WO2017199499A1 - Thermoplastic resin composition and curable composition - Google Patents
Thermoplastic resin composition and curable composition Download PDFInfo
- Publication number
- WO2017199499A1 WO2017199499A1 PCT/JP2017/006215 JP2017006215W WO2017199499A1 WO 2017199499 A1 WO2017199499 A1 WO 2017199499A1 JP 2017006215 W JP2017006215 W JP 2017006215W WO 2017199499 A1 WO2017199499 A1 WO 2017199499A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanodiamond particles
- particles
- nanodiamond
- resin
- resin composition
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
Definitions
- the present invention relates to a thermoplastic resin composition and a curable composition for obtaining a thermoplastic resin composition.
- this application claims priority based on Japanese Patent Application No. 2016-100304 dated May 19, 2016, and uses all the contents described in the application.
- thermoplastic resin materials having high heat resistance such as engineering plastics and super engineering plastics are used as molding materials in various technical fields.
- a hindered phenol compound may be used as an additive to the resin material.
- radicals may be generated to induce a decomposition reaction of the resin component.
- hindered phenolic compounds capture or stabilize radicals to cause such decomposition reactions. It is expected and used for the function to suppress.
- Such hindered phenol compounds are described, for example, in Patent Documents 1 and 2 below.
- the radical scavenger which is a hindered phenol compound or other organic compound, often decomposes in a high temperature environment where a high heat resistant resin material such as engineering plastic is used. Therefore, the radical scavenger which is a hindered phenol compound or other organic compound often does not function as an effective additive for improving the heat resistance of the high heat resistant resin material.
- the present invention has been conceived under the circumstances as described above, and provides a thermoplastic resin composition suitable for realizing high heat resistance, and such a thermoplastic resin composition. It aims at providing the curable composition suitable for obtaining a thing.
- thermoplastic resin composition includes a polyamideimide resin and nanodiamond particles.
- the nanodiamond particles include nanodiamond primary particles and / or nanodiamond secondary particles.
- the nanodiamond primary particles are nanodiamonds having a particle diameter of 10 nm or less.
- This thermoplastic resin composition contains a polyamide-imide resin (PAI resin) as a resin component as described above.
- PAI resin has both an amide bond and an imide bond, and the amide bond incorporated in the resin structure brings thermoformability or processability to the resin, and the imide bond incorporated in the resin structure is heat resistant to the resin. Bring.
- This resin composition containing such a PAI resin as a resin component is suitable for realizing high heat resistance as a thermoplastic resin material.
- imide bonds also provide mechanical strength in addition to heat resistance
- amide bonds also provide toughness in addition to processability in the resin.
- the resin composition can also be used as a high-functional thermoplastic resin material called a super engineering plastic.
- thermoplastic resin composition includes nanodiamond particles.
- nanodiamond particles have the effect of further improving the heat resistance of PAI resin having high heat resistance. Specifically, as shown in Examples and Comparative Examples described later, the thermal decomposition of PAI resin is suppressed. The inventors have found that the effect is on nanodiamond particles.
- the nanodiamond particles can exhibit heat resistance without being decomposed even in a high temperature environment exceeding 400 ° C., for example, and thus form at least one of the surfaces of the nanodiamond primary particles included in the nanodiamond particles.
- sp 2 structure carbon is generated in the part, that is, at least the ⁇ 111 ⁇ plane by spontaneous transition from the sp 3 structure carbon forming the diamond body.
- the presence of this sp 2 structure carbon on the nanodiamond surface can contribute to the capture and stabilization of radicals generated in the resin material in a high temperature environment, and therefore, thermal decomposition of the PAI resin due to the action of radicals is suppressed. It is considered a thing.
- thermoplastic resin composition is suitable for realizing high heat resistance.
- the PAI resin content of such a thermoplastic resin composition is, for example, 99.99% by mass or less, and preferably 80% by mass or more, more preferably 90% by mass or more, more preferably 92% by mass or more. More preferably, it is 94 mass% or more, More preferably, it is 95 mass% or more.
- the thermoplastic resin composition has a surface resistivity of 1 ⁇ 10 12 ⁇ / ⁇ or more. According to such a configuration, the present thermoplastic resin composition can be used as a material having high insulation in addition to high heat resistance.
- a curable composition includes a polyamideimide resin, nanodiamond particles, and a solvent.
- the solvent is preferably a polar organic solvent. More preferably, the solvent is methanol, ethanol, isopropanol, isobutyl alcohol, ethylene glycol, propylene glycol, glycerin, 2-methoxyethanol, dimethyl sulfoxide, N-methyl-2-pyrrolidone, acetonitrile, N, N-dimethylformamide, N , N-dimethylacetamide, N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, hexamethylphosphoramide, dimethylsulfone, ⁇ -butyrolactone, ⁇ -acetyl- ⁇ -butyrolactone, 1 , 3-dimethyl-3,4,5,6-tetrahydro-2 (1H)
- the 10% pyrolysis temperature of the nanodiamond particles is preferably 400 ° C. or higher, more preferably 420 ° C. or higher, more preferably 450 ° C. or higher, more preferably 500 ° C. or higher, More preferably, it is 520 ° C. or higher.
- Such a configuration is suitable for realizing high heat resistance in the thermoplastic resin composition.
- the ratio of the content of nanodiamond particles to the total content of polyamideimide resin and nanodiamond particles is: Preferably it is 0.01 mass% or more, More preferably, it is 0.1 mass% or more, More preferably, it is 1 mass% or more.
- the proportion is preferably 20% by mass or less, more preferably 10% by mass or less, more preferably 8% by mass or less, and more preferably. Is 6% by mass or less.
- the nanodiamond particles are preferably detonated nanodiamond particles. According to the detonation method, it is possible to appropriately generate nanodiamond having a primary particle size of 10 nm or less.
- thermogravimetry about the nano diamond particle used in Example 1 and 2.
- FIG. 1 is an enlarged schematic view of a resin composition 10 which is a thermoplastic resin composition according to an embodiment of the present invention.
- the resin composition 10 contains at least a PAI resin 11 that is a polyamide-imide resin and ND particles 12 that are nanodiamond particles.
- the resin composition 10 can take the form of a resin molding raw material, for example, a pellet, a form that is softened or melted from the form of the resin molding raw material, and a resin molded body formed through a softened / molten state. .
- the PAI resin 11 contained in the resin composition 10 is a main material for developing functions such as heat resistance in the resin composition 10, and has a glass transition temperature of 250 ° C. or higher, for example.
- the PAI resin 11 can be synthesized by, for example, an isocyanate method generated from an acid component and an isocyanate component, or an acid chloride method generated from an acid chloride component and an amine component.
- the acid component contains, for example, trimellitic anhydride as an essential component, and may contain other acidic components other than trimellitic anhydride.
- other acidic components include tetracarboxylic acid and its anhydride, aliphatic dicarboxylic acid, aromatic dicarboxylic acid, and trifunctional carboxylic acid.
- the tetracarboxylic acid include pyromellitic acid, biphenyltetracarboxylic acid, biphenylsulfonetetracarboxylic acid, benzophenonetetracarboxylic acid, biphenylethertetracarboxylic acid, and propylene glycol bistrimellitate.
- Aliphatic dicarboxylic acids include, for example, oxalic acid, adipic acid, malonic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, dicarboxypolybutadiene, dicarboxypoly (acrylonitrile-butadiene), and dicarboxypoly (styrene-butadiene) Is mentioned.
- aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, and naphthalenedicarboxylic acid.
- the trifunctional carboxylic acid include trimesic acid and cyclohexanetricarboxylic acid.
- Examples of the isocyanate component used in the above isocyanate method include aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate.
- aromatic diisocyanates include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-diphenyl ether diisocyanate, and 4,4′-diphenyl sulfone.
- Examples include diisocyanates, xylylene diisocyanates, and tolidine diisocyanates.
- Examples of the aliphatic diisocyanate include ethylene diisocyanate, propylene diisocyanate, and hexamethylene diisocyanate.
- Examples of the alicyclic diisocyanate include 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, isophorone diisocyanate, and 4,4′-dicyclohexylmethane diisocyanate.
- Examples of the acid chloride component used in the acid chloride method include those having a structure in which the carboxylic acid moiety as a partial structure in the acid component described above with respect to the isocyanate method is replaced by carboxylic acid chloride. Moreover, as an amine component used in said acid chloride method, what has the structure which the site
- Solvents that can be used in the synthesis of the polyamideimide resin include, for example, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, cyclohexanone, methyl ethyl ketone, ⁇ -Butyrolactone, xylene, and toluene.
- the content of the PAI resin 11 in the resin composition 10 is, for example, 80 to 99.99% by mass, preferably 90 to 99.99% by mass, more preferably 92 to 99.99% by mass, and more preferably 94 to It is 99.99% by mass, and more preferably 95 to 99.99% by mass.
- the ND particles 12 contained in the resin composition 10 are components for exhibiting a function as a heat stabilizer or a thermal decomposition inhibitor in the resin composition 10, and are respectively nanodiamond primary particles or nanodiamond secondary particles. Particles.
- the nanodiamond primary particles are nanodiamonds having a particle diameter of 10 nm or less.
- the particle diameter D50 (median diameter) of the ND particles 12 in the resin composition 10 is a viewpoint that the surface area per unit mass of the ND particles 12 is sufficiently ensured and the function as a thermal decomposition inhibitor is efficiently exhibited. Is preferably 500 nm or less, more preferably 300 nm or less, more preferably 100 nm or less, and more preferably 80 nm or less.
- the particle size D50 of the ND particle 12 can be measured by, for example, a dynamic light scattering method.
- the ND particles 12 contained in the resin composition 10 are, for example, detonation nanodiamond particles (nanodiamond particles generated by detonation).
- the detonation nanodiamond particles can be obtained, for example, as follows.
- nano-diamonds are generated by the action of the pressure and energy of the shock wave generated by the explosion, using carbon that is liberated due to partial incomplete combustion of the explosive used.
- a mixture of trinitrotoluene (TNT) and cyclotrimethylenetrinitroamine, ie hexogen (RDX) can be used.
- the nanodiamond crude product obtained by the detonation method is likely to contain a metal oxide. This metal oxide is an oxide such as Fe, Co, or Ni derived from a container or the like used in the detonation method.
- the metal oxide can be dissolved and removed from the nanodiamond crude product (acid treatment).
- the strong acid used for this acid treatment is preferably a mineral acid, and examples thereof include hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, and aqua regia.
- the nano-diamond crude product obtained by the detonation method contains graphite. This graphite is derived from carbon that did not form nanodiamond crystals among the carbon released by partial incomplete combustion of the explosive used.
- graphite can be removed from the nanodiamond crude product (oxidation treatment) by applying a predetermined oxidizing agent in an aqueous solvent, for example.
- oxidizing agent used in the oxidation treatment include chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid, and salts thereof, and hydrogen peroxide.
- Detonation nanodiamonds are aggregated by a very strong interaction between primary particles even after purification through acid treatment and oxidation treatment as described above. It takes the form of adhering bodies (secondary particles).
- nanodiamonds having a particle size of single-digit nanometers can be obtained.
- a solvent in which nanodiamond can exhibit solubility is preferable, and examples thereof include water, methanol, ethanol, ethylene glycol, and N-methyl-2-pyrrolidone.
- the crushing treatment can be performed using, for example, a high shear mixer, a high shear mixer, a homomixer, a ball mill, a bead mill, a high-pressure homogenizer, an ultrasonic homogenizer, or a colloid mill.
- a nanodiamond dispersion liquid having a predetermined concentration can be obtained by reducing the water content of the suspension in which nanodiamonds are dispersed, as necessary.
- the nanodiamond powder can be obtained by removing moisture from the suspension in which the nanodiamond is dispersed, if necessary.
- the 10% pyrolysis temperature of the nanodiamond particles or ND particles 12 thus obtained is preferably 400 ° C. or higher, more preferably 420 ° C. or higher, more preferably 450 ° C. or higher, more preferably 500 ° C. or higher, more preferably Is 520 ° C. or higher.
- the 10% pyrolysis temperature is a weight reduction from the initial weight (reference weight) when measuring the weight loss while raising the temperature of the object to be measured at 20 ° C./min. This is the temperature at which the rate reaches 10%, and can be measured, for example, by the method described later with respect to the examples.
- the content of the ND particles 12 is preferably 0.01 to 20% by mass with respect to the total amount of the PAI resin 11 and the ND particles 12 in the resin composition 10. As the content of the ND particles 12 increases, the thermal decomposition inhibiting effect due to the presence of the ND particles 12 tends to increase. However, the lower limit of the content of the ND particles 12 is more preferably 0.1% by mass, More preferably, it is 1 mass%. From the viewpoint of appropriately expressing the resin characteristics of the PAI resin 11 in the resin composition 10, the content of the ND particles 12 may be preferably 20% by mass or less.
- the upper limit of the content of the ND particles 12 is more preferably 10% by mass, More preferably, it is 8 mass%, More preferably, it is 6 mass%.
- Resin composition 10 may contain other components in addition to PAI resin 11 and ND particles 12.
- other components include flame retardants, glass fibers, carbon fibers, antistatic agents, lubricants, and colorants.
- Resin composition 10 includes polyamideimide resin (PAI resin) 11 as a resin component as described above.
- the PAI resin 11 has both an amide bond and an imide bond.
- the amide bond incorporated in the resin structure brings thermoformability or processability to the resin, and the imide bond incorporated in the resin structure is heat resistant to the resin. Bring sex.
- the resin composition 10 containing such a PAI resin 11 as a resin component is suitable for realizing high heat resistance as a thermoplastic resin material.
- the imide bond brings mechanical strength to the resin in addition to heat resistance, and the amide bond brings toughness to the resin in addition to processability.
- Such PAI resin 11 is used as a resin component.
- the resin composition 10 to be included can also be used as a high-functional thermoplastic resin material called a super engineering plastic.
- the resin composition 10 includes nanodiamond particles (ND particles) 12 as described above.
- the ND particles 12 have the effect of further improving the heat resistance of the PAI resin 11 having high heat resistance.
- the PAI resin 11 is thermally decomposed.
- the present inventors have found that the ND particles 12 have an inhibitory effect.
- the ND particles 12 can exhibit heat resistance even in a high temperature environment exceeding 400 ° C., for example.
- the ND particles 12 form at least a part of the surface of the nanodiamond primary particles that form the ND particles 12 or are included in the ND particles 12, that is, at least It is assumed that sp 2 structure carbon is generated on the ⁇ 111 ⁇ plane by spontaneous transition from the sp 3 structure carbon forming the diamond body.
- the presence of this sp 2 structure carbon on the surface of the nanodiamond can contribute to the capture and stabilization of radicals generated in the resin material in a high temperature environment, and therefore, thermal decomposition of the PAI resin 11 due to the action of radicals is suppressed. It is thought that.
- the resin composition 10 of the present embodiment is suitable for realizing high heat resistance.
- the resin composition 10 can be used, for example, as a resin material for forming a sliding material for an engine bearing such as an automobile.
- the surface resistivity of the resin composition 10 is preferably 1 ⁇ 10 12 ⁇ / ⁇ or more, more preferably 5 ⁇ 10 12 ⁇ / ⁇ or more, and more preferably 1 ⁇ 10 13 ⁇ / ⁇ or more. According to such a configuration, the resin composition 10 can be used as a material having high insulation in addition to high heat resistance.
- the resin composition 10 can be produced, for example, by applying a curable composition containing the above-described PAI resin 11, the above-described ND particles 12, and a solvent to a substrate and then drying the substrate. is there.
- a solvent contained in the curable composition for example, a polar organic solvent in which the PAI resin 11 exhibits solubility and the ND particles 12 exhibit solubility is used in the present embodiment.
- polar organic solvents examples include methanol, ethanol, isopropanol, isobutyl alcohol, ethylene glycol, propylene glycol, glycerin, 2-methoxyethanol, dimethyl sulfoxide, N-methyl-2-pyrrolidone, acetonitrile, N, N- Dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, hexamethylphosphoramide, dimethylsulfone, ⁇ -butyrolactone, ⁇ -acetyl- ⁇ -Butyrolactone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, 1,3-dimethyl-2-imidazolidinone, tetramethylurea, cyclohexanone, tetrahydrofurfuryl acetate, and And propylene
- the solvent one type of solvent may be used, or two or more types of solvents may be used. From the viewpoint that both the PAI resin 11 and the ND particles 12 have relatively high solubility, N-methyl-2-pyrrolidone is preferable as the solvent.
- preparation of said curable composition can be performed by mixing the solution containing PAI resin 11 and the solution containing ND particle
- the solution containing the PAI resin 11 for example, an organic solvent solution containing the PAI resin 11 synthesized by the above-described isocyanate method or acid chloride method, or a solvent component replacement operation by solvent replacement of the solution is used.
- the passed organic solvent solution can be used.
- an organic solvent solution obtained by subjecting the aqueous dispersion in which the ND particles 12 are dispersed to a solvent replacement operation from water to an organic solvent can be used.
- the content of the PAI resin 11 is, for example, 5 to 20% by mass, and the content of the ND particles 12 is The total amount of ND particles 12 is preferably 0.01 to 20% by mass.
- the thermal decomposition inhibiting effect due to the presence of the ND particles 12 tends to increase in the resin composition 10 to be formed, and the lower limit of the content of the ND particles 12 is, More preferably, it is 0.1 mass%, More preferably, it is 1 mass%.
- the content of the ND particles 12 may be preferably 20% by mass or less.
- the upper limit of the content of the ND particles 12 is more preferably 10 It is 8 mass%, More preferably, it is 8 mass%, More preferably, it is 6 mass%.
- a nanodiamond aqueous dispersion (trade name “Vox D”, solid content or nanodiamond concentration is 5 mass%, aqueous solvent, particle size D50 is 5 nm, zeta potential at pH 9 is ⁇ 55 mV, manufactured by Carbodeon. ) was replaced with N-methyl-2-pyrrolidone (NMP, boiling point 202 ° C.). Specifically, 60 g of NMP (concentration 99.5% by mass, manufactured by Kishida Chemical Co., Ltd.) is added to 2.3 g of the nanodiamond aqueous dispersion and mixed, and the mixture is heated and decompressed using an evaporator. Placed under conditions.
- NMP N-methyl-2-pyrrolidone
- the mixture is heated with a stirrer under a reduced pressure of 1.5 kPa from an initial temperature of 45 ° C. to 80 ° C. over 25 minutes, and then under reduced pressure of 1.5 kPa. At 80 ° C. for about 20 minutes.
- an NMP dispersion of nanodiamond particles was prepared.
- the nanodiamond NMP dispersion had a nanodiamond solid content concentration of 2.0% by mass.
- the particle size of the nanodiamond particles contained in this dispersion was measured by a dynamic light scattering method using an apparatus (trade name “Zetasizer Nano ZS”) manufactured by Spectris Co., Ltd. ) Was 12.4 nm.
- the nanodiamond NMP dispersion prepared as described above and a polyamideimide resin-containing solution (trade name “Bilomax® HR-11NN”, solid content concentration or polyamideimide resin concentration is 15% by mass, NMP solvent, manufactured by Toyobo Co., Ltd.).
- a polyamideimide resin-containing solution trade name “Bilomax® HR-11NN”, solid content concentration or polyamideimide resin concentration is 15% by mass, NMP solvent, manufactured by Toyobo Co., Ltd.
- the above-mentioned nanodiamond NMP dispersion is added thereto by a dropping operation, so that the nanodiamond content with respect to 95 parts by mass of the polyamideimide resin is 5 parts by mass.
- the polyamideimide resin-containing solution and the nanodiamond NMP dispersion were mixed.
- the curable composition of Example 1 containing polyamideimide resin, nanodiamond particles, and NMP as a solvent was produced.
- thermoplastic resin composition A thermoplastic resin composition was produced from the curable composition of Example 1 produced as described above. First, using a squeegee, the curable composition was applied on a glass plate with a predetermined thickness. And the said glass plate in which the coating film of the curable composition was formed was put in the muffle furnace, and it baked in nitrogen atmosphere. Specifically, first, heating was performed at 130 ° C. for 10 minutes, then the temperature was increased from 130 ° C. to 300 ° C. over 60 minutes, and then heating was performed at 300 ° C. for 60 minutes.
- thermoplastic resin composition of Example 1 containing a polyamideimide resin and nanodiamond particles that is, a resin film of Example 1 in which a polyamideimide resin and nanodiamond particles were combined was prepared. .
- nanodiamond content is 5 mass% and thickness is 20 micrometers.
- thermogravimetric measuring device (trade name “TG-DTA6300”, manufactured by SII Nano Technology Co., Ltd.), 460 ° C. in an air atmosphere.
- the weight loss during the holding was measured.
- the weight of the measurement object when held at 460 ° C. for 10 minutes was defined as the reference weight (initial weight).
- the result is represented by a line E1 in the graph of FIG.
- the horizontal axis represents the time (minutes) that is the retention time of the measurement target at 460 ° C.
- the vertical axis represents TG (%) as the weight change rate from the reference weight.
- maintaining at 410 degreeC in an air atmosphere using a thermogravimetry apparatus brand name "TG-DTA6300", SII nanotechnology Co., Ltd. make.
- the amount of decrease was measured.
- the weight of the measurement object when held at 410 ° C. for 10 minutes was defined as the reference weight (initial weight).
- the result is represented by a line E1 in the graph of FIG.
- the horizontal axis represents the time (minutes) that is the holding time of the measurement target at 410 ° C.
- the vertical axis represents TG (%) as the weight change rate from the reference weight.
- the weight change rate was ⁇ 3 It was .76%, that is, the weight reduction rate was 3.76%.
- Example 2 (Preparation of curable composition) Nanodiamond aqueous dispersion prepared separately in place of the nanodiamond aqueous dispersion used in Example 1 (solid content concentration or nanodiamond concentration is 1.08% by mass, aqueous solvent, particle size D50 is 6.04 nm, pH 6) The water as the solvent of the nanodiamond aqueous dispersion was replaced with NMP (solvent replacement step) in the same manner as in the solvent replacement step of Example 1 except that the zeta potential of -42 mV, manufactured by Daicel Corporation) was used. The nanodiamond NMP dispersion thus obtained had a nanodiamond solid content concentration of 2.0% by mass.
- NMP solvent replacement step
- the particle diameter of the nanodiamond particles contained in this dispersion was measured by the dynamic light scattering method in the same manner as in Example 1, the particle diameter D50 (median diameter) was 6.83 nm.
- the obtained nanodiamond NMP dispersion was mixed with a polyamideimide resin-containing solution (trade name “Vilomax HR-11NN”, manufactured by Toyobo Co., Ltd.).
- a polyamideimide resin-containing solution trade name “Vilomax HR-11NN”, manufactured by Toyobo Co., Ltd.
- the above-mentioned nanodiamond NMP dispersion is added thereto by a dropping operation, so that the nanodiamond content with respect to 95 parts by mass of the polyamideimide resin is 5 parts by mass.
- the polyamideimide resin-containing solution and the nanodiamond NMP dispersion were mixed.
- the curable composition of Example 2 containing polyamideimide resin, nanodiamond particles, and NMP as a solvent was
- thermoplastic resin composition i.e., the polyamideimide resin and the nanomaterial, was used in the same manner as in Example 1 except that the curable composition of Example 2 was used instead of the curable composition of Example 1.
- a resin film of Example 2 in which diamond particles were combined was produced. About this resin film, nanodiamond content is 5 mass% and thickness is 20 micrometers.
- Comparative Example 1 [Preparation of thermoplastic resin composition] Comparative Example 1 is the same as Example 1 except that a polyamideimide resin-containing solution (trade name “Vilomax HR-11NN”, manufactured by Toyobo Co., Ltd.) is used instead of the curable composition of Example 1.
- a thermoplastic resin composition that is, a polyamideimide resin film of Comparative Example 1 was produced. The resin film has a thickness of 20 ⁇ m.
- the polyamideimide resin film of Comparative Example 1 is held at 410 ° C. in an air atmosphere using a thermogravimetric measurement device (trade name “TG-DTA6300”) in the same manner as the resin film of Example 1. The amount of weight loss during was measured. The result is represented by a line C1 in the graph of FIG.
- TG-DTA6300 thermogravimetric measurement device
- nanodiamond contained in the nanodiamond aqueous dispersion used in each of Examples 1 and 2 was measured for its 10% thermal decomposition temperature. Specifically, first, nanodiamond powder was obtained from the nanodiamond aqueous dispersion by heat drying using a sand bath. Next, the obtained nanodiamond powder was subjected to thermogravimetric measurement using a thermogravimetric measurement device (trade name “TG-DTA6300”, manufactured by SII Nanotechnology Inc.). In this measurement, the measurement target is held at 200 ° C. for 10 minutes in a nitrogen atmosphere to sufficiently suppress the influence of the contained moisture on the measurement result, and then the rate of temperature increase from 200 ° C.
- TG-DTA6300 thermogravimetric measurement device
- the weight loss during the process of increasing the temperature at 20 ° C./min was measured.
- the weight of the object to be measured when it was held at 200 ° C. for 10 minutes was defined as the reference weight (initial weight).
- the result is shown in the graph of FIG.
- the horizontal axis represents temperature (° C.)
- the vertical axis represents TG (%) as a weight change rate from the reference weight (initial weight).
- the measurement result relating to the nanodiamond particles used in Example 1 is represented by a line E1 ′
- the measurement result relating to the nanodiamond particles used in Example 2 is represented by a line E2 ′.
- the 10% pyrolysis temperature of the nanodiamond particles used in Example 1 was 525.4 ° C.
- the 10% pyrolysis temperature of the nanodiamond particles used in Example 2 was 40.8 ° C.
- a thermogravimetric measuring device (trade name “TG-DTA6300”, SII Using Nanotechnology Co., Ltd.), the amount of weight loss in the process of raising the temperature from 30 ° C. to 550 ° C. at a rate of temperature increase of 20 ° C./min under an air atmosphere was measured.
- The% thermal decomposition temperature was 499 ° C.
- the resin film as the thermoplastic resin composition of Examples 1 and 2 in which the nanodiamond particles are dispersed is the polyamideimide resin film of Comparative Example 1 that does not contain nanodiamond particles. It can be seen that thermal decomposition is suppressed, that is, heat resistance is high. Further, from the results shown in the graph of FIG. 2, the resin film which is the thermoplastic resin composition of Example 1 in which nanodiamond particles having a relatively high 10% pyrolysis temperature are dispersed therein has a 10% pyrolysis temperature. It can be seen that the thermal decomposition is suppressed, that is, the heat resistance is higher than that of the resin film which is the thermoplastic resin composition of Example 2 in which relatively low nano-diamond particles are dispersed.
- thermoplastic resin composition comprising a polyamideimide resin and nanodiamond particles.
- Appendix 2 The thermoplastic resin composition according to Appendix 1, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 400 ° C. or higher.
- Appendix 3 The thermoplastic resin composition according to Appendix 1, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 420 ° C. or higher.
- Appendix 4 The thermoplastic resin composition according to Appendix 1, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 450 ° C. or higher.
- thermoplastic resin composition according to Appendix 1, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 500 ° C. or higher.
- thermoplastic resin composition according to Appendix 1 The thermoplastic resin composition according to Appendix 1, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 520 ° C. or higher.
- Appendix 7 The heat according to any one of appendices 1 to 6, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 0.01% by mass or more. Plastic resin composition.
- thermoplastic resin according to any one of appendices 1 to 9, wherein the ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 20% by mass or less.
- Composition [Appendix 11] The thermoplastic resin according to any one of Appendixes 1 to 9, wherein a ratio of the content of the nanodiamond particles to a total content of the polyamideimide resin and the nanodiamond particles is 10% by mass or less. Composition.
- Appendix 13 The thermoplastic resin according to any one of appendices 1 to 9, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 6% by mass or less.
- Appendix 14 The thermoplastic resin composition according to any one of Appendixes 1 to 13, wherein the nanodiamond particles are detonation nanodiamond particles.
- Subsupplementary Note 16 The thermoplastic resin composition according to any one of Supplementary notes 1 to 14, wherein the content of the polyamideimide resin is 90% by mass or more.
- Appendix 17 The thermoplastic resin composition according to any one of Appendixes 1 to 14, wherein the content of the polyamideimide resin is 92% by mass or more.
- Appendix 18 The thermoplastic resin composition according to any one of Appendixes 1 to 14, wherein the content of the polyamideimide resin is 94% by mass or more.
- thermoplastic resin composition according to any one of appendices 1 to 14, wherein the content of the polyamideimide resin is 95% by mass or more.
- Appendix 20 The thermoplastic resin composition according to any one of Appendixes 1 to 19, wherein the surface resistivity is 1 ⁇ 10 12 ⁇ / ⁇ or more.
- Appendix 21 A curable composition comprising a polyamideimide resin, nanodiamond particles, and a solvent.
- nanodiamond particles have a 10% thermal decomposition temperature of 400 ° C. or higher.
- [Supplementary note 27] The curing according to any one of Supplementary notes 22 to 26, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 0.01% by mass or more. Sex composition.
- [Appendix 28] The curing according to any one of appendices 22 to 26, wherein the ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 0.1% by mass or more. Sex composition.
- [Appendix 33] The curable composition according to any one of appendices 21 to 29, wherein the ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 6% by mass or less. object.
- [Appendix 34] The curable composition according to any one of appendices 21 to 33, wherein the nanodiamond particles are detonation nanodiamond particles.
- [Appendix 35] The curable composition according to any one of Appendixes 21 to 34, wherein the solvent is a polar organic solvent.
- the polar organic solvent is methanol, ethanol, isopropanol, isobutyl alcohol, ethylene glycol, propylene glycol, glycerin, 2-methoxyethanol, dimethyl sulfoxide, N-methyl-2-pyrrolidone, acetonitrile, N, N-dimethyl.
- Resin composition thermoplastic resin composition
- PAI resin polyamideimide resin
- ND particles nanomond particles
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
A resin composition (10) as this thermoplastic resin composition includes a polyamide-imide resin (11) and nanodiamond particles (12). The 10% thermal decomposition temperature of the nanodiamond particles (12) is, for example, 400°C or higher. Such a thermoplastic resin composition is suitable for realizing high heat resistance. This curable composition includes a polyamide-imide resin (11), nanodiamond particles (12), and a solvent. Such a curable composition is appropriate for being able to obtain a thermoplastic resin composition suitable for realizing high heat resistance.
Description
本発明は、熱可塑性の樹脂組成物、および、熱可塑性樹脂組成物を得るための硬化性組成物に関する。また、本願は、2016年5月19日付の日本出願 特願2016-100304号に基づく優先権を主張し、当該出願に記載されている全ての内容を援用するものである。
The present invention relates to a thermoplastic resin composition and a curable composition for obtaining a thermoplastic resin composition. In addition, this application claims priority based on Japanese Patent Application No. 2016-100304 dated May 19, 2016, and uses all the contents described in the application.
近年、エンジニアリングプラスチックやスーパーエンジニアリングプラスチックなど、高い耐熱性を有する熱可塑性樹脂材料が、様々な技術分野において例えば成形材料として用いられている。
In recent years, thermoplastic resin materials having high heat resistance such as engineering plastics and super engineering plastics are used as molding materials in various technical fields.
一方、樹脂材料の耐熱性を向上させる目的で、樹脂材料への添加剤としてヒンダードフェノール系化合物が用いられることがある。高温環境下におかれた樹脂材料中では、ラジカルが発生して樹脂成分の分解反応を誘発する場合があるところ、ヒンダードフェノール系化合物は、ラジカルを捕捉ないし安定化させてそのような分解反応を抑制する機能を期待されて、用いられる。このようなヒンダードフェノール系化合物については、例えば下記の特許文献1,2に記載されている。
On the other hand, for the purpose of improving the heat resistance of the resin material, a hindered phenol compound may be used as an additive to the resin material. In resin materials placed in a high-temperature environment, radicals may be generated to induce a decomposition reaction of the resin component. However, hindered phenolic compounds capture or stabilize radicals to cause such decomposition reactions. It is expected and used for the function to suppress. Such hindered phenol compounds are described, for example, in Patent Documents 1 and 2 below.
ヒンダードフェノール系化合物その他の有機化合物たるラジカル捕捉剤は、エンジニアリングプラスチック等の高耐熱性樹脂材料が使用されることとなる高温環境下では分解してしまう場合が多い。したがって、ヒンダードフェノール系化合物その他の有機化合物たるラジカル捕捉剤は、当該高耐熱性樹脂材料にとってその耐熱性を向上させる有効な添加剤として機能しない場合が多い。
The radical scavenger, which is a hindered phenol compound or other organic compound, often decomposes in a high temperature environment where a high heat resistant resin material such as engineering plastic is used. Therefore, the radical scavenger which is a hindered phenol compound or other organic compound often does not function as an effective additive for improving the heat resistance of the high heat resistant resin material.
本発明は、以上のような事情の下で考え出されたものであって、高い耐熱性を実現するのに適した熱可塑性樹脂組成物を提供すること、および、そのような熱可塑性樹脂組成物を得るのに適した硬化性組成物を提供することを、目的とする。
The present invention has been conceived under the circumstances as described above, and provides a thermoplastic resin composition suitable for realizing high heat resistance, and such a thermoplastic resin composition. It aims at providing the curable composition suitable for obtaining a thing.
本発明の第1の側面によると、熱可塑性樹脂組成物が提供される。この熱可塑性樹脂組成物は、ポリアミドイミド樹脂およびナノダイヤモンド粒子を含む。本発明において、ナノダイヤモンド粒子は、ナノダイヤモンド一次粒子および/またはナノダイヤモンド二次粒子を含む。本発明において、ナノダイヤモンド一次粒子とは、粒径10nm以下のナノダイヤモンドをいうものとする。
According to the first aspect of the present invention, a thermoplastic resin composition is provided. The thermoplastic resin composition includes a polyamideimide resin and nanodiamond particles. In the present invention, the nanodiamond particles include nanodiamond primary particles and / or nanodiamond secondary particles. In the present invention, the nanodiamond primary particles are nanodiamonds having a particle diameter of 10 nm or less.
本熱可塑性樹脂組成物は、樹脂成分として、上述のようにポリアミドイミド樹脂(PAI樹脂)を含む。PAI樹脂は、アミド結合とイミド結合とを合わせもつところ、樹脂構造に組み込まれたアミド結合は樹脂に熱成形性ないし加工性をもたらし、且つ、樹脂構造に組み込まれたイミド結合は樹脂に耐熱性をもたらす。このようなPAI樹脂を樹脂成分として含む本樹脂組成物は、熱可塑性樹脂材料として高い耐熱性を実現するのに適する。また、PAI樹脂においてイミド結合は樹脂に耐熱性に加えて機械的強度をももたらし且つアミド結合は樹脂に加工性に加えて強靭性をももたらすところ、このようなPAI樹脂を樹脂成分として含む本樹脂組成物は、スーパーエンジニアリングプラスチックと呼称される高機能熱可塑性樹脂材料として用いることも可能である。
This thermoplastic resin composition contains a polyamide-imide resin (PAI resin) as a resin component as described above. PAI resin has both an amide bond and an imide bond, and the amide bond incorporated in the resin structure brings thermoformability or processability to the resin, and the imide bond incorporated in the resin structure is heat resistant to the resin. Bring. This resin composition containing such a PAI resin as a resin component is suitable for realizing high heat resistance as a thermoplastic resin material. In PAI resins, imide bonds also provide mechanical strength in addition to heat resistance, and amide bonds also provide toughness in addition to processability in the resin. A book containing such a PAI resin as a resin component. The resin composition can also be used as a high-functional thermoplastic resin material called a super engineering plastic.
加えて、本熱可塑性樹脂組成物は、ナノダイヤモンド粒子を含む。上述のように耐熱性の高いPAI樹脂の耐熱性を更に向上させる効果がナノダイヤモンド粒子にあること、具体的には、後記の実施例および比較例をもって示すようにPAI樹脂の熱分解を抑制する効果がナノダイヤモンド粒子にあることを、本発明者らは見出した。ナノダイヤモンド粒子は例えば400℃を超える高温環境下でも分解せずに耐熱性を示し得るものであるところ、そのようなナノダイヤモンド粒子をなすか或いはこれに含まれるナノダイヤモンド一次粒子の表面の少なくとも一部、即ち少なくとも{111}面には、ダイヤモンド本体をなすsp3構造炭素からの自発転移によってsp2構造炭素が生じているものと想定される。ナノダイヤモンド表面におけるこのsp2構造炭素の存在が、高温環境下の樹脂材料中に発生するラジカルの補足や安定化に寄与し得て、従って、ラジカルの作用によるPAI樹脂の熱分解が抑制されるものと考えられる。
In addition, the thermoplastic resin composition includes nanodiamond particles. As described above, nanodiamond particles have the effect of further improving the heat resistance of PAI resin having high heat resistance. Specifically, as shown in Examples and Comparative Examples described later, the thermal decomposition of PAI resin is suppressed. The inventors have found that the effect is on nanodiamond particles. The nanodiamond particles can exhibit heat resistance without being decomposed even in a high temperature environment exceeding 400 ° C., for example, and thus form at least one of the surfaces of the nanodiamond primary particles included in the nanodiamond particles. It is assumed that sp 2 structure carbon is generated in the part, that is, at least the {111} plane by spontaneous transition from the sp 3 structure carbon forming the diamond body. The presence of this sp 2 structure carbon on the nanodiamond surface can contribute to the capture and stabilization of radicals generated in the resin material in a high temperature environment, and therefore, thermal decomposition of the PAI resin due to the action of radicals is suppressed. It is considered a thing.
以上のように、本熱可塑性樹脂組成物は、高い耐熱性を実現するのに適するのである。このような本熱可塑性樹脂組成物のPAI樹脂含有量は、例えば99.99質量%以下であり、且つ、好ましくは80質量%以上、より好ましくは90質量%以上、より好ましくは92質量%以上、より好ましくは94質量%以上、より好ましくは95質量%以上である。
As described above, the present thermoplastic resin composition is suitable for realizing high heat resistance. The PAI resin content of such a thermoplastic resin composition is, for example, 99.99% by mass or less, and preferably 80% by mass or more, more preferably 90% by mass or more, more preferably 92% by mass or more. More preferably, it is 94 mass% or more, More preferably, it is 95 mass% or more.
好ましくは、本熱可塑性樹脂組成物の表面抵抗率は1×1012Ω/□以上である。このような構成によると、本熱可塑性樹脂組成物について、高い耐熱性に加えて高い絶縁性を有する材料として用いることが可能となる。
Preferably, the thermoplastic resin composition has a surface resistivity of 1 × 10 12 Ω / □ or more. According to such a configuration, the present thermoplastic resin composition can be used as a material having high insulation in addition to high heat resistance.
本発明の第2の側面によると、硬化性組成物が提供される。この硬化性組成物は、ポリアミドイミド樹脂と、ナノダイヤモンド粒子と、溶媒とを含む。溶媒は、好ましくは極性有機溶媒である。溶媒は、より好ましくは、メタノール、エタノール、イソプロパノール、イソブチルアルコール、エチレングリコール、プロピレングリコール、グリセリン、2-メトキシエタノール、ジメチルスルホキシド、N-メチル-2-ピロリドン、アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、N,N-ジエチルアセトアミド、N,N-ジメチルメトキシアセトアミド、ヘキサメチルホスホルアミド、ジメチルスルホン、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、1,3-ジメチル-2-イミダゾリジノン、テトラメチル尿素、シクロヘキサノン、酢酸テトラヒドロフルフリル、および炭酸プロピレンからなる群より選択される少なくとも一つを含む。このような構成の硬化性組成物は、上述の第1の側面に係る熱可塑性樹脂組成物を形成するためのいわゆるワニスとして使用することができる。したがって、本硬化性組成物は、高い耐熱性を実現するのに適した熱可塑性樹脂組成物を得るうえで好適である。
According to a second aspect of the present invention, a curable composition is provided. The curable composition includes a polyamideimide resin, nanodiamond particles, and a solvent. The solvent is preferably a polar organic solvent. More preferably, the solvent is methanol, ethanol, isopropanol, isobutyl alcohol, ethylene glycol, propylene glycol, glycerin, 2-methoxyethanol, dimethyl sulfoxide, N-methyl-2-pyrrolidone, acetonitrile, N, N-dimethylformamide, N , N-dimethylacetamide, N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, hexamethylphosphoramide, dimethylsulfone, γ-butyrolactone, α-acetyl-γ-butyrolactone, 1 , 3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, 1,3-dimethyl-2-imidazolidinone, tetramethylurea, cyclohexanone, tetrahydrofurfuryl acetate, and propylene carbonate Selected from group Even without including the one. The curable composition having such a configuration can be used as a so-called varnish for forming the thermoplastic resin composition according to the first aspect described above. Therefore, this curable composition is suitable for obtaining a thermoplastic resin composition suitable for realizing high heat resistance.
本発明の第1および第2の側面において、ナノダイヤモンド粒子の10%熱分解温度は、好ましくは400℃以上、より好ましくは420℃以上、より好ましくは450℃以上、より好ましくは500℃以上、より好ましくは520℃以上である。このような構成は、本熱可塑性樹脂組成物において高い耐熱性を実現するうえで好適である。
In the first and second aspects of the present invention, the 10% pyrolysis temperature of the nanodiamond particles is preferably 400 ° C. or higher, more preferably 420 ° C. or higher, more preferably 450 ° C. or higher, more preferably 500 ° C. or higher, More preferably, it is 520 ° C. or higher. Such a configuration is suitable for realizing high heat resistance in the thermoplastic resin composition.
本発明の第1の側面に係る熱可塑性樹脂組成物および第2の側面に係る硬化性組成物において、ポリアミドイミド樹脂とナノダイヤモンド粒子との合計含有量に対するナノダイヤモンド粒子の含有量の割合は、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、より好ましくは1質量%以上である。ナノダイヤモンド粒子の含有量が多いほど、ナノダイヤモンド粒子の存在に起因する上記の熱分解抑制効果は大きい傾向にある。熱可塑性樹脂組成物において絶縁性等の機能を適切に発現させるという観点からは、当該割合は、好ましくは20質量%以下、より好ましくは10質量%以下、より好ましくは8質量%以下、より好ましくは6質量%以下である。
In the thermoplastic resin composition according to the first aspect of the present invention and the curable composition according to the second aspect, the ratio of the content of nanodiamond particles to the total content of polyamideimide resin and nanodiamond particles is: Preferably it is 0.01 mass% or more, More preferably, it is 0.1 mass% or more, More preferably, it is 1 mass% or more. The higher the content of nanodiamond particles, the greater the effect of suppressing thermal decomposition due to the presence of nanodiamond particles. From the viewpoint of appropriately expressing functions such as insulation in the thermoplastic resin composition, the proportion is preferably 20% by mass or less, more preferably 10% by mass or less, more preferably 8% by mass or less, and more preferably. Is 6% by mass or less.
本発明の第1および第2の側面において、ナノダイヤモンド粒子は、好ましくは爆轟法ナノダイヤモンド粒子である。爆轟法によると、一次粒子の粒径が10nm以下のナノダイヤモンドを適切に生じさせることが可能である。
In the first and second aspects of the present invention, the nanodiamond particles are preferably detonated nanodiamond particles. According to the detonation method, it is possible to appropriately generate nanodiamond having a primary particle size of 10 nm or less.
図1は、本発明の一の実施形態に係る熱可塑性樹脂組成物たる樹脂組成物10の拡大模式図である。樹脂組成物10は、ポリアミドイミド樹脂たるPAI樹脂11と、ナノダイヤモンド粒子たるND粒子12とを少なくとも含有する。樹脂組成物10は、樹脂成形原料たる例えばペレットの形態、樹脂成形原料の形態から軟化または溶融した状態にある形態、および、軟化・溶融状態を経て形成された樹脂成形体の形態を、とり得る。
FIG. 1 is an enlarged schematic view of a resin composition 10 which is a thermoplastic resin composition according to an embodiment of the present invention. The resin composition 10 contains at least a PAI resin 11 that is a polyamide-imide resin and ND particles 12 that are nanodiamond particles. The resin composition 10 can take the form of a resin molding raw material, for example, a pellet, a form that is softened or melted from the form of the resin molding raw material, and a resin molded body formed through a softened / molten state. .
樹脂組成物10に含有されるPAI樹脂11は、樹脂組成物10において耐熱性等の機能を発現させるための主材であり、例えば250℃以上のガラス転移温度を有する。PAI樹脂11については、例えば、酸成分とイソシアネート成分とから生成するイソシアネート法や、酸クロライド成分とアミン成分とから生成する酸クロライド法によって、合成することができる。
The PAI resin 11 contained in the resin composition 10 is a main material for developing functions such as heat resistance in the resin composition 10, and has a glass transition temperature of 250 ° C. or higher, for example. The PAI resin 11 can be synthesized by, for example, an isocyanate method generated from an acid component and an isocyanate component, or an acid chloride method generated from an acid chloride component and an amine component.
上記のイソシアネート法において、酸成分は、例えばトリメリット酸無水物を必須成分として含み、トリメリット酸無水物以外の他の酸性分を含んでもよい。そのような他の酸性分としては、例えば、テトラカルボン酸およびその無水物、脂肪族ジカルボン酸、芳香族ジカルボン酸、並びに三官能カルボン酸が挙げられる。テトラカルボン酸としては、例えば、ピロメリット酸、ビフェニルテトラカルボン酸、ビフェニルスルホンテトラカルボン酸、ベンゾフェノンテトラカルボン酸、ビフェニルエーテルテトラカルボン酸、およびプロピレングリコールビストリメリテートが挙げられる。脂肪族ジカルボン酸としては、例えば、シュウ酸、アジピン酸、マロン酸、セバシン酸、アゼライン酸、ドデカンジカルボン酸、ジカルボキシポリブタジエン、ジカルボキシポリ(アクリロニトリル-ブタジエン)、およびジカルボキシポリ(スチレン-ブタジエン)が挙げられる。芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、およびナフタレンジカルボン酸が挙げられる。三官能カルボン酸としては、例えば、トリメシン酸およびシクロヘキサントリカルボン酸が挙げられる。
In the above isocyanate method, the acid component contains, for example, trimellitic anhydride as an essential component, and may contain other acidic components other than trimellitic anhydride. Examples of such other acidic components include tetracarboxylic acid and its anhydride, aliphatic dicarboxylic acid, aromatic dicarboxylic acid, and trifunctional carboxylic acid. Examples of the tetracarboxylic acid include pyromellitic acid, biphenyltetracarboxylic acid, biphenylsulfonetetracarboxylic acid, benzophenonetetracarboxylic acid, biphenylethertetracarboxylic acid, and propylene glycol bistrimellitate. Aliphatic dicarboxylic acids include, for example, oxalic acid, adipic acid, malonic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, dicarboxypolybutadiene, dicarboxypoly (acrylonitrile-butadiene), and dicarboxypoly (styrene-butadiene) Is mentioned. Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, and naphthalenedicarboxylic acid. Examples of the trifunctional carboxylic acid include trimesic acid and cyclohexanetricarboxylic acid.
上記のイソシアネート法において用いられるイソシアネート成分としては、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネート、および脂環式ジイソシアネートが挙げられる。芳香族ジイソシアネートとしては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、フェニレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、4,4'-ジフェニルエーテルジイソシアネート、4,4'-ジフェニルスルホンジイソシアネート、キシリレンジイソシアネート、およびトリジンジイソシアネートが挙げられる。脂肪族ジイソシアネートとしては、例えば、エチレンジイソシアネート、プロピレンジイソシアネート、およびヘキサメチレンジイソシアネートが挙げられる。脂環式ジイソシアネートとしては、例えば、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、イソホロンジイソシアネート、および4,4'-ジシクロヘキシルメタンジイソシアネートが挙げられる。
Examples of the isocyanate component used in the above isocyanate method include aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate. Examples of aromatic diisocyanates include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-diphenyl ether diisocyanate, and 4,4′-diphenyl sulfone. Examples include diisocyanates, xylylene diisocyanates, and tolidine diisocyanates. Examples of the aliphatic diisocyanate include ethylene diisocyanate, propylene diisocyanate, and hexamethylene diisocyanate. Examples of the alicyclic diisocyanate include 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, isophorone diisocyanate, and 4,4′-dicyclohexylmethane diisocyanate.
上記の酸クロライド法において用いられる酸クロライド成分としては、イソシアネート法に関して上記した酸成分における部分構造としてのカルボン酸の部位がカルボン酸クロライドに替わった構造を有するものが挙げられる。また、上記の酸クロライド法において用いられるアミン成分としては、イソシアネート法に関して上記したイソシアネート成分における部分構造としてのイソシアネートの部位がアミンに替わった構造を有するものが挙げられる。
Examples of the acid chloride component used in the acid chloride method include those having a structure in which the carboxylic acid moiety as a partial structure in the acid component described above with respect to the isocyanate method is replaced by carboxylic acid chloride. Moreover, as an amine component used in said acid chloride method, what has the structure which the site | part of the isocyanate as a partial structure in an isocyanate component mentioned above regarding the isocyanate method replaced with the amine is mentioned.
ポリアミドイミド樹脂の合成に際して用いることのできる溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、シクロヘキサノン、メチルエチルケトン、γ-ブチロラクトン、キシレン、およびトルエンが挙げられる。
Solvents that can be used in the synthesis of the polyamideimide resin include, for example, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, cyclohexanone, methyl ethyl ketone, γ -Butyrolactone, xylene, and toluene.
樹脂組成物10におけるPAI樹脂11の含有量は、例えば80~99.99質量%であり、好ましくは90~99.99質量%、より好ましくは92~99.99質量%、より好ましくは94~99.99質量%、より好ましくは95~99.99質量%である。
The content of the PAI resin 11 in the resin composition 10 is, for example, 80 to 99.99% by mass, preferably 90 to 99.99% by mass, more preferably 92 to 99.99% by mass, and more preferably 94 to It is 99.99% by mass, and more preferably 95 to 99.99% by mass.
樹脂組成物10に含有されるND粒子12は、樹脂組成物10中で熱安定剤ないし熱分解抑制剤としての機能を発揮するための成分であり、それぞれ、ナノダイヤモンド一次粒子またはナノダイヤモンド二次粒子である。ナノダイヤモンド一次粒子とは、粒径10nm以下のナノダイヤモンドをいうものとする。また、樹脂組成物10中のND粒子12の粒径D50(メディアン径)は、ND粒子12について単位質量あたりの表面積を充分に確保して熱分解抑制剤としての機能を効率よく発揮させるという観点からは、好ましくは500nm以下、より好ましくは300nm以下、より好ましくは100nm以下、より好ましくは80nm以下である。ND粒子12の粒径D50は、例えば動的光散乱法によって測定することが可能である。
The ND particles 12 contained in the resin composition 10 are components for exhibiting a function as a heat stabilizer or a thermal decomposition inhibitor in the resin composition 10, and are respectively nanodiamond primary particles or nanodiamond secondary particles. Particles. The nanodiamond primary particles are nanodiamonds having a particle diameter of 10 nm or less. Further, the particle diameter D50 (median diameter) of the ND particles 12 in the resin composition 10 is a viewpoint that the surface area per unit mass of the ND particles 12 is sufficiently ensured and the function as a thermal decomposition inhibitor is efficiently exhibited. Is preferably 500 nm or less, more preferably 300 nm or less, more preferably 100 nm or less, and more preferably 80 nm or less. The particle size D50 of the ND particle 12 can be measured by, for example, a dynamic light scattering method.
樹脂組成物10に含有されるND粒子12は、例えば爆轟法ナノダイヤモンド粒子(爆轟法によって生成したナノダイヤモンド粒子)である。爆轟法ナノダイヤモンド粒子については、例えば、次のようにして得ることができる。
The ND particles 12 contained in the resin composition 10 are, for example, detonation nanodiamond particles (nanodiamond particles generated by detonation). The detonation nanodiamond particles can be obtained, for example, as follows.
まず、爆薬を密閉容器中で爆発させる。その際、使用爆薬が部分的に不完全燃焼を起こして遊離した炭素を原料として、爆発で生じた衝撃波の圧力とエネルギーの作用によってナノダイヤモンドが生成する。爆薬としては、トリニトロトルエン(TNT)とシクロトリメチレントリニトロアミンすなわちヘキソーゲン(RDX)との混合物を使用することができる。爆轟法で得られるナノダイヤモンド粗生成物には、金属酸化物が含まれやすい。この金属酸化物は、爆轟法に使用される容器等に由来するFe,Co,Ni等の酸化物である。例えば水溶媒中で所定の強酸を作用させることにより、ナノダイヤモンド粗生成物から金属酸化物を溶解・除去することができる(酸処理)。この酸処理に用いられる強酸としては、鉱酸が好ましく、例えば、塩酸、フッ化水素酸、硫酸、硝酸、および王水が挙げられる。また、爆轟法で得られるナノダイヤモンド粗生成物には、グラファイト(黒鉛)が含まれている。このグラファイトは、使用爆薬が部分的に不完全燃焼を起こして遊離した炭素のうちナノダイヤモンド結晶を形成しなかった炭素に由来する。例えば上記の酸処理を経た後に、例えば水溶媒中で所定の酸化剤を作用させることにより、ナノダイヤモンド粗生成物からグラファイトを除去することができる(酸化処理)。この酸化処理に用いられる酸化剤としては、例えば、クロム酸、無水クロム酸、二クロム酸、過マンガン酸、過塩素酸、及びこれらの塩、並びに、過酸化水素が挙げられる。爆轟法ナノダイヤモンド(爆轟法によって生成したナノダイヤモンド)は、以上のような酸処理および酸化処理を経て精製された後であっても、一次粒子間が非常に強く相互作用して集成している凝着体(二次粒子)の形態をとる。この凝着体を所定の分散媒に分散させて得られる懸濁液を解砕処理に付すことによって、粒径が一桁ナノメートルのナノダイヤモンドを得ることができる。分散媒としては、ナノダイヤモンドが溶解性を示し得る溶媒が好ましく、例えば、水、メタノール、エタノール、エチレングリコール、およびN-メチル-2-ピロリドンが挙げられる。解砕処理は、例えば、高剪断ミキサー、ハイシアーミキサー、ホモミキサー、ボールミル、ビーズミル、高圧ホモジナイザー、超音波ホモジナイザー、またはコロイドミルを使用して行うことができる。また、上記のような解砕処理の後、ナノダイヤモンドの分散している懸濁液の水分量を必要に応じて低減することによって、所定濃度のナノダイヤモンド分散液を得ることができる。或いは、上記のような解砕処理の後、ナノダイヤモンドの分散している懸濁液から必要に応じて水分を除去することによって、ナノダイヤモンドの粉体を得ることができる。これら水分量低減や水分除去は、例えばエバポレーターや噴霧乾燥装置を使用して行うことができる。
First, explode explosives in a sealed container. At that time, nano-diamonds are generated by the action of the pressure and energy of the shock wave generated by the explosion, using carbon that is liberated due to partial incomplete combustion of the explosive used. As the explosive, a mixture of trinitrotoluene (TNT) and cyclotrimethylenetrinitroamine, ie hexogen (RDX), can be used. The nanodiamond crude product obtained by the detonation method is likely to contain a metal oxide. This metal oxide is an oxide such as Fe, Co, or Ni derived from a container or the like used in the detonation method. For example, by applying a predetermined strong acid in an aqueous solvent, the metal oxide can be dissolved and removed from the nanodiamond crude product (acid treatment). The strong acid used for this acid treatment is preferably a mineral acid, and examples thereof include hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, and aqua regia. In addition, the nano-diamond crude product obtained by the detonation method contains graphite. This graphite is derived from carbon that did not form nanodiamond crystals among the carbon released by partial incomplete combustion of the explosive used. For example, after the above acid treatment, graphite can be removed from the nanodiamond crude product (oxidation treatment) by applying a predetermined oxidizing agent in an aqueous solvent, for example. Examples of the oxidizing agent used in the oxidation treatment include chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid, and salts thereof, and hydrogen peroxide. Detonation nanodiamonds (nanodiamonds produced by detonation method) are aggregated by a very strong interaction between primary particles even after purification through acid treatment and oxidation treatment as described above. It takes the form of adhering bodies (secondary particles). By subjecting the suspension obtained by dispersing this agglomerated material in a predetermined dispersion medium to a pulverization treatment, nanodiamonds having a particle size of single-digit nanometers can be obtained. As the dispersion medium, a solvent in which nanodiamond can exhibit solubility is preferable, and examples thereof include water, methanol, ethanol, ethylene glycol, and N-methyl-2-pyrrolidone. The crushing treatment can be performed using, for example, a high shear mixer, a high shear mixer, a homomixer, a ball mill, a bead mill, a high-pressure homogenizer, an ultrasonic homogenizer, or a colloid mill. In addition, after the crushing treatment as described above, a nanodiamond dispersion liquid having a predetermined concentration can be obtained by reducing the water content of the suspension in which nanodiamonds are dispersed, as necessary. Alternatively, after the crushing treatment as described above, the nanodiamond powder can be obtained by removing moisture from the suspension in which the nanodiamond is dispersed, if necessary. These water content reduction and water removal can be performed using, for example, an evaporator or a spray dryer.
このようにして得られるナノダイヤモンド粒子ないしND粒子12の10%熱分解温度は、好ましくは400℃以上、より好ましくは420℃以上、より好ましくは450℃以上、より好ましくは500℃以上、より好ましくは520℃以上である。このような構成は、樹脂組成物10において高い耐熱性を実現するのに資する。本実施形態において、10%熱分解温度とは、測定対象について空気雰囲気下で20℃/分の昇温速度で昇温しながら重量減少を測定する場合に初期重量(基準重量)からの重量減少率が10%に至るときの温度であり、例えば、実施例に関して後記する手法で測定することができる。
The 10% pyrolysis temperature of the nanodiamond particles or ND particles 12 thus obtained is preferably 400 ° C. or higher, more preferably 420 ° C. or higher, more preferably 450 ° C. or higher, more preferably 500 ° C. or higher, more preferably Is 520 ° C. or higher. Such a configuration contributes to realizing high heat resistance in the resin composition 10. In the present embodiment, the 10% pyrolysis temperature is a weight reduction from the initial weight (reference weight) when measuring the weight loss while raising the temperature of the object to be measured at 20 ° C./min. This is the temperature at which the rate reaches 10%, and can be measured, for example, by the method described later with respect to the examples.
ND粒子12の含有量は、樹脂組成物10中のPAI樹脂11とND粒子12との総量に対して好ましくは0.01~20質量%である。ND粒子12の当該含有量が多いほど、ND粒子12の存在に起因する熱分解抑制効果は大きい傾向にあるところ、ND粒子12の当該含有量の下限は、より好ましくは0.1質量%、より好ましくは1質量%である。樹脂組成物10においてPAI樹脂11による樹脂特性を適切に発現させるという観点からは、ND粒子12の当該含有量は20質量%以下であるのが好ましい場合がある。また、樹脂組成物10中のND粒子12の存在に起因する効果をより少量のND粒子12で享受するという観点からは、ND粒子12の当該含有量の上限は、より好ましくは10質量%、より好ましくは8質量%、より好ましくは6質量%である。
The content of the ND particles 12 is preferably 0.01 to 20% by mass with respect to the total amount of the PAI resin 11 and the ND particles 12 in the resin composition 10. As the content of the ND particles 12 increases, the thermal decomposition inhibiting effect due to the presence of the ND particles 12 tends to increase. However, the lower limit of the content of the ND particles 12 is more preferably 0.1% by mass, More preferably, it is 1 mass%. From the viewpoint of appropriately expressing the resin characteristics of the PAI resin 11 in the resin composition 10, the content of the ND particles 12 may be preferably 20% by mass or less. Moreover, from the viewpoint of enjoying the effect due to the presence of the ND particles 12 in the resin composition 10 with a smaller amount of the ND particles 12, the upper limit of the content of the ND particles 12 is more preferably 10% by mass, More preferably, it is 8 mass%, More preferably, it is 6 mass%.
樹脂組成物10は、PAI樹脂11およびND粒子12に加えて他の成分を含有してもよい。そのような他の成分としては、例えば、難燃剤、ガラス繊維、炭素繊維、帯電防止剤、滑剤、および着色剤が挙げられる。
Resin composition 10 may contain other components in addition to PAI resin 11 and ND particles 12. Examples of such other components include flame retardants, glass fibers, carbon fibers, antistatic agents, lubricants, and colorants.
樹脂組成物10は、樹脂成分として、上述のようにポリアミドイミド樹脂(PAI樹脂)11を含む。PAI樹脂11は、アミド結合とイミド結合とを合わせもつところ、樹脂構造に組み込まれたアミド結合は樹脂に熱成形性ないし加工性をもたらし、且つ、樹脂構造に組み込まれたイミド結合は樹脂に耐熱性をもたらす。このようなPAI樹脂11を樹脂成分として含む樹脂組成物10は、熱可塑性樹脂材料として高い耐熱性を実現するのに適する。また、PAI樹脂11においてイミド結合は樹脂に耐熱性に加えて機械的強度をももたらし且つアミド結合は樹脂に加工性に加えて強靭性をももたらすところ、このようなPAI樹脂11を樹脂成分として含む樹脂組成物10は、スーパーエンジニアリングプラスチックと呼称される高機能熱可塑性樹脂材料として用いることも可能である。
Resin composition 10 includes polyamideimide resin (PAI resin) 11 as a resin component as described above. The PAI resin 11 has both an amide bond and an imide bond. The amide bond incorporated in the resin structure brings thermoformability or processability to the resin, and the imide bond incorporated in the resin structure is heat resistant to the resin. Bring sex. The resin composition 10 containing such a PAI resin 11 as a resin component is suitable for realizing high heat resistance as a thermoplastic resin material. In the PAI resin 11, the imide bond brings mechanical strength to the resin in addition to heat resistance, and the amide bond brings toughness to the resin in addition to processability. Such PAI resin 11 is used as a resin component. The resin composition 10 to be included can also be used as a high-functional thermoplastic resin material called a super engineering plastic.
加えて、樹脂組成物10は、上述のようなナノダイヤモンド粒子(ND粒子)12を含む。上述のように耐熱性の高いPAI樹脂11の耐熱性を更に向上させる効果がND粒子12にあること、具体的には、後記の実施例および比較例をもって示すようにPAI樹脂11の熱分解を抑制する効果がND粒子12にあることを、本発明者らは見出した。ND粒子12は例えば400℃を超える高温環境下でも耐熱性を示し得るものであるところ、そのようなND粒子12をなすか或いはこれに含まれるナノダイヤモンド一次粒子の表面の少なくとも一部、即ち少なくとも{111}面には、ダイヤモンド本体をなすsp3構造炭素からの自発転移によってsp2構造炭素が生じているものと想定される。ナノダイヤモンド表面におけるこのsp2構造炭素の存在が、高温環境下の樹脂材料中に発生するラジカルの補足や安定化に寄与し得て、従って、ラジカルの作用によるPAI樹脂11の熱分解が抑制されるものと考えられる。
In addition, the resin composition 10 includes nanodiamond particles (ND particles) 12 as described above. As described above, the ND particles 12 have the effect of further improving the heat resistance of the PAI resin 11 having high heat resistance. Specifically, as shown in the examples and comparative examples described later, the PAI resin 11 is thermally decomposed. The present inventors have found that the ND particles 12 have an inhibitory effect. The ND particles 12 can exhibit heat resistance even in a high temperature environment exceeding 400 ° C., for example. However, the ND particles 12 form at least a part of the surface of the nanodiamond primary particles that form the ND particles 12 or are included in the ND particles 12, that is, at least It is assumed that sp 2 structure carbon is generated on the {111} plane by spontaneous transition from the sp 3 structure carbon forming the diamond body. The presence of this sp 2 structure carbon on the surface of the nanodiamond can contribute to the capture and stabilization of radicals generated in the resin material in a high temperature environment, and therefore, thermal decomposition of the PAI resin 11 due to the action of radicals is suppressed. It is thought that.
以上のように、本実施形態の樹脂組成物10は、高い耐熱性を実現するのに適するのである。樹脂組成物10は、例えば、自動車等のエンジン用軸受の摺動材料を形成するための樹脂材料として使用することができる。また、樹脂組成物10の表面抵抗率は、好ましくは1×1012Ω/□以上、より好ましくは5×1012Ω/□以上、より好ましくは1×1013Ω/□以上である。このような構成によると、樹脂組成物10について、高い耐熱性に加えて高い絶縁性を有する材料として用いることが可能となる。例えば、爆轟法によって生成した後に充分に精製されてグラファイト不純物の除去されたナノダイヤモンド粒子を樹脂組成物10中のND粒子12として用いることによって、樹脂組成物10について低い表面抵抗率を実現することが可能である。
As described above, the resin composition 10 of the present embodiment is suitable for realizing high heat resistance. The resin composition 10 can be used, for example, as a resin material for forming a sliding material for an engine bearing such as an automobile. The surface resistivity of the resin composition 10 is preferably 1 × 10 12 Ω / □ or more, more preferably 5 × 10 12 Ω / □ or more, and more preferably 1 × 10 13 Ω / □ or more. According to such a configuration, the resin composition 10 can be used as a material having high insulation in addition to high heat resistance. For example, by using nano-diamond particles, which are produced by the detonation method and sufficiently purified to remove graphite impurities, as the ND particles 12 in the resin composition 10, a low surface resistivity is realized for the resin composition 10. It is possible.
樹脂組成物10については、例えば、上述のPAI樹脂11と、上述のND粒子12と、溶媒とを含有する硬化性組成物を基材に塗布した後に乾燥させることによって、作製することが可能である。この硬化性組成物の含有する溶媒としては、本実施形態では、PAI樹脂11が溶解性を示し且つND粒子12が溶解性を示す例えば極性有機溶媒が用いられる。そのような極性有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール、イソブチルアルコール、エチレングリコール、プロピレングリコール、グリセリン、2-メトキシエタノール、ジメチルスルホキシド、N-メチル-2-ピロリドン、アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、N,N-ジエチルアセトアミド、N,N-ジメチルメトキシアセトアミド、ヘキサメチルホスホルアミド、ジメチルスルホン、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、1,3-ジメチル-2-イミダゾリジノン、テトラメチル尿素、シクロヘキサノン、酢酸テトラヒドロフルフリル、および炭酸プロピレンが挙げられる。当該溶媒としては、一種類の溶媒が用いられてもよいし、二種類以上の溶媒が用いられてもよい。PAI樹脂11およびND粒子12の溶解性がともに比較的に高いという観点からは、当該溶媒としては、N-メチル-2-ピロリドンが好ましい。また、上記の硬化性組成物の作製は、例えば、PAI樹脂11を含有する溶液とND粒子12を含有する溶液との混合によって行うことができる。PAI樹脂11を含有する溶液としては、例えば、上述のイソシアネート法または酸クロライド法による合成が行われてPAI樹脂11を含有する有機溶媒溶液、または、当該溶液について溶媒置換によって溶媒成分の置換操作を経た有機溶媒溶液を、用いることができる。ND粒子12を含有する溶液としては、例えば、ND粒子12の分散する水分散液について水から有機溶媒への溶媒置換操作を経た有機溶媒溶液を用いることができる。
The resin composition 10 can be produced, for example, by applying a curable composition containing the above-described PAI resin 11, the above-described ND particles 12, and a solvent to a substrate and then drying the substrate. is there. As the solvent contained in the curable composition, for example, a polar organic solvent in which the PAI resin 11 exhibits solubility and the ND particles 12 exhibit solubility is used in the present embodiment. Examples of such polar organic solvents include methanol, ethanol, isopropanol, isobutyl alcohol, ethylene glycol, propylene glycol, glycerin, 2-methoxyethanol, dimethyl sulfoxide, N-methyl-2-pyrrolidone, acetonitrile, N, N- Dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, hexamethylphosphoramide, dimethylsulfone, γ-butyrolactone, α-acetyl-γ -Butyrolactone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, 1,3-dimethyl-2-imidazolidinone, tetramethylurea, cyclohexanone, tetrahydrofurfuryl acetate, and And propylene carbonate That. As the solvent, one type of solvent may be used, or two or more types of solvents may be used. From the viewpoint that both the PAI resin 11 and the ND particles 12 have relatively high solubility, N-methyl-2-pyrrolidone is preferable as the solvent. Moreover, preparation of said curable composition can be performed by mixing the solution containing PAI resin 11 and the solution containing ND particle | grains 12, for example. As the solution containing the PAI resin 11, for example, an organic solvent solution containing the PAI resin 11 synthesized by the above-described isocyanate method or acid chloride method, or a solvent component replacement operation by solvent replacement of the solution is used. The passed organic solvent solution can be used. As the solution containing the ND particles 12, for example, an organic solvent solution obtained by subjecting the aqueous dispersion in which the ND particles 12 are dispersed to a solvent replacement operation from water to an organic solvent can be used.
PAI樹脂11と、ND粒子12と、溶媒とを含有する上述の硬化性組成物において、PAI樹脂11の含有量は例えば5~20質量%であり、ND粒子12の含有量は、PAI樹脂11とND粒子12の総量に対して好ましくは0.01~20質量%である。ND粒子12の当該含有量が多いほど、形成される樹脂組成物10において、ND粒子12の存在に起因する熱分解抑制効果は大きい傾向にあるところ、ND粒子12の当該含有量の下限は、より好ましくは0.1質量%、より好ましくは1質量%である。形成される樹脂組成物10においてPAI樹脂11による樹脂特性を適切に発現させるという観点からは、ND粒子12の当該含有量は20質量%以下であるのが好ましい場合がある。また、形成される樹脂組成物10中のND粒子12の存在に起因する効果をより少量のND粒子12で享受するという観点からは、ND粒子12の当該含有量の上限は、より好ましくは10質量%、より好ましくは8質量%、より好ましくは6質量%である。
In the curable composition containing the PAI resin 11, the ND particles 12 and the solvent, the content of the PAI resin 11 is, for example, 5 to 20% by mass, and the content of the ND particles 12 is The total amount of ND particles 12 is preferably 0.01 to 20% by mass. As the content of the ND particles 12 increases, the thermal decomposition inhibiting effect due to the presence of the ND particles 12 tends to increase in the resin composition 10 to be formed, and the lower limit of the content of the ND particles 12 is, More preferably, it is 0.1 mass%, More preferably, it is 1 mass%. From the viewpoint of appropriately developing the resin characteristics of the PAI resin 11 in the resin composition 10 to be formed, the content of the ND particles 12 may be preferably 20% by mass or less. Further, from the viewpoint of enjoying the effect due to the presence of the ND particles 12 in the resin composition 10 to be formed with a smaller amount of the ND particles 12, the upper limit of the content of the ND particles 12 is more preferably 10 It is 8 mass%, More preferably, it is 8 mass%, More preferably, it is 6 mass%.
[実施例1]
〔硬化性組成物の作製〕
次のような溶媒置換工程および混合工程を経て、硬化性組成物を作製した。 [Example 1]
(Preparation of curable composition)
The curable composition was produced through the following solvent substitution steps and mixing steps.
〔硬化性組成物の作製〕
次のような溶媒置換工程および混合工程を経て、硬化性組成物を作製した。 [Example 1]
(Preparation of curable composition)
The curable composition was produced through the following solvent substitution steps and mixing steps.
溶媒置換工程では、ナノダイヤモンド水分散液(商品名「Vox D」,固形分濃度ないしナノダイヤモンド濃度は5質量%,水溶媒,粒径D50は5nm,pH9におけるゼータ電位は-55mV,Carbodeon社製)の溶媒たる水をN-メチル-2-ピロリドン(NMP,沸点202℃)に置換した。具体的には、当該ナノダイヤモンド水分散液2.3gにNMP(濃度99.5質量%,キシダ化学株式会社製)60gを加えて混合し、エバポレーターを使用して、当該混合物を加熱および減圧の条件下に置いた。エバポレーターによる溶媒置換操作では、当該混合物について、スターラーで撹拌しつつ、1.5kPaの減圧条件下で初期温度45℃から80℃に25分かけて昇温させ、その後、1.5kPaの減圧条件下で、約20分間、80℃を維持した。このような溶媒置換操作を経て、ナノダイヤモンド粒子のNMP分散液を作製した。このナノダイヤモンドNMP分散液のナノダイヤモンド固形分濃度は2.0質量%であった。本分散液に含まれるナノダイヤモンド粒子の粒径について、スペクトリス株式会社製の装置(商品名「ゼータサイザー ナノZS」)を使用して動的光散乱法によって測定したところ、粒径D50(メディアン径)は12.4nmであった。
In the solvent replacement step, a nanodiamond aqueous dispersion (trade name “Vox D”, solid content or nanodiamond concentration is 5 mass%, aqueous solvent, particle size D50 is 5 nm, zeta potential at pH 9 is −55 mV, manufactured by Carbodeon. ) Was replaced with N-methyl-2-pyrrolidone (NMP, boiling point 202 ° C.). Specifically, 60 g of NMP (concentration 99.5% by mass, manufactured by Kishida Chemical Co., Ltd.) is added to 2.3 g of the nanodiamond aqueous dispersion and mixed, and the mixture is heated and decompressed using an evaporator. Placed under conditions. In the solvent replacement operation using an evaporator, the mixture is heated with a stirrer under a reduced pressure of 1.5 kPa from an initial temperature of 45 ° C. to 80 ° C. over 25 minutes, and then under reduced pressure of 1.5 kPa. At 80 ° C. for about 20 minutes. Through such solvent replacement operation, an NMP dispersion of nanodiamond particles was prepared. The nanodiamond NMP dispersion had a nanodiamond solid content concentration of 2.0% by mass. The particle size of the nanodiamond particles contained in this dispersion was measured by a dynamic light scattering method using an apparatus (trade name “Zetasizer Nano ZS”) manufactured by Spectris Co., Ltd. ) Was 12.4 nm.
次の混合工程では、上述のようにして作製されたナノダイヤモンドNMP分散液と、ポリアミドイミド樹脂含有溶液(商品名「バイロマックス HR-11NN」,固形分濃度ないしポリアミドイミド樹脂濃度は15質量%,NMP溶媒,東洋紡株式会社製)とを混合した。具体的には、このポリアミドイミド樹脂含有溶液を撹拌しつつこれに上述のナノダイヤモンドNMP分散液を滴下操作によって添加し、ポリアミドイミド樹脂95質量部に対するナノダイヤモンド含有量が5質量部となる量比で、ポリアミドイミド樹脂含有溶液とナノダイヤモンドNMP分散液とを混合した。以上のようにして、ポリアミドイミド樹脂と、ナノダイヤモンド粒子と、溶媒たるNMPとを含有する実施例1の硬化性組成物を作製した。
In the next mixing step, the nanodiamond NMP dispersion prepared as described above and a polyamideimide resin-containing solution (trade name “Bilomax® HR-11NN”, solid content concentration or polyamideimide resin concentration is 15% by mass, NMP solvent, manufactured by Toyobo Co., Ltd.). Specifically, while stirring the polyamideimide resin-containing solution, the above-mentioned nanodiamond NMP dispersion is added thereto by a dropping operation, so that the nanodiamond content with respect to 95 parts by mass of the polyamideimide resin is 5 parts by mass. Then, the polyamideimide resin-containing solution and the nanodiamond NMP dispersion were mixed. As described above, the curable composition of Example 1 containing polyamideimide resin, nanodiamond particles, and NMP as a solvent was produced.
〔熱可塑性樹脂組成物の作製〕
以上のようにして作製された実施例1の硬化性組成物から、熱可塑性樹脂組成物を作製した。まず、スキージを使用して、ガラス板上に所定の厚さで硬化性組成物を塗布した。そして、硬化性組成物の塗膜の形成された当該ガラス板をマッフル炉内に入れて窒素雰囲気下で焼成処理した。具体的には、まず、130℃で10分間の加熱を行い、次に、130℃から300℃に60分間かけて昇温し、その後、300℃で60分間の加熱を行った。以上のようにして、ポリアミドイミド樹脂およびナノダイヤモンド粒子を含有する実施例1の熱可塑性樹脂組成物、即ち、ポリアミドイミド樹脂とナノダイヤモンド粒子とが複合化された実施例1の樹脂フィルムを作製した。この樹脂フィルムについて、ナノダイヤモンド含有量は5質量%であり、厚さは20μmである。 [Preparation of thermoplastic resin composition]
A thermoplastic resin composition was produced from the curable composition of Example 1 produced as described above. First, using a squeegee, the curable composition was applied on a glass plate with a predetermined thickness. And the said glass plate in which the coating film of the curable composition was formed was put in the muffle furnace, and it baked in nitrogen atmosphere. Specifically, first, heating was performed at 130 ° C. for 10 minutes, then the temperature was increased from 130 ° C. to 300 ° C. over 60 minutes, and then heating was performed at 300 ° C. for 60 minutes. As described above, a thermoplastic resin composition of Example 1 containing a polyamideimide resin and nanodiamond particles, that is, a resin film of Example 1 in which a polyamideimide resin and nanodiamond particles were combined was prepared. . About this resin film, nanodiamond content is 5 mass% and thickness is 20 micrometers.
以上のようにして作製された実施例1の硬化性組成物から、熱可塑性樹脂組成物を作製した。まず、スキージを使用して、ガラス板上に所定の厚さで硬化性組成物を塗布した。そして、硬化性組成物の塗膜の形成された当該ガラス板をマッフル炉内に入れて窒素雰囲気下で焼成処理した。具体的には、まず、130℃で10分間の加熱を行い、次に、130℃から300℃に60分間かけて昇温し、その後、300℃で60分間の加熱を行った。以上のようにして、ポリアミドイミド樹脂およびナノダイヤモンド粒子を含有する実施例1の熱可塑性樹脂組成物、即ち、ポリアミドイミド樹脂とナノダイヤモンド粒子とが複合化された実施例1の樹脂フィルムを作製した。この樹脂フィルムについて、ナノダイヤモンド含有量は5質量%であり、厚さは20μmである。 [Preparation of thermoplastic resin composition]
A thermoplastic resin composition was produced from the curable composition of Example 1 produced as described above. First, using a squeegee, the curable composition was applied on a glass plate with a predetermined thickness. And the said glass plate in which the coating film of the curable composition was formed was put in the muffle furnace, and it baked in nitrogen atmosphere. Specifically, first, heating was performed at 130 ° C. for 10 minutes, then the temperature was increased from 130 ° C. to 300 ° C. over 60 minutes, and then heating was performed at 300 ° C. for 60 minutes. As described above, a thermoplastic resin composition of Example 1 containing a polyamideimide resin and nanodiamond particles, that is, a resin film of Example 1 in which a polyamideimide resin and nanodiamond particles were combined was prepared. . About this resin film, nanodiamond content is 5 mass% and thickness is 20 micrometers.
〔熱重量測定〕
以上のようにして作製された実施例1の樹脂フィルムについて、熱重量測定装置(商品名「TG-DTA6300」,エスアイアイ・ナノテクノロジー株式会社製)を使用して、空気雰囲気下にて460℃で保持する間の重量減少量を測定した。本測定においては、460℃で10分間保持された時点での測定対象の重量を基準重量(初期重量)とした。その結果を、図2のグラフにおいて線E1をもって表す。図2に示すグラフにおいて、横軸は、測定対象の460℃での保持時間たる時間(分)を表し、縦軸は、基準重量からの重量変化率としてのTG(%)を表す。実施例1の樹脂フィルムが460℃で60分間保持された時点、即ち、実施例1の樹脂フィルムが基準重量に至った時点から460℃で50分間保持された時点での重量変化率は-13.1%、即ち重量減少率は13.1%、であった。 [Thermogravimetry]
About the resin film of Example 1 produced as described above, using a thermogravimetric measuring device (trade name “TG-DTA6300”, manufactured by SII Nano Technology Co., Ltd.), 460 ° C. in an air atmosphere. The weight loss during the holding was measured. In this measurement, the weight of the measurement object when held at 460 ° C. for 10 minutes was defined as the reference weight (initial weight). The result is represented by a line E1 in the graph of FIG. In the graph shown in FIG. 2, the horizontal axis represents the time (minutes) that is the retention time of the measurement target at 460 ° C., and the vertical axis represents TG (%) as the weight change rate from the reference weight. When the resin film of Example 1 was held at 460 ° C. for 60 minutes, that is, when the resin film of Example 1 reached the reference weight and was held at 460 ° C. for 50 minutes, the weight change rate was −13 0.1%, that is, the weight reduction rate was 13.1%.
以上のようにして作製された実施例1の樹脂フィルムについて、熱重量測定装置(商品名「TG-DTA6300」,エスアイアイ・ナノテクノロジー株式会社製)を使用して、空気雰囲気下にて460℃で保持する間の重量減少量を測定した。本測定においては、460℃で10分間保持された時点での測定対象の重量を基準重量(初期重量)とした。その結果を、図2のグラフにおいて線E1をもって表す。図2に示すグラフにおいて、横軸は、測定対象の460℃での保持時間たる時間(分)を表し、縦軸は、基準重量からの重量変化率としてのTG(%)を表す。実施例1の樹脂フィルムが460℃で60分間保持された時点、即ち、実施例1の樹脂フィルムが基準重量に至った時点から460℃で50分間保持された時点での重量変化率は-13.1%、即ち重量減少率は13.1%、であった。 [Thermogravimetry]
About the resin film of Example 1 produced as described above, using a thermogravimetric measuring device (trade name “TG-DTA6300”, manufactured by SII Nano Technology Co., Ltd.), 460 ° C. in an air atmosphere. The weight loss during the holding was measured. In this measurement, the weight of the measurement object when held at 460 ° C. for 10 minutes was defined as the reference weight (initial weight). The result is represented by a line E1 in the graph of FIG. In the graph shown in FIG. 2, the horizontal axis represents the time (minutes) that is the retention time of the measurement target at 460 ° C., and the vertical axis represents TG (%) as the weight change rate from the reference weight. When the resin film of Example 1 was held at 460 ° C. for 60 minutes, that is, when the resin film of Example 1 reached the reference weight and was held at 460 ° C. for 50 minutes, the weight change rate was −13 0.1%, that is, the weight reduction rate was 13.1%.
また、実施例1の樹脂フィルムについて、熱重量測定装置(商品名「TG-DTA6300」,エスアイアイ・ナノテクノロジー株式会社製)を使用して、空気雰囲気下にて410℃で保持する間の重量減少量を測定した。本測定においては、410℃で10分間保持された時点での測定対象の重量を基準重量(初期重量)とした。その結果を、図3のグラフにおいて線E1をもって表す。図3に示すグラフにおいて、横軸は、測定対象の410℃での保持時間たる時間(分)を表し、縦軸は、基準重量からの重量変化率としてのTG(%)を表す。実施例1の樹脂フィルムが410℃で60分間保持された時点、即ち、実施例1の樹脂フィルムが基準重量に至った時点から410℃で50分間保持された時点での重量変化率は-3.76%、即ち重量減少率は3.76%、であった。
Moreover, about the resin film of Example 1, the weight while hold | maintaining at 410 degreeC in an air atmosphere using a thermogravimetry apparatus (brand name "TG-DTA6300", SII nanotechnology Co., Ltd. make). The amount of decrease was measured. In this measurement, the weight of the measurement object when held at 410 ° C. for 10 minutes was defined as the reference weight (initial weight). The result is represented by a line E1 in the graph of FIG. In the graph shown in FIG. 3, the horizontal axis represents the time (minutes) that is the holding time of the measurement target at 410 ° C., and the vertical axis represents TG (%) as the weight change rate from the reference weight. When the resin film of Example 1 was held at 410 ° C. for 60 minutes, that is, when the resin film of Example 1 reached the reference weight and was held at 410 ° C. for 50 minutes, the weight change rate was −3 It was .76%, that is, the weight reduction rate was 3.76%.
〔表面抵抗率測定〕
上述のようにして作製された実施例1の樹脂フィルムについて、抵抗率計(商品名「ハイレスタUP MCP-HST450」,株式会社三菱化学アナリテック製)を使用して、表面抵抗率を測定した。本測定は、25℃および相対湿度50%の環境下で行った。その結果、実施例1の樹脂フィルムは、測定限界である1×1013Ω/□以上の表面抵抗率を示すことが判った。 (Surface resistivity measurement)
About the resin film of Example 1 produced as described above, the surface resistivity was measured using a resistivity meter (trade name “HIRESTA UP MCP-HST450”, manufactured by Mitsubishi Chemical Analytech Co., Ltd.). This measurement was performed in an environment of 25 ° C. and a relative humidity of 50%. As a result, it was found that the resin film of Example 1 exhibited a surface resistivity of 1 × 10 13 Ω / □ or more, which is a measurement limit.
上述のようにして作製された実施例1の樹脂フィルムについて、抵抗率計(商品名「ハイレスタUP MCP-HST450」,株式会社三菱化学アナリテック製)を使用して、表面抵抗率を測定した。本測定は、25℃および相対湿度50%の環境下で行った。その結果、実施例1の樹脂フィルムは、測定限界である1×1013Ω/□以上の表面抵抗率を示すことが判った。 (Surface resistivity measurement)
About the resin film of Example 1 produced as described above, the surface resistivity was measured using a resistivity meter (trade name “HIRESTA UP MCP-HST450”, manufactured by Mitsubishi Chemical Analytech Co., Ltd.). This measurement was performed in an environment of 25 ° C. and a relative humidity of 50%. As a result, it was found that the resin film of Example 1 exhibited a surface resistivity of 1 × 10 13 Ω / □ or more, which is a measurement limit.
[実施例2]
〔硬化性組成物の作製〕
実施例1で用いたナノダイヤモンド水分散液の代わりに別途用意したナノダイヤモンド水分散液(固形分濃度ないしナノダイヤモンド濃度は1.08質量%,水溶媒,粒径D50は6.04nm,pH6でのゼータ電位は-42mV,株式会社ダイセル製)を用いた以外は実施例1の溶媒置換工程と同様にして、ナノダイヤモンド水分散液の溶媒たる水をNMPに置換した(溶媒置換工程)。こうして得られたナノダイヤモンドNMP分散液のナノダイヤモンド固形分濃度は2.0質量%であった。本分散液に含まれるナノダイヤモンド粒子の粒径について、実施例1と同様にして動的光散乱法によって測定したところ、粒径D50(メディアン径)は6.83nmであった。次の混合工程では、得られたナノダイヤモンドNMP分散液と、ポリアミドイミド樹脂含有溶液(商品名「バイロマックス HR-11NN」,東洋紡株式会社製)とを混合した。具体的には、このポリアミドイミド樹脂含有溶液を撹拌しつつこれに上述のナノダイヤモンドNMP分散液を滴下操作によって添加し、ポリアミドイミド樹脂95質量部に対するナノダイヤモンド含有量が5質量部となる量比で、ポリアミドイミド樹脂含有溶液とナノダイヤモンドNMP分散液とを混合した。以上のようにして、ポリアミドイミド樹脂と、ナノダイヤモンド粒子と、溶媒たるNMPとを含有する実施例2の硬化性組成物を作製した。 [Example 2]
(Preparation of curable composition)
Nanodiamond aqueous dispersion prepared separately in place of the nanodiamond aqueous dispersion used in Example 1 (solid content concentration or nanodiamond concentration is 1.08% by mass, aqueous solvent, particle size D50 is 6.04 nm, pH 6) The water as the solvent of the nanodiamond aqueous dispersion was replaced with NMP (solvent replacement step) in the same manner as in the solvent replacement step of Example 1 except that the zeta potential of -42 mV, manufactured by Daicel Corporation) was used. The nanodiamond NMP dispersion thus obtained had a nanodiamond solid content concentration of 2.0% by mass. When the particle diameter of the nanodiamond particles contained in this dispersion was measured by the dynamic light scattering method in the same manner as in Example 1, the particle diameter D50 (median diameter) was 6.83 nm. In the next mixing step, the obtained nanodiamond NMP dispersion was mixed with a polyamideimide resin-containing solution (trade name “Vilomax HR-11NN”, manufactured by Toyobo Co., Ltd.). Specifically, while stirring the polyamideimide resin-containing solution, the above-mentioned nanodiamond NMP dispersion is added thereto by a dropping operation, so that the nanodiamond content with respect to 95 parts by mass of the polyamideimide resin is 5 parts by mass. Then, the polyamideimide resin-containing solution and the nanodiamond NMP dispersion were mixed. As described above, the curable composition of Example 2 containing polyamideimide resin, nanodiamond particles, and NMP as a solvent was produced.
〔硬化性組成物の作製〕
実施例1で用いたナノダイヤモンド水分散液の代わりに別途用意したナノダイヤモンド水分散液(固形分濃度ないしナノダイヤモンド濃度は1.08質量%,水溶媒,粒径D50は6.04nm,pH6でのゼータ電位は-42mV,株式会社ダイセル製)を用いた以外は実施例1の溶媒置換工程と同様にして、ナノダイヤモンド水分散液の溶媒たる水をNMPに置換した(溶媒置換工程)。こうして得られたナノダイヤモンドNMP分散液のナノダイヤモンド固形分濃度は2.0質量%であった。本分散液に含まれるナノダイヤモンド粒子の粒径について、実施例1と同様にして動的光散乱法によって測定したところ、粒径D50(メディアン径)は6.83nmであった。次の混合工程では、得られたナノダイヤモンドNMP分散液と、ポリアミドイミド樹脂含有溶液(商品名「バイロマックス HR-11NN」,東洋紡株式会社製)とを混合した。具体的には、このポリアミドイミド樹脂含有溶液を撹拌しつつこれに上述のナノダイヤモンドNMP分散液を滴下操作によって添加し、ポリアミドイミド樹脂95質量部に対するナノダイヤモンド含有量が5質量部となる量比で、ポリアミドイミド樹脂含有溶液とナノダイヤモンドNMP分散液とを混合した。以上のようにして、ポリアミドイミド樹脂と、ナノダイヤモンド粒子と、溶媒たるNMPとを含有する実施例2の硬化性組成物を作製した。 [Example 2]
(Preparation of curable composition)
Nanodiamond aqueous dispersion prepared separately in place of the nanodiamond aqueous dispersion used in Example 1 (solid content concentration or nanodiamond concentration is 1.08% by mass, aqueous solvent, particle size D50 is 6.04 nm, pH 6) The water as the solvent of the nanodiamond aqueous dispersion was replaced with NMP (solvent replacement step) in the same manner as in the solvent replacement step of Example 1 except that the zeta potential of -42 mV, manufactured by Daicel Corporation) was used. The nanodiamond NMP dispersion thus obtained had a nanodiamond solid content concentration of 2.0% by mass. When the particle diameter of the nanodiamond particles contained in this dispersion was measured by the dynamic light scattering method in the same manner as in Example 1, the particle diameter D50 (median diameter) was 6.83 nm. In the next mixing step, the obtained nanodiamond NMP dispersion was mixed with a polyamideimide resin-containing solution (trade name “Vilomax HR-11NN”, manufactured by Toyobo Co., Ltd.). Specifically, while stirring the polyamideimide resin-containing solution, the above-mentioned nanodiamond NMP dispersion is added thereto by a dropping operation, so that the nanodiamond content with respect to 95 parts by mass of the polyamideimide resin is 5 parts by mass. Then, the polyamideimide resin-containing solution and the nanodiamond NMP dispersion were mixed. As described above, the curable composition of Example 2 containing polyamideimide resin, nanodiamond particles, and NMP as a solvent was produced.
〔熱可塑性樹脂組成物の作製〕
実施例1の硬化性組成物に代えて実施例2の硬化性組成物を用いたこと以外は実施例1と同様にして、実施例2の熱可塑性樹脂組成物、即ち、ポリアミドイミド樹脂とナノダイヤモンド粒子とが複合化された実施例2の樹脂フィルムを作製した。この樹脂フィルムについて、ナノダイヤモンド含有量は5質量%であり、厚さは20μmである。 [Preparation of thermoplastic resin composition]
The thermoplastic resin composition of Example 2, i.e., the polyamideimide resin and the nanomaterial, was used in the same manner as in Example 1 except that the curable composition of Example 2 was used instead of the curable composition of Example 1. A resin film of Example 2 in which diamond particles were combined was produced. About this resin film, nanodiamond content is 5 mass% and thickness is 20 micrometers.
実施例1の硬化性組成物に代えて実施例2の硬化性組成物を用いたこと以外は実施例1と同様にして、実施例2の熱可塑性樹脂組成物、即ち、ポリアミドイミド樹脂とナノダイヤモンド粒子とが複合化された実施例2の樹脂フィルムを作製した。この樹脂フィルムについて、ナノダイヤモンド含有量は5質量%であり、厚さは20μmである。 [Preparation of thermoplastic resin composition]
The thermoplastic resin composition of Example 2, i.e., the polyamideimide resin and the nanomaterial, was used in the same manner as in Example 1 except that the curable composition of Example 2 was used instead of the curable composition of Example 1. A resin film of Example 2 in which diamond particles were combined was produced. About this resin film, nanodiamond content is 5 mass% and thickness is 20 micrometers.
〔熱重量測定〕
以上のようにして作製された実施例2の樹脂フィルムについて、実施例1の樹脂フィルムと同様に、熱重量測定装置(商品名「TG-DTA6300」)を使用して、空気雰囲気下にて460℃で保持する間の重量減少量を測定した。その結果を、図2のグラフにおいて線E2をもって表す。実施例2の樹脂フィルムが460℃で60分間保持された時点、即ち、実施例2の樹脂フィルムが基準重量に至った時点から460℃で50分間保持された時点での重量減少率は、21.0%であった。 [Thermogravimetry]
About the resin film of Example 2 produced as described above, in the same manner as the resin film of Example 1, using a thermogravimetric measurement apparatus (trade name “TG-DTA6300”), 460 in an air atmosphere. The weight loss during holding at 0 ° C. was measured. The result is represented by a line E2 in the graph of FIG. When the resin film of Example 2 was held at 460 ° C. for 60 minutes, that is, when the resin film of Example 2 reached the reference weight and held at 460 ° C. for 50 minutes, the weight reduction rate was 21 0.0%.
以上のようにして作製された実施例2の樹脂フィルムについて、実施例1の樹脂フィルムと同様に、熱重量測定装置(商品名「TG-DTA6300」)を使用して、空気雰囲気下にて460℃で保持する間の重量減少量を測定した。その結果を、図2のグラフにおいて線E2をもって表す。実施例2の樹脂フィルムが460℃で60分間保持された時点、即ち、実施例2の樹脂フィルムが基準重量に至った時点から460℃で50分間保持された時点での重量減少率は、21.0%であった。 [Thermogravimetry]
About the resin film of Example 2 produced as described above, in the same manner as the resin film of Example 1, using a thermogravimetric measurement apparatus (trade name “TG-DTA6300”), 460 in an air atmosphere. The weight loss during holding at 0 ° C. was measured. The result is represented by a line E2 in the graph of FIG. When the resin film of Example 2 was held at 460 ° C. for 60 minutes, that is, when the resin film of Example 2 reached the reference weight and held at 460 ° C. for 50 minutes, the weight reduction rate was 21 0.0%.
〔表面抵抗率測定〕
上述のようにして作製された実施例2の樹脂フィルムについて、実施例1の樹脂フィルムと同様にして、抵抗率計(商品名「ハイレスタUP MCP-HST450」,株式会社三菱化学アナリテック製)を使用して表面抵抗率を測定した。その結果、実施例2の樹脂フィルムは、測定限界である1×1013Ω/□以上の表面抵抗率を示すことが判った。 (Surface resistivity measurement)
For the resin film of Example 2 produced as described above, a resistivity meter (trade name “HIRESTA UP MCP-HST450”, manufactured by Mitsubishi Chemical Analytech Co., Ltd.) was used in the same manner as the resin film of Example 1. Used to measure surface resistivity. As a result, it was found that the resin film of Example 2 exhibited a surface resistivity of 1 × 10 13 Ω / □ or more, which is a measurement limit.
上述のようにして作製された実施例2の樹脂フィルムについて、実施例1の樹脂フィルムと同様にして、抵抗率計(商品名「ハイレスタUP MCP-HST450」,株式会社三菱化学アナリテック製)を使用して表面抵抗率を測定した。その結果、実施例2の樹脂フィルムは、測定限界である1×1013Ω/□以上の表面抵抗率を示すことが判った。 (Surface resistivity measurement)
For the resin film of Example 2 produced as described above, a resistivity meter (trade name “HIRESTA UP MCP-HST450”, manufactured by Mitsubishi Chemical Analytech Co., Ltd.) was used in the same manner as the resin film of Example 1. Used to measure surface resistivity. As a result, it was found that the resin film of Example 2 exhibited a surface resistivity of 1 × 10 13 Ω / □ or more, which is a measurement limit.
[比較例1]
〔熱可塑性樹脂組成物の作製〕
実施例1の硬化性組成物の代わりにポリアミドイミド樹脂含有溶液(商品名「バイロマックス HR-11NN」,東洋紡株式会社製)を用いたこと以外は実施例1と同様にして、比較例1の熱可塑性樹脂組成物、即ち、比較例1のポリアミドイミド樹脂フィルムを作製した。この樹脂フィルムの厚さは20μmである。 [Comparative Example 1]
[Preparation of thermoplastic resin composition]
Comparative Example 1 is the same as Example 1 except that a polyamideimide resin-containing solution (trade name “Vilomax HR-11NN”, manufactured by Toyobo Co., Ltd.) is used instead of the curable composition of Example 1. A thermoplastic resin composition, that is, a polyamideimide resin film of Comparative Example 1 was produced. The resin film has a thickness of 20 μm.
〔熱可塑性樹脂組成物の作製〕
実施例1の硬化性組成物の代わりにポリアミドイミド樹脂含有溶液(商品名「バイロマックス HR-11NN」,東洋紡株式会社製)を用いたこと以外は実施例1と同様にして、比較例1の熱可塑性樹脂組成物、即ち、比較例1のポリアミドイミド樹脂フィルムを作製した。この樹脂フィルムの厚さは20μmである。 [Comparative Example 1]
[Preparation of thermoplastic resin composition]
Comparative Example 1 is the same as Example 1 except that a polyamideimide resin-containing solution (trade name “Vilomax HR-11NN”, manufactured by Toyobo Co., Ltd.) is used instead of the curable composition of Example 1. A thermoplastic resin composition, that is, a polyamideimide resin film of Comparative Example 1 was produced. The resin film has a thickness of 20 μm.
〔熱重量測定〕
比較例1のポリアミドイミド樹脂フィルムについて、実施例1の樹脂フィルムと同様に、熱重量測定装置(商品名「TG-DTA6300」)を使用して、空気雰囲気下にて460℃で保持する間の重量減少量を測定した。その結果を、図2のグラフにおいて線C1をもって表す。比較例1のポリアミドイミド樹脂フィルムが460℃で60分間保持された時点、即ち、比較例1の樹脂フィルムが基準重量に至った時点から460℃で50分間保持された時点での重量減少率は、23.9%であった。 [Thermogravimetry]
About the polyamide-imide resin film of Comparative Example 1, in the same manner as the resin film of Example 1, using a thermogravimetric apparatus (trade name “TG-DTA6300”), while being held at 460 ° C. in an air atmosphere. The amount of weight loss was measured. The result is represented by a line C1 in the graph of FIG. When the polyamideimide resin film of Comparative Example 1 was held at 460 ° C. for 60 minutes, that is, when the resin film of Comparative Example 1 reached the reference weight and was held at 460 ° C. for 50 minutes, 23.9%.
比較例1のポリアミドイミド樹脂フィルムについて、実施例1の樹脂フィルムと同様に、熱重量測定装置(商品名「TG-DTA6300」)を使用して、空気雰囲気下にて460℃で保持する間の重量減少量を測定した。その結果を、図2のグラフにおいて線C1をもって表す。比較例1のポリアミドイミド樹脂フィルムが460℃で60分間保持された時点、即ち、比較例1の樹脂フィルムが基準重量に至った時点から460℃で50分間保持された時点での重量減少率は、23.9%であった。 [Thermogravimetry]
About the polyamide-imide resin film of Comparative Example 1, in the same manner as the resin film of Example 1, using a thermogravimetric apparatus (trade name “TG-DTA6300”), while being held at 460 ° C. in an air atmosphere. The amount of weight loss was measured. The result is represented by a line C1 in the graph of FIG. When the polyamideimide resin film of Comparative Example 1 was held at 460 ° C. for 60 minutes, that is, when the resin film of Comparative Example 1 reached the reference weight and was held at 460 ° C. for 50 minutes, 23.9%.
また、比較例1のポリアミドイミド樹脂フィルムについて、実施例1の樹脂フィルムと同様に、熱重量測定装置(商品名「TG-DTA6300」)を使用して、空気雰囲気下にて410℃で保持する間の重量減少量を測定した。その結果を、図3のグラフにおいて線C1をもって表す。比較例1のポリアミドイミド樹脂フィルムが410℃で60分間保持された時点、即ち、比較例1の樹脂フィルムが基準重量に至った時点から410℃で50分間保持された時点での重量減少率は、6.58%であった。
Further, the polyamideimide resin film of Comparative Example 1 is held at 410 ° C. in an air atmosphere using a thermogravimetric measurement device (trade name “TG-DTA6300”) in the same manner as the resin film of Example 1. The amount of weight loss during was measured. The result is represented by a line C1 in the graph of FIG. When the polyamideimide resin film of Comparative Example 1 was held at 410 ° C. for 60 minutes, that is, when the resin film of Comparative Example 1 reached the reference weight and held at 410 ° C. for 50 minutes, 6.58%.
〔表面抵抗率測定〕
上述のようにして作製された比較例1のポリアミドイミド樹脂フィルムについて、実施例1の樹脂フィルムと同様にして、抵抗率計(商品名「ハイレスタUP MCP-HST450」)を使用して表面抵抗率を測定した。その結果、比較例1の樹脂フィルムは、測定限界である1×1013Ω/□以上の表面抵抗率を示した。 (Surface resistivity measurement)
About the polyamidoimide resin film of the comparative example 1 produced as mentioned above, it carries out similarly to the resin film of Example 1, and uses a resistivity meter (brand name "Hiresta UP MCP-HST450") and surface resistivity. Was measured. As a result, the resin film of Comparative Example 1 exhibited a surface resistivity of 1 × 10 13 Ω / □ or more, which is the measurement limit.
上述のようにして作製された比較例1のポリアミドイミド樹脂フィルムについて、実施例1の樹脂フィルムと同様にして、抵抗率計(商品名「ハイレスタUP MCP-HST450」)を使用して表面抵抗率を測定した。その結果、比較例1の樹脂フィルムは、測定限界である1×1013Ω/□以上の表面抵抗率を示した。 (Surface resistivity measurement)
About the polyamidoimide resin film of the comparative example 1 produced as mentioned above, it carries out similarly to the resin film of Example 1, and uses a resistivity meter (brand name "Hiresta UP MCP-HST450") and surface resistivity. Was measured. As a result, the resin film of Comparative Example 1 exhibited a surface resistivity of 1 × 10 13 Ω / □ or more, which is the measurement limit.
〈10%熱分解温度測定〉
実施例1,2のそれぞれにおいて使用したナノダイヤモンド水分散液に含まれているナノダイヤモンドについて、その10%熱分解温度を測定した。具体的には、まず、サンドバスを使用して行う加熱乾燥によってナノダイヤモンド水分散液からナノダイヤモンド粉体を得た。次に、得られたナノダイヤモンド粉体について、熱重量測定装置(商品名「TG-DTA6300」,エスアイアイ・ナノテクノロジー株式会社製)を使用して、熱重量測定を行った。本測定では、測定対象について、その含有水分による測定結果への影響を充分に抑制すべく窒素雰囲気下にて200℃で10分間保持した後、空気雰囲気下で200℃から800℃まで昇温速度20℃/分で昇温する過程での重量減少量を測定した。また、本測定では、200℃で10分間保持された時点での測定対象の重量を基準重量(初期重量)とした。その結果を、図4のグラフに示す。図4に示すグラフにおいて、横軸は温度(℃)を表し、縦軸は、基準重量(初期重量)からの重量変化率としてのTG(%)を表す。図4のグラフでは、実施例1で使用したナノダイヤモンド粒子に係る測定結果について線E1'をもって表し、実施例2で使用したナノダイヤモンド粒子に係る測定結果について線E2'をもって表す。実施例1で使用したナノダイヤモンド粒子の10%熱分解温度は525.4℃であった。実施例2で使用したナノダイヤモンド粒子の10%熱分解温度は420.8℃であった。また、上述のポリアミドイミド樹脂含有溶液(商品名「バイロマックス HR-11NN」)を塗布および乾燥して形成されるポリアミドイミド樹脂フィルムについて、熱重量測定装置(商品名「TG-DTA6300」,エスアイアイ・ナノテクノロジー株式会社製)を使用して、空気雰囲気下で30℃から550℃まで昇温速度20℃/分で昇温する過程での重量減少量を測定したところ、当該ポリアミドイミド樹脂の10%熱分解温度は499℃であった。 <10% pyrolysis temperature measurement>
The nanodiamond contained in the nanodiamond aqueous dispersion used in each of Examples 1 and 2 was measured for its 10% thermal decomposition temperature. Specifically, first, nanodiamond powder was obtained from the nanodiamond aqueous dispersion by heat drying using a sand bath. Next, the obtained nanodiamond powder was subjected to thermogravimetric measurement using a thermogravimetric measurement device (trade name “TG-DTA6300”, manufactured by SII Nanotechnology Inc.). In this measurement, the measurement target is held at 200 ° C. for 10 minutes in a nitrogen atmosphere to sufficiently suppress the influence of the contained moisture on the measurement result, and then the rate of temperature increase from 200 ° C. to 800 ° C. in an air atmosphere The weight loss during the process of increasing the temperature at 20 ° C./min was measured. In this measurement, the weight of the object to be measured when it was held at 200 ° C. for 10 minutes was defined as the reference weight (initial weight). The result is shown in the graph of FIG. In the graph shown in FIG. 4, the horizontal axis represents temperature (° C.), and the vertical axis represents TG (%) as a weight change rate from the reference weight (initial weight). In the graph of FIG. 4, the measurement result relating to the nanodiamond particles used in Example 1 is represented by a line E1 ′, and the measurement result relating to the nanodiamond particles used in Example 2 is represented by a line E2 ′. The 10% pyrolysis temperature of the nanodiamond particles used in Example 1 was 525.4 ° C. The 10% pyrolysis temperature of the nanodiamond particles used in Example 2 was 40.8 ° C. In addition, for the polyamideimide resin film formed by applying and drying the above-mentioned solution containing polyamideimide resin (trade name “Vilomax HR-11NN”), a thermogravimetric measuring device (trade name “TG-DTA6300”, SII Using Nanotechnology Co., Ltd.), the amount of weight loss in the process of raising the temperature from 30 ° C. to 550 ° C. at a rate of temperature increase of 20 ° C./min under an air atmosphere was measured. The% thermal decomposition temperature was 499 ° C.
実施例1,2のそれぞれにおいて使用したナノダイヤモンド水分散液に含まれているナノダイヤモンドについて、その10%熱分解温度を測定した。具体的には、まず、サンドバスを使用して行う加熱乾燥によってナノダイヤモンド水分散液からナノダイヤモンド粉体を得た。次に、得られたナノダイヤモンド粉体について、熱重量測定装置(商品名「TG-DTA6300」,エスアイアイ・ナノテクノロジー株式会社製)を使用して、熱重量測定を行った。本測定では、測定対象について、その含有水分による測定結果への影響を充分に抑制すべく窒素雰囲気下にて200℃で10分間保持した後、空気雰囲気下で200℃から800℃まで昇温速度20℃/分で昇温する過程での重量減少量を測定した。また、本測定では、200℃で10分間保持された時点での測定対象の重量を基準重量(初期重量)とした。その結果を、図4のグラフに示す。図4に示すグラフにおいて、横軸は温度(℃)を表し、縦軸は、基準重量(初期重量)からの重量変化率としてのTG(%)を表す。図4のグラフでは、実施例1で使用したナノダイヤモンド粒子に係る測定結果について線E1'をもって表し、実施例2で使用したナノダイヤモンド粒子に係る測定結果について線E2'をもって表す。実施例1で使用したナノダイヤモンド粒子の10%熱分解温度は525.4℃であった。実施例2で使用したナノダイヤモンド粒子の10%熱分解温度は420.8℃であった。また、上述のポリアミドイミド樹脂含有溶液(商品名「バイロマックス HR-11NN」)を塗布および乾燥して形成されるポリアミドイミド樹脂フィルムについて、熱重量測定装置(商品名「TG-DTA6300」,エスアイアイ・ナノテクノロジー株式会社製)を使用して、空気雰囲気下で30℃から550℃まで昇温速度20℃/分で昇温する過程での重量減少量を測定したところ、当該ポリアミドイミド樹脂の10%熱分解温度は499℃であった。 <10% pyrolysis temperature measurement>
The nanodiamond contained in the nanodiamond aqueous dispersion used in each of Examples 1 and 2 was measured for its 10% thermal decomposition temperature. Specifically, first, nanodiamond powder was obtained from the nanodiamond aqueous dispersion by heat drying using a sand bath. Next, the obtained nanodiamond powder was subjected to thermogravimetric measurement using a thermogravimetric measurement device (trade name “TG-DTA6300”, manufactured by SII Nanotechnology Inc.). In this measurement, the measurement target is held at 200 ° C. for 10 minutes in a nitrogen atmosphere to sufficiently suppress the influence of the contained moisture on the measurement result, and then the rate of temperature increase from 200 ° C. to 800 ° C. in an air atmosphere The weight loss during the process of increasing the temperature at 20 ° C./min was measured. In this measurement, the weight of the object to be measured when it was held at 200 ° C. for 10 minutes was defined as the reference weight (initial weight). The result is shown in the graph of FIG. In the graph shown in FIG. 4, the horizontal axis represents temperature (° C.), and the vertical axis represents TG (%) as a weight change rate from the reference weight (initial weight). In the graph of FIG. 4, the measurement result relating to the nanodiamond particles used in Example 1 is represented by a line E1 ′, and the measurement result relating to the nanodiamond particles used in Example 2 is represented by a line E2 ′. The 10% pyrolysis temperature of the nanodiamond particles used in Example 1 was 525.4 ° C. The 10% pyrolysis temperature of the nanodiamond particles used in Example 2 was 40.8 ° C. In addition, for the polyamideimide resin film formed by applying and drying the above-mentioned solution containing polyamideimide resin (trade name “Vilomax HR-11NN”), a thermogravimetric measuring device (trade name “TG-DTA6300”, SII Using Nanotechnology Co., Ltd.), the amount of weight loss in the process of raising the temperature from 30 ° C. to 550 ° C. at a rate of temperature increase of 20 ° C./min under an air atmosphere was measured. The% thermal decomposition temperature was 499 ° C.
[評価]
図2,3のグラフに示される結果から、ナノダイヤモンド粒子が内部に分散する実施例1,2の熱可塑性樹脂組成物たる樹脂フィルムは、ナノダイヤモンド粒子を含有しない比較例1のポリアミドイミド樹脂フィルムよりも、熱分解が抑制されていること、即ち耐熱性が高いことが、解る。また、図2のグラフに示される結果から、10%熱分解温度が相対的に高いナノダイヤモンド粒子が内部に分散する実施例1の熱可塑性樹脂組成物たる樹脂フィルムは、10%熱分解温度が相対的に低いナノダイヤモンド粒子が内部に分散する実施例2の熱可塑性樹脂組成物たる樹脂フィルムはよりも、熱分解が抑制されていることが、即ち耐熱性が高いことが、解る。 [Evaluation]
From the results shown in the graphs of FIGS. 2 and 3, the resin film as the thermoplastic resin composition of Examples 1 and 2 in which the nanodiamond particles are dispersed is the polyamideimide resin film of Comparative Example 1 that does not contain nanodiamond particles. It can be seen that thermal decomposition is suppressed, that is, heat resistance is high. Further, from the results shown in the graph of FIG. 2, the resin film which is the thermoplastic resin composition of Example 1 in which nanodiamond particles having a relatively high 10% pyrolysis temperature are dispersed therein has a 10% pyrolysis temperature. It can be seen that the thermal decomposition is suppressed, that is, the heat resistance is higher than that of the resin film which is the thermoplastic resin composition of Example 2 in which relatively low nano-diamond particles are dispersed.
図2,3のグラフに示される結果から、ナノダイヤモンド粒子が内部に分散する実施例1,2の熱可塑性樹脂組成物たる樹脂フィルムは、ナノダイヤモンド粒子を含有しない比較例1のポリアミドイミド樹脂フィルムよりも、熱分解が抑制されていること、即ち耐熱性が高いことが、解る。また、図2のグラフに示される結果から、10%熱分解温度が相対的に高いナノダイヤモンド粒子が内部に分散する実施例1の熱可塑性樹脂組成物たる樹脂フィルムは、10%熱分解温度が相対的に低いナノダイヤモンド粒子が内部に分散する実施例2の熱可塑性樹脂組成物たる樹脂フィルムはよりも、熱分解が抑制されていることが、即ち耐熱性が高いことが、解る。 [Evaluation]
From the results shown in the graphs of FIGS. 2 and 3, the resin film as the thermoplastic resin composition of Examples 1 and 2 in which the nanodiamond particles are dispersed is the polyamideimide resin film of Comparative Example 1 that does not contain nanodiamond particles. It can be seen that thermal decomposition is suppressed, that is, heat resistance is high. Further, from the results shown in the graph of FIG. 2, the resin film which is the thermoplastic resin composition of Example 1 in which nanodiamond particles having a relatively high 10% pyrolysis temperature are dispersed therein has a 10% pyrolysis temperature. It can be seen that the thermal decomposition is suppressed, that is, the heat resistance is higher than that of the resin film which is the thermoplastic resin composition of Example 2 in which relatively low nano-diamond particles are dispersed.
以上のまとめとして、本発明の構成およびそのバリエーションを以下に付記として列記する。
As a summary of the above, the configuration of the present invention and its variations are listed below as appendices.
〔付記1〕ポリアミドイミド樹脂と、ナノダイヤモンド粒子とを含む、熱可塑性樹脂組成物。
〔付記2〕前記ナノダイヤモンド粒子の10%熱分解温度は400℃以上である、付記1に記載の熱可塑性樹脂組成物。
〔付記3〕前記ナノダイヤモンド粒子の10%熱分解温度は420℃以上である、付記1に記載の熱可塑性樹脂組成物。
〔付記4〕前記ナノダイヤモンド粒子の10%熱分解温度は450℃以上である、付記1に記載の熱可塑性樹脂組成物。
〔付記5〕前記ナノダイヤモンド粒子の10%熱分解温度は500℃以上である、付記1に記載の熱可塑性樹脂組成物。
〔付記6〕前記ナノダイヤモンド粒子の10%熱分解温度は520℃以上である、付記1に記載の熱可塑性樹脂組成物。
〔付記7〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が0.01質量%以上である、付記1から6のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記8〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が0.1質量%以上である、付記1から6のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記9〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が1質量%以上である、付記1から6のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記10〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が20質量%以下である、付記1から9のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記11〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が10質量%以下である、付記1から9のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記12〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が8質量%以下である、付記1から9のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記13〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が6質量%以下である、付記1から9のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記14〕前記ナノダイヤモンド粒子は、爆轟法ナノダイヤモンド粒子である、付記1から13のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記15〕前記ポリアミドイミド樹脂の含有量が80質量%以上である、付記1から14のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記16〕前記ポリアミドイミド樹脂の含有量が90質量%以上である、付記1から14のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記17〕前記ポリアミドイミド樹脂の含有量が92質量%以上である、付記1から14のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記18〕前記ポリアミドイミド樹脂の含有量が94質量%以上である、付記1から14のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記19〕前記ポリアミドイミド樹脂の含有量が95質量%以上である、付記1から14のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記20〕表面抵抗率が1×1012Ω/□以上である、付記1から19のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記21〕ポリアミドイミド樹脂と、ナノダイヤモンド粒子と、溶媒とを含む、硬化性組成物。
〔付記22〕前記ナノダイヤモンド粒子の10%熱分解温度は400℃以上である、付記21に記載の硬化性組成物。
〔付記23〕前記ナノダイヤモンド粒子の10%熱分解温度は420℃以上である、付記21に記載の硬化性組成物。
〔付記24〕前記ナノダイヤモンド粒子の10%熱分解温度は450℃以上である、付記21に記載の硬化性組成物。
〔付記25〕前記ナノダイヤモンド粒子の10%熱分解温度は500℃以上である、付記21に記載の硬化性組成物。
〔付記26〕前記ナノダイヤモンド粒子の10%熱分解温度は520℃以上である、付記21に記載の硬化性組成物。
〔付記27〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が0.01質量%以上である、付記22から26のいずれか一つに記載の硬化性組成物。
〔付記28〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が0.1質量%以上である、付記22から26のいずれか一つに記載の硬化性組成物。
〔付記29〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が1質量%以上である、付記22から26のいずれか一つに記載の硬化性組成物。
〔付記30〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が20質量%以下である、付記21から29のいずれか一つに記載の硬化性組成物。
〔付記31〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が10質量%以下である、付記21から29のいずれか一つに記載の硬化性組成物。
〔付記32〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が8質量%以下である、付記21から29のいずれか一つに記載の硬化性組成物。
〔付記33〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が6質量%以下である、付記21から29のいずれか一つに記載の硬化性組成物。
〔付記34〕前記ナノダイヤモンド粒子は、爆轟法ナノダイヤモンド粒子である、付記21から33のいずれか一つに記載の硬化性組成物。
〔付記35〕前記溶媒は、極性有機溶媒である、付記21から34のいずれか一つに記載の硬化性組成物。
〔付記36〕前記極性有機溶媒は、メタノール、エタノール、イソプロパノール、イソブチルアルコール、エチレングリコール、プロピレングリコール、グリセリン、2-メトキシエタノール、ジメチルスルホキシド、N-メチル-2-ピロリドン、アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、N,N-ジエチルアセトアミド、N,N-ジメチルメトキシアセトアミド、ヘキサメチルホスホルアミド、ジメチルスルホン、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、1,3-ジメチル-2-イミダゾリジノン、テトラメチル尿素、シクロヘキサノン、酢酸テトラヒドロフルフリル、および炭酸プロピレンからなる群より選択される少なくとも一つを含む、付記35に記載の硬化性組成物。 [Appendix 1] A thermoplastic resin composition comprising a polyamideimide resin and nanodiamond particles.
[Appendix 2] The thermoplastic resin composition according to Appendix 1, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 400 ° C. or higher.
[Appendix 3] The thermoplastic resin composition according to Appendix 1, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 420 ° C. or higher.
[Appendix 4] The thermoplastic resin composition according to Appendix 1, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 450 ° C. or higher.
[Appendix 5] The thermoplastic resin composition according to Appendix 1, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 500 ° C. or higher.
[Appendix 6] The thermoplastic resin composition according to Appendix 1, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 520 ° C. or higher.
[Appendix 7] The heat according to any one of appendices 1 to 6, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 0.01% by mass or more. Plastic resin composition.
[Appendix 8] The heat according to any one of appendices 1 to 6, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 0.1% by mass or more. Plastic resin composition.
[Appendix 9] The thermoplastic resin according to any one of appendices 1 to 6, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 1% by mass or more. Composition.
[Appendix 10] The thermoplastic resin according to any one of appendices 1 to 9, wherein the ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 20% by mass or less. Composition.
[Appendix 11] The thermoplastic resin according to any one of Appendixes 1 to 9, wherein a ratio of the content of the nanodiamond particles to a total content of the polyamideimide resin and the nanodiamond particles is 10% by mass or less. Composition.
[Appendix 12] The thermoplastic resin according to any one of Appendices 1 to 9, wherein the ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 8% by mass or less. Composition.
[Appendix 13] The thermoplastic resin according to any one of appendices 1 to 9, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 6% by mass or less. Composition.
[Appendix 14] The thermoplastic resin composition according to any one of Appendixes 1 to 13, wherein the nanodiamond particles are detonation nanodiamond particles.
[Appendix 15] The thermoplastic resin composition according to any one of Appendixes 1 to 14, wherein the content of the polyamideimide resin is 80% by mass or more.
[Supplementary Note 16] The thermoplastic resin composition according to any one of Supplementary notes 1 to 14, wherein the content of the polyamideimide resin is 90% by mass or more.
[Appendix 17] The thermoplastic resin composition according to any one of Appendixes 1 to 14, wherein the content of the polyamideimide resin is 92% by mass or more.
[Appendix 18] The thermoplastic resin composition according to any one of Appendixes 1 to 14, wherein the content of the polyamideimide resin is 94% by mass or more.
[Appendix 19] The thermoplastic resin composition according to any one of appendices 1 to 14, wherein the content of the polyamideimide resin is 95% by mass or more.
[Appendix 20] The thermoplastic resin composition according to any one of Appendixes 1 to 19, wherein the surface resistivity is 1 × 10 12 Ω / □ or more.
[Appendix 21] A curable composition comprising a polyamideimide resin, nanodiamond particles, and a solvent.
[Appendix 22] The curable composition according to Appendix 21, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 400 ° C. or higher.
[Appendix 23] The curable composition according to Appendix 21, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 420 ° C. or higher.
[Appendix 24] The curable composition according to Appendix 21, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 450 ° C. or higher.
[Appendix 25] The curable composition according to Appendix 21, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 500 ° C. or higher.
[Appendix 26] The curable composition according to Appendix 21, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 520 ° C. or higher.
[Supplementary note 27] The curing according to any one of Supplementary notes 22 to 26, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 0.01% by mass or more. Sex composition.
[Appendix 28] The curing according to any one of appendices 22 to 26, wherein the ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 0.1% by mass or more. Sex composition.
[Supplementary note 29] The curable composition according to any one of Supplementary notes 22 to 26, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 1% by mass or more. object.
[Supplementary Note 30] The curable composition according to any one of Supplementary notes 21 to 29, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 20% by mass or less. object.
[Appendix 31] The curable composition according to any one of appendices 21 to 29, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 10% by mass or less. object.
[Supplementary Note 32] The curable composition according to any one of Supplementary Notes 21 to 29, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 8% by mass or less. object.
[Appendix 33] The curable composition according to any one of appendices 21 to 29, wherein the ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 6% by mass or less. object.
[Appendix 34] The curable composition according to any one of appendices 21 to 33, wherein the nanodiamond particles are detonation nanodiamond particles.
[Appendix 35] The curable composition according to any one of Appendixes 21 to 34, wherein the solvent is a polar organic solvent.
[Appendix 36] The polar organic solvent is methanol, ethanol, isopropanol, isobutyl alcohol, ethylene glycol, propylene glycol, glycerin, 2-methoxyethanol, dimethyl sulfoxide, N-methyl-2-pyrrolidone, acetonitrile, N, N-dimethyl. Formamide, N, N-dimethylacetamide, N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, hexamethylphosphoramide, dimethylsulfone, γ-butyrolactone, α-acetyl-γ- Butyrolactone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, 1,3-dimethyl-2-imidazolidinone, tetramethylurea, cyclohexanone, tetrahydrofurfuryl acetate, and carbonic acid Selected from the group consisting of propylene At least one containing curable composition according to Note 35 to be.
〔付記2〕前記ナノダイヤモンド粒子の10%熱分解温度は400℃以上である、付記1に記載の熱可塑性樹脂組成物。
〔付記3〕前記ナノダイヤモンド粒子の10%熱分解温度は420℃以上である、付記1に記載の熱可塑性樹脂組成物。
〔付記4〕前記ナノダイヤモンド粒子の10%熱分解温度は450℃以上である、付記1に記載の熱可塑性樹脂組成物。
〔付記5〕前記ナノダイヤモンド粒子の10%熱分解温度は500℃以上である、付記1に記載の熱可塑性樹脂組成物。
〔付記6〕前記ナノダイヤモンド粒子の10%熱分解温度は520℃以上である、付記1に記載の熱可塑性樹脂組成物。
〔付記7〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が0.01質量%以上である、付記1から6のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記8〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が0.1質量%以上である、付記1から6のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記9〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が1質量%以上である、付記1から6のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記10〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が20質量%以下である、付記1から9のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記11〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が10質量%以下である、付記1から9のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記12〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が8質量%以下である、付記1から9のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記13〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が6質量%以下である、付記1から9のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記14〕前記ナノダイヤモンド粒子は、爆轟法ナノダイヤモンド粒子である、付記1から13のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記15〕前記ポリアミドイミド樹脂の含有量が80質量%以上である、付記1から14のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記16〕前記ポリアミドイミド樹脂の含有量が90質量%以上である、付記1から14のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記17〕前記ポリアミドイミド樹脂の含有量が92質量%以上である、付記1から14のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記18〕前記ポリアミドイミド樹脂の含有量が94質量%以上である、付記1から14のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記19〕前記ポリアミドイミド樹脂の含有量が95質量%以上である、付記1から14のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記20〕表面抵抗率が1×1012Ω/□以上である、付記1から19のいずれか一つに記載の熱可塑性樹脂組成物。
〔付記21〕ポリアミドイミド樹脂と、ナノダイヤモンド粒子と、溶媒とを含む、硬化性組成物。
〔付記22〕前記ナノダイヤモンド粒子の10%熱分解温度は400℃以上である、付記21に記載の硬化性組成物。
〔付記23〕前記ナノダイヤモンド粒子の10%熱分解温度は420℃以上である、付記21に記載の硬化性組成物。
〔付記24〕前記ナノダイヤモンド粒子の10%熱分解温度は450℃以上である、付記21に記載の硬化性組成物。
〔付記25〕前記ナノダイヤモンド粒子の10%熱分解温度は500℃以上である、付記21に記載の硬化性組成物。
〔付記26〕前記ナノダイヤモンド粒子の10%熱分解温度は520℃以上である、付記21に記載の硬化性組成物。
〔付記27〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が0.01質量%以上である、付記22から26のいずれか一つに記載の硬化性組成物。
〔付記28〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が0.1質量%以上である、付記22から26のいずれか一つに記載の硬化性組成物。
〔付記29〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が1質量%以上である、付記22から26のいずれか一つに記載の硬化性組成物。
〔付記30〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が20質量%以下である、付記21から29のいずれか一つに記載の硬化性組成物。
〔付記31〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が10質量%以下である、付記21から29のいずれか一つに記載の硬化性組成物。
〔付記32〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が8質量%以下である、付記21から29のいずれか一つに記載の硬化性組成物。
〔付記33〕前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が6質量%以下である、付記21から29のいずれか一つに記載の硬化性組成物。
〔付記34〕前記ナノダイヤモンド粒子は、爆轟法ナノダイヤモンド粒子である、付記21から33のいずれか一つに記載の硬化性組成物。
〔付記35〕前記溶媒は、極性有機溶媒である、付記21から34のいずれか一つに記載の硬化性組成物。
〔付記36〕前記極性有機溶媒は、メタノール、エタノール、イソプロパノール、イソブチルアルコール、エチレングリコール、プロピレングリコール、グリセリン、2-メトキシエタノール、ジメチルスルホキシド、N-メチル-2-ピロリドン、アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、N,N-ジエチルアセトアミド、N,N-ジメチルメトキシアセトアミド、ヘキサメチルホスホルアミド、ジメチルスルホン、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、1,3-ジメチル-2-イミダゾリジノン、テトラメチル尿素、シクロヘキサノン、酢酸テトラヒドロフルフリル、および炭酸プロピレンからなる群より選択される少なくとも一つを含む、付記35に記載の硬化性組成物。 [Appendix 1] A thermoplastic resin composition comprising a polyamideimide resin and nanodiamond particles.
[Appendix 2] The thermoplastic resin composition according to Appendix 1, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 400 ° C. or higher.
[Appendix 3] The thermoplastic resin composition according to Appendix 1, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 420 ° C. or higher.
[Appendix 4] The thermoplastic resin composition according to Appendix 1, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 450 ° C. or higher.
[Appendix 5] The thermoplastic resin composition according to Appendix 1, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 500 ° C. or higher.
[Appendix 6] The thermoplastic resin composition according to Appendix 1, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 520 ° C. or higher.
[Appendix 7] The heat according to any one of appendices 1 to 6, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 0.01% by mass or more. Plastic resin composition.
[Appendix 8] The heat according to any one of appendices 1 to 6, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 0.1% by mass or more. Plastic resin composition.
[Appendix 9] The thermoplastic resin according to any one of appendices 1 to 6, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 1% by mass or more. Composition.
[Appendix 10] The thermoplastic resin according to any one of appendices 1 to 9, wherein the ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 20% by mass or less. Composition.
[Appendix 11] The thermoplastic resin according to any one of Appendixes 1 to 9, wherein a ratio of the content of the nanodiamond particles to a total content of the polyamideimide resin and the nanodiamond particles is 10% by mass or less. Composition.
[Appendix 12] The thermoplastic resin according to any one of Appendices 1 to 9, wherein the ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 8% by mass or less. Composition.
[Appendix 13] The thermoplastic resin according to any one of appendices 1 to 9, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 6% by mass or less. Composition.
[Appendix 14] The thermoplastic resin composition according to any one of Appendixes 1 to 13, wherein the nanodiamond particles are detonation nanodiamond particles.
[Appendix 15] The thermoplastic resin composition according to any one of Appendixes 1 to 14, wherein the content of the polyamideimide resin is 80% by mass or more.
[Supplementary Note 16] The thermoplastic resin composition according to any one of Supplementary notes 1 to 14, wherein the content of the polyamideimide resin is 90% by mass or more.
[Appendix 17] The thermoplastic resin composition according to any one of Appendixes 1 to 14, wherein the content of the polyamideimide resin is 92% by mass or more.
[Appendix 18] The thermoplastic resin composition according to any one of Appendixes 1 to 14, wherein the content of the polyamideimide resin is 94% by mass or more.
[Appendix 19] The thermoplastic resin composition according to any one of appendices 1 to 14, wherein the content of the polyamideimide resin is 95% by mass or more.
[Appendix 20] The thermoplastic resin composition according to any one of Appendixes 1 to 19, wherein the surface resistivity is 1 × 10 12 Ω / □ or more.
[Appendix 21] A curable composition comprising a polyamideimide resin, nanodiamond particles, and a solvent.
[Appendix 22] The curable composition according to Appendix 21, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 400 ° C. or higher.
[Appendix 23] The curable composition according to Appendix 21, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 420 ° C. or higher.
[Appendix 24] The curable composition according to Appendix 21, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 450 ° C. or higher.
[Appendix 25] The curable composition according to Appendix 21, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 500 ° C. or higher.
[Appendix 26] The curable composition according to Appendix 21, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 520 ° C. or higher.
[Supplementary note 27] The curing according to any one of Supplementary notes 22 to 26, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 0.01% by mass or more. Sex composition.
[Appendix 28] The curing according to any one of appendices 22 to 26, wherein the ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 0.1% by mass or more. Sex composition.
[Supplementary note 29] The curable composition according to any one of Supplementary notes 22 to 26, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 1% by mass or more. object.
[Supplementary Note 30] The curable composition according to any one of Supplementary notes 21 to 29, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 20% by mass or less. object.
[Appendix 31] The curable composition according to any one of appendices 21 to 29, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 10% by mass or less. object.
[Supplementary Note 32] The curable composition according to any one of Supplementary Notes 21 to 29, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 8% by mass or less. object.
[Appendix 33] The curable composition according to any one of appendices 21 to 29, wherein the ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 6% by mass or less. object.
[Appendix 34] The curable composition according to any one of appendices 21 to 33, wherein the nanodiamond particles are detonation nanodiamond particles.
[Appendix 35] The curable composition according to any one of Appendixes 21 to 34, wherein the solvent is a polar organic solvent.
[Appendix 36] The polar organic solvent is methanol, ethanol, isopropanol, isobutyl alcohol, ethylene glycol, propylene glycol, glycerin, 2-methoxyethanol, dimethyl sulfoxide, N-methyl-2-pyrrolidone, acetonitrile, N, N-dimethyl. Formamide, N, N-dimethylacetamide, N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, hexamethylphosphoramide, dimethylsulfone, γ-butyrolactone, α-acetyl-γ- Butyrolactone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, 1,3-dimethyl-2-imidazolidinone, tetramethylurea, cyclohexanone, tetrahydrofurfuryl acetate, and carbonic acid Selected from the group consisting of propylene At least one containing curable composition according to Note 35 to be.
10 樹脂組成物(熱可塑性樹脂組成物)
11 PAI樹脂(ポリアミドイミド樹脂)
12 ND粒子(ナノダイヤモンド粒子) 10 Resin composition (thermoplastic resin composition)
11 PAI resin (polyamideimide resin)
12 ND particles (nanodiamond particles)
11 PAI樹脂(ポリアミドイミド樹脂)
12 ND粒子(ナノダイヤモンド粒子) 10 Resin composition (thermoplastic resin composition)
11 PAI resin (polyamideimide resin)
12 ND particles (nanodiamond particles)
Claims (13)
- ポリアミドイミド樹脂と、ナノダイヤモンド粒子とを含む、熱可塑性樹脂組成物。 A thermoplastic resin composition comprising a polyamideimide resin and nanodiamond particles.
- 前記ナノダイヤモンド粒子の10%熱分解温度は400℃以上である、請求項1に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 400 ° C or higher.
- 前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が0.01質量%以上である、請求項1または2に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1 or 2, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 0.01% by mass or more.
- 前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が20質量%以下である、請求項1から3のいずれか一つに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 3, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 20% by mass or less.
- 前記ナノダイヤモンド粒子は、爆轟法ナノダイヤモンド粒子である、請求項1から4のいずれか一つに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 4, wherein the nanodiamond particles are detonation nanodiamond particles.
- 表面抵抗率が1×1012Ω/□以上である、請求項1から5のいずれか一つに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 5, wherein the surface resistivity is 1 x 10 12 Ω / □ or more.
- ポリアミドイミド樹脂と、ナノダイヤモンド粒子と、溶媒とを含む、硬化性組成物。 A curable composition containing a polyamide-imide resin, nanodiamond particles, and a solvent.
- 前記ナノダイヤモンド粒子の10%熱分解温度は400℃以上である、請求項7に記載の硬化性組成物。 The curable composition according to claim 7, wherein the nanodiamond particles have a 10% thermal decomposition temperature of 400 ° C. or higher.
- 前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が0.01質量%以上である、請求項7または8に記載の硬化性組成物。 The curable composition according to claim 7 or 8, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 0.01% by mass or more.
- 前記ポリアミドイミド樹脂および前記ナノダイヤモンド粒子の合計含有量に対する前記ナノダイヤモンド粒子の含有量の割合が20質量%以下である、請求項7から9のいずれか一つに記載の硬化性組成物。 The curable composition according to any one of claims 7 to 9, wherein a ratio of the content of the nanodiamond particles to the total content of the polyamideimide resin and the nanodiamond particles is 20% by mass or less.
- 前記ナノダイヤモンド粒子は、爆轟法ナノダイヤモンド粒子である、請求項7から10のいずれか一つに記載の硬化性組成物。 The curable composition according to any one of claims 7 to 10, wherein the nanodiamond particles are detonated nanodiamond particles.
- 前記溶媒は、極性有機溶媒である、請求項7から11のいずれか一つに記載の硬化性組成物。 The curable composition according to any one of claims 7 to 11, wherein the solvent is a polar organic solvent.
- 前記極性有機溶媒は、メタノール、エタノール、イソプロパノール、イソブチルアルコール、エチレングリコール、プロピレングリコール、グリセリン、2-メトキシエタノール、ジメチルスルホキシド、N-メチル-2-ピロリドン、アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、N,N-ジエチルアセトアミド、N,N-ジメチルメトキシアセトアミド、ヘキサメチルホスホルアミド、ジメチルスルホン、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、1,3-ジメチル-2-イミダゾリジノン、テトラメチル尿素、シクロヘキサノン、酢酸テトラヒドロフルフリル、および炭酸プロピレンからなる群より選択される少なくとも一つを含む、請求項12に記載の硬化性組成物。 The polar organic solvent is methanol, ethanol, isopropanol, isobutyl alcohol, ethylene glycol, propylene glycol, glycerin, 2-methoxyethanol, dimethyl sulfoxide, N-methyl-2-pyrrolidone, acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, hexamethylphosphoramide, dimethylsulfone, γ-butyrolactone, α-acetyl-γ-butyrolactone, 1, The group consisting of 3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, 1,3-dimethyl-2-imidazolidinone, tetramethylurea, cyclohexanone, tetrahydrofurfuryl acetate, and propylene carbonate Less selected Including one Kutomo, curable composition according to claim 12.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-100304 | 2016-05-19 | ||
JP2016100304 | 2016-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017199499A1 true WO2017199499A1 (en) | 2017-11-23 |
Family
ID=60325745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/006215 WO2017199499A1 (en) | 2016-05-19 | 2017-02-20 | Thermoplastic resin composition and curable composition |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201809142A (en) |
WO (1) | WO2017199499A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020026790A1 (en) * | 2018-07-30 | 2020-02-06 | 株式会社ダイセル | Surface-modified nanodiamond and dispersion and composite material containing surface-modified nanodiamond |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008101189A (en) * | 2006-09-19 | 2008-05-01 | Nissan Motor Co Ltd | Low friction sliding mechanism |
JP2012201878A (en) * | 2011-03-28 | 2012-10-22 | Vision Development Co Ltd | Diamond-containing composite resin composition and method of manufacturing the same |
-
2017
- 2017-02-20 WO PCT/JP2017/006215 patent/WO2017199499A1/en active Application Filing
- 2017-03-08 TW TW106107548A patent/TW201809142A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008101189A (en) * | 2006-09-19 | 2008-05-01 | Nissan Motor Co Ltd | Low friction sliding mechanism |
JP2012201878A (en) * | 2011-03-28 | 2012-10-22 | Vision Development Co Ltd | Diamond-containing composite resin composition and method of manufacturing the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020026790A1 (en) * | 2018-07-30 | 2020-02-06 | 株式会社ダイセル | Surface-modified nanodiamond and dispersion and composite material containing surface-modified nanodiamond |
JPWO2020026790A1 (en) * | 2018-07-30 | 2021-08-02 | 株式会社ダイセル | Surface-modified nanodiamonds, dispersions containing the surface-modified nanodiamonds, and composite materials |
JP7404238B2 (en) | 2018-07-30 | 2023-12-25 | 株式会社ダイセル | Method for producing surface-modified nanodiamonds and method for producing composite materials |
Also Published As
Publication number | Publication date |
---|---|
TW201809142A (en) | 2018-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6734124B2 (en) | Method for producing cured resin film and cured resin film | |
JP6039085B2 (en) | Heat dissipation coating composition and heat dissipation structure | |
JP5357749B2 (en) | Method for preparing polyimide-based compositions useful in high frequency circuit applications | |
JP5057262B2 (en) | Method for producing surface-modified carbon black | |
US10336661B2 (en) | Hierarchical self-assembled energetic materials and formation methods | |
JP5870720B2 (en) | Carbon nanotube dispersant made of polyamic acid | |
JP6476469B2 (en) | Polyamic acid composition and polyimide composition | |
JP2010146726A (en) | Conductive composition | |
CN107099048B (en) | Preparation method of solvent-resistant porous polyimide film | |
WO2017199499A1 (en) | Thermoplastic resin composition and curable composition | |
KR20240088894A (en) | Compositions and paints | |
JP5833783B1 (en) | Polyimide powder and method for producing the same | |
CN108117658A (en) | The preparation method of electrostatic prevention suction agglomeration imide membrane | |
JP2022001656A (en) | Manufacturing method of polyimide powder | |
JP2017048294A (en) | Curable resin composition and cured resin body | |
JP2012201878A (en) | Diamond-containing composite resin composition and method of manufacturing the same | |
Yahya et al. | Interaction and thermal studies on graphene oxide in NC/DEGDN/GO nanocomposites | |
Yang et al. | Preparation and thermal performance of nitrocellulose coated by polydopamine | |
WO2017203763A1 (en) | Nano-diamond organic solvent dispersion production method and nano-diamond organic solvent dispersion | |
JP2016191067A (en) | Coating agent composition and method for forming coating film | |
JP6249996B2 (en) | Polyimide resin composition and method for producing the same | |
WO2015094840A2 (en) | Method of extending pot life of coating compositions | |
JP7541910B2 (en) | Additive for resin, additive dispersion composition for resin, and resin composition | |
KR20150003166A (en) | Method for manufacturing conductive polyimide film | |
Yuan et al. | Effect of polyaspartic acid‐functionalized graphene oxide on the mechanical performance of polyimide‐based composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17798937 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17798937 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |