WO2017199551A1 - Additive manufacturing data generating device, additive manufacturing system, and product - Google Patents

Additive manufacturing data generating device, additive manufacturing system, and product Download PDF

Info

Publication number
WO2017199551A1
WO2017199551A1 PCT/JP2017/009534 JP2017009534W WO2017199551A1 WO 2017199551 A1 WO2017199551 A1 WO 2017199551A1 JP 2017009534 W JP2017009534 W JP 2017009534W WO 2017199551 A1 WO2017199551 A1 WO 2017199551A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
data
additive manufacturing
distribution
relative density
Prior art date
Application number
PCT/JP2017/009534
Other languages
French (fr)
Japanese (ja)
Inventor
佐竹 弘之
青田 欣也
孝介 桑原
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017199551A1 publication Critical patent/WO2017199551A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to an additive manufacturing data generation apparatus, additive manufacturing system, and product technology for generating a structure by additive manufacturing.
  • a melted and solidified layer is generated by irradiating the powder layer with a laser beam or an electron beam. And the powder layer is newly coat
  • an integrated melt-solidified body that is, a modeled object is modeled.
  • a final part that is directly integrated can be obtained without the need for machining or assembling. Therefore, the part can be easily manufactured using a difficult-to-work material.
  • the component manufacturing by additive manufacturing can easily realize a complicated shape, so that the hollow structure can reduce the weight.
  • topology optimization a weight-reduced shape is derived by minimizing the mass of a structure to which an external force is applied while suppressing stress and deformation below an allowable value.
  • general-purpose software that performs topology optimization, and many of these software adopt a lightening algorithm called a density method.
  • density method the Young's modulus indicating the rigidity of the material is expressed by density.
  • density value is calculated so that the deformation is reduced when an external force is applied to a virtual material having an intermediate density.
  • the intermediate density ⁇ is calculated by rd ⁇ ⁇ 0 (0 ⁇ rd ⁇ 1, ⁇ 0 is the original density of the material of the substance, and rd is the relative density).
  • Patent Document 1 describes “a structure analysis method for performing a structure analysis using topology optimization based on a density method for a structure (2) to which an external force F is applied, and in particular, an external force F is applied to the structure.
  • the step of identifying the load region (6) and the thickness set to such an extent that the strength of the structure (2) is not affected along at least the load region (6) of the structure (2).
  • a structural analysis method characterized in that it comprises a step of providing a shell member (8) (see abstract).
  • the present invention has been made in view of such a background, and an object of the present invention is to reduce the cost of processing in weight reduction.
  • the present invention relates to a feature amount-porous body information in which a feature amount in a structure to be modeled by additive manufacturing is associated with a degree of the void in a porous body having a void.
  • the physical property information estimation unit for estimating the physical property information in the structure
  • the feature amount distribution that is the distribution of the feature amount in the structure based on the estimated information on the physical property.
  • the porosity of the porous body corresponding to the calculated distribution of the feature quantity is determined, and the determined porous body data is used to determine the porosity of the porous body.
  • a porous body arrangement part that replaces data of the structure.
  • the processing cost for weight reduction can be reduced.
  • FIG. 1 is a functional block diagram of the additive manufacturing system Z according to the present embodiment.
  • the layered modeling system Z has a configuration in which a layered modeling data generation device 1, a D printer device (modeling unit) 2, and an input device 3 are connected to each other.
  • the input device 3 is for a user to input data necessary for calculating a weight-reduced shape of a structure (object to be layered).
  • the input device 3 is, for example, a tablet PC (Personal Computer), a PC, a workstation, a computer server, or the like.
  • Information stored in a terminal input device such as a keyboard provided in these devices, the Internet, or an external storage device is transmitted to the additive manufacturing data generation device 1.
  • the layered modeling data generation device 1 and the input device 3 are separate devices, but may be an integrated device.
  • the layered modeling data generation device 1 includes a memory 100, a CPU 120, a transmission / reception device 121, and the like.
  • the memory 100 is loaded with a program stored in a storage device (not shown). Then, the loaded program is executed by the CPU 120.
  • the processing unit 101, the structural analysis processing unit (physical property information estimation unit, feature amount calculation unit) 102, the weight reduction processing unit 103, and the porous body arrangement processing unit 104 constituting the processing unit 101 are embodied.
  • the transmission / reception device 121 receives information from the input device 3 and transmits information to the 3D printer device 2.
  • the layered modeling data generation apparatus 1 acquires data necessary for the layered modeling data generation process from the input device 3, the layered modeling data generation apparatus 1 generates weight-reduced shape data by performing a layered modeling data generation process described later. Then, the generated weight reduction shape data is transmitted to the 3D printer apparatus 2.
  • the structural analysis processing unit 102 performs a structural analysis calculation using the three-dimensional shape data, and calculates a stress distribution based on the structural analysis calculation result.
  • the weight reduction processing unit 103 calculates a relative density distribution based on the extracted stress distribution.
  • the relative density is a density relative to the original density of the substance.
  • the weight reduction processing unit 103 calculates the total mass and the like based on the calculated distribution of relative density and the like, and determines whether or not the weight reduction condition (described later) is satisfied.
  • the porous body arrangement processing unit 104 generates weight-reduced shape data in which porous body data that is porous body data is arranged in the three-dimensional shape data in accordance with the calculated relative density. The porous material will be described later. Detailed processing performed by each of the units 101 to 104 will be described later.
  • the additive manufacturing data generation apparatus 1 includes a porous body DB (storage unit) 111, a shape DB 112, a stress distribution DB 113, a density distribution DB 114, and a weight-reduced shape DB 115.
  • the porous body DB 111 stores information related to porous body data that is pasted according to the relative density of the structure.
  • the shape DB 112 stores three-dimensional shape data.
  • the three-dimensional shape data is STL (Standard Triangulated Language) data generated by dedicated software or the like.
  • the STL data is composed of a plurality of node data.
  • a three-dimensional shape is represented by a triangular element composed of such three nodes and a normal vector indicating the direction of the surface of the triangular element.
  • This triangular element is obtained by dividing the surface of the structure into finite elements. Stress values and relative density values calculated later are calculated corresponding to the triangular elements and stored in the stress distribution DB 113 and the density distribution DB 114.
  • the triangular element in the STL data is simply referred to as an element.
  • the arrangement of the porous body data and the porous body of the three-dimensional shape data is also performed in element units.
  • the STL data is standard three-dimensional shape data used when layered modeling is performed using the 3D printer apparatus 2.
  • the stress distribution DB 113 data related to the stress distribution calculated by the structural analysis processing unit 102 is stored.
  • the density distribution DB 114 stores data related to the relative density distribution calculated by the weight reduction processing unit 103.
  • the weight reduction shape DB 115 stores weight reduction shape data.
  • the weight reduction shape data is three-dimensional shape data in which weight reduction is realized by the porous body arrangement processing unit 104 arranging the porous body data corresponding to the relative density in the three-dimensional shape data.
  • the three-dimensional shape data input to the layered modeling data generation device 1 is described as “three-dimensional shape data”.
  • the three-dimensional shape data generated by the additive manufacturing data generation device 1 is described as “weight reduction shape data”.
  • This embodiment is characterized in that, in the layered modeling data generation process, the porous body arrangement processing unit 104 generates the weight reduction shape data by arranging the porous body data according to the relative density distribution.
  • the 3D printer apparatus 2 manufactures a structure that is lightened by additive manufacturing based on the weight-reduced shape data of the structure generated by the additive manufacturing data generation apparatus 1.
  • FIG. 2A is a diagram showing a schematic example of a porous body in the first method
  • FIG. 2B is a diagram showing a method of determining the diameter of the porous body
  • FIG. 2C is a graph example of a function showing the diameter of the porous body FIG.
  • the first method shown in FIGS. 2A to 2C is a method for determining the diameter of the hole 202 in the porous body 201 according to the relative density of the structure by using a function.
  • the first method is executed by a built-in processing routine for generating a porous body shape.
  • the built-in processing routine for porous body shape generation is started when the user checks the default setting check field 361 in the relative density-porous body data setting unit 360 described later in FIG.
  • the relative density rd (0 ⁇ rd ⁇ 1) in the structure is given as an argument, and when called, the shape of the porous body 201 having the porosity (1-rd) shown in FIG.
  • This routine returns with data.
  • the hole 202 in the porous body 201 is formed in a uniform cylindrical shape having a diameter d facing one direction. That is, the hole 202 is a uniform circle having a diameter d.
  • the horizontal axis represents the relative density rd of the structure
  • the vertical axis represents the diameter d of the hole 202
  • the relationship between the relative density rd and the diameter d of the hole 202 shown in FIG. if the relative density rd of the argument is designated, the diameter d of the hole 202 in the porous body 201 is uniquely determined.
  • the value of the diameter d is 1 at the point 212 having a relative density of 0.785, which is the same as the interval at which the holes 202 are arranged. That is, the holes 202 are connected to each other.
  • the first method can be applied in the range where the relative density rd is 0 ⁇ rd ⁇ 0.785.
  • the diameter d of the hole 202 can be continuously changed according to the relative density rd.
  • the porous body 201 having the holes 202 is used, and the size of the holes 202 is changed, whereby the weight can be reduced while maintaining a certain degree of strength. For example, if the weight of the structure is reduced by making the material of the structure thinner, the strength is significantly reduced.
  • FIG. 3 is a diagram illustrating an example of a correspondence relationship between the relative density and the porous body in the second method.
  • grouping is performed for each range of relative density values, and a porous body corresponding to each group is assigned, thereby making the relative density discrete and speeding up the processing. That is, in the second method, first, the structure analysis processing unit 102 (FIG. 1) calculates the relative density of the structure. And the part of a structure is arrange
  • the second method it is assumed that a first shape type with circular holes and a second shape type with square holes are prepared. Since the first shape type has rounded voids, it can prevent breakage due to concentrated stress and can be applied up to a relative density of 0.785 as described above. On the other hand, the porosity of the second shape type can be made larger than that of the first shape type.
  • the built-in processing routine for porous body shape generation in the second method is not checked in the default setting check column 361 in the relative density-porous body data setting unit 360 described later in FIG.
  • the program is executed by inputting a program name in the generation program setting field 362.
  • FIG. 4 is a flowchart showing the procedure of the layered modeling data generation process according to this embodiment.
  • FIG. 1 will be referred to as appropriate. Here, an outline of each process is shown. A detailed description of each process will be given later.
  • a setting process is performed by the input device 3 (S101).
  • the additive manufacturing data generation apparatus 1 stores all data transmitted from the input device 3 in the shape DB 112 prepared for the additive manufacturing data generation process.
  • the determination button 370 on the setting screen 300 is selected and input by the user.
  • the information set on the setting screen 300 is transmitted from the input device 3 to the additive manufacturing data generation device 1.
  • the layered modeling data generation device 1 executes the processes after step S ⁇ b> 102.
  • the structure analysis processing unit 102 performs a structure analysis process (S102), and performs a stress distribution calculation process (S103). Then, the weight reduction processing unit 103 performs the weight reduction processing (S104), and determines whether or not the result of the weight reduction processing satisfies the weight reduction conditions (S105). If the result of step S105 does not satisfy the weight reduction condition (S105 ⁇ No), the weight reduction processing unit 103 updates the Young's modulus (S106) and returns the process to step S102.
  • step S105 If the result of step S105 satisfies the weight reduction condition (S105 ⁇ Yes), the weight reduction processing unit 103 performs a relative density distribution calculation process (S107). Thereafter, the porous body arrangement processing unit 104 performs the porous body arrangement processing for arranging the porous body data corresponding to the calculated relative density in the three-dimensional shape data (S108), thereby generating the weight-reduced shape data.
  • FIG. 5 is a diagram illustrating an example of the setting screen 300 according to the present embodiment.
  • the setting screen 300 is a screen for the user to set data necessary for the additive manufacturing data generation process. The user can confirm the input and change of the setting value on the display of the setting screen 300 and can instruct data transmission to the additive manufacturing data generation apparatus 1.
  • the setting screen 300 includes a shape data setting unit 310, an attribute data setting unit 320, a load data setting unit 330, a physical property value data setting unit 340, a weight reduction condition data setting unit 350, a relative density-porous material.
  • a correspondence data setting unit 360 and a determination button 370 are provided.
  • the shape data setting unit 310 In the shape data setting unit 310, settings relating to the three-dimensional shape data of the structure to be reduced in weight are performed.
  • the shape data setting unit 310 has an input field 311 for designating STL data of a structure by a file name, and a thumbnail image field 312 for confirming the outer shape of the STL data.
  • attribute data setting section 320 settings relating to structure attributes such as capacity, mass, material, etc. of the structure are made in the attribute data setting field 321.
  • the attribute data is used when stress distribution and relative density are calculated.
  • the load data setting unit 330 a setting relating to a load that is an external force that the structure receives during operation is performed in the load data setting field 331.
  • the load data includes a load type, a load position, a load magnitude, a constraint position, a constraint type, and the like.
  • load such as concentrated load, distributed load, and pressure. These load types are properly used depending on the external force applied to the structure, and the position of the structure to be applied is set in the load position column.
  • the restraint position indicates a physical restraint of the structure, that is, a fixed position.
  • the fixed position (restraint position) is given by a node in the STL data.
  • the constraint type it is necessary to specify six degrees of freedom in the translation direction and the rotation direction of the x-axis, y-axis, and z-axis.
  • complete fixing with all degrees of freedom fixed is set.
  • the physical property value setting field 341 performs setting related to the physical property value of the material used for manufacturing the structure.
  • the physical property value data indicates information regarding the material in the attribute data as specific physical property values. As physical properties, density, Young's modulus, Poisson's ratio, yield stress, tensile strength, and the like are set. The physical property value is used when the structural analysis is performed based on the load data, and is used when the stress distribution generated in the structure during operation is obtained.
  • the weight reduction condition data setting unit 350 the weight reduction condition used when the layered modeling data generation process is performed in the weight reduction condition data setting field 351 is set.
  • the weight reduction conditions include a target weight reduction mass, a weight reduction target area, an objective function, and the like.
  • the target weight-reducing mass is for indicating how much the mass of the structure is to be reduced, and here the target is 20% reduction.
  • the lightening target area is indicated by a set of nodes in the form of three-dimensional shape data.
  • the area to be reduced in weight is set when it is desired to previously specify an area in which the porous body is to be arranged.
  • the relative density-porous body data setting unit 360 sets a method used when assigning porous body data corresponding to the relative density.
  • the relative density-porous material correspondence setting unit 360 includes a default setting check field 361, a porous material generation program setting field 362, and the like, and settings for generating porous material data corresponding to the relative density in the STL format are performed. Is called.
  • the default setting check column 361 is a check column for designating whether or not to use the first method.
  • a check is input to the default setting check field 361 via the input device 3.
  • the porous body arrangement processing unit 104 generates porous body data corresponding to the relative density using the built-in processing routine (first method) described with reference to FIGS. 2A to 2C.
  • positioning process part 104 arrange
  • the porous body arrangement processing unit 104 prompts the porous body generation program setting field 362 to input the file name of the porous body generation program.
  • the porous body generation program is a program that takes a relative density as an argument and returns a porous body shape data corresponding to the relative density in an STL format. That is, the porous body generation program is a program for selecting a porous body by the second method described with reference to FIG.
  • the porous body generation program is an interface prepared for the user to create and incorporate. The user inputs the created porous body generation program file name in the porous body generation program setting field 362.
  • the porous body generation program is dynamically linked, and the porous body generation program is called as a subroutine.
  • the porous body arrangement processing unit 104 arranges the porous body data using the second method described with reference to FIG. 3 in the three-dimensional shape data.
  • the user selects and inputs the determination button 370. Thereby, the set information is transmitted to the additive manufacturing data generation apparatus 1, and the process after step S102 of FIG. 4 is executed.
  • FIG. 6 is a diagram illustrating an example of a structure to be processed. In this embodiment, an example in which the structure to be reduced in weight is a golf club head is shown.
  • the external force received during operation is a concentrated load 403 generated when a ball is hit at the center of the face surface 402.
  • the restraint position is the connecting portion 404 between the shaft and the head, and the restraint type is complete restraint.
  • An object to be reduced in weight is an area 401 excluding the face surface 402 in the head.
  • 64 titanium is used as a material for producing a golf club head.
  • the target weight reduction mass is 20% reduction of the current mass and takes strain energy in the objective function so that the strain energy becomes the minimum value, that is, the rigidity becomes the maximum value. It is set to be.
  • the second shape type (see FIG. 3) of the second method is used for the arrangement method of the porous body data.
  • the structural analysis processing unit 102 of the additive manufacturing data generation apparatus 1 performs structural analysis calculation using the three-dimensional shape data set in the setting processing. Specifically, the structure analysis processing unit 102 divides the analysis mesh into separate meshes for analysis, which are different from the elements constituting the three-dimensional shape data. Then, based on this mesh, the structural analysis processing unit 102 calculates what force is applied to which part of the structure when an external force is applied to the structure based on a predetermined load condition.
  • the structural analysis processing unit 102 calculates the stress distribution from the analysis result calculated in the structural analysis process in step S102. Then, the structural analysis processing unit 102 stores the stress value at each location of the three-dimensional shape data in the stress distribution DB 113.
  • general-purpose analysis software ABAQUS manufactured by Dassault Systèmes is applied as the structural analysis processing unit 102, the structural analysis processing and the stress distribution calculation processing can be easily realized.
  • FIG. 7 is a diagram showing the stress distribution as a result of the structural analysis process and the stress distribution calculation process using the three-dimensional shape data of the golf club head shown in FIG.
  • the stress distribution is displayed according to the index 511 representing the strength of the stress. From the stress distribution 501 shown in FIG. 7, it can be seen that the maximum stress is generated in the portion 502 where the ball hits, and a load transmission path exists over the base portion 503 of the shaft.
  • the weight reduction processing unit 103 executes the weight reduction calculation according to the stress distribution data output in step S103 and the weight reduction conditions set in step S101. As a result, the relative density is output. That is, the weight reduction processing unit 103 calculates the relative density possible in each region of the structure based on the stress distribution data. Specifically, the weight reduction processing unit 103 obtains a load transmission path from the obtained stress distribution, and calculates a relative density distribution that satisfies the weight reduction condition.
  • the relative density is close to 1.
  • the weight In the region where the stress hardly acts, the weight can be reduced, so the relative density is close to 0. Can be a value.
  • a virtual material whose Young's modulus is a function of density is considered, and the density distribution in the allowable design region is determined so that the objective function is minimized.
  • general-purpose software for calculating the density distribution There are many commercially available general-purpose software for calculating the density distribution, which can be easily realized by applying, for example, general-purpose software TOSCA of Dassault Systèmes. If the density distribution is calculated, it is easy to calculate the relative density distribution therefrom.
  • the weight reduction processing unit 103 performs the following calculation. That is, the weight reduction processing unit 103 calculates the mass of the structure when the structure is generated based on the relative density distribution generated in the weight reduction processing (S104). Then, the weight reduction processing unit 103 determines whether the calculation result satisfies the weight reduction condition set in step S101. As a result of step S105, if the weight reduction condition is satisfied (S105 ⁇ Yes), the weight reduction processing unit 103 proceeds to the relative density distribution calculation processing of step S107.
  • step S105 If the weight reduction condition is not satisfied as a result of step S105 (S105 ⁇ No), the weight reduction processing unit 103 uses the relative density calculated in step S104 to make the Young's modulus for each element constituting the three-dimensional shape data. Is updated (S106). Thereafter, the weight reduction processing unit 103 returns the process to step S102, and executes the structural analysis process again using the updated Young's modulus.
  • the additive manufacturing data generation apparatus 1 can gradually reduce the density of the structure and obtain a relative density distribution that satisfies the weight reduction condition.
  • steps S102 to S106 are repeatedly executed in the conventional techniques.
  • the conventional technology needs to be repeated until the relative density becomes 0 or 1 even if the weight reduction condition is satisfied.
  • the technique of the present embodiment may have an intermediate value between 0 and 1 for the relative density, so that the repetition of steps S102 to S106 can be skipped if the weight reduction condition is satisfied.
  • step S107 the weight reduction processing unit 103 executes a relative density distribution calculation process for calculating a relative density distribution in the structure that satisfies the weight reduction condition. And the weight reduction process part 103 stores in density distribution DB114 as relative density distribution data.
  • FIG. 8 is a diagram showing the relative density distribution in the structure calculated by the relative density distribution extraction calculation process in step S107.
  • the relative density distribution shown in FIG. 8 is displayed according to the index 611 indicating the relative density. From FIG. 8, it can be seen from the relative density distribution 601 of the golf club head that the relative density is small in a region 602 that is out of the load transmission path (in FIGS. 8 to 10, what is different from FIGS. 6 and 7). Note that the orientation of the golf club head is different).
  • the porous body placement processing unit 104 places porous body data based on the relative density distribution extracted in step S107.
  • the porous body arrangement processing unit 104 generates weight reduction shape data by arranging porous body data corresponding to the calculated relative density value for each element. In other words, the porous body arrangement processing unit 104 replaces the corresponding three-dimensional shape data portion with the porous body data corresponding to the value of the relative density.
  • the porous body arrangement processing unit 104 obtains the diameter of the porous body by the equation shown in FIG. 2B, and the relative density corresponding to the data (porous body data) of the porous body having the obtained diameter. Is replaced.
  • the porous body arrangement processing unit 104 selects a porous body having a porosity corresponding to the corresponding relative density, as shown in FIG. And the porous body arrangement
  • FIG. 9 is a diagram in which the weight-reduced shape data 701 of the weight-reduced golf club head is generated for the continuous region 602 smoothed at the portion of the relative density 0.5 in the relative density distribution in FIG.
  • the second shape type having a porosity of 30% in FIG. 3 is arranged.
  • FIG. 9 only the second shape type having a porosity of 30% is shown, but actually, porous body data of each porosity corresponding to the relative density is arranged in various places.
  • the layered modeling data generation device 1 transfers the generated weight-reduced shape data to the 3D printer device 2, and ends the operation of the layered modeling data generation device 1.
  • the 3D printer apparatus 2 When the 3D printer apparatus 2 receives the weight-reduced shape data from the layered modeling data generation apparatus 1, the 3D printer apparatus 2 starts the layered modeling process and creates a layered modeling of the weight-reduced structure.
  • FIG. 10 is a diagram illustrating an example of a weight-reduced golf club head that is layered and formed based on the weight-reduced shape data generated by the 3D printer apparatus 2.
  • the weight-reduced golf club head (product) 801 shown in FIG. 10 it can be seen that a porous body corresponding to the relative density is generated at a location corresponding to the region 602 in FIG.
  • FIG. 10 shows only where the second shape type with a porosity of 30% is arranged, but in reality, porous bodies with various porosity according to the relative density are in various places. Be placed. Even when only one kind of porous body having a porosity is used, this porous body is arranged based on the relative density, so that it differs from the conventional methods in which the relative density is only 0 or 1.
  • FIG. 11 is a conceptual diagram of a general 3D printer apparatus 2.
  • the 3D printer apparatus 2 includes a carbon dioxide laser oscillator 910, a collimator 911, a galvano operation device 913, a condensing lens 914, and a first lifting table 921.
  • the 3D printer apparatus 2 includes a first lifting mechanism 923, a reference table 912, a second lifting table 922, a second lifting mechanism 924, and a squeegee 916.
  • reference numerals 917 and 918 denote metal powders.
  • Reference numeral 919 denotes a powder sintered part being shaped.
  • Reference numeral 920 indicates a base for supporting the powder sintered component 919.
  • the carbon dioxide laser oscillator 910 generates pulsed laser light 915.
  • the collimator 911 adjusts the beam diameter of the laser light 915.
  • the galvano operating device 913 guides the laser beam 915 to a predetermined place.
  • the condensing lens 914 condenses the laser beam 915 and locally sinters the powder.
  • the first lifting table 921 sets the metal powder 917 to a predetermined height as needed.
  • the first lifting mechanism 923 moves the first lifting table 921 up and down.
  • the reference table 912 determines the position of the laminated surface of the metal powder 918.
  • the second elevating table 922 descends from the height of the reference table 912 as needed by the thickness of the metal powder 918 to be laminated.
  • the second lifting mechanism 924 moves the second lifting table 922 up and down.
  • the squeegee 916 reciprocates between the first lifting table 921 and the second lifting table 922. As a result, the metal powder 917 on the first lifting table 921 is conveyed to the second lifting table 922, and at the same time, the metal powder 918 is stretched. By doing so, the squeegee 916 can spread the metal powder 918 thinly with a predetermined thickness.
  • the areas of the first lift table 921 and the second lift table 922 are equal. Accordingly, if the first lifting table 921 and the second lifting table 922 are raised and lowered at the same distance, the amount of the metal powder 917 supplied from the first lifting table 921 and the metal powder 918 received by the second lifting table 922 are received. The amount of is equal. Each time the second lifting table 922 is lowered, the powder sintered component 919 is gradually shaped. The second lifting table 922 moves down until the position of the reference table 912 reaches the modeling area 925. In the 3D printer 2, the beam diameter of the pulsed laser beam 915 emitted from the carbon dioxide laser oscillator 910 is adjusted by the collimator 911.
  • the laser beam 915 is guided to a predetermined place by the galvano operating device 913 and is condensed by the condenser lens 914. Then, the condensed laser beam 915 is irradiated to the metal powder 918 laminated on the powder sintered component 919.
  • the heat source of the laser beam 915 may be an electron beam device assuming a 400 watt laser device.
  • the laser beam 915 has a beam spot diameter of 0.5 mm, a pulse width of 3.0 ms, an operation speed of 9 mm / s, and an oscillation frequency of 90 Hz.
  • 64 titanium particles having a particle diameter of 20 ⁇ m to 45 ⁇ m are used.
  • 64 titanium is a metal powder containing 6% aluminum (Al) and 4% vanadium (V) by mass fraction.
  • FIG. 12 explains the effect of this embodiment.
  • the graph in FIG. 12 shows the calculation cost when the golf club head is reduced in weight by the conventional method (comparative example).
  • the horizontal axis indicates the number of calculations required until the weight-reduced shape is calculated.
  • the right side of the vertical axis shows the strain energy of the objective function, and the left side of the vertical axis shows the relative mass of the structure.
  • the graph of FIG. 12 shows a strain energy change 1001 and a relative mass change 1002 for each number of weight reduction calculations.
  • the weight-reduced shape that can be obtained with 12 calculations includes a region having an intermediate density that is not 1 or 0, and it is difficult to produce a product by the conventional manufacturing methods. Therefore, in the conventional manufacturing method, the calculation is performed so that the relative density becomes 0 or 1 after the calculation is 12 times or more. That is, the portion where the relative density is 0 is increased or decreased, and it is further determined whether or not the current state satisfies the weight reduction condition.
  • the porous body according to the relative density since the porous body according to the relative density is arranged, the calculation can be completed at the time when the number of calculations is 12 in FIG.
  • the weight reduction is realized by utilizing the layered modeling of the 3D printer apparatus 2 and disposing a porous body in an intermediate density region. Accordingly, as shown in FIG. 12, the relative density distribution of the target lightweight golf club head can be obtained with 12 calculations.
  • the porous body data corresponding to the relative density may be arranged in the three-dimensional shape data. This is about 1/5 of the conventional number of calculations.
  • the additive manufacturing data generation apparatus 1 according to the present embodiment can significantly reduce the calculation cost as compared with the conventional techniques.
  • FIG. 13 shows the relative density distribution of the golf club head obtained by the conventional method (comparative example).
  • the method so far as described in FIG. 12, it is a method in which the portion with the lightening is obtained by repeatedly calculating until the relative density becomes 0 or 1.
  • the relative density distribution in FIG. 13 is displayed according to an index 1111 indicating the relative density.
  • the relative density distribution 1101 of the golf club head shown in FIG. 13 and the relative density distribution 601 of the golf club head including the intermediate density shown in FIG. 8 are compared.
  • the distribution of the relative density is greatly different in the region 1102 outside the load transmission path.
  • a region 1121 having a relative density “1” and a region 1122 having a relative density “0” are clearly shown, suggesting a portion to be thinned.
  • FIGS. 14 and 15 are views showing a weight-reduced golf head created by the 3D printer apparatus 2 by the conventional method (comparative example).
  • FIG. 14 shows the shape extracted from the relative density distribution shown in FIG. 13 and the weight-reduced golf club head shape 1201 created by the 3D printer device 2.
  • the portions indicated by reference numerals 1202 and 1203 have uneven edges and have irregularities.
  • a member indicated by reference numeral 1204 is missing. This is because the structure is formed based on a mesh larger than the elements used in the structural analysis.
  • the conventional methods require edge smoothing.
  • the smoothing process is often performed manually.
  • the portions where the irregularities such as reference numerals 1202 and 1203 in FIG. 14 exist become smooth edges 1302 and 1303 as shown in FIG. 15 by the smoothing process.
  • a part such as reference numeral 1204 where the member is missing becomes a member as indicated by reference numeral 1304 when the user manually supplements the member.
  • the 3D shape data is manually corrected once again to perform structural analysis. There is a need to do.
  • the porous body data generated based on the elements of the three-dimensional shape data that is unrelated to the mesh for structural analysis is arranged in the three-dimensional shape data. For this reason, the unevenness
  • the porous body arrangement processing unit 104 converts the porous body data corresponding to the relative density into three-dimensional shape data based on the relative density (feature amount). Lightening by placing. By doing in this way, it is not necessary to repeat the calculation until the relative density becomes 0 or 1, and the calculation cost can be reduced.
  • the density distribution of the substance is calculated based on the state of stress, and the porous body data corresponding to this density distribution is arranged in the three-dimensional shape data.
  • the additive manufacturing system Z of the present embodiment can be applied to an object to which force is applied in this way.
  • the relative density distribution is used as the density distribution, it is possible to handle the structures having different densities in a unified porous body shape.
  • the structures manufactured by the conventional methods all have the same size in the area to be reduced in weight.
  • the structure manufactured by the method of the present embodiment has pores having different sizes for each place because porous bodies having different pore sizes are arranged according to the relative density.
  • the porous body is arranged based on the relative density based on the stress distribution, but not limited to this, based on the density of physical property information based on physical property characteristics such as heat distribution and current distribution.
  • a porous body may be disposed.
  • the golf club head is exemplified as an object to be reduced in weight.
  • the present invention is not limited to this, and any mechanical part such as an engine piston or a shaft that can reduce the weight may be used. .
  • the automobile, electric power, and aerospace fields can be considered.
  • the porous body to be arranged is determined based on the relative density, but the porous body may be determined based on the density instead of the relative density. Further, the density may not be a stress value or the like.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to having all the configurations described. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of the present embodiment.
  • Each of the above-described configurations, functions, units 101 to 104, DBs 111 to 115, etc. may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Further, as shown in FIG. 1, the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by a processor such as the CPU 120. Information such as programs, tables, and files for realizing each function is stored in an HD (Hard Disk), a memory, a recording device such as an SSD (Solid State Drive), an IC (Integrated Circuit) card, It can be stored in a recording medium such as an SD (Secure Digital) card or a DVD (Digital Versatile Disc). In each embodiment, control lines and information lines are those that are considered necessary for explanation, and not all control lines and information lines are necessarily shown on the product. In practice, it can be considered that almost all configurations are connected to each other.

Abstract

To reduce processing costs associated with weight reduction, provided is an additive manufacturing data generating device, comprising: a porous body database (111) in which information is stored wherein a relative density in a structure which is to be manufactured by performing additive manufacturing is associated with a degree of gaps in a porous body; a structure analysis processing unit (102) which computes a stress distribution which relates to physical properties in the structure; and a porous body positioning unit (104) which, on the basis of the computed stress distribution, computes a feature value distribution which is a distribution of feature values in the structure, determines the porous body which corresponds to a computed relative density, and replaces data of the structure with data of the determined porous body.

Description

積層造形データ生成装置、積層造形システム及び製造物Layered modeling data generation device, layered modeling system and product
 本発明は、積層造形によって構造体を生成するための積層造形データ生成装置、積層造形システム及び製造物の技術に関する。 The present invention relates to an additive manufacturing data generation apparatus, additive manufacturing system, and product technology for generating a structure by additive manufacturing.
 3D(Dimension)プリンタ等に用いられる積層造形法では、以下の工程が行われる。すなわち、粉末層に対してレーザ光又は電子ビームが照射されることにより、溶融凝固層が生成される。そして、生成された溶解凝固層に対して、新たに粉末層が被覆され、該粉末層にレーザ光等が照射される。この結果、下の溶融凝固層の上に新たな溶融凝固層が積層される。このような工程が繰り返されることで、一体化された溶融凝固体、すなわち、造形物が造形される。積層造形法によれば、機械加工や組立加工を必要とせず直接一体化した最終部品が得られるので、難加工性の材料を用いて容易に部品を製作することができる。また積層造形による部品製作は、複雑な形状も容易に実現できるので、中空化構造により軽量化が可能になる。 In the additive manufacturing method used in a 3D (Dimension) printer or the like, the following steps are performed. That is, a melted and solidified layer is generated by irradiating the powder layer with a laser beam or an electron beam. And the powder layer is newly coat | covered with respect to the produced | generated melt | dissolved solidification layer, A laser beam etc. are irradiated to this powder layer. As a result, a new melt-solidified layer is laminated on the lower melt-solidified layer. By repeating such a process, an integrated melt-solidified body, that is, a modeled object is modeled. According to the additive manufacturing method, a final part that is directly integrated can be obtained without the need for machining or assembling. Therefore, the part can be easily manufactured using a difficult-to-work material. In addition, the component manufacturing by additive manufacturing can easily realize a complicated shape, so that the hollow structure can reduce the weight.
 一方、中空化構造による軽量化には、トポロジ最適化による設計手法が用いられる。トポロジ最適化は、外力が加わる構造体について、応力や変形を許容値以下に抑えつつ、質量を最小化することで、軽量化形状を導出するものである。トポロジ最適化を実施する市販の汎用ソフトウェアは多数存在しており、それらのソフトウェアの多くは密度法と呼ばれる軽量化アルゴリズムを採用している。密度法では、材料の剛性を示すヤング率が密度で表現される。そして、密度法では、中間密度をもつ仮想的な材料について外力が作用した時の変形が最小になるように、密度の値が計算される。ここで、中間密度ρはrd・ρ(0≦rd≦1、ρは物質の材料本来の密度、rdは相対密度を示す)で算出される。密度法を用いた軽量化手法では、相対密度の値が0か1になるまで繰返し計算を行い、外力の作用に対し、剛性に寄与しない肉抜き可能な領域が示される必要がある。すなわち、密度法で製造された構造物は、中間密度というものは存在せず、相対密度が0(空隙)か1(非空隙)の領域のみ存在することになる。 On the other hand, a design technique based on topology optimization is used for weight reduction by the hollow structure. In topology optimization, a weight-reduced shape is derived by minimizing the mass of a structure to which an external force is applied while suppressing stress and deformation below an allowable value. There are many commercially available general-purpose software that performs topology optimization, and many of these software adopt a lightening algorithm called a density method. In the density method, the Young's modulus indicating the rigidity of the material is expressed by density. In the density method, the density value is calculated so that the deformation is reduced when an external force is applied to a virtual material having an intermediate density. Here, the intermediate density ρ is calculated by rd · ρ 0 (0 ≦ rd ≦ 1, ρ 0 is the original density of the material of the substance, and rd is the relative density). In the weight reduction method using the density method, it is necessary to repeatedly calculate until the value of the relative density becomes 0 or 1, and to indicate a region where the thickness can be removed without contributing to rigidity with respect to the action of the external force. That is, in the structure manufactured by the density method, there is no intermediate density, and only a region where the relative density is 0 (void) or 1 (non-void) is present.
 トポロジ最適化による軽量化に関する従来技術として、例えば、特許文献1に開示されている手法がある。特許文献1には、「外力Fが加えられる構造体(2)について密度法に基づいたトポロジー最適化を用いた構造解析を行う構造解析方法に関し、特に、構造体のうち外力Fが印加される荷重領域(6)を特定する工程と、構造体(2)のうち少なくとも荷重領域(6)に沿って、構造体(2)の内部に強度的影響を及ぼさない程度に設定された厚みを有するシェル部材(8)を設ける工程とを備えることを特徴とする」構造解析方法が開示されている(要約参照)。 As a conventional technique related to weight reduction by topology optimization, for example, there is a technique disclosed in Patent Document 1. Patent Document 1 describes “a structure analysis method for performing a structure analysis using topology optimization based on a density method for a structure (2) to which an external force F is applied, and in particular, an external force F is applied to the structure. The step of identifying the load region (6) and the thickness set to such an extent that the strength of the structure (2) is not affected along at least the load region (6) of the structure (2). A structural analysis method characterized in that it comprises a step of providing a shell member (8) (see abstract).
特開2015-111352号公報JP 2015-111132 A
 しかしながら、特許文献1に記載のシェル部材を設ける手法では、相対密度の値が0か1になるまで繰返し計算を行うことで、トポロジ最適化による軽量化形状が求められている。このため、特許文献1に記載の技術は計算時間がかかることとなり、設計コストに課題がある。また、特許文献1に記載の技術によって導出された軽量化形状は、構造解析に用いたメッシュデータに依存する。すなわち、構造解析では、3次元形状データにおける要素より大きいメッシュで3次元形状データが分割される。そして、特許文献1に記載の技術では、構造解析におけるメッシュを基に、3Dプリンタ装置が造形を行う。従って、特許文献1によって導出された軽量化形状に基づいて製造された構造物には、肉抜きされた領域に凹凸やくびれが生じ、人手による修正が必要である。 However, in the method of providing the shell member described in Patent Document 1, a light weight shape by topology optimization is required by repeatedly calculating until the value of the relative density becomes 0 or 1. For this reason, the technique described in Patent Document 1 requires calculation time, and there is a problem in design cost. Moreover, the weight reduction shape derived | led-out by the technique of patent document 1 is dependent on the mesh data used for the structural analysis. That is, in the structural analysis, the three-dimensional shape data is divided by a mesh larger than the element in the three-dimensional shape data. And in the technique of patent document 1, 3D printer apparatus models based on the mesh in a structural analysis. Therefore, the structure manufactured based on the weight-reduced shape derived from Patent Document 1 has unevenness and a constriction in the thinned region, and requires manual correction.
 このような背景に鑑みて本発明がなされたのであり、本発明は、軽量化における処理のコストを軽減することを課題とする。 The present invention has been made in view of such a background, and an object of the present invention is to reduce the cost of processing in weight reduction.
 前記した課題を解決するため、本発明は、積層造形による造形対象となっている構造物における特徴量と、空隙を有する多孔体における前記空隙の度合いとが対応付けられた特徴量-多孔体情報が格納されている記憶部と、前記構造物における物性に関する情報を推定する物性情報推定部と、推定された前記物性に関する情報を基に、前記構造物における特徴量の分布である特徴量分布を算出する特徴量分布算出部と、前記特徴量-多孔体情報を基に、算出された前記特徴量の分布に対応する前記多孔体の空隙度を決定し、決定した前記多孔体のデータで前記構造物のデータを置換する多孔体配置部と、を有することを特徴とする。
 その他の解決手段については、実施形態中において記載する。
In order to solve the above-described problem, the present invention relates to a feature amount-porous body information in which a feature amount in a structure to be modeled by additive manufacturing is associated with a degree of the void in a porous body having a void. Is stored in the storage unit, the physical property information estimation unit for estimating the physical property information in the structure, and the feature amount distribution that is the distribution of the feature amount in the structure based on the estimated information on the physical property. Based on the feature quantity distribution calculation unit to be calculated and the feature quantity-porous body information, the porosity of the porous body corresponding to the calculated distribution of the feature quantity is determined, and the determined porous body data is used to determine the porosity of the porous body. And a porous body arrangement part that replaces data of the structure.
Other solutions will be described in the embodiments.
 本発明によれば、軽量化における処理のコストを軽減することができる。 According to the present invention, the processing cost for weight reduction can be reduced.
本実施形態に係る積層造形システムZの機能ブロック図である。It is a functional block diagram of additive manufacturing system Z concerning this embodiment. 第1の手法における多孔体の概要例を示す図である。It is a figure which shows the outline example of the porous body in a 1st method. 多孔体の直径の決定方法を示す図である。It is a figure which shows the determination method of the diameter of a porous body. 多孔体の直径を示す関数のグラフ例を示す図である。It is a figure which shows the example of a graph of the function which shows the diameter of a porous body. 第2の手法における相対密度と、多孔体との対応関係の例を示す図である。It is a figure which shows the example of the correspondence of the relative density in a 2nd method, and a porous body. 本実施形態に係る積層造形データ生成処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the layered modeling data generation process which concerns on this embodiment. 本実施形態に係る設定画面の例を示す図である。It is a figure which shows the example of the setting screen which concerns on this embodiment. 処理対象となる構造体の例を示す図である。It is a figure which shows the example of the structure used as a process target. 構造解析処理及び応力分布算出処理が行われた結果としての応力分布を示す図である。It is a figure which shows the stress distribution as a result of having performed the structure analysis process and the stress distribution calculation process. 構造体における相対密度分布を示す図である。It is a figure which shows the relative density distribution in a structure. 軽量化ゴルフクラブヘッドの形状を示す図である。It is a figure which shows the shape of a weight reduction golf club head. 3Dプリンタ装置により、生成された軽量化形状データに基づいて積層造形された軽量化ゴルフクラブヘッドの例を示す図である。It is a figure which shows the example of the weight reduction golf club head laminated-modeled based on the weight reduction shape data produced | generated by 3D printer apparatus. 一般的な3Dプリンタ装置の概念図である。It is a conceptual diagram of a general 3D printer apparatus. これまでの方法でゴルフクラブヘッドの軽量化を行った場合における計算コストを示すグラフである。It is a graph which shows the calculation cost at the time of reducing the weight of a golf club head by the conventional method. これまでの手法によって得られたゴルフクラブヘッドの相対密度分布を示す図である。It is a figure which shows the relative density distribution of the golf club head obtained by the method until now. これまでの手法によって作成される軽量化ゴルフクラブヘッドの形状を示す図である。It is a figure which shows the shape of the weight reduction golf club head produced by the method until now. これまでの手法によって作成された軽量化ゴルフクラブヘッド形状に対してスムージング処理を行った結果を示す図である。It is a figure which shows the result of having performed the smoothing process with respect to the weight-reduced golf club head shape created by the method until now.
 次に、本発明を実施するための形態(「実施形態」という)について、適宜図面を参照しながら詳細に説明する。 Next, modes for carrying out the present invention (referred to as “embodiments”) will be described in detail with reference to the drawings as appropriate.
[システム]
 図1は、本実施形態に係る積層造形システムZの機能ブロック図である。
 図1において、積層造形システムZは、積層造形データ生成装置1、Dプリンタ装置(造形部)2及び入力装置3が互いに接続されている構成を有している。
 入力装置3は、構造体(積層造形対象の物体)の軽量化形状を算出するのに必要なデータを、利用者が入力するためのものである。入力装置3は、例えばタブレットPC(Personal Computer)、PC、ワークステーション、計算機サーバ等である。これらの機器に備えられているキーボード等の端末入力装置や、インターネットや、外部記憶装置に格納されている情報が積層造形データ生成装置1へ送信される。
 なお、本実施形態では、積層造形データ生成装置1と、入力装置3とが別の装置となっているが、一体の装置であってもよい。
[system]
FIG. 1 is a functional block diagram of the additive manufacturing system Z according to the present embodiment.
In FIG. 1, the layered modeling system Z has a configuration in which a layered modeling data generation device 1, a D printer device (modeling unit) 2, and an input device 3 are connected to each other.
The input device 3 is for a user to input data necessary for calculating a weight-reduced shape of a structure (object to be layered). The input device 3 is, for example, a tablet PC (Personal Computer), a PC, a workstation, a computer server, or the like. Information stored in a terminal input device such as a keyboard provided in these devices, the Internet, or an external storage device is transmitted to the additive manufacturing data generation device 1.
In the present embodiment, the layered modeling data generation device 1 and the input device 3 are separate devices, but may be an integrated device.
 積層造形データ生成装置1は、メモリ100、CPU120、送受信装置121等を有している。メモリ100には、図示しない記憶装置に格納されているプログラムがロードされる。そして、ロードされたプログラムがCPU120によって実行される。これにより、処理部101と、処理部101を構成する構造解析処理部(物性情報推定部、特徴量算出部)102、軽量化処理部103、多孔体配置処理部104が具現化している。
 送受信装置121は、入力装置3から情報を受信したり、3Dプリンタ装置2へ情報を送信したりするものである。
The layered modeling data generation device 1 includes a memory 100, a CPU 120, a transmission / reception device 121, and the like. The memory 100 is loaded with a program stored in a storage device (not shown). Then, the loaded program is executed by the CPU 120. Thus, the processing unit 101, the structural analysis processing unit (physical property information estimation unit, feature amount calculation unit) 102, the weight reduction processing unit 103, and the porous body arrangement processing unit 104 constituting the processing unit 101 are embodied.
The transmission / reception device 121 receives information from the input device 3 and transmits information to the 3D printer device 2.
 積層造形データ生成装置1は、入力装置3から積層造形データ生成処理に必要なデータを取得すると、後記する積層造形データ生成処理を実施することで、軽量化形状データを生成する。そして、生成した軽量化形状データが3Dプリンタ装置2に送信される。
 構造解析処理部102は、3次元形状データを用いて構造解析の計算を実施し、構造解析の計算結果を基に、応力分布の算出を行う。
 軽量化処理部103は、抽出された応力分布を基に相対密度の分布を算出する。なお、相対密度とは、物質の材料本来の密度に対する相対的な密度である。また、軽量化処理部103は、算出した相対密度の分布等を基に総質量等を算出し、軽量化条件(後記)を満たしているか否かを判定する。
 多孔体配置処理部104は、算出された相対密度に応じて、3次元形状データに多孔体のデータである多孔体データを配置した軽量化形状データを生成する。多孔体については後記する。
 なお、各部101~104が行う詳細な処理は後記して説明する。
When the layered modeling data generation apparatus 1 acquires data necessary for the layered modeling data generation process from the input device 3, the layered modeling data generation apparatus 1 generates weight-reduced shape data by performing a layered modeling data generation process described later. Then, the generated weight reduction shape data is transmitted to the 3D printer apparatus 2.
The structural analysis processing unit 102 performs a structural analysis calculation using the three-dimensional shape data, and calculates a stress distribution based on the structural analysis calculation result.
The weight reduction processing unit 103 calculates a relative density distribution based on the extracted stress distribution. The relative density is a density relative to the original density of the substance. Further, the weight reduction processing unit 103 calculates the total mass and the like based on the calculated distribution of relative density and the like, and determines whether or not the weight reduction condition (described later) is satisfied.
The porous body arrangement processing unit 104 generates weight-reduced shape data in which porous body data that is porous body data is arranged in the three-dimensional shape data in accordance with the calculated relative density. The porous material will be described later.
Detailed processing performed by each of the units 101 to 104 will be described later.
 また、積層造形データ生成装置1は、多孔体DB(記憶部)111、形状DB112、応力分布DB113、密度分布DB114及び軽量化形状DB115を有している。
 多孔体DB111には、構造体における相対密度に応じて貼り付けられる多孔体データに関する情報が格納されている。
 形状DB112には、3次元形状データが格納されている。3次元形状データは、専用のソフトウェア等で生成されるSTL(Standard Triangulated Language)データ等である。STLデータは、複数の節点データで構成される。STLデータでは、このような3つの節点からなる三角要素と三角要素の面の方向を示す法線ベクトルで3次元形状が表現される。この三角要素は、構造体の表面を有限の要素に分割したものである。後で計算される応力値や相対密度値はこの三角要素に対応して計算され、応力分布DB113、密度分布DB114に記憶される。以降、STLデータにおける三角要素を、単に要素と称する。また、多孔体データや、3次元形状データの多孔体の配置も要素単位で実施される。ちなみに、STLデータは3Dプリンタ装置2を用いて積層造形する際に用いられる標準的な3次元形状データである。
The additive manufacturing data generation apparatus 1 includes a porous body DB (storage unit) 111, a shape DB 112, a stress distribution DB 113, a density distribution DB 114, and a weight-reduced shape DB 115.
The porous body DB 111 stores information related to porous body data that is pasted according to the relative density of the structure.
The shape DB 112 stores three-dimensional shape data. The three-dimensional shape data is STL (Standard Triangulated Language) data generated by dedicated software or the like. The STL data is composed of a plurality of node data. In the STL data, a three-dimensional shape is represented by a triangular element composed of such three nodes and a normal vector indicating the direction of the surface of the triangular element. This triangular element is obtained by dividing the surface of the structure into finite elements. Stress values and relative density values calculated later are calculated corresponding to the triangular elements and stored in the stress distribution DB 113 and the density distribution DB 114. Hereinafter, the triangular element in the STL data is simply referred to as an element. In addition, the arrangement of the porous body data and the porous body of the three-dimensional shape data is also performed in element units. Incidentally, the STL data is standard three-dimensional shape data used when layered modeling is performed using the 3D printer apparatus 2.
 応力分布DB113には、構造解析処理部102が算出して応力分布に関するデータが格納されている。
 密度分布DB114には、軽量化処理部103が算出した相対密度の分布に関するデータが格納されている。
 軽量化形状DB115には、軽量化形状データが格納されている。軽量化形状データとは、多孔体配置処理部104が相対密度に応じた多孔体データが3次元形状データに配置することで軽量化が実現された3次元形状データである。なお、本実施形態では、積層造形データ生成装置1に入力される3次元形状データは「3次元形状データ」と記載される。そして、積層造形データ生成装置1によって生成される3次元形状データは「軽量化形状データ」と記載される。
In the stress distribution DB 113, data related to the stress distribution calculated by the structural analysis processing unit 102 is stored.
The density distribution DB 114 stores data related to the relative density distribution calculated by the weight reduction processing unit 103.
The weight reduction shape DB 115 stores weight reduction shape data. The weight reduction shape data is three-dimensional shape data in which weight reduction is realized by the porous body arrangement processing unit 104 arranging the porous body data corresponding to the relative density in the three-dimensional shape data. In the present embodiment, the three-dimensional shape data input to the layered modeling data generation device 1 is described as “three-dimensional shape data”. The three-dimensional shape data generated by the additive manufacturing data generation device 1 is described as “weight reduction shape data”.
 本実施形態は、積層造形データ生成処理において、多孔体配置処理部104が、相対密度分布に応じた多孔体データを配置することで軽量化形状データを生成することを特徴とする。 This embodiment is characterized in that, in the layered modeling data generation process, the porous body arrangement processing unit 104 generates the weight reduction shape data by arranging the porous body data according to the relative density distribution.
 3Dプリンタ装置2は、積層造形データ生成装置1で生成された構造体の軽量化形状データを基に、積層造形により軽量化された構造体を製造する。 The 3D printer apparatus 2 manufactures a structure that is lightened by additive manufacturing based on the weight-reduced shape data of the structure generated by the additive manufacturing data generation apparatus 1.
[多孔体]
 次に、図2A~図3を参照して、本実施形態に係る多孔体について説明する。
(第1の手法)
 図2Aは、第1の手法における多孔体の概要例を示す図であり、図2Bは多孔体の直径の決定方法を示す図であり、図2Cは多孔体の直径を示す関数のグラフ例を示す図である。
 図2A~図2Cに示す第1の手法は、関数を用いることで、構造体の相対密度に応じた多孔体201における孔202の直径を決定する手法である。
 なお、第1の手法は、多孔体形状生成の内蔵型処理ルーチンで実行されるものである。多孔体形状生成の内蔵型処理ルーチンは、図5で後記する相対密度-多孔体対応データ設定部360でデフォルト設定用チェック欄361に利用者がチェックした時に起動するものである。
[Porous material]
Next, the porous body according to the present embodiment will be described with reference to FIGS. 2A to 3.
(First method)
FIG. 2A is a diagram showing a schematic example of a porous body in the first method, FIG. 2B is a diagram showing a method of determining the diameter of the porous body, and FIG. 2C is a graph example of a function showing the diameter of the porous body FIG.
The first method shown in FIGS. 2A to 2C is a method for determining the diameter of the hole 202 in the porous body 201 according to the relative density of the structure by using a function.
The first method is executed by a built-in processing routine for generating a porous body shape. The built-in processing routine for porous body shape generation is started when the user checks the default setting check field 361 in the relative density-porous body data setting unit 360 described later in FIG.
 本処理ルーチンは、引数に構造体における相対密度rd(0≦rd≦1)が与えられ、コールされると、図2Aに示す空隙率(1-rd)の多孔体201の形状をSTL形式のデータで返すルーチンである。
 多孔体201における孔202は、図2Aに示すように、一方向に向いた直径dの一様な円筒形で形成される。すなわち、孔202は直径dの一様な円形である。図2Aに示すように、各孔202間の距離はx軸方向にX、y軸方向にYとすると、各孔202の中心間隔がX=Yとなるよう、等間隔で格子状に配置される。
 ここで、X=Y=1とすれば、相対密度rdと孔202の直径dとの関係は、図2Bに示す関係式で示されるものとなる。この関係式によれば、相対密度rdが与えられれば、一意に多孔体201における孔202の大きさを決めることができる。
In this processing routine, the relative density rd (0 ≦ rd ≦ 1) in the structure is given as an argument, and when called, the shape of the porous body 201 having the porosity (1-rd) shown in FIG. This routine returns with data.
As shown in FIG. 2A, the hole 202 in the porous body 201 is formed in a uniform cylindrical shape having a diameter d facing one direction. That is, the hole 202 is a uniform circle having a diameter d. As shown in FIG. 2A, when the distances between the holes 202 are X in the x-axis direction and Y in the y-axis direction, the holes 202 are arranged in a grid pattern at equal intervals so that the center distance of the holes 202 becomes X = Y. The
Here, if X = Y = 1, the relationship between the relative density rd and the diameter d of the hole 202 is shown by the relational expression shown in FIG. 2B. According to this relational expression, if the relative density rd is given, the size of the hole 202 in the porous body 201 can be uniquely determined.
 図2Cは、横軸に構造体の相対密度rd、縦軸に孔202の直径dをとり、図2Bに示される相対密度rdと孔202の直径dの関係をグラフ211で示したものである。
 グラフ211によれば、引数の相対密度rdが指定されれば多孔体201における孔202の直径dが一意に決まる。しかしながら、図2Cのグラフ211で示されるように、相対密度0.785の点212で、直径dの値が1となり、孔202の配置される間隔と同じになる。すなわち、孔202同士がつながってしまう。従って、これ以上、直径dを大きくすると、孔202同士が重なり合い(孔202がつながってしまい)、指定された相対密度の多孔体201が得られなくなる。従って、第1の手法は、相対密度rdが0≦rd≦0.785の範囲で適用可能となる。
 第1の手法によれば、相対密度rdに応じて孔202の直径dを連続的に変化させることが可能となる。
 また、軽量化の手法として、孔202を有する多孔体201を用い、孔202の大きさを変えることで、ある程度強度を保ったまま軽量化を行うことができる。例えば、構造体の材料を薄くすることで軽量化を図ろうとすると、強度が著しく低下してしまう。
2C, the horizontal axis represents the relative density rd of the structure, the vertical axis represents the diameter d of the hole 202, and the relationship between the relative density rd and the diameter d of the hole 202 shown in FIG. .
According to the graph 211, if the relative density rd of the argument is designated, the diameter d of the hole 202 in the porous body 201 is uniquely determined. However, as indicated by the graph 211 in FIG. 2C, the value of the diameter d is 1 at the point 212 having a relative density of 0.785, which is the same as the interval at which the holes 202 are arranged. That is, the holes 202 are connected to each other. Therefore, if the diameter d is further increased, the holes 202 overlap (holes 202 are connected), and the porous body 201 having the specified relative density cannot be obtained. Therefore, the first method can be applied in the range where the relative density rd is 0 ≦ rd ≦ 0.785.
According to the first method, the diameter d of the hole 202 can be continuously changed according to the relative density rd.
Further, as a weight reduction technique, the porous body 201 having the holes 202 is used, and the size of the holes 202 is changed, whereby the weight can be reduced while maintaining a certain degree of strength. For example, if the weight of the structure is reduced by making the material of the structure thinner, the strength is significantly reduced.
(第2の手法)
 図3は、第2の手法における相対密度と、多孔体との対応関係の例を示す図である。
 第2の手法は、相対密度の値の範囲毎にグループ化し、このグループ毎に対応する多孔体を割り当てることで、相対密度を離散化し、処理を高速化するものである。
 すなわち、第2の手法では、まず、構造解析処理部102(図1)が構造体の相対密度を算出する。そして、多孔体配置処理部104(図1)が算出した相対密度に相当するグループの多孔体で構造体の部分を配置する。このようにすることで、処理の高速化を図ることができる。
(Second method)
FIG. 3 is a diagram illustrating an example of a correspondence relationship between the relative density and the porous body in the second method.
In the second method, grouping is performed for each range of relative density values, and a porous body corresponding to each group is assigned, thereby making the relative density discrete and speeding up the processing.
That is, in the second method, first, the structure analysis processing unit 102 (FIG. 1) calculates the relative density of the structure. And the part of a structure is arrange | positioned with the porous body of the group corresponded to the relative density which the porous body arrangement | positioning process part 104 (FIG. 1) calculated. By doing so, the processing speed can be increased.
 第2の手法では、多孔体における孔が円形の第1形状タイプと、孔が四角形の第2形状タイプが用意されているものとする。第1形状タイプは空隙にアールがついているため、集中応力による破壊を防ぐことができ、前記したように相対密度0.785まで適用可能である。一方、第2形状タイプは、第1形状タイプより空隙率を大きくすることができる。第2の手法における多孔体形状生成の内蔵型処理ルーチンは、後記する図5で後記する相対密度-多孔体対応データ設定部360において、デフォルト設定用チェック欄361にチェックが入れられず、多孔体生成プログラム設定欄362にプログラム名が入力されることで実行される。 In the second method, it is assumed that a first shape type with circular holes and a second shape type with square holes are prepared. Since the first shape type has rounded voids, it can prevent breakage due to concentrated stress and can be applied up to a relative density of 0.785 as described above. On the other hand, the porosity of the second shape type can be made larger than that of the first shape type. The built-in processing routine for porous body shape generation in the second method is not checked in the default setting check column 361 in the relative density-porous body data setting unit 360 described later in FIG. The program is executed by inputting a program name in the generation program setting field 362.
 図2Bに示す関数や、第1の手法によって生成された多孔体のデータ(多孔体データ)や、図3に示す相対密度毎の多孔体データは、特徴量-多孔体情報として図1における多孔体DB111に格納されている。 The function shown in FIG. 2B, the porous body data (porous body data) generated by the first method, and the porous body data for each relative density shown in FIG. Stored in the body DB 111.
[フローチャート]
 図4は、本実施形態に係る積層造形データ生成処理の手順を示すフローチャートである。
 なお、以降の説明において、適宜、図1を参照する。
 なお、ここでは各処理の概要を示す。各処理の詳細な説明は後記する。
 まず、入力装置3によって設定処理が行われる(S101)。設定処理において、積層造形データ生成装置1は、入力装置3から送信されたすべてのデータを、積層造形データ生成処理のために用意された形状DB112に格納する。
 図5で後記する設定画面300で積層造形データ生成処理に必要な情報が設定された後、利用者により設定画面300の決定ボタン370が選択入力される。すると、設定画面300で設定された情報が入力装置3から積層造形データ生成装置1へ送信される。
 積層造形データ生成装置1は、設定画面300で設定された情報を受信すると、ステップS102以降の処理を実行する。
[flowchart]
FIG. 4 is a flowchart showing the procedure of the layered modeling data generation process according to this embodiment.
In the following description, FIG. 1 will be referred to as appropriate.
Here, an outline of each process is shown. A detailed description of each process will be given later.
First, a setting process is performed by the input device 3 (S101). In the setting process, the additive manufacturing data generation apparatus 1 stores all data transmitted from the input device 3 in the shape DB 112 prepared for the additive manufacturing data generation process.
After the information necessary for the additive manufacturing data generation process is set on the setting screen 300 described later in FIG. 5, the determination button 370 on the setting screen 300 is selected and input by the user. Then, the information set on the setting screen 300 is transmitted from the input device 3 to the additive manufacturing data generation device 1.
When the layered modeling data generation device 1 receives the information set on the setting screen 300, the layered modeling data generation device 1 executes the processes after step S <b> 102.
 まず、構造解析処理部102が構造解析処理を行い(S102)、応力分布算出処理を行う(S103)。
 そして、軽量化処理部103は軽量化処理を行い(S104)、軽量化処理の結果が軽量化条件を満たしているか否かを判定する(S105)。
 ステップS105の結果、軽量化条件を満たしていない場合(S105→No)、軽量化処理部103はヤング率を更新して(S106)、ステップS102へ処理を戻す。
First, the structure analysis processing unit 102 performs a structure analysis process (S102), and performs a stress distribution calculation process (S103).
Then, the weight reduction processing unit 103 performs the weight reduction processing (S104), and determines whether or not the result of the weight reduction processing satisfies the weight reduction conditions (S105).
If the result of step S105 does not satisfy the weight reduction condition (S105 → No), the weight reduction processing unit 103 updates the Young's modulus (S106) and returns the process to step S102.
 ステップS105の結果、軽量化条件を満たしている場合(S105→Yes)、軽量化処理部103は相対密度分布算出処理を行う(S107)。
 その後、多孔体配置処理部104が、算出された相対密度に対応した多孔体データを3次元形状データに配置する多孔体配置処理を行う(S108)ことで、軽量化形状データを生成する。
If the result of step S105 satisfies the weight reduction condition (S105 → Yes), the weight reduction processing unit 103 performs a relative density distribution calculation process (S107).
Thereafter, the porous body arrangement processing unit 104 performs the porous body arrangement processing for arranging the porous body data corresponding to the calculated relative density in the three-dimensional shape data (S108), thereby generating the weight-reduced shape data.
(設定処理:図4のS101)
 図5は、本実施形態に係る設定画面300の例を示す図である。
 設定画面300は、利用者が、積層造形データ生成処理に必要なデータを設定するための画面である。利用者は、設定画面300の表示で、設定値の入力、変更を確認し、積層造形データ生成装置1へのデータ送信を指示することができる。
 図5に示すように、設定画面300は、形状データ設定部310、属性データ設定部320、荷重データ設定部330、物性値データ設定部340、軽量化条件データ設定部350、相対密度-多孔体対応データ設定部360及び決定ボタン370を有している。
(Setting process: S101 in FIG. 4)
FIG. 5 is a diagram illustrating an example of the setting screen 300 according to the present embodiment.
The setting screen 300 is a screen for the user to set data necessary for the additive manufacturing data generation process. The user can confirm the input and change of the setting value on the display of the setting screen 300 and can instruct data transmission to the additive manufacturing data generation apparatus 1.
As shown in FIG. 5, the setting screen 300 includes a shape data setting unit 310, an attribute data setting unit 320, a load data setting unit 330, a physical property value data setting unit 340, a weight reduction condition data setting unit 350, a relative density-porous material. A correspondence data setting unit 360 and a determination button 370 are provided.
 形状データ設定部310では、軽量化の対象となる構造体の3次元形状データに関する設定が行われる。
 形状データ設定部310は、構造体のSTLデータをファイル名で指定する入力欄311と、STLデータの外形等を確認ができるサムネール画像欄312とを有している。
In the shape data setting unit 310, settings relating to the three-dimensional shape data of the structure to be reduced in weight are performed.
The shape data setting unit 310 has an input field 311 for designating STL data of a structure by a file name, and a thumbnail image field 312 for confirming the outer shape of the STL data.
 属性データ設定部320では、属性データ設定欄321において構造体の容量、質量、材質等といった構造体の属性に関する設定が行われる。属性データは応力分布や、相対密度が算出される際に使用される。 In the attribute data setting section 320, settings relating to structure attributes such as capacity, mass, material, etc. of the structure are made in the attribute data setting field 321. The attribute data is used when stress distribution and relative density are calculated.
 荷重データ設定部330では、荷重データ設定欄331において構造体が稼働時に受ける外力である荷重に関する設定が行われる。
 荷重データは、荷重種別、荷重位置、荷重の大きさ、拘束位置、拘束種別等を有する。
 荷重種別には集中荷重、分布荷重、圧力等の種別がある。これらの荷重種別は、構造体に加わる外力の様相により使い分けられ、構造体のどの位置に作用するかが荷重位置欄で設定される。ここでは、荷重位置が、荷重がかかる場所をSTLデータにおける節点で与えられるものとした。
 拘束位置は、構造体の物理的拘束、つまり固定される位置を示すものである。ここでは、固定される位置(拘束位置)がSTLデータでの節点で与えられるものとした。拘束種別は、x軸、y軸、z軸の並進方向と回転方向の6つの自由度を指定する必要がある。ここでは、すべての自由度を固定した完全固定が設定されている。
In the load data setting unit 330, a setting relating to a load that is an external force that the structure receives during operation is performed in the load data setting field 331.
The load data includes a load type, a load position, a load magnitude, a constraint position, a constraint type, and the like.
There are types of load such as concentrated load, distributed load, and pressure. These load types are properly used depending on the external force applied to the structure, and the position of the structure to be applied is set in the load position column. Here, it is assumed that the load position is given by a node in the STL data where the load is applied.
The restraint position indicates a physical restraint of the structure, that is, a fixed position. Here, it is assumed that the fixed position (restraint position) is given by a node in the STL data. As the constraint type, it is necessary to specify six degrees of freedom in the translation direction and the rotation direction of the x-axis, y-axis, and z-axis. Here, complete fixing with all degrees of freedom fixed is set.
 物性値データ設定部340では、物性値データ設定欄341において構造体作製に用いる材料の物性値に関する設定が行われる。物性値データは、属性データにおける材質に関する情報を具体的物性値で示すものである。物性値として、密度、ヤング率、ポアソン比、降伏応力、引張強さ等が設定される。物性値は、荷重データに基づいて構造解析を実施する際に用いられ、稼働時における構造体に生じる応力分布を求めるときに使用される。 In the physical property value data setting unit 340, the physical property value setting field 341 performs setting related to the physical property value of the material used for manufacturing the structure. The physical property value data indicates information regarding the material in the attribute data as specific physical property values. As physical properties, density, Young's modulus, Poisson's ratio, yield stress, tensile strength, and the like are set. The physical property value is used when the structural analysis is performed based on the load data, and is used when the stress distribution generated in the structure during operation is obtained.
 軽量化条件データ設定部350では、軽量化条件データ設定欄351において積層造形データ生成処理を実施する時に用いる軽量化条件が設定される。
 軽量化条件は、目標軽量化質量、軽量化対象領域、目的関数等を有している。目標軽量化質量は構造体の質量をどのくらい削減したいのかを示すためのものであり、ここでは20%削減を目標としている。また、軽量化対象領域は、肉抜き等による軽量化領域を、3次元形状データ状の節点の集合で示される。軽量化対象領域は、多孔体を配置する領域を予め指定したい場合に設定される。
In the weight reduction condition data setting unit 350, the weight reduction condition used when the layered modeling data generation process is performed in the weight reduction condition data setting field 351 is set.
The weight reduction conditions include a target weight reduction mass, a weight reduction target area, an objective function, and the like. The target weight-reducing mass is for indicating how much the mass of the structure is to be reduced, and here the target is 20% reduction. Further, the lightening target area is indicated by a set of nodes in the form of three-dimensional shape data. The area to be reduced in weight is set when it is desired to previously specify an area in which the porous body is to be arranged.
 相対密度-多孔体対応データ設定部360は、相対密度に対応した多孔体データを割り当てる時に用いる手法が設定される。
 相対密度-多孔体対応データ設定部360は、デフォルト設定用チェック欄361、多孔体生成プログラム設定欄362等を有し、相対密度に対応した多孔体データをSTL形式で生成するための設定が行われる。
The relative density-porous body data setting unit 360 sets a method used when assigning porous body data corresponding to the relative density.
The relative density-porous material correspondence setting unit 360 includes a default setting check field 361, a porous material generation program setting field 362, and the like, and settings for generating porous material data corresponding to the relative density in the STL format are performed. Is called.
 相対密度-多孔体対応データ設定部360において、デフォルト設定用チェック欄361は、第1の手法を用いるか否かを指定するためのチェック欄である。まず、入力装置3を介して、デフォルト設定用チェック欄361にチェックが入力される。すると、多孔体配置処理部104は、図2A~図2Cを参照して説明した内蔵型処理ルーチン(第1の手法)を用いて相対密度に対応した多孔体データを生成する。そして、多孔体配置処理部104は、生成した多孔体データを3次元形状データに配置する。 In the relative density-porous material setting unit 360, the default setting check column 361 is a check column for designating whether or not to use the first method. First, a check is input to the default setting check field 361 via the input device 3. Then, the porous body arrangement processing unit 104 generates porous body data corresponding to the relative density using the built-in processing routine (first method) described with reference to FIGS. 2A to 2C. And the porous body arrangement | positioning process part 104 arrange | positions the produced | generated porous body data in three-dimensional shape data.
 デフォルト設定用チェック欄361にチェックがない場合、多孔体配置処理部104は、多孔体生成プログラム設定欄362に、多孔体生成プログラムのファイル名の入力を促す。多孔体生成プログラムは、引数に相対密度を取り、戻り値はその相対密度に対応した多孔体形状データをSTL形式で返すプログラムである。つまり、多孔体生成プログラムは、図3で説明した第2の手法によって多孔体を選択するプログラムである。
 多孔体生成プログラムは、利用者が作成し組み込むために用意されたインタフェースである。利用者が、作成した多孔体生成プログラムのファイル名を多孔体生成プログラム設定欄362に入力する。これにより、例えば、多孔体生成プログラムが動的にリンクされ、多孔体生成プログラムがサブルーチンとしてコールされる。この結果、多孔体配置処理部104は、図3を参照して説明する第2の手法を用いた多孔体データを3次元形状データに配置する。
When the default setting check field 361 is not checked, the porous body arrangement processing unit 104 prompts the porous body generation program setting field 362 to input the file name of the porous body generation program. The porous body generation program is a program that takes a relative density as an argument and returns a porous body shape data corresponding to the relative density in an STL format. That is, the porous body generation program is a program for selecting a porous body by the second method described with reference to FIG.
The porous body generation program is an interface prepared for the user to create and incorporate. The user inputs the created porous body generation program file name in the porous body generation program setting field 362. Thereby, for example, the porous body generation program is dynamically linked, and the porous body generation program is called as a subroutine. As a result, the porous body arrangement processing unit 104 arranges the porous body data using the second method described with reference to FIG. 3 in the three-dimensional shape data.
 設定画面300を介して、積層造形データ生成処理に必要なデータ設定が完了すると、利用者が決定ボタン370を選択入力する。これにより、設定された情報が積層造形データ生成装置1へ送信され、図4のステップS102以下の処理が実行される。 When the data setting necessary for the additive manufacturing data generation process is completed via the setting screen 300, the user selects and inputs the determination button 370. Thereby, the set information is transmitted to the additive manufacturing data generation apparatus 1, and the process after step S102 of FIG. 4 is executed.
(構造体例)
 図6は、処理対象となる構造体の例を示す図である。本実施形態では、軽量化対象の構造体がゴルフクラブヘッドである場合の例を示す。
(Example structure)
FIG. 6 is a diagram illustrating an example of a structure to be processed. In this embodiment, an example in which the structure to be reduced in weight is a golf club head is shown.
 図6において、3次元形状データがゴルフクラブヘッドであることを示すと同時に、稼働時に受ける外力は、フェース面402の中央部でボールを打つ時に生じる集中荷重403である。また、拘束位置は、シャフトとヘッドとの連結部分404であり、拘束種別は完全拘束である。軽量化対象は、ヘッドにおいてフェース面402を除く領域401である。またゴルフクラブヘッドを作製する材料として64チタンが用いられている。一方、軽量化条件において、目標とする軽量化質量は、現質量の20%低減でありかつ、目的関数にひずみエネルギを取り、このひずみエネルギが最小値となるように、すなわち剛性が最大値になるように設定されている。また、多孔体データの配置手法に、第2の手法の第2形状タイプ(図3参照)が使用されるものとする。 6, at the same time that the three-dimensional shape data indicates a golf club head, the external force received during operation is a concentrated load 403 generated when a ball is hit at the center of the face surface 402. The restraint position is the connecting portion 404 between the shaft and the head, and the restraint type is complete restraint. An object to be reduced in weight is an area 401 excluding the face surface 402 in the head. Further, 64 titanium is used as a material for producing a golf club head. On the other hand, under the weight reduction conditions, the target weight reduction mass is 20% reduction of the current mass and takes strain energy in the objective function so that the strain energy becomes the minimum value, that is, the rigidity becomes the maximum value. It is set to be. In addition, it is assumed that the second shape type (see FIG. 3) of the second method is used for the arrangement method of the porous body data.
<構造解析処理(図4のS102)及び応力分布算出処理(図4のS103)>
 次に、構造解析処理(S102)及び応力分布算出処理(S103)について、詳細に説明する。
 ステップS102における構造解析処理で、積層造形データ生成装置1の構造解析処理部102が、設定処理で設定された3次元形状データを用いて、構造解析の計算を実施する。具体的には、構造解析処理部102は、3次元形状データを構成する要素とは別の、解析のためのメッシュに分割する。そして、構造解析処理部102は、このメッシュに基づいて、所定の荷重条件に基づいて外力が構造体に加えられた場合、構造体のどの部分にどのような力が加わるかを算出する。
 次に、ステップS103における応力分布算出処理で、構造解析処理部102は、ステップS102の構造解析処理で計算した解析結果から応力分布を算出する。そして、構造解析処理部102は、3次元形状データの場所毎における応力値を応力分布DB113に格納する。ここで構造解析処理部102として、例えばダッソーシステムズ社の汎用解析ソフトABAQUS等を適用すれば、構造解析処理及び応力分布算出処理は容易に実現可能である。
<Structural analysis process (S102 in FIG. 4) and stress distribution calculation process (S103 in FIG. 4)>
Next, the structure analysis process (S102) and the stress distribution calculation process (S103) will be described in detail.
In the structural analysis processing in step S102, the structural analysis processing unit 102 of the additive manufacturing data generation apparatus 1 performs structural analysis calculation using the three-dimensional shape data set in the setting processing. Specifically, the structure analysis processing unit 102 divides the analysis mesh into separate meshes for analysis, which are different from the elements constituting the three-dimensional shape data. Then, based on this mesh, the structural analysis processing unit 102 calculates what force is applied to which part of the structure when an external force is applied to the structure based on a predetermined load condition.
Next, in the stress distribution calculation process in step S103, the structural analysis processing unit 102 calculates the stress distribution from the analysis result calculated in the structural analysis process in step S102. Then, the structural analysis processing unit 102 stores the stress value at each location of the three-dimensional shape data in the stress distribution DB 113. Here, if, for example, general-purpose analysis software ABAQUS manufactured by Dassault Systèmes is applied as the structural analysis processing unit 102, the structural analysis processing and the stress distribution calculation processing can be easily realized.
 図7は、図6に示すゴルフクラブヘッドの3次元形状データを用いて構造解析処理及び応力分布算出処理が行われた結果としての応力分布を示す図である。
 図7では、応力の強さを表す指標511に従って応力分布が表示されている。図7に示す応力分布501から、ボールの当たる部分502で最大応力が生じ、シャフトの付け根部分503にわたって荷重の伝達経路が存在するのが分かる。
FIG. 7 is a diagram showing the stress distribution as a result of the structural analysis process and the stress distribution calculation process using the three-dimensional shape data of the golf club head shown in FIG.
In FIG. 7, the stress distribution is displayed according to the index 511 representing the strength of the stress. From the stress distribution 501 shown in FIG. 7, it can be seen that the maximum stress is generated in the portion 502 where the ball hits, and a load transmission path exists over the base portion 503 of the shaft.
(軽量化処理:図4のS104)
 次に、ステップS104における軽量化処理で、軽量化処理部103が、ステップS103で出力された応力分布データと、ステップS101で設定された軽量化条件に従って軽量化計算を実行する。その結果、相対密度が出力される。つまり、軽量化処理部103は、応力分布データを基に、構造体の各領域で可能な相対密度を算出する。具体的には、軽量化処理部103は、得られた応力分布から荷重の伝達経路を求め、軽量化条件を満たす相対密度分布を算出する。
 ここで、構造体において、応力が大きく作用する領域では、軽量化が困難なため、相対密度は1に近い値となり、応力がほとんど作用しない領域では、軽量化が可能なので相対密度は0に近い値とすることができる。このような手法で軽量化を実施する密度法では、ヤング率を密度の関数とする仮想的な材料を考え、目的関数が最小となるよう許容設計領域内の密度分布を決定する。密度分布を算出する市販の汎用ソフトは多数存在し、たとえばダッソーシステムズ社の汎用ソフトTOSCA等を適用すれば容易に実現可能である。なお、密度分布が算出されれば、そこから相対密度分布を算出することは容易である。
(Lightening processing: S104 in FIG. 4)
Next, in the weight reduction processing in step S104, the weight reduction processing unit 103 executes the weight reduction calculation according to the stress distribution data output in step S103 and the weight reduction conditions set in step S101. As a result, the relative density is output. That is, the weight reduction processing unit 103 calculates the relative density possible in each region of the structure based on the stress distribution data. Specifically, the weight reduction processing unit 103 obtains a load transmission path from the obtained stress distribution, and calculates a relative density distribution that satisfies the weight reduction condition.
Here, in the structure, since it is difficult to reduce the weight in a region where the stress acts largely, the relative density is close to 1. In the region where the stress hardly acts, the weight can be reduced, so the relative density is close to 0. Can be a value. In the density method for reducing the weight by such a method, a virtual material whose Young's modulus is a function of density is considered, and the density distribution in the allowable design region is determined so that the objective function is minimized. There are many commercially available general-purpose software for calculating the density distribution, which can be easily realized by applying, for example, general-purpose software TOSCA of Dassault Systèmes. If the density distribution is calculated, it is easy to calculate the relative density distribution therefrom.
(軽量化条件判定:図4のS105)
 前記したように、ステップS105における軽量化条件判定において、軽量化処理部103は、以下の計算を行う。つまり、軽量化処理部103は、軽量化処理(S104)で生成された相対密度の分布で、構造体を生成した場合における構造体の質量等を計算する。そして、軽量化処理部103は、計算結果がステップS101で設定された軽量化条件を満たしているか否かを判定する。
 ステップS105の結果、軽量化条件が満たされていれば(S105→Yes)、軽量化処理部103は、ステップS107の相対密度分布算出処理に進む。
 ステップS105の結果、軽量化条件を満たしていなければ(S105→No)、軽量化処理部103は、ステップS104で算出された相対密度を用いて、3次元形状データを構成する要素毎にヤング率を更新する(S106)。その後、軽量化処理部103は、ステップS102へ処理を戻し、更新したヤング率を用いて、再度、構造解析処理を実行する。
(Lightweight condition determination: S105 in FIG. 4)
As described above, in the weight reduction condition determination in step S105, the weight reduction processing unit 103 performs the following calculation. That is, the weight reduction processing unit 103 calculates the mass of the structure when the structure is generated based on the relative density distribution generated in the weight reduction processing (S104). Then, the weight reduction processing unit 103 determines whether the calculation result satisfies the weight reduction condition set in step S101.
As a result of step S105, if the weight reduction condition is satisfied (S105 → Yes), the weight reduction processing unit 103 proceeds to the relative density distribution calculation processing of step S107.
If the weight reduction condition is not satisfied as a result of step S105 (S105 → No), the weight reduction processing unit 103 uses the relative density calculated in step S104 to make the Young's modulus for each element constituting the three-dimensional shape data. Is updated (S106). Thereafter, the weight reduction processing unit 103 returns the process to step S102, and executes the structural analysis process again using the updated Young's modulus.
 このように、ステップS102~S106を繰り返し実行することで、積層造形データ生成装置1は、徐々に構造体の密度を減らし、軽量化条件を満たす相対密度分布を求めることができる。
 なお、これまでの技術でも、ステップS102~S106を繰り返し実行することが行われる。しかし、これまでの技術は、例え、軽量化条件が満たされていても相対密度が0か1になるまで繰り返す必要がある。これに対して、本実施形態の技術は、相対密度が0と1の中間値があってもよいので、軽量化条件が満たされれば、ステップS102~S106の繰り返しを抜けることができる。
In this way, by repeatedly executing steps S102 to S106, the additive manufacturing data generation apparatus 1 can gradually reduce the density of the structure and obtain a relative density distribution that satisfies the weight reduction condition.
It should be noted that steps S102 to S106 are repeatedly executed in the conventional techniques. However, the conventional technology needs to be repeated until the relative density becomes 0 or 1 even if the weight reduction condition is satisfied. On the other hand, the technique of the present embodiment may have an intermediate value between 0 and 1 for the relative density, so that the repetition of steps S102 to S106 can be skipped if the weight reduction condition is satisfied.
(相対密度分布算出処理:図4のS107)
 ステップS107において、軽量化処理部103は、軽量化条件を満たした構造体における相対密度分布を算出する相対密度分布算出処理を実行する。そして、軽量化処理部103は、相対密度分布データとして密度分布DB114に格納する。
(Relative density distribution calculation processing: S107 in FIG. 4)
In step S107, the weight reduction processing unit 103 executes a relative density distribution calculation process for calculating a relative density distribution in the structure that satisfies the weight reduction condition. And the weight reduction process part 103 stores in density distribution DB114 as relative density distribution data.
 図8は、ステップS107における相対密度分布抽出算出処理で算出された、構造体における相対密度分布を示す図である。
 図8に示す相対密度分布は、相対密度を示す指標611に従って表示されている。図8からゴルフクラブヘッドの相対密度分布601から、荷重の伝達経路から外れた領域602で相対密度が小さくなっていることが分かる(なお、図8~図10では、図6、図7とはゴルフクラブヘッドの向きが異なっていることに注意)。
FIG. 8 is a diagram showing the relative density distribution in the structure calculated by the relative density distribution extraction calculation process in step S107.
The relative density distribution shown in FIG. 8 is displayed according to the index 611 indicating the relative density. From FIG. 8, it can be seen from the relative density distribution 601 of the golf club head that the relative density is small in a region 602 that is out of the load transmission path (in FIGS. 8 to 10, what is different from FIGS. 6 and 7). Note that the orientation of the golf club head is different).
(多孔体配置処理:図4のS108)
 ステップS107の後、多孔体配置処理部104は、ステップS107で抽出された相対密度分布に基づいて多孔体データを配置する。多孔体配置処理部104は、要素毎に、算出された相対密度の値に対応する多孔体データを配置することで軽量化形状データを生成する。言い換えれば、多孔体配置処理部104は、相対密度の値に応じた多孔体データで該当する3次元形状データの部分を置換する。
 なお、第1の手法が用いられる場合、多孔体配置処理部104は図2Bに示す式で多孔体の直径を求め、求めた直径を有する多孔体のデータ(多孔体データ)で該当する相対密度の部分を置換する。
 また、第2の手法が用いられる場合、多孔体配置処理部104は、図3に示すように、該当する相対密度に対応する空隙率の多孔体を選択する。そして、多孔体配置処理部104は、選択した多孔体のデータ(多孔体データ)で該当する相対密度の部分を置換する。
(Porous body arrangement processing: S108 in FIG. 4)
After step S107, the porous body placement processing unit 104 places porous body data based on the relative density distribution extracted in step S107. The porous body arrangement processing unit 104 generates weight reduction shape data by arranging porous body data corresponding to the calculated relative density value for each element. In other words, the porous body arrangement processing unit 104 replaces the corresponding three-dimensional shape data portion with the porous body data corresponding to the value of the relative density.
When the first method is used, the porous body arrangement processing unit 104 obtains the diameter of the porous body by the equation shown in FIG. 2B, and the relative density corresponding to the data (porous body data) of the porous body having the obtained diameter. Is replaced.
Further, when the second method is used, the porous body arrangement processing unit 104 selects a porous body having a porosity corresponding to the corresponding relative density, as shown in FIG. And the porous body arrangement | positioning process part 104 substitutes the part of the relative density which corresponds with the data (porous body data) of the selected porous body.
 図9は、図8において相対密度分布における相対密度0.5の部分で平滑化された連続領域602に対し、軽量化ゴルフクラブヘッドの軽量化形状データ701を生成したものである。ここでは、図3における空隙率30%の第2形状タイプが配置されている。
 なお、図9では、空隙率30%の第2形状タイプが配置されたところしか示されていないが、実際には、相対密度に応じた各空隙率の多孔体データが各所に配置される。
FIG. 9 is a diagram in which the weight-reduced shape data 701 of the weight-reduced golf club head is generated for the continuous region 602 smoothed at the portion of the relative density 0.5 in the relative density distribution in FIG. Here, the second shape type having a porosity of 30% in FIG. 3 is arranged.
In FIG. 9, only the second shape type having a porosity of 30% is shown, but actually, porous body data of each porosity corresponding to the relative density is arranged in various places.
 そして、積層造形データ生成装置1は、生成した軽量化形状データを3Dプリンタ装置2に転送し、積層造形データ生成装置1の動作を終了する。 Then, the layered modeling data generation device 1 transfers the generated weight-reduced shape data to the 3D printer device 2, and ends the operation of the layered modeling data generation device 1.
 3Dプリンタ装置2は、積層造形データ生成装置1から軽量化形状データを受信すると、積層造形処理を開始し、軽量化された構造体の積層造形を作製する。 When the 3D printer apparatus 2 receives the weight-reduced shape data from the layered modeling data generation apparatus 1, the 3D printer apparatus 2 starts the layered modeling process and creates a layered modeling of the weight-reduced structure.
 図10は、3Dプリンタ装置2により、生成された軽量化形状データに基づいて積層造形された軽量化ゴルフクラブヘッドの例を示す図である。
 図10に示す軽量化ゴルフクラブヘッド(製造物)801では、相対密度に応じた多孔体が図8の領域602に相当する箇所に生成されていることが分かる。
 なお、図9と同じく、図10では、空隙率30%の第2形状タイプが配置されたところしか示されていないが、実際には、相対密度に応じた各空隙率の多孔体が各所に配置される。また、1種類の空隙率の多孔体しか使用されていない場合でも、この多孔体は相対密度に基づいて配置されているため、相対密度が0か1しかないこれまでの手法とは異なる。
FIG. 10 is a diagram illustrating an example of a weight-reduced golf club head that is layered and formed based on the weight-reduced shape data generated by the 3D printer apparatus 2.
In the weight-reduced golf club head (product) 801 shown in FIG. 10, it can be seen that a porous body corresponding to the relative density is generated at a location corresponding to the region 602 in FIG.
As in FIG. 9, FIG. 10 shows only where the second shape type with a porosity of 30% is arranged, but in reality, porous bodies with various porosity according to the relative density are in various places. Be placed. Even when only one kind of porous body having a porosity is used, this porous body is arranged based on the relative density, so that it differs from the conventional methods in which the relative density is only 0 or 1.
[3Dプリンタ装置2]
 図11は、一般的な3Dプリンタ装置2の概念図である。
 図11において3Dプリンタ装置2は、炭酸ガスレーザ発振器910、コリメータ911、ガルバノ操作装置913、集光レンズ914、第1昇降テーブル921を有する。さらに、3Dプリンタ装置2は、第1昇降機構923、基準テーブル912、第2昇降テーブル922、第2昇降機構924、スキージ916を有している。
 なお、図11において符号917,918は金属粉末を示す。また、符号919は造形中の粉末焼結部品を示す。そして、符号920は、粉末焼結部品919を支持する基盤を示す。
[3D printer device 2]
FIG. 11 is a conceptual diagram of a general 3D printer apparatus 2.
11, the 3D printer apparatus 2 includes a carbon dioxide laser oscillator 910, a collimator 911, a galvano operation device 913, a condensing lens 914, and a first lifting table 921. Further, the 3D printer apparatus 2 includes a first lifting mechanism 923, a reference table 912, a second lifting table 922, a second lifting mechanism 924, and a squeegee 916.
In FIG. 11, reference numerals 917 and 918 denote metal powders. Reference numeral 919 denotes a powder sintered part being shaped. Reference numeral 920 indicates a base for supporting the powder sintered component 919.
 炭酸ガスレーザ発振器910は、パルス発振のレーザ光915を生成する。コリメータ911は、レーザ光915のビーム径を調整する。ガルバノ操作装置913は、レーザ光915を所定場所に誘導する。集光レンズ914は、レーザ光915を集光し、局所的に粉末を焼結する。
 第1昇降テーブル921は、金属粉末917を所定の高さに随時設定する。第1昇降機構923は、第1昇降テーブル921を昇降する。
 基準テーブル912は、金属粉末918の積層面の位置を定める。
 第2昇降テーブル922は、積層する金属粉末918の厚み分、基準テーブル912の高さから随時降下する。
 第2昇降機構924は、第2昇降テーブル922を昇降する。
 スキージ916は、第1昇降テーブル921と、第2昇降テーブル922との間を往復運動する。これにより、第1昇降テーブル921上の金属粉末917を、第2昇降テーブル922へ運ぶと同時に、金属粉末918が引き延ばされる。このようにすることで、スキージ916は、金属粉末918を所定の厚みで薄く敷き詰めることができる。
The carbon dioxide laser oscillator 910 generates pulsed laser light 915. The collimator 911 adjusts the beam diameter of the laser light 915. The galvano operating device 913 guides the laser beam 915 to a predetermined place. The condensing lens 914 condenses the laser beam 915 and locally sinters the powder.
The first lifting table 921 sets the metal powder 917 to a predetermined height as needed. The first lifting mechanism 923 moves the first lifting table 921 up and down.
The reference table 912 determines the position of the laminated surface of the metal powder 918.
The second elevating table 922 descends from the height of the reference table 912 as needed by the thickness of the metal powder 918 to be laminated.
The second lifting mechanism 924 moves the second lifting table 922 up and down.
The squeegee 916 reciprocates between the first lifting table 921 and the second lifting table 922. As a result, the metal powder 917 on the first lifting table 921 is conveyed to the second lifting table 922, and at the same time, the metal powder 918 is stretched. By doing so, the squeegee 916 can spread the metal powder 918 thinly with a predetermined thickness.
 第1昇降テーブル921と第2昇降テーブル922との面積は等しい。従って、第1昇降テーブル921及び第2昇降テーブル922の上昇や、下降の距離が等しければ、第1昇降テーブル921から供給される金属粉末917の分量と、第2昇降テーブル922が受け取る金属粉末918の分量は等しい。
 第2昇降テーブル922が下がる毎に、粉末焼結部品919が徐々に造形される。第2昇降テーブル922は、基準テーブル912の位置が造形領域925に達するまで降下する。3Dプリンタ装置2において、炭酸ガスレーザ発振器910から照射されるパルス発振のレーザ光915は、コリメータ911でビーム径が調整される。その後、レーザ光915は、ガルバノ操作装置913によって所定の場所に誘導され、集光レンズ914で集光される。そして、集光されたレーザ光915は、粉末焼結部品919上に積層された金属粉末918に照射される。
The areas of the first lift table 921 and the second lift table 922 are equal. Accordingly, if the first lifting table 921 and the second lifting table 922 are raised and lowered at the same distance, the amount of the metal powder 917 supplied from the first lifting table 921 and the metal powder 918 received by the second lifting table 922 are received. The amount of is equal.
Each time the second lifting table 922 is lowered, the powder sintered component 919 is gradually shaped. The second lifting table 922 moves down until the position of the reference table 912 reaches the modeling area 925. In the 3D printer 2, the beam diameter of the pulsed laser beam 915 emitted from the carbon dioxide laser oscillator 910 is adjusted by the collimator 911. Thereafter, the laser beam 915 is guided to a predetermined place by the galvano operating device 913 and is condensed by the condenser lens 914. Then, the condensed laser beam 915 is irradiated to the metal powder 918 laminated on the powder sintered component 919.
 なお、レーザ光915の熱源は400ワットレーザ装置を想定している、電子ビーム装置を用いてもよい。また、ここでは、レーザ光915は、ビームスポット径0.5mm、パルス幅3.0ms、操作速度9mm/s、発振周波数90Hzであるものとした。
 金属粉末917,918には、粒子径が20μmから45μmの64チタン粒子が用いられる。64チタンは、質量分率で、アルミ(Al)が6%、バナジウム(V)が4%含まれている金属粉末である。
The heat source of the laser beam 915 may be an electron beam device assuming a 400 watt laser device. Here, the laser beam 915 has a beam spot diameter of 0.5 mm, a pulse width of 3.0 ms, an operation speed of 9 mm / s, and an oscillation frequency of 90 Hz.
For the metal powders 917 and 918, 64 titanium particles having a particle diameter of 20 μm to 45 μm are used. 64 titanium is a metal powder containing 6% aluminum (Al) and 4% vanadium (V) by mass fraction.
[効果]
 図12は本実施形態の効果を説明するものである。
 図12にあるグラフは、これまでの方法(比較例)でゴルフクラブヘッドの軽量化を行った場合における計算コストを示すものである。
 図12において、横軸は軽量化形状が算出するまでに必要な計算回数を示す。また、縦軸の右側が目的関数のひずみエネルギを示し、縦軸の左側が構造体の相対質量を示す。
 そして、図12のグラフは、軽量化計算の回数毎に、ひずみエネルギの変化1001及び相対質量の変化1002をそれぞれ示すものである。
[effect]
FIG. 12 explains the effect of this embodiment.
The graph in FIG. 12 shows the calculation cost when the golf club head is reduced in weight by the conventional method (comparative example).
In FIG. 12, the horizontal axis indicates the number of calculations required until the weight-reduced shape is calculated. The right side of the vertical axis shows the strain energy of the objective function, and the left side of the vertical axis shows the relative mass of the structure.
The graph of FIG. 12 shows a strain energy change 1001 and a relative mass change 1002 for each number of weight reduction calculations.
 図12に示すグラフから、ひずみエネルギの変化1001及び相対質量の変化1002とも、計算回数が12回以降でそれぞれの値が変化していない。これは、計算回数が12回の時点で、目標とする「ひずみエネルギが最小」及び「質量20%低減」が達成されていることを示す。ここで、「質量20%低減」は、本シミュレーションにおける軽量化条件である。 From the graph shown in FIG. 12, the values of the strain energy change 1001 and the relative mass change 1002 do not change after 12 times. This indicates that the target “minimum strain energy” and “mass 20% reduction” are achieved when the number of calculations is 12. Here, “mass 20% reduction” is a weight reduction condition in this simulation.
 しかしながら、計算回数が12回で得られる軽量化形状には、相対密度が1又は0ではない中間密度を持つ領域が含まれており、これまでの製作方法では製品を作るのが困難である。従って、これまでの製作方法では、計算回数が12回以降では、相対密度が0又は1になるように計算を行っている。つまり、相対密度が0の部分を大きくしたり、小さくしたりし、さらに、現在の状態が軽量化条件を満たすか否かを判定している。 However, the weight-reduced shape that can be obtained with 12 calculations includes a region having an intermediate density that is not 1 or 0, and it is difficult to produce a product by the conventional manufacturing methods. Therefore, in the conventional manufacturing method, the calculation is performed so that the relative density becomes 0 or 1 after the calculation is 12 times or more. That is, the portion where the relative density is 0 is increased or decreased, and it is further determined whether or not the current state satisfies the weight reduction condition.
 このように、これまでの手法では、中間密度がなくなるまで、さらに計算を繰り返し、おおよそ相対密度が0又は1の分布が得られるまで計算する必要がある。図12のシミュレーション条件では、55回の計算回数が必要である。
 図12のグラフから明らかなように、これまでの方法では計算回数のほとんどが、相対密度が0又は1になるように計算することに費やされている。具体的には、相対密度が0の部分の大きさを変える毎に、構造解析を行い、応力分布を求めることが行われている。
As described above, in the conventional methods, it is necessary to repeat the calculation until the intermediate density is eliminated, and to calculate until a distribution having a relative density of 0 or 1 is obtained. Under the simulation conditions of FIG. 12, 55 calculations are required.
As is apparent from the graph of FIG. 12, most of the number of calculations in the conventional method is spent on calculating so that the relative density is 0 or 1. Specifically, every time the size of the portion where the relative density is 0 is changed, structural analysis is performed to obtain a stress distribution.
 本実施形態では、相対密度に応じた多孔体を配置するため、図12の計算回数12回の時点で計算を完了することができる。
 本実施形態は、3Dプリンタ装置2の積層造形を活用し、中間密度の領域に多孔体を配置することで、軽量化を実現している。従って、図12に示すように、計算回数が12回で目的とする軽量化ゴルフクラブヘッドの相対密度分布を求めることができる。この相対密度に応じた多孔体データが3次元形状データに配置されればよい。これは、従来の約5分の1の計算回数である。このように、本実施形態に係る積層造形データ生成装置1は、これまでの技術と比較して、計算コストを大幅に軽減することができる。
In this embodiment, since the porous body according to the relative density is arranged, the calculation can be completed at the time when the number of calculations is 12 in FIG.
In the present embodiment, the weight reduction is realized by utilizing the layered modeling of the 3D printer apparatus 2 and disposing a porous body in an intermediate density region. Accordingly, as shown in FIG. 12, the relative density distribution of the target lightweight golf club head can be obtained with 12 calculations. The porous body data corresponding to the relative density may be arranged in the three-dimensional shape data. This is about 1/5 of the conventional number of calculations. As described above, the additive manufacturing data generation apparatus 1 according to the present embodiment can significantly reduce the calculation cost as compared with the conventional techniques.
[比較例との比較]
 図13に、これまでの手法(比較例)によって得られたゴルフクラブヘッドの相対密度分布を示す。ここで、これまでの手法では、図12において説明した、相対密度が0か1になるまで繰り返し計算することで肉抜き部分が得られる手法である。
 図13の相対密度分布は、相対密度を示す指標1111に従って表示されている。
 ここで、図13に示すゴルフクラブヘッドの相対密度分布1101と、図8に示す中間密度を含むゴルフクラブヘッドの相対密度分布601とが比較される。すると、荷重の伝達経路から外れている領域1102において、相対密度の分布が大きく異なっていることが分かる。図13に示す相対密度分布では、相対密度「1」の領域1121及び相対密度「0」の領域1122が明示され、肉抜きされる部分を示唆している。
[Comparison with comparative example]
FIG. 13 shows the relative density distribution of the golf club head obtained by the conventional method (comparative example). Here, in the method so far, as described in FIG. 12, it is a method in which the portion with the lightening is obtained by repeatedly calculating until the relative density becomes 0 or 1.
The relative density distribution in FIG. 13 is displayed according to an index 1111 indicating the relative density.
Here, the relative density distribution 1101 of the golf club head shown in FIG. 13 and the relative density distribution 601 of the golf club head including the intermediate density shown in FIG. 8 are compared. As a result, it can be seen that the distribution of the relative density is greatly different in the region 1102 outside the load transmission path. In the relative density distribution shown in FIG. 13, a region 1121 having a relative density “1” and a region 1122 having a relative density “0” are clearly shown, suggesting a portion to be thinned.
 また、図14及び図15は、これまでの手法(比較例)によって3Dプリンタ装置2によって作成された軽量化ゴルフヘッドを示す図である。
 図14は、図13で示される相対密度分布から、形状を抽出し、3Dプリンタ装置2によって軽量化ゴルフクラブヘッド形状1201を作成したものである。図14に示すように、例えば、符号1202,1203で示す部分は、エッジが滑らかでなく、凹凸が存在している。また、符号1204で示す部分は部材が欠損している。
 これは、構造解析で使用された、要素より大きいメッシュを基に、構造体が造形されているためである。
FIGS. 14 and 15 are views showing a weight-reduced golf head created by the 3D printer apparatus 2 by the conventional method (comparative example).
FIG. 14 shows the shape extracted from the relative density distribution shown in FIG. 13 and the weight-reduced golf club head shape 1201 created by the 3D printer device 2. As shown in FIG. 14, for example, the portions indicated by reference numerals 1202 and 1203 have uneven edges and have irregularities. In addition, a member indicated by reference numeral 1204 is missing.
This is because the structure is formed based on a mesh larger than the elements used in the structural analysis.
 このため、これまでの手法ではエッジのスムージング処理が必要となる。スムージング処理は、しばしば手作業で行われる。図14の符号1202,1203のような凹凸が存在する箇所は、スムージング処理によって、図15のような滑らかなエッジ1302,1303となる。また、図14において、部材が欠損している箇所である符号1204のような箇所は、利用者が手作業で部材を補完することで、符号1304に示すように部材が存在するようになる。このようなスムージング処理によって、滑らかなエッジを有する構造体1301が得られる。そかし、このような手作業によるスムージング処理が行われたものが、必要な強度を維持しているか否か分からないので、もう一度、手作業による3次元形状データの修正をし、構造解析を行う必要がある。 For this reason, the conventional methods require edge smoothing. The smoothing process is often performed manually. The portions where the irregularities such as reference numerals 1202 and 1203 in FIG. 14 exist become smooth edges 1302 and 1303 as shown in FIG. 15 by the smoothing process. Further, in FIG. 14, a part such as reference numeral 1204 where the member is missing becomes a member as indicated by reference numeral 1304 when the user manually supplements the member. By such a smoothing process, a structure 1301 having a smooth edge is obtained. However, since it is not known whether the necessary strength has been maintained after such a manual smoothing process has been performed, the 3D shape data is manually corrected once again to perform structural analysis. There is a need to do.
 本実施形態では、構造解析のメッシュとは無関係の、3次元形状データの要素を基に生成された多孔体データを、3次元形状データに配置している。このため、構造解析の際のメッシュに由来する凹凸や、区切れた部分が生じることがない。このため、本実施形態では、エッジのスムージング処理が不要となり、構造体の造形速度を向上させることができる。 In this embodiment, the porous body data generated based on the elements of the three-dimensional shape data that is unrelated to the mesh for structural analysis is arranged in the three-dimensional shape data. For this reason, the unevenness | corrugation derived from the mesh in the case of a structural analysis, or the part divided | segmented does not arise. For this reason, in this embodiment, the smoothing process of an edge becomes unnecessary and it can improve the modeling speed of a structure.
 また、これまでの技術は、相対密度が0か1になるまで計算を繰り返し行い、相対密度が0である領域を肉抜きすることを行う。これに対して、本実施形態に係る積層造形データ生成装置1は、多孔体配置処理部104が、相対密度(特徴量)に基づき、この相対密度に対応した多孔体データを3次元形状データに配置することで軽量化を行う。このようにすることにより、相対密度が0か1になるまで繰り返し計算をする必要がなくなり、計算コストを低減できる。 Also, in the conventional technology, the calculation is repeated until the relative density becomes 0 or 1, and the region where the relative density is 0 is extracted. In contrast, in the additive manufacturing data generation apparatus 1 according to the present embodiment, the porous body arrangement processing unit 104 converts the porous body data corresponding to the relative density into three-dimensional shape data based on the relative density (feature amount). Lightening by placing. By doing in this way, it is not necessary to repeat the calculation until the relative density becomes 0 or 1, and the calculation cost can be reduced.
 そして、本実施形態では、応力の状態を基に、物質の密度分布が算出され、この密度分布に対応した多孔体データが3次元形状データに配置されている。このようにすることで力が加わるような物体に対し、本実施形態の積層造形システムZを適用することができる。
 また、密度分布として、相対密度分布が用いられることにより、密度が異なる構造体に対しても多孔体の形状を統一させて扱うことができる。
In this embodiment, the density distribution of the substance is calculated based on the state of stress, and the porous body data corresponding to this density distribution is arranged in the three-dimensional shape data. The additive manufacturing system Z of the present embodiment can be applied to an object to which force is applied in this way.
In addition, since the relative density distribution is used as the density distribution, it is possible to handle the structures having different densities in a unified porous body shape.
 なお、これまでの手法で製作された構造物は、孔の大きさが軽量化対象領域において、すべて同じ大きさとなる。これに対して、本実施形態の手法で製作された構造物は、相対密度に応じて孔の大きさが異なる多孔体が配置されるため、場所毎に異なる大きさの孔を有する。 It should be noted that the structures manufactured by the conventional methods all have the same size in the area to be reduced in weight. On the other hand, the structure manufactured by the method of the present embodiment has pores having different sizes for each place because porous bodies having different pore sizes are arranged according to the relative density.
 なお、本実施形態では、応力分布に基づく相対密度に基づいて、多孔体が配置されているが、これに限らず、熱分布や、電流分布といった物性特性に基づいた物性情報の密度に基づいて、多孔体が配置されてもよい。
 さらに、本実施形態では、軽量化対象としてゴルフクラブヘッドを例として挙げているが、これに限らず、エンジンのピストンや、シャフトといった機械部品等、軽量化を図ることができるものであればよい。本実施形態に係る軽量化変換処理が適用される技術分野としては、自動車や、電力、航空宇宙分野が考えられる。
In this embodiment, the porous body is arranged based on the relative density based on the stress distribution, but not limited to this, based on the density of physical property information based on physical property characteristics such as heat distribution and current distribution. A porous body may be disposed.
Further, in the present embodiment, the golf club head is exemplified as an object to be reduced in weight. However, the present invention is not limited to this, and any mechanical part such as an engine piston or a shaft that can reduce the weight may be used. . As a technical field to which the weight reduction conversion processing according to the present embodiment is applied, the automobile, electric power, and aerospace fields can be considered.
 また、本実施形態では、配置される多孔体の決定が相対密度に基づいて行われているが、相対密度ではなく、密度を基に多孔体が決定されてもよい。また、応力値等、密度でなくてもよい。 In the present embodiment, the porous body to be arranged is determined based on the relative density, but the porous body may be determined based on the density instead of the relative density. Further, the density may not be a stress value or the like.
 本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。また、本実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to having all the configurations described. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of the present embodiment.
 また、前記した各構成、機能、各部101~104、各DB111~115等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、図1に示すように、前記した各構成、機能等は、CPU120等のプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、HD(Hard Disk)に格納すること以外に、メモリや、SSD(Solid State Drive)等の記録装置、又は、IC(Integrated Circuit)カードや、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。
 また、各実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。
Each of the above-described configurations, functions, units 101 to 104, DBs 111 to 115, etc. may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Further, as shown in FIG. 1, the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by a processor such as the CPU 120. Information such as programs, tables, and files for realizing each function is stored in an HD (Hard Disk), a memory, a recording device such as an SSD (Solid State Drive), an IC (Integrated Circuit) card, It can be stored in a recording medium such as an SD (Secure Digital) card or a DVD (Digital Versatile Disc).
In each embodiment, control lines and information lines are those that are considered necessary for explanation, and not all control lines and information lines are necessarily shown on the product. In practice, it can be considered that almost all configurations are connected to each other.
 1   積層造形データ生成装置
 2   3Dプリンタ装置(造形部)
 3   入力装置
 101 処理部
 102 構造解析処理部(物性情報推定部、特徴量分布算出部)
 103 軽量化処理部
 104 多孔体配置処理部(多孔体配置部)
 111 多孔体DB(記憶部)
 112 形状DB
 113 応力分布DB
 114 密度分布DB
 115 軽量化形状DB
 202 多孔体
 501 応力分布
 601 相対密度分布
 801 軽量化ゴルフクラブヘッド(製造物)
DESCRIPTION OF SYMBOLS 1 Layered modeling data production | generation apparatus 2 3D printer apparatus (modeling part)
3 Input device 101 Processing unit 102 Structure analysis processing unit (physical property information estimation unit, feature amount distribution calculation unit)
103 Weight reduction processing part 104 Porous body arrangement | positioning processing part (porous body arrangement | positioning part)
111 Porous DB (storage unit)
112 Shape DB
113 Stress distribution DB
114 Density distribution DB
115 Lightweight shape DB
202 Porous body 501 Stress distribution 601 Relative density distribution 801 Light weight golf club head (product)

Claims (10)

  1.  積層造形による造形対象となっている構造物における特徴量と、空隙を有する多孔体における前記空隙の度合いとが対応付けられた特徴量-多孔体情報が格納されている記憶部と、
     前記構造物における物性に関する情報を推定する物性情報推定部と、
     推定された前記物性に関する情報を基に、前記構造物における特徴量の分布である特徴量分布を算出する特徴量分布算出部と、
     前記特徴量-多孔体情報を基に、算出された前記特徴量の分布に対応する前記多孔体の空隙度を決定し、決定した前記多孔体のデータで前記構造物のデータを置換する多孔体配置部と、
     を有することを特徴とする積層造形データ生成装置。
    A storage unit storing feature quantity-porous body information in which a feature quantity in a structure to be modeled by additive manufacturing is associated with a degree of the void in a porous body having a void;
    A physical property information estimation unit for estimating information related to physical properties in the structure;
    A feature amount distribution calculating unit that calculates a feature amount distribution that is a distribution of the feature amount in the structure based on the information on the estimated physical property;
    Based on the feature quantity-porous body information, the porosity of the porous body corresponding to the calculated distribution of the feature quantity is determined, and the data of the structure is replaced with the determined data of the porous body A placement section;
    An additive manufacturing data generation apparatus characterized by comprising:
  2.  前記物性に関する情報とは、応力の状態であり、
     前記特徴量の分布は、物質の密度分布である
     ことを特徴とする請求項1に記載の積層造形データ生成装置。
    Information on the physical properties is a state of stress,
    The layered modeling data generation apparatus according to claim 1, wherein the distribution of the feature amount is a density distribution of a substance.
  3.  前記物質の密度分布は、前記物質の材料本来の密度に対する相対的な密度の分布である相対密度分布である
     ことを特徴とする請求項2に記載の積層造形データ生成装置。
    The additive manufacturing data generation apparatus according to claim 2, wherein the density distribution of the substance is a relative density distribution that is a relative density distribution with respect to an original density of the material of the substance.
  4.  前記多孔体における空隙の度合いとは、前記多孔体における孔の大きさである
     ことを特徴とする請求項1に記載の積層造形データ生成装置。
    2. The additive manufacturing data generation apparatus according to claim 1, wherein the degree of voids in the porous body is a size of a hole in the porous body.
  5.  前記孔は円形の孔である
     ことを特徴とする請求項4に記載の積層造形データ生成装置。
    The layered modeling data generation apparatus according to claim 4, wherein the hole is a circular hole.
  6.  前記孔は四角形の孔である
     ことを特等とする請求項4に記載の積層造形データ生成装置。
    The additive manufacturing data generation apparatus according to claim 4, wherein the hole is a square hole.
  7.  前記特徴量-多孔体情報は、前記特徴量を独立変数とし、前記多孔体における孔の大きさを従属変数とする関数である
     ことを特徴とする請求項4に記載の積層造形データ生成装置。
    5. The additive manufacturing data generation apparatus according to claim 4, wherein the feature quantity-porous body information is a function having the feature quantity as an independent variable and a pore size in the porous body as a dependent variable.
  8.  前記特徴量-多孔体情報では、前記特徴量を所定のグループに分け、各グループにおいて前記多孔体における前記孔の大きさが決まっている
     ことを特徴とする請求項4に記載の積層造形データ生成装置。
    5. The additive manufacturing data generation according to claim 4, wherein in the feature quantity-porous body information, the feature quantity is divided into predetermined groups, and the size of the hole in the porous body is determined in each group. apparatus.
  9.  積層造形による造形対象となっている構造物における特徴量と、空隙を有する多孔体における前記空隙の度合いとが対応付けられた特徴量-多孔体情報が格納されている記憶部と、
     前記構造物における物性に関する情報を推定する物性情報推定部と、
     推定された前記物性に関する情報を基に、前記構造物における特徴量の分布である特徴量分布を算出する特徴量分布算出部と、
     前記特徴量-多孔体情報を基に、算出された前記特徴量の分布に対応する前記多孔体の空隙度を決定し、決定した前記多孔体のデータで前記構造物のデータを置換する多孔体配置部と、
     前記多孔体のデータで前記構造物のデータを置換したデータを基に、前記積層造形によって前記構造物を造形する造形部と、
     を有することを特徴とする積層造形システム。
    A storage unit storing feature quantity-porous body information in which a feature quantity in a structure to be modeled by additive manufacturing is associated with a degree of the void in a porous body having a void;
    A physical property information estimation unit for estimating information related to physical properties in the structure;
    A feature amount distribution calculating unit that calculates a feature amount distribution that is a distribution of the feature amount in the structure based on the information on the estimated physical property;
    Based on the feature quantity-porous body information, the porosity of the porous body corresponding to the calculated distribution of the feature quantity is determined, and the data of the structure is replaced with the determined data of the porous body A placement section;
    Based on data obtained by replacing the data of the structure with the data of the porous body, a modeling unit that models the structure by the additive manufacturing, and
    An additive manufacturing system characterized by comprising:
  10.  積層造形による造形対象となっている構造物における特徴量と、空隙を有する多孔体における前記空隙の度合いとが対応付けられた特徴量-多孔体情報が格納されている記憶部と、
     前記構造物における物性に関する情報を推定する物性情報推定部と、
     推定された前記物性に関する情報を基に、前記構造物における特徴量の分布である特徴量分布を算出する特徴量分布算出部と、
     前記特徴量-多孔体情報を基に、算出された前記特徴量の分布に対応する前記多孔体の空隙度を決定し、決定した前記多孔体のデータで前記構造物のデータを置換する多孔体配置部と、
     前記多孔体のデータで前記構造物のデータを置換したデータを基に、前記積層造形によって前記構造物を造形する造形部と、
     を有する積層造形システムによって造形された製造物。
    A storage unit storing feature quantity-porous body information in which a feature quantity in a structure to be modeled by additive manufacturing is associated with a degree of the void in a porous body having a void;
    A physical property information estimation unit for estimating information related to physical properties in the structure;
    A feature amount distribution calculating unit that calculates a feature amount distribution that is a distribution of the feature amount in the structure based on the information on the estimated physical property;
    Based on the feature quantity-porous body information, the porosity of the porous body corresponding to the calculated distribution of the feature quantity is determined, and the data of the structure is replaced with the determined data of the porous body A placement section;
    Based on data obtained by replacing the data of the structure with the data of the porous body, a modeling unit that models the structure by the additive manufacturing, and
    A product formed by the additive manufacturing system.
PCT/JP2017/009534 2016-05-16 2017-03-09 Additive manufacturing data generating device, additive manufacturing system, and product WO2017199551A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-098190 2016-05-16
JP2016098190 2016-05-16

Publications (1)

Publication Number Publication Date
WO2017199551A1 true WO2017199551A1 (en) 2017-11-23

Family

ID=60325179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009534 WO2017199551A1 (en) 2016-05-16 2017-03-09 Additive manufacturing data generating device, additive manufacturing system, and product

Country Status (1)

Country Link
WO (1) WO2017199551A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109145409A (en) * 2018-08-01 2019-01-04 浙江大学 A kind of optimization method of implicit surface porous structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0999472A (en) * 1995-10-09 1997-04-15 Toray Ind Inc Product planning support apparatus, planning method and production method
JP2005118418A (en) * 2003-10-20 2005-05-12 Nakajima Hideo Golf club head
JP2006350720A (en) * 2005-06-16 2006-12-28 Ntn Corp Shape design method for bracket of automatic tensioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0999472A (en) * 1995-10-09 1997-04-15 Toray Ind Inc Product planning support apparatus, planning method and production method
JP2005118418A (en) * 2003-10-20 2005-05-12 Nakajima Hideo Golf club head
JP2006350720A (en) * 2005-06-16 2006-12-28 Ntn Corp Shape design method for bracket of automatic tensioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109145409A (en) * 2018-08-01 2019-01-04 浙江大学 A kind of optimization method of implicit surface porous structure
CN109145409B (en) * 2018-08-01 2020-06-26 浙江大学 Optimization method of implicit curved surface porous structure

Similar Documents

Publication Publication Date Title
EP3877890A1 (en) Macrostructure topology generation with physical simulation for computer aided design and manufacturing
JP5383687B2 (en) Method and apparatus for automatically generating a support for an object manufactured by a rapid prototype manufacturing method
JP6643289B2 (en) Porous structure and method for producing the same
US20220326683A1 (en) Method and system to generate three-dimensional meta-structure model of a workpiece
US11684478B2 (en) High fatigue strength porous structure
Ibhadode et al. Topology optimization for metal additive manufacturing: current trends, challenges, and future outlook
JP2020533707A (en) Support structure optimization for additional manufacturing
US11914929B2 (en) Multi-body component optimization
US20180079138A1 (en) Three-dimensional object-manufacturing apparatus, three-dimensional object-manufacturing method, and program
Jain et al. Tailoring material properties in layered manufacturing
CN112512729B (en) Method for determining a build specification for an additive manufacturing method
IL288076A (en) Method for the lightweighting and/or designing of an additively manufactured article
WO2017199551A1 (en) Additive manufacturing data generating device, additive manufacturing system, and product
Ullah et al. A system for designing and 3D printing of porous structures
JP2017211977A (en) Data creation device, three-dimensional lamination system, design method, and program
Graziosi et al. Designing for metal additive manufacturing: a case study in the professional sports equipment field
JP6338305B1 (en) Support member, modeling model generation device, control device, and modeling method of modeling object
Feng et al. Curved-layered material extrusion modeling for thin-walled parts by a 5-axis machine
JP2017519264A (en) Method and apparatus for generating a numerical representation of a three-dimensional object suitable for use in the production of a three-dimensional object by stereolithography
WO2015082023A1 (en) Method for manufacturing an implantable bone augment
CN112926220B (en) Structural member preparation method based on modal frequency constraint
CN112818581B (en) Topological optimization design method of main frame of wind generating set
JP2017210650A (en) Three-dimensional molding support apparatus and three-dimensional molding support method
JP6824428B2 (en) Input data creation device for metal powder additive manufacturing
JP6760860B2 (en) Laminated molding equipment and laminated molding method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798986

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP