WO2017199914A1 - Cooling device and condenser - Google Patents

Cooling device and condenser Download PDF

Info

Publication number
WO2017199914A1
WO2017199914A1 PCT/JP2017/018209 JP2017018209W WO2017199914A1 WO 2017199914 A1 WO2017199914 A1 WO 2017199914A1 JP 2017018209 W JP2017018209 W JP 2017018209W WO 2017199914 A1 WO2017199914 A1 WO 2017199914A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
housing
condenser
liquid
casing
Prior art date
Application number
PCT/JP2017/018209
Other languages
French (fr)
Japanese (ja)
Inventor
坂本 仁
真弘 蜂矢
吉川 実
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018518287A priority Critical patent/JPWO2017199914A1/en
Publication of WO2017199914A1 publication Critical patent/WO2017199914A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a cooling device or the like, for example, a device for cooling a heating element.
  • Patent Document 1 discloses an apparatus cooling device that uses a thermoelectric cooling element.
  • the endothermic passage is provided so as to circulate air between the part to be cooled and the part to be cooled.
  • the heat dissipation passage is provided adjacent to the heat absorption passage. Outside air flows through the heat dissipation passage.
  • the endothermic plate has endothermic fins and constitutes a part of the wall surface of the endothermic passage.
  • the heat absorption fin is provided so as to protrude into the heat absorption passage.
  • the heat radiating plate has heat radiating fins and constitutes a part of the wall surface of the heat radiating passage.
  • the heat radiation fin is provided so as to protrude into the heat radiation passage.
  • thermoelectric cooling element is provided between the heat absorbing plate and the heat radiating plate.
  • the endothermic surface of the thermoelectric cooling element is in close contact with the endothermic plate.
  • the heat generating surface of the thermoelectric cooling element is in close contact with the heat sink.
  • thermoelectric cooling element When a current is supplied to the thermoelectric cooling element by the power supply device, the heat absorbing surface of the thermoelectric cooling element is cooled by the behavior of electrons in the thermoelectric cooling element, and the heat generating surface of the thermoelectric cooling element generates heat. At this time, the thermoelectric cooling element acts as a kind of heat pump and carries heat from the heat absorption surface to the heat generation surface. For this reason, the heat of the part to be cooled is absorbed from the air flowing through the heat absorption passage by the heat absorption fins of the heat absorption plate that is in close contact with the heat absorption surface.
  • phase change cooling type cooling methods have been widely used for electronic devices in which electronic components are mounted at high density.
  • This phase change cooling type cooling method uses latent heat when the phase of the refrigerant changes into a liquid phase and a gas phase due to the vaporization and condensation cycle of the refrigerant, and is characterized by a large amount of heat transfer.
  • Patent Document 1 has a problem that it only supports the air-cooling cooling method and cannot cope with the phase-change cooling cooling method.
  • the radiating fins are arranged in a staggered manner in the radiating passage. For this reason, when the cooling method of the phase change cooling method is applied to the technique described in Patent Document 1 and the liquid phase refrigerant is circulated in the heat radiation passage instead of air, the liquid phase refrigerants are alternately arranged. There is a problem that the cooling efficiency is likely to be reduced due to accumulation between the plurality of radiating fins.
  • This invention is made
  • the objective of this invention provides the cooling device etc. which can cool the heat
  • the cooling device of the present invention receives the heat of the heating element, evaporates the refrigerant in the liquid phase stored therein by the heat of the heating element, and flows out the refrigerant in the gas phase state
  • a condenser for condensing the refrigerant in the gas phase flowing out from the evaporator and flowing out the refrigerant in the liquid phase to the evaporator, and the condenser includes a housing for storing the refrigerant in the liquid phase; , Alternately between a plurality of first protrusions provided on the casing so as to extend vertically upward from an inner surface on the vertically lower side of the casing, and the plurality of first protrusions A plurality of second protrusions provided on the casing so as to extend vertically downward from an inner surface on the vertically upper side of the casing, and the plurality of second protrusions
  • the distance between the tip and the inner surface on the vertically lower side of the housing is the inner surface on the vertically lower side of the
  • the condenser of the present invention receives the heat of the heating element, evaporates the liquid-phase refrigerant stored inside by the heat of the heating element, and flows out from the evaporator that flows out the gas-phase refrigerant.
  • a condenser that condenses the refrigerant in the gas phase state and flows the refrigerant in the liquid phase state to the evaporator, the housing storing the refrigerant in the liquid phase state, and a vertically lower side of the casing A plurality of first protrusions provided on the casing so as to extend vertically upward from the inner surface, and a plurality of first protrusions alternately provided between the plurality of first protrusions, and vertically above the casing
  • the distance between the inner surface on the vertically lower side is the inner surface on the vertically lower side of
  • the heat of the heating element can be efficiently cooled using the phase change of the refrigerant.
  • FIG. 1 It is a cross-sectional perspective view which shows the structure of the cooling device in the 1st Embodiment of this invention. It is a perspective view which shows the structure of the cooling device in the 1st Embodiment of this invention. It is a top view which shows the structure of the cooling device in the 1st Embodiment of this invention. It is a right view which shows the structure of the cooling device in the 1st Embodiment of this invention, Comprising: It is a figure which shows the arrow A of FIG. It is a left view which shows the structure of the cooling device in the 1st Embodiment of this invention, Comprising: It is a figure which shows the arrow B of FIG. FIG.
  • FIG. 4 is a cross-sectional view showing the configuration of the cooling device according to the first embodiment of the present invention, taken along the line CC in FIG. 3.
  • FIG. 4 is a cross-sectional view showing the configuration of the cooling device according to the first embodiment of the present invention, taken along the line DD in FIG. 3.
  • FIG. 4 is a cross-sectional view showing the configuration of the cooling device according to the first embodiment of the present invention, taken along the line EE in FIG. 3.
  • FIG. 5 is a cross-sectional view showing the configuration of the cooling device according to the first embodiment of the present invention, taken along the line FF in FIG.
  • FIG. 5 is a cross-sectional view showing the configuration of the cooling device according to the first embodiment of the present invention, taken along the line GG in FIG.
  • FIG. 1 is a cross-sectional perspective view showing the configuration of the cooling device 100 according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view showing the configuration of the cooling device 100.
  • FIG. 3 is a top view showing the configuration of the cooling device 100.
  • 4 is a right side view showing the configuration of the cooling device 100, and is a view showing an arrow A in FIG.
  • FIG. 5 is a left side view showing the configuration of the cooling device 100, and is a view showing an arrow B in FIG.
  • FIG. 6 is a cross-sectional view showing the configuration of the cooling device 100, taken along the line CC in FIG. FIG.
  • FIG. 7 is a cross-sectional view showing the configuration of the cooling device 100, taken along the line DD in FIG.
  • FIG. 8 is a cross-sectional view showing the configuration of the cooling device 100, taken along the line EE in FIG. 9 is a cross-sectional view showing the configuration of the cooling device 100, taken along the line FF in FIG. 10 is a cross-sectional view showing the configuration of the cooling device 100, taken along the line GG in FIG. 1, 2, and 4 to 8, the vertical direction G is shown.
  • the cooling device 100 includes an evaporator 10, a condenser 20, a vapor pipe 30, and a liquid pipe 40.
  • the cooling device 100 has a refrigerant (Coolant: hereinafter referred to as COO) that circulates between the evaporator 10 and the condenser 20. That is, a cavity is provided inside the evaporator 10 and the condenser 20.
  • the refrigerant COO is confined in a closed state in a closed space formed by the evaporator 10, the condenser 20, the vapor pipe 30 and the liquid pipe 40.
  • This refrigerant COO circulates between the evaporator 10 and the condenser 20 via the vapor pipe 30 and the liquid pipe 40 in a sealed state.
  • the refrigerant is made of, for example, a polymer material, and has a characteristic of vaporizing at a high temperature and liquefying at a low temperature.
  • the refrigerant COO for example, hydrofluorocarbon (HFC) or hydrofluoroether (HFE) can be used as a low boiling point refrigerant.
  • the refrigerant COO may be water.
  • the water can be circulated in the cooling device 100 using circulating power such as a pump.
  • the method for filling the closed space of the cooling device 100 with the refrigerant COO is as follows. First, refrigerant COO is injected into a closed space formed by the internal cavities of the evaporator 10 and the condenser 40, the vapor pipe 30, and the liquid pipe 40 from an opening hole for refrigerant injection (not shown).
  • pouring is provided in the vapor pipe 30 arrange
  • the present invention is not limited to this, and the opening hole for refrigerant injection may be provided in a member other than the steam pipe 30.
  • the evaporator 10 is connected to the condenser 20 via the vapor pipe 30 and the liquid pipe 40.
  • the evaporator 10 includes a first refrigerant outlet 11 and a first refrigerant inlet 12.
  • the first refrigerant outlet 11 is formed at the connection between the steam pipe 30 and the evaporator 10.
  • the first refrigerant inlet 12 is formed at the connection between the liquid pipe 40 and the evaporator 10.
  • the evaporator 10 is made of a material having high thermal conductivity (for example, copper, copper alloy, aluminum, aluminum alloy).
  • the evaporator 10 is attached to a heating element (not shown).
  • the evaporator 10 is attached to the heating element via a heat conductive grease or a heat dissipation sheet. Further, the evaporator 10 is in close contact with the heating element so that a thermal connection is made between the heating element and the evaporator 10. At this time, it is preferable that the evaporator 10 is pressed against the heating element at a pressure of 100 kPa (pascal) to 500 kPa, for example.
  • the heating element is, for example, a central processing unit (CPU: Central Processing Unit) or an integrated circuit (LSI: Large Scale Integration). The heating element generates heat when it operates.
  • the evaporator 10 is formed in a box shape. Further, as shown in FIG. 8, the inside of the evaporator 10 is hollow. Further, a liquid phase refrigerant COO is stored inside the evaporator 10. When the evaporator 10 receives heat from the heating element, the evaporator 10 evaporates the liquid-phase refrigerant COO stored therein by the heat of the heating element. Then, the evaporator 10 flows the refrigerant COO in the gas phase state into the condenser 20 via the first outlet 11 and the vapor pipe 30.
  • the condenser 20 is connected to the evaporator 10 via a vapor pipe 30 and a liquid pipe 40.
  • the condenser 20 includes a second refrigerant outlet 21 and a second refrigerant inlet 22.
  • the second refrigerant outlet 21 is formed at the connection between the liquid pipe 40 and the evaporator 10.
  • the second refrigerant inlet 22 is formed at the connection between the steam pipe 30 and the evaporator 10.
  • the condenser 20 is made of a material having high thermal conductivity (for example, copper, copper alloy, aluminum, aluminum alloy).
  • the condenser 20 is formed in a flat box shape. As shown in FIG. 1, the interior of the condenser 20 is hollow, and a plurality of first condensation fins 24 and second condensation fins 25 are provided therein.
  • the condenser 20 receives the gas-phase refrigerant COO flowing out of the evaporator 10 through the vapor pipe 30 and the second refrigerant inlet 22.
  • the condenser 20 condenses the gas-phase refrigerant COO received from the evaporator 10 and changes the phase to the liquid-phase refrigerant COO. 1 and 6 show the refrigerant COO in the liquid phase state. Then, the condenser 20 flows out the liquid-phase refrigerant COO to the evaporator 10 via the second outlet 21 and the liquid pipe 40.
  • the condenser 20 includes a housing 23, a first condensation fin 24, and a second condensation fin 25.
  • the housing 23 stores the liquid-phase refrigerant COO. As shown in FIGS. 6 and 7, the housing 23 includes a first housing surface 23A and a second housing surface 23B.
  • the first housing surface 23 ⁇ / b> A is formed with a second refrigerant inlet 22 through which the gas-phase refrigerant COO flows out of a plurality of surfaces constituting the housing 23. It is a surface.
  • the second housing surface 23 ⁇ / b> B is formed with a second coolant outlet 21 through which the liquid-phase refrigerant COO flows out of a plurality of surfaces constituting the housing 23. It is a surface.
  • the plurality of first condensing fins 24 and the second condensing fins 25 are provided inside the housing 23.
  • the plurality of first condensing fins 24 extend from the inner surface of the housing 23 on the lower side in the vertical direction G toward the upper side in the vertical direction G.
  • the housing 23 is provided.
  • the plurality of second condensing fins 25 extend from the inner surface on the upper side in the vertical direction G of the housing 23 toward the lower side in the vertical direction G.
  • the housing 23 is provided.
  • the plurality of first condensing fins 24 and the plurality of second condensing fins 25 are provided so as to be alternately arranged.
  • the plurality of first condensing fins 24 are not connected to the upper inner surface of the casing 23 in the vertical direction G.
  • the plurality of second condensing fins 25 are not connected to the inner surface of the casing 23 on the lower side in the vertical direction G.
  • the plurality of first condensing fins 24 and the plurality of second condensing fins 25 are preferably formed of a material having high thermal conductivity (for example, copper, copper alloy, aluminum, aluminum alloy). Moreover, each thickness of the 1st condensation fin 24 and the 2nd condensation fin 25 can be set to about 0.3 mm or more and less than 2 mm, for example. Further, the gap between the first condensing fins 24 and the second condensing fins 25 can be set to 0.5 mm to 5 mm, for example.
  • the 1st condensation fin 24 and the 2nd condensation fin 25 extend so that it may extend along the direction which goes to the 2nd housing
  • the distance L1 between the tips of the plurality of second condensing fins 25 and the inner surface of the casing 23 on the lower side in the vertical direction G is It is larger than the distance L2 between the inner surface on the lower side in the vertical direction G and the liquid level of the liquid phase refrigerant COO stored in the casing 23.
  • the entire surface of the plurality of second condensing fins 25 is not always immersed in the liquid-phase refrigerant COO stored in the housing 23. Therefore, the entire surface of the plurality of second condensing fins 25 can be used to cool the refrigerant COO in the gas phase state in the housing 23 and change the phase to the refrigerant COO in the liquid phase state.
  • coolant COO of a gaseous-phase state can be cooled more efficiently.
  • L1> L2 the following method is exemplified.
  • the distance L2 between the liquid level refrigerant COO stored in the casing 23 and the liquid level is constantly measured by a sensor (not shown) or the like, and the liquid phase refrigerant COO is measured according to the measurement result.
  • L1> L2 can be satisfied by adjusting the storage amount. That is, a valve (not shown) is provided at the second refrigerant outlet 21 and the second refrigerant inlet 22 of the condenser 20, and when the liquid level of the refrigerant COO in the liquid phase rises, the valve is opened greatly. , L1> L2.
  • a pump for discharging the liquid state refrigerant COO stored in the casing 23 to the outside of the casing 23 is provided in the vicinity of the second refrigerant outlet 21 of the condenser 20, and the liquid phase refrigerant COO is provided.
  • the operating power of the pump is increased so that L1> L2.
  • the steam pipe 30 connects the evaporator 10 and the condenser 20.
  • the second refrigerant inlet 22 of the condenser 20 is at a higher position or the same height in the vertical direction G than the first refrigerant outlet 11 of the evaporator 10.
  • the second refrigerant inlet 22 of the condenser 20 is not provided at a lower position in the vertical direction G than the first refrigerant outlet 11 of the evaporator 10.
  • the refrigerant COO in the gas phase flowing in the vapor pipe 30 can be smoothly transported from the evaporator 10 to the condenser 20.
  • the second refrigerant inlet 22 of the condenser 20 and the first refrigerant outlet 11 of the evaporator 10 are provided at the same height in the vertical direction G. It has been.
  • the liquid pipe 40 connects the evaporator 10 and the heat radiating section 420.
  • the second refrigerant outlet 21 of the condenser 20 is provided at a higher position in the vertical direction G than the first refrigerant inlet 12 of the evaporator 10. Thereby, the liquid-phase refrigerant COO flowing in the liquid pipe 40 can be smoothly transported from the condenser 20 to the evaporator 10.
  • a plurality of heat radiation fins 50 and 60 are attached to the upper and lower surfaces of the condenser 20.
  • Each of the plurality of radiating fins 50 is attached to the condenser 20 so as to extend away from the upper surface of the condenser 20 and upward in the vertical direction G.
  • Each of the plurality of radiating fins 60 is attached to the condenser 20 so as to extend from the lower surface of the condenser 20 to the lower side in the vertical direction G.
  • the plurality of heat radiation fins 50, 60 are arranged so as to be substantially perpendicular to the line connecting the second refrigerant outlet 21 and the second refrigerant inlet 22. Yes.
  • the direction D1 in which the refrigerant COO flows in the housing 23 of the condenser 20 and the direction D2 in which the outside air flows between the plurality of heat radiation fins 50 and 60 are substantially perpendicular to each other.
  • the plurality of radiating fins 50 and 60 sequentially receive the heat of the heating element from the condenser 20 as the refrigerant COO that has absorbed the heat of the heating element flows in the direction D1 in the casing 23 of the condenser 20, Heat can be efficiently radiated to the outside air.
  • the natural circulation system refers to a system in which the refrigerant COO is naturally circulated in the cooling device 100 using the density difference between the liquid phase and the gas phase without using circulating power such as a pump.
  • the cooling device 100 filled with the refrigerant COO When the cooling device 100 filled with the refrigerant COO is placed in a room temperature environment, when the evaporator 10 receives the heat of the heating element, the refrigerant COO boils and steam is generated almost simultaneously with the start of the heat reception.
  • the cooling structure including at least the evaporator 10, the condenser 20, the steam pipe 30 and the liquid pipe 40 functions as a cooling module and starts receiving heat from the heating element.
  • the evaporator 10 receives the heat of the heating element.
  • the refrigerant COO in a liquid phase boils in the evaporator 10 and enters a gas phase state.
  • the gas-phase refrigerant COO in the evaporator 10 flows from the evaporator 10 to the condenser 40 through the vapor pipe 30.
  • the gas-phase refrigerant COO is also referred to as a vapor refrigerant.
  • the refrigerant COO in the vapor state in the evaporator 10 flows into the condenser 20 through the vapor pipe 30.
  • the heat contained in the refrigerant COO heat of the heating element
  • the refrigerant COO in the gas phase is phase-changed to the liquid phase by being cooled in the condenser 20.
  • the plurality of first condensing fins 24 and the second condensing fins 25 receive the heat of the heating element contained in the gas-phase refrigerant COO and cool it. Then, the refrigerant COO cooled in the condenser 20 becomes a liquid phase state and is stored in the condenser 20. The liquid-phase refrigerant COO flows from the second refrigerant inlet 22 side toward the second refrigerant outlet 21 side. At this time, if the plurality of second condensing fins 25 are immersed in the liquid-phase refrigerant COO stored in the housing 23, the effect of condensing the gas-phase refrigerant COO in the housing 23 is reduced.
  • the tips of the plurality of second condensing fins 25 and the inner surface of the casing 23 on the lower side in the vertical direction G are provided.
  • the distance L ⁇ b> 1 is larger than the distance L ⁇ b> 2 between the inner surface of the casing 23 on the lower side in the vertical direction G and the liquid level of the liquid-phase refrigerant COO stored in the casing 23. Is set. As a result, the entire surface of the plurality of second condensing fins 25 is not always immersed in the liquid-phase refrigerant COO stored in the housing 23.
  • the entire surface of the plurality of second condensing fins 25 can be used to cool the refrigerant COO in the gas phase state in the housing 23 and change the phase to the refrigerant COO in the liquid phase state. Accordingly, a part of the plurality of second condensing fins 25 is included in the gas-phase refrigerant COO as compared with the case where the liquid-phase refrigerant COO stored in the evaporator 10 is immersed. The heat of the heating element can be cooled more efficiently.
  • the refrigerant COO cooled in the condenser 20 changes into a liquid phase state and is stored in the condenser 20. Further, the refrigerant COO in the liquid phase state in the condenser 20 flows into the evaporator 10 again through the liquid pipe 40.
  • the refrigerant COO receives the heat of the heating element by the evaporator 10 and circulates through the evaporator 10, the vapor pipe 30, the condenser 20, and the liquid pipe 40 in order. Thereby, the heat of the heating element received by the evaporator 10 is radiated.
  • the cooling device 100 circulates the refrigerant COO between the evaporator 10 and the condenser 20 while changing the phase (liquid phase ⁇ ⁇ gas phase), thereby generating a heating element that is received by the evaporator 10. Cooling.
  • the cooling device 100 includes an evaporator 10 and a condenser 20.
  • the evaporator 10 receives the heat of the heating element, evaporates the liquid-phase refrigerant COO stored therein by the heat of the heating element, and flows out the gas-phase refrigerant COO.
  • the condenser 20 condenses the refrigerant COO in the gas phase that flows out of the evaporator 10, and flows out the refrigerant COO in the liquid phase to the evaporator 10.
  • the condenser 20 includes a housing 23, a plurality of first condensing fins 24 (first protrusions), and a plurality of second condensing fins 25 (second protrusions).
  • the casing 23 stores the refrigerant COO in a liquid phase state.
  • the plurality of first condensing fins 24 are provided so as to extend vertically upward from the inner surface of the housing 23 on the vertically lower side.
  • the plurality of second condensing fins 25 are provided alternately between the plurality of first condensing fins 24 and are provided so as to extend vertically downward from the inner surface on the vertically upper side of the housing 23. .
  • casing 23 is stored by the housing
  • the plurality of first condensing fins 24 are provided so as to extend vertically upward from the inner surface of the casing 23 on the vertically lower side.
  • the plurality of second condensing fins 25 are provided alternately between the plurality of first condensing fins 24 and are provided so as to extend vertically downward from the inner surface of the housing 23 on the vertically upper side. ing.
  • casing 23 can be cooled using the some 1st condensation fin 24 and the some 2nd condensation fin 25.
  • the gas-phase refrigerant COO in the housing 23 contains the heat of the heating element.
  • the heat of the heating element contained in the refrigerant COO in the gas phase state is more increased as compared with the case where these are not provided. It can be cooled efficiently.
  • the distance L1 between the tips of the plurality of second condensing fins 25 and the inner surface on the vertically lower side of the housing 23 is stored in the inner surface on the vertically lower side of the housing 23 and the housing 23. It is larger than the distance L2 between the liquid level refrigerant COO in the liquid phase state.
  • the entire surfaces of the plurality of second condensing fins 25 are not always immersed in the liquid-phase refrigerant COO stored in the housing 23. Therefore, the entire surface of the plurality of second condensing fins 25 can be used to cool the refrigerant COO in the gas phase state in the housing 23 and change the phase to the refrigerant COO in the liquid phase state. Accordingly, a part of the plurality of second condensing fins 25 is included in the gas-phase refrigerant COO as compared with the case where the liquid-phase refrigerant COO stored in the evaporator 10 is immersed. The heat of the heating element can be cooled more efficiently.
  • the heat of the heating element can be efficiently cooled using the phase change of the refrigerant COO.
  • the cooling device 100 and the condenser 20 in the first embodiment of the present invention condense the refrigerant COO in the gas phase that flows out from the evaporator 10, and convert the refrigerant COO in the liquid phase to the evaporator 10. leak.
  • the evaporator 10 receives the heat of the heating element and evaporates the liquid-phase refrigerant COO stored therein by the heat of the heating element.
  • the condenser 20 includes a housing 23, a plurality of first condensing fins 24 (first protrusions), and a plurality of second condensing fins 25 (second protrusions).
  • the casing 23 stores the refrigerant COO in a liquid phase state.
  • the plurality of first condensing fins 24 are provided in the housing 23 so as to extend vertically upward from the inner surface of the housing 23 on the vertically lower side.
  • the plurality of second condensing fins 25 are alternately provided between the plurality of first condensing fins 24, and extend from the inner surface on the vertically upper side of the housing 23 downward in the vertical direction to the housing 23. Is provided.
  • casing 23 is stored by the housing
  • FIG. 11 to 13 are diagrams for explaining the effect of the cooling device 100.
  • FIG. 11 is a diagram corresponding to FIG. 6, in which the first condensing fins 24 are removed from the condenser 20 of the cooling device 100.
  • the condenser shown in FIG. 11 is referred to as a lower finless condenser 80.
  • FIG. 12 is a diagram corresponding to FIG. 6, in which the second condensing fins 25 are removed from the condenser 20 of the cooling device 100.
  • the condenser shown in FIG. 12 is referred to as an upper finless condenser 90.
  • FIG. 13 is a diagram showing the relationship between the thermal resistances of the lower finless condenser 80 and the upper finless condenser 90.
  • the experiment was performed under the following conditions. That is, the surface area of the condensing fin 25 of the lower finless condenser 80 and the surface area of the condensing fin 24 of the upper finless condenser 90 were set to be the same at about 0.1 (m 2 ). Further, the heat radiation amount of the lower finless condenser 80 and the upper finless condenser 90 was 100 (W). In addition, the amount of cooling air supplied to the lower finless condenser 80 and the upper finless condenser 90 was set to 2.7 (m 3 / min).
  • FIG. 13 shows that the thermal resistance ratio of the upper finless condenser 90 and the lower finless condenser 80 is about 1.6: 1.
  • the upper finless condenser 90 has a thermal resistance 1.6 times larger than that of the lower finless condenser 80.
  • the first condensing fin 24 is provided on the lower side of the casing 23, and a part of the first condensing fin 24 is in a liquid phase state in the casing 23. This is because it is immersed in the refrigerant COO.
  • the upper finless condenser 90 has a higher thermal resistance than the lower finless condenser 80.
  • a plurality of first condensing fins 24 and a plurality of second condensing fins 25 are provided alternately. It is configured as follows. As described above, by providing the second condensing fins 25 on the upper surface inside the housing 23, the heat of the heating element can be cooled more efficiently than the upper finless condenser 90. A gap is provided between the first condensing fin 24 and the second condensing fin 25. By providing the gaps at regular intervals, the pressure between adjacent flow paths becomes uniform, and the flow of the refrigerant COO in the condenser 20 can be stabilized.
  • the low-density refrigerant COO out of the gas-phase refrigerant COO flowing into the condenser 20 It can be led in the downstream direction.
  • the heat of the heating element can be cooled using the entire condenser 20.
  • the plurality of first condensing fins 24 and the plurality of second condensing fins 25 it is possible to increase the area of the housing 23 that contacts the gas-phase refrigerant COO. . As a result, the size of the condenser 20 can be reduced.
  • the cooling device 100 and the condenser 20 in the first embodiment of the present invention include the first housing surface 23A and the second housing surface 23B.
  • casing surfaces are surfaces in which the 2nd refrigerant
  • the second housing surface 23 ⁇ / b> B is a surface on which the second refrigerant outlet 21 through which the liquid-phase refrigerant COO flows out of a plurality of surfaces constituting the housing 23 is formed.
  • the first condensing fins 24 and the second condensing fins 25 are formed in a plate shape so as to extend along the direction from the first housing surface 23A side to the second housing surface 23B side. Yes.
  • the refrigerant COO in the gas phase flowing into the second refrigerant inlet 22 formed on the first casing surface 23A is directed to the second refrigerant outlet 21 formed on the second casing surface 23B. And can flow smoothly.
  • FIG. 14 is an exploded perspective view showing the structure of the cooling device 100A.
  • the same components as those shown in FIGS. 1 to 13 are denoted by the same reference numerals as those shown in FIGS.
  • the finished product of cooling device 100A in the present embodiment and cooling device 100 in the first embodiment are equivalent devices.
  • the condenser 20 of the cooling device 100A is composed of a first part 20a of the condenser and a second part 20b of the condenser.
  • the first component 20 a of the condenser is composed of a first portion 23 a of the housing and a plurality of first condensing fins 24. Moreover, the radiation fin 60 is attached to the outer surface of the 1st part 23a of a housing
  • the second portion 20 b of the condenser is composed of a second portion 23 b of the housing and a plurality of second condensing fins 25.
  • heat radiating fins 50 are attached to the outer surface of the second portion 23b of the housing.
  • the first part 20a of the condenser and the second part 20b of the condenser are formed so as to be symmetrical to each other. That is, the lengths of the first condensation fins 24 and the second condensation fins 25 are set to be the same.
  • the condenser 20 can be assembled by combining the first part 20a of the condenser thus formed and the second part 20b of the condenser.
  • the 1st component 20a of a condenser and the 2nd component 20b of a condenser are joined by brazing, welding, etc., for example.
  • the condenser first part 20a and the condenser second part 20b are configured to be symmetrical to each other, whereby the condenser first part 20a and the condenser second part 20b. Can be manufactured with the same parts. As a result, the manufacturing cost can be reduced.
  • FIG. 15 is a cross-sectional view showing the configuration of the condenser 20B.
  • FIG. 15 corresponds to FIG. However, for the convenience of drawing drawing, the radiation fins 50 and 60 and the steam pipe 30 are omitted in FIG.
  • FIG. 15 shows the vertical direction G.
  • components equivalent to those shown in FIG. 1 to FIG. 14 are given the same reference numerals as those shown in FIG. 1 to FIG.
  • the plurality of first condensing fins 24 ⁇ / b> A and second condensing fins 25 ⁇ / b> B are provided inside the housing 23.
  • the first condensing fin 24A and the second condensing fin 25A correspond to the first protrusion and the second protrusion of the present embodiment.
  • the plurality of first condensing fins 24 in FIG. 6 and the plurality of first condensing fins 24B in FIG. 15 are compared.
  • the 1st condensation fin 24 is formed in flat form. That is, when the first condensing fins 24 are cut along a plane perpendicular to the vertical direction G, the cross-sectional area of the plurality of first condensing fins 24 is constant between the root portion and the tip portion. Is set.
  • the shape of the 1st condensation fin 24B is formed in the taper shape.
  • the cross-sectional area of the plurality of first condensing fins 24B gradually decreases from the root portion toward the tip portion. It is set to be.
  • the second condensing fins 25 are formed in a flat plate shape. That is, when the second condensing fins 25 are cut in a plane perpendicular to the vertical direction G, the cross-sectional areas of the plurality of second condensing fins 25 are constant between the root portion and the tip portion. Is set.
  • the shape of the 2nd condensation fin 25B is formed in the taper shape. That is, when the second condensing fins 25B are cut along a plane perpendicular to the vertical direction G, the cross-sectional area of the plurality of second condensing fins 25B gradually decreases from the root portion toward the tip portion. It is set to be.
  • the taper shape is not used (for example, the plurality of the first condensing fins 24 and the second condensing fins 25 in FIG. 6).
  • the fluidity of the refrigerant COO flowing between the first and second condensation fins can be enhanced. That is, the gap between the first and second condensing fins 24B and 25B (this embodiment) when the condenser 20B is cut in a plane substantially perpendicular to the vertical direction G is particularly the first and second.
  • the first and second condensing fins 24 and 25 when the condenser 20 is cut in a plane substantially perpendicular to the vertical direction G on the front end side of the two condensing fins 24B and 25B. It becomes larger than the gap between (form). As a result, the fluidity of the refrigerant COO flowing between the first and second condensation fins can be increased.
  • the first condensing fins 24B first protrusions
  • the second concentric surface in the direction perpendicular to the vertical direction G.
  • the condensing fins 25B second protrusions
  • the cross-sectional areas of the first condensing fins 24B and the second condensing fins 25B gradually decrease from the root portion toward the tip portion. Is set.
  • the gap between the first and second condensing fins 24B and 25B when the condenser 20B is cut in a plane substantially perpendicular to the vertical direction G, particularly the first and second condensing fins 24B. , 25B is larger than the gap between the first and second condensing fins 24, 25 when the condenser 20 is cut along a plane substantially perpendicular to the vertical direction G.
  • the fluidity of the refrigerant COO flowing between the first and second condensation fins can be increased.
  • FIG. 16 is a cross-sectional view showing the configuration of the condenser 20C.
  • FIG. 16 corresponds to FIG.
  • FIG. 16 shows the vertical direction G.
  • components equivalent to those shown in FIGS. 1 to 15 are denoted by the same symbols as those shown in FIGS.
  • a plurality of first condensation fins 24 and second condensation fins 25 are provided in the housing 23.
  • Fig. 7 and Fig. 16 are compared. 16 is different from FIG. 7 in that a first through hole 26 and a second through hole 27 are formed.
  • the first through hole 26 is provided at the root of each first condensing fin 24.
  • the liquid phase refrigerant COO mainly passes through the first through hole 26.
  • the second through hole 27 is provided at the root of each second condensing fin 25.
  • the second through-hole 27 mainly passes through the refrigerant COO in a gas phase state.
  • the cooling measure in the fourth embodiment of the present invention further includes the first through hole 26.
  • the first through hole 26 is provided at the root portion of the plurality of first condensing fins 24. Further, the liquid phase refrigerant passes through the first through hole 26.
  • the liquid-phase refrigerant COO can flow between the plurality of first condensing fins 24 through the first through hole 26.
  • each of the plurality of first condensing fins 24 can receive the heat of the heating element included in the refrigerant COO without being biased among the plurality of first condensing fins 24. That is, none of the plurality of first condensing fins 24 has an extremely small amount of received heat or an extremely large amount of received heat. For this reason, by providing the first through hole 26, the useless first condensing fin 24 can be eliminated. As a result, the condenser 20C can be further downsized.
  • cooling device and the condenser 20C include the second through hole 27.
  • the second through hole 27 is provided at the root of the plurality of second condensing fins 25. Further, the refrigerant in the gas phase passes through the second through hole 27.
  • the gas-phase refrigerant COO can flow between the plurality of second condensing fins 25 through the second through hole 27.
  • the amount of the refrigerant COO in the gas phase that is retained between the two second condensing fins 25 facing each other is almost the same regardless of the amount of any of the two second condensing fins 25. be able to. Therefore, the heat of the heating element included in the refrigerant COO can be uniformly received by each of the plurality of second condensation fins 25.
  • each of the plurality of second condensing fins 25 can receive the heat of the heating element included in the refrigerant COO without being biased among the plurality of second condensing fins 25. That is, none of the plurality of second condensing fins 25 has an extremely small amount of received heat or an extremely large amount of received heat. Therefore, by providing the second through hole 27, the useless second condensing fin 25 can be eliminated. As a result, the condenser 20C can be further downsized.
  • both the first through hole 26 and the second through hole 27 are provided in the condenser 20C.
  • any one of the first through holes 26 may be provided in the condenser 20C.
  • FIG. 17 is a cross-sectional view showing the configuration of the condenser 20D.
  • FIG. 16 corresponds to FIG.
  • components equivalent to those shown in FIG. 1 to FIG. 16 are given the same reference numerals as those shown in FIG. 1 to FIG.
  • a plurality of first condensation fins 24 and second condensation fins 25 are provided in the casing 23 of the condenser 20D.
  • FIG. 17 and FIG. 9 are compared.
  • each of the plurality of first condensing fins 24 is formed to have the same length.
  • each of the plurality of second condensing fins 25 is formed to have the same length.
  • each of the plurality of first condensing fins 24 and each of the plurality of second condensing fins 25 are formed to be different.
  • FIG. 17 it has been described that the lengths of the plurality of first and second condensing fins 24 and 25 are different from each other.
  • at least the plurality of first condensing fins 24 have the same length. Each length should just be formed so that it may differ.
  • the 1st condensation fin 24 or the 2nd condensation fin 25 of the same length may be provided in a part.
  • the extending directions of are not parallel to each other.
  • At least each of the end portions on the first housing surface 23A side of the plurality of first condensing fins 24 goes in the direction opposite to the inflow direction S of the gas-phase refrigerant. It is formed so as to move away from the housing surface 23A.
  • the lengths of the plurality of first condensing fins 24 are the same, particularly when the flow rate of the gas-phase refrigerant COO flowing into the housing 23 is high, the gas-phase refrigerant COO is converted into the first condensing fins. 24 will collide. In this case, the pressure loss of the gas-phase refrigerant COO occurs due to the resistance of the first condensing fins 24. As a result, the heat resistance of the condenser may increase.
  • At least the ends of the plurality of first condensing fins 24 on the first housing surface 23A side are in the direction opposite to the inflow direction S of the gas-phase refrigerant. As it goes, it is formed to move in a direction away from the first housing surface 23A.
  • the angle ⁇ of each end of the plurality of first and second condensing fins 24, 25 on the first housing surface 23A side is set to 30 ° to 60 °, for example. can do.
  • the inflow direction S of the gas-phase refrigerant COO that flows into the housing 23 of the condenser 20D from the second refrigerant inlet 22 The extending directions of the plurality of first and second condensing fins 24 and 25 are not parallel to each other. In this case, each end on the first housing surface 23A side of the plurality of first condensing fins 24 moves in a direction away from the first housing surface 23A as it goes in the direction opposite to the inflow direction S of the gaseous refrigerant. It is formed to do.
  • Cooling device 10 Evaporator 11 1st refrigerant
  • the 1st component of a condenser 20b The 2nd component of a condenser 21
  • coolant outlet 22 2nd refrigerant

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

[Problem] To provide a cooling device and the like capable of efficiently cooling, using a phase change of a refrigerant, heat of a heat generating body. [Solution] A condenser 20 is provided with a housing 23, a plurality of first condensation fins 24 (first protruding sections), and a plurality of second condensation fins 25 (second protruding sections). The housing 23 stores a liquid-state refrigerant COO. The first condensation fins 24 are provided such that the first condensation fins extend upward in the perpendicular direction from the inner surface of the housing 23, said inner surface being on the lower side in the perpendicular direction. The second condensation fins 25 are alternately provided among the first condensation fins 24 such that the second condensation fins extend downward in the perpendicular direction from the inner surface of the housing 23, said inner surface being on the upper side in the perpendicular direction. A distance L1 between leading end portions of the second condensation fins 25, and the inner surface of the housing 23, said inner surface being on the lower side in the perpendicular direction, is larger than a distance L2 between the inner surface of the housing 23, said inner surface being on the lower side in the perpendicular direction, and the liquid level of the liquid-state refrigerant COO stored in the housing 23.

Description

冷却装置および凝縮器Refrigerator and condenser
 本発明は、冷却装置等に関し、例えば、発熱体を冷却するものに関する。 The present invention relates to a cooling device or the like, for example, a device for cooling a heating element.
 特許文献1には、機器冷却装置の発明として、熱電冷却素子を利用したものが、開示されている。 Patent Document 1 discloses an apparatus cooling device that uses a thermoelectric cooling element.
 特許文献1に記載の発明では、吸熱通路は、冷却対象機器が収容された被冷却部との間で空気を循環するように、設けられている。放熱通路は、吸熱通路に隣接して設けられている。放熱通路には、外気が流される。吸熱板は、吸熱フィンを有し、吸熱通路の壁面の一部を構成する。吸熱フィンは、吸熱通路内に突出するように、設けられている。放熱板は、放熱フィンを有し、放熱通路の壁面の一部を構成する。放熱フィンは、放熱通路内に突出するように、設けられている。 In the invention described in Patent Document 1, the endothermic passage is provided so as to circulate air between the part to be cooled and the part to be cooled. The heat dissipation passage is provided adjacent to the heat absorption passage. Outside air flows through the heat dissipation passage. The endothermic plate has endothermic fins and constitutes a part of the wall surface of the endothermic passage. The heat absorption fin is provided so as to protrude into the heat absorption passage. The heat radiating plate has heat radiating fins and constitutes a part of the wall surface of the heat radiating passage. The heat radiation fin is provided so as to protrude into the heat radiation passage.
 熱電冷却素子は、吸熱板および放熱板の間に、設けられている。熱電冷却素子の吸熱面は吸熱板に密着されている。熱電冷却素子の発熱面は放熱板に密着されている。 The thermoelectric cooling element is provided between the heat absorbing plate and the heat radiating plate. The endothermic surface of the thermoelectric cooling element is in close contact with the endothermic plate. The heat generating surface of the thermoelectric cooling element is in close contact with the heat sink.
 電源装置により電流を熱電冷却素子に供給されると、熱電冷却素子中の電子の挙動により、熱電冷却素子の吸熱面が冷却され、熱電冷却素子の発熱面が発熱する。このとき、熱電冷却素子は、熱ポンプの一種として作用し、吸熱面から発熱面に熱を運ぶ。このため、吸熱面に密着する吸熱板の吸熱フィンによって、吸熱通路を流れる空気から被冷却部の熱が吸熱される。 When a current is supplied to the thermoelectric cooling element by the power supply device, the heat absorbing surface of the thermoelectric cooling element is cooled by the behavior of electrons in the thermoelectric cooling element, and the heat generating surface of the thermoelectric cooling element generates heat. At this time, the thermoelectric cooling element acts as a kind of heat pump and carries heat from the heat absorption surface to the heat generation surface. For this reason, the heat of the part to be cooled is absorbed from the air flowing through the heat absorption passage by the heat absorption fins of the heat absorption plate that is in close contact with the heat absorption surface.
 次に、吸熱板の吸熱フィンにより吸熱された熱が、発熱面に密着する放熱板の放熱フィンを通して外気中へ放出される。そして、吸熱板の吸熱フィンにより吸熱されて冷却された空気が、被冷却部に導かれ、内部に収容された機器を冷却する。このように、特許文献1に記載の技術では、空気を循環させて被冷却部を冷却していた(風冷式)。 Next, the heat absorbed by the heat absorbing fins of the heat absorbing plate is released into the outside air through the heat radiating fins of the heat radiating plate that is in close contact with the heat generating surface. Then, the air that has been absorbed by the heat-absorbing fins of the heat-absorbing plate and is cooled is guided to the cooled part, and cools the equipment accommodated therein. As described above, in the technique described in Patent Document 1, air is circulated to cool the portion to be cooled (air-cooled type).
 なお、本発明に関連する技術が、特許文献2にも開示されている。 Note that a technique related to the present invention is also disclosed in Patent Document 2.
特公平4-43421号公報Japanese Examined Patent Publication No. 4-43421 特開2014-135477号公報JP 2014-135477 A
 近年、電子部品が高密度で実装されている電子装置には、相変化冷却式の冷却方法が、広く用いられている。この相変化冷却式の冷却方法は、冷媒の気化と凝縮のサイクルによって、液相と気相に冷媒の相が変化する際の潜熱を利用するもので、熱移動量が大きいという特徴がある。 In recent years, phase change cooling type cooling methods have been widely used for electronic devices in which electronic components are mounted at high density. This phase change cooling type cooling method uses latent heat when the phase of the refrigerant changes into a liquid phase and a gas phase due to the vaporization and condensation cycle of the refrigerant, and is characterized by a large amount of heat transfer.
 しかしながら、特許文献1に記載の技術では、風冷式の冷却法にのみ対応しており、相変化冷却式の冷却方法に対応できないという問題があった。 However, the technique described in Patent Document 1 has a problem that it only supports the air-cooling cooling method and cannot cope with the phase-change cooling cooling method.
 とくに、特許文献1に記載の技術では、放熱フィンは、放熱通路内で、互い違いになるように、配置されている。このため、相変化冷却方式の冷却法を特許文献1に記載の技術に適用して、空気に代えて液相冷媒を放熱通路内で循環させようとした場合、液相冷媒が、互い違いに配置された複数の放熱フィンの間に溜まってしまい、冷却効率が下がってしまう可能性が高いという問題があった。 In particular, in the technique described in Patent Document 1, the radiating fins are arranged in a staggered manner in the radiating passage. For this reason, when the cooling method of the phase change cooling method is applied to the technique described in Patent Document 1 and the liquid phase refrigerant is circulated in the heat radiation passage instead of air, the liquid phase refrigerants are alternately arranged. There is a problem that the cooling efficiency is likely to be reduced due to accumulation between the plurality of radiating fins.
 本発明は、このような事情を鑑みてなされたものであり、本発明の目的は、冷媒の相変化を利用して、発熱体の熱を効率よく冷却することができる冷却装置等を提供することにある。 This invention is made | formed in view of such a situation, The objective of this invention provides the cooling device etc. which can cool the heat | fever of a heat generating body efficiently using the phase change of a refrigerant | coolant. There is.
 本発明の冷却装置は、発熱体の熱を受けて、内部に貯留されている液相状態の冷媒を前記発熱体の熱により蒸発させて、気相状態の冷媒を流出する蒸発器と、前記蒸発器から流出する前記気相状態の冷媒を凝縮して、液相状態の冷媒を前記蒸発器へ流出する凝縮器とを備え、前記凝縮器は、液相状態の冷媒を貯留する筐体と、前記筐体の鉛直下方側の内面から鉛直上方へ向けて延出するように前記筐体に設けられた複数の第1の突起部と、前記複数の第1の突起部の間に互い違いに設けられ、前記筐体の鉛直上方側の内面から鉛直下方へ向けて延出するように前記筐体に設けられた複数の第2の突起部とを備え、前記複数の第2の突起部の先端部と、前記筐体の前記鉛直下方側の内面の間との距離は、前記筐体の前記鉛直下方側の内面と、前記筐体に貯留されている前記液相状態の冷媒の液面との間の距離よりも、大きい。 The cooling device of the present invention receives the heat of the heating element, evaporates the refrigerant in the liquid phase stored therein by the heat of the heating element, and flows out the refrigerant in the gas phase state, A condenser for condensing the refrigerant in the gas phase flowing out from the evaporator and flowing out the refrigerant in the liquid phase to the evaporator, and the condenser includes a housing for storing the refrigerant in the liquid phase; , Alternately between a plurality of first protrusions provided on the casing so as to extend vertically upward from an inner surface on the vertically lower side of the casing, and the plurality of first protrusions A plurality of second protrusions provided on the casing so as to extend vertically downward from an inner surface on the vertically upper side of the casing, and the plurality of second protrusions The distance between the tip and the inner surface on the vertically lower side of the housing is the inner surface on the vertically lower side of the housing, Than the distance between the liquid surface of the refrigerant in the liquid phase state that is stored in Kikatami body, larger.
 本発明の凝縮器は、発熱体の熱を受けて、内部に貯留されている液相状態の冷媒を前記発熱体の熱により蒸発させて、気相状態の冷媒を流出する蒸発器から、流出する前記気相状態の冷媒を凝縮して、液相状態の冷媒を前記蒸発器へ流出する凝縮器であって、液相状態の冷媒を貯留する筐体と、前記筐体の鉛直下方側の内面から鉛直上方へ向けて延出するように前記筐体に設けられた複数の第1の突起部と、前記複数の第1の突起部の間に互い違いに設けられ、前記筐体の鉛直上方側の内面から鉛直下方へ向けて延出するように前記筐体に設けられた複数の第2の突起部とを備え、前記複数の第2の突起部の先端部と、前記筐体の前記鉛直下方側の内面の間との距離は、前記筐体の前記鉛直下方側の内面と、前記筐体に貯留されている前記液相状態の冷媒の液面との間の距離よりも、大きい。 The condenser of the present invention receives the heat of the heating element, evaporates the liquid-phase refrigerant stored inside by the heat of the heating element, and flows out from the evaporator that flows out the gas-phase refrigerant. A condenser that condenses the refrigerant in the gas phase state and flows the refrigerant in the liquid phase state to the evaporator, the housing storing the refrigerant in the liquid phase state, and a vertically lower side of the casing A plurality of first protrusions provided on the casing so as to extend vertically upward from the inner surface, and a plurality of first protrusions alternately provided between the plurality of first protrusions, and vertically above the casing A plurality of second projecting portions provided on the housing so as to extend vertically downward from the inner surface on the side, and a plurality of second projecting portion tips, and the housing of the housing The distance between the inner surface on the vertically lower side is the inner surface on the vertically lower side of the casing and the one stored in the casing. Than the distance between the liquid surface of the refrigerant in the phase state, large.
 本発明にかかる冷却装置等によれば、冷媒の相変化を利用して、発熱体の熱を効率よく冷却することができる。 According to the cooling device or the like according to the present invention, the heat of the heating element can be efficiently cooled using the phase change of the refrigerant.
本発明の第1の実施の形態における冷却装置の構成を示す断面斜視図である。It is a cross-sectional perspective view which shows the structure of the cooling device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における冷却装置の構成を示す斜視図である。It is a perspective view which shows the structure of the cooling device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における冷却装置の構成を示す上面図である。It is a top view which shows the structure of the cooling device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における冷却装置の構成を示す右側面図であって、図3の矢視Aを示す図である。It is a right view which shows the structure of the cooling device in the 1st Embodiment of this invention, Comprising: It is a figure which shows the arrow A of FIG. 本発明の第1の実施の形態における冷却装置の構成を示す左側面図であって、図3の矢視Bを示す図である。It is a left view which shows the structure of the cooling device in the 1st Embodiment of this invention, Comprising: It is a figure which shows the arrow B of FIG. 本発明の第1の実施の形態における冷却装置の構成を示す断面図であって、図3のC-C切断面で切断した図である。FIG. 4 is a cross-sectional view showing the configuration of the cooling device according to the first embodiment of the present invention, taken along the line CC in FIG. 3. 本発明の第1の実施の形態における冷却装置の構成を示す断面図であって、図3のD-D切断面で切断した図である。FIG. 4 is a cross-sectional view showing the configuration of the cooling device according to the first embodiment of the present invention, taken along the line DD in FIG. 3. 本発明の第1の実施の形態における冷却装置の構成を示す断面図であって、図3のE-E切断面で切断した図である。FIG. 4 is a cross-sectional view showing the configuration of the cooling device according to the first embodiment of the present invention, taken along the line EE in FIG. 3. 本発明の第1の実施の形態における冷却装置の構成を示す断面図であって、図4のF-F切断面で切断した図である。FIG. 5 is a cross-sectional view showing the configuration of the cooling device according to the first embodiment of the present invention, taken along the line FF in FIG. 本発明の第1の実施の形態における冷却装置の構成を示す断面図であって、図4のG-G切断面で切断した図である。FIG. 5 is a cross-sectional view showing the configuration of the cooling device according to the first embodiment of the present invention, taken along the line GG in FIG. 本発明の第1の実施の形態における冷却装置の効果を説明するための図である。It is a figure for demonstrating the effect of the cooling device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における冷却装置の効果を説明するための図である。It is a figure for demonstrating the effect of the cooling device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における冷却装置の効果を説明するための図である。It is a figure for demonstrating the effect of the cooling device in the 1st Embodiment of this invention. 本発明の第2の実施の形態における冷却装置の構成を分解して示す断面斜視図である。It is a cross-sectional perspective view which decomposes | disassembles and shows the structure of the cooling device in the 2nd Embodiment of this invention. 本発明の第3の実施の形態における凝縮器の構成を示す断面図である。It is sectional drawing which shows the structure of the condenser in the 3rd Embodiment of this invention. 本発明の第4の実施の形態における凝縮器の構成を示す断面図である。It is sectional drawing which shows the structure of the condenser in the 4th Embodiment of this invention. 本発明の第5の実施の形態における凝縮器の構成を示す断面図である。It is sectional drawing which shows the structure of the condenser in the 5th Embodiment of this invention.
<第1の実施の形態>
 本発明の第1の実施の形態における冷却装置100の構成について説明する。図1は、本発明の第1の実施の形態における冷却装置100の構成を示す断面斜視図である。図2は、冷却装置100の構成を示す斜視図である。図3は、冷却装置100の構成を示す上面図である。図4は、冷却装置100の構成を示す右側面図であって、図3の矢視Aを示す図である。図5は、冷却装置100の構成を示す左側面図であって、図3の矢視Bを示す図である。図6は、冷却装置100の構成を示す断面図であって、図3のC-C切断面で切断した図である。図7は、冷却装置100の構成を示す断面図であって、図3のD-D切断面で切断した図である。図8は、冷却装置100の構成を示す断面図であって、図3のE-E切断面で切断した図である。図9は、冷却装置100の構成を示す断面図であって、図4のF-F切断面で切断した図である。図10は、冷却装置100の構成を示す断面図であって、図4のG-G切断面で切断した図である。なお、図1、図2および図4~8の各図には、鉛直方向Gを示している。
<First Embodiment>
The configuration of the cooling device 100 according to the first embodiment of the present invention will be described. FIG. 1 is a cross-sectional perspective view showing the configuration of the cooling device 100 according to the first embodiment of the present invention. FIG. 2 is a perspective view showing the configuration of the cooling device 100. FIG. 3 is a top view showing the configuration of the cooling device 100. 4 is a right side view showing the configuration of the cooling device 100, and is a view showing an arrow A in FIG. FIG. 5 is a left side view showing the configuration of the cooling device 100, and is a view showing an arrow B in FIG. FIG. 6 is a cross-sectional view showing the configuration of the cooling device 100, taken along the line CC in FIG. FIG. 7 is a cross-sectional view showing the configuration of the cooling device 100, taken along the line DD in FIG. FIG. 8 is a cross-sectional view showing the configuration of the cooling device 100, taken along the line EE in FIG. 9 is a cross-sectional view showing the configuration of the cooling device 100, taken along the line FF in FIG. 10 is a cross-sectional view showing the configuration of the cooling device 100, taken along the line GG in FIG. 1, 2, and 4 to 8, the vertical direction G is shown.
 図2~図5に示されるように、冷却装置100は、蒸発器10と、凝縮器20と、蒸気管30と、液管40とを含んで構成されている。 2 to 5, the cooling device 100 includes an evaporator 10, a condenser 20, a vapor pipe 30, and a liquid pipe 40.
 冷却装置100は、蒸発器10および凝縮器20の間を循環する冷媒(Coolant:以下COOと称する。)を有する。すなわち、蒸発器10および凝縮器20の内部には、空洞が設けられている。また、冷媒COOは、蒸発器10、凝縮器20、蒸気管30および液管40により形成される閉鎖空間内に、密閉された状態で閉じ込められる。この冷媒COOは、密閉された状態で、蒸発器10および凝縮器20の間を、蒸気管30および液管40を介して、循環する。冷媒は、例えば高分子材料などにより構成されており、高温になると気化し、低温になると液化する特性を有している。 The cooling device 100 has a refrigerant (Coolant: hereinafter referred to as COO) that circulates between the evaporator 10 and the condenser 20. That is, a cavity is provided inside the evaporator 10 and the condenser 20. The refrigerant COO is confined in a closed state in a closed space formed by the evaporator 10, the condenser 20, the vapor pipe 30 and the liquid pipe 40. This refrigerant COO circulates between the evaporator 10 and the condenser 20 via the vapor pipe 30 and the liquid pipe 40 in a sealed state. The refrigerant is made of, for example, a polymer material, and has a characteristic of vaporizing at a high temperature and liquefying at a low temperature.
 冷媒COOには、低沸点の冷媒として、例えば、ハイドロフルオロカーボン(HFC:Hydro Fluorocarbon)やハイドロフルオロエーテル(HFE:Hydro Fluoroether)などを用いることができる。また、冷媒COOは、水でもよい。冷媒に水を用いた場合、ポンプ等の循環動力を用いて、水を冷却装置100内で循環させることができる。 As the refrigerant COO, for example, hydrofluorocarbon (HFC) or hydrofluoroether (HFE) can be used as a low boiling point refrigerant. The refrigerant COO may be water. When water is used as the coolant, the water can be circulated in the cooling device 100 using circulating power such as a pump.
 冷却装置100の前記閉鎖空間内に冷媒COOを充填する方法については、次の通りである。まず、蒸発器10および凝縮器40の内部空洞と、蒸気管30と、液管40とにより形成される閉鎖空間内に冷媒注入用の開口穴(不図示)から冷媒COOを注入する。なお、冷媒注入用の開口穴は、たとえば、蒸発器10および凝縮器20の間に配置された蒸気管30に、設けられている。ただし、これに限定されず、冷媒注入用の開口穴は、蒸気管30以外の部材にもうけられてもよい。次に、真空ポンプ(不図示)などを用いて、前記閉鎖空間内から空気を排除して、冷媒注入用の開口穴を閉じる。このようにして、当該閉鎖空間内に冷媒を密閉する。これにより、前記空間内の圧力は冷媒の飽和蒸気圧と等しくなり、前記閉鎖空間内に密閉された冷媒COOの沸点が室温近傍となる。以上の通り、冷却装置100の前記閉鎖空間内に冷媒COOを充填する方法を説明した。 The method for filling the closed space of the cooling device 100 with the refrigerant COO is as follows. First, refrigerant COO is injected into a closed space formed by the internal cavities of the evaporator 10 and the condenser 40, the vapor pipe 30, and the liquid pipe 40 from an opening hole for refrigerant injection (not shown). In addition, the opening hole for refrigerant | coolant injection | pouring is provided in the vapor pipe 30 arrange | positioned between the evaporator 10 and the condenser 20, for example. However, the present invention is not limited to this, and the opening hole for refrigerant injection may be provided in a member other than the steam pipe 30. Next, using a vacuum pump (not shown) or the like, air is excluded from the closed space, and the opening for injecting the refrigerant is closed. In this way, the refrigerant is sealed in the closed space. Thereby, the pressure in the space becomes equal to the saturated vapor pressure of the refrigerant, and the boiling point of the refrigerant COO sealed in the closed space becomes near room temperature. As described above, the method of filling the refrigerant COO in the closed space of the cooling device 100 has been described.
 図2~図5に示されるように、蒸発器10は、蒸気管30および液管40を介して、凝縮器20に接続されている。 As shown in FIGS. 2 to 5, the evaporator 10 is connected to the condenser 20 via the vapor pipe 30 and the liquid pipe 40.
 図4および図10に示されるように、蒸発器10は、第1の冷媒流出口11と、第1の冷媒流入口12とを備えている。第1の冷媒流出口11は、蒸気管30および蒸発器10の接続部に、形成されている。第1の冷媒流入口12は、液管40および蒸発器10の接続部に、形成されている。蒸発器10は、熱伝導性の高い材料(たとえば、銅、銅合金、アルミニウム、アルミニウム合金)により、形成されている。 4 and 10, the evaporator 10 includes a first refrigerant outlet 11 and a first refrigerant inlet 12. The first refrigerant outlet 11 is formed at the connection between the steam pipe 30 and the evaporator 10. The first refrigerant inlet 12 is formed at the connection between the liquid pipe 40 and the evaporator 10. The evaporator 10 is made of a material having high thermal conductivity (for example, copper, copper alloy, aluminum, aluminum alloy).
 蒸発器10は、発熱体(不図示)に取り付けられる。好ましくは、蒸発器10は、熱伝導性グリースや放熱シートを介して、発熱体に取り付けられる。また、発熱体および蒸発器10の間で熱的な接続が行われるように、蒸発器10は発熱体に密着される。このとき、蒸発器10はたとえば100kPa(パスカル)~500kPaの圧力で発熱体に押し付けられることが、好ましい。発熱体は、たとえば、中央演算処理装置(CPU:Central Processing Unit)や、集積回路(LSI:Large Scale Integration)等である。発熱体は、動作することにより熱を発生する。 The evaporator 10 is attached to a heating element (not shown). Preferably, the evaporator 10 is attached to the heating element via a heat conductive grease or a heat dissipation sheet. Further, the evaporator 10 is in close contact with the heating element so that a thermal connection is made between the heating element and the evaporator 10. At this time, it is preferable that the evaporator 10 is pressed against the heating element at a pressure of 100 kPa (pascal) to 500 kPa, for example. The heating element is, for example, a central processing unit (CPU: Central Processing Unit) or an integrated circuit (LSI: Large Scale Integration). The heating element generates heat when it operates.
 図2~図5に示されるように、蒸発器10は箱状に形成されている。また、図8に示されるように、蒸発器10の内部は空洞になっている。また、蒸発器10の内部には、液相状態の冷媒COOが貯留されている。蒸発器10は、発熱体の熱を受けると、内部に貯留されている液相状態の冷媒COOを発熱体の熱により蒸発させる。そして、蒸発器10は、第1の流出口11および蒸気管30を介して、気相状態の冷媒COOを凝縮器20へ流出する。 As shown in FIGS. 2 to 5, the evaporator 10 is formed in a box shape. Further, as shown in FIG. 8, the inside of the evaporator 10 is hollow. Further, a liquid phase refrigerant COO is stored inside the evaporator 10. When the evaporator 10 receives heat from the heating element, the evaporator 10 evaporates the liquid-phase refrigerant COO stored therein by the heat of the heating element. Then, the evaporator 10 flows the refrigerant COO in the gas phase state into the condenser 20 via the first outlet 11 and the vapor pipe 30.
 図2~図5に示されるように、凝縮器20は、蒸気管30および液管40を介して、蒸発器10に接続されている。 As shown in FIGS. 2 to 5, the condenser 20 is connected to the evaporator 10 via a vapor pipe 30 and a liquid pipe 40.
 図9に示されるように、凝縮器20は、第2の冷媒流出口21と、第2の冷媒流入口22とを備えている。 As shown in FIG. 9, the condenser 20 includes a second refrigerant outlet 21 and a second refrigerant inlet 22.
 第2の冷媒流出口21は、液管40および蒸発器10の接続部に、形成されている。第2の冷媒流入口22は、蒸気管30および蒸発器10の接続部に、形成されている。凝縮器20は、熱伝導性の高い材料(たとえば、銅、銅合金、アルミニウム、アルミニウム合金)により、形成されている。 The second refrigerant outlet 21 is formed at the connection between the liquid pipe 40 and the evaporator 10. The second refrigerant inlet 22 is formed at the connection between the steam pipe 30 and the evaporator 10. The condenser 20 is made of a material having high thermal conductivity (for example, copper, copper alloy, aluminum, aluminum alloy).
 図1~図5に示されるように、凝縮器20は扁平形の箱状に形成されている。また、図1に示されるように、凝縮器20の内部は中空になっており、その内部には複数の第1の凝縮フィン24および第2の凝縮フィン25が設けられている。凝縮器20は、蒸気管30および第2の冷媒流入口22を介して、蒸発器10から流出する気相状態の冷媒COOを受けとる。また、凝縮器20は、蒸発器10から受け取った気相状態の冷媒COOを凝縮して、液相状態の冷媒COOに相変化させる。図1および図6には、液相状態の冷媒COOが示されている。そして、凝縮器20は第2の流出口21および液管40を介して、液相状態の冷媒COOを蒸発器10へ流出する。 As shown in FIGS. 1 to 5, the condenser 20 is formed in a flat box shape. As shown in FIG. 1, the interior of the condenser 20 is hollow, and a plurality of first condensation fins 24 and second condensation fins 25 are provided therein. The condenser 20 receives the gas-phase refrigerant COO flowing out of the evaporator 10 through the vapor pipe 30 and the second refrigerant inlet 22. The condenser 20 condenses the gas-phase refrigerant COO received from the evaporator 10 and changes the phase to the liquid-phase refrigerant COO. 1 and 6 show the refrigerant COO in the liquid phase state. Then, the condenser 20 flows out the liquid-phase refrigerant COO to the evaporator 10 via the second outlet 21 and the liquid pipe 40.
 図1、図6および図7に示されるように、凝縮器20は、筐体23と、第1の凝縮フィン24と、第2の凝縮フィン25とを備えている。 As shown in FIGS. 1, 6, and 7, the condenser 20 includes a housing 23, a first condensation fin 24, and a second condensation fin 25.
 図1および図6に示されるように、筐体23は、液相状態の冷媒COOを貯留する。図6および図7に示されるように、筐体23は、第1の筐体面23Aと、第2の筐体面23Bとを備えている。 As shown in FIG. 1 and FIG. 6, the housing 23 stores the liquid-phase refrigerant COO. As shown in FIGS. 6 and 7, the housing 23 includes a first housing surface 23A and a second housing surface 23B.
 図7および図9に示されるように、第1の筐体面23Aは、筐体23を構成する複数の面のうち、気相状態の冷媒COOが流入する第2の冷媒流入口22が形成されている面である。 As shown in FIG. 7 and FIG. 9, the first housing surface 23 </ b> A is formed with a second refrigerant inlet 22 through which the gas-phase refrigerant COO flows out of a plurality of surfaces constituting the housing 23. It is a surface.
 図7および図9に示されるように、第2の筐体面23Bは、筐体23を構成する複数の面のうち、液相状態の冷媒COOが流出する第2の冷媒流出口21が形成されている面である。 As shown in FIGS. 7 and 9, the second housing surface 23 </ b> B is formed with a second coolant outlet 21 through which the liquid-phase refrigerant COO flows out of a plurality of surfaces constituting the housing 23. It is a surface.
 図1、図6および図7に示されるように、複数の第1の凝縮フィン24および第2の凝縮フィン25は、筐体23の内部に設けられている。第1の凝縮フィン24および第2の凝縮フィン25は、本実施形態の第1の突起部および第2の突起部に対応する。 As shown in FIGS. 1, 6, and 7, the plurality of first condensing fins 24 and the second condensing fins 25 are provided inside the housing 23. The 1st condensation fin 24 and the 2nd condensation fin 25 respond | correspond to the 1st projection part and the 2nd projection part of this embodiment.
 図1、図6および図7に示されるように、複数の第1の凝縮フィン24は、筐体23の鉛直方向Gの下方側の内面から鉛直方向Gの上方へ向けて延出するように、筐体23に設けられている。図1、図6および図7に示されるように、複数の第2の凝縮フィン25は、筐体23の鉛直方向Gの上方側の内面から鉛直方向Gの下方へ向けて延出するように、筐体23に設けられている。また、複数の第1の凝縮フィン24と、複数の第2の凝縮フィン25は、互い違いに配置されるように設けられている。 As shown in FIGS. 1, 6, and 7, the plurality of first condensing fins 24 extend from the inner surface of the housing 23 on the lower side in the vertical direction G toward the upper side in the vertical direction G. The housing 23 is provided. As shown in FIGS. 1, 6, and 7, the plurality of second condensing fins 25 extend from the inner surface on the upper side in the vertical direction G of the housing 23 toward the lower side in the vertical direction G. The housing 23 is provided. The plurality of first condensing fins 24 and the plurality of second condensing fins 25 are provided so as to be alternately arranged.
 なお、複数の第1の凝縮フィン24は、筐体23の鉛直方向Gの上方側の内面に接続されない。また、複数の第2の凝縮フィン25は、筐体23の鉛直方向Gの下方側の内面に接続されない。 Note that the plurality of first condensing fins 24 are not connected to the upper inner surface of the casing 23 in the vertical direction G. The plurality of second condensing fins 25 are not connected to the inner surface of the casing 23 on the lower side in the vertical direction G.
 複数の第1の凝縮フィン24および複数の第2の凝縮フィン25は、好ましくは、熱伝導性の高い材料(たとえば、銅、銅合金、アルミニウム、アルミニウム合金)により、形成されている。また、第1の凝縮フィン24および第2の凝縮フィン25の各厚みは、たとえば、0.3mm以上2mm未満程度に設定することができる。また、第1の凝縮フィン24および第2の凝縮フィン25の間の隙間は、たとえば、0.5mm~5mmとすることができる。 The plurality of first condensing fins 24 and the plurality of second condensing fins 25 are preferably formed of a material having high thermal conductivity (for example, copper, copper alloy, aluminum, aluminum alloy). Moreover, each thickness of the 1st condensation fin 24 and the 2nd condensation fin 25 can be set to about 0.3 mm or more and less than 2 mm, for example. Further, the gap between the first condensing fins 24 and the second condensing fins 25 can be set to 0.5 mm to 5 mm, for example.
 また、図9に示されるように、第1の凝縮フィン24および第2の凝縮フィン25は、第1の筐体面23A側から第2の筐体面23B側に向かう方向に沿って延在するように、板状に形成されている。これにより、第1の筐体面23Aに形成された第2の冷媒流入口22に流入する気相状態の冷媒COOを、第2の筐体面23Bに形成された第2の冷媒流出口21に向けて、円滑に流すことができる。 Moreover, as FIG. 9 shows, the 1st condensation fin 24 and the 2nd condensation fin 25 extend so that it may extend along the direction which goes to the 2nd housing | casing surface 23B side from the 1st housing | casing surface 23A side. Further, it is formed in a plate shape. As a result, the refrigerant COO in the gas phase flowing into the second refrigerant inlet 22 formed on the first casing surface 23A is directed to the second refrigerant outlet 21 formed on the second casing surface 23B. And can flow smoothly.
 また、図1および図7に示されるように、複数の第2の凝縮フィン25の先端部と、筐体23の鉛直方向Gの下方側の内面との間の距離L1は、筐体23の鉛直方向Gの下方側の内面と、筐体23に貯留されている液相状態の冷媒COOの液面との間の距離L2よりも、大きい。これにより、複数の第2の凝縮フィン25の全面は、常に、筐体23内に貯留されている液相状態の冷媒COOに浸されることない。したがって、複数の第2の凝縮フィン25の全面を用いて、筐体23内の気相状態の冷媒COOを冷却して、液相状態の冷媒COOに相変化することができる。これにより、気相状態の冷媒COOに含まれる発熱体の熱をより効率よく冷却することができる。 Further, as shown in FIGS. 1 and 7, the distance L1 between the tips of the plurality of second condensing fins 25 and the inner surface of the casing 23 on the lower side in the vertical direction G is It is larger than the distance L2 between the inner surface on the lower side in the vertical direction G and the liquid level of the liquid phase refrigerant COO stored in the casing 23. As a result, the entire surface of the plurality of second condensing fins 25 is not always immersed in the liquid-phase refrigerant COO stored in the housing 23. Therefore, the entire surface of the plurality of second condensing fins 25 can be used to cool the refrigerant COO in the gas phase state in the housing 23 and change the phase to the refrigerant COO in the liquid phase state. Thereby, the heat | fever of the heat generating body contained in refrigerant | coolant COO of a gaseous-phase state can be cooled more efficiently.
 なお、L1>L2とするために、次のような方法が挙げられる。たとえば、筐体23に貯留されている液相状態の冷媒COOの液面との間の距離L2をセンサ(不図示)等で常時測定して、この測定結果に応じて液相状態の冷媒COOの貯留量を調整することにより、L1>L2となるようにすることができる。すなわち、凝縮器20の第2の冷媒流出口21および第2の冷媒流入口22にバルブ(不図示)を設け、液相状態の冷媒COOの液面が上昇した場合にバルブを大きく開くことで、L1>L2となるようにすることができる。また、筐体23に貯留されている液相状態の冷媒COOを筐体23外へ排出するためのポンプを、凝縮器20の第2の冷媒流出口21付近に設け、液相状態の冷媒COOの液面が上昇した場合にポンプの動作電力を大きくすることで、L1>L2となるようにすることができる。 In order to satisfy L1> L2, the following method is exemplified. For example, the distance L2 between the liquid level refrigerant COO stored in the casing 23 and the liquid level is constantly measured by a sensor (not shown) or the like, and the liquid phase refrigerant COO is measured according to the measurement result. L1> L2 can be satisfied by adjusting the storage amount. That is, a valve (not shown) is provided at the second refrigerant outlet 21 and the second refrigerant inlet 22 of the condenser 20, and when the liquid level of the refrigerant COO in the liquid phase rises, the valve is opened greatly. , L1> L2. In addition, a pump for discharging the liquid state refrigerant COO stored in the casing 23 to the outside of the casing 23 is provided in the vicinity of the second refrigerant outlet 21 of the condenser 20, and the liquid phase refrigerant COO is provided. When the liquid level rises, the operating power of the pump is increased so that L1> L2.
 図2~図5に示されるように、蒸気管30は、蒸発器10と、凝縮器20とを連結する。図4および図5に示されるように、凝縮器20の第2の冷媒流入口22とは、蒸発器10の第1の冷媒流出口11よりも、鉛直方向Gにおいて高い位置か同じ高さの位置に設けられる。すなわち、少なくとも、凝縮器20の第2の冷媒流入口22は、蒸発器10の第1の冷媒流出口11よりも、鉛直方向Gにおいて低い位置に設けられない。これにより、蒸気管30内を流れる気相状態の冷媒COOを、蒸発器10から凝縮器20へ円滑に輸送することができる。なお、図4および図5では、例示として、凝縮器20の第2の冷媒流入口22と、蒸発器10の第1の冷媒流出口11は、鉛直方向Gにおいて同じ高さの位置に、設けられている。 2 to 5, the steam pipe 30 connects the evaporator 10 and the condenser 20. As shown in FIGS. 4 and 5, the second refrigerant inlet 22 of the condenser 20 is at a higher position or the same height in the vertical direction G than the first refrigerant outlet 11 of the evaporator 10. Provided in position. That is, at least the second refrigerant inlet 22 of the condenser 20 is not provided at a lower position in the vertical direction G than the first refrigerant outlet 11 of the evaporator 10. Thereby, the refrigerant COO in the gas phase flowing in the vapor pipe 30 can be smoothly transported from the evaporator 10 to the condenser 20. 4 and 5, as an example, the second refrigerant inlet 22 of the condenser 20 and the first refrigerant outlet 11 of the evaporator 10 are provided at the same height in the vertical direction G. It has been.
 図2~図5に示されるように、液管40は、蒸発器10と、放熱部420とを連結する。図4および図5に示されるように、凝縮器20の第2の冷媒流出口21は、蒸発器10の第1の冷媒流入口12よりも、鉛直方向Gにおいて高い位置に設けられる。これにより、液管40内を流れる液相状態の冷媒COOを、凝縮器20から蒸発器10へ円滑に輸送することができる。 As shown in FIGS. 2 to 5, the liquid pipe 40 connects the evaporator 10 and the heat radiating section 420. As shown in FIGS. 4 and 5, the second refrigerant outlet 21 of the condenser 20 is provided at a higher position in the vertical direction G than the first refrigerant inlet 12 of the evaporator 10. Thereby, the liquid-phase refrigerant COO flowing in the liquid pipe 40 can be smoothly transported from the condenser 20 to the evaporator 10.
 図1、図2および図4~図7に示されるように、凝縮器20の上面および下面には、複数の放熱フィン50、60が取り付けられている。複数の放熱フィン50の各々は、凝縮器20の上面から離れる方向であって鉛直方向Gの上方側に延出するように、凝縮器20に取り付けられている。複数の放熱フィン60の各々は、凝縮器20の下面から離れる方向であって鉛直方向Gの下方側に延出するように、凝縮器20に取り付けられている。このように、複数の放熱フィン50、60を凝縮器20に設けたことにより、凝縮器20で受ける発熱体の熱を、複数の放熱フィン50、60を介して、外気に放熱することができる。この結果、より効率よく発熱体を冷却することができる。なお、複数の放熱フィン50、60は、本実施形態の必須の構成ではない。したがって、複数の放熱フィン50、60を省略することもできる。 As shown in FIGS. 1, 2 and 4 to 7, a plurality of heat radiation fins 50 and 60 are attached to the upper and lower surfaces of the condenser 20. Each of the plurality of radiating fins 50 is attached to the condenser 20 so as to extend away from the upper surface of the condenser 20 and upward in the vertical direction G. Each of the plurality of radiating fins 60 is attached to the condenser 20 so as to extend from the lower surface of the condenser 20 to the lower side in the vertical direction G. As described above, by providing the heat radiating fins 50 and 60 in the condenser 20, the heat of the heating element received by the condenser 20 can be radiated to the outside air via the heat radiating fins 50 and 60. . As a result, the heating element can be cooled more efficiently. The plurality of heat radiation fins 50 and 60 are not essential components of the present embodiment. Therefore, the plurality of heat radiation fins 50 and 60 can be omitted.
 たとえば、図7に示されるように、複数の放熱フィン50、60は、第2の冷媒流出口21および第2の冷媒流入口22を結ぶ線に対して、略垂直になるように配置されている。これにより、図1に示されるように、冷媒COOが凝縮器20の筐体23内を流れる方向D1と、外気が複数の放熱フィン50、60の間を流れる方向D2とが、互いに略垂直になるように設定される。このとき、複数の放熱フィン50、60は、発熱体の熱を吸熱した冷媒COOが凝縮器20の筐体23内をD1方向に流れるにしたがって順次、発熱体の熱を凝縮器20から受け取り、効率よく外気に放熱することができる。 For example, as shown in FIG. 7, the plurality of heat radiation fins 50, 60 are arranged so as to be substantially perpendicular to the line connecting the second refrigerant outlet 21 and the second refrigerant inlet 22. Yes. As a result, as shown in FIG. 1, the direction D1 in which the refrigerant COO flows in the housing 23 of the condenser 20 and the direction D2 in which the outside air flows between the plurality of heat radiation fins 50 and 60 are substantially perpendicular to each other. Is set to be At this time, the plurality of radiating fins 50 and 60 sequentially receive the heat of the heating element from the condenser 20 as the refrigerant COO that has absorbed the heat of the heating element flows in the direction D1 in the casing 23 of the condenser 20, Heat can be efficiently radiated to the outside air.
 次に、冷却装置100の動作について説明する。 Next, the operation of the cooling device 100 will be described.
 冷却装置100では、自然循環の冷却方式を適用することができる。ここで、自然循環方式とは、液相および気相の密度差を利用して、ポンプ等の循環動力を用いずに、冷媒COOを冷却装置100内で自然に循環させる方式をいう。 In the cooling device 100, a natural circulation cooling method can be applied. Here, the natural circulation system refers to a system in which the refrigerant COO is naturally circulated in the cooling device 100 using the density difference between the liquid phase and the gas phase without using circulating power such as a pump.
 冷媒COOが充填された冷却装置100が室温の環境下に置かれたとき、蒸発器10が発熱体の熱を受熱すると、受熱開始とほぼ同時に冷媒COOが沸騰し、蒸気が発生する。この結果、少なくとも蒸発器10、凝縮器20、蒸気管30および液管40を含む冷却構造が、冷却モジュールとして機能し、発熱体の熱を受熱し始める。 When the cooling device 100 filled with the refrigerant COO is placed in a room temperature environment, when the evaporator 10 receives the heat of the heating element, the refrigerant COO boils and steam is generated almost simultaneously with the start of the heat reception. As a result, the cooling structure including at least the evaporator 10, the condenser 20, the steam pipe 30 and the liquid pipe 40 functions as a cooling module and starts receiving heat from the heating element.
 すなわち、蒸発器10は、発熱体の熱を受熱する。蒸発器10が発熱体の熱を受熱すると、蒸発器10内では、液相状態の冷媒COOが沸騰し、気相状態となる。そして、蒸発器10内の気相状態の冷媒COOが、蒸気管30を通って、蒸発器10から凝縮器40へ流れる。なお、気相状態の冷媒COOは、蒸気冷媒とも呼ばれる。 That is, the evaporator 10 receives the heat of the heating element. When the evaporator 10 receives the heat of the heating element, the refrigerant COO in a liquid phase boils in the evaporator 10 and enters a gas phase state. Then, the gas-phase refrigerant COO in the evaporator 10 flows from the evaporator 10 to the condenser 40 through the vapor pipe 30. Note that the gas-phase refrigerant COO is also referred to as a vapor refrigerant.
 次に、蒸発器10内の気相状態の冷媒COOは、蒸気管30を通って、凝縮器20に流入する。凝縮器20内では、気相状態の冷媒COOを冷却することにより、冷媒COOに含まれる熱(発熱体の熱)を放熱する。気相状態の冷媒COOは、凝縮器20内で冷却されることによって、液相状態に相変化する。 Next, the refrigerant COO in the vapor state in the evaporator 10 flows into the condenser 20 through the vapor pipe 30. In the condenser 20, the heat contained in the refrigerant COO (heat of the heating element) is radiated by cooling the gas-phase refrigerant COO. The refrigerant COO in the gas phase is phase-changed to the liquid phase by being cooled in the condenser 20.
 この間、凝縮器20内では、複数の第1の凝縮フィン24および第2の凝縮フィン25が、気相状態の冷媒COOに含まれる発熱体の熱を受熱して、これを冷却する。そして、凝縮器20内で冷却された冷媒COOは、液相状態となって、凝縮器20内に貯留される。この液相状態の冷媒COOは、第2の冷媒流入口22側から第2の冷媒流出口21側へ向けて流れる。このとき、複数の第2の凝縮フィン25が、筐体23内に貯留される液相状態の冷媒COOに浸かると、筐体23内の気相状態の冷媒COOを凝縮する効果が低減する。 During this time, in the condenser 20, the plurality of first condensing fins 24 and the second condensing fins 25 receive the heat of the heating element contained in the gas-phase refrigerant COO and cool it. Then, the refrigerant COO cooled in the condenser 20 becomes a liquid phase state and is stored in the condenser 20. The liquid-phase refrigerant COO flows from the second refrigerant inlet 22 side toward the second refrigerant outlet 21 side. At this time, if the plurality of second condensing fins 25 are immersed in the liquid-phase refrigerant COO stored in the housing 23, the effect of condensing the gas-phase refrigerant COO in the housing 23 is reduced.
 そこで、本実施の形態における冷却装置100では、図1および図7に示されるように、複数の第2の凝縮フィン25の先端部と、筐体23の鉛直方向Gの下方側の内面との間の距離L1は、筐体23の鉛直方向Gの下方側の内面と、筐体23に貯留されている液相状態の冷媒COOの液面との間の距離L2よりも、大きくなるように設定されている。これにより、複数の第2の凝縮フィン25の全面は、常に、筐体23内に貯留されている液相状態の冷媒COOに浸されることない。したがって、複数の第2の凝縮フィン25の全面を用いて、筐体23内の気相状態の冷媒COOを冷却して、液相状態の冷媒COOに相変化することができる。これにより、複数の第2の凝縮フィン25の一部が、蒸発器10内に貯留されている液相状態の冷媒COOに浸っている場合と比較して、気相状態の冷媒COOに含まれる発熱体の熱をより効率よく冷却することができる。 Therefore, in the cooling device 100 according to the present embodiment, as shown in FIGS. 1 and 7, the tips of the plurality of second condensing fins 25 and the inner surface of the casing 23 on the lower side in the vertical direction G are provided. The distance L <b> 1 is larger than the distance L <b> 2 between the inner surface of the casing 23 on the lower side in the vertical direction G and the liquid level of the liquid-phase refrigerant COO stored in the casing 23. Is set. As a result, the entire surface of the plurality of second condensing fins 25 is not always immersed in the liquid-phase refrigerant COO stored in the housing 23. Therefore, the entire surface of the plurality of second condensing fins 25 can be used to cool the refrigerant COO in the gas phase state in the housing 23 and change the phase to the refrigerant COO in the liquid phase state. Accordingly, a part of the plurality of second condensing fins 25 is included in the gas-phase refrigerant COO as compared with the case where the liquid-phase refrigerant COO stored in the evaporator 10 is immersed. The heat of the heating element can be cooled more efficiently.
 そして、凝縮器20内で冷却された冷媒COOは、液相状態に相変化して、凝縮器20内に貯留される。また、凝縮器20内の液相状態の冷媒COOは、再び、液管40を介して蒸発器10に流入する。 Then, the refrigerant COO cooled in the condenser 20 changes into a liquid phase state and is stored in the condenser 20. Further, the refrigerant COO in the liquid phase state in the condenser 20 flows into the evaporator 10 again through the liquid pipe 40.
 このように、冷媒COOは、発熱体の熱を蒸発器10により受熱し、蒸発器10、蒸気管30、凝縮器20および液管40を順次、循環する。これにより、蒸発器10により受熱された発熱体の熱が放熱される。 Thus, the refrigerant COO receives the heat of the heating element by the evaporator 10 and circulates through the evaporator 10, the vapor pipe 30, the condenser 20, and the liquid pipe 40 in order. Thereby, the heat of the heating element received by the evaporator 10 is radiated.
 以上の通り、冷却装置100は、蒸発器10および凝縮器20の間で、冷媒COOを相変化(液相←→気相)させながら循環させることにより、蒸発器10により受熱される発熱体を冷却する。 As described above, the cooling device 100 circulates the refrigerant COO between the evaporator 10 and the condenser 20 while changing the phase (liquid phase ← → gas phase), thereby generating a heating element that is received by the evaporator 10. Cooling.
 本発明の第1の実施の形態における冷却装置100は、蒸発器10と、凝縮器20とを備えている。蒸発器10は、発熱体の熱を受けて、内部に貯留されている液相状態の冷媒COOを発熱体の熱により蒸発させて、気相状態の冷媒COOを流出する。凝縮器20は、蒸発器10から流出する気相状態の冷媒COOを凝縮して、液相状態の冷媒COOを蒸発器10へ流出する。凝縮器20は、筐体23と、複数の第1の凝縮フィン24(第1の突起部)と、複数の第2の凝縮フィン25(第2の突起部)とを備えている。筐体23は、液相状態の冷媒COOを貯留する。複数の第1の凝縮フィン24は、筐体23の鉛直下方側の内面から鉛直上方へ向けて延出するように設けられている。複数の第2の凝縮フィン25は、複数の第1の凝縮フィン24の間に互い違いに設けられ、筐体23の鉛直上方側の内面から鉛直下方へ向けて延出するように設けられている。そして、複数の第2の凝縮フィン25の先端部と、筐体23の鉛直下方側の内面との間の距離L1は、筐体23の鉛直下方側の内面と、筐体23に貯留されている液相状態の冷媒COOの液面との間の距離L2よりも、大きい。 The cooling device 100 according to the first embodiment of the present invention includes an evaporator 10 and a condenser 20. The evaporator 10 receives the heat of the heating element, evaporates the liquid-phase refrigerant COO stored therein by the heat of the heating element, and flows out the gas-phase refrigerant COO. The condenser 20 condenses the refrigerant COO in the gas phase that flows out of the evaporator 10, and flows out the refrigerant COO in the liquid phase to the evaporator 10. The condenser 20 includes a housing 23, a plurality of first condensing fins 24 (first protrusions), and a plurality of second condensing fins 25 (second protrusions). The casing 23 stores the refrigerant COO in a liquid phase state. The plurality of first condensing fins 24 are provided so as to extend vertically upward from the inner surface of the housing 23 on the vertically lower side. The plurality of second condensing fins 25 are provided alternately between the plurality of first condensing fins 24 and are provided so as to extend vertically downward from the inner surface on the vertically upper side of the housing 23. . And the distance L1 between the front-end | tip part of the some 2nd condensation fin 25 and the inner surface of the vertically lower side of the housing | casing 23 is stored by the housing | casing 23 and the inner surface of the vertically lower side of the housing | casing 23. It is larger than the distance L2 between the liquid level refrigerant COO in the liquid phase state.
 このように、複数の第1の凝縮フィン24は、筐体23の鉛直下方側の内面から鉛直上方へ向けて延出するように設けられている。また、複数の第2の凝縮フィン25は、複数の第1の凝縮フィン24の間に互い違いに設けられ、筐体23の鉛直上方側の内面から鉛直下方へ向けて延出するように設けられている。このため、筐体23内では、複数の第1の凝縮フィン24と、複数の第2の凝縮フィン25を用いて、筐体23内の気相状態の冷媒COOを冷却することができる。筐体23内の気相状態の冷媒COOは、発熱体の熱を含んでいる。したがって、複数の第1の凝縮フィン24と、複数の第2の凝縮フィン25を設けることにより、これらを設けない場合と比較して、気相状態の冷媒COOに含まれる発熱体の熱をより効率よく冷却することができる。 Thus, the plurality of first condensing fins 24 are provided so as to extend vertically upward from the inner surface of the casing 23 on the vertically lower side. The plurality of second condensing fins 25 are provided alternately between the plurality of first condensing fins 24 and are provided so as to extend vertically downward from the inner surface of the housing 23 on the vertically upper side. ing. For this reason, in the housing | casing 23, the refrigerant | coolant COO of the gaseous-phase state in the housing | casing 23 can be cooled using the some 1st condensation fin 24 and the some 2nd condensation fin 25. FIG. The gas-phase refrigerant COO in the housing 23 contains the heat of the heating element. Therefore, by providing the plurality of first condensing fins 24 and the plurality of second condensing fins 25, the heat of the heating element contained in the refrigerant COO in the gas phase state is more increased as compared with the case where these are not provided. It can be cooled efficiently.
 また、複数の第2の凝縮フィン25の先端部と、筐体23の鉛直下方側の内面の間との距離L1は、筐体23の鉛直下方側の内面と、筐体23に貯留されている液相状態の冷媒COOの液面との間の距離L2よりも、大きい。 In addition, the distance L1 between the tips of the plurality of second condensing fins 25 and the inner surface on the vertically lower side of the housing 23 is stored in the inner surface on the vertically lower side of the housing 23 and the housing 23. It is larger than the distance L2 between the liquid level refrigerant COO in the liquid phase state.
 これにより、複数の第2の凝縮フィン25の全面は、常に、筐体23内に貯留されている液相状態の冷媒COOに浸されることない。したがって、複数の第2の凝縮フィン25の全面を用いて、筐体23内の気相状態の冷媒COOを冷却して、液相状態の冷媒COOに相変化することができる。これにより、複数の第2の凝縮フィン25の一部が、蒸発器10内に貯留されている液相状態の冷媒COOに浸っている場合と比較して、気相状態の冷媒COOに含まれる発熱体の熱をより効率よく冷却することができる。 Thus, the entire surfaces of the plurality of second condensing fins 25 are not always immersed in the liquid-phase refrigerant COO stored in the housing 23. Therefore, the entire surface of the plurality of second condensing fins 25 can be used to cool the refrigerant COO in the gas phase state in the housing 23 and change the phase to the refrigerant COO in the liquid phase state. Accordingly, a part of the plurality of second condensing fins 25 is included in the gas-phase refrigerant COO as compared with the case where the liquid-phase refrigerant COO stored in the evaporator 10 is immersed. The heat of the heating element can be cooled more efficiently.
 以上により、本発明の第1の実施の形態における冷却装置100によれば、冷媒COOの相変化を利用して、発熱体の熱を効率よく冷却することができる。 As described above, according to the cooling device 100 in the first embodiment of the present invention, the heat of the heating element can be efficiently cooled using the phase change of the refrigerant COO.
 また、本発明の第1の実施の形態における冷却装置100および凝縮器20は、蒸発器10から、流出する気相状態の冷媒COOを凝縮して、液相状態の冷媒COOを蒸発器10へ流出する。蒸発器10は、発熱体の熱を受けて、内部に貯留されている液相状態の冷媒COOを発熱体の熱により蒸発させる。凝縮器20は、筐体23と、複数の第1の凝縮フィン24(第1の突起部)と、複数の第2の凝縮フィン25(第2の突起部)とを備えている。筐体23は、液相状態の冷媒COOを貯留する。複数の第1の凝縮フィン24は、筐体23の鉛直下方側の内面から鉛直上方へ向けて延出するように筐体23に設けられている。複数の第2の凝縮フィン25は、複数の第1の凝縮フィン24の間に互い違いに設けられ、筐体23の鉛直上方側の内面から鉛直下方へ向けて延出するように筐体23に設けられている。そして、複数の第2の凝縮フィン25の先端部と、筐体23の鉛直下方側の内面との間の距離L1は、筐体23の鉛直下方側の内面と、筐体23に貯留されている液相状態の冷媒COOの液面との間の距離L2よりも、大きい。 In addition, the cooling device 100 and the condenser 20 in the first embodiment of the present invention condense the refrigerant COO in the gas phase that flows out from the evaporator 10, and convert the refrigerant COO in the liquid phase to the evaporator 10. leak. The evaporator 10 receives the heat of the heating element and evaporates the liquid-phase refrigerant COO stored therein by the heat of the heating element. The condenser 20 includes a housing 23, a plurality of first condensing fins 24 (first protrusions), and a plurality of second condensing fins 25 (second protrusions). The casing 23 stores the refrigerant COO in a liquid phase state. The plurality of first condensing fins 24 are provided in the housing 23 so as to extend vertically upward from the inner surface of the housing 23 on the vertically lower side. The plurality of second condensing fins 25 are alternately provided between the plurality of first condensing fins 24, and extend from the inner surface on the vertically upper side of the housing 23 downward in the vertical direction to the housing 23. Is provided. And the distance L1 between the front-end | tip part of the some 2nd condensation fin 25 and the inner surface of the vertically lower side of the housing | casing 23 is stored by the housing | casing 23 and the inner surface of the vertically lower side of the housing | casing 23. It is larger than the distance L2 between the liquid level refrigerant COO in the liquid phase state.
 このような凝縮器20であっても、上述した冷却装置100と同様の効果を奏することができる。 Even with such a condenser 20, the same effects as those of the cooling device 100 described above can be obtained.
 ここで、本発明の第1の実施の形態における冷却装置100の効果をさらに補足する。図11~図13は、冷却装置100の効果を説明するための図である。 Here, the effect of the cooling device 100 according to the first embodiment of the present invention will be further supplemented. 11 to 13 are diagrams for explaining the effect of the cooling device 100. FIG.
 図11は、図6に対応する図であって、冷却装置100の凝縮器20から第1の凝縮フィン24を除去したものである。以下、図11に示される凝縮器を下側フィンなし凝縮器80と称する。図12は、図6に対応する図であって、冷却装置100の凝縮器20から第2の凝縮フィン25を除去したものである。以下、図12に示される凝縮器を上側フィンなし凝縮器90と称する。図13は、下側フィンなし凝縮器80と上側フィンなし凝縮器90の熱抵抗の関係を示す図である。 FIG. 11 is a diagram corresponding to FIG. 6, in which the first condensing fins 24 are removed from the condenser 20 of the cooling device 100. Hereinafter, the condenser shown in FIG. 11 is referred to as a lower finless condenser 80. FIG. 12 is a diagram corresponding to FIG. 6, in which the second condensing fins 25 are removed from the condenser 20 of the cooling device 100. Hereinafter, the condenser shown in FIG. 12 is referred to as an upper finless condenser 90. FIG. 13 is a diagram showing the relationship between the thermal resistances of the lower finless condenser 80 and the upper finless condenser 90.
 図13の作成に際して、以下の条件で実験を行った。すなわち、下側フィンなし凝縮器80の凝縮フィン25の表面積と、上側フィンなし凝縮器90の凝縮フィン24の表面積とが、共に約0.1(m)で同じになるように設定した。また、下側フィンなし凝縮器80および上側フィンなし凝縮器90の放熱量は共に100(W)とした。また、下側フィンなし凝縮器80および上側フィンなし凝縮器90に供給する冷却風の風量を共に2.7(m/min)に設定した。 When creating FIG. 13, the experiment was performed under the following conditions. That is, the surface area of the condensing fin 25 of the lower finless condenser 80 and the surface area of the condensing fin 24 of the upper finless condenser 90 were set to be the same at about 0.1 (m 2 ). Further, the heat radiation amount of the lower finless condenser 80 and the upper finless condenser 90 was 100 (W). In addition, the amount of cooling air supplied to the lower finless condenser 80 and the upper finless condenser 90 was set to 2.7 (m 3 / min).
 また、上記条件で実験を行い、下側フィンなし凝縮器80の熱抵抗と上側フィンなし凝縮器90の熱抵抗を測定した。そして、この測定結果から、上側フィンなし凝縮器90と下側フィンなし凝縮器80の熱抵抗の比を算出すると、約1.6:1をとなった。 Also, an experiment was performed under the above conditions, and the thermal resistance of the lower finless condenser 80 and the thermal resistance of the upper finless condenser 90 were measured. From this measurement result, the ratio of the thermal resistance of the upper finless condenser 90 and the lower finless condenser 80 was calculated to be about 1.6: 1.
 図13では、上側フィンなし凝縮器90と下側フィンなし凝縮器80の熱抵抗の比が約1.6:1であることを示している。 図13に示されるように、上側フィンなし凝縮器90は、下側フィンなし凝縮器80と比較して、熱抵抗が1.6倍大きくなる。これは、上側フィンなし凝縮器90では、筐体23の下側に第1の凝縮フィン24が設けられているが、この第1の凝縮フィン24の一部が筐体23内の液相状態の冷媒COOに浸ってしまっていることを要因とする。すなわち、第1の凝縮フィン24は、筐体23内の液相状態の冷媒COOに浸ってしまうと、筐体23内の気相状態の冷媒COOを凝縮することはできない。このため、上側フィンなし凝縮器90は、下側フィンなし凝縮器80と比較して、熱抵抗が大きくなった。 FIG. 13 shows that the thermal resistance ratio of the upper finless condenser 90 and the lower finless condenser 80 is about 1.6: 1. As shown in FIG. 13, the upper finless condenser 90 has a thermal resistance 1.6 times larger than that of the lower finless condenser 80. In the upper finless condenser 90, the first condensing fin 24 is provided on the lower side of the casing 23, and a part of the first condensing fin 24 is in a liquid phase state in the casing 23. This is because it is immersed in the refrigerant COO. That is, if the first condensing fin 24 is immersed in the liquid state refrigerant COO in the housing 23, the first condensing fin 24 cannot condense the gas phase refrigerant COO in the housing 23. For this reason, the upper finless condenser 90 has a higher thermal resistance than the lower finless condenser 80.
 このような問題を考慮して、本発明の第1の実施の形態では、図6に示されるように、複数の第1の凝縮フィン24と複数の第2の凝縮フィン25が互い違いに設けられるように構成されている。このように、筐体23内部の上部側の面に第2の凝縮フィン25を設けることにより、上側フィンなし凝縮器90と比較して、より効率よく発熱体の熱を冷却することができる。第1の凝縮フィン24と第2の凝縮フィン25の間には隙間が設けられている。この隙間を一定間隔で設けることにより、隣り合う流路間の圧力が均一になり、凝縮器20内の冷媒COOの流れを安定させることができる。 Considering such a problem, in the first embodiment of the present invention, as shown in FIG. 6, a plurality of first condensing fins 24 and a plurality of second condensing fins 25 are provided alternately. It is configured as follows. As described above, by providing the second condensing fins 25 on the upper surface inside the housing 23, the heat of the heating element can be cooled more efficiently than the upper finless condenser 90. A gap is provided between the first condensing fin 24 and the second condensing fin 25. By providing the gaps at regular intervals, the pressure between adjacent flow paths becomes uniform, and the flow of the refrigerant COO in the condenser 20 can be stabilized.
 また、第1の凝縮フィン24と第2の凝縮フィン25の間に隙間を設けることにより、凝縮器20に流入する気相状態の冷媒COOのうち、密度の低い冷媒COOを、凝縮器20の下流方向へ導くことができる。これより、凝縮器20全体を使用して、発熱体の熱を冷却することができる。このように、複数の第1の凝縮フィン24と、複数の第2の凝縮フィン25を設けたことにより、筐体23のうちで気相状態の冷媒COOに接触する面積を増加することができる。この結果、凝縮器20の大きさを小さくすることができる。 Further, by providing a gap between the first condensing fins 24 and the second condensing fins 25, the low-density refrigerant COO out of the gas-phase refrigerant COO flowing into the condenser 20 It can be led in the downstream direction. Thus, the heat of the heating element can be cooled using the entire condenser 20. Thus, by providing the plurality of first condensing fins 24 and the plurality of second condensing fins 25, it is possible to increase the area of the housing 23 that contacts the gas-phase refrigerant COO. . As a result, the size of the condenser 20 can be reduced.
 また、本発明の第1の実施の形態における冷却装置100および凝縮器20は、第1の筐体面23Aと、第2の筐体面23Bとを備えている。第1の筐体面23Aは、筐体23を構成する複数の面のうち、気相状態の冷媒COOが流入する第2の冷媒流入口22が形成されている面である。第2の筐体面23Bは、筐体23を構成する複数の面のうち、液相状態の冷媒COOが流出する第2の冷媒流出口21が形成されている面である。また、第1の凝縮フィン24および第2の凝縮フィン25は、第1の筐体面23A側から第2の筐体面23B側に向かう方向に沿って延在するように、板状に形成されている。 Further, the cooling device 100 and the condenser 20 in the first embodiment of the present invention include the first housing surface 23A and the second housing surface 23B. 23 A of 1st housing | casing surfaces are surfaces in which the 2nd refrigerant | coolant inflow port 22 into which the refrigerant | coolant COO of a gaseous-phase state flows in among the several surfaces which comprise the housing | casing 23 is formed. The second housing surface 23 </ b> B is a surface on which the second refrigerant outlet 21 through which the liquid-phase refrigerant COO flows out of a plurality of surfaces constituting the housing 23 is formed. The first condensing fins 24 and the second condensing fins 25 are formed in a plate shape so as to extend along the direction from the first housing surface 23A side to the second housing surface 23B side. Yes.
 これにより、第1の筐体面23Aに形成された第2の冷媒流入口22に流入する気相状態の冷媒COOを、第2の筐体面23Bに形成された第2の冷媒流出口21に向けて、円滑に流すことができる。 As a result, the refrigerant COO in the gas phase flowing into the second refrigerant inlet 22 formed on the first casing surface 23A is directed to the second refrigerant outlet 21 formed on the second casing surface 23B. And can flow smoothly.
 <第2の実施の形態>
 本発明の第2の実施の形態における冷却装置100Aの構成について説明する。図14は、冷却装置100Aの構成を分解して示す断面斜視図である。なお、図14では、図1~図13で示した各構成要素と同等の構成要素には、図1~図13に示した符号と同等の符号を付している。本実施の形態における冷却装置100Aの完成品と、第1の実施の形態における冷却装置100は、同等の装置である。
<Second Embodiment>
The configuration of the cooling device 100A in the second embodiment of the present invention will be described. FIG. 14 is an exploded perspective view showing the structure of the cooling device 100A. In FIG. 14, the same components as those shown in FIGS. 1 to 13 are denoted by the same reference numerals as those shown in FIGS. The finished product of cooling device 100A in the present embodiment and cooling device 100 in the first embodiment are equivalent devices.
 図14に示されるように、冷却装置100Aの凝縮器20は、凝縮器の第1の部品20aと、凝縮器の第2の部品20bとから構成されている。 As shown in FIG. 14, the condenser 20 of the cooling device 100A is composed of a first part 20a of the condenser and a second part 20b of the condenser.
 図14に示されるように、凝縮器の第1の部品20aは、筐体の第1部分23aと、複数の第1の凝縮フィン24とから構成される。また、筐体の第1部分23aの外面には、放熱フィン60が取り付けられている。 As shown in FIG. 14, the first component 20 a of the condenser is composed of a first portion 23 a of the housing and a plurality of first condensing fins 24. Moreover, the radiation fin 60 is attached to the outer surface of the 1st part 23a of a housing | casing.
 図14に示されるように、凝縮器の第2部分20bは、筐体の第2部分23bと、複数の第2の凝縮フィン25とから構成される。また、筐体の第2部分23bの外面には、放熱フィン50が取り付けられている。 As shown in FIG. 14, the second portion 20 b of the condenser is composed of a second portion 23 b of the housing and a plurality of second condensing fins 25. In addition, heat radiating fins 50 are attached to the outer surface of the second portion 23b of the housing.
 ここで、凝縮器の第1の部品20aと、凝縮器の第2の部品20bは、互いに対称となるように、形成されている。すなわち、第1の凝縮フィン24および第2の凝縮フィン25の長さは同一に設定されている。 Here, the first part 20a of the condenser and the second part 20b of the condenser are formed so as to be symmetrical to each other. That is, the lengths of the first condensation fins 24 and the second condensation fins 25 are set to be the same.
 このように形成された凝縮器の第1の部品20aと、凝縮器の第2の部品20bとを組み合わせることにより、凝縮器20を組み立てることができる。なお、凝縮器の第1の部品20aと、凝縮器の第2の部品20bは、たとえば、ろう付けや溶接等により接合される。 The condenser 20 can be assembled by combining the first part 20a of the condenser thus formed and the second part 20b of the condenser. In addition, the 1st component 20a of a condenser and the 2nd component 20b of a condenser are joined by brazing, welding, etc., for example.
 このように、凝縮器の第1の部品20aおよび凝縮器の第2の部品20bを互いに対称となるように構成することにより、凝縮器の第1の部品20aおよび凝縮器の第2の部品20bを同一部品で製造することができる。この結果、製造コストを低減することができる。 In this way, the condenser first part 20a and the condenser second part 20b are configured to be symmetrical to each other, whereby the condenser first part 20a and the condenser second part 20b. Can be manufactured with the same parts. As a result, the manufacturing cost can be reduced.
 <第3の実施の形態>
 本発明の第3の実施の形態における凝縮器20Bの構成について説明する。図15は、凝縮器20Bの構成を示す断面図である。図15は、図6に対応している。ただし、図面作成の便宜上、図15では、放熱フィン50、60と、蒸気管30を省略している。図15には、鉛直方向Gを示している。なお、図15では、図1~図14で示した各構成要素と同等の構成要素には、図1~図14に示した符号と同等の符号を付している。
<Third Embodiment>
The structure of the condenser 20B in the 3rd Embodiment of this invention is demonstrated. FIG. 15 is a cross-sectional view showing the configuration of the condenser 20B. FIG. 15 corresponds to FIG. However, for the convenience of drawing drawing, the radiation fins 50 and 60 and the steam pipe 30 are omitted in FIG. FIG. 15 shows the vertical direction G. In FIG. 15, components equivalent to those shown in FIG. 1 to FIG. 14 are given the same reference numerals as those shown in FIG. 1 to FIG.
 図15に示されるように、複数の第1の凝縮フィン24Aおよび第2の凝縮フィン25Bは、筐体23の内部に設けられている。第1の凝縮フィン24Aおよび第2の凝縮フィン25Aは、本実施形態の第1の突起部および第2の突起部に対応する。 As shown in FIG. 15, the plurality of first condensing fins 24 </ b> A and second condensing fins 25 </ b> B are provided inside the housing 23. The first condensing fin 24A and the second condensing fin 25A correspond to the first protrusion and the second protrusion of the present embodiment.
 ここで、図6の複数の第1の凝縮フィン24と、図15の複数の第1の凝縮フィン24Bを対比する。図6では、第1の凝縮フィン24は、平板状に形成されている。すなわち、鉛直方向Gに対して垂直な方向の面で第1の凝縮フィン24を切断した場合、複数の第1の凝縮フィン24の断面積は、根元部から先端部の間で一定になるように、設定されている。これに対して、図15では、第1の凝縮フィン24Bの形状はテーパ状に形成されている。すなわち、鉛直方向Gに対して垂直な方向の面で第1の凝縮フィン24Bを切断した場合、複数の第1の凝縮フィン24Bの断面積は、根元部から先端部に向かうにつれて、徐々に小さくなるように、設定されている。 Here, the plurality of first condensing fins 24 in FIG. 6 and the plurality of first condensing fins 24B in FIG. 15 are compared. In FIG. 6, the 1st condensation fin 24 is formed in flat form. That is, when the first condensing fins 24 are cut along a plane perpendicular to the vertical direction G, the cross-sectional area of the plurality of first condensing fins 24 is constant between the root portion and the tip portion. Is set. On the other hand, in FIG. 15, the shape of the 1st condensation fin 24B is formed in the taper shape. That is, when the first condensing fins 24B are cut along a plane perpendicular to the vertical direction G, the cross-sectional area of the plurality of first condensing fins 24B gradually decreases from the root portion toward the tip portion. It is set to be.
 図6では、第2の凝縮フィン25は、平板状に形成されている。すなわち、鉛直方向Gに対して垂直な方向の面で第2の凝縮フィン25を切断した場合、複数の第2の凝縮フィン25の断面積は、根元部から先端部の間で一定になるように、設定されている。これに対して、図15では、第2の凝縮フィン25Bの形状はテーパ状に形成されている。すなわち、鉛直方向Gに対して垂直な方向の面で第2の凝縮フィン25Bを切断した場合、複数の第2の凝縮フィン25Bの断面積は、根元部から先端部に向かうにつれて、徐々に小さくなるように、設定されている。 In FIG. 6, the second condensing fins 25 are formed in a flat plate shape. That is, when the second condensing fins 25 are cut in a plane perpendicular to the vertical direction G, the cross-sectional areas of the plurality of second condensing fins 25 are constant between the root portion and the tip portion. Is set. On the other hand, in FIG. 15, the shape of the 2nd condensation fin 25B is formed in the taper shape. That is, when the second condensing fins 25B are cut along a plane perpendicular to the vertical direction G, the cross-sectional area of the plurality of second condensing fins 25B gradually decreases from the root portion toward the tip portion. It is set to be.
 複数の第1の凝縮フィン24Bおよび第2の凝縮フィン25Bをテーパ状に形成することにより、テーパ状としない場合(例えば図6の複数の第1の凝縮フィン24および第2の凝縮フィン25)と比較して、第1および第2の凝縮フィンの間を流れる冷媒COOの流動性を高めることができる。すなわち、鉛直方向Gに対して略垂直方向の面で凝縮器20Bを切断した際の第1および第2の凝縮フィン24B、25B(本実施の形態)の間の隙間は、とくに第1および第2の凝縮フィン24B、25Bの先端部側において、鉛直方向Gに対して略垂直方向の面で凝縮器20を切断した際の第1および第2の凝縮フィン24、25(第1の実施の形態)の間の隙間よりも大きくなる。この結果、第1および第2の凝縮フィンの間を流れる冷媒COOの流動性を高めることができる。 When the plurality of first condensing fins 24B and the second condensing fins 25B are formed in a taper shape, the taper shape is not used (for example, the plurality of the first condensing fins 24 and the second condensing fins 25 in FIG. 6). As compared with, the fluidity of the refrigerant COO flowing between the first and second condensation fins can be enhanced. That is, the gap between the first and second condensing fins 24B and 25B (this embodiment) when the condenser 20B is cut in a plane substantially perpendicular to the vertical direction G is particularly the first and second. The first and second condensing fins 24 and 25 (first embodiment) when the condenser 20 is cut in a plane substantially perpendicular to the vertical direction G on the front end side of the two condensing fins 24B and 25B. It becomes larger than the gap between (form). As a result, the fluidity of the refrigerant COO flowing between the first and second condensation fins can be increased.
 以上の通り、本発明の第3の実施の形態における冷却装置および凝縮器20Bにおいて、鉛直方向Gに対して垂直な方向の面で第1の凝縮フィン24B(第1の突起部)および第2の凝縮フィン25B(第2の突起部)を切断した場合、第1の凝縮フィン24Bおよび第2の凝縮フィン25Bの断面積は、根元部から先端部に向かうにつれて、徐々に小さくなるように、設定されている。 As described above, in the cooling device and the condenser 20B according to the third embodiment of the present invention, the first condensing fins 24B (first protrusions) and the second concentric surface in the direction perpendicular to the vertical direction G. When the condensing fins 25B (second protrusions) are cut, the cross-sectional areas of the first condensing fins 24B and the second condensing fins 25B gradually decrease from the root portion toward the tip portion. Is set.
 これにより、鉛直方向Gに対して略垂直方向の面で凝縮器20Bを切断した際の第1および第2の凝縮フィン24B、25Bの間の隙間は、とくに第1および第2の凝縮フィン24B、25Bの先端部側において、鉛直方向Gに対して略垂直方向の面で凝縮器20を切断した際の第1および第2の凝縮フィン24、25の間の隙間よりも大きくなる。この結果、第1および第2の凝縮フィンの間を流れる冷媒COOの流動性を高めることができる。 Thus, the gap between the first and second condensing fins 24B and 25B when the condenser 20B is cut in a plane substantially perpendicular to the vertical direction G, particularly the first and second condensing fins 24B. , 25B is larger than the gap between the first and second condensing fins 24, 25 when the condenser 20 is cut along a plane substantially perpendicular to the vertical direction G. As a result, the fluidity of the refrigerant COO flowing between the first and second condensation fins can be increased.
 <第4の実施の形態>
 本発明の第4の実施の形態における冷却装置および凝縮器20Cの構成について説明する。図16は、凝縮器20Cの構成を示す断面図である。図16は、図7に対応している。図16には、鉛直方向Gを示している。なお、図16では、図1~図15で示した各構成要素と同等の構成要素には、図1~図15に示した符号と同等の符号を付している。
<Fourth embodiment>
The configuration of the cooling device and the condenser 20C in the fourth embodiment of the present invention will be described. FIG. 16 is a cross-sectional view showing the configuration of the condenser 20C. FIG. 16 corresponds to FIG. FIG. 16 shows the vertical direction G. In FIG. 16, components equivalent to those shown in FIGS. 1 to 15 are denoted by the same symbols as those shown in FIGS.
 図16に示されるように、凝縮器20Cでは、複数の第1の凝縮フィン24および第2の凝縮フィン25が筐体23に設けられている。 As shown in FIG. 16, in the condenser 20 </ b> C, a plurality of first condensation fins 24 and second condensation fins 25 are provided in the housing 23.
 図7と図16を対比する。図16では、第1の貫通孔26および第2の貫通孔27が形成されている点で、図7と相違する。 Fig. 7 and Fig. 16 are compared. 16 is different from FIG. 7 in that a first through hole 26 and a second through hole 27 are formed.
 図16に示されるように、第1の貫通孔26は、各第1の凝縮フィン24の根元部に設けられている。第1の貫通孔26内は、主として、液相状態の冷媒COOが通過する。 As shown in FIG. 16, the first through hole 26 is provided at the root of each first condensing fin 24. The liquid phase refrigerant COO mainly passes through the first through hole 26.
 図16に示されるように、第2の貫通孔27は、各第2の凝縮フィン25の根元部に設けられている。第2の貫通孔27内は、主として、気相状態の冷媒COOが通過する。 As shown in FIG. 16, the second through hole 27 is provided at the root of each second condensing fin 25. The second through-hole 27 mainly passes through the refrigerant COO in a gas phase state.
 以上の通り、本発明の第4の実施の形態における冷却措置は、第1の貫通孔26をさらに備えている。第1の貫通孔26は、複数の第1の凝縮フィン24の根元部に設けられている。また、第1の貫通孔26には、液相状態の冷媒が通過する。 As described above, the cooling measure in the fourth embodiment of the present invention further includes the first through hole 26. The first through hole 26 is provided at the root portion of the plurality of first condensing fins 24. Further, the liquid phase refrigerant passes through the first through hole 26.
 これにより、第1の貫通孔26を介して、液相状態の冷媒COOを複数の第1の凝縮フィン24の間で流動させることができる。この結果、複数の第1の凝縮フィン24の間で滞留する液相状態の冷媒COOを均衡することができる。すなわち、互いに向かい合う2枚の第1の凝縮フィン24の間に滞留する液相状態の冷媒COOの量が、どの2枚の第1の凝縮フィン24の間であっても、ほぼ同量にすることができる。したがって、冷媒COOに含まれる発熱体の熱を複数の第1の凝縮フィン24の各々で均一に受熱することができる。すなわち、複数の第1の凝縮フィン24の各々が、冷媒COOに含まれる発熱体の熱を、複数の第1の凝縮フィン24の間で偏り無く、受熱できる。つまり、複数の第1の凝縮フィン24のうちで、極端に受熱量が少なかったり、極端に受熱量が多かったりするものがない。このことから、第1の貫通孔26を設けることにより、無駄な第1の凝縮フィン24を無くすことができる。この結果、凝縮器20Cをより小型化することができる。 Thereby, the liquid-phase refrigerant COO can flow between the plurality of first condensing fins 24 through the first through hole 26. As a result, it is possible to balance the refrigerant COO in the liquid phase that stays between the plurality of first condensing fins 24. That is, the amount of the liquid-phase refrigerant COO staying between the two first condensing fins 24 facing each other is set to be substantially the same regardless of the amount of any two first condensing fins 24. be able to. Therefore, the heat of the heating element included in the refrigerant COO can be received uniformly by each of the plurality of first condensing fins 24. That is, each of the plurality of first condensing fins 24 can receive the heat of the heating element included in the refrigerant COO without being biased among the plurality of first condensing fins 24. That is, none of the plurality of first condensing fins 24 has an extremely small amount of received heat or an extremely large amount of received heat. For this reason, by providing the first through hole 26, the useless first condensing fin 24 can be eliminated. As a result, the condenser 20C can be further downsized.
 また、本発明の実施の形態における冷却装置および凝縮器20Cは、第2の貫通孔27を備えている。第2の貫通孔27は、複数の第2の凝縮フィン25の根元部に設けられている。また、第2の貫通孔27には、気相状態の冷媒が通過する。 Further, the cooling device and the condenser 20C according to the embodiment of the present invention include the second through hole 27. The second through hole 27 is provided at the root of the plurality of second condensing fins 25. Further, the refrigerant in the gas phase passes through the second through hole 27.
 これにより、第2の貫通孔27を介して、気相状態の冷媒COOを複数の第2の凝縮フィン25の間で流動させることができる。この結果、複数の第2の凝縮フィン25の間で滞留する気相状態の冷媒COOを均衡することができる。すなわち、互いに向かい合う2枚の第2の凝縮フィン25の間に滞留する気相状態の冷媒COOの量が、どの2枚の第2の凝縮フィン25の間であっても、ほぼ同量にすることができる。したがって、冷媒COOに含まれる発熱体の熱を複数の第2の凝縮フィン25の各々で均一に受熱することができる。すなわち、複数の第2の凝縮フィン25の各々が、冷媒COOに含まれる発熱体の熱を、複数の第2の凝縮フィン25の間で偏り無く、受熱できる。つまり、複数の第2の凝縮フィン25のうちで、極端に受熱量が少なかったり、極端に受熱量が多かったりするものがない。このことから、第2の貫通孔27を設けることにより、無駄な第2の凝縮フィン25を無くすことができる。この結果、凝縮器20Cをより小型化することができる。 Thereby, the gas-phase refrigerant COO can flow between the plurality of second condensing fins 25 through the second through hole 27. As a result, it is possible to balance the refrigerant COO in the gas phase that stays between the plurality of second condensing fins 25. In other words, the amount of the refrigerant COO in the gas phase that is retained between the two second condensing fins 25 facing each other is almost the same regardless of the amount of any of the two second condensing fins 25. be able to. Therefore, the heat of the heating element included in the refrigerant COO can be uniformly received by each of the plurality of second condensation fins 25. That is, each of the plurality of second condensing fins 25 can receive the heat of the heating element included in the refrigerant COO without being biased among the plurality of second condensing fins 25. That is, none of the plurality of second condensing fins 25 has an extremely small amount of received heat or an extremely large amount of received heat. Therefore, by providing the second through hole 27, the useless second condensing fin 25 can be eliminated. As a result, the condenser 20C can be further downsized.
 なお、本実施の形態では、第1の貫通孔26および第2の貫通孔27の双方が凝縮器20Cに設けられた例を示した。一方、第1の貫通孔26のいずれか一方が凝縮器20Cに設けられてもよい。 In the present embodiment, an example is shown in which both the first through hole 26 and the second through hole 27 are provided in the condenser 20C. On the other hand, any one of the first through holes 26 may be provided in the condenser 20C.
 <第5の実施の形態>
 本発明の第5の実施の形態における冷却装置および凝縮器20Dの構成について説明する。図17は、凝縮器20Dの構成を示す断面図である。図16は、図9に対応している。なお、図17では、図1~図16で示した各構成要素と同等の構成要素には、図1~図16に示した符号と同等の符号を付している。
<Fifth embodiment>
The structure of the cooling device and condenser 20D in the 5th Embodiment of this invention is demonstrated. FIG. 17 is a cross-sectional view showing the configuration of the condenser 20D. FIG. 16 corresponds to FIG. In FIG. 17, components equivalent to those shown in FIG. 1 to FIG. 16 are given the same reference numerals as those shown in FIG. 1 to FIG.
 図17に示されるように、凝縮器20Dでは、複数の第1の凝縮フィン24および第2の凝縮フィン25が凝縮器20Dの筐体23に設けられている。 As shown in FIG. 17, in the condenser 20D, a plurality of first condensation fins 24 and second condensation fins 25 are provided in the casing 23 of the condenser 20D.
 ここで、図17と図9を対比する。図9では、複数の第1の凝縮フィン24の各々は、同じ長さとなるように形成されていた。同様に、複数の第2の凝縮フィン25の各々は、同じ長さとなるように形成されていた。これに対して、図17では、複数の第1の凝縮フィン24の各々および複数の第2の凝縮フィン25の各々の長さは、異なるように形成されている。なお、図17では、複数の第1および第2の凝縮フィン24、25の双方の各々の長さは、異なるように形成されていると説明したが、少なくとも複数の第1の凝縮フィン24の各々の長さが、異なるように形成されていればよい。また、一部に同じ長さの第1の凝縮フィン24または第2の凝縮フィン25が設けられてもよい。 Here, FIG. 17 and FIG. 9 are compared. In FIG. 9, each of the plurality of first condensing fins 24 is formed to have the same length. Similarly, each of the plurality of second condensing fins 25 is formed to have the same length. On the other hand, in FIG. 17, each of the plurality of first condensing fins 24 and each of the plurality of second condensing fins 25 are formed to be different. In FIG. 17, it has been described that the lengths of the plurality of first and second condensing fins 24 and 25 are different from each other. However, at least the plurality of first condensing fins 24 have the same length. Each length should just be formed so that it may differ. Moreover, the 1st condensation fin 24 or the 2nd condensation fin 25 of the same length may be provided in a part.
 図17に示されるように、第2の冷媒流入口22から凝縮器20Dの筐体23内に流入する気相冷媒COOの流入方向Sと、複数の第1および第2の凝縮フィン24、25の延在方向は、互いに平行でない。 As shown in FIG. 17, the inflow direction S of the gas-phase refrigerant COO flowing into the housing 23 of the condenser 20 </ b> D from the second refrigerant inflow port 22, and the plurality of first and second condensing fins 24, 25. The extending directions of are not parallel to each other.
 また、図17に示されるように、少なくとも、複数の第1の凝縮フィン24の第1の筐体面23A側の各端部は、気相冷媒の流入方向Sの逆方向に向かうにつれて、第1の筐体面23Aから離れる方向に移動するように形成されている。 In addition, as shown in FIG. 17, at least each of the end portions on the first housing surface 23A side of the plurality of first condensing fins 24 goes in the direction opposite to the inflow direction S of the gas-phase refrigerant. It is formed so as to move away from the housing surface 23A.
 仮に、複数の第1の凝縮フィン24の長さが同じ場合に、とくに、筐体23に流入する気相状態の冷媒COOの流速が早いと、気相状態の冷媒COOは第1の凝縮フィン24に衝突してしまう。この場合、第1の凝縮フィン24の抵抗により、気相冷媒COOの圧力損失が生じる。この結果、凝縮器の熱抵抗が大きくなるおそれも生じる。 If the lengths of the plurality of first condensing fins 24 are the same, particularly when the flow rate of the gas-phase refrigerant COO flowing into the housing 23 is high, the gas-phase refrigerant COO is converted into the first condensing fins. 24 will collide. In this case, the pressure loss of the gas-phase refrigerant COO occurs due to the resistance of the first condensing fins 24. As a result, the heat resistance of the condenser may increase.
 これに対して、本実施の形態では、上述の通り、少なくとも、複数の第1の凝縮フィン24の第1の筐体面23A側の各端部は、気相冷媒の流入方向Sの逆方向に向かうにつれて、第1の筐体面23Aから離れる方向に移動するように形成されている。これにより、気相冷媒COOが第2の冷媒流入口22から凝縮器20Dの筐体23内に流入する際に、当該気相冷媒COOの圧力損失を低減することができる。この結果、凝縮器20Dの放熱効率を高めることができる。したがって、凝縮器24Dの大きさをより小さくすることができる。 In contrast, in the present embodiment, as described above, at least the ends of the plurality of first condensing fins 24 on the first housing surface 23A side are in the direction opposite to the inflow direction S of the gas-phase refrigerant. As it goes, it is formed to move in a direction away from the first housing surface 23A. Thereby, when the gas-phase refrigerant COO flows from the second refrigerant inflow port 22 into the housing 23 of the condenser 20D, the pressure loss of the gas-phase refrigerant COO can be reduced. As a result, the heat dissipation efficiency of the condenser 20D can be increased. Therefore, the size of the condenser 24D can be further reduced.
 なお、図17に示されるように、複数の第1のおよび第2の凝縮フィン24、25の第1の筐体面23A側の各端部の角度θを、たとえば、30°~60°に設定することができる。 As shown in FIG. 17, the angle θ of each end of the plurality of first and second condensing fins 24, 25 on the first housing surface 23A side is set to 30 ° to 60 °, for example. can do.
 以上の通り、本発明の第5の実施の形態における冷却装置および凝縮器20Dにおいて、第2の冷媒流入口22から凝縮器20Dの筐体23内に流入する気相冷媒COOの流入方向Sと、複数の第1および第2の凝縮フィン24、25の延在方向は、互いに平行でない。この場合、複数の第1の凝縮フィン24の第1の筐体面23A側の各端部は、気相冷媒の流入方向Sの逆方向に向かうにつれて、第1の筐体面23Aから離れる方向に移動するように形成されている。 As described above, in the cooling device and the condenser 20D according to the fifth embodiment of the present invention, the inflow direction S of the gas-phase refrigerant COO that flows into the housing 23 of the condenser 20D from the second refrigerant inlet 22 The extending directions of the plurality of first and second condensing fins 24 and 25 are not parallel to each other. In this case, each end on the first housing surface 23A side of the plurality of first condensing fins 24 moves in a direction away from the first housing surface 23A as it goes in the direction opposite to the inflow direction S of the gaseous refrigerant. It is formed to do.
 これにより、気相冷媒COOが第2の冷媒流入口22から凝縮器20Dの筐体23内に流入する際に、当該気相冷媒COOの圧力損失を低減することができる。この結果、凝縮器20Dの放熱効率を高めることができる。 Thereby, when the gas-phase refrigerant COO flows into the casing 23 of the condenser 20D from the second refrigerant inflow port 22, the pressure loss of the gas-phase refrigerant COO can be reduced. As a result, the heat dissipation efficiency of the condenser 20D can be increased.
 以上、実施の形態をもとに本発明を説明した。実施の形態は例示であり、本発明の主旨から逸脱しない限り、上述各実施の形態に対して、さまざまな変更、増減、組合せを加えてもよい。これらの変更、増減、組合せが加えられた変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the embodiments. The embodiment is an exemplification, and various modifications, increases / decreases, and combinations may be added to the above-described embodiments without departing from the gist of the present invention. It will be understood by those skilled in the art that modifications to which these changes, increases / decreases, and combinations are also within the scope of the present invention.
 この出願は、2016年5月19日に出願された日本出願特願2016-100450を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2016-100450 filed on May 19, 2016, the entire disclosure of which is incorporated herein.
 100  冷却装置
 10  蒸発器
 11  第1の冷媒流出口
 12  第1の冷媒流入口
 20、20C、20D  凝縮器
 20a  凝縮器の第1の部品
 20b  凝縮器の第2の部品
 21  第2の冷媒流出口
 22  第2の冷媒流入口
 23  筐体
 23A  第1の筐体面
 23B  第2の筐体面
 23a  筐体の第1部分
 23b  筐体の第2部分
 24、24B  第1の凝縮フィン
 25、25B  第2の凝縮フィン
 26  第1の貫通孔
 27  第2の貫通孔
 30  蒸気管
 40  液管
 50  放熱フィン
 60  放熱フィン
 80  下側フィンなし凝縮器
 90  上側フィンなし凝縮器
DESCRIPTION OF SYMBOLS 100 Cooling device 10 Evaporator 11 1st refrigerant | coolant outlet 12 1st refrigerant | coolant inlet 20, 20C, 20D Condenser 20a The 1st component of a condenser 20b The 2nd component of a condenser 21 The 2nd refrigerant | coolant outlet 22 2nd refrigerant | coolant inlet 23 Housing | casing 23A 1st housing | casing surface 23B 2nd housing | casing surface 23a 1st part of a housing | casing 23b 2nd part of a housing | casing 24, 24B 1st condensation fins 25, 25B 2nd Condensation fin 26 First through-hole 27 Second through-hole 30 Steam pipe 40 Liquid pipe 50 Radiation fin 60 Radiation fin 80 Lower finless condenser 90 Upper finless condenser

Claims (8)

  1.  発熱体の熱を受けて、内部に貯留されている液相状態の冷媒を前記発熱体の熱により蒸発させて、気相状態の冷媒を流出する蒸発器と、
     前記蒸発器から流出する前記気相状態の冷媒を凝縮して、液相状態の冷媒を前記蒸発器へ流出する凝縮器とを備え、
     前記凝縮器は、
     液相状態の冷媒を貯留する筐体と、
     前記筐体の鉛直下方側の内面から鉛直上方へ向けて延出するように前記筐体に設けられた複数の第1の突起部と、
     前記複数の第1の突起部の間に互い違いに設けられ、前記筐体の鉛直上方側の内面から鉛直下方へ向けて延出するように前記筐体に設けられた複数の第2の突起部とを備え、
     前記複数の第2の突起部の先端部と、前記筐体の前記鉛直下方側の内面の間との距離は、前記筐体の前記鉛直下方側の内面と、前記筐体に貯留されている前記液相状態の冷媒の液面との間の距離よりも、大きい冷却装置。
    An evaporator that receives heat of the heating element, evaporates the refrigerant in a liquid state stored therein by the heat of the heating element, and flows out the refrigerant in a gas phase;
    A condenser for condensing the gas-phase refrigerant flowing out of the evaporator, and a liquid-phase refrigerant flowing out to the evaporator,
    The condenser is
    A housing for storing a liquid-phase refrigerant;
    A plurality of first protrusions provided on the casing so as to extend vertically upward from an inner surface on the vertically lower side of the casing;
    A plurality of second protrusions provided in the housing so as to be alternately provided between the plurality of first protrusions and to extend vertically downward from an inner surface on the vertically upper side of the housing. And
    The distances between the tip portions of the plurality of second protrusions and the inner surface of the casing on the vertically lower side are stored in the inner surface of the casing on the vertically lower side and the casing. A cooling device that is larger than the distance between the liquid level of the liquid phase refrigerant.
  2.  前記筐体を構成する複数の面のうち、気相状態の冷媒が流入する流入口が形成された第1の筐体面と、
     前記筐体を構成する複数の面のうち、液相状態の冷媒が流出する流出口が形成された第2の筐体面とを備え、
     前記第1の突起部および前記第2の突起部は、第1の筐体面側から前記第2の筐体面側に向かう方向に沿って延在するように、板状に形成されている請求項1に記載の冷却装置。
    Of the plurality of surfaces constituting the housing, a first housing surface formed with an inflow port through which a refrigerant in a gas phase flows,
    Of the plurality of surfaces constituting the housing, the second housing surface formed with an outlet through which the liquid-phase refrigerant flows out,
    The first protrusion and the second protrusion are formed in a plate shape so as to extend along a direction from the first housing surface side toward the second housing surface side. 2. The cooling device according to 1.
  3.  前記複数の第1の突起部の根元部に設けられ、液相状態の冷媒が通過する複数の第1の貫通孔を備えた請求項1または2に記載の冷却装置。 The cooling device according to claim 1 or 2, further comprising a plurality of first through holes provided at a base portion of the plurality of first protrusions and through which a liquid-phase refrigerant passes.
  4.  前記複数の第2の突起部の根元部に設けられ、気相状態の冷媒が通過する複数の第2の貫通孔を備えた請求項1~3のいずれか1項に記載の冷却装置。 The cooling device according to any one of claims 1 to 3, further comprising a plurality of second through holes provided at roots of the plurality of second protrusions, through which a refrigerant in a gas phase passes.
  5.  前記第1および前記第2の突起部の一方または双方は、鉛直方向に対して垂直方向の断面積が、根元部から先端部に向かうにつれて小さくなるように、形成されている請求項1~4のいずれか1項に記載の冷却装置。 One or both of the first and second projecting portions are formed such that a cross-sectional area in a direction perpendicular to the vertical direction becomes smaller from the root portion toward the tip portion. The cooling device according to any one of the above.
  6.  前記流入口から前記凝縮器の前記筐体内に流入する気相冷媒の流入方向と、前記複数の第2の突起部の延在方向とが、互いに平行でない場合、前記複数の第1の突起部の前記第1の面側の各端部は、気相冷媒の流入方向の逆方向に向かうにつれて、前記第1の面から離れる方向に移動するように形成されている請求項2~5のいずれか1項に記載の冷却装置。 When the inflow direction of the gas-phase refrigerant flowing into the casing of the condenser from the inlet and the extending direction of the plurality of second protrusions are not parallel to each other, the plurality of first protrusions Each of the end portions of the first surface side is formed so as to move away from the first surface in the direction opposite to the inflow direction of the gas-phase refrigerant. The cooling device according to claim 1.
  7.  発熱体の熱を受けて、内部に貯留されている液相状態の冷媒を前記発熱体の熱により蒸発させて、気相状態の冷媒を流出する蒸発器から、流出する前記気相状態の冷媒を凝縮して、液相状態の冷媒を前記蒸発器へ流出する凝縮器であって、
     液相状態の冷媒を貯留する筐体と、
     前記筐体の鉛直下方側の内面から鉛直上方へ向けて延出するように前記筐体に設けられた複数の第1の突起部と、
     前記複数の第1の突起部の間に互い違いに設けられ、前記筐体の鉛直上方側の内面から鉛直下方へ向けて延出するように前記筐体に設けられた複数の第2の突起部とを備え、
     前記複数の第2の突起部の先端部と、前記筐体の前記鉛直下方側の内面の間との距離は、前記筐体の前記鉛直下方側の内面と、前記筐体に貯留されている前記液相状態の冷媒の液面との間の距離よりも、大きい凝縮器。
    The refrigerant in the gas phase that flows out from the evaporator that receives the heat of the heating element, evaporates the refrigerant in the liquid state stored therein by the heat of the heating element, and flows out the refrigerant in the gas phase. Is a condenser that flows out the liquid phase refrigerant to the evaporator,
    A housing for storing a liquid-phase refrigerant;
    A plurality of first protrusions provided on the casing so as to extend vertically upward from an inner surface on the vertically lower side of the casing;
    A plurality of second protrusions provided in the housing so as to be alternately provided between the plurality of first protrusions and to extend vertically downward from an inner surface on the vertically upper side of the housing. And
    The distances between the tip portions of the plurality of second protrusions and the inner surface of the casing on the vertically lower side are stored in the inner surface of the casing on the vertically lower side and the casing. A condenser that is larger than the distance between the liquid phase and the liquid level of the refrigerant.
  8.  前記筐体の第一を構成する複数の面のうち、気相状態の冷媒が流入する流入口が形成された第1の面と、
     前記筐体を構成する複数の面のうち、液相状態の冷媒が流出する流出口が形成された第2の面と、
     前記第1の突起部および前記第2の突起部は、前記第1の面側から前記第2の面側に向かう方向に沿って延在するように、板状に形成されている請求項7に記載の凝縮器。
    Of the plurality of surfaces constituting the first of the housing, a first surface formed with an inflow port through which a refrigerant in a gas phase flows,
    Of the plurality of surfaces constituting the housing, a second surface formed with an outlet through which a liquid-phase refrigerant flows out;
    The said 1st projection part and the said 2nd projection part are formed in plate shape so that it may extend along the direction which goes to the said 2nd surface side from the said 1st surface side. The condenser as described in.
PCT/JP2017/018209 2016-05-19 2017-05-15 Cooling device and condenser WO2017199914A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018518287A JPWO2017199914A1 (en) 2016-05-19 2017-05-15 Refrigerator and condenser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-100450 2016-05-19
JP2016100450 2016-05-19

Publications (1)

Publication Number Publication Date
WO2017199914A1 true WO2017199914A1 (en) 2017-11-23

Family

ID=60325158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018209 WO2017199914A1 (en) 2016-05-19 2017-05-15 Cooling device and condenser

Country Status (2)

Country Link
JP (1) JPWO2017199914A1 (en)
WO (1) WO2017199914A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216578A (en) * 1999-01-21 2000-08-04 Toyota Motor Corp Cooler utilizing latent heat
JP2001196778A (en) * 1999-11-08 2001-07-19 Samsung Electronics Co Ltd Cooling device by cpl
JP2010054103A (en) * 2008-08-27 2010-03-11 Sokudo Co Ltd Heat treatment device
WO2013018667A1 (en) * 2011-08-01 2013-02-07 日本電気株式会社 Cooling device and electronic device using same
WO2015115028A1 (en) * 2014-01-28 2015-08-06 パナソニックIpマネジメント株式会社 Cooling device and data center provided with same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216578A (en) * 1999-01-21 2000-08-04 Toyota Motor Corp Cooler utilizing latent heat
JP2001196778A (en) * 1999-11-08 2001-07-19 Samsung Electronics Co Ltd Cooling device by cpl
JP2010054103A (en) * 2008-08-27 2010-03-11 Sokudo Co Ltd Heat treatment device
WO2013018667A1 (en) * 2011-08-01 2013-02-07 日本電気株式会社 Cooling device and electronic device using same
WO2015115028A1 (en) * 2014-01-28 2015-08-06 パナソニックIpマネジメント株式会社 Cooling device and data center provided with same

Also Published As

Publication number Publication date
JPWO2017199914A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
JP5741354B2 (en) Loop heat pipe and electronic equipment
US7106589B2 (en) Heat sink, assembly, and method of making
JP6688863B2 (en) Cooling device and cooling system using the cooling device
US20060181848A1 (en) Heat sink and heat sink assembly
JP2012132661A (en) Cooling device and electronic device
TW201447199A (en) Evaporator, cooling device, and electronic apparatus
JP2009115396A (en) Loop-type heat pipe
JPWO2013018667A1 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JP5696466B2 (en) Loop heat pipe and information processing apparatus
JP2007115917A (en) Thermal dissipation plate
TWI576556B (en) Evaporator, cooling apparatus and electronic apparatus
JP2017083050A (en) Cooling device and electronic equipment mounting the same
TW201527703A (en) Cooling device
US20050135061A1 (en) Heat sink, assembly, and method of making
WO2017199914A1 (en) Cooling device and condenser
JP7444704B2 (en) Heat transfer member and cooling device having heat transfer member
JP6197651B2 (en) Cooling system
WO2020054752A1 (en) Cooling device and cooling system using same
JP2011096983A (en) Cooling device
JP2017112189A (en) Thermo-siphon cooling device
WO2016208180A1 (en) Cooling device and electronic apparatus having same mounted thereon
JP7444703B2 (en) Heat transfer member and cooling device having heat transfer member
WO2013073696A1 (en) Cooling device and electronic device using same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799338

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799338

Country of ref document: EP

Kind code of ref document: A1