more preferably 720 ° C. or lower.
3B.CdTe以外の単結晶基板上のCdTeのエピタキシャル成長方法
 別の実施形態に係るCdTeのエピタキシャル成長方法は、CdTe以外の単結晶(GaAs、サファイア、CdZnTe、CdHgTe、GaN等)基板上にCdTeのエピタキシャル成長を行う方法であり、主たるステップとして、次の2つのステップを有する。
(i)CdTe以外の単結晶基板を準備する第一Cステップ。
(ii)単体Cdと有機Te化合物をそれぞれCd源およびTe源に用いて、該単結晶基板の表面上にCdTeを気相から堆積させる第二Cステップ。
3B. CdTe Epitaxial Growth Method on Single Crystal Substrate Other than CdTe The CdTe epitaxial growth method according to another embodiment is a method of epitaxially growing CdTe on a single crystal substrate (GaAs, sapphire, CdZnTe, CdHgTe, GaN, etc.) other than CdTe. And has the following two steps as main steps.
(I) First C step of preparing a single crystal substrate other than CdTe.
(Ii) A second C step in which CdTe is deposited from the vapor phase on the surface of the single crystal substrate using simple Cd and an organic Te compound as a Cd source and a Te source, respectively.
3B.1.第一Cステップ
 第一Cステップでは、その上にCdTeをエピタキシャル成長させるべき基板としてCdTe以外の単結晶基板を準備する。好ましい単結晶基板は、GaAs、サファイア、CdZnTe、CdHgTe、GaN等の基板であるが、限定されない。なお、第一CステップおけるCdTe以外の単結晶には、Si単結晶を含まないことが好ましい。
3B. 1. First C Step In the first C step, a single crystal substrate other than CdTe is prepared as a substrate on which CdTe is to be epitaxially grown. A preferable single crystal substrate is a substrate of GaAs, sapphire, CdZnTe, CdHgTe, GaN or the like, but is not limited thereto. In addition, it is preferable that Si single crystal is not contained in single crystals other than CdTe in a 1st C step.
3B.2.第二Cステップ
 第二Cステップでは、単体Cdと単体Te又は有機Te化合物をそれぞれCd源およびTe源に用いて、第一Cステップで準備した基板上にCdTeを気相から堆積させる。
 具体的には、基板を内部に設置したリアクター内に、単体Cd蒸気と有機Te化合物蒸気を供給する。基板は、堆積するCdTeの結晶化に必要な最低温度よりも高い温度に加熱する。
3B. 2. Second C Step In the second C step, CdTe is deposited from the vapor phase on the substrate prepared in the first C step using simple Cd and simple Te or organic Te compound as the Cd source and Te source, respectively.
Specifically, single Cd vapor and organic Te compound vapor are supplied into a reactor in which a substrate is installed. The substrate is heated to a temperature higher than the minimum temperature required for crystallization of the CdTe to be deposited.
 エピタキシャル成長したCdTe結晶の2θ/ωスキャンから得られるXRDパターンは、特定のピークが強いものとなる。例えば、{211}GaAs基板上にエピタキシャル成長したCdTe結晶の場合、2θ/ωスキャンから得られるXRDパターンにおいて{422}ピークが最も強く、2番目に強いピークの強度は、{422}ピークの1/10未満、更には1/100未満であり得る。該比率が小さい程、成長したCdTeの結晶性が高く、好ましい。 The XRD pattern obtained from the 2θ / ω scan of the epitaxially grown CdTe crystal has a strong specific peak. For example, in the case of a CdTe crystal epitaxially grown on a {211} GaAs substrate, the {422} peak is the strongest in the XRD pattern obtained from the 2θ / ω scan, and the intensity of the second strongest peak is 1 / of the {422} peak. It can be less than 10 or even less than 1/100. The smaller the ratio, the higher the crystallinity of the grown CdTe, which is preferable.
 また、例えば、{111}GaAs基板上にエピタキシャル成長したCdTe結晶の場合、2θ/ωスキャンから得られるXRDパターンにおいて{111}ピークが最も強く、2番目に強いピークの強度は、{111}ピークの1/10未満、更には1/100未満であり得る。該比率が小さい程、成長したCdTeの結晶性が高く、好ましい。 For example, in the case of a CdTe crystal epitaxially grown on a {111} GaAs substrate, the {111} peak is the strongest in the XRD pattern obtained from the 2θ / ω scan, and the intensity of the second strongest peak is the {111} peak. It can be less than 1/10, or even less than 1/100. The smaller the ratio, the higher the crystallinity of the grown CdTe, which is preferable.
 また、例えば、{100}GaAs基板上にエピタキシャル成長したCdTe結晶の場合、2θ/ωスキャンから得られるXRDパターンにおいて{400}ピークが最も強く、2番目に強いピークの強度は、{400}ピークの1/10未満、更には1/100未満であり得る。該比率が小さい程、成長したCdTeの結晶性が高く、好ましい。 For example, in the case of a CdTe crystal epitaxially grown on a {100} GaAs substrate, the {400} peak is the strongest in the XRD pattern obtained from the 2θ / ω scan, and the intensity of the second strongest peak is the {400} peak. It can be less than 1/10, or even less than 1/100. The smaller the ratio, the higher the crystallinity of the grown CdTe, which is preferable.
 特に好ましい例では、第二Cステップにおいて、CdTe結晶の二次元成長が生じる。二次元成長とは、結晶が基板表面を切れ目なく覆う層を形成するように成長する成長モードのことをいう。
 二次元成長により形成されるCdTe結晶層における層厚の面内変動は、中央値に対して好ましくは±50%である。
 CdTe結晶の二次元成長は、例えば、堆積温度の最適化により実現することができる。
In a particularly preferred example, two-dimensional growth of CdTe crystals occurs in the second C step. Two-dimensional growth refers to a growth mode in which a crystal grows so as to form a layer that seamlessly covers the substrate surface.
The in-plane variation of the layer thickness in the CdTe crystal layer formed by two-dimensional growth is preferably ± 50% with respect to the median value.
The two-dimensional growth of CdTe crystal can be realized, for example, by optimizing the deposition temperature.
 Te源に用いる単体Te又は有機Te化合物は特に限定されないが、有機Te化合物の好適例としては、ジメチルテルル[(CHTe]、ジエチルテルル[(CTe]、ジイソプロピルテルル[(CHCH-Te-CH(CH]、ジターシャリーブチルテルル[(CHC-Te-C(CH]およびジイソプロピルジテルル[(CHCH-Te-Te-CH(CH]が挙げられる。ここに挙げた有機Te化合物の熱分解温度はいずれも500℃以下である。
 CdTeの堆積温度は特に限定されないが、通常570℃以上、より好ましくは600℃以上であり、通常730℃以下、より好ましくは720℃以下である。
The simple Te or organic Te compound used for the Te source is not particularly limited, but preferred examples of the organic Te compound include dimethyl tellurium [(CH 3 ) 2 Te], diethyl tellurium [(C 2 H 5 ) 2 Te], and diisopropyl. Tellurium [(CH 3 ) 2 CH—Te—CH (CH 3 ) 2 ], ditertiary butyl tellurium [(CH 3 ) 3 C—Te—C (CH 3 ) 3 ] and diisopropyl ditellurium [(CH 3 ) 2 CH-Te-Te-CH (CH 3 ) 2 ]. The thermal decomposition temperatures of the organic Te compounds listed here are all 500 ° C. or lower.
The deposition temperature of CdTe is not particularly limited, but is usually 570 ° C. or higher, more preferably 600 ° C. or higher, and usually 730 ° C. or lower, more preferably 720 ° C. or lower.
3C.好ましい実施形態
 ここでは、図1に示す気相堆積装置100を用いて、{211}CdTe基板上にCdTe結晶をエピタキシャル成長させる例について説明する。
<基板の準備およびリアクター内への設置>
 {211}CdTe基板を準備する。
 次いで、準備した{211}CdTe基板をサセプタ112上にセットしたうえで、そのサセプタをリアクター111内の、第一ヒーター113によって環状に取り囲まれたゾーンに置く。
 Cdリザーバーへの金属Cdの投入は、{211}CdTe基板をリアクター内に設置する前に済ませておく。
3C. Preferred Embodiment Here, an example of epitaxially growing a CdTe crystal on a {211} CdTe substrate using the vapor deposition apparatus 100 shown in FIG. 1 will be described.
<Preparation of substrate and installation in reactor>
A {211} CdTe substrate is prepared.
Next, after the prepared {211} CdTe substrate is set on the susceptor 112, the susceptor is placed in a zone surrounded by the first heater 113 in an annular shape in the reactor 111.
The metal Cd is charged into the Cd reservoir before the {211} CdTe substrate is installed in the reactor.
<CdTeの堆積>
 {211}CdTe基板の設置後、{211}CdTe基板の温度を所定の堆積温度に調整する。
<Deposition of CdTe>
After installing the {211} CdTe substrate, the temperature of the {211} CdTe substrate is adjusted to a predetermined deposition temperature.
 基板温度の制御と同時に、第二ヒーター115によってCdリザーバー114内の金属Cdを融点より高い所定温度まで加熱し、融解させる。
 金属Cdの温度は、基板温度より低く設定することが好ましく、より好ましくは金属Cdと基板の温度差を100℃以上とする。そうすることによって、基板上に金属Cdが堆積することを防止できる。
 基板および金属Cdの温度がそれぞれ所定値に達したら、第一キャリアガス、第三キャリアガスおよびバリアガスの組成および流量を各々所定の組成および値に設定するとともに、第二キャリアガスの供給を開始する。
 第一キャリアガス、第二キャリアガス、第三キャリアガスおよびバリアガスの組成は、それぞれ100%Hであることが好ましいが、限定はされない。各ガスは、CdTe結晶のエピタキシャル成長が阻害されない限りで、H以外のガスを含んでもよい。H以外のガスの一例は不活性ガス、すなわちNまたは希ガス(He、Ne、Ar等)であるが、限定はされない。
Simultaneously with the control of the substrate temperature, the metal Cd in the Cd reservoir 114 is heated to a predetermined temperature higher than the melting point by the second heater 115 and melted.
The temperature of the metal Cd is preferably set lower than the substrate temperature, and more preferably the temperature difference between the metal Cd and the substrate is 100 ° C. or more. By doing so, it is possible to prevent the metal Cd from being deposited on the substrate.
When the temperatures of the substrate and the metal Cd reach predetermined values, the compositions and flow rates of the first carrier gas, the third carrier gas, and the barrier gas are set to predetermined compositions and values, respectively, and the supply of the second carrier gas is started. .
The compositions of the first carrier gas, the second carrier gas, the third carrier gas, and the barrier gas are each preferably 100% H 2 , but are not limited thereto. Each gas may contain a gas other than H 2 as long as the epitaxial growth of the CdTe crystal is not inhibited. An example of a gas other than H 2 is an inert gas, that is, N 2 or a rare gas (He, Ne, Ar, etc.), but is not limited thereto.
 第二キャリアガスの供給を開始すると、バブラー120で発生する有機Te化合物蒸気がTe源供給管117を通してリアクター111内に輸送される。リアクター111内に運ばれた有機Te化合物蒸気は、第一ヒーター113による加熱を受けて分解するとともに、金属Cdの気化により生じた単体Cd蒸気と反応してCdTeを生じる。生成したCdTeの少なくとも一部が、{211}CdTe基板上に堆積する。この際の堆積温度は570℃以上であってよく、600℃以上であってよい。 When the supply of the second carrier gas is started, the organic Te compound vapor generated in the bubbler 120 is transported into the reactor 111 through the Te source supply pipe 117. The organic Te compound vapor carried into the reactor 111 is decomposed by being heated by the first heater 113, and reacts with simple Cd vapor generated by vaporization of the metal Cd to generate CdTe. At least a portion of the generated CdTe is deposited on the {211} CdTe substrate. The deposition temperature at this time may be 570 ° C. or higher, and may be 600 ° C. or higher.
 堆積条件が適切に設定されたとき、{211}CdTe基板上ではCdTe結晶がエピタキシャル成長する。好ましい例では、CdTe結晶の二次元成長が起こる。特に好ましい例では、二次元成長したCdTe結晶の2θ/ωスキャンから得られるXRDパターンが有するピークが、CdTe{422}ピークのみとなる。 When the deposition conditions are set appropriately, CdTe crystals grow epitaxially on a {211} CdTe substrate. In a preferred example, two-dimensional growth of CdTe crystals occurs. In a particularly preferable example, the peak of the XRD pattern obtained from the 2θ / ω scan of the two-dimensionally grown CdTe crystal is only the CdTe {422} peak.
4.用途
 実施形態に係るCdTeのエピタキシャル成長方法を用いることによって、単結晶Si基板上に様々な厚さのCdTe結晶層を成長させることができる。
 一例では、実施形態に係る方法で厚く成長させたCdTe結晶層から単結晶Si基板を除去して、自立基板としても利用可能なバルクCdTe結晶を得ることができる。
 他の一例では、実施形態に係る方法で成長させたCdTe結晶層を、単結晶Si基板と結合したままの状態で用いて、放射線検出器や太陽電池のような半導体デバイスを構成することができる。
4). Applications By using the CdTe epitaxial growth method according to the embodiment, CdTe crystal layers having various thicknesses can be grown on a single crystal Si substrate.
In one example, a bulk CdTe crystal that can be used as a free-standing substrate can be obtained by removing the single crystal Si substrate from the CdTe crystal layer that has been grown thick by the method according to the embodiment.
In another example, a CdTe crystal layer grown by the method according to the embodiment can be used in a state of being bonded to a single crystal Si substrate to form a semiconductor device such as a radiation detector or a solar cell. .
 上記の用途において、実施形態に係る方法をCdTe結晶の成長に用いることは、有機Cd化合物をCd源に用いてCdTe結晶を成長させる方法と比べてコスト面で有利である。なぜなら、有機Cd化合物の合成プロセスを経由することなく、単体Cdをそのまま原料として用いるからである。高純度の単体Cdは、同程度の純度の有機Cd化合物と比べて1/10程度の低価格で入手することが可能である。 In the above applications, the use of the method according to the embodiment for the growth of CdTe crystals is advantageous in terms of cost compared to the method of growing CdTe crystals using an organic Cd compound as a Cd source. This is because simple Cd is used as a raw material as it is without going through the synthesis process of the organic Cd compound. High-purity simple substance Cd can be obtained at a low price of about 1/10 compared to an organic Cd compound having the same purity.
 更に他の一例では、実施形態に係るCdTeのエピタキシャル成長方法を用いてSi基板上に形成したCdTe膜を、バッファ層として利用することができる。すなわち、単結晶Si基板上に、実施形態に係る方法でCdTeエピタキシャル膜を成長させた後、その上に更に別の半導体結晶層を成長させる。この別の半導体結晶層から、目的とするバルク半導体結晶あるいは半導体デバイスが製造される。
 ここでいう別の半導体結晶層は、HgCdTeのような、CdTeとは異なる組成の半導体であり得る他、本発明とは異なる方法を用いて成長されるCdTeであり得る。
In still another example, a CdTe film formed on a Si substrate using the CdTe epitaxial growth method according to the embodiment can be used as a buffer layer. That is, after a CdTe epitaxial film is grown on the single crystal Si substrate by the method according to the embodiment, another semiconductor crystal layer is grown on the CdTe epitaxial film. A target bulk semiconductor crystal or semiconductor device is manufactured from this other semiconductor crystal layer.
Another semiconductor crystal layer here may be a semiconductor having a composition different from that of CdTe, such as HgCdTe, or may be CdTe grown using a method different from the present invention.
 実施形態に係る方法で成長させたCdTe結晶膜をバッファ層に用いて成長させたHgCdTe結晶からは、赤外線検出器等の半導体デバイスを製造することができる。実施形態に係る方法で成長させたCdTe結晶膜をバッファ層に用いて成長させたCdTe結晶からは、放射線検出器や太陽電池のような半導体デバイスを製造することができる。 From the HgCdTe crystal grown using the CdTe crystal film grown by the method according to the embodiment as a buffer layer, a semiconductor device such as an infrared detector can be manufactured. A semiconductor device such as a radiation detector or a solar cell can be manufactured from a CdTe crystal grown using the CdTe crystal film grown by the method according to the embodiment as a buffer layer.
 また、実施形態に係るCdTeのエピタキシャル成長方法を用いることによって、単結晶CdTe基板又はCdTe以外の単結晶基板上に様々な厚さのCdTe結晶層を成長させることができる。
 他の一例では、実施形態に係る方法で成長させたCdTe結晶層を用いて、放射線検出器や太陽電池のような半導体デバイスを構成することができる。
 上記の用途において、実施形態に係る方法をCdTe結晶の成長に用いることは、有機Cd化合物をCd源に用いてCdTe結晶を成長させる方法と比べてコスト面で有利である。なぜなら、有機Cd化合物の合成プロセスを経由することなく、単体Cdをそのまま原料として用いるからである。高純度の単体Cdは、同程度の純度の有機Cd化合物と比べて1/10程度の低価格で入手することが可能である。
Further, by using the CdTe epitaxial growth method according to the embodiment, CdTe crystal layers having various thicknesses can be grown on a single crystal CdTe substrate or a single crystal substrate other than CdTe.
In another example, a semiconductor device such as a radiation detector or a solar cell can be configured using the CdTe crystal layer grown by the method according to the embodiment.
In the above application, using the method according to the embodiment for growing a CdTe crystal is advantageous in terms of cost compared to a method of growing a CdTe crystal using an organic Cd compound as a Cd source. This is because simple Cd is used as a raw material as it is without going through the synthesis process of the organic Cd compound. High-purity simple substance Cd can be obtained at a low price of about 1/10 compared to an organic Cd compound having the same purity.
 更に他の一例では、複数枚の異種基板上にCdTeを成長させた後に、それらのエピタキシャル結晶上に本発明を用いてそれぞれ別の構造の半導体結晶層を成長させる。この別の半導体結晶層から、目的とするバルク半導体結晶あるいは半導体デバイスが製造される。 In yet another example, after CdTe is grown on a plurality of different substrates, semiconductor crystal layers having different structures are grown on the epitaxial crystals using the present invention. A target bulk semiconductor crystal or semiconductor device is manufactured from this other semiconductor crystal layer.
5.実験結果A
 図1に示す気相堆積装置と同じ基本構成を備える気相堆積装置を用いて、(211)Si基板上へのCdTe堆積を試みた。有機Te化合物にはジイソプロピルテルル(DiPTe)を用いた。気相堆積装置のリアクターは、石英管を用いて作製した。リアクターの排気口は、排気ファンを備えたスクラバーに接続した。
5). Experimental result A
CdTe deposition on a (211) Si substrate was attempted using a vapor deposition apparatus having the same basic configuration as the vapor deposition apparatus shown in FIG. Diisopropyl tellurium (DiPTe) was used as the organic Te compound. The reactor of the vapor deposition apparatus was manufactured using a quartz tube. The exhaust port of the reactor was connected to a scrubber equipped with an exhaust fan.
5.1.実験A1
 市販の(211)Si基板に対し、石坂-白木法で用いられる手順に則って化学酸化処理を施した。該化学酸化処理をした(211)Si基板を気相堆積装置のリアクター内にセットし、次いで、キャリアガス用の配管およびバリアガス用の配管を通してリアクター内にHを導入した。流量は4460sccmとした。
 リアクター内がHで置換された後、ベーキング温度1050℃、ベーキング時間30分の条件で、該基板をベークした。リアクター内の全圧は1atmとした(以後のステップにおいても同様とした)。
5.1. Experiment A1
A commercially available (211) Si substrate was subjected to chemical oxidation treatment in accordance with the procedure used in the Ishizaka-Shiragi method. The chemically oxidized (211) Si substrate was set in a reactor of a vapor deposition apparatus, and then H 2 was introduced into the reactor through a carrier gas pipe and a barrier gas pipe. The flow rate was 4460 sccm.
After the inside of the reactor was replaced with H 2 , the substrate was baked under the conditions of a baking temperature of 1050 ° C. and a baking time of 30 minutes. The total pressure in the reactor was 1 atm (the same applies to the subsequent steps).
 ベーキング後、リアクター内にHを流したままヒーター出力を制御して、基板温度を所定の堆積温度まで低下させた。同時に、リアクター内に設置したリザーバー内の金属Cdを、融点より高い455℃となるように加熱した。
 基板と金属Cdがそれぞれ目標温度に達したところで、リアクター内に流すキャリアガスおよびバリアガスの流量を所定値に調整した。バブラーへのキャリアガス(バブリングガス)の供給は、このタイミングで開始した。バブリング温度は29℃とした。
 堆積温度は、500℃、550℃、600℃、650℃および700℃の5通りとした。
After baking, the heater output was controlled with H 2 flowing in the reactor to lower the substrate temperature to a predetermined deposition temperature. At the same time, the metal Cd in the reservoir installed in the reactor was heated to 455 ° C. higher than the melting point.
When the substrate and the metal Cd reached the target temperature, the flow rates of the carrier gas and the barrier gas flowing into the reactor were adjusted to predetermined values. Supply of the carrier gas (bubble gas) to the bubbler was started at this timing. The bubbling temperature was 29 ° C.
There were five deposition temperatures of 500 ° C., 550 ° C., 600 ° C., 650 ° C. and 700 ° C.
 リアクター内に供給するキャリアガスおよびバリアガスには全てHを用い、その総流量は4420sccmに設定した。
 リアクター内のDiPTe分圧は1.2×10-4atm、Cd分圧は2.3×10-3atmに設定した。ここでいうガス分圧は、リアクター内を流れる全ガスの流量の総和に対する当該ガスの流量の比率を、全圧に乗じることにより計算した値である。
 DiPTe流量は、常法に従い、バブラー内圧力が800Torr(微加圧状態)であるとの仮定の下、バブリング温度におけるDiPTeの蒸気圧とバブリングガスの流量とから算出した。
 Cd蒸気の流量は、455℃におけるCdの蒸気圧と、Cd蒸気を輸送するために供給したキャリアガスの流量とから算出した。
 所定の堆積時間が経過したら、バブラーへのバブリングガスの供給を停止することで、リアクター内へのDiPTeの供給を停止するとともに、リアクターの加熱を停止した。
The carrier gas and barrier gas supplied into the reactor were all H 2 and the total flow rate was set to 4420 sccm.
The DiPTe partial pressure in the reactor was set to 1.2 × 10 −4 atm, and the Cd partial pressure was set to 2.3 × 10 −3 atm. The gas partial pressure referred to here is a value calculated by multiplying the total pressure by the ratio of the flow rate of the gas to the sum of the flow rates of all the gases flowing in the reactor.
The DiPTe flow rate was calculated from the vapor pressure of DiPTe at the bubbling temperature and the flow rate of the bubbling gas under the assumption that the internal pressure of the bubbler was 800 Torr (slightly pressurized state).
The flow rate of Cd vapor was calculated from the vapor pressure of Cd at 455 ° C. and the flow rate of the carrier gas supplied to transport the Cd vapor.
When the predetermined deposition time had elapsed, the supply of bubbling gas to the bubbler was stopped, whereby the supply of DiPTe into the reactor was stopped and the heating of the reactor was stopped.
 リアクター内の温度が室温に下がった後、(211)Si基板をリアクターから取り出し、該基板上に堆積したCdTe膜のSEM観察およびXRD分析を行った。
 図5(a)~(e)に、異なる温度で堆積させた5種類のCdTe膜の鳥瞰SEM像をそれぞれ示す。
After the temperature in the reactor dropped to room temperature, the (211) Si substrate was taken out of the reactor, and SEM observation and XRD analysis of the CdTe film deposited on the substrate were performed.
5A to 5E show bird's-eye SEM images of five types of CdTe films deposited at different temperatures, respectively.
 図5(a)および(b)が示すように、500℃および550℃で堆積されたCdTe膜は、サイズ1μm未満の細かい結晶粒子の集合体であった。
 図5(c)および(d)に示す、600℃および650℃で堆積されたCdTe膜においては、別途測定した断面SEM像から、結晶が二次元成長していることが確認された。図6(a)および(b)は、それぞれ、600℃および650℃で堆積されたCdTe膜の断面SEM像であり、(211)Si基板の表面を切れ目なく覆うCdTe結晶層が形成されていることが分かる。
 図5(e)が示すように、700℃で堆積されたCdTe膜は、各々が10μmオーダーのサイズを有する粗大な結晶粒の集合体であった。
As shown in FIGS. 5A and 5B, the CdTe film deposited at 500 ° C. and 550 ° C. was an aggregate of fine crystal particles having a size of less than 1 μm.
In the CdTe films deposited at 600 ° C. and 650 ° C. shown in FIGS. 5C and 5D, it was confirmed from the cross-sectional SEM images measured separately that the crystals were two-dimensionally grown. 6A and 6B are cross-sectional SEM images of CdTe films deposited at 600 ° C. and 650 ° C., respectively, and (211) a CdTe crystal layer that seamlessly covers the surface of the Si substrate is formed. I understand that.
As shown in FIG. 5E, the CdTe films deposited at 700 ° C. were aggregates of coarse crystal grains each having a size on the order of 10 μm.
 XRD分析では、(211)Si基板の表面に堆積されたCdTe膜の表面に、図7に示すようにX線を入射して2θ/ωスキャンを行った。
 <XRD分析>
 分析装置:Philips X’Pert
 X線源:CuKα(45kV、40mA)
 入射側光学系:ハイブリッド2バウンスモノクロメーター
 発散スリット(入射):1/2度
 受光側光学系:平板コリメーター(0.27mm)
 2θ/ωスキャンから得た上記5種類のCdTe膜のXRDパターン(線源:CuKα)を図8(a)~(e)に示す。
 図8(a)および(b)に示すように、500℃および550℃で堆積されたCdTe膜のXRDパターンには、他のピークより有意に高い強度を有する特定のピークは観察されなかった。
 それに対し、図8(c)~(e)に示すように、堆積温度が600℃以上のCdTe膜では、CdTe(422)ピークの強度が他のピークより有意に高く、少なくとも一部の結晶がエピタキシャル成長していることが分かった。
In the XRD analysis, X-rays were incident on the surface of the CdTe film deposited on the surface of the (211) Si substrate and 2θ / ω scan was performed as shown in FIG.
<XRD analysis>
Analyzer: Philips X'Pert
X-ray source: CuKα (45 kV, 40 mA)
Incident side optical system: Hybrid 2 bounce monochromator Divergence slit (incident): 1/2 degree Light receiving side optical system: Flat plate collimator (0.27 mm)
FIGS. 8A to 8E show XRD patterns (ray source: CuKα) of the five types of CdTe films obtained from the 2θ / ω scan.
As shown in FIGS. 8 (a) and (b), no specific peak having a significantly higher intensity than the other peaks was observed in the XRD pattern of the CdTe film deposited at 500 ° C. and 550 ° C.
In contrast, as shown in FIGS. 8C to 8E, in the CdTe film having a deposition temperature of 600 ° C. or higher, the intensity of the CdTe (422) peak is significantly higher than the other peaks, and at least some of the crystals It turns out that it is growing epitaxially.
 特に、図8(c)に示すように、600℃で堆積されたCdTe膜のXRDパターンが有するピークは、CdTe(422)ピークのみであった。このCdTe膜において(422)反射のωスキャンX線ロッキングカーブ(線源:CuKα)を測定したところ、図9に示すように、シングルピークが得られた。
 (422)反射のωスキャンX線ロッキングカーブを測定したとき、半値幅が最も狭かったのは、650℃で堆積されたCdTe膜であった。ただし、図8(d)に示すように、このCdTe膜のXRDパターンには(331)ピークも観察された。
In particular, as shown in FIG. 8C, the peak of the XRD pattern of the CdTe film deposited at 600 ° C. was only the CdTe (422) peak. When a ω-scan X-ray rocking curve (source: CuKα) of (422) reflection was measured in this CdTe film, a single peak was obtained as shown in FIG.
(422) When the reflection ω-scan X-ray rocking curve was measured, the CdTe film deposited at 650 ° C. had the narrowest half width. However, as shown in FIG. 8D, a (331) peak was also observed in the XRD pattern of this CdTe film.
 SEM観察から、600℃および650℃で堆積されたCdTe膜の厚さはいずれも2.5μmであった。リアクターへのDiPTeの供給開始から供給停止までの時間を堆積時間として計算した堆積レートは、いずれも10μm/hであった。 From the SEM observation, the thicknesses of the CdTe films deposited at 600 ° C. and 650 ° C. were both 2.5 μm. The deposition rate calculated from the time from the start of supply of DiPTe to the reactor to the stop of supply as the deposition time was 10 μm / h.
5.2.実験A2
 基板の意図的な化学酸化処理を行わなかったこと、CdTe堆積前の基板のベーキング条件を、ベーキング温度800℃、ベーキング時間5分としたこと、更に、堆積温度を420℃、550℃、600℃、650℃、700℃および750℃の6通りとしたこと以外、実験A1と同様にして、(211)Si基板上へのCdTeの堆積を試みた。
5.2. Experiment A2
The intentional chemical oxidation treatment of the substrate was not performed, the substrate baking conditions before CdTe deposition were a baking temperature of 800 ° C., a baking time of 5 minutes, and the deposition temperature was 420 ° C., 550 ° C., 600 ° C. Attempts were made to deposit CdTe on a (211) Si substrate in the same manner as in Experiment A1, except that the temperature was 650 ° C, 700 ° C, and 750 ° C.
 結果は、堆積温度が420~700℃のときに、基板上にCdTe膜が形成された。堆積温度が750℃のときは、SEMで観察可能な堆積物は基板上に認められず、堆積よりもエッチングが優勢であったことが示唆された。
 420℃で堆積されたCdTe膜は、成分元素としてCdとTeを含んでいたが、XRD分析ではCdTe結晶に特有の回折ピークが全く観測されなかったので、アモルファスと考えられた。
As a result, when the deposition temperature was 420 to 700 ° C., a CdTe film was formed on the substrate. When the deposition temperature was 750 ° C., no deposits observable by SEM were found on the substrate, suggesting that etching was dominant over deposition.
Although the CdTe film deposited at 420 ° C. contained Cd and Te as component elements, no diffraction peak peculiar to the CdTe crystal was observed in the XRD analysis, so it was considered amorphous.
 550~700℃で堆積されたCdTe膜は、XRD分析によってCdTe結晶を含んでいることが確認できた。
 しかし、XRDパターンには複数のピークが観察され、しかも、その複数のピーク間の強度比は、CdTeの粉末XRDパターンにおけるそれとよく一致していた。このことから、膜を構成するCdTe結晶の配向はランダムであり、エピタキシャル成長は起こらなかったことが分かった。
 実験A2でエピタキシャル成長が起こらなかった原因のひとつは、(211)Si基板が表面に有していた自然酸化膜が、実験A2で用いたベーキング条件では除去できなかったためであると、本発明者等は推測している。
The CdTe film deposited at 550 to 700 ° C. was confirmed to contain CdTe crystals by XRD analysis.
However, a plurality of peaks were observed in the XRD pattern, and the intensity ratio between the plurality of peaks was in good agreement with that in the powder XRD pattern of CdTe. From this, it was found that the orientation of the CdTe crystal constituting the film was random and epitaxial growth did not occur.
One reason why the epitaxial growth did not occur in the experiment A2 is that the (211) natural oxide film on the surface of the Si substrate could not be removed under the baking conditions used in the experiment A2. Guess.
5.3.実験A3
 基板Aとして、実験A1と同じく、市販の(211)Si基板に、石坂-白木法で用いられる手順に則って化学酸化処理を施したものを準備した。
 基板Bとして、基板Aを100℃に加熱したIPA(イソプロパノール)中に浸漬して10分間洗浄し、次いで1%HF水溶液に30秒間浸漬した後、純水洗浄したものを準備した。基板Bの表面は疎水性となっており、よく水をはじいた。
 基板Cとして、市販の(211)Si基板を100℃に加熱したIPA(イソプロパノール)中に浸漬して10分間洗浄し、次いで、1%HF水溶液に30秒間浸漬した後、純水洗浄したものを準備した。基板Cの表面は疎水性となっており、よく水をはじいた。
5.3. Experiment A3
As substrate A, a commercially available (211) Si substrate prepared by chemical oxidation treatment according to the procedure used in the Ishizaka-Shiraki method was prepared as in Experiment A1.
As the substrate B, a substrate A was immersed in IPA (isopropanol) heated to 100 ° C. and washed for 10 minutes, then immersed in a 1% HF aqueous solution for 30 seconds, and then washed with pure water. The surface of the substrate B was hydrophobic and repelled water well.
As substrate C, a commercially available (211) Si substrate was immersed in IPA (isopropanol) heated to 100 ° C. and washed for 10 minutes, then immersed in a 1% HF aqueous solution for 30 seconds, and then washed with pure water. Got ready. The surface of the substrate C was hydrophobic and repelled water well.
 上記基板A~Cの各々の上に、600℃でCdTeを堆積させた。CdTe堆積前の基板のベーキングを行わないか、あるいは、表1に示すベーキング条件1~3のいずれかを用いて行ったことを除き、手順および条件は実験A1と同じとした。ベーキング条件1~3のいずれにおいても、ベーキングガスはHのみとし、その流量は実験A1と同じとした。 CdTe was deposited at 600 ° C. on each of the substrates A to C. The procedure and conditions were the same as in Experiment A1, except that the substrate before CdTe deposition was not baked or was performed using any of baking conditions 1 to 3 shown in Table 1. In any of baking conditions 1 to 3, the baking gas was only H 2 and the flow rate was the same as in Experiment A1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 結果を表2に示す。 The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2において、「多結晶成長」は、(211)Si基板上に堆積したCdTe膜が多結晶膜だったことを示し、「エピタキシャル成長」は、該CdTe膜がエピタキシャル成長膜だったことを示す。
 表2に示すように、CdTe堆積前に基板のベーキングを行わなかった場合には、基板A~C上に堆積したCdTe膜はいずれも多結晶膜であった。ベーキング条件1で基板をベークした場合も同様であった。
 一方、CdTe堆積前に、ベーキング条件3で基板をベークした場合には、基板A~Cのいずれの上においても、CdTe結晶のエピタキシャル成長が生じた。
In Table 2, “polycrystalline growth” indicates that the CdTe film deposited on the (211) Si substrate is a polycrystalline film, and “epitaxial growth” indicates that the CdTe film is an epitaxially grown film.
As shown in Table 2, when the substrate was not baked before CdTe deposition, the CdTe films deposited on the substrates A to C were all polycrystalline films. The same was true when the substrate was baked under baking conditions 1.
On the other hand, when the substrate was baked under baking condition 3 before CdTe deposition, epitaxial growth of CdTe crystals occurred on any of the substrates A to C.
 ベーキング条件2、すなわち、ベーキング温度900℃、ベーキング時間30分という条件で、CdTe堆積前の基板ベーキングを行った場合は、基板Aとそれ以外の基板との間で異なる結果が生じた。すなわち、表2に示すように、基板A上に堆積したCdTe膜は多結晶膜であったのに対し、基板B上と基板C上に成長したCdTe膜はエピタキシャル成長膜であった。
 基板A~C上にそれぞれ成長したCdTe膜の、2θ/ωスキャンから得たXRDパターン(線源:CuKα)を、図10(a)~(c)にそれぞれ示す。
When substrate baking before CdTe deposition was performed under baking conditions 2, that is, a baking temperature of 900 ° C. and a baking time of 30 minutes, different results were produced between the substrate A and the other substrates. That is, as shown in Table 2, the CdTe film deposited on the substrate A was a polycrystalline film, whereas the CdTe films grown on the substrate B and the substrate C were epitaxially grown films.
FIGS. 10A to 10C show XRD patterns (radiation source: CuKα) obtained from the 2θ / ω scan of the CdTe films grown on the substrates A to C, respectively.
6.実験結果B
 図1に示す気相堆積装置と同じ基本構成を備える気相堆積装置を用いて、{211}CdTe基板上へのCdTe堆積を試みた。有機Te化合物にはジイソプロピルテルル(DiPTe)を用いた。気相堆積装置のリアクターは、石英管を用いて作製した。リアクターの排気口は、排気ファンを備えたスクラバーに接続した。
6). Experimental result B
Using a vapor deposition apparatus having the same basic configuration as the vapor deposition apparatus shown in FIG. 1, CdTe deposition on a {211} CdTe substrate was attempted. Diisopropyl tellurium (DiPTe) was used as the organic Te compound. The reactor of the vapor deposition apparatus was manufactured using a quartz tube. The exhaust port of the reactor was connected to a scrubber equipped with an exhaust fan.
6.1.実験B1 (211)CdTe基板の準備
 市販の(211)Si基板に対し、石坂-白木法で用いられる手順に則って化学酸化処理を施した。該化学酸化処理をした(211)Si基板を気相堆積装置のリアクター内にセットし、次いで、キャリアガス用の配管およびバリアガス用の配管を通してリアクター内にHを導入した。流量は4460sccmとした。
 リアクター内がHで置換された後、ベーキング温度1000℃、ベーキング時間30分の条件で、該基板をベークした。リアクター内の全圧は1atmとした(以後のステップにおいても同様とした)。
6.1. Experiment B1 Preparation of (211) CdTe Substrate A commercially available (211) Si substrate was subjected to a chemical oxidation treatment according to the procedure used in the Ishizaka-Shiragi method. The chemically oxidized (211) Si substrate was set in a reactor of a vapor deposition apparatus, and then H 2 was introduced into the reactor through a carrier gas pipe and a barrier gas pipe. The flow rate was 4460 sccm.
After the inside of the reactor was replaced with H 2 , the substrate was baked under the conditions of a baking temperature of 1000 ° C. and a baking time of 30 minutes. The total pressure in the reactor was 1 atm (the same applies to the subsequent steps).
 ベーキング後、リアクター内にHを流したままヒーター出力を制御して、基板温度を所定の堆積温度まで低下させた。同時に、リアクター内に設置したリザーバー内の金属Cdを、融点より高い455℃となるように加熱した。
 基板と金属Cdがそれぞれ目標温度に達したところで、リアクター内に流すキャリアガスおよびバリアガスの流量を所定値に調整した。バブラーへのキャリアガス(バブリングガス)の供給は、このタイミングで開始した。バブリング温度は29℃とした。
 堆積温度は、625℃とした。
After baking, the heater output was controlled with H 2 flowing in the reactor to lower the substrate temperature to a predetermined deposition temperature. At the same time, the metal Cd in the reservoir installed in the reactor was heated to 455 ° C. higher than the melting point.
When the substrate and the metal Cd reached the target temperature, the flow rates of the carrier gas and the barrier gas flowing into the reactor were adjusted to predetermined values. Supply of the carrier gas (bubble gas) to the bubbler was started at this timing. The bubbling temperature was 29 ° C.
The deposition temperature was 625 ° C.
 リアクター内に供給するキャリアガスおよびバリアガスには全てHを用い、その総流量は4420sccmに設定した。
 リアクター内のDiPTe分圧は1.2×10-4atm、Cd分圧は2.3×10-3atmに設定した。ここでいうガス分圧は、リアクター内を流れる全ガスの流量の総和に対する当該ガスの流量の比率を、全圧に乗じることにより計算した値である。
 DiPTe流量は、常法に従い、バブラー内圧力が800Torr(微加圧状態)であるとの仮定の下、バブリング温度におけるDiPTeの蒸気圧とバブリングガスの流量とから算出した。
 Cd蒸気の流量は、455℃におけるCdの蒸気圧と、Cd蒸気を輸送するために供給したキャリアガスの流量とから算出した。
 1時間の堆積後、バブラーへのバブリングガスの供給を停止することで、リアクター内へのDiPTeの供給を停止するとともに、リアクターの加熱を停止した。
The carrier gas and barrier gas supplied into the reactor were all H 2 and the total flow rate was set to 4420 sccm.
The DiPTe partial pressure in the reactor was set to 1.2 × 10 −4 atm, and the Cd partial pressure was set to 2.3 × 10 −3 atm. The gas partial pressure referred to here is a value calculated by multiplying the total pressure by the ratio of the flow rate of the gas to the sum of the flow rates of all the gases flowing in the reactor.
The DiPTe flow rate was calculated from the vapor pressure of DiPTe at the bubbling temperature and the flow rate of the bubbling gas under the assumption that the internal pressure of the bubbler was 800 Torr (slightly pressurized state).
The flow rate of Cd vapor was calculated from the vapor pressure of Cd at 455 ° C. and the flow rate of the carrier gas supplied to transport the Cd vapor.
After the deposition for 1 hour, the supply of DiPTe into the reactor was stopped and the heating of the reactor was stopped by stopping the supply of the bubbling gas to the bubbler.
 リアクター内の温度が室温に下がった後、CdTeを堆積した(211)Si基板をリアクターから取り出し、該基板上に堆積したCdTe膜のSEM観察およびXRD分析を行った。
 図11に、堆積させたCdTe膜の鳥瞰及び断面SEM像を示す。
After the temperature in the reactor dropped to room temperature, the (211) Si substrate on which CdTe was deposited was taken out of the reactor, and SEM observation and XRD analysis of the CdTe film deposited on the substrate were performed.
FIG. 11 shows a bird's-eye view and a cross-sectional SEM image of the deposited CdTe film.
 断面SEM像から、結晶が二次元成長していることが確認され、CdTe堆積膜厚は、15.3μmであった。リアクターへのDiPTeの供給開始から供給停止までの時間を堆積時間として計算した堆積レートは、いずれも15.3μm/hであった。 From the cross-sectional SEM image, it was confirmed that the crystal was grown two-dimensionally, and the CdTe deposition film thickness was 15.3 μm. The deposition rate calculated from the time from the start of supply of DiPTe to the reactor to the stop of supply as the deposition time was 15.3 μm / h.
 XRD分析では、(211)Si基板の表面に堆積されたCdTe膜の表面に、図12に示すようにX線を入射して2θ/ωスキャンを行った。
 <XRD分析>
 分析装置:Philips X’Pert
 X線源:CuKα(45kV、40mA)
 入射側光学系:ハイブリッド2バウンスモノクロメーター
 発散スリット(入射):1/2度
 受光側光学系:平板コリメーター(0.27mm)
 2θ/ωスキャンから得た上記のCdTe膜のXRDパターン(線源:CuKα)及びωスキャンX線ロッキングカーブを図13、14にそれぞれに示す。
 図13に示すように、CdTe(422)ピークのみが検出され、他の面方位からの反射は観察されなかった。この結果は(211)Si上に(211)CdTe結晶がエピタキシャル成長していることを示している。
 また、(422)反射のωスキャンX線ロッキングカーブの半値幅は603秒であった。
In the XRD analysis, X-rays were incident on the surface of the CdTe film deposited on the surface of the (211) Si substrate and 2θ / ω scan was performed as shown in FIG.
<XRD analysis>
Analyzer: Philips X'Pert
X-ray source: CuKα (45 kV, 40 mA)
Incident side optical system: Hybrid 2 bounce monochromator Divergence slit (incident): 1/2 degree Light receiving side optical system: Flat plate collimator (0.27 mm)
The XRD pattern (source: CuKα) and the ω-scan X-ray rocking curve of the CdTe film obtained from the 2θ / ω scan are shown in FIGS.
As shown in FIG. 13, only the CdTe (422) peak was detected, and no reflection from other plane orientations was observed. This result shows that (211) CdTe crystal is epitaxially grown on (211) Si.
In addition, the half width of the (422) reflection ω-scan X-ray rocking curve was 603 seconds.
6.2.実験B2 (211)CdTe基板へのCdTeの堆積
 基板として実験B1で得られた(211)CdTe基板を用い、(211)CdTe基板上へのCdTeの堆積を試みた。
6.2. Experiment B2 (211) CdTe Deposition on CdTe Substrate Using the (211) CdTe substrate obtained in Experiment B1 as the substrate, CdTe was deposited on the (211) CdTe substrate.
 実験B1で得られた(211)CdTe基板を気相堆積装置のリアクター内にセットし、次いで、キャリアガス用の配管およびバリアガス用の配管を通してリアクター内にHを導入した。流量は4460sccmとした。
 次にヒーター出力を制御して、基板温度を所定の堆積温度まで上昇させた。同時に、リアクター内に設置したリザーバー内の金属Cdを、融点より高い455℃となるように加熱した。
 基板と金属Cdがそれぞれ目標温度に達したところで、リアクター内に流すキャリアガスおよびバリアガスの流量を所定値に調整した。バブラーへのキャリアガス(バブリングガス)の供給は、このタイミングで開始した。バブリング温度は29℃とした。
 堆積温度は、625℃とした。
The (211) CdTe substrate obtained in Experiment B1 was set in the reactor of the vapor deposition apparatus, and then H 2 was introduced into the reactor through the carrier gas pipe and the barrier gas pipe. The flow rate was 4460 sccm.
Next, the heater output was controlled to raise the substrate temperature to a predetermined deposition temperature. At the same time, the metal Cd in the reservoir installed in the reactor was heated to 455 ° C. higher than the melting point.
When the substrate and the metal Cd reached the target temperature, the flow rates of the carrier gas and the barrier gas flowing into the reactor were adjusted to predetermined values. Supply of the carrier gas (bubble gas) to the bubbler was started at this timing. The bubbling temperature was 29 ° C.
The deposition temperature was 625 ° C.
 リアクター内に供給するキャリアガスおよびバリアガスには全てHを用い、その総流量は4420sccmに設定した。
 リアクター内のDiPTe分圧は1.2×10-4atm、Cd分圧は2.3×10-3atmに設定した。ここでいうガス分圧は、リアクター内を流れる全ガスの流量の総和に対する当該ガスの流量の比率を、全圧に乗じることにより計算した値である。
 DiPTe流量は、常法に従い、バブラー内圧力が800Torr(微加圧状態)であるとの仮定の下、バブリング温度におけるDiPTeの蒸気圧とバブリングガスの流量とから算出した。
 Cd蒸気の流量は、455℃におけるCdの蒸気圧と、Cd蒸気を輸送するために供給したキャリアガスの流量とから算出した。
 1時間の堆積後、バブラーへのバブリングガスの供給を停止することで、リアクター内へのDiPTeの供給を停止するとともに、リアクターの加熱を停止した。
The carrier gas and barrier gas supplied into the reactor were all H 2 and the total flow rate was set to 4420 sccm.
The DiPTe partial pressure in the reactor was set to 1.2 × 10 −4 atm, and the Cd partial pressure was set to 2.3 × 10 −3 atm. The gas partial pressure referred to here is a value calculated by multiplying the total pressure by the ratio of the flow rate of the gas to the sum of the flow rates of all the gases flowing in the reactor.
The DiPTe flow rate was calculated from the vapor pressure of DiPTe at the bubbling temperature and the flow rate of the bubbling gas under the assumption that the internal pressure of the bubbler was 800 Torr (slightly pressurized state).
The flow rate of Cd vapor was calculated from the vapor pressure of Cd at 455 ° C. and the flow rate of the carrier gas supplied to transport the Cd vapor.
After the deposition for 1 hour, the supply of DiPTe into the reactor was stopped and the heating of the reactor was stopped by stopping the supply of the bubbling gas to the bubbler.
 リアクター内の温度が室温に下がった後、(211)CdTe基板をリアクターから取り出し、該基板上に堆積したCdTe膜のSEM観察およびXRD分析を行った。
 図15に、堆積させたCdTe膜の鳥瞰及び断面SEM像を示す。
After the temperature in the reactor dropped to room temperature, the (211) CdTe substrate was taken out of the reactor, and SEM observation and XRD analysis of the CdTe film deposited on the substrate were performed.
FIG. 15 shows a bird's eye view and a cross-sectional SEM image of the deposited CdTe film.
 断面SEM像から、結晶が二次元成長していることが確認され、(211)CdTe基板に堆積された、CdTe堆積膜厚は14.3μmであった。リアクターへのDiPTeの供給開始から供給停止までの時間を堆積時間として計算した堆積レートは、いずれも14.3μm/hであった。 From the cross-sectional SEM image, it was confirmed that the crystal was grown two-dimensionally, and the CdTe deposited film thickness deposited on the (211) CdTe substrate was 14.3 μm. The deposition rate calculated from the time from the start of supply of DiPTe to the reactor to the stop of supply as the deposition time was 14.3 μm / h.
 また、2θ/ωスキャンから得た上記のCdTe膜のXRDパターン(線源:CuKα)及びωスキャンX線ロッキングカーブを図16、17にそれぞれに示す。
 図16に示すように、CdTe(211)ピークのみが検出され、他の面方位からの反射は観察されなかった。この結果は(211)CdTe基板上にCdTeがエピタキシャル成長していることを示している。
 また、(422)反射のωスキャンX線ロッキングカーブの半値幅は596秒であり、実験B2により堆積したCdTe層は、基板として用いた(211)CdTeとほぼ同等の半値幅を示したことから、結晶性は劣化していないことが示された。
FIGS. 16 and 17 show the XRD pattern (source: CuKα) and the ω-scan X-ray rocking curve of the CdTe film obtained from the 2θ / ω scan, respectively.
As shown in FIG. 16, only the CdTe (211) peak was detected, and no reflection from other plane orientations was observed. This result indicates that CdTe is epitaxially grown on the (211) CdTe substrate.
In addition, the half width of the (422) reflection ω-scan X-ray rocking curve was 596 seconds, and the CdTe layer deposited in Experiment B2 showed a half width of almost the same as (211) CdTe used as the substrate. It was shown that the crystallinity was not deteriorated.
6.3.実験B3
 実験B1において、堆積時間を30分とした以外は、実験B1と同様の方法で(211)CdTe基板を得た。
 図18に、堆積させたCdTe膜の鳥瞰及び断面SEM像を示す。
6.3. Experiment B3
In Experiment B1, a (211) CdTe substrate was obtained in the same manner as in Experiment B1, except that the deposition time was 30 minutes.
FIG. 18 shows a bird's-eye view and a cross-sectional SEM image of the deposited CdTe film.
 断面SEM像から、結晶が二次元成長していることが確認され、CdTe堆積膜厚は、7.9μmであった。リアクターへのDiPTeの供給開始から供給停止までの時間を堆積時間として計算した堆積レートは、いずれも15.8μm/hであった。 From the cross-sectional SEM image, it was confirmed that the crystal was two-dimensionally grown, and the CdTe deposition film thickness was 7.9 μm. The deposition rate calculated from the time from the start of supply of DiPTe to the reactor to the stop of supply as the deposition time was 15.8 μm / h.
 2θ/ωスキャンから得た上記のCdTe膜のXRDパターン(線源:CuKα)及びωスキャンX線ロッキングカーブを図19、20にそれぞれに示す。
 図19に示すように、CdTe(422)ピークのみが検出され、他の面方位からの反射は観察されなかった。この結果は(211)Si上にCdTe結晶がエピタキシャル成長していることを示している。
 また、(422)反射のωスキャンX線ロッキングカーブの半値幅は605秒であった。
FIGS. 19 and 20 show the XRD pattern (source: CuKα) and the ω-scan X-ray rocking curve of the CdTe film obtained from the 2θ / ω scan, respectively.
As shown in FIG. 19, only the CdTe (422) peak was detected, and no reflection from other plane orientations was observed. This result shows that CdTe crystals are epitaxially grown on (211) Si.
In addition, the half width of the (422) reflection ω-scan X-ray rocking curve was 605 seconds.
6.4.実験B4
 実験B3で得られた(211)CdTe基板上に、実験B2と同様の方法でCdTeの堆積を行った。
 図21に、堆積させたCdTe膜の鳥瞰及び断面SEM像を示す。
6.4. Experiment B4
CdTe was deposited on the (211) CdTe substrate obtained in Experiment B3 by the same method as in Experiment B2.
FIG. 21 shows a bird's-eye view and a cross-sectional SEM image of the deposited CdTe film.
 断面SEM像から、結晶が二次元成長していることが確認され、(211)CdTe基板に堆積された、CdTe堆積膜厚は11.5μmであった。リアクターへのDiPTeの供給開始から供給停止までの時間を堆積時間として計算した堆積レートは、いずれも11.5μm/hであった。 From the cross-sectional SEM image, it was confirmed that the crystal was two-dimensionally grown, and the CdTe deposited film thickness deposited on the (211) CdTe substrate was 11.5 μm. The deposition rate calculated from the time from the start of supply of DiPTe to the reactor to the stop of supply as the deposition time was 11.5 μm / h.
 また、2θ/ωスキャンから得た上記のCdTe膜のXRDパターン(線源:CuKα)及びωスキャンX線ロッキングカーブを図22、23にそれぞれに示す。
 図22に示すように、CdTe(211)ピークのみが検出され、他の面方位からの反射は観察されなかった。この結果は(211)CdTe基板上にCdTeがエピタキシャル成長していることを示している。
 また、(422)反射のωスキャンX線ロッキングカーブの半値幅は460秒であり、実験B4により堆積したCdTe層は、基板として用いた(211)CdTeより小さな半値幅を示したことから、結晶性は劣化していないことが示された。
FIGS. 22 and 23 show the XRD pattern (source: CuKα) and the ω-scan X-ray rocking curve of the CdTe film obtained from the 2θ / ω scan, respectively.
As shown in FIG. 22, only the CdTe (211) peak was detected, and no reflection from other plane orientations was observed. This result indicates that CdTe is epitaxially grown on the (211) CdTe substrate.
In addition, the (422) reflection ω-scan X-ray rocking curve had a full width at half maximum of 460 seconds, and the CdTe layer deposited in Experiment B4 showed a half width smaller than (211) CdTe used as the substrate. It was shown that the sex did not deteriorate.
6.5.実験B5
 用いる気相堆積装置の、Te源供給管と基板との距離を実験B1よりも5mm離し、また、実験B1において、堆積時間を30分とした以外は、実験B1と同様の方法で(211)CdTe基板を得た。
 図24に、堆積させたCdTe膜の鳥瞰及び断面SEM像を示す。
6.5. Experiment B5
In the vapor deposition apparatus to be used, the distance between the Te source supply pipe and the substrate is 5 mm away from Experiment B1, and in Experiment B1, the deposition time is set to 30 minutes (211). A CdTe substrate was obtained.
FIG. 24 shows a bird's-eye view and a cross-sectional SEM image of the deposited CdTe film.
 断面SEM像から、結晶が二次元成長していることが確認され、CdTe堆積膜厚は、7.9μmであった。リアクターへのDiPTeの供給開始から供給停止までの時間を堆積時間として計算した堆積レートは、いずれも15.8μm/hであった。 From the cross-sectional SEM image, it was confirmed that the crystal was two-dimensionally grown, and the CdTe deposition film thickness was 7.9 μm. The deposition rate calculated from the time from the start of supply of DiPTe to the reactor to the stop of supply as the deposition time was 15.8 μm / h.
 2θ/ωスキャンから得た上記のCdTe膜のXRDパターン(線源:CuKα)及びωスキャンX線ロッキングカーブを図25、26にそれぞれに示す。
 図25に示すように、CdTe(422)ピークのみが検出され、他の面方位からの反射は観察されなかった。この結果は(211)Si上にCdTe結晶がエピタキシャル成長していることを示している。
 また、(422)反射のωスキャンX線ロッキングカーブの半値幅は693秒であった。
The XRD pattern (source: CuKα) and the ω-scan X-ray rocking curve of the CdTe film obtained from the 2θ / ω scan are shown in FIGS. 25 and 26, respectively.
As shown in FIG. 25, only the CdTe (422) peak was detected, and no reflection from other plane orientations was observed. This result shows that CdTe crystals are epitaxially grown on (211) Si.
In addition, the half width of the (422) reflection ω-scan X-ray rocking curve was 693 seconds.
6.6.実験B6
 実験B5で得られた(211)CdTe基板上に、実験B2と同様の方法でCdTeの堆積を行った。
 図27に、堆積させたCdTe膜の鳥瞰及び断面SEM像を示す。
6.6. Experiment B6
CdTe was deposited on the (211) CdTe substrate obtained in Experiment B5 by the same method as in Experiment B2.
FIG. 27 shows a bird's-eye view and a cross-sectional SEM image of the deposited CdTe film.
 断面SEM像から、結晶が二次元成長していることが確認され、(211)CdTe基板に堆積された、CdTe堆積膜厚は12.8μmであった。リアクターへのDiPTeの供給開始から供給停止までの時間を堆積時間として計算した堆積レートは、いずれも12.8μm/hであった。 From the cross-sectional SEM image, it was confirmed that the crystal was grown two-dimensionally, and the CdTe deposited film thickness deposited on the (211) CdTe substrate was 12.8 μm. The deposition rate calculated from the time from the start of supply of DiPTe to the reactor to the stop of supply as the deposition time was 12.8 μm / h.
 また、2θ/ωスキャンから得た上記のCdTe膜のXRDパターン(線源:CuKα)及びωスキャンX線ロッキングカーブを図28、29にそれぞれに示す。
 図28に示すように、CdTe(211)ピークのみが検出され、他の面方位からの反射は観察されなかった。この結果は(211)CdTe基板上にCdTeがエピタキシャル成長していることを示している。
 また、(422)反射のωスキャンX線ロッキングカーブの半値幅は378秒であり、実験B6により堆積したCdTe層は、基板として用いた(211)CdTeよりはるかに小さな半値幅を示したことから、結晶性は良化していることが示された。
FIGS. 28 and 29 show the XRD pattern (source: CuKα) and the ω-scan X-ray rocking curve of the CdTe film obtained from the 2θ / ω scan, respectively.
As shown in FIG. 28, only the CdTe (211) peak was detected, and no reflection from other plane orientations was observed. This result indicates that CdTe is epitaxially grown on the (211) CdTe substrate.
In addition, the half width of the (422) reflection ω-scan X-ray rocking curve was 378 seconds, and the CdTe layer deposited in Experiment B6 showed a half width that was much smaller than (211) CdTe used as the substrate. It was shown that the crystallinity was improved.
100、200 気相堆積装置
111、211 リアクター
112、212 サセプタ
113、213 第一ヒーター
114、231 Cdリザーバー
115、232 第二ヒーター
116 第一キャリアガス供給管
117、217 Te源ガス供給管
118、218 バリアガス供給管
119、219 排気口
120、220 バブラー
121、221 第三キャリアガス供給管
233 Cd源供給管
234 キャリアガス供給管
100, 200 Vapor deposition apparatus 111, 211 Reactor 112, 212 Susceptor 113, 213 First heater 114, 231 Cd reservoir 115, 232 Second heater 116 First carrier gas supply pipe 117, 217 Te source gas supply pipe 118, 218 Barrier gas supply pipes 119, 219 Exhaust ports 120, 220 Bubblers 121, 221 Third carrier gas supply pipe 233 Cd source supply pipe 234 Carrier gas supply pipe

Claims (25)

  1. 単結晶Si基板上にCdTeをエピタキシャル成長させる方法であって、単体Cdと単体Te又は有機Te化合物をそれぞれCd源およびTe源に用いて、該単結晶Si基板の表面上にCdTeを気相から堆積させる成長ステップ、を有する方法。 A method of epitaxially growing CdTe on a single crystal Si substrate, wherein CdTe is deposited from the vapor phase on the surface of the single crystal Si substrate using single Cd and single Te or an organic Te compound as a Cd source and a Te source, respectively. A growth step.
  2. 単結晶Si基板を準備する準備ステップ、及び
    該準備した単結晶Si基板を、還元性ガス又は不活性ガス中でベークするベーキングステップ、を含む、請求項1に記載の方法。
    The method according to claim 1, comprising a preparation step of preparing a single crystal Si substrate, and a baking step of baking the prepared single crystal Si substrate in a reducing gas or an inert gas.
  3. 前記ベーキングステップは、前記単結晶Si基板の表面上に他の成分を堆積させることなく行われる、請求項2に記載の方法。 The method of claim 2, wherein the baking step is performed without depositing other components on the surface of the single crystal Si substrate.
  4. 前記ベーキングステップは、前記単結晶Si基板の表面を清浄化する、請求項2に記載の方法。 The method of claim 2, wherein the baking step cleans a surface of the single crystal Si substrate.
  5. 前記準備ステップで準備された単結晶Si基板は、表面酸化膜を有する、請求項2に記載の方法。 The method according to claim 2, wherein the single crystal Si substrate prepared in the preparation step has a surface oxide film.
  6. 前記単結晶Si基板は、{211}Si基板である、請求項1から5のいずれか1項に記載の方法。 The method according to claim 1, wherein the single crystal Si substrate is a {211} Si substrate.
  7. 前記ベーキングステップにおいて用いられるガスは、Hを含むガスである、請求項2に記載の方法。 The method according to claim 2, wherein the gas used in the baking step is a gas containing H 2 .
  8. 前記Te源は、有機Te化合物である、請求項1から7のいずれか1項に記載の方法。 The method according to claim 1, wherein the Te source is an organic Te compound.
  9. 前記成長ステップにおけるCdTe堆積温度が570℃以上である、請求項1から8のいずれか1項に記載の方法。 The method according to claim 1, wherein a CdTe deposition temperature in the growth step is 570 ° C. or higher.
  10. 成長ステップで得られるCdTe結晶は、2θ/ωスキャンから得られるXRDパターンにおいて、最も強いピークがCdTe{422}ピークである、請求項1~9のいずれか1項に記載の方法。 The method according to any one of claims 1 to 9, wherein the CdTe crystal obtained in the growth step has a CdTe {422} peak as a strongest peak in an XRD pattern obtained from a 2θ / ω scan.
  11. 前記単結晶Si基板と、前記成長ステップで得られるCdTe結晶は、同一の結晶面を有する、請求項1~10のいずれか1項に記載の方法。 The method according to any one of claims 1 to 10, wherein the single crystal Si substrate and the CdTe crystal obtained in the growth step have the same crystal plane.
  12. 請求項1~11のいずれかに記載の方法で単結晶Si基板上にCdTeをエピタキシャル成長させる工程を含む、放射線検出器用半導体の製造方法。 A method for producing a semiconductor for a radiation detector, comprising a step of epitaxially growing CdTe on a single crystal Si substrate by the method according to any one of claims 1 to 11.
  13. 基板上にCdTeを堆積させるための気相堆積装置であって、
    ホットウォール型のリアクターと、
    基板を支持するために該リアクター内に配置されたサセプタと、
    該サセプタによって支持される基板を加熱するために該リアクターの外部に配置された第一ヒーターと、
    該リアクター内に配置されたCdリザーバーと、
    該Cdリザーバーに収容される金属Cdを加熱するために該リアクターの外部に配置された第二ヒーターと、
    配管を介して該リアクター内に供給される有機Te化合物を気化させるために該リアクターの外部に配置されたバブラーと、を備える気相堆積装置。
    A vapor deposition apparatus for depositing CdTe on a substrate,
    A hot wall reactor,
    A susceptor disposed in the reactor to support a substrate;
    A first heater disposed outside the reactor to heat a substrate supported by the susceptor;
    A Cd reservoir disposed in the reactor;
    A second heater disposed outside the reactor to heat the metal Cd contained in the Cd reservoir;
    A vapor deposition apparatus comprising: a bubbler disposed outside the reactor for vaporizing an organic Te compound supplied into the reactor through a pipe.
  14. 単結晶CdTe基板上にCdTeをエピタキシャル成長させる方法であって、単体Cdと単体Te又は有機Te化合物をそれぞれCd源およびTe源に用いて、該単結晶CdTe基板の表面上にCdTeを気相から堆積させる成長ステップ、を有する方法。 A method of epitaxially growing CdTe on a single-crystal CdTe substrate, wherein CdTe is deposited from the vapor phase on the surface of the single-crystal CdTe substrate by using simple Cd and simple Te or an organic Te compound as a Cd source and a Te source, respectively. A growth step.
  15. 単結晶CdTe基板を準備する準備ステップ、及び
    該準備した単結晶CdTe基板を、還元性ガス又は不活性ガス中でベークするベーキングステップ、を含む、請求項14に記載の方法。
    The method according to claim 14, comprising a preparation step of preparing a single crystal CdTe substrate, and a baking step of baking the prepared single crystal CdTe substrate in a reducing gas or an inert gas.
  16. 前記ベーキングステップは、前記単結晶CdTe基板の表面上に他の成分を堆積させることなく行われる、請求項15に記載の方法。 The method of claim 15, wherein the baking step is performed without depositing other components on the surface of the single crystal CdTe substrate.
  17. 前記ベーキングステップは、前記単結晶CdTe基板の表面を清浄化する、請求項15に記載の方法。 The method of claim 15, wherein the baking step cleans a surface of the single crystal CdTe substrate.
  18. 前記準備ステップで準備された単結晶CdTe基板は、表面酸化膜を有する、請求項15に記載の方法。 The method according to claim 15, wherein the single crystal CdTe substrate prepared in the preparation step has a surface oxide film.
  19. 前記単結晶CdTe基板は、{211}CdTe基板である、請求項14から18のいずれか1項に記載の方法。 19. The method according to any one of claims 14 to 18, wherein the single crystal CdTe substrate is a {211} CdTe substrate.
  20. 前記ベーキングステップにおいて用いられるガスは、Hを含むガスである、請求項15に記載の方法。 The method according to claim 15, wherein the gas used in the baking step is a gas containing H 2 .
  21. 前記Te源は、有機Te化合物である、請求項14から20のいずれか1項に記載の方法。 21. A method according to any one of claims 14 to 20, wherein the Te source is an organic Te compound.
  22. 前記成長ステップにおけるCdTe堆積温度が570℃以上である、請求項14から21のいずれか1項に記載の方法。 The method according to any one of claims 14 to 21, wherein a CdTe deposition temperature in the growth step is 570 ° C or higher.
  23. 成長ステップで得られるCdTe結晶は、2θ/ωスキャンから得られるXRDパターンにおいて、最も強いピークがCdTe{422}ピークである、請求項14~22のいずれか1項に記載の方法。 The method according to any one of claims 14 to 22, wherein the strongest peak of the CdTe crystal obtained in the growth step is a CdTe {422} peak in an XRD pattern obtained from a 2θ / ω scan.
  24. 前記単結晶CdTe基板と、前記成長ステップで得られるCdTe結晶は、同一の結晶面を有する、請求項14~23のいずれか1項に記載の方法。 The method according to any one of claims 14 to 23, wherein the single crystal CdTe substrate and the CdTe crystal obtained in the growth step have the same crystal plane.
  25. 請求項14~24のいずれかに記載の方法で単結晶CdTe基板上にCdTeをエピタキシャル成長させる工程を含む、放射線検出器用半導体の製造方法。 A method for manufacturing a semiconductor for a radiation detector, comprising the step of epitaxially growing CdTe on a single crystal CdTe substrate by the method according to any one of claims 14 to 24.
PCT/JP2017/018627 2016-05-18 2017-05-18 Cdte epitaxial growth method WO2017200035A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018518347A JPWO2017200035A1 (en) 2016-05-18 2017-05-18 Epitaxial growth method of CdTe

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-099982 2016-05-18
JP2016099982 2016-05-18
JP2017-014647 2017-01-30
JP2017014647 2017-01-30

Publications (1)

Publication Number Publication Date
WO2017200035A1 true WO2017200035A1 (en) 2017-11-23

Family

ID=60325329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018627 WO2017200035A1 (en) 2016-05-18 2017-05-18 Cdte epitaxial growth method

Country Status (2)

Country Link
JP (1) JPWO2017200035A1 (en)
WO (1) WO2017200035A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072136A (en) * 2007-10-24 2008-03-27 Nagoya Industrial Science Research Inst Method for manufacturing semiconductor radiation detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072136A (en) * 2007-10-24 2008-03-27 Nagoya Industrial Science Research Inst Method for manufacturing semiconductor radiation detector

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. MILLION: "Heteroepitaxy of CdTe on {211} Si substrates by molecular beam epitaxy", JOURNAL OF CRYSTAL GROWTH, vol. 159, 1996, pages 76 - 80, XP004021359 *
ISHWARA B. BHAT: "On the Mechanism of Growth of CdTe by Organometallic Vapor-Phase Epitaxy", J. ELECTROCHEM. SOC, vol. 134, January 1987 (1987-01-01), pages 195 - 198, XP055440376 *
SH.U. YULDASHEV: "Effects of hydrogenation and annealing on the shallow donor-band recombination in In-doped CdTe epitaxial layers grown on p-CdTe(211) substrates", JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, vol. 61, 2000, pages 711 - 718, XP027248028 *

Also Published As

Publication number Publication date
JPWO2017200035A1 (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP5252465B2 (en) Growth of flat nonpolar a-plane gallium nitride by hydride vapor deposition
CN102576663B (en) A method of forming a Group III-nitride crystalline film on a patterned substrate by hydride vapor phase epitaxy (HVPE)
JP6835113B2 (en) Method for manufacturing gallium nitride substrate and nitride semiconductor crystal
US20080083970A1 (en) Method and materials for growing III-nitride semiconductor compounds containing aluminum
US8945302B2 (en) Method for crystal growth of a metal-nonmetal compound using a metallophobic-metallophilic surfactant and a thin metal wetting layer
WO2012042961A1 (en) Growth method for gan crystal and gan crystal substrate
JP2003031846A (en) Zinc oxide semiconductor member formed on silicon substrate
JP2007204359A (en) Process for producing free-standing iii-n layer, and free-standing iii-n substrate
CN103348043A (en) Method for producing substrate for group iii nitride semiconductor element fabrication, method for producing group iii nitride semiconductor free-standing substrate or group iii nitride semiconductor element, and group iii nitride growth substrate
JP4733882B2 (en) Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal
WO2018216407A1 (en) Sic epitaxial wafer and method for producing same
US20140264388A1 (en) Low carbon group-iii nitride crystals
WO2017200035A1 (en) Cdte epitaxial growth method
JP6694210B2 (en) Method for manufacturing semiconductor substrate
JP2019142728A (en) LAMINATE INCLUDING CdTe FILM, AND MANUFACTURING METHOD OF LAMINATE
JP2019073424A (en) CdTe FILM, AND SEMICONDUCTOR DEVICE CONTAINING CdTe FILM
JP2704223B2 (en) Semiconductor element
JP7322408B2 (en) Polycrystalline silicon carbide substrate, method for producing polycrystalline silicon carbide film, and method for producing polycrystalline silicon carbide substrate
KR102136942B1 (en) Cleaning method for SiC single crystal growth furnace
TWI751158B (en) Structures and devices including germanium-tin films and methods of forming same
JPS62123094A (en) Susceptor for vapor growth of semiconductor
TW202323187A (en) Methods for the growth of a graphene layer structure on a substrate and an opto-electronic device
JP2004084001A (en) Method for growing zinc oxide crystalline film
JP2024500584A (en) Method for growing high-quality heteroepitaxial monoclinic gallium oxide crystals
JP2011054937A (en) Method of manufacturing monocrystalline layer on substrate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799459

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799459

Country of ref document: EP

Kind code of ref document: A1