WO2017199399A1 - Management device, automatic meter reading system, and state monitoring method - Google Patents

Management device, automatic meter reading system, and state monitoring method Download PDF

Info

Publication number
WO2017199399A1
WO2017199399A1 PCT/JP2016/064905 JP2016064905W WO2017199399A1 WO 2017199399 A1 WO2017199399 A1 WO 2017199399A1 JP 2016064905 W JP2016064905 W JP 2016064905W WO 2017199399 A1 WO2017199399 A1 WO 2017199399A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
communication quality
measurement information
measurement
management device
Prior art date
Application number
PCT/JP2016/064905
Other languages
French (fr)
Japanese (ja)
Inventor
智彦 秋山
勇 林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PL428137A priority Critical patent/PL428137A1/en
Priority to PCT/JP2016/064905 priority patent/WO2017199399A1/en
Priority to JP2018518022A priority patent/JP6529668B2/en
Publication of WO2017199399A1 publication Critical patent/WO2017199399A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Definitions

  • the present invention relates to an automatic meter reading system management device, an automatic meter reading system, and a state monitoring method for collecting information such as the amount of electric power used by each consumer using power line communication (hereinafter referred to as PLC).
  • PLC power line communication
  • an automatic meter reading system in which a smart meter is installed at each consumer and an aggregation device called a concentrator collects information such as the amount of power used by each consumer through a communication function has become widespread.
  • the PLC has different attenuation characteristics and noise characteristics for each slave station apparatus between a single master station apparatus and a plurality of slave station apparatuses that perform communication. Therefore, when installing the slave station device, it is necessary to estimate the communication performance between the master station device and each slave station device in advance.
  • a database is constructed by collecting data on physical conditions and noise sources surrounding the master station device and the slave station device, and when installing the slave station device, The communication performance of each slave terminal is estimated based on the information stored in the database using a database constructed in advance.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a management device capable of specifying a factor that degrades communication quality in an automatic meter reading system using a PLC.
  • a management device is installed in each consumer to measure electrical information regarding power, and communication using each of the smart meters and a power line
  • the power line state is monitored in an automatic meter reading system including a host terminal that collects measurement information including measurement results of electrical information.
  • the management device displays the communication quality information indicating the communication quality between the adjacent smart meters, the communication quality information indicating the communication quality between the upper terminal and the adjacent smart meter, and the measurement information. Obtained from a terminal, specifies a consumer of a noise generation source based on the acquired communication quality information and measurement information, and estimates the noise generation time.
  • the management device has an effect that it is possible to identify a factor that degrades communication quality in an automatic meter reading system using a PLC.
  • FIG. 1 is a diagram illustrating a configuration example of a management device according to a first embodiment.
  • FIG. 3 is a sequence diagram showing an operation example of the automatic meter reading system according to the first embodiment.
  • FIG. 1 is a flowchart illustrating an operation example of a management apparatus according to a first embodiment;
  • the figure which shows the example of the timing which the high-order terminal concerning Embodiment 1 collects measurement data
  • FIG. 1 is a diagram illustrating an example of a hardware configuration of a management device according to a first embodiment
  • FIG. 3 is a diagram illustrating another example of the hardware configuration of the management apparatus according to the first embodiment.
  • FIG. 1 is a diagram illustrating an example of a hardware configuration of a management device according to a first embodiment
  • FIG. 3 is a diagram illustrating another example of the hardware configuration of the management apparatus according to the first embodiment.
  • FIG. 1 is a diagram illustrating an example of a hardware configuration of a management device according to a first embodiment
  • FIG. 3 is a diagram illustrating another example of the hardware configuration of the management apparatus according to the first embodiment.
  • FIG. 1 is a diagram illustrating an example of a hardware configuration of a management
  • FIG. 1 is a diagram illustrating a configuration example of an automatic meter reading system according to the first embodiment.
  • the automatic meter reading system 100 includes a host terminal 1 that collects data such as the amount of power used by consumers, smart meters 2-11, 12-12, 2-13,. , 2-21, 22-22, 2-23,..., And a management device 5 that monitors the state of the automatic meter reading system 100.
  • a host terminal 1 that collects data such as the amount of power used by consumers
  • a management device 5 that monitors the state of the automatic meter reading system 100.
  • the upper terminal 1 collects data from each smart meter 2 by PLC performed via the power line 10.
  • the host terminal 1 has a function of operating as a base unit of the PLC.
  • Each smart meter 2 has a function of measuring electrical information related to electric power supplied to a consumer in which the own smart meter 2 is installed, and a function of operating as a slave unit of the PLC.
  • the function of measuring electrical information includes a function of measuring harmonics.
  • the host terminal 1 and each smart meter 2 form a PLC network and transmit and receive data by multi-hop communication. That is, when each smart meter 2 receives data addressed to the upper terminal 1 from another smart meter 2, it transfers the received data to the upper terminal 1. In addition, when the upper terminal 1 receives data addressed to the other smart meter 2 of the transmission source, each smart meter 2 transfers the received data to the other smart meter 2 of the destination.
  • the management device 5 is connected to the upper terminal 1 via a network 50 that is a computer network such as Ethernet (registered trademark), and acquires measurement information and the like held in the upper terminal 1.
  • the management device 5 manages the communication state in the PLC formed by the upper terminal 1 and the smart meter 2 based on the measurement information acquired from the upper terminal 1.
  • FIG. 2 is a diagram illustrating a configuration example of the smart meter according to the first embodiment.
  • the smart meter 2 includes a measurement terminal 3 that measures electrical information related to power supplied to a connected load, a PLC slave unit module 4 that transmits measurement values measured by the measurement terminal 3 to the upper terminal 1 as measurement information, Is provided.
  • the measurement terminal 3 measures information related to the power supplied to the load connected to the smart meter 2, specifically, a measurement unit 33 that measures voltage, current, electric energy, harmonics, and the like, and the measurement unit 33 measures the information.
  • a control unit 31 for outputting to the handset module 4.
  • the PLC slave module 4 includes a control unit 41 that acquires measurement information from the measurement terminal 3, a storage unit 42 that stores measurement information acquired by the control unit 41 from the measurement terminal 3, and another adjacent smart meter 2 or And a communication unit 43 that transmits and receives signals to and from the host terminal 1. That is, the communication unit 43 is connected to the power line 10, receives a signal addressed to the upper terminal 1 including the measurement information acquired from the measurement terminal 3 from the control unit 41, and receives the received signal addressed to the upper terminal 1 via the power line 10. To send. Further, the communication unit 43 receives commands and data from the upper terminal 1 via the power line 10. Furthermore, the communication part 43 will transfer this, if the communication message
  • the control unit 41 determines whether or not a communication message transmitted from another smart meter 2 has been received.
  • the PLC slave module 4 calculates an S / N ratio (Signal-to-Noise Ratio) when receiving a communication message from another smart meter 2, and stores this.
  • the communication unit 43 calculates the S / N ratio.
  • the S / N ratio calculated by the communication unit 43 is stored in the storage unit 42 together with the time when the S / N is calculated.
  • the control unit 41 calculates the calculated S / N ratio and the terminal of the smart meter 2 that is the transmission source of the communication message received when the S / N ratio is calculated.
  • the number is acquired, and the acquired S / N ratio and the terminal number of the transmission source smart meter 2 are associated with each other and stored in the storage unit 42.
  • the storage unit 42 In addition to the S / N ratio calculated by the communication unit 43 and the corresponding terminal number of the smart meter 2, the storage unit 42 also stores route information when relaying a communication message.
  • Each smart meter 2 configured in this manner has a measurement resolution variable function in addition to the function of measuring the electrical information and the function of operating as a slave unit of the PLC.
  • the measurement resolution changing function is a function for changing a time resolution for measuring electrical information, that is, a cycle for performing measurement. With this function, when the S / N ratio in the power line 10 is low, it is possible to measure current, voltage, and harmonics with a resolution smaller than usual in a certain time zone as requested by the management device 5.
  • the management device 5 issues a measurement information acquisition request at an arbitrary timing, specifically, a maintenance timing of the PLC network formed by the host terminal 1 and each smart meter 2, and the measurement information is received from each smart meter 2. To get.
  • FIG. 3 is a diagram of a configuration example of a host terminal according to the first embodiment.
  • the main functions of the host terminal 1 are periodic collection of measurement data by a smart meter, communication state management of the PLC network, and connection form management of the PLC network.
  • the host terminal 1 transmits / receives signals to / from the management device 5 and communicates with the control unit 11 that controls each unit of the host terminal 1, the storage unit 12 that stores measurement information, and the adjacent smart meter 2.
  • the communication part 13 and the management part 14 which manages a PLC network are provided.
  • the communication unit 13 is connected to each of the smart meters 2 via the power line 10 and is connected to the management device 5 via the network 50.
  • the control unit 11 periodically issues a command to acquire measurement information from all the smart meters 2 to the communication unit 13. For example, the control unit 11 issues an information acquisition command, which is a command for acquiring measurement information, every 30 minutes.
  • the communication unit 13 acquires measurement information from each smart meter 2 according to the information acquisition command issued from the control unit 11.
  • the measurement information acquired by the communication unit 13 is transferred to the storage unit 12 and stored in the storage unit 12.
  • the communication unit 11 calculates the S / N ratio when receiving measurement information or the like from the smart meter 2.
  • the communication unit 11 receives the S / N ratio together with the measurement information from the smart meter 2, the communication unit 11 stores the received measurement information and S / N ratio in the storage unit 12. Further, when only the measurement information is received from the smart meter 2, the communication unit 11 stores the S / N ratio calculated when the measurement information is received together with the received measurement information in the storage unit 12.
  • the communication unit 13 performs communication for grasping the state of the PLC network using a time zone other than the time zone for periodically collecting measurement information, and checks the communication state of the PLC network.
  • the communication unit 13 determines the number of hops from the own device, that is, the upper terminal 1 to each smart meter 2, and the terminal number of the smart meter 2 to hop, that is, from the own device to the communication partner based on the check result of the communication state of the PLC network.
  • the terminal number of each smart meter 2 that relays communication up to the smart meter 2 is controlled.
  • the management unit 14 manages connection information and registration information of the smart meter 2.
  • the information on the connection form is information such as power line branch information and the number of units connected to each branch.
  • the registration information is information indicating whether a terminal with a regular ID is connected.
  • FIG. 4 is a diagram of a configuration example of the management apparatus according to the first embodiment.
  • the management device 5 monitors the communication quality when the host terminal 1 collects measurement information from each smart meter 2 and the data analyzer 51 that analyzes various data transmitted from the host terminal 1 regularly or irregularly.
  • a communication unit 55 that communicates with the upper terminal 1 via the network 50.
  • the data acquisition unit 53 is calculated when the host terminal 1 relays the measurement information collected from each smart meter 2 and the measurement information received from each other smart meter 2 via the communication unit 55.
  • the S / N ratio is acquired from the upper terminal 1.
  • the S / N ratio acquired by the data acquisition unit 53 from the upper terminal 1 is the smart meter 2 that relays the measurement information first, that is, the smart meter 2 that transmits the measurement information and the PLC.
  • the measurement information and S / N ratio acquired by the data acquisition unit 53 are transferred to the storage unit 54 and stored in the storage unit 54.
  • the communication quality monitoring unit 52 monitors the S / N ratio acquired by the data acquisition unit 53 and detects that the S / N ratio has decreased below a preset threshold value, the communication quality monitoring unit 52 indicates that the S / N ratio has decreased. 51 is notified.
  • the data analysis unit 51 When the data analysis unit 51 receives a notification from the communication quality monitoring unit 52 that the S / N ratio acquired by the data acquisition unit 53 has dropped below a preset threshold, the measurement information stored in the storage unit 54 and The S / N ratio is analyzed, and the cause of the deterioration of the S / N ratio is specified. Note that the data analysis unit 51 acquires harmonic data from the host terminal 1 when the harmonic data is stored in the storage unit 54, that is, the data acquisition unit 53 acquires harmonic data in addition to the measurement information and the S / N ratio. In this case, the factor of the S / N ratio deterioration may be specified by analyzing the harmonic data.
  • the data analysis unit 51 generates the analysis table 511 when specifying the factor that the S / N ratio has deteriorated, and specifies the factor of the S / N ratio deterioration by using the analysis table 511. Details of the analysis table 511 will be described later.
  • FIG. 5 is a UML (Unified Modeling Language) sequence diagram illustrating an operation example of the automatic meter reading system 100 according to the first embodiment.
  • FIG. 5 shows an example of an operation in which the upper terminal 1 collects measurement information from each of the smart meters 2-11, 12-12, 2-13,... Shown in FIG.
  • the S / N ratio is described as “S / N”. The same applies to the other drawings.
  • the upper terminal 1 individually issues a measurement information acquisition request to the smart meters 2-11, 12-12, 2-13,. To collect the measurement information and S / N ratio periodically, specifically, every 30 minutes. Note that m is an integer of 14 or more.
  • the upper terminal 1 first generates and transmits a measurement information acquisition request addressed to the smart meter 2-11 (step S11).
  • the smart meter 2-11 at the first hop from the upper terminal 1 directly receives a measurement information acquisition request addressed to itself from the upper terminal 1.
  • the smart meter 2-11 receives the measurement information acquisition request addressed to itself, it transmits the measurement information to the upper terminal 1 (step S12).
  • the measurement information transmitted to the upper terminal 1 by the smart meter 2-11 includes electrical information such as power consumption, demand, current and harmonic information every 30 minutes, and measurement time information indicating the time when the measurement was performed. It is information to include. The same applies to the measurement information transmitted by the smart meters 2-12, 2-13, ..., 2-m.
  • the upper terminal 1 Upon receiving the measurement information from the smart meter 2-11, the upper terminal 1 stores the measurement information in association with the terminal number indicating the smart meter 2-11 that is the transmission source of the measurement information. Further, the upper terminal 1 confirms whether or not the S / N ratio is transmitted together with the measurement information. If the S / N ratio is not transmitted, the S / N ratio calculated when the measurement information is received is also included. And stored in association with the measurement information. The S / N ratio calculated when the upper terminal 1 receives the measurement information corresponds to information indicating the communication quality between the upper terminal 1 and the smart meter 2-11. In the example shown in FIG. 5, when the upper terminal 1 collects measurement information from the first hop smart meter 2-11, the S / N ratio is not transmitted to the upper terminal 1.
  • the upper terminal 1 does not check whether or not the S / N ratio has been transmitted together with the measurement information, but checks whether or not the smart meter that is the transmission source of the measurement information is the first hop.
  • the S / N ratio calculated when the measurement information is received may be stored in association with the measurement information.
  • the upper terminal 1 generates and transmits a measurement information acquisition request addressed to the smart meter 2-12 (step S13).
  • the smart meter 2-12 at the second hop from the host terminal 1 receives the measurement information acquisition request addressed to itself through the smart meter 2-11.
  • the smart meter 2-12 transmits the measurement information to the upper terminal 1 (step S14).
  • the measurement information transmitted by the smart meter 2-12 is relayed by the smart meter 2-11 and then arrives at the upper terminal 1.
  • the smart meter 2-11 that relays the measurement information transmitted by the smart meter 2-12 first that is, the smart meter 2-11 that is one hop higher than the smart meter 2-12
  • the S / N ratio calculated at the time of reception is added to the measurement information to be relayed.
  • the upper terminal 1 receives the S / N ratio calculated by the smart meter 2-11 in addition to the measurement information transmitted from the smart meter 2-12.
  • the S / N ratio calculated when the smart meter 2-11 receives the measurement information corresponds to information indicating the communication quality between the smart meter 2-11 and the smart meter 2-12.
  • the upper terminal 1 Upon receiving the measurement information from the smart meter 2-12, the upper terminal 1 stores the measurement information in association with the terminal number indicating the smart meter 2-12 that is the transmission source of the measurement information. In this case, the upper terminal 1 receives the S / N ratio together with the measurement information, and stores the received S / N ratio in association with the terminal number of the smart meter 2-12 and the measurement information.
  • FIG. 6 is a diagram illustrating a specific example of an operation in which the host terminal of the automatic meter reading system 100 according to the first embodiment acquires measurement information.
  • the upper terminal 1 When acquiring the measurement information from the smart meter 2-13, the upper terminal 1 generates and transmits a measurement information acquisition request addressed to the smart meter 2-13 (step S15).
  • the smart meter 2-13 at the third hop from the host terminal 1 receives the measurement information acquisition request addressed to itself through the smart meters 2-11 and 2-12 (FIG. 6 (1)).
  • the smart meter 2-13 Upon receiving the measurement information acquisition request addressed to the own device, the smart meter 2-13 transmits the measurement information to the upper terminal 1 (step S16). As shown in (2) to (4) of FIG. 6, the measurement information transmitted by the smart meter 2-13 is relayed by the smart meters 2-11 and 2-12, and then arrives at the upper terminal 1.
  • the smart meter 2-12 that relays the measurement information transmitted by the smart meter 2-13 first that is, the smart meter 2-12 that is one hop higher than the smart meter 2-13
  • the S / N ratio calculated at the time of reception is added to the measurement information to be relayed ((3) in FIG. 6).
  • the S / N ratio added to the measurement information corresponds to information indicating the communication quality between the smart meter 2-12 and the smart meter 2-13. Since the smart meter 2-11 receives the measurement information and the S / N ratio from the smart meter 2-12, the received measurement without adding the S / N ratio calculated when the measurement information and the S / N ratio are received. Information and S / N ratio are relayed as they are (FIG. 6 (4)).
  • the upper terminal 1 receives the S / N ratio calculated by the smart meter 2-12 in addition to the measurement information transmitted from the smart meter 2-13.
  • the smart meter that relays measurement information first adds an S / N ratio, and the smart meter that relays measurement information after the second does not add an S / N ratio.
  • the increase can be prevented.
  • an increase in information to be analyzed is suppressed, and an increase in processing load can be prevented.
  • an increase in the size of the memory for holding information can be prevented.
  • the upper terminal 1 When receiving the measurement information from the smart meter 2-13, the upper terminal 1 stores the measurement information in association with the terminal number indicating the smart meter 2-13 that is the transmission source of the measurement information. In this case, the upper terminal 1 receives the S / N ratio together with the measurement information, and stores the received S / N ratio in association with the terminal number and the measurement information.
  • the host terminal 1 repeats the same processing to generate and transmit a measurement information acquisition request addressed to the smart meter 2-m (step S17).
  • the upper terminal 1 receives the measurement information transmitted from the smart meter 2-m and the S / N ratio calculated by the smart meter that relays the measurement information first (step S18), and receives the received measurement information.
  • the S / N ratio and the terminal number of the smart meter 2-m are stored in association with each other.
  • the host terminal 1 When the host terminal 1 acquires measurement information from all of the smart meters 2-11 to 2-m, it transmits all the measurement information and S / N ratio acquired from each smart meter to the management device 5 (step S19).
  • FIG. 7 is a flowchart of an operation example of the management apparatus 5 according to the first embodiment.
  • the management device 5 monitors whether or not measurement data has been transmitted from the host terminal 1, that is, whether or not measurement data has been received. When the management device 5 does not receive the measurement data (step S51: No), the management device 5 continues to wait for the measurement data to be transmitted. When the management device 5 receives the measurement data (step S51: Yes), the management device 5 stores the received measurement data (step S52).
  • the measurement data is the above-described measurement information and S / N ratio.
  • the data acquisition unit 53 monitors whether or not the measurement data is received, and the storage unit 54 stores the received measurement data. After storing the measurement data in step S52, the management device 5 next checks whether or not the received measurement data is measurement data acquired with high resolution (step S53).
  • the measurement data acquired with high resolution is measurement data including measurement information acquired from the smart meter 2 by the host terminal 1 in a cycle shorter than usual.
  • step S53: No the management device 5 checks all the S / N ratios included in the received measurement data and determines in advance. It is confirmed whether or not there is an S / N ratio less than the first threshold (step S54). When the S / N ratio less than the first threshold does not exist (step S54: No), the management device 5 returns to step S51. Further, when the S / N ratio less than the first threshold exists (step S54: Yes), the management device 5 changes the measurement data collection resolution to a high resolution for the upper terminal 1, that is, An instruction is given to shorten the measurement data collection cycle (step S55). In the management device 5, the communication quality monitoring unit 52 executes the processes of steps S53 to S55.
  • the management apparatus 5 analyzes the measurement data after executing Step S55, stores the analysis result (Steps S56 and S57), and returns to Step S51.
  • the data analysis unit 51 analyzes the measurement data to identify the cause of the S / N ratio decrease, and the storage unit 54 stores the analysis result. Details of the operation of the data analysis unit 51 analyzing the measurement data in step S56 will be described later.
  • step S58 the management device 5 checks all the S / N ratios included in the received measurement data, It is confirmed whether or not there is an S / N ratio less than a predetermined second threshold (step S58).
  • the second threshold value is smaller than the first threshold value described above (second threshold value ⁇ first threshold value).
  • the management device 5 analyzes the measurement data and stores the analysis result (steps S59 and S60).
  • the communication quality monitoring unit 52 executes the process of step S58.
  • the data analysis unit 51 analyzes the measurement data to identify the cause of the S / N ratio decrease, and the storage unit 54 stores the analysis result. Details of the operation of the data analysis unit 51 analyzing the measurement data in step S59 will be described later.
  • the management device 5 After executing step S60, the management device 5 confirms whether or not a predetermined time has elapsed since the host terminal 1 was instructed to change the resolution of measurement data collection in step S55 (step S61).
  • the fixed time is, for example, 12 hours, 24 hours, or the like, which is longer than the normal cycle in which the upper terminal 1 collects measurement information from the smart meter 2.
  • the management device 5 may be configured to include means for changing a certain time by an administrator of the automatic meter reading system 100 or the like.
  • the management apparatus 5 returns to step S51, when fixed time has not passed since it instruct
  • step S61 When a certain period of time has elapsed since the management device 5 instructed the host terminal 1 to change the resolution of the measurement data collection (step S61: Yes), the management device 5 sets the resolution of the measurement data collection to the normal resolution. To change to (step S62). In the management device 5, the communication quality monitoring unit 52 executes the processes of steps S61 and S62. The management apparatus 5 returns to step S51 after performing step S62.
  • step S58 If the S / N ratio less than the second threshold does not exist (step S58: No), the management device 5 proceeds to step S61.
  • FIG. 8 is a diagram illustrating an example of an internal operation of the management device of the automatic meter reading system according to the first embodiment.
  • the data acquisition unit 53 receives measurement data transmitted from the upper terminal 1 every 30 minutes (step S ⁇ b> 31), and the received measurement data is transmitted to the communication quality monitoring unit 52. And it outputs to the memory
  • the storage unit 54 stores measurement data received from the data acquisition unit 53.
  • the communication quality monitoring unit 52 checks whether the measurement data collection cycle has a low resolution, that is, a normal cycle or a high resolution, and the measurement data collection cycle is low. If the resolution is satisfied, it is confirmed whether or not the S / N ratio included in the measurement data is less than the first threshold (the case of time (T) and time (T + 30) in FIG. 8). ). On the other hand, if the measurement data collection cycle is high resolution, the communication quality monitoring unit 52 determines whether or not the S / N ratio included in the measurement data includes a value less than the second threshold. Confirm (case at time (T + 60) in FIG. 8). The first threshold and the second threshold are the same as the first threshold and the second threshold shown in FIG.
  • the communication quality monitoring unit 52 instructs the upper terminal 1 to change the measurement time resolution when the measurement data collection cycle has a low resolution and an S / N ratio less than the first threshold exists (step S34).
  • the process of step S34 is the same as the process of step S55 shown in FIG. 7, and 52 instructs the communication quality management to change the resolution of measurement data collection to the high resolution to the upper terminal 1.
  • the communication quality monitoring unit 52 requests the data analysis unit 51 to analyze the measurement data (step S35). Receiving the measurement data analysis request in step S35, the data analysis unit 51 analyzes the measurement data stored in the storage unit 12 (step S36).
  • the process in step S36 is the same as the process in step S56 shown in FIG. When the analysis of the measurement data ends, the data analysis unit 51 outputs the analysis result to the storage unit 54 (step S37).
  • the storage unit 54 stores the analysis result received from the data analysis unit 51.
  • the communication quality monitoring unit 52 requests the data analysis unit 51 to analyze the measurement data (step S38). ).
  • the data analysis unit 51 analyzes the measurement data stored in the storage unit 12 (step S39).
  • the process in step S39 is the same as the process in step S59 shown in FIG.
  • the data analysis unit 51 outputs the analysis result to the storage unit 54 (Step S40).
  • the storage unit 54 stores the analysis result received from the data analysis unit 51.
  • FIG. 9 shows an example when the measurement data collection period is low resolution and high resolution.
  • FIG. 9 is a diagram illustrating an example of timing at which the host terminal according to the first embodiment collects measurement data. A dotted line indicates the collection timing of measurement data.
  • FIG. 9A shows the measurement data collection timing at the normal resolution
  • FIG. 9B shows the measurement data collection timing at the high resolution.
  • the cases where noise is generated due to a large increase in power consumption in a short period of time in ordinary households include when using an electromagnetic cooker, when using a microwave oven, or when starting an air conditioner. These are dependent on life patterns. Therefore, for example, the upper terminal 1 collects measurement data in a short cycle, and the management device 5 analyzes the data for 12 hours, 24 hours, or a longer time, so that the amount of electric power used in each consumer. It is possible to estimate a time zone during which the time increases greatly in a short time. After the estimation of the time zone in which the power consumption increases greatly in a short time, the upper terminal avoids the time zone indicated by the estimation result, that is, the time zone in which the power usage amount greatly increases in each customer.
  • the quality of communication for collecting measurement data can be improved.
  • the amount of power used does not increase significantly in a short period of time, but on average, relatively large noise always flows through the power line. In such a case, it is necessary to take measures such as installing a filter for preventing the noise from flowing from the consumer that is the source of the noise to the common power line.
  • the management device 5 Since the management device 5 according to the present embodiment collects measurement data at different periods and performs analysis, the management device 5 estimates the time zone in which the power consumption increases greatly in a short time, and the power consumption is large on average. It is possible to identify the consumers who are.
  • the data analysis unit 51 of the management device 5 analyzes the measurement data, estimates the time zone in which the power consumption increases greatly in a short time, and identifies the consumers whose power consumption is large on average. The operation to be performed will be described with reference to FIGS. This operation is the operation in step S56 and the operation in step S59 shown in FIG.
  • FIG. 10 is a diagram showing a configuration example of an automatic meter reading system.
  • smart meters 2-11 to 2-1-2 installed in each of the rooms 101, 102, 201,..., Room 101 (described as 101 in FIG. 14 and 2-21 to 2-24, the host terminal 1, and the management device 5 form an automatic meter reading system.
  • the host terminal 1, each smart meter 2, and the management device 5 execute the same operations as those described with reference to FIGS. 1 to 9, and the management device 5 receives measurement data from the host terminal 1.
  • the data analysis unit 51 of the management device 5 analyzes the measurement data collected from each smart meter 2 by the upper terminal 1 with normal resolution, that is, performs the analysis operation corresponding to step S56 shown in FIG. First, the corresponding data stored in the storage unit 54 is read, and the analysis table shown in FIG. 11 is created. When the creation of the analysis table is completed, the data analysis unit 51 confirms the details of the analysis table and identifies the consumer that is the noise generation source.
  • the analysis table shown in FIG. 11 includes values of S / N ratio, electric energy, and current for each of the smart meters 2-11 to 2-14 at times 0:00, 0:30, and 1:00. It is. Further, in FIG. 11, the columns sandwiched between the respective times indicate the amount of change between the respective times on both sides. Note that a portion with a large amount of change is surrounded by a dotted line. For example, the electric energy of the smart meter 2-11 increases by 1 (+1) between 0:00 and 0:30, and then decreases by 2 (-2) between 0:30 and 10:00. Yes. As shown in FIG. 10, the smart meter 2-11 is located at the first hop from the upper terminal 1, and the smart meter 2-14 is located at the fourth hop from the upper terminal 1.
  • the signal level decreases as the signal attenuation measurement point moves away as in the example at time 0:00. Specifically, the S / N ratio decreases at a constant rate and becomes 50, 45, 40, and 35.
  • the data analysis unit 51 specifies that the room 301 in which the smart meter 2-13 is installed is a noise generation location and the generation time is around 0:30. .
  • the data analysis unit 51 identifies the noise occurrence location based on the S / N ratio that is the communication index and the measurement information such as the electric energy, so compared with the case where the identification is performed by the communication index alone.
  • the noise occurrence location since the power line for communication is shared, it is expected that the communication quality on the side farther from the noise generation source will similarly deteriorate.
  • room 301 is a noise generation source
  • the S / N of the power line at the entrance point of room 302, room 401, and room 402 deteriorates. Therefore, it is difficult to distinguish these three rooms by analyzing only the communication index. In the case of the example shown in FIG.
  • the amount of change in the S / N ratio in the smart meter 2-13 is the same as the amount of change in the S / N ratio in the smart meter 2-14.
  • the noise generation source can be narrowed down to one by analyzing the change in the electric energy.
  • the upper terminal 1 analyzes the measurement data collected from each smart meter 2 with high resolution, that is, when performing the analysis operation corresponding to step S59 shown in FIG.
  • the corresponding data stored in the storage unit 54 is read out, and the analysis table shown in FIG. 12 is created.
  • the data analysis unit 51 confirms the details of the analysis table and identifies the consumer that is the noise generation source.
  • the analysis table shown in FIG. 12 includes the S / N ratio, electric energy, and current values for each of the smart meters 2-11 to 2-14 at times 0:00, 0:01, and 0:02. It is. As in FIG. 11, the column between each time indicates the amount of change between each time on both sides. Note that a portion with a large amount of change is surrounded by a dotted line.
  • the analysis table shown in FIG. 12 includes the S / N ratio, the electric energy, and the current measurement value per minute and the amount of change. Therefore, the analysis table is the same as when the analysis table shown in FIG. 11 is used.
  • the noise generation source can be specified by this method, and the noise generation time can be narrowed down. By using the analysis table shown in FIG. 12, it can be detected that there is a large change in current between time 0:00 and 0:01 of the smart meter 2-13.
  • the data analysis unit 51 may generate the analysis table shown in FIG. 13 when performing the analysis operation corresponding to step S59 shown in FIG.
  • the analysis table shown in FIG. 13 includes the S / N ratio, electric energy, and harmonic component values for each of the smart meters 2-11 to 2-14 at times 0:00, 0:10, and 0:20. It is included. Similar to FIGS. 11 and 12, the column between each time indicates the amount of change between each time on both sides. A portion with a large change amount is surrounded by a dotted line.
  • the use of 10 kHz to 450 kHz as a carrier frequency band is defined in the “PLC standard ARIB STD / T84”. For this reason, there is a possibility that the communication quality deteriorates due to the influence of the load device that constantly operates in the vicinity of 10 kHz to 450 kHz. In such a case, the harmonic component is used as measurement information, which is effective for identifying the cause location of communication quality degradation.
  • the harmonic component changes greatly between the time 0:00 and 0:10 of the smart meter 2-13. Therefore, the data analysis unit 51 can identify the noise generation source and the noise generation time by confirming the change amount of the S / N ratio and the change amount of the harmonic component.
  • noise source and noise generation time are specified using the S / N ratio and the electric energy
  • an example in which the noise generation source and noise generation time are specified using the S / N ratio and harmonic components are described.
  • the noise generation source and the noise generation time may be specified using the S / N ratio, the electric energy, and the harmonic component.
  • an example of specifying the noise source and noise generation time based on the amount of change in each value has been shown. You may make it do.
  • S / N ratio instead of the S / N ratio, other communication indexes such as a bit error rate, a frame error rate, and the number of times of measurement information retransmission may be used.
  • the management device 5 even in the case of a system configuration in which power lines are shared halfway in each floor as in the example illustrated in FIG. Can be done with precision.
  • the power line used by the smart meter 2-13 for communication with the host terminal 1 and the power line used by the smart meter 2-23 for communication with the host terminal 1 are common until the branching occurs.
  • the smart meter 2-23 is close, even if the power consumption in either room causes the communication quality to deteriorate, it is expected that there will be no difference in the S / N ratio on the power line. .
  • the cause can be specified.
  • the management device of the automatic meter reading system receives the measurement information collected from each smart meter by the upper terminal and the smart meter or the upper terminal that relays the measurement information for the first time.
  • the noise generation source and the noise generation time are specified based on the communication quality information such as the S / N ratio. Thereby, while being able to identify the consumer who is a noise generation source, the noise generation time can be estimated.
  • measurement information and communication quality information are collected over a certain period of time in a shorter cycle than normal. Even when noise occurs, it is possible to specify the period during which noise occurs.
  • the management device can identify the location and time that cause the communication quality degradation, insert an impedance upper or filter into the customer's power line that is the cause of the communication quality degradation to reduce noise. Measures can be taken. Further, if the cause time zone can be estimated, the measurement information can be efficiently acquired by adjusting the communication so as to avoid the estimated time zone, that is, the time zone in which the communication quality may be reduced.
  • FIG. 14 is a diagram illustrating a hardware configuration example of the management apparatus 5 according to the first embodiment.
  • the management device 5 can be realized by the hardware 200 illustrated in FIG. 14, that is, the processor 201, the memory 202, and the communication device 203.
  • the processor 201 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP), system LSI (Large Scale Integration), or the like.
  • the memory 202 is a nonvolatile or volatile semiconductor such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), etc. Memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc.
  • the data analysis unit 51, the communication quality monitoring unit 52, and the data acquisition unit 53 of the management apparatus 5 operate as the data analysis unit 51, the communication quality monitoring unit 52, and the data acquisition unit 53 stored in the memory 202 by the processor 201. This is realized by reading out and executing a program for executing the program.
  • the memory 202 is also used as a temporary memory when the processor 201 executes various processes.
  • the storage unit 54 of the management device 5 is realized by the memory 202, and the communication unit 54 is realized by the communication device 203.
  • FIG. 15 is a diagram illustrating a hardware configuration example when the communication quality monitoring unit 52, the data acquisition unit 53, and the storage unit 54 are realized by dedicated hardware.
  • the processing circuit 204 of the hardware 200a illustrated in FIG. 15 is dedicated hardware that implements the same functions as the processor 201 and the memory 202 illustrated in FIG.
  • the processing circuit 204 is, for example, a single circuit, a composite circuit, a programmed processor, a processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. .
  • a part of the data analysis unit 51, the communication quality monitoring unit 52, the data acquisition unit 53, and the storage unit 54 is realized by dedicated hardware, that is, the processing circuit 204 shown in FIG. 15, and the rest are the processor 201 shown in FIG. It may be realized by the memory 202.
  • the management apparatus 5 can be realized using the hardware shown in FIG. 14 or FIG.
  • FIG. FIG. 16 is a diagram illustrating a configuration example of an automatic meter reading system according to the second embodiment.
  • An automatic meter reading system 100a shown in FIG. 16 is obtained by replacing the upper terminal 1 and the management device 5 of the automatic meter reading system 100 according to the first embodiment with an upper terminal 1a.
  • the host terminal 1a of the automatic meter reading system 100a is one in which the host terminal 1 and the management device 5 described in the first embodiment are integrated into one device.
  • the management device 5a is provided inside. Since the communication unit 55 included in the management device 5 described in the first embodiment is unnecessary, a management device 5a in which the communication unit 55 is deleted from the management device 5 is provided inside the upper terminal 1a. It is configured.
  • the operation of the upper terminal 1a is the same as that of the upper terminal 1 and the management apparatus 5 described in the first embodiment.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Signal Processing (AREA)
  • Selective Calling Equipment (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

The present invention relates to a management device (5) which monitors the status of power lines in an automatic meter reading system which comprises smart meters which are installed in each consumer household and which measure electricity information which relates to power, and an upper terminal which carries out communication using power lines with each of the smart meters and collects measurement information which includes results of the measurements of the electricity information, said management device (5) comprising: a data acquisition unit (53) which acquires, from the upper terminal, communication quality information which indicates the quality of communication between adjacent smart meters, communication quality information which indicates the quality of communication between the upper terminal and the smart meters which are adjacent thereto, and the measurement information; and a data analysis unit (51) which, on the basis of the communication quality information and the measurement information acquired by the data acquisition unit, identifies the consumer household which is a noise generating source and estimates a time at which the noise is generated.

Description

管理装置、自動検針システムおよび状態監視方法Management device, automatic meter reading system, and state monitoring method
 本発明は、各需要家における使用電力量などの情報を電力線搬送通信(Power Line Communication、以下PLCと称する)を用いて収集する自動検針システムの管理装置、自動検針システムおよび状態監視方法に関する。 The present invention relates to an automatic meter reading system management device, an automatic meter reading system, and a state monitoring method for collecting information such as the amount of electric power used by each consumer using power line communication (hereinafter referred to as PLC).
 近年、各需要家にスマートメーターを設置し、通信機能により各需要家の使用電力量などの情報をコンセントレータとも呼ばれる集約装置が収集する自動検針システムが普及している。また、自動検針システムで使用される通信方式はいくつか存在するが、その中の1つにPLCが存在する。PLCは通信を行う1台の親局装置と複数の子局装置の各々との間の減衰特性および雑音特性が子局装置ごとに異なる。そのため、子局装置を設置する際には、親局装置と各子局装置との間の通信性能を事前に推定する必要がある。例えば、特許文献1に記載された発明では、親局装置と子局装置とを取り巻く物理的条件および雑音源に関するデータを収集してデータベースを構築しておき、子局装置を設置する際には、事前に構築しておいたデータベースを利用し、データベースに蓄積されている情報を元に各子機端末の通信性能を推定する。 In recent years, an automatic meter reading system in which a smart meter is installed at each consumer and an aggregation device called a concentrator collects information such as the amount of power used by each consumer through a communication function has become widespread. There are several communication methods used in the automatic meter reading system, and one of them is a PLC. The PLC has different attenuation characteristics and noise characteristics for each slave station apparatus between a single master station apparatus and a plurality of slave station apparatuses that perform communication. Therefore, when installing the slave station device, it is necessary to estimate the communication performance between the master station device and each slave station device in advance. For example, in the invention described in Patent Document 1, a database is constructed by collecting data on physical conditions and noise sources surrounding the master station device and the slave station device, and when installing the slave station device, The communication performance of each slave terminal is estimated based on the information stored in the database using a database constructed in advance.
特開2004-64384号公報JP 2004-64384 A
 需要家の宅内のコンセントには家電機器およびネットワーク端末等種々の電気機器が負荷として接続され、これらの負荷の接続状況および動作状態は日々変化する。また、新規に電気機器が設置されることもある。負荷の接続状況が変化した場合、通信線として使用する電力線に乗るノイズが増加し、通信品質が低下してしまう可能性がある。マンションなどの集合住宅の場合、共通の電力線を設け、共通の電力線から需要家ごとの電力線に電力を分岐させて供給する形態が一般的である。そのため、集合住宅に設置されたスマートメーターと集約装置とにより自動検針システムが形成されている場合、ある需要家で発生したノイズの影響が他の需要家に設置されたスマートメーターと集約装置との通信にも及び、使用電力量などの情報である検針データの収集が広範囲にわたってできなくなるなどの不都合が生じる可能性がある。したがって、ノイズを発生させる電気機器が設置された需要家が存在する場合には、ノイズ発生源を有している需要家を特定し、通信品質を改善するための対策を行う必要がある。また、電気機器の中には、常時動作しているものもあれば必要とされる場合にだけ動作するものもある。常時動作する電気機器以外の電気機器がノイズを発生させる場合にもノイズを発生する電気機器が設置された需要家を特定できることが望ましく、さらに、ノイズが発生する時間帯を推定できることが望ましい。ノイズが発生する場所および時間が予め分かれば、それに合わせた通信品質改善のための対策が実施可能となる。 Various electrical devices such as home appliances and network terminals are connected as loads to the outlets in the customer's homes, and the connection status and operating state of these loads change daily. In addition, a new electric device may be installed. When the connection state of the load changes, there is a possibility that noise on the power line used as the communication line increases and the communication quality deteriorates. In the case of an apartment house such as a condominium, a common power line is provided, and power is branched and supplied from the common power line to the power line for each consumer. Therefore, when an automatic meter-reading system is formed by smart meters and aggregation devices installed in apartment buildings, the influence of noise generated by one consumer is caused by the difference between smart meters and aggregation devices installed in other consumers. There is also a possibility that inconveniences such as the inability to collect meter-reading data, which is information such as the amount of power used, over a wide range may also occur. Therefore, when there is a consumer installed with electrical equipment that generates noise, it is necessary to identify the consumer having the noise generation source and to take measures to improve the communication quality. Some electrical devices are always in operation, while others only operate when needed. It is desirable to be able to identify a consumer in which an electrical device that generates noise is installed even when an electrical device other than a constantly operating electrical device generates noise, and it is desirable to be able to estimate a time zone in which the noise is generated. If the location and time at which noise is generated are known in advance, measures for improving communication quality can be implemented accordingly.
 本発明は、上記に鑑みてなされたものであって、PLCを使用した自動検針システムにおいて通信品質を低下させる要因を特定可能な管理装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a management device capable of specifying a factor that degrades communication quality in an automatic meter reading system using a PLC.
 上述した課題を解決し、目的を達成するために、本発明にかかる管理装置は、各需要家に設置されて電力に関する電気情報を測定するスマートメーターと、スマートメーターの各々と電力線を使用した通信を行い、電気情報の測定結果を含んだ測定情報を収集する上位端末と、を備えた自動検針システムにおいて、電力線の状態を監視する。管理装置は、隣接しているスマートメーター同士間の通信品質を示す通信品質情報および上位端末とこれに隣接しているスマートメーターとの間の通信品質を示す通信品質情報と、測定情報とを上位端末から取得し、取得した通信品質情報および測定情報に基づいてノイズ発生源の需要家を特定するとともにノイズの発生時間を推定する。 In order to solve the above-described problems and achieve the object, a management device according to the present invention is installed in each consumer to measure electrical information regarding power, and communication using each of the smart meters and a power line The power line state is monitored in an automatic meter reading system including a host terminal that collects measurement information including measurement results of electrical information. The management device displays the communication quality information indicating the communication quality between the adjacent smart meters, the communication quality information indicating the communication quality between the upper terminal and the adjacent smart meter, and the measurement information. Obtained from a terminal, specifies a consumer of a noise generation source based on the acquired communication quality information and measurement information, and estimates the noise generation time.
 本発明にかかる管理装置は、PLCを使用した自動検針システムにおいて通信品質を低下させる要因を特定することができる、という効果を奏する。 The management device according to the present invention has an effect that it is possible to identify a factor that degrades communication quality in an automatic meter reading system using a PLC.
実施の形態1にかかる自動検針システムの構成例を示す図The figure which shows the structural example of the automatic meter-reading system concerning Embodiment 1. FIG. 実施の形態1にかかるスマートメーターの構成例を示す図The figure which shows the structural example of the smart meter concerning Embodiment 1. FIG. 実施の形態1にかかる上位端末の構成例を示す図The figure which shows the structural example of the high-order terminal concerning Embodiment 1. FIG. 実施の形態1にかかる管理装置の構成例を示す図1 is a diagram illustrating a configuration example of a management device according to a first embodiment. 実施の形態1にかかる自動検針システムの動作例を示すシーケンス図FIG. 3 is a sequence diagram showing an operation example of the automatic meter reading system according to the first embodiment. 実施の形態1にかかる自動検針システムの上位端末が計測情報を取得する動作の具体例を示す図The figure which shows the specific example of the operation | movement in which the high-order terminal of the automatic meter-reading system concerning Embodiment 1 acquires measurement information. 実施の形態1にかかる管理装置の動作例を示すフローチャート1 is a flowchart illustrating an operation example of a management apparatus according to a first embodiment; 実施の形態1にかかる自動検針システムの管理装置の内部動作の一例を示す図The figure which shows an example of the internal operation | movement of the management apparatus of the automatic meter-reading system concerning Embodiment 1. 実施の形態1にかかる上位端末が計測データを収集するタイミングの例を示す図The figure which shows the example of the timing which the high-order terminal concerning Embodiment 1 collects measurement data 実施の形態1にかかる自動検針システムの構成例を示す図The figure which shows the structural example of the automatic meter-reading system concerning Embodiment 1. FIG. 実施の形態1にかかる管理装置が作成する解析テーブルの一例を示す図The figure which shows an example of the analysis table which the management apparatus concerning Embodiment 1 produces. 実施の形態1にかかる管理装置が作成する解析テーブルの第1の他の例を示す図The figure which shows the 1st other example of the analysis table which the management apparatus concerning Embodiment 1 produces. 実施の形態1にかかる管理装置が作成する解析テーブルの第2の他の例を示す図The figure which shows the 2nd other example of the analysis table which the management apparatus concerning Embodiment 1 produces. 実施の形態1にかかる管理装置のハードウェア構成の一例を示す図1 is a diagram illustrating an example of a hardware configuration of a management device according to a first embodiment; 実施の形態1にかかる管理装置のハードウェア構成の他の例を示す図FIG. 3 is a diagram illustrating another example of the hardware configuration of the management apparatus according to the first embodiment. 実施の形態2にかかる自動検針システムの構成例を示す図The figure which shows the structural example of the automatic meter-reading system concerning Embodiment 2. FIG.
 以下に、本発明の実施の形態にかかる管理装置および自動検針システムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a management device and an automatic meter reading system according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、実施の形態1にかかる自動検針システムの構成例を示す図である。実施の形態1にかかる自動検針システム100は、需要家における使用電力量などのデータを収集する上位端末1と、需要家に設置されたスマートメーター2-11,2-12,2-13,…,2-21,2-22,2-23,…と、自動検針システム100の状態を監視する管理装置5と、を備える。なお、以下の説明においては、自動検針システム100を構成している複数のスマートメーターの各々を区別する必要が無い場合、スマートメーター2-11,2-12,2-13,…,2-21,2-22,2-23,…をスマートメーター2と記載する場合がある。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration example of an automatic meter reading system according to the first embodiment. The automatic meter reading system 100 according to the first embodiment includes a host terminal 1 that collects data such as the amount of power used by consumers, smart meters 2-11, 12-12, 2-13,. , 2-21, 22-22, 2-23,..., And a management device 5 that monitors the state of the automatic meter reading system 100. In the following description, when it is not necessary to distinguish each of the plurality of smart meters constituting the automatic meter reading system 100, the smart meters 2-11, 12-12, 2-13,. , 2-22, 2-23,...
 図1に示した自動検針システム100においては、電力線10を介して行うPLCにより上位端末1が各スマートメーター2からデータを収集する。上位端末1は、PLCの親機として動作する機能を有する。各スマートメーター2は、自スマートメーター2が設置されている需要家に供給する電力に関する電気情報を計測する機能と、PLCの子機として動作する機能とを有する。電気情報を計測する機能には高調波を測定する機能が含まれる。上位端末1および各スマートメーター2は、PLCネットワークを形成し、マルチホップ通信によりデータを送受信するものとする。すなわち、各スマートメーター2は、上位端末1宛のデータを他のスマートメーター2から受信すると、受信したデータを上位端末1に向けて転送する。また、各スマートメーター2は、上位端末1が送信元の他のスマートメーター2宛のデータを受信すると、受信したデータを宛先の他のスマートメーター2に向けて転送する。 In the automatic meter reading system 100 shown in FIG. 1, the upper terminal 1 collects data from each smart meter 2 by PLC performed via the power line 10. The host terminal 1 has a function of operating as a base unit of the PLC. Each smart meter 2 has a function of measuring electrical information related to electric power supplied to a consumer in which the own smart meter 2 is installed, and a function of operating as a slave unit of the PLC. The function of measuring electrical information includes a function of measuring harmonics. The host terminal 1 and each smart meter 2 form a PLC network and transmit and receive data by multi-hop communication. That is, when each smart meter 2 receives data addressed to the upper terminal 1 from another smart meter 2, it transfers the received data to the upper terminal 1. In addition, when the upper terminal 1 receives data addressed to the other smart meter 2 of the transmission source, each smart meter 2 transfers the received data to the other smart meter 2 of the destination.
 管理装置5は、イーサネット(登録商標)などのコンピューターネットワークであるネットワーク50を介して上位端末1と接続されており、上位端末1で保持されている計測情報などを取得する。管理装置5は、上位端末1から取得した計測情報などに基づいて、上位端末1およびスマートメーター2が形成しているPLCにおける通信状態を管理する。 The management device 5 is connected to the upper terminal 1 via a network 50 that is a computer network such as Ethernet (registered trademark), and acquires measurement information and the like held in the upper terminal 1. The management device 5 manages the communication state in the PLC formed by the upper terminal 1 and the smart meter 2 based on the measurement information acquired from the upper terminal 1.
 図2は、実施の形態1にかかるスマートメーターの構成例を示す図である。スマートメーター2は、接続された負荷に供給する電力に関する電気情報を計測する計測端末3と、計測端末3が計測した測定値を計測情報として上位端末1宛に送信するPLC子機モジュール4と、を備える。 FIG. 2 is a diagram illustrating a configuration example of the smart meter according to the first embodiment. The smart meter 2 includes a measurement terminal 3 that measures electrical information related to power supplied to a connected load, a PLC slave unit module 4 that transmits measurement values measured by the measurement terminal 3 to the upper terminal 1 as measurement information, Is provided.
 計測端末3は、スマートメーター2に接続された負荷に供給する電力に関する情報、具体的には、電圧、電流、電力量および高調波などを計測する計測部33と、この計測部33が計測した計測値および計測を行った時刻の情報を含む情報である計測情報を記憶する記憶部32と、PLC子機モジュール4からの要求を受けると記憶部32で記憶されている計測情報を読み出してPLC子機モジュール4へ出力する制御部31と、を備える。 The measurement terminal 3 measures information related to the power supplied to the load connected to the smart meter 2, specifically, a measurement unit 33 that measures voltage, current, electric energy, harmonics, and the like, and the measurement unit 33 measures the information. A storage unit 32 for storing measurement information, which is information including information on the measurement value and the time at which the measurement was performed, and upon receipt of a request from the PLC slave module 4, the measurement information stored in the storage unit 32 is read out and the PLC is read out. And a control unit 31 for outputting to the handset module 4.
 PLC子機モジュール4は、計測端末3から計測情報を取得する制御部41と、制御部41が計測端末3から取得した計測情報などを記憶する記憶部42と、隣接する他のスマートメーター2または上位端末1との間で信号を送受信する通信部43とを備える。すなわち、通信部43は、電力線10と接続され、計測端末3から取得した計測情報を含んだ上位端末1宛の信号を制御部41から受け取り、受け取った上位端末1宛の信号を電力線10を介して送信する。また、通信部43は、電力線10を介して、上位端末1からのコマンドおよびデータを受信する。さらに、通信部43は、他のスマートメーター2から送信された通信電文を受信するとこれを転送する。なお、他のスマートメーター2から送信された通信電文を受信したか否かは制御部41が判断する。PLC子機モジュール4は、他のスマートメーター2から通信電文を受信する際にS/N比(Signal-to-Noise Ratio)を算出し、これを記憶する。S/N比の算出は通信部43が行う。通信部43が算出したS/N比はS/Nを算出した時刻とともに記憶部42に記憶される。 The PLC slave module 4 includes a control unit 41 that acquires measurement information from the measurement terminal 3, a storage unit 42 that stores measurement information acquired by the control unit 41 from the measurement terminal 3, and another adjacent smart meter 2 or And a communication unit 43 that transmits and receives signals to and from the host terminal 1. That is, the communication unit 43 is connected to the power line 10, receives a signal addressed to the upper terminal 1 including the measurement information acquired from the measurement terminal 3 from the control unit 41, and receives the received signal addressed to the upper terminal 1 via the power line 10. To send. Further, the communication unit 43 receives commands and data from the upper terminal 1 via the power line 10. Furthermore, the communication part 43 will transfer this, if the communication message | telegram transmitted from the other smart meter 2 is received. The control unit 41 determines whether or not a communication message transmitted from another smart meter 2 has been received. The PLC slave module 4 calculates an S / N ratio (Signal-to-Noise Ratio) when receiving a communication message from another smart meter 2, and stores this. The communication unit 43 calculates the S / N ratio. The S / N ratio calculated by the communication unit 43 is stored in the storage unit 42 together with the time when the S / N is calculated.
 制御部41は、通信部43でS/N比が算出されると、算出されたS/N比と、S/N比を算出した際に受信した通信電文の送信元のスマートメーター2の端末番号とを取得し、取得したS/N比と送信元のスマートメーター2の端末番号とを対応付けて記憶部42に保管する。記憶部42は、通信部43で算出されたS/N比および対応するスマートメーター2の端末番号に加えて、通信電文を中継する際の経路情報等も記憶している。 When the communication unit 43 calculates the S / N ratio, the control unit 41 calculates the calculated S / N ratio and the terminal of the smart meter 2 that is the transmission source of the communication message received when the S / N ratio is calculated. The number is acquired, and the acquired S / N ratio and the terminal number of the transmission source smart meter 2 are associated with each other and stored in the storage unit 42. In addition to the S / N ratio calculated by the communication unit 43 and the corresponding terminal number of the smart meter 2, the storage unit 42 also stores route information when relaying a communication message.
 このように構成された各スマートメーター2は、上記の電気情報を計測する機能およびPLCの子機として動作する機能に加えて、計測分解能可変機能を有する。計測分解能変更機能とは、電気情報を計測する時間分解能すなわち計測を行う周期を変更する機能である。この機能により、電力線10におけるS/N比が低い場合に、管理装置5からの要求によりある時間帯において通常より小さい分解能で電流、電圧および高調波を計測することが可能である。 Each smart meter 2 configured in this manner has a measurement resolution variable function in addition to the function of measuring the electrical information and the function of operating as a slave unit of the PLC. The measurement resolution changing function is a function for changing a time resolution for measuring electrical information, that is, a cycle for performing measurement. With this function, when the S / N ratio in the power line 10 is low, it is possible to measure current, voltage, and harmonics with a resolution smaller than usual in a certain time zone as requested by the management device 5.
 管理装置5は、任意のタイミング、具体的には、上位端末1および各スマートメーター2により形成されているPLCネットワークの保守を行うタイミングで計測情報取得要求を発行し、各スマートメーター2から計測情報を取得する。 The management device 5 issues a measurement information acquisition request at an arbitrary timing, specifically, a maintenance timing of the PLC network formed by the host terminal 1 and each smart meter 2, and the measurement information is received from each smart meter 2. To get.
 図3は、実施の形態1にかかる上位端末の構成例を示す図である。上位端末1の主要な機能は、スマートメーターによる計測データの定期収集、PLCネットワークの通信状態管理、PLCネットワークの接続形態管理である。 FIG. 3 is a diagram of a configuration example of a host terminal according to the first embodiment. The main functions of the host terminal 1 are periodic collection of measurement data by a smart meter, communication state management of the PLC network, and connection form management of the PLC network.
 上位端末1は、上位端末1の各部を制御する制御部11と、計測情報などを記憶する記憶部12と、隣接するスマートメーター2との間で信号を送受信するとともに管理装置5と通信を行う通信部13と、PLCネットワークを管理する管理部14とを備える。通信部13は、電力線10を介してスマートメーター2の各々と接続され、ネットワーク50を介して管理装置5と接続されている。 The host terminal 1 transmits / receives signals to / from the management device 5 and communicates with the control unit 11 that controls each unit of the host terminal 1, the storage unit 12 that stores measurement information, and the adjacent smart meter 2. The communication part 13 and the management part 14 which manages a PLC network are provided. The communication unit 13 is connected to each of the smart meters 2 via the power line 10 and is connected to the management device 5 via the network 50.
 制御部11は、定期的に、全てのスマートメーター2から計測情報を取得する命令を通信部13へ発行する。制御部11は、例えば、計測情報を取得する命令である情報取得命令を30分毎に発行する。 The control unit 11 periodically issues a command to acquire measurement information from all the smart meters 2 to the communication unit 13. For example, the control unit 11 issues an information acquisition command, which is a command for acquiring measurement information, every 30 minutes.
 通信部13は、制御部11から発行された情報取得命令に従って計測情報を各スマートメーター2から取得する。通信部13が取得した計測情報は記憶部12に渡され、記憶部12で記憶される。なお、通信部11は、スマートメーター2から計測情報などを受信する際、S/N比を算出する。通信部11は、スマートメーター2から計測情報とともにS/N比を受信した場合、受信した計測情報およびS/N比を記憶部12へ保存する。また、通信部11は、スマートメーター2から計測情報のみを受信した場合、計測情報を受信した際に算出したS/N比を受信した計測情報とともに記憶部12へ保存する。 The communication unit 13 acquires measurement information from each smart meter 2 according to the information acquisition command issued from the control unit 11. The measurement information acquired by the communication unit 13 is transferred to the storage unit 12 and stored in the storage unit 12. The communication unit 11 calculates the S / N ratio when receiving measurement information or the like from the smart meter 2. When the communication unit 11 receives the S / N ratio together with the measurement information from the smart meter 2, the communication unit 11 stores the received measurement information and S / N ratio in the storage unit 12. Further, when only the measurement information is received from the smart meter 2, the communication unit 11 stores the S / N ratio calculated when the measurement information is received together with the received measurement information in the storage unit 12.
 また、通信部13は、計測情報の定期収集を行う時間帯以外の時間帯を利用してPLCネットワークの状態把握用の通信を行い、PLCネットワークの通信状態をチェックする。通信部13は、PLCネットワークの通信状態のチェック結果を元に、自装置すなわち上位端末1から各スマートメーター2までのホップ数と、ホップするスマートメーター2の端末番号、すなわち自装置から通信相手のスマートメーター2までの通信を中継する各スマートメーター2の端末番号とを制御する。 Further, the communication unit 13 performs communication for grasping the state of the PLC network using a time zone other than the time zone for periodically collecting measurement information, and checks the communication state of the PLC network. The communication unit 13 determines the number of hops from the own device, that is, the upper terminal 1 to each smart meter 2, and the terminal number of the smart meter 2 to hop, that is, from the own device to the communication partner based on the check result of the communication state of the PLC network. The terminal number of each smart meter 2 that relays communication up to the smart meter 2 is controlled.
 管理部14は、スマートメーター2の接続形態の情報および登録情報などを管理する。接続形態の情報とは、電力線の分岐情報、各分岐への接続台数などの情報である。登録情報とは、正規IDの端末が接続されているかを示す情報である。 The management unit 14 manages connection information and registration information of the smart meter 2. The information on the connection form is information such as power line branch information and the number of units connected to each branch. The registration information is information indicating whether a terminal with a regular ID is connected.
 図4は、実施の形態1にかかる管理装置の構成例を示す図である。管理装置5は、定期的または不定期に上位端末1から送信されてくる各種データを解析するデータ解析部51と、上位端末1が各スマートメーター2から計測情報を収集する際の通信品質を監視する通信品質監視部52と、上位端末1から各種データを取得するデータ取得部53と、データ取得部53が上位端末1から取得したデータおよびデータ解析部51による解析結果などを記憶する記憶部54と、ネットワーク50を介して上位端末1と通信する通信部55と、を備える。 FIG. 4 is a diagram of a configuration example of the management apparatus according to the first embodiment. The management device 5 monitors the communication quality when the host terminal 1 collects measurement information from each smart meter 2 and the data analyzer 51 that analyzes various data transmitted from the host terminal 1 regularly or irregularly. A communication quality monitoring unit 52, a data acquisition unit 53 that acquires various data from the host terminal 1, and a storage unit 54 that stores data acquired by the data acquisition unit 53 from the host terminal 1, an analysis result by the data analysis unit 51, and the like. And a communication unit 55 that communicates with the upper terminal 1 via the network 50.
 データ取得部53は、通信部55を介して、上位端末1が各スマートメーター2から収集した計測情報と、各スマートメーター2が他のスマートメーター2から受信した計測情報を中継する際に算出したS/N比とを上位端末1から取得する。なお、詳細については別途説明するが、データ取得部53が上位端末1から取得するS/N比は、計測情報を最初に中継するスマートメーター2、すなわち、計測情報を送信するスマートメーター2とPLCネットワーク上で隣接しているスマートメーター2が、中継対象の計測情報を受信する際に算出したS/N比である。データ取得部53が取得した計測情報およびS/N比は記憶部54に渡され、記憶部54で記憶される。 The data acquisition unit 53 is calculated when the host terminal 1 relays the measurement information collected from each smart meter 2 and the measurement information received from each other smart meter 2 via the communication unit 55. The S / N ratio is acquired from the upper terminal 1. Although the details will be described separately, the S / N ratio acquired by the data acquisition unit 53 from the upper terminal 1 is the smart meter 2 that relays the measurement information first, that is, the smart meter 2 that transmits the measurement information and the PLC. The S / N ratio calculated when the smart meter 2 adjacent on the network receives the measurement information to be relayed. The measurement information and S / N ratio acquired by the data acquisition unit 53 are transferred to the storage unit 54 and stored in the storage unit 54.
 通信品質監視部52は、データ取得部53が取得したS/N比を監視し、S/N比があらかじめ設定した閾値未満に低下したことを検知すると、S/N比の低下をデータ解析部51へ通知する。 When the communication quality monitoring unit 52 monitors the S / N ratio acquired by the data acquisition unit 53 and detects that the S / N ratio has decreased below a preset threshold value, the communication quality monitoring unit 52 indicates that the S / N ratio has decreased. 51 is notified.
 データ解析部51は、データ取得部53が取得したS/N比があらかじめ設定した閾値未満に低下した旨の通知を通信品質監視部52から受けると、記憶部54で記憶されている計測情報およびS/N比を解析し、S/N比が劣化した要因を特定する。なお、データ解析部51は、高調波のデータが記憶部54で記憶されている場合、すなわち、データ取得部53が計測情報およびS/N比に加えて高調波のデータを上位端末1から取得する場合、高調波のデータを解析してS/N比劣化の要因を特定するようにしてもよい。データ解析部51は、S/N比が劣化した要因を特定する際、解析テーブル511を生成し、解析テーブル511を用いてS/N比劣化の要因を特定する。解析テーブル511の詳細については後述する。 When the data analysis unit 51 receives a notification from the communication quality monitoring unit 52 that the S / N ratio acquired by the data acquisition unit 53 has dropped below a preset threshold, the measurement information stored in the storage unit 54 and The S / N ratio is analyzed, and the cause of the deterioration of the S / N ratio is specified. Note that the data analysis unit 51 acquires harmonic data from the host terminal 1 when the harmonic data is stored in the storage unit 54, that is, the data acquisition unit 53 acquires harmonic data in addition to the measurement information and the S / N ratio. In this case, the factor of the S / N ratio deterioration may be specified by analyzing the harmonic data. The data analysis unit 51 generates the analysis table 511 when specifying the factor that the S / N ratio has deteriorated, and specifies the factor of the S / N ratio deterioration by using the analysis table 511. Details of the analysis table 511 will be described later.
 次に、実施の形態1にかかる自動検針システム100において、上位端末1がスマートメーター2から計測情報を収集して管理装置5へ送信する動作について、図5を用いて説明する。図5は、実施の形態1にかかる自動検針システム100の動作例を示すUML(Unified Modeling Language)シーケンス図である。図5では、図1に示したスマートメーター2-11,2-12,2-13,・・・の各々から上位端末1が計測情報を収集する動作の例を示している。なお、図5においては、S/N比を「S/N」と記載している。その他の図面においても同様である。 Next, in the automatic meter reading system 100 according to the first embodiment, an operation in which the upper terminal 1 collects measurement information from the smart meter 2 and transmits it to the management device 5 will be described with reference to FIG. FIG. 5 is a UML (Unified Modeling Language) sequence diagram illustrating an operation example of the automatic meter reading system 100 according to the first embodiment. FIG. 5 shows an example of an operation in which the upper terminal 1 collects measurement information from each of the smart meters 2-11, 12-12, 2-13,... Shown in FIG. In FIG. 5, the S / N ratio is described as “S / N”. The same applies to the other drawings.
 自動検針システム100においては、図5に示したように、上位端末1が、スマートメーター2-11,2-12,2-13,・・・,2-mに対して計測情報取得要求を個別に送信し、計測情報およびS/N比を収集する処理を周期的に、具体的には30分毎に、実行する。なお、mは14以上の整数である。 In the automatic meter reading system 100, as shown in FIG. 5, the upper terminal 1 individually issues a measurement information acquisition request to the smart meters 2-11, 12-12, 2-13,. To collect the measurement information and S / N ratio periodically, specifically, every 30 minutes. Note that m is an integer of 14 or more.
 具体的には、上位端末1は、まず、スマートメーター2-11宛の計測情報取得要求を生成して送信する(ステップS11)。上位端末1から1ホップ目のスマートメーター2-11は、自装置宛の計測情報取得要求を上位端末1から直接受信する。スマートメーター2-11は、自装置宛の計測情報取得要求を受信すると、計測情報を上位端末1宛に送信する(ステップS12)。スマートメーター2-11が上位端末1宛に送信する計測情報は、30分毎の使用電力量、デマンド、電流および高調波情報などの電気情報と、計測を行った時刻を示す計測時刻情報とを含む情報である。スマートメーター2-12,2-13,・・・,2-mが送信する計測情報も同様である。 Specifically, the upper terminal 1 first generates and transmits a measurement information acquisition request addressed to the smart meter 2-11 (step S11). The smart meter 2-11 at the first hop from the upper terminal 1 directly receives a measurement information acquisition request addressed to itself from the upper terminal 1. When the smart meter 2-11 receives the measurement information acquisition request addressed to itself, it transmits the measurement information to the upper terminal 1 (step S12). The measurement information transmitted to the upper terminal 1 by the smart meter 2-11 includes electrical information such as power consumption, demand, current and harmonic information every 30 minutes, and measurement time information indicating the time when the measurement was performed. It is information to include. The same applies to the measurement information transmitted by the smart meters 2-12, 2-13, ..., 2-m.
 上位端末1は、スマートメーター2-11から計測情報を受信すると、計測情報を、計測情報の送信元であるスマートメーター2-11を示す端末番号と対応付けて記憶する。また、上位端末1は、計測情報とともにS/N比が送信されていたか否かを確認し、S/N比が送信されていていない場合、計測情報の受信時に算出したS/N比も一緒に、計測情報と対応付けて記憶する。上位端末1が計測情報の受信時に算出したS/N比は、上位端末1とスマートメーター2-11との間の通信品質を示す情報に相当する。なお、図5に示した例では、上位端末1が1ホップ目のスマートメーター2-11から計測情報を収集する場合、S/N比が上位端末1に対して送信されてくることはない。そのため、上位端末1は、計測情報とともにS/N比が送信されていたか否かを確認するのではなく、計測情報の送信元のスマートメーターが1ホップ目か否かを確認し、送信元が1ホップ目のスマートメーターの場合には、計測情報の受信時に算出したS/N比を、計測情報と対応付けて記憶するようにしてもよい。 Upon receiving the measurement information from the smart meter 2-11, the upper terminal 1 stores the measurement information in association with the terminal number indicating the smart meter 2-11 that is the transmission source of the measurement information. Further, the upper terminal 1 confirms whether or not the S / N ratio is transmitted together with the measurement information. If the S / N ratio is not transmitted, the S / N ratio calculated when the measurement information is received is also included. And stored in association with the measurement information. The S / N ratio calculated when the upper terminal 1 receives the measurement information corresponds to information indicating the communication quality between the upper terminal 1 and the smart meter 2-11. In the example shown in FIG. 5, when the upper terminal 1 collects measurement information from the first hop smart meter 2-11, the S / N ratio is not transmitted to the upper terminal 1. Therefore, the upper terminal 1 does not check whether or not the S / N ratio has been transmitted together with the measurement information, but checks whether or not the smart meter that is the transmission source of the measurement information is the first hop. In the case of the first hop smart meter, the S / N ratio calculated when the measurement information is received may be stored in association with the measurement information.
 上位端末1は、次に、スマートメーター2-12宛の計測情報取得要求を生成して送信する(ステップS13)。上位端末1から2ホップ目のスマートメーター2-12は、自装置宛の計測情報取得要求を、スマートメーター2-11を介して受信する。スマートメーター2-12は、自装置宛の計測情報取得要求を受信すると、計測情報を上位端末1宛に送信する(ステップS14)。スマートメーター2-12が送信した計測情報は、スマートメーター2-11により中継された後、上位端末1に到着する。スマートメーター2-12が送信した計測情報を最初に中継するスマートメーター2-11、すなわち、スマートメーター2-12の1ホップ上位のスマートメーター2-11は、計測情報を中継する際、計測情報の受信時に算出したS/N比を、中継する計測情報に付加する。この結果、上位端末1は、スマートメーター2-12から送信された計測情報に加えて、スマートメーター2-11で算出されたS/N比を受信する。スマートメーター2-11が計測情報の受信時に算出したS/N比は、スマートメーター2-11とスマートメーター2-12との間の通信品質を示す情報に相当する。 Next, the upper terminal 1 generates and transmits a measurement information acquisition request addressed to the smart meter 2-12 (step S13). The smart meter 2-12 at the second hop from the host terminal 1 receives the measurement information acquisition request addressed to itself through the smart meter 2-11. When the smart meter 2-12 receives the measurement information acquisition request addressed to itself, it transmits the measurement information to the upper terminal 1 (step S14). The measurement information transmitted by the smart meter 2-12 is relayed by the smart meter 2-11 and then arrives at the upper terminal 1. The smart meter 2-11 that relays the measurement information transmitted by the smart meter 2-12 first, that is, the smart meter 2-11 that is one hop higher than the smart meter 2-12, The S / N ratio calculated at the time of reception is added to the measurement information to be relayed. As a result, the upper terminal 1 receives the S / N ratio calculated by the smart meter 2-11 in addition to the measurement information transmitted from the smart meter 2-12. The S / N ratio calculated when the smart meter 2-11 receives the measurement information corresponds to information indicating the communication quality between the smart meter 2-11 and the smart meter 2-12.
 上位端末1は、スマートメーター2-12から計測情報を受信すると、計測情報を、計測情報の送信元であるスマートメーター2-12を示す端末番号と対応付けて記憶する。この場合、上位端末1は、計測情報とともにS/N比を受信するため、受信したS/N比を、スマートメーター2-12の端末番号および計測情報と対応付けて記憶する。 Upon receiving the measurement information from the smart meter 2-12, the upper terminal 1 stores the measurement information in association with the terminal number indicating the smart meter 2-12 that is the transmission source of the measurement information. In this case, the upper terminal 1 receives the S / N ratio together with the measurement information, and stores the received S / N ratio in association with the terminal number of the smart meter 2-12 and the measurement information.
 上位端末1は、次に、スマートメーター2-12に対して実行した動作と同様の動作をスマートメーター2-13に対して実行するが、この動作については図6も参照しながら説明する。図6は、実施の形態1にかかる自動検針システム100の上位端末が計測情報を取得する動作の具体例を示す図である。 Next, the host terminal 1 executes the same operation as that performed on the smart meter 2-12 on the smart meter 2-13. This operation will be described with reference to FIG. FIG. 6 is a diagram illustrating a specific example of an operation in which the host terminal of the automatic meter reading system 100 according to the first embodiment acquires measurement information.
 上位端末1は、スマートメーター2-13から計測情報を取得する場合、スマートメーター2-13宛の計測情報取得要求を生成して送信する(ステップS15)。上位端末1から3ホップ目のスマートメーター2-13は、自装置宛の計測情報取得要求を、スマートメーター2-11および2-12を介して受信する(図6(1))。スマートメーター2-13は、自装置宛の計測情報取得要求を受信すると、計測情報を上位端末1宛に送信する(ステップS16)。図6の(2)~(4)でも示したように、スマートメーター2-13が送信した計測情報は、スマートメーター2-11および2-12により中継された後、上位端末1に到着する。スマートメーター2-13が送信した計測情報を最初に中継するスマートメーター2-12、すなわち、スマートメーター2-13の1ホップ上位のスマートメーター2-12は、計測情報を中継する際、計測情報の受信時に算出したS/N比を、中継する計測情報に付加する(図6(3))。計測情報に付加するS/N比は、スマートメーター2-12とスマートメーター2-13との間の通信品質を示す情報に相当する。スマートメーター2-11は、スマートメーター2-12から計測情報およびS/N比を受信するため、計測情報およびS/N比の受信時に算出したS/N比を付加することなく、受信した計測情報およびS/N比をそのまま中継する(図6(4))。この結果、上位端末1は、スマートメーター2-13から送信された計測情報に加えて、スマートメーター2-12で算出されたS/N比を受信する。最初に計測情報を中継するスマートメーターがS/N比を付加し、2番目以降に計測情報を中継するスマートメーターはS/N比を付加しないため、上位端末1へ送信する情報が必要以上に増加するのを防止できる。また、解析処理の対象となる情報の増加が抑えられ、処理負荷が増大するのを防止できる。さらに、情報を保持するためのメモリのサイズが増大するのを防止できる。 When acquiring the measurement information from the smart meter 2-13, the upper terminal 1 generates and transmits a measurement information acquisition request addressed to the smart meter 2-13 (step S15). The smart meter 2-13 at the third hop from the host terminal 1 receives the measurement information acquisition request addressed to itself through the smart meters 2-11 and 2-12 (FIG. 6 (1)). Upon receiving the measurement information acquisition request addressed to the own device, the smart meter 2-13 transmits the measurement information to the upper terminal 1 (step S16). As shown in (2) to (4) of FIG. 6, the measurement information transmitted by the smart meter 2-13 is relayed by the smart meters 2-11 and 2-12, and then arrives at the upper terminal 1. The smart meter 2-12 that relays the measurement information transmitted by the smart meter 2-13 first, that is, the smart meter 2-12 that is one hop higher than the smart meter 2-13, The S / N ratio calculated at the time of reception is added to the measurement information to be relayed ((3) in FIG. 6). The S / N ratio added to the measurement information corresponds to information indicating the communication quality between the smart meter 2-12 and the smart meter 2-13. Since the smart meter 2-11 receives the measurement information and the S / N ratio from the smart meter 2-12, the received measurement without adding the S / N ratio calculated when the measurement information and the S / N ratio are received. Information and S / N ratio are relayed as they are (FIG. 6 (4)). As a result, the upper terminal 1 receives the S / N ratio calculated by the smart meter 2-12 in addition to the measurement information transmitted from the smart meter 2-13. The smart meter that relays measurement information first adds an S / N ratio, and the smart meter that relays measurement information after the second does not add an S / N ratio. The increase can be prevented. In addition, an increase in information to be analyzed is suppressed, and an increase in processing load can be prevented. Furthermore, an increase in the size of the memory for holding information can be prevented.
 上位端末1は、スマートメーター2-13から計測情報を受信すると、計測情報を、計測情報の送信元であるスマートメーター2-13を示す端末番号と対応付けて記憶する。この場合、上位端末1は、計測情報とともにS/N比を受信するため、受信したS/N比を端末番号および計測情報と対応付けて記憶する。 When receiving the measurement information from the smart meter 2-13, the upper terminal 1 stores the measurement information in association with the terminal number indicating the smart meter 2-13 that is the transmission source of the measurement information. In this case, the upper terminal 1 receives the S / N ratio together with the measurement information, and stores the received S / N ratio in association with the terminal number and the measurement information.
 上位端末1は、同様の処理を繰り返し、スマートメーター2-m宛の計測情報取得要求を生成して送信する(ステップS17)。そして、上位端末1は、スマートメーター2-mから送信された計測情報と、計測情報を最初に中継するスマートメーターで算出されたS/N比とを受信し(ステップS18)、受信した計測情報およびS/N比と、スマートメーター2-mの端末番号とを対応付けて記憶する。 The host terminal 1 repeats the same processing to generate and transmit a measurement information acquisition request addressed to the smart meter 2-m (step S17). The upper terminal 1 receives the measurement information transmitted from the smart meter 2-m and the S / N ratio calculated by the smart meter that relays the measurement information first (step S18), and receives the received measurement information. The S / N ratio and the terminal number of the smart meter 2-m are stored in association with each other.
 上位端末1は、スマートメーター2-11~2-mの全てから計測情報を取得すると、各スマートメーターから取得した全ての計測情報およびS/N比を管理装置5へ送信する(ステップS19)。 When the host terminal 1 acquires measurement information from all of the smart meters 2-11 to 2-m, it transmits all the measurement information and S / N ratio acquired from each smart meter to the management device 5 (step S19).
 つづいて、管理装置5の動作について、図7を用いて説明する。図7は、実施の形態1にかかる管理装置5の動作例を示すフローチャートである。 Subsequently, the operation of the management apparatus 5 will be described with reference to FIG. FIG. 7 is a flowchart of an operation example of the management apparatus 5 according to the first embodiment.
 管理装置5は、上位端末1から計測データが送信されてきたか否か、すなわち、計測データを受信したか否かを監視する。管理装置5は、計測データを受信しない場合(ステップS51:No)、計測データが送信されてくるのを待ち続ける。管理装置5は、計測データを受信した場合(ステップS51:Yes)、受信した計測データを記憶する(ステップS52)。ここで、計測データは、上述した計測情報およびS/N比とする。管理装置5においては、データ取得部53が、計測データの受信の有無を監視し、受信した計測データを記憶部54が記憶する。管理装置5は、ステップS52で計測データを記憶すると、次に、受信した計測データが高分解能で取得された計測データか否かを確認する(ステップS53)。高分解能で取得された計測データとは、上位端末1が通常よりも短い周期でスマートメーター2から取得した計測情報を含んだ計測データである。 The management device 5 monitors whether or not measurement data has been transmitted from the host terminal 1, that is, whether or not measurement data has been received. When the management device 5 does not receive the measurement data (step S51: No), the management device 5 continues to wait for the measurement data to be transmitted. When the management device 5 receives the measurement data (step S51: Yes), the management device 5 stores the received measurement data (step S52). Here, the measurement data is the above-described measurement information and S / N ratio. In the management device 5, the data acquisition unit 53 monitors whether or not the measurement data is received, and the storage unit 54 stores the received measurement data. After storing the measurement data in step S52, the management device 5 next checks whether or not the received measurement data is measurement data acquired with high resolution (step S53). The measurement data acquired with high resolution is measurement data including measurement information acquired from the smart meter 2 by the host terminal 1 in a cycle shorter than usual.
 管理装置5は、受信した計測データが高分解能で取得された計測データに該当しない場合(ステップS53:No)、受信した計測データに含まれている全てのS/N比を確認し、予め決められている第1の閾値未満のS/N比が存在する否かを確認する(ステップS54)。管理装置5は、第1の閾値未満のS/N比が存在しない場合(ステップS54:No)、ステップS51に戻る。また、管理装置5は、第1の閾値未満のS/N比が存在する場合(ステップS54:Yes)、上位端末1に対して、計測データ収集の分解能を高分解能に変更するよう、すなわち、計測データの収集周期を短くするよう、指示する(ステップS55)。管理装置5においては、通信品質監視部52が、ステップS53~S55の処理を実行する。 When the received measurement data does not correspond to the measurement data acquired with high resolution (step S53: No), the management device 5 checks all the S / N ratios included in the received measurement data and determines in advance. It is confirmed whether or not there is an S / N ratio less than the first threshold (step S54). When the S / N ratio less than the first threshold does not exist (step S54: No), the management device 5 returns to step S51. Further, when the S / N ratio less than the first threshold exists (step S54: Yes), the management device 5 changes the measurement data collection resolution to a high resolution for the upper terminal 1, that is, An instruction is given to shorten the measurement data collection cycle (step S55). In the management device 5, the communication quality monitoring unit 52 executes the processes of steps S53 to S55.
 管理装置5は、ステップS55を実行後、計測データを解析するとともに、解析結果を記憶し(ステップS56,S57)、ステップS51に戻る。管理装置5においては、データ解析部51が計測データを解析してS/N比低下の要因の特定などを行い、記憶部54が解析結果を記憶する。データ解析部51がステップS56で計測データを解析する動作の詳細については後述する。 The management apparatus 5 analyzes the measurement data after executing Step S55, stores the analysis result (Steps S56 and S57), and returns to Step S51. In the management device 5, the data analysis unit 51 analyzes the measurement data to identify the cause of the S / N ratio decrease, and the storage unit 54 stores the analysis result. Details of the operation of the data analysis unit 51 analyzing the measurement data in step S56 will be described later.
 一方、管理装置5は、受信した計測データが高分解能で取得された計測データに該当する場合(ステップS53:Yes)、受信した計測データに含まれている全てのS/N比を確認し、予め決められている第2の閾値未満のS/N比が存在する否かを確認する(ステップS58)。なお、第2の閾値は上述した第1の閾値よりも小さいものとする(第2の閾値<第1の閾値)。管理装置5は、第2の閾値未満のS/N比が存在する場合(ステップS58:Yes)、計測データを解析するとともに、解析結果を記憶する(ステップS59,S60)。管理装置5においては、通信品質監視部52が、ステップS58の処理を実行する。また、データ解析部51が計測データを解析してS/N比低下の要因の特定などを行い、記憶部54が解析結果を記憶する。データ解析部51がステップS59で計測データを解析する動作の詳細については後述する。 On the other hand, when the received measurement data corresponds to the measurement data acquired with high resolution (step S53: Yes), the management device 5 checks all the S / N ratios included in the received measurement data, It is confirmed whether or not there is an S / N ratio less than a predetermined second threshold (step S58). Note that the second threshold value is smaller than the first threshold value described above (second threshold value <first threshold value). When the S / N ratio less than the second threshold exists (step S58: Yes), the management device 5 analyzes the measurement data and stores the analysis result (steps S59 and S60). In the management device 5, the communication quality monitoring unit 52 executes the process of step S58. In addition, the data analysis unit 51 analyzes the measurement data to identify the cause of the S / N ratio decrease, and the storage unit 54 stores the analysis result. Details of the operation of the data analysis unit 51 analyzing the measurement data in step S59 will be described later.
 管理装置5は、ステップS60を実行後、上記のステップS55で計測データ収集の分解能の変更を上位端末1に指示してから一定時間が経過したか否かを確認する(ステップS61)。一定時間は、例えば、12時間、24時間など、上位端末1がスマートメーター2から計測情報を収集する通常の周期よりも長い時間とする。管理装置5は、一定時間を自動検針システム100の管理者などが変更するための手段を備えた構成としてもよい。管理装置5は、計測データ収集の分解能の変更を上位端末1に指示してから一定時間が経過していない場合(ステップS61:No)、ステップS51に戻る。管理装置5は、計測データ収集の分解能の変更を上位端末1に指示してから一定時間が経過した場合(ステップS61:Yes)、上位端末1に対して、計測データ収集の分解能を通常の分解能に変更するよう、指示する(ステップS62)。管理装置5においては、通信品質監視部52が、ステップS61およびS62の処理を実行する。管理装置5は、ステップS62を実行後、ステップS51に戻る。 After executing step S60, the management device 5 confirms whether or not a predetermined time has elapsed since the host terminal 1 was instructed to change the resolution of measurement data collection in step S55 (step S61). The fixed time is, for example, 12 hours, 24 hours, or the like, which is longer than the normal cycle in which the upper terminal 1 collects measurement information from the smart meter 2. The management device 5 may be configured to include means for changing a certain time by an administrator of the automatic meter reading system 100 or the like. The management apparatus 5 returns to step S51, when fixed time has not passed since it instruct | indicated the change of the resolution of measurement data collection to the high-order terminal 1 (step S61: No). When a certain period of time has elapsed since the management device 5 instructed the host terminal 1 to change the resolution of the measurement data collection (step S61: Yes), the management device 5 sets the resolution of the measurement data collection to the normal resolution. To change to (step S62). In the management device 5, the communication quality monitoring unit 52 executes the processes of steps S61 and S62. The management apparatus 5 returns to step S51 after performing step S62.
 管理装置5は、第2の閾値未満のS/N比が存在しない場合(ステップS58:No)、ステップS61へ進む。 If the S / N ratio less than the second threshold does not exist (step S58: No), the management device 5 proceeds to step S61.
 管理装置5を構成している各部の動作について説明する。図8は、実施の形態1にかかる自動検針システムの管理装置の内部動作の一例を示す図である。図8に示したように、管理装置5において、データ取得部53は、上位端末1から30分毎に送信される計測データを受信し(ステップS31)、受信した計測データを通信品質監視部52および記憶部54へ出力する(ステップS32,S33)。記憶部54は、データ取得部53から受け取った計測データを記憶する。 The operation of each part constituting the management device 5 will be described. FIG. 8 is a diagram illustrating an example of an internal operation of the management device of the automatic meter reading system according to the first embodiment. As shown in FIG. 8, in the management device 5, the data acquisition unit 53 receives measurement data transmitted from the upper terminal 1 every 30 minutes (step S <b> 31), and the received measurement data is transmitted to the communication quality monitoring unit 52. And it outputs to the memory | storage part 54 (step S32, S33). The storage unit 54 stores measurement data received from the data acquisition unit 53.
 通信品質監視部52は、データ取得部53から計測データを受け取ると、計測データの収集周期が低分解能、すなわち通常の周期か、それとも高分解能であるかを確認し、計測データの収集周期が低分解能であれば、計測データに含まれているS/N比の中に第1の閾値未満のものが存在するか否かを確認する(図8の時刻(T)および時刻(T+30)のケース)。一方、計測データの収集周期が高分解能であれば、通信品質監視部52は、計測データに含まれているS/N比の中に第2の閾値未満のものが含まれているか否かを確認する(図8の時刻(T+60)のケース)。なお、第1の閾値および第2の閾値は、図7に示した第1の閾値および第2の閾値と同じものである。 When the communication quality monitoring unit 52 receives the measurement data from the data acquisition unit 53, the communication quality monitoring unit 52 checks whether the measurement data collection cycle has a low resolution, that is, a normal cycle or a high resolution, and the measurement data collection cycle is low. If the resolution is satisfied, it is confirmed whether or not the S / N ratio included in the measurement data is less than the first threshold (the case of time (T) and time (T + 30) in FIG. 8). ). On the other hand, if the measurement data collection cycle is high resolution, the communication quality monitoring unit 52 determines whether or not the S / N ratio included in the measurement data includes a value less than the second threshold. Confirm (case at time (T + 60) in FIG. 8). The first threshold and the second threshold are the same as the first threshold and the second threshold shown in FIG.
 通信品質監視部52は、計測データの収集周期が低分解能、かつ第1の閾値未満のS/N比が存在する場合、上位端末1へ計測時間分解能の変更を指示する(ステップS34)。このステップS34の処理は、図7に示したステップS55の処理と同じ処理であり、通信品質管理に52は上位端末1に対し、計測データ収集の分解能を高分解能に変更するよう指示する。また、通信品質監視部52は、データ解析部51に対して、計測データの解析を要求する(ステップS35)。ステップS35で計測データの解析要求を受けたデータ解析部51は、記憶部12で記憶されている計測データを解析する(ステップS36)。このステップS36の処理は、図7に示したステップS56の処理と同じ処理である。データ解析部51は、計測データの解析が終了すると、解析結果を記憶部54へ出力する(ステップS37)。記憶部54は、データ解析部51から受け取った解析結果を記憶する。 The communication quality monitoring unit 52 instructs the upper terminal 1 to change the measurement time resolution when the measurement data collection cycle has a low resolution and an S / N ratio less than the first threshold exists (step S34). The process of step S34 is the same as the process of step S55 shown in FIG. 7, and 52 instructs the communication quality management to change the resolution of measurement data collection to the high resolution to the upper terminal 1. The communication quality monitoring unit 52 requests the data analysis unit 51 to analyze the measurement data (step S35). Receiving the measurement data analysis request in step S35, the data analysis unit 51 analyzes the measurement data stored in the storage unit 12 (step S36). The process in step S36 is the same as the process in step S56 shown in FIG. When the analysis of the measurement data ends, the data analysis unit 51 outputs the analysis result to the storage unit 54 (step S37). The storage unit 54 stores the analysis result received from the data analysis unit 51.
 通信品質監視部52は、計測データの収集周期が高分解能、かつ第2の閾値未満のS/N比が存在する場合、データ解析部51に対して、計測データの解析を要求する(ステップS38)。ステップS38で計測データの解析要求を受けたデータ解析部51は、記憶部12で記憶されている計測データを解析する(ステップS39)。このステップS39の処理は、図7に示したステップS59の処理と同じ処理である。データ解析部51は、計測データの解析が終了すると、解析結果を記憶部54へ出力する(ステップS40)。記憶部54は、データ解析部51から受け取った解析結果を記憶する。 When the measurement data collection cycle has a high resolution and an S / N ratio less than the second threshold, the communication quality monitoring unit 52 requests the data analysis unit 51 to analyze the measurement data (step S38). ). Upon receiving the measurement data analysis request in step S38, the data analysis unit 51 analyzes the measurement data stored in the storage unit 12 (step S39). The process in step S39 is the same as the process in step S59 shown in FIG. When the analysis of the measurement data ends, the data analysis unit 51 outputs the analysis result to the storage unit 54 (Step S40). The storage unit 54 stores the analysis result received from the data analysis unit 51.
 計測データの収集周期が低分解能の場合の例および高分解能の場合の例を図9に示す。図9は、実施の形態1にかかる上位端末が計測データを収集するタイミングの例を示す図である。点線が計測データの収集タイミングを示している。図9の(a)が通常の分解能での計測データの収集タイミングを示し、図9の(b)が高分解能での計測データの収集タイミングを示している。 Fig. 9 shows an example when the measurement data collection period is low resolution and high resolution. FIG. 9 is a diagram illustrating an example of timing at which the host terminal according to the first embodiment collects measurement data. A dotted line indicates the collection timing of measurement data. FIG. 9A shows the measurement data collection timing at the normal resolution, and FIG. 9B shows the measurement data collection timing at the high resolution.
 図9に示したように、計測データの収集周期が低分解能の場合、すなわち通常の周期で計測データを収集する場合、短時間に大電流が発生するケース、例えば負荷装置である電気機器の起動時に一時的に大電流が流れるケースについては検出することができない。すなわち、通常の周期で計測データを収集する場合、1周期あたりの使用電力量が増加したことは検出できるが、1周期全体にわたって使用電力量が増加しているのか、それとも短期間に使用電力量が大きく増加しているのかを判別することができない。短期間に使用電力量が大きく増加する場合は付加装置から発生するノイズも増加し、通信に悪影響を与える可能性がある。そのため、短期間に使用電力量が大きく増加するケースを検出できることが望ましい。短期間に使用電力量が大きく増加するケースが検出できれば、その期間を避けて上位端末1と各スマートメーター2が通信を行って計測データを収集できる可能性が高まり、通信品質の改善につながる。図9の(b)に示したように、計測データの収集周期を高分解能にすると、短期間に使用電力量が大きく増加するケースを検出できる可能性が高くなる。 As shown in FIG. 9, when measurement data is collected at a low resolution, that is, when measurement data is collected at a normal period, a case where a large current is generated in a short time, for example, activation of an electric device as a load device Sometimes, a case where a large current flows temporarily cannot be detected. That is, when collecting measurement data in a normal cycle, it can be detected that the amount of power used per cycle has increased, but whether the amount of power used has increased throughout the cycle, or the amount of power used in a short period of time. It is not possible to determine whether or not the value has greatly increased. When the amount of power used greatly increases in a short period of time, noise generated from the additional device also increases, which may adversely affect communication. Therefore, it is desirable to be able to detect a case where the amount of power used greatly increases in a short time. If it is possible to detect a case in which the amount of power used greatly increases in a short period of time, there is an increased possibility that the upper terminal 1 and each smart meter 2 can communicate and collect measurement data while avoiding that period, leading to improved communication quality. As shown in FIG. 9B, if the measurement data collection period is set to a high resolution, there is a high possibility that a case in which the amount of power used greatly increases in a short period of time can be detected.
 ここで、一般家庭で短期間に使用電力量が大きく増加してノイズが発生するケースとしては、電磁調理器を使用する場合、電子レンジを使用する場合、空気調和装置を起動した場合などが考えられ、これらは生活パターンに依存している。よって、例えば、上位端末1が短周期で計測データを収集し、それを管理装置5が解析する動作を12時間または24時間、またはさらに長い時間にわたって実行することにより、各需要家において使用電力量が短時間に大きく増加する時間帯を推定することが可能となる。使用電力量が短時間に大きく増加する時間帯の推定が終了した後は、推定結果が示す時間帯、すなわち、各需要家において使用電力量が短時間に大きく増加する時間帯を避けて上位端末1が計測データを収集するように調整することにより、計測データを収集する通信の品質を向上させることができる。一方、短期間に使用電力量が大きく増加するのではなく、平均的に使用電力量が大きくなっている場合、電力線には比較的大きなノイズが常時流れることになる。このような場合には、ノイズ発生源となっている需要家から共用の電力線にノイズが流れ出すのを防止するためのフィルターを設置するなどの対策が必要となる。 Here, the cases where noise is generated due to a large increase in power consumption in a short period of time in ordinary households include when using an electromagnetic cooker, when using a microwave oven, or when starting an air conditioner. These are dependent on life patterns. Therefore, for example, the upper terminal 1 collects measurement data in a short cycle, and the management device 5 analyzes the data for 12 hours, 24 hours, or a longer time, so that the amount of electric power used in each consumer. It is possible to estimate a time zone during which the time increases greatly in a short time. After the estimation of the time zone in which the power consumption increases greatly in a short time, the upper terminal avoids the time zone indicated by the estimation result, that is, the time zone in which the power usage amount greatly increases in each customer. By adjusting so that 1 collects measurement data, the quality of communication for collecting measurement data can be improved. On the other hand, when the amount of power used does not increase significantly in a short period of time, but on average, relatively large noise always flows through the power line. In such a case, it is necessary to take measures such as installing a filter for preventing the noise from flowing from the consumer that is the source of the noise to the common power line.
 本実施の形態にかかる管理装置5は、異なる周期で計測データを収集し、解析を行うため、使用電力量が短時間に大きく増加する時間帯の推定、および、平均的に使用電力量が大きくなっている需要家の特定が可能である。以下、管理装置5のデータ解析部51が計測データを解析し、使用電力量が短時間に大きく増加する時間帯の推定、および、平均的に使用電力量が大きくなっている需要家の特定を行う動作について、図10~図13を参照しながら説明する。この動作は、図7に示したステップS56の動作およびステップS59の動作である。 Since the management device 5 according to the present embodiment collects measurement data at different periods and performs analysis, the management device 5 estimates the time zone in which the power consumption increases greatly in a short time, and the power consumption is large on average. It is possible to identify the consumers who are. Hereinafter, the data analysis unit 51 of the management device 5 analyzes the measurement data, estimates the time zone in which the power consumption increases greatly in a short time, and identifies the consumers whose power consumption is large on average. The operation to be performed will be described with reference to FIGS. This operation is the operation in step S56 and the operation in step S59 shown in FIG.
 図10は、自動検針システムの構成例を示す図である。図10では、マンションなどの集合住宅の101号室(図10では101号と記載、以下同様),102号室,201号室,…,402号室の各部屋に設置されたスマートメーター2-11~2-14および2-21~2-24と、上位端末1と、管理装置5とが自動検針システムを形成している例を示している。図10に示した例では、スマートメーター2-11~2-14の間で計測データが中継され、スマートメーター2-21~2-24の間で計測データが中継されるものとする。上位端末1、各スマートメーター2および管理装置5は、図1~図9を用いて説明した動作と同様の動作を実行し、管理装置5が上位端末1から計測データを受信する。 FIG. 10 is a diagram showing a configuration example of an automatic meter reading system. In FIG. 10, smart meters 2-11 to 2-1-2 installed in each of the rooms 101, 102, 201,..., Room 101 (described as 101 in FIG. 14 and 2-21 to 2-24, the host terminal 1, and the management device 5 form an automatic meter reading system. In the example shown in FIG. 10, it is assumed that measurement data is relayed between smart meters 2-11 to 2-14 and measurement data is relayed between smart meters 2-21 to 2-24. The host terminal 1, each smart meter 2, and the management device 5 execute the same operations as those described with reference to FIGS. 1 to 9, and the management device 5 receives measurement data from the host terminal 1.
 管理装置5のデータ解析部51は、上位端末1が通常の分解能で各スマートメーター2から収取した計測データを解析する場合、すなわち、図7に示したステップS56に対応する解析動作を行う場合、まず、記憶部54で記憶されている該当データを読み出し、図11に示した解析テーブルを作成する。データ解析部51は、解析テーブルの作成が終了すると、解析テーブルの詳細を確認してノイズ発生源となっている需要家を特定する。 The data analysis unit 51 of the management device 5 analyzes the measurement data collected from each smart meter 2 by the upper terminal 1 with normal resolution, that is, performs the analysis operation corresponding to step S56 shown in FIG. First, the corresponding data stored in the storage unit 54 is read, and the analysis table shown in FIG. 11 is created. When the creation of the analysis table is completed, the data analysis unit 51 confirms the details of the analysis table and identifies the consumer that is the noise generation source.
 図11に示した解析テーブルには、時刻0:00、0:30および1:00における、スマートメーター2-11~2-14のそれぞれについてのS/N比、電力量および電流の値が含まれている。また、図11において、各時刻に挟まれた列は両側の各時刻間の変化量を示す。なお、変化量の大きい箇所を点線で囲んで示している。例えば、スマートメーター2-11の電力量は、時刻0:00~0:30間に1増加(+1)し、その後、時刻0:30~1:00の間に2減少(-2)している。図10に示したように、スマートメーター2-11が上位端末1から1ホップ目に位置し、スマートメーター2-14が上位端末1から4ホップ目に位置している。従って、特に大きな通信品質を低下させる要因のない場合は、時刻0:00の例のように信号減衰量の計測ポイントが離れるにしたがって信号レベルが低下していく。具体的にはS/N比が一定の割合で低下し、50,45,40,35となっている。 The analysis table shown in FIG. 11 includes values of S / N ratio, electric energy, and current for each of the smart meters 2-11 to 2-14 at times 0:00, 0:30, and 1:00. It is. Further, in FIG. 11, the columns sandwiched between the respective times indicate the amount of change between the respective times on both sides. Note that a portion with a large amount of change is surrounded by a dotted line. For example, the electric energy of the smart meter 2-11 increases by 1 (+1) between 0:00 and 0:30, and then decreases by 2 (-2) between 0:30 and 10:00. Yes. As shown in FIG. 10, the smart meter 2-11 is located at the first hop from the upper terminal 1, and the smart meter 2-14 is located at the fourth hop from the upper terminal 1. Therefore, when there is no factor that causes a significant decrease in communication quality, the signal level decreases as the signal attenuation measurement point moves away as in the example at time 0:00. Specifically, the S / N ratio decreases at a constant rate and becomes 50, 45, 40, and 35.
 図11に示した解析テーブルではS/N比の最も大きな変化点が電力量の最も大きな変化点と一致しているため、通信品質低下の原因箇所特定は容易である。すなわち、S/N比および電力量の双方が大きく変化しているスマートメーターに対応する需要家がノイズ発生源である可能性が高い。よって、図11に示した例の場合、データ解析部51は、スマートメーター2-13が設置されている301号室がノイズ発生箇所であり、その発生時刻が0:30前後であることを特定する。このように、データ解析部51は、通信指標であるS/N比と電力量などの計測情報とに基づいてノイズ発生箇所の特定を行うため、通信指標単独で特定を行う場合と比較して、より正確にノイズ発生箇所を特定することができる。PLCの場合、通信をするための電力線が共有化されているため、ノイズ発生源より遠い側の通信品質が同様に悪化することが予想される。例えば、301号室がノイズ発生源の場合、302号室、401号室、402号室の入り口地点の電力線のS/Nが悪化する。従って、通信指標のみの解析ではこれら3つの部屋の区別が困難である。図11に示した例の場合、スマートメーター2-13におけるS/N比の変化量とスマートメーター2-14におけるS/N比の変化量が同じであり、S/N比のみの解析ではノイズ発生源を特定することが難しいが、電力量の変化を併せて解析することにより、ノイズ発生源を1つに絞り込むことができる。 In the analysis table shown in FIG. 11, since the largest change point of the S / N ratio coincides with the largest change point of the electric energy, it is easy to identify the cause of the communication quality deterioration. That is, there is a high possibility that a consumer corresponding to a smart meter in which both the S / N ratio and the amount of electric power are greatly changed is a noise generation source. Therefore, in the case of the example shown in FIG. 11, the data analysis unit 51 specifies that the room 301 in which the smart meter 2-13 is installed is a noise generation location and the generation time is around 0:30. . In this way, the data analysis unit 51 identifies the noise occurrence location based on the S / N ratio that is the communication index and the measurement information such as the electric energy, so compared with the case where the identification is performed by the communication index alone. Thus, it is possible to specify the noise occurrence location more accurately. In the case of PLC, since the power line for communication is shared, it is expected that the communication quality on the side farther from the noise generation source will similarly deteriorate. For example, when room 301 is a noise generation source, the S / N of the power line at the entrance point of room 302, room 401, and room 402 deteriorates. Therefore, it is difficult to distinguish these three rooms by analyzing only the communication index. In the case of the example shown in FIG. 11, the amount of change in the S / N ratio in the smart meter 2-13 is the same as the amount of change in the S / N ratio in the smart meter 2-14. Although it is difficult to specify the generation source, the noise generation source can be narrowed down to one by analyzing the change in the electric energy.
 また、データ解析部51は、上位端末1が高分解能で各スマートメーター2から収取した計測データを解析する場合、すなわち、図7に示したステップS59に対応する解析動作を行う場合、まず、記憶部54で記憶されている該当データを読み出し、図12に示した解析テーブルを作成する。データ解析部51は、解析テーブルの作成が終了すると、解析テーブルの詳細を確認してノイズ発生源となっている需要家を特定する。 In addition, when the upper terminal 1 analyzes the measurement data collected from each smart meter 2 with high resolution, that is, when performing the analysis operation corresponding to step S59 shown in FIG. The corresponding data stored in the storage unit 54 is read out, and the analysis table shown in FIG. 12 is created. When the creation of the analysis table is completed, the data analysis unit 51 confirms the details of the analysis table and identifies the consumer that is the noise generation source.
 図12に示した解析テーブルには、時刻0:00、0:01および0:02における、スマートメーター2-11~2-14のそれぞれについてのS/N比、電力量および電流の値が含まれている。図11と同様に、各時刻に挟まれた列は両側の各時刻間の変化量を示す。なお、変化量の大きい箇所を点線で囲んで示している。図12に示した解析テーブルには、S/N比、電力量および電流の1分毎の計測値と変化量とが含まれているため、図11に示した解析テーブルを使用した場合と同様の手法によりノイズ発生源を特定することができ、さらに、ノイズ発生時間を絞り込むことが可能となる。図12に示した解析テーブルを使用することにより、スマートメーター2-13の時刻0:00と0:01の間に電流の大きな変化があることを検知できる。 The analysis table shown in FIG. 12 includes the S / N ratio, electric energy, and current values for each of the smart meters 2-11 to 2-14 at times 0:00, 0:01, and 0:02. It is. As in FIG. 11, the column between each time indicates the amount of change between each time on both sides. Note that a portion with a large amount of change is surrounded by a dotted line. The analysis table shown in FIG. 12 includes the S / N ratio, the electric energy, and the current measurement value per minute and the amount of change. Therefore, the analysis table is the same as when the analysis table shown in FIG. 11 is used. The noise generation source can be specified by this method, and the noise generation time can be narrowed down. By using the analysis table shown in FIG. 12, it can be detected that there is a large change in current between time 0:00 and 0:01 of the smart meter 2-13.
 データ解析部51は、図7に示したステップS59に対応する解析動作を行う場合に、図13に示した解析テーブルを生成するようにしてもよい。図13に示した解析テーブルには、時刻0:00、0:10および0:20における、スマートメーター2-11~2-14のそれぞれについてのS/N比、電力量および高調波成分の値が含まれている。図11および図12と同様に、各時刻に挟まれた列は両側の各時刻間の変化量を示す。変化量の大きい箇所を点線で囲んで示している。 The data analysis unit 51 may generate the analysis table shown in FIG. 13 when performing the analysis operation corresponding to step S59 shown in FIG. The analysis table shown in FIG. 13 includes the S / N ratio, electric energy, and harmonic component values for each of the smart meters 2-11 to 2-14 at times 0:00, 0:10, and 0:20. It is included. Similar to FIGS. 11 and 12, the column between each time indicates the amount of change between each time on both sides. A portion with a large change amount is surrounded by a dotted line.
 PLCでは、搬送波の周波数帯域として10kHz~450kHzを用いることが、「PLC標準規格ARIB STD・T84」において規定されている。そのため、10kHz~450kHzの近傍で定常的に動作する負荷装置の影響を受けて通信品質が低下する可能性がある。このような場合は、高調波成分を計測情報として用いることにより、通信品質低下の原因場所特定に有効である。図13に示した解析テーブルでは、スマートメーター2-13の時刻0:00と0:10の間で高調波成分が大きく変化している。そのため、データ解析部51は、S/N比の変化量および高調波成分の変化量を確認することにより、ノイズ発生源およびノイズ発生時刻を特定することができる。 In PLC, the use of 10 kHz to 450 kHz as a carrier frequency band is defined in the “PLC standard ARIB STD / T84”. For this reason, there is a possibility that the communication quality deteriorates due to the influence of the load device that constantly operates in the vicinity of 10 kHz to 450 kHz. In such a case, the harmonic component is used as measurement information, which is effective for identifying the cause location of communication quality degradation. In the analysis table shown in FIG. 13, the harmonic component changes greatly between the time 0:00 and 0:10 of the smart meter 2-13. Therefore, the data analysis unit 51 can identify the noise generation source and the noise generation time by confirming the change amount of the S / N ratio and the change amount of the harmonic component.
 なお、S/N比および電力量を使用してノイズ発生源およびノイズ発生時刻を特定する例、S/N比および高調波成分を使用してノイズ発生源およびノイズ発生時刻を特定する例を説明したが、S/N比、電力量および高調波成分を使用してノイズ発生源およびノイズ発生時刻を特定するようにしてもよい。また、各値の変化量に基づいてノイズ発生源およびノイズ発生時刻を特定する例を示したが、各値の絶対量に対して閾値を設け、閾値判定によりノイズ発生源およびノイズ発生時刻を特定するようにしてもよい。 An example in which the noise source and noise generation time are specified using the S / N ratio and the electric energy, and an example in which the noise generation source and noise generation time are specified using the S / N ratio and harmonic components are described. However, the noise generation source and the noise generation time may be specified using the S / N ratio, the electric energy, and the harmonic component. In addition, an example of specifying the noise source and noise generation time based on the amount of change in each value has been shown. You may make it do.
 また、S/N比に代えて、その他の通信指標、例えば、ビットエラーレート、フレームエラーレート、計測情報の再送回数などを使用するようにしてもよい。 Further, instead of the S / N ratio, other communication indexes such as a bit error rate, a frame error rate, and the number of times of measurement information retransmission may be used.
 以上のように、各スマートメーター2による計測情報とS/N比などの通信品質情報とを組合せることにより、通信品質低下の原因となる場所の特定が可能になる。 As described above, by combining the measurement information from each smart meter 2 and the communication quality information such as the S / N ratio, it becomes possible to identify the location that causes the communication quality degradation.
 本実施の形態にかかる管理装置5によれば、図10に示した例のような各フロアにおいて電力線が途中まで共有化されているようなシステム構成の場合においても、ノイズ発生源の特定を高精度に行うことができる。例えば、スマートメーター2-13が上位端末1との通信で使用する電力線とスマートメーター2-23が上位端末1との通信で使用する電力線は分岐するまでは共通であり、スマートメーター2-13とスマートメーター2-23の距離が近い場合は、どちらかの部屋での電力消費が通信品質を低下させる要因となった場合でも、電力線上のS/N比に違いが現れないことが予想される。しかしながら、各スマートメーターでの各種計測情報に違いが現れる場合、原因を特定することが可能となる。 According to the management device 5 according to the present embodiment, even in the case of a system configuration in which power lines are shared halfway in each floor as in the example illustrated in FIG. Can be done with precision. For example, the power line used by the smart meter 2-13 for communication with the host terminal 1 and the power line used by the smart meter 2-23 for communication with the host terminal 1 are common until the branching occurs. When the smart meter 2-23 is close, even if the power consumption in either room causes the communication quality to deteriorate, it is expected that there will be no difference in the S / N ratio on the power line. . However, when a difference appears in various measurement information in each smart meter, the cause can be specified.
 このように、本実施の形態にかかる自動検針システムの管理装置は、上位端末が各スマートメーターから収集した計測情報と、計測情報を最初に中継するスマートメーターまたは上位端末が計測情報を受信する際のS/N比などの通信品質情報とに基づいて、ノイズ発生源およびノイズ発生時刻を特定することとした。これにより、ノイズの発生源となっている需要家を特定することができるとともに、ノイズの発生時間を推定することができる。また、通常の周期で計測情報を収集している状態で通信品質の低下を検出した場合、通常よりも短い周期で一定時間にわたって計測情報および通信品質情報を収集することとしたので、短い期間にノイズが発生する場合においてもノイズが発生する期間を特定することが可能となる。管理装置が通信品質低下の原因となる場所および時間を特定可能であるため、通信品質低下の原因箇所となっている需要家の電力線に対してインピーダンスアッパーまたはフィルターを挿入してノイズを低減するような対策が可能となる。また、原因時間帯が推定できれば、推定した時間帯、すなわち通信品質が低下する可能性がある時間帯を避けて通信を行うよう調整することにより、測定情報を効率的に取得することができる。 As described above, the management device of the automatic meter reading system according to the present embodiment receives the measurement information collected from each smart meter by the upper terminal and the smart meter or the upper terminal that relays the measurement information for the first time. The noise generation source and the noise generation time are specified based on the communication quality information such as the S / N ratio. Thereby, while being able to identify the consumer who is a noise generation source, the noise generation time can be estimated. In addition, when a decrease in communication quality is detected while measuring information is collected in a normal cycle, measurement information and communication quality information are collected over a certain period of time in a shorter cycle than normal. Even when noise occurs, it is possible to specify the period during which noise occurs. Since the management device can identify the location and time that cause the communication quality degradation, insert an impedance upper or filter into the customer's power line that is the cause of the communication quality degradation to reduce noise. Measures can be taken. Further, if the cause time zone can be estimated, the measurement information can be efficiently acquired by adjusting the communication so as to avoid the estimated time zone, that is, the time zone in which the communication quality may be reduced.
 ここで、本実施の形態にかかる管理装置5のハードウェア構成について説明する。図14は、実施の形態1にかかる管理装置5のハードウェア構成例を示す図である。管理装置5は、図14に示したハードウェア200、すなわちプロセッサ201、メモリ202および通信装置203により実現することができる。プロセッサ201は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSPともいう)、システムLSI(Large Scale Integration)などである。メモリ202は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクまたはDVD(Digital Versatile Disc)等である。 Here, the hardware configuration of the management apparatus 5 according to the present embodiment will be described. FIG. 14 is a diagram illustrating a hardware configuration example of the management apparatus 5 according to the first embodiment. The management device 5 can be realized by the hardware 200 illustrated in FIG. 14, that is, the processor 201, the memory 202, and the communication device 203. The processor 201 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP), system LSI (Large Scale Integration), or the like. The memory 202 is a nonvolatile or volatile semiconductor such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), etc. Memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc.
 管理装置5のデータ解析部51、通信品質監視部52およびデータ取得部53は、プロセッサ201が、メモリ202で記憶されている、データ解析部51、通信品質監視部52およびデータ取得部53として動作するためのプログラムを読み出して実行することにより実現される。メモリ202は、プロセッサ201が各種処理を実行する際の一時メモリとしても使用される。また、管理装置5の記憶部54はメモリ202により実現され、通信部54は通信装置203により実現される。 The data analysis unit 51, the communication quality monitoring unit 52, and the data acquisition unit 53 of the management apparatus 5 operate as the data analysis unit 51, the communication quality monitoring unit 52, and the data acquisition unit 53 stored in the memory 202 by the processor 201. This is realized by reading out and executing a program for executing the program. The memory 202 is also used as a temporary memory when the processor 201 executes various processes. In addition, the storage unit 54 of the management device 5 is realized by the memory 202, and the communication unit 54 is realized by the communication device 203.
 なお、データ解析部51、通信品質監視部52、データ取得部53および記憶部54を専用のハードウェアで実現してもよい。図15は、通信品質監視部52、データ取得部53および記憶部54を専用のハードウェアで実現する場合のハードウェア構成例を示す図である。図15に示したハードウェア200aの処理回路204は、図14に示したプロセッサ201およびメモリ202と同様の機能を実現する専用のハードウェアである。処理回路204は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。データ解析部51、通信品質監視部52、データ取得部53および記憶部54の一部を専用のハードウェアすなわち図15に示した処理回路204で実現し、残りを図14に示したプロセッサ201およびメモリ202で実現するようにしてもよい。 The data analysis unit 51, the communication quality monitoring unit 52, the data acquisition unit 53, and the storage unit 54 may be realized by dedicated hardware. FIG. 15 is a diagram illustrating a hardware configuration example when the communication quality monitoring unit 52, the data acquisition unit 53, and the storage unit 54 are realized by dedicated hardware. The processing circuit 204 of the hardware 200a illustrated in FIG. 15 is dedicated hardware that implements the same functions as the processor 201 and the memory 202 illustrated in FIG. The processing circuit 204 is, for example, a single circuit, a composite circuit, a programmed processor, a processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. . A part of the data analysis unit 51, the communication quality monitoring unit 52, the data acquisition unit 53, and the storage unit 54 is realized by dedicated hardware, that is, the processing circuit 204 shown in FIG. 15, and the rest are the processor 201 shown in FIG. It may be realized by the memory 202.
 このように、管理装置5は、図14または図15に示したハードウェアを使用して実現することが可能である。 Thus, the management apparatus 5 can be realized using the hardware shown in FIG. 14 or FIG.
実施の形態2.
 図16は、実施の形態2にかかる自動検針システムの構成例を示す図である。図16に示した自動検針システム100aは、実施の形態1にかかる自動検針システム100の上位端末1および管理装置5を上位端末1aに置き換えたものである。
Embodiment 2. FIG.
FIG. 16 is a diagram illustrating a configuration example of an automatic meter reading system according to the second embodiment. An automatic meter reading system 100a shown in FIG. 16 is obtained by replacing the upper terminal 1 and the management device 5 of the automatic meter reading system 100 according to the first embodiment with an upper terminal 1a.
 実施の形態2にかかる自動検針システム100aの上位端末1aは、実施の形態1で説明した上位端末1および管理装置5を一体型の1つの装置としたもの、具体的には、上位端末1の内部に管理装置5aが設けられた構成としたものである。なお、実施の形態1で説明した管理装置5が備えている通信部55は不要であるため、上位端末1aの内部には、管理装置5から通信部55を削除した管理装置5aが設けられた構成としている。上位端末1aの動作は、実施の形態1で説明した上位端末1および管理装置5と同様である。 The host terminal 1a of the automatic meter reading system 100a according to the second embodiment is one in which the host terminal 1 and the management device 5 described in the first embodiment are integrated into one device. The management device 5a is provided inside. Since the communication unit 55 included in the management device 5 described in the first embodiment is unnecessary, a management device 5a in which the communication unit 55 is deleted from the management device 5 is provided inside the upper terminal 1a. It is configured. The operation of the upper terminal 1a is the same as that of the upper terminal 1 and the management apparatus 5 described in the first embodiment.
 このように、実施の形態1で説明した上位端末1の機能および管理装置5の機能を1つの装置で実現することも可能である。 As described above, it is possible to realize the function of the host terminal 1 and the function of the management apparatus 5 described in the first embodiment with one apparatus.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1,1a 上位端末、2,2-11~2-14,2-21~2-24,2-m スマートメーター、3 計測端末、4 PLC子機モジュール、5 管理装置、10 電力線、11,31,41 制御部、12,32,42,54 記憶部、13,43,55 通信部、14 管理部、33 計測部、50 ネットワーク、51 データ解析部、52 通信品質監視部、53 データ取得部、511 解析テーブル。 1, 1a Host terminal, 2, 2-11 to 2-14, 2-21 to 2-24, 2-m Smart meter, 3 Measuring terminal, 4 PLC slave module, 5 Management device, 10 Power line, 11, 31 , 41 control unit, 12, 32, 42, 54 storage unit, 13, 43, 55 communication unit, 14 management unit, 33 measurement unit, 50 network, 51 data analysis unit, 52 communication quality monitoring unit, 53 data acquisition unit, 511 Analysis table.

Claims (8)

  1.  各需要家に設置されて電力に関する電気情報を測定するスマートメーターと、前記スマートメーターの各々と電力線を使用した通信を行い、前記電気情報の測定結果を含んだ測定情報を収集する上位端末と、を備えた自動検針システムにおいて、前記電力線の状態を監視する管理装置であって、
     隣接しているスマートメーター同士間の通信品質を示す通信品質情報および前記上位端末とこれに隣接しているスマートメーターとの間の通信品質を示す通信品質情報と、前記測定情報とを前記上位端末から取得するデータ取得部と、
     前記データ取得部が取得した前記通信品質情報および前記測定情報に基づいてノイズ発生源の需要家を特定するとともにノイズの発生時間を推定するデータ解析部と、
     を備えることを特徴とする管理装置。
    A smart meter that is installed in each consumer and measures electrical information related to power, a host terminal that performs communication using a power line with each of the smart meters, and collects measurement information including measurement results of the electrical information; In an automatic meter reading system comprising: a management device for monitoring the state of the power line,
    Communication quality information indicating communication quality between adjacent smart meters, communication quality information indicating communication quality between the upper terminal and a smart meter adjacent thereto, and the measurement information A data acquisition unit acquired from
    A data analysis unit for identifying a noise source consumer based on the communication quality information and the measurement information acquired by the data acquisition unit and estimating a noise generation time;
    A management apparatus comprising:
  2.  前記通信品質情報に基づいて、前記通信品質情報および前記測定情報の収集周期を前記上位端末に指示する通信品質監視部、
     を備えることを特徴とする請求項1に記載の管理装置。
    Based on the communication quality information, a communication quality monitoring unit that instructs the upper terminal to collect the communication quality information and the measurement information;
    The management apparatus according to claim 1, further comprising:
  3.  前記データ解析部は、前記通信品質情報および前記測定情報の変化量に基づいて、前記ノイズ発生源の需要家の特定および前記ノイズの発生時間の推定を行う
     ことを特徴とする請求項1または2に記載の管理装置。
    The said data analysis part performs the specification of the consumer of the said noise generation source, and the estimation of the generation | occurrence | production time of the said noise based on the variation | change_quantity of the said communication quality information and the said measurement information. The management apparatus as described in.
  4.  前記隣接しているスマートメーター同士間の通信品質を、前記測定情報を最初に中継するスマートメーターで測定された通信品質とする、
     ことを特徴とする請求項1から3のいずれか一つに記載の管理装置。
    The communication quality between the adjacent smart meters is the communication quality measured by the smart meter that relays the measurement information first,
    The management device according to any one of claims 1 to 3, wherein
  5.  前記測定情報を使用電力量または高調波成分とする、
     ことを特徴とする請求項1から4のいずれか一つに記載の管理装置。
    The measurement information is used electric energy or harmonic components,
    The management device according to claim 1, wherein the management device is a management device.
  6.  前記上位端末の内部に設けられていることを特徴とする請求項1から5のいずれか一つに記載の管理装置。 The management apparatus according to any one of claims 1 to 5, wherein the management apparatus is provided inside the host terminal.
  7.  各需要家に設置されて電力に関する電気情報を測定するスマートメーターと、
     前記スマートメーターの各々と電力線を介した通信を行い、前記電気情報の測定結果を含んだ測定情報を収集する上位端末と、
     前記電力線を介した通信の状態を監視する管理装置と、
     備え、
     前記スマートメーターは、前記測定情報を最初に中継するスマートメーターの場合、前記測定情報の受信時の通信品質を示す通信品質情報を受信した測定情報に付加して中継し、
     前記上位端末は、前記通信品質情報が付加された前記測定情報を受信すると受信した測定情報および通信品質情報を前記管理装置へ送信し、前記通信品質情報が付加されていない前記測定情報を受信すると、受信した測定情報および前記通信品質情報が付加されていない前記測定情報の受信時の通信品質を示す通信品質情報を前記管理装置へ送信し、
     前記管理装置は、前記上位端末から受信した前記測定情報および前記通信品質情報に基づいて、ノイズ発生源の需要家を特定するとともにノイズの発生時間を推定する、
     ことを特徴とする自動検針システム。
    A smart meter installed at each consumer to measure electrical information about power,
    A host terminal that communicates with each of the smart meters via a power line and collects measurement information including measurement results of the electrical information;
    A management device for monitoring the state of communication via the power line;
    Prepared,
    In the case of the smart meter that relays the measurement information first, the smart meter relays the communication quality information indicating the communication quality at the time of receiving the measurement information in addition to the received measurement information,
    When the upper terminal receives the measurement information to which the communication quality information is added, transmits the received measurement information and communication quality information to the management apparatus, and receives the measurement information to which the communication quality information is not added. Transmitting the communication quality information indicating the communication quality at the time of reception of the received measurement information and the measurement information to which the communication quality information is not added, to the management device;
    The management device specifies a noise source consumer based on the measurement information and the communication quality information received from the host terminal, and estimates the noise generation time.
    An automatic meter reading system characterized by that.
  8.  各需要家に設置されて電力に関する電気情報を測定するスマートメーターと、前記スマートメーターの各々と電力線を使用した通信を行い、前記電気情報の測定結果を含んだ測定情報を収集する上位端末と、を備えた自動検針システムにおいて、管理装置が前記電力線を介した通信の状態を監視する状態監視方法であって、
     前記管理装置が、隣接しているスマートメーター同士間の通信品質を示す通信品質情報および上位端末とこれに隣接しているスマートメーターとの間の通信品質を示す通信品質情報と、前記測定情報とを取得する情報取得ステップと、
     前記情報取得ステップで取得した通信品質情報および測定情報に基づいて、ノイズ発生源の需要家を特定するとともにノイズの発生時間を推定する情報解析ステップと、
     を含むことを特徴とする状態監視方法。
    A smart meter that is installed in each consumer and measures electrical information related to power, a host terminal that performs communication using a power line with each of the smart meters, and collects measurement information including measurement results of the electrical information; In the automatic meter-reading system comprising: a state monitoring method in which the management device monitors the state of communication via the power line,
    The management device includes communication quality information indicating communication quality between adjacent smart meters, communication quality information indicating communication quality between a host terminal and a smart meter adjacent thereto, and the measurement information. An information acquisition step for acquiring
    Based on the communication quality information and measurement information acquired in the information acquisition step, an information analysis step for identifying a noise source consumer and estimating the noise generation time;
    A state monitoring method comprising:
PCT/JP2016/064905 2016-05-19 2016-05-19 Management device, automatic meter reading system, and state monitoring method WO2017199399A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PL428137A PL428137A1 (en) 2016-05-19 2016-05-19 Supervisory device, system intended for automatic readout of meters and the status monitoring method
PCT/JP2016/064905 WO2017199399A1 (en) 2016-05-19 2016-05-19 Management device, automatic meter reading system, and state monitoring method
JP2018518022A JP6529668B2 (en) 2016-05-19 2016-05-19 Management device, automatic meter reading system and state monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064905 WO2017199399A1 (en) 2016-05-19 2016-05-19 Management device, automatic meter reading system, and state monitoring method

Publications (1)

Publication Number Publication Date
WO2017199399A1 true WO2017199399A1 (en) 2017-11-23

Family

ID=60325842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064905 WO2017199399A1 (en) 2016-05-19 2016-05-19 Management device, automatic meter reading system, and state monitoring method

Country Status (3)

Country Link
JP (1) JP6529668B2 (en)
PL (1) PL428137A1 (en)
WO (1) WO2017199399A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050040A1 (en) * 2012-09-28 2014-04-03 パナソニック株式会社 Data acquisition device, data acquisition system, and program
JP2015216798A (en) * 2014-05-13 2015-12-03 株式会社東芝 Communication system and communication apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050040A1 (en) * 2012-09-28 2014-04-03 パナソニック株式会社 Data acquisition device, data acquisition system, and program
JP2015216798A (en) * 2014-05-13 2015-12-03 株式会社東芝 Communication system and communication apparatus

Also Published As

Publication number Publication date
PL428137A1 (en) 2019-04-23
JP6529668B2 (en) 2019-06-12
JPWO2017199399A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
EP3327938B1 (en) Methods for analyzing and optimizing the performance of a data collection network of an electrical distribution grid
US8477794B2 (en) Multiple communications protocol routing in advanced metering infrastructure context
CA2788325C (en) High priority data reads for acquisition of real-time data in wireless mesh network
US9518838B2 (en) Slave suitable for energy management systems and energy management system
US20150035682A1 (en) Slave suitable for energy management systems and energy management system
AU2013251193B2 (en) Phase detection in mesh network smart grid system
US20140167735A1 (en) Identifying phase connections in an electric distribution system
AU2014200456B2 (en) Wireless network communication nodes with opt out capability
US20200288221A1 (en) Instantaneous energy resource use monitoring and customer engagement server
WO2018225226A1 (en) Information collection device, automatic meter-reading system, and path updating method
CA2919729C (en) In-premises management of home area networks
WO2017199399A1 (en) Management device, automatic meter reading system, and state monitoring method
CN116601460A (en) Adaptive metering in smart grid
TWI595753B (en) Communication system, main machine and sub machine
JP2015050621A (en) Automatic meter reading system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518022

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902418

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902418

Country of ref document: EP

Kind code of ref document: A1