WO2018225226A1 - Information collection device, automatic meter-reading system, and path updating method - Google Patents

Information collection device, automatic meter-reading system, and path updating method Download PDF

Info

Publication number
WO2018225226A1
WO2018225226A1 PCT/JP2017/021379 JP2017021379W WO2018225226A1 WO 2018225226 A1 WO2018225226 A1 WO 2018225226A1 JP 2017021379 W JP2017021379 W JP 2017021379W WO 2018225226 A1 WO2018225226 A1 WO 2018225226A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
node
information
smart meter
unit
Prior art date
Application number
PCT/JP2017/021379
Other languages
French (fr)
Japanese (ja)
Inventor
佑太 中西
小林 敬侍
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019523301A priority Critical patent/JP6664549B2/en
Priority to PCT/JP2017/021379 priority patent/WO2018225226A1/en
Publication of WO2018225226A1 publication Critical patent/WO2018225226A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Definitions

  • the present invention relates to an information collecting apparatus, an automatic meter reading system, and a route updating method for collecting information on electric power at each customer by using power line communication (hereinafter referred to as PLC).
  • PLC power line communication
  • PLC has different attenuation characteristics and noise characteristics for each slave unit between a single master unit and a plurality of slave units for communication. Therefore, a technique is used in which a path in multi-hop communication between the parent device and each child device is constructed based on the communication quality between the parent device and each child device. For example, in the invention described in Patent Document 1, the communication quality between the slave units is detected, and the route with the detected good communication quality is selected to construct the route.
  • the present invention has been made in view of the above, and an object thereof is to obtain an information collection device, an automatic meter reading system, and a route update method that can suppress a decrease in communication quality in a PLC.
  • the present invention provides a multi-hop communication using a smart meter and a power line that are installed in each of a plurality of consumers and measure electrical information related to the power of the consumers.
  • an information collecting unit that acquires measurement information that is a measurement result of the electrical information from the smart meter, and a load state monitoring unit that monitors a load state in the consumer based on the measurement information;
  • a route updating unit that updates a route in the multi-hop communication based on the state of the load.
  • FIG. 1 is a diagram illustrating a configuration example of an information collection device according to a first embodiment.
  • FIG. 3 is a diagram illustrating an example of a physical arrangement table according to the first embodiment.
  • FIG. 3 is a sequence diagram showing an operation example of the automatic meter reading system according to the first embodiment.
  • 10 is a flowchart illustrating an example of a load increase node detection process according to the first embodiment.
  • 3 is a flowchart illustrating an example of a collection cycle changing process according to the first embodiment.
  • FIG. 3 is a flowchart illustrating an example of a route reconstruction process according to the first embodiment;
  • 10 is a flowchart illustrating an example of a route reconstruction process with priority on the S / N ratio according to the first embodiment;
  • 1 is a flowchart illustrating an example of a bypass route table creation process according to the first embodiment; The figure which shows an example of the bypass route table concerning Embodiment 1.
  • FIG. 1 is a flowchart illustrating an example of a route reconstruction process according to the first embodiment.
  • FIG. 1 is a flowchart illustrating an example of an S / N ratio change process according to the first embodiment.
  • FIG. 3 is a flowchart illustrating an example of a route reconstruction process according to the first embodiment;
  • 1 is a diagram illustrating a hardware configuration example of an information collection apparatus according to a first embodiment;
  • 10 is a flowchart illustrating an example of a route reconstruction process with priority on the S / N ratio according to the second embodiment;
  • 10 is a flowchart illustrating an example of an S / N ratio change process according to the second embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of an automatic meter reading system according to the first embodiment.
  • an automatic meter reading system 100 includes an information collection device 1 that collects electrical information related to electric power at a consumer, and smart meters 2-11 and 12-12 installed at the consumer. , 2-13, 2-14, ..., 2-1n, 2-21, 22-22, 2-23, 2-24, ..., 2-2m.
  • Each of the smart meters 2-11, 12-12, 2-13, 2-14,..., 2-1n is connected to power lines 4-11, 4-12, 4-13, 4-14,. -1n to the common power line 3-1.
  • each smart meter 2-21, 22-22, 2-23, 2-24,..., 2-2 m is connected to power lines 4-21, 4-22, 4-23, 4-24,. -It is connected to the common power line 3-2 via 4-2m.
  • smart meters 2-11, 12-12, 2-13, 2-14,..., 2-1n, 2-21, 22-22, 2-23, 2-24, ..., 2-2m may be described as smart meter 2 without distinction.
  • each of the power lines 3-1 and 3-2 is referred to as a power line 3 without being distinguished, and the power lines 4-11, 4-12, 4-13, 4-14,. 21, 4-22, 4-23, 4-24,..., 4-2 m may be described as the power line 4 without being distinguished from each other.
  • the automatic meter reading system 100 is installed in a housing complex such as an apartment.
  • the smart meter 2 is installed in each room of the apartment house.
  • the number of smart meters 2, the number of power lines 3, and the number of power lines 4 are not limited to the example shown in FIG. 1, and the installation target of the automatic meter reading system 100 is not limited to a housing complex.
  • FIG. 2 is a diagram showing the relationship between the smart meter 2 installed in the consumer, the power line 4, and the consumer's electrical equipment.
  • the power line 4 is connected to the consumer electrical devices 8-1, 8-2,..., 8 -k via the smart meter 2 installed in the consumer.
  • K is an integer of 2 or more.
  • the state of the load on the consumer varies depending on the number, type, and operating state of the electrical devices 8-1, 8-2,.
  • the electric devices 8-1, 8-2,..., 8-k are collectively referred to as an electric device 8.
  • the information collection device 1 collects data from each smart meter 2 by PLC performed via the power line 3.
  • the information collection device 1 has a function of operating as a master device for the PLC.
  • Each smart meter 2 has a function of measuring electrical information related to power supplied from the power line 4 to the consumer's electrical equipment 8 and a function of operating as a slave unit of the PLC.
  • the information collection device 1 and each smart meter 2 form a PLC network, and transmit and receive data by multi-hop communication. That is, each smart meter 2 has a function of relaying data.
  • each smart meter 2 has a function of relaying data.
  • the received data is transferred to the information collection device 1.
  • each smart meter 2 transfers the received data to the other smart meter 2 of the destination.
  • each of the information collection device 1 and the smart meter 2 forming the PLC network may be referred to as a “node”, and identification information of each of the information collection device 1 and the smart meter 2 may be referred to as a node ID.
  • identification information of each of the information collection device 1 and the smart meter 2 may be referred to as a node ID.
  • communication between nodes on the route is described as hops, and the number of communication between nodes is described as the number of hops.
  • the node that is the destination of data from any node on the route is described as “next hop node”
  • the node that is the source of data transmission to any node on the route is referred to as “previous hop node”. May be described.
  • the node ID is the one in which the sign of each of the information collection device 1 and the smart meter 2 is prefixed with “N”.
  • the node ID of the information collection device 1 is “N1”
  • the node ID of the smart meter 2-11 is “N2-11”
  • the node ID of the smart meter 2-2m is “N2-2m”. Note that the node ID is not limited to the above example.
  • Each of the information collection device 1 and the smart meter 2 has a function of calculating an S / N ratio at the time of signal reception on the PLC network.
  • the S / N ratio is information indicating communication quality, and is a signal-to-noise ratio.
  • the information collection device 1 acquires the S / N ratio from each smart meter 2 and constructs a path between the information collection device 1 and each smart meter 2 based on the acquired S / N ratio. Thereby, the path
  • the information collection device 1 monitors the load state of each customer based on the measurement information acquired from each smart meter 2, and collects information before the communication quality in the PLC deteriorates due to the increase in load. The path between the device 1 and each smart meter 2 can be reconstructed. Thereby, the fall of the communication quality in PLC can be suppressed.
  • FIG. 3 is a diagram illustrating an example of a path state before and after reconstruction by the information collection apparatus 1.
  • the route from the smart meter 2-1n to the information collecting device 1 includes the smart meters 2-14 and 2-12, and the information collected from the smart meter 2-1n is collected. Data addressed to the device 1 is sequentially transferred by the smart meters 2-14 and 2-12 and received by the information collecting device 1.
  • the information collection device 1 updates and reconstructs the route when the load state at the customer where the smart meter 2 is installed satisfies the route update condition set in advance.
  • the route update condition includes a condition of at least one state of electric power and current supplied to the electric device 8.
  • FIG. 4 is a diagram showing a temporal change in the amount of power used, which is the amount of power supplied to the customer's electrical equipment 8 via the power line 4.
  • the horizontal axis represents time
  • the vertical axis represents the amount of power used.
  • the information collection device 1 determines that the route update condition is satisfied when the power amount data indicating the power usage amount of the consumer is equal to or greater than the threshold value Pth1.
  • a threshold value Pth ⁇ b> 1 is set that is smaller than the amount of power used that generates noise having a magnitude that affects communication quality in the PLC.
  • the information collection device 1 reconstructs the path of the PLC network when the power amount data is equal to or greater than the threshold value Pth1.
  • the route update condition described above is not limited to the amount of power data being equal to or greater than the threshold value Pth1, and the route update condition includes the rate of increase in the amount of power data and the value of the current supplied to the consumer's electrical equipment 8. It may be the condition of the magnitude of the current value data to be shown or the rate of increase of the current value data.
  • the path update condition may be a condition in which two or more of the magnitude of the power amount data, the increase rate of the power amount data, the magnitude of the current value data, and the increase rate of the current value data are combined. In other words, the route update condition is set so that it is possible to detect that the load state may be a state in the previous stage of the state in which noise of a magnitude that reduces communication quality in the PLC is generated. Just do it.
  • the second route shown in FIG. 3 shows a route reconstructed when the load state at the customer where the smart meter 2-13 is installed satisfies the route update condition.
  • a smart meter 2-13 installed at a customer who satisfies the above-described route update condition is added to the route from the smart meter 2-1n to the information collection device 1.
  • the data addressed to the information collecting device 1 transmitted from the smart meter 2-1n is transferred by the smart meter 2-13 in addition to the smart meters 2-14 and 2-12, Received by the collection device 1.
  • the communication path between the information collection device 1 and the smart meter 2-1n is reconstructed so that the number of hops increases near the customer who satisfies the path update condition.
  • the communication path between the information collection device 1 and the smart meter 2-1n has been described.
  • the communication between the smart meter 2 other than the smart meter 2-1n and the information collection device 1 is described.
  • the route is similarly reconstructed based on the route update condition.
  • FIG. 5 is a diagram illustrating a configuration example of the smart meter 2 according to the first embodiment.
  • the smart meter 2 includes a measurement terminal 5 that measures electrical information related to the power supplied to the electrical device 8, and a PLC slave module 6 that transmits the measurement value measured by the measurement terminal 5 to the information collection device 1 as measurement information. .
  • the measurement terminal 5 measures information related to the power supplied to the electrical device 8 through the power line 4 connected to the smart meter 2, specifically, voltage, current, demand, power amount, harmonics, and the like.
  • Unit 51 a storage unit 52 that stores measurement information that is information including measurement values measured by the measurement unit 51 and measurement time information that is measurement time, and a request from the PLC slave module 6
  • a control unit 53 that reads out the measurement information stored in the storage unit 52 and outputs the measurement information to the PLC slave module 6.
  • the PLC slave module 6 includes a control unit 61 that acquires measurement information from the measurement terminal 5, a storage unit 62 that stores measurement information acquired by the control unit 61 from the measurement terminal 5, and another smart meter 2 or information collection. And a communication unit 63 that transmits and receives signals to and from the device 1.
  • the communication unit 63 is connected to the power line 3 via the power line 4, receives data addressed to the information collection device 1 including measurement information acquired from the measurement terminal 5 from the control unit 61, and receives the received data addressed to the information collection device 1 Is transmitted via the power line 4 and the power line 3. Further, the communication unit 63 receives a message and data from the information collection device 1 via the power line 3 and the power line 4. Furthermore, when the communication unit 63 receives the data addressed to the parent device, which is the data addressed to the information collection device 1 transmitted from the other smart meter 2, the communication unit 63 transfers the received data addressed to the parent device.
  • control unit 61 determines whether or not the data addressed to the parent device transmitted from the other smart meter 2 has been received.
  • the PLC slave unit module 6 calculates the S / N ratio when receiving data addressed to the master unit from another smart meter 2, and stores the calculated S / N ratio.
  • the communication unit 63 calculates the S / N ratio. The S / N ratio calculated by the communication unit 63 is stored in the storage unit 62 together with the time when the S / N ratio is calculated.
  • the control unit 61 calculates the calculated S / N ratio and the smart meter 2 that is the transmission source of the data addressed to the parent device received when the S / N ratio is calculated. And the acquired S / N ratio and the node ID of the transmission source smart meter 2 are stored in the storage unit 62 in association with each other. In addition to the S / N ratio calculated by the communication unit 63 and the corresponding node ID of the smart meter 2, the storage unit 62 also stores route information when relaying data addressed to the parent device.
  • FIG. 6 is a diagram illustrating a configuration example of the information collection device 1 according to the first embodiment.
  • the main functions of the information collection device 1 are regular collection of information from the smart meter 2, management of the communication status of the PLC network, and route management of the PLC network.
  • the route management of the PLC network includes a process of constructing and reconstructing a communication route between the information collection device 1 and each smart meter 2.
  • the information collection device 1 manages a communication unit 10 that transmits and receives signals to and from each of the smart meters 2, a storage unit 20 that stores various types of information including measurement information, a PLC network, and a communication unit 10. And a control unit 30 that collects information from each smart meter 2.
  • the communication unit 10 is connected to each of the smart meters 2 via the power line 3 and transmits / receives a signal to / from each of the smart meters 2 having a function of a slave unit of the PLC as a master unit of the PLC.
  • the communication unit 10 calculates the S / N ratio when receiving a signal including data such as measurement information from the smart meter 2.
  • the storage unit 20 includes a physical arrangement table 21 that includes information on physical routes of distribution lines from the information collection device 1 to each smart meter 2, and a measurement information table 22 that includes measurement information collected from each smart meter 2. And a route candidate table 23 including information on route candidates of each smart meter 2, and a route information storage area 24 for storing route information indicating the route of each smart meter 2.
  • FIG. 7 is a diagram illustrating an example of the physical arrangement table 21.
  • the physical arrangement table 21 illustrated in FIG. 7 includes information in which node IDs of two smart meters 2 physically adjacent to each other via the power line 3 are associated.
  • the phrase “physically adjacent” means that the connection position to the power line 3 is adjacent.
  • the physical arrangement table 21 shown in FIG. 7 includes a “node ID” of each smart meter 2, a “neighbor node ID” that is a node ID of an adjacent node that is another smart meter 2 adjacent to each smart meter 2, and an adjacent node. It includes information associated with “position”, which is information indicating a physical positional relationship with the node via the power line 3.
  • position is information indicating a physical positional relationship with the node via the power line 3.
  • the connection position of the smart meter 2-1n is the lowest position, and the closer to the information collection device 1, the higher the position, and the information collection device 1 is the highest position.
  • the information collecting device 1 and the smart meter 2-11 are physically adjacent via the power line 3.
  • the smart meter 2-11 is positioned at the lower position when viewed from the information collecting apparatus 1, and the information collecting apparatus 1 is positioned at the upper position when viewed from the smart meter 2-11. Therefore, as shown in FIG. 7, a combination of “N1”, “N2-11”, and “lower” and a combination of “N2-11”, “N1”, and “upper” are set in the physical arrangement table 21. Is done. Similarly for other smart meters 2, the combination of adjacent smart meters 2 is set in the physical arrangement table 21.
  • FIG. 8 is a diagram illustrating an example of the measurement information table 22.
  • the measurement information table 22 illustrated in FIG. 8 is a table in which measurement information collected from each smart meter 2 is associated in units of smart meters 2, and for each “node ID”, “time”, “power amount”, and It includes information relating “current amount” to each other.
  • Time is information indicating the measurement time included in the measurement information
  • Power amount is power amount data included in the measurement information.
  • the power amount data is data indicating the amount of power used, which is the amount of power newly used in the consumer's electrical equipment 8, and is, for example, data per unit time Ta.
  • Current value is current value data included in the measurement information.
  • the current value data is data indicating the effective value of the current of the power line 4 measured every unit time Ta, for example.
  • “P11_n” and “I11_n” are energy data and current value data at the time t_n of the consumer where the smart meter 2-11 is installed.
  • “P11_n ⁇ 1” and “I11_n ⁇ 1” are power amount data and current value data at time t_n ⁇ 1 of the consumer where the smart meter 2-11 is installed.
  • Time t_n ⁇ 1 is the time one time before time t_n.
  • the electric energy data and the current value data are set in the measurement information table 22 for the consumer in which each of the smart meters 2-12 to 2-2m is installed.
  • the measurement information table 22 includes demand data and high frequency data.
  • the demand data is an electric power supplied to the consumer's electric equipment 8 and is an instantaneous value of the electric power measured every unit time Ta.
  • the high frequency data is data indicating the effective value of the high frequency component of the current or voltage flowing through the power line 4.
  • the measurement information may be stored in the storage unit 20 not in a table format such as the measurement information table 22 but in another format.
  • the measurement information set in the measurement information table 22 is information used as meter-reading data, and is information collected periodically by the control unit 30.
  • the unit time Ta can be set to the same time as the collection cycle Tc described later, and may be shorter than the collection cycle Tc.
  • the measurement information set in the measurement information table 22 may be measurement information collected at a time different from the regular collection of measurement information used as meter reading data.
  • the control unit 30 includes an information collection unit 31 that collects information from each of the smart meters 2, a route setting unit 32 that generates route information of each smart meter 2, and a load state of a consumer in which each smart meter 2 is installed.
  • a load state monitoring unit 33 that monitors the route information table, and a route update unit 34 that updates the route information table.
  • the information collection unit 31 periodically transmits an information acquisition message for acquiring measurement information from each smart meter 2 to each smart meter 2 at the collection cycle Tc.
  • the information collection unit 31 acquires measurement information transmitted from each smart meter 2 in response to the information acquisition message from the communication unit 10, stores the acquired measurement information in the storage unit 20, and updates the measurement information table 22. .
  • the information collection unit 31 acquires the received S / N ratio from the communication unit 10, and acquires the acquired S / N ratio.
  • the route candidate table 23 is updated by storing in the storage unit 20.
  • the information collection unit 31 acquires the S / N ratio calculated by the communication unit 10 when receiving the measurement information from the communication unit 10.
  • the S / N ratio is stored in the storage unit 20 and the route candidate table 23 is updated.
  • the route candidate table 23 is generated based on the route information and S / N ratio acquired by the information collecting unit 31 from each smart meter 2-11 to 2-2m.
  • route information is obtained by the following method. Can be acquired.
  • Each smart meter 2 broadcasts a proximity search request message as a new entry smart meter at the time of new entry.
  • Each smart meter 2 transmits an entry request message to the information collection device 1 by using another smart meter 2 that has transmitted the proximity search response message in response to the proximity search request message as a next-hop node.
  • the adjacent smart meter 2 that has received the entry request message transfers the entry request message to the next-hop smart meter 2 in the route to the information collection device 1 based on the route information that is held.
  • the smart meter 2 that has received the entry request message transfers the entry request message to the smart meter 2 of the next hop to the information collection device 1 based on the stored route information.
  • the entry request message arrives at the information collection device 1, and the information collection unit 31 of the information collection device 1 can acquire the route information of the new entry smart meter based on the entry request message.
  • FIG. 9 is a diagram illustrating an example of a proximity search request message
  • FIG. 10 is a diagram illustrating an example of a proximity search response message
  • 11 and 12 are diagrams illustrating an example of the entry request message.
  • the smart meter 2-14 broadcasts a proximity search request message shown in FIG. 9 as a request node for requesting participation.
  • the adjacent smart meter 2-13 that has received the proximity search request message transmits a proximity search response message shown in FIG. 10 to the smart meter 2-14.
  • the proximity search response message in FIG. 10 includes the S / N ratio when the smart meter 2-13 receives the proximity search request message, and the number of hops of the route from the smart meter 2-14 to the information collection device 1.
  • the smart meter 2-14 that has received the proximity search response message transmits an entry request message with the smart meter 2-13 as a transmission destination.
  • the entry request message includes the node ID of the requesting smart meter 2-14 and the S / N ratio when the smart meter 2-13 receives a proximity search request message.
  • the smart meter 2-13 When the smart meter 2-13 receives the entry request message from the smart meter 2-14, as shown in FIG. 12, the smart meter 2-13 adds an entry request message including the route specified by the stored route information as a source route to the next hop. To the smart meter 2-12. The smart meter 2-12 transfers the entry request message to the information collection device 1 based on the source route included in the entry request message or the stored route information. As will be described later, when the route information held in each smart meter 2 is only the node ID of the previous hop, the source route does not include the node ID of the information collection device 1 that is the node of the next hop. However, when the smart meter 2-12 transfers the entry request message, the node ID of the next hop node can be added to the source node.
  • the information collection unit 31 updates the route candidate table 23 stored in the storage unit 20 based on information included in the entry request message transmitted from each smart meter 2 and received by the communication unit 10.
  • FIG. 13 is a diagram illustrating an example of a part of the route candidate table 23 including the route information acquired by the information collection device 1 based on the entry request message and the S / N ratio.
  • information on route candidates that are route candidates is set.
  • the route candidate table 23 illustrated in FIG. 13 includes “next hop”, “measured S / N ratio”, “S / N ratio for route”, “number of hops”, and “route” for the node ID of each smart meter 2. Is information associated with each other.
  • a node in which the node ID is set in the “node ID” of the route candidate table 23 is referred to as a target node.
  • next hop is the node ID of the smart meter 2 of the next hop of the target node on the route from the target node to the information collection device 1.
  • a combination of the “node ID” and the “next hop” node shown in the route candidate table 23 is route candidate information that is a route candidate.
  • the “measured S / N ratio” is the S / N ratio at the time of signal reception from the target node in the smart meter 2 at the next hop.
  • “Route S / N ratio” is the S / N ratio used for route construction based on the measured S / N ratio
  • Hop number is the number of hops to the information collection device 1 in the route candidate.
  • the “route” includes the node ID of the smart meter 2 that performs transfer to the information collection device 1.
  • the smart meter 2-13 When the route candidate table 23 is in the state shown in FIG. 13, for example, the smart meter 2-13 includes a route candidate that communicates directly with the information collection device 1, a route candidate that passes through the smart meter 2-11, and a smart meter. 2-12 route candidates are set. In FIG. 13, only the smart meters 2-11 to 2-1n are shown for simplification, and the smart meters 2-21 to 2-2m are omitted.
  • the route setting unit 32 of the control unit 30 determines the route of each smart meter 2 from the route candidates of each smart meter 2 included in the route candidate table 23, and stores the route information indicating the determined route in the route information storage area. 24.
  • the information collection device 1 determines the route information of each smart meter 2
  • a method as described in Japanese Patent Application Laid-Open No. 2015-220657, which is Patent Document 1 There is a hop number priority route construction method for selecting a route having a / N ratio larger than a predetermined value and a small number of hops.
  • the route construction method with priority on the number of hops the route with the smallest hop number is selected from the routes with the S / N ratio larger than the threshold, and if there are a plurality of routes with the smallest hop number, the one with the larger S / N ratio is selected. Select a route.
  • FIG. 14 is a diagram illustrating an example of route information of each smart meter 2 determined by the route setting unit 32.
  • the route information of each smart meter 2 shown in FIG. 14 is information in which “node ID”, “previous hop”, and “hop count” are associated with each other.
  • node ID the node ID of each smart meter 2 is set as the node ID of the target node.
  • Previous hop is the node ID of the node immediately before the target node among the nodes included in the route toward the target node
  • Hop number is the number of hops from the information collection device 1 to the target node. .
  • one smart meter 2 is shown in one table, and the smart meter 2 table is displayed side by side for each number of hops.
  • route information of smart meters 2-11, 12-12 and 2-21 having a hop count of 1 is shown.
  • the second row of FIG. 14 shows route information of smart meters 2-13, 2-14, 2-22, 2-23, and 2-24 with a hop count of two.
  • the third row of FIG. 14 shows route information of smart meters 2-1n and 2-2m having a hop count of 3.
  • the control unit 30 of the information collection device 1 When transmitting a message to the smart meter 2, the control unit 30 of the information collection device 1 sets a route to the destination smart meter 2 as a source route based on the route information stored in the route information storage area 24. Obtain the source route in the message header. And the control part 30 transmits the message which stored the source route to the smart meter 2 of the next hop in a source route.
  • the control unit 30 when transmitting a message to the smart meter 2-1n, the control unit 30 refers to the route information of the left smart meter 2-1n in FIG. 2-14. Further, the control unit 30 refers to the route information of the smart meter 2-14 to grasp that the previous hop smart meter 2 is the smart meter 2-12, and further refers to the route information of the smart meter 2-12. It is understood that the previous hop node is the information collection device 1 which is the master unit of the PLC.
  • the control unit 30 knows that the source route to the smart meter 2-1n is a route that is transferred in the order of the smart meter 2-12, the smart meter 2-14, and the smart meter 2-1n. Therefore, the control unit 30 stores this source route in the message addressed to the smart meter 2-1n and transmits it to the smart meter 2-12 at the next hop.
  • the smart meter 2 that has received the message from the information collection device 1 refers to the source route stored in the message and performs transfer to the destination smart meter 2 according to the source route.
  • the control unit 30 of the information collection device 1 receives the entry request message from the new entry smart meter, and enters the source route stored. A response message is sent to the new entry smart meter. The new entry smart meter acquires and holds the route information to the information collection device 1 by the received entry response message.
  • FIG. 15 is a diagram showing an example of route information held by each smart meter 2, and shows an example of the smart meter 2-13.
  • the route information held by each smart meter 2 includes the node ID of the next hop smart meter 2 to the information collection device 1 and the information collection. Consists of the number of hops to device 1.
  • each smart meter 2 holds the node ID of the smart meter 2 of the next hop to the information collection device 1 as route information, and does not need to hold route information to other smart meters 2.
  • the smart meter 2 transmits a message addressed to the information collection device 1
  • the smart meter 2 transmits the message to the smart meter 2 of the next hop of the route information held by the own device.
  • the smart meter 2 receives a message addressed to the information collection device 1 from another smart meter 2, the smart meter 2 transfers the message to the next-hop smart meter 2 described in the route information held by the own device.
  • FIG. 16 is a diagram showing an example of an information request message transmitted from the information collecting apparatus 1 to the smart meter 2-1n.
  • the node ID of the information collecting apparatus 1 as a transmission source
  • the node ID of the smart meter 2-1n as the transmission destination
  • the number of hops from the transmission source to the transmission destination Source route, message type, and payload are included.
  • FIG. 17 is a UML (Unified Modeling Language) sequence diagram illustrating an operation example of the automatic meter reading system 100 according to the first embodiment.
  • UML Unified Modeling Language
  • the control unit 30 of the information collection device 1 collects information such as measurement information and S / N ratio from each of the smart meters 2-11 to 2-2m, and routes based on the collected information.
  • An example of the rebuilding operation is shown.
  • the control unit 30 of the information collecting apparatus 1 individually transmits information request messages from the communication unit 10 to the smart meters 2-11 to 2-2m, and the smart meters 2-11 to 2-2.
  • the process of collecting measurement information and S / N ratio from -2m via the communication unit 10 is periodically executed at the collection cycle Tc.
  • control unit 30 of the information collection device 1 first generates an information request message addressed to the smart meter 2-11 and transmits it from the communication unit 10 (step S11).
  • the smart meter 2-11 at the first hop from the information collecting apparatus 1 directly receives an information request message addressed to itself from the information collecting apparatus 1.
  • the smart meter 2-11 receives the information request message addressed to itself, it transmits the measurement information to the information collection device 1 (step S12).
  • the measurement information transmitted by the smart meter 2-11 to the information collecting device 1 is information including electrical information related to the power measured by the smart meter 2 and measurement time information indicating the time when the measurement was performed.
  • the electrical information includes power amount data, demand data, current value data, high frequency data, and the like.
  • the control unit 30 of the information collecting apparatus 1 associates the measurement information with the node ID of the smart meter 2-11 that is the transmission source of the measurement information.
  • the measurement information table 22 is updated by storing in the storage unit 20.
  • the information collection unit 31 of the information collection device 1 checks whether or not the S / N ratio is transmitted together with the measurement information. If the S / N ratio is not transmitted, the S / N is received when the measurement information is received. The ratio is calculated and updated by overwriting the measured S / N ratio in the route candidate table 23 shown in FIG. 13 with the calculated S / N ratio.
  • the S / N ratio calculated when the information collection device 1 receives the measurement information corresponds to information indicating the communication quality between the information collection device 1 and the smart meter 2-11.
  • the control unit 30 of the information collection device 1 collects measurement information from the first hop smart meter 2-11, the S / N ratio is transmitted to the information collection device 1.
  • the control unit 30 of the information collection device 1 does not check whether or not the S / N ratio is transmitted together with the measurement information, but determines whether or not the smart meter 2 that is the transmission source of the measurement information is the first hop. If the transmission source is the smart meter 2 of the first hop, the measurement S / N ratio in the route candidate table 23 shown in FIG. 13 is updated with the S / N ratio calculated when the measurement information is received. Also good.
  • control unit 30 of the information collection device 1 generates an information request message addressed to the smart meter 2-12 and transmits it from the communication unit 10 (step S13).
  • the smart meter 2-12 receives the information request message addressed to its own device, the smart meter 2-12 transmits the measurement information to the information collecting device 1 (step S14).
  • the control unit 30 of the information collecting apparatus 1 When receiving the measurement information from the smart meter 2-12 via the communication unit 10, the control unit 30 of the information collecting apparatus 1 associates the measurement information with the node ID of the smart meter 2-12 that is the transmission source of the measurement information. Store and update the measurement information table 22. Further, the control unit 30 of the information collecting apparatus 1 checks whether or not the S / N ratio is transmitted together with the measurement information. If the S / N ratio is not transmitted, the S / N is received when the measurement information is received. The ratio is calculated and updated by overwriting the measured S / N ratio in the route candidate table 23 shown in FIG. 13 with the calculated S / N ratio. Next, the control unit 30 of the information collecting apparatus 1 executes the same operation as that performed on the smart meter 2-12 on the smart meter 2-13.
  • the control unit 30 of the information collecting apparatus 1 When acquiring the measurement information from the smart meter 2-13, the control unit 30 of the information collecting apparatus 1 generates an information request message addressed to the smart meter 2-13 and transmits it from the communication unit 10 (step S15).
  • the smart meter 2-13 at the second hop from the information collecting device 1 receives the information request message addressed to the own device via the smart meter 2-12.
  • the smart meter 2-13 transmits the measurement information to the information collecting device 1 (step S16).
  • the measurement information transmitted by the smart meter 2-13 is relayed by the smart meter 2-12 and then arrives at the information collection device 1.
  • the smart meter 2-12 that first transfers the measurement information transmitted by the smart meter 2-13, that is, the smart meter 2-12 that is one hop higher than the smart meter 2-13, transmits the measurement information.
  • the S / N ratio calculated at the time of reception is added to the measurement information to be relayed.
  • the S / N ratio added to the measurement information corresponds to information indicating the communication quality between the smart meter 2-12 and the smart meter 2-13.
  • the control unit 30 of the information collection device 1 When receiving the measurement information from the smart meter 2-13 via the communication unit 10, the control unit 30 of the information collection device 1 associates the measurement information with the node ID of the smart meter 2-13 that is the transmission source of the measurement information. And remember. In this case, since the control unit 30 of the information collecting apparatus 1 receives the S / N ratio together with the measurement information, the received S / N ratio is set to “N2-” in the “node ID” in the route candidate table 23 shown in FIG. 13 ”is updated by overwriting the“ measured S / N ratio ”of the route candidate whose“ next hop ”is“ N2-12 ”.
  • the control unit 30 of the information collection device 1 repeats the same processing, generates an information request message addressed to the smart meter 2-2m, and transmits it from the communication unit 10 (step S17).
  • the control unit 30 of the information collecting apparatus 1 then transmits the measurement information transmitted from the smart meter 2-2m and the S / N ratio calculated by the smart meter 2-14 that relays the measurement information first, to the communication unit 10. (Step S18), the received measurement information and S / N ratio and the node ID of the smart meter 2-2m are stored in the storage unit 20 in association with each other, and the route candidate table 23 is updated.
  • control unit 30 of the information collection device 1 uses the power amount data included in the collected measurement information of each smart meter 2 to use the load increase node A detection process (step S19) and a route reconstruction process (step S20) are performed.
  • the process of the control part 30 in step S11 to step S18 mentioned above is a process which the information collection part 31 performs.
  • the process of step S19 is executed by the load state monitoring unit 33, and the process of step S20 is executed by the route updating unit 34.
  • FIG. 18 is a flowchart showing an example of the load increase node detection process shown in step S19 of FIG.
  • the load state monitoring unit 33 of the control unit 30 selects one node as a selected node (step S21).
  • the load state monitoring unit 33 acquires the measurement information associated with the node ID of the selected node from the measurement information table 22 as the measurement information of the selected node (Step S22).
  • the load state monitoring unit 33 determines whether or not the power amount data included in the measurement information of the selected node is greater than or equal to the threshold value Pth1 (step S23). When the load state monitoring unit 33 determines that the power amount data is not equal to or greater than the threshold value Pth1 (step S23: No), it determines whether the slope of the power amount data included in the measurement information of the selected node is equal to or greater than the threshold value ⁇ Pth1. Determination is made (step S24). The inclination of the power amount data indicates an increase rate or an increase amount of the power amount data per unit time, and can be obtained based on, for example, the latest power amount data and the past power amount data before the previous time.
  • step S23 When the load state monitoring unit 33 determines that the power amount data is equal to or greater than the threshold value Pth1 (step S23: Yes), or when the slope of the power amount data is determined to be equal to or greater than the threshold value ⁇ Pth1 (step S24: Yes), the process of step S25 is performed.
  • the load state monitoring unit 33 determines whether or not the current value data included in the measurement information of the selected node is greater than or equal to the threshold value Ith1 in the process of step S25 (step S25).
  • the load state monitoring unit 33 stores the selected node in the storage unit 20 as a load increase node (step S26).
  • the load increase node is a smart meter 2 of a consumer who may be in a load state that generates noise having a magnitude that reduces communication quality in the PLC.
  • the load state monitoring unit 33 determines that the current value data is not equal to or greater than the threshold value Ith1 when the process of step S26 is completed (step S25: No), or that the slope of the power amount data is not equal to or greater than the threshold value ⁇ Pth1. If so (step S24: No), it is determined whether or not all nodes have been selected as selected nodes (step S27).
  • step S27: No the load state monitoring unit 33 determines that all the nodes are not selected as the selected nodes (step S27: No), the unselected node is selected as the selected node (step S28), and the process proceeds to step S22. . Further, when it is determined that all nodes have been selected (step S27: Yes), the load state monitoring unit 33 ends the process illustrated in FIG.
  • the load state monitoring unit 33 uses the path update condition described above that the power amount data is greater than or equal to the threshold value Pth1 or the slope of the power amount data is greater than or equal to the threshold value ⁇ Pth1 and the current value data is greater than or equal to the threshold value Ith1.
  • the satisfying customer node is treated as a load increase node, but the route update condition is not limited to the above-described example. That is, the route update condition is at least one of the power amount data, the current value data, and the demand data so that the state in the previous stage of the state in which noise of a magnitude that degrades the communication quality in the PLC is generated can be detected. It only has to be included. Further, the route update condition may be a condition in which a condition for high-frequency data is further added.
  • the load state monitoring unit 33 uses a path update condition that the slope of the current value data is greater than or equal to a threshold value ⁇ Ith2 greater than the threshold value ⁇ Ith1, or indicates that the slope of the power amount data is greater than or equal to a threshold value ⁇ Pth2 greater than the threshold value ⁇ Pth1 Update conditions.
  • the slope of the current value data indicates an increase rate or an increase amount of the current value data per unit time, and can be obtained based on, for example, the latest current value data and past current value data before the previous time.
  • the load state monitoring unit 33 can also set the path update condition that the fluctuation pattern of the electric energy data, the fluctuation pattern of the current value data, and the like are preset fluctuation patterns.
  • the information collection unit 31 can shorten the collection period Tc when the period change condition that is a condition looser than the above-described path update condition is satisfied. Thereby, the detection accuracy of a load increase node can be improved.
  • FIG. 19 is a flowchart showing an example of the collection cycle changing process by the control unit 30.
  • the information collection unit 31 of the control unit 30 determines whether or not the state of the load on the consumer satisfies the cycle change condition (step S31). For example, the information collection unit 31 determines that the period change condition is satisfied when the power amount data is equal to or greater than the threshold value Pth3 smaller than the threshold values Pth1 and Pth2, or the current value data is equal to or greater than the threshold value Ith3 smaller than the threshold values Ith1 and Ith2. it can.
  • Cycle change condition is not limited to the above-mentioned example. That is, the cycle change condition is such that at least one of the electric energy data, the current value data, and the demand data is detected so that the state of the load can be detected in the previous stage of the state to be detected by the path change condition. What is necessary is just to include conditions.
  • the collection cycle Tc is set to the cycle T1 (step S32).
  • the period T1 is, for example, 30 minutes.
  • the collection period Tc is set to the period T2 (step S33).
  • the period T2 is a period shorter than the period T1, for example, 1 minute.
  • the collection cycle changing process shown in FIG. 19 is terminated.
  • the information collection unit 31 can perform the collection cycle changing process described above for each customer.
  • the measurement information collection cycle Tc can be changed for each smart meter 2.
  • the collection cycle Tc is switched between the cycle T1 and the cycle T2.
  • the collection cycle Tc is changed so that the collection cycle Tc is shortened stepwise or continuously as the power amount data increases.
  • the collection cycle Tc may be a short cycle stepwise or continuously as the current value data increases.
  • the load state monitoring unit 33 determines the load variation pattern of each consumer based on the past measurement information stored in the storage unit 20, and the route update condition and the period change condition based on the determined load variation pattern. Can be set for each consumer.
  • the load state monitoring unit 33 can also set a route update condition and a period change condition for each type of smart meter 2. In this way, by changing the route update condition and the period change condition for each customer or for each type of smart meter 2, the load increase node can be determined with higher accuracy.
  • the load state monitoring unit 33 can predict the future load state of each customer based on the measurement information stored in the storage unit 20. For example, the load state monitoring unit 33 may predict a time period in which noise of a magnitude that degrades the communication quality in the PLC occurs, such as a time period in which the amount of power used increases greatly in a short time in each consumer. it can. Note that the load state monitoring unit 33 can improve the prediction accuracy by predicting the above-described time zone based on the measurement information collected when the collection cycle Tc is the cycle T2. The load state monitoring unit 33 can determine, as a load increase node, the smart meter 2 installed in a consumer whose time until the predicted time zone is within a preset range.
  • FIG. 20 is a flowchart illustrating an example of a route reconstruction process executed by the control unit 30.
  • the route update unit 34 of the control unit 30 determines whether or not there is a load increase node among all the nodes (step S40).
  • step S40 When it is determined that there is a load increasing node (step S40: Yes), the route update unit 34 performs route reconstruction with priority to the S / N ratio (step S41), and when it is determined that there is no load increasing node (step S40). : No), a route reconstruction process with priority on the number of hops is performed (step S42).
  • FIG. 21 is a flowchart showing an example of the route reconstruction process with priority on the S / N ratio.
  • the route update unit 34 performs a bypass route creation process for creating a bypass route table of the load increase node (step S ⁇ b> 51).
  • the bypass route creation process in step S51 is the process in steps S61 to S66 shown in FIG. 22, and will be described later.
  • the route update unit 34 changes the S / N ratio change processing for changing the route S / N ratio associated with the route candidate in which the combination of the bypass route of the load increasing node and the node ID matches in the route candidate table 23. Is performed (step S52).
  • the S / N ratio changing process in step S52 is the process in steps S71 to S75 shown in FIG. 24 and will be described later.
  • the route updating unit 34 performs route rebuilding processing for rebuilding a route based on the route candidate table 23 subjected to the S / N ratio change processing (step S53).
  • the route reconstruction process in step S53 is the process in steps S81 to S88 shown in FIG. 26 and will be described later.
  • the route rebuilding process with priority on the number of hops is a process of performing the process of step S53 without performing the processes of steps S51 and S52 in the route rebuilding process with priority on the S / N ratio.
  • FIG. 22 is a flowchart showing an example of the bypass route table creation process of the load increase node in step S51 shown in FIG. As illustrated in FIG. 22, the path update unit 34 acquires the node ID of one load increase node from the storage unit 20 (step S61).
  • the path update unit 34 extracts the node ID of the higher-order node of the load increase node from the physical arrangement table 21 (Step S62).
  • the higher-order node is a node where the connection position of the power line 3 is adjacent on the information collecting apparatus 1 side.
  • the upper node of the load increase node is the node with the node ID “N2-12”. It is.
  • the path update unit 34 extracts the node ID of the lower node of the load increase node from the physical arrangement table 21 (step S63).
  • the lower side node is a node where the connection position of the power line 3 is adjacent to the information collecting apparatus 1 on the opposite side.
  • the lower node of the load increase node is the node with the node ID “N2-14”.
  • the route update unit 34 sets the bypass route in which the upper node and the lower node are associated with each other as the bypass route of the load increasing node in the bypass route table of the load increasing node (step S64).
  • the path updating unit 34 determines whether or not the processing of steps S62 to S64 has been completed for all load increasing nodes (step S65). When it is determined that the processing of steps S62 to S64 has not been completed for all load increasing nodes (step S65: No), the route updating unit 34 determines the next load increasing node that has not performed the processing of steps S62 to S64.
  • the node ID is acquired from the storage unit 20 (step S66), and the processes of steps S62 to S64 are executed.
  • step S65: Yes When the route update unit 34 determines that the processing of steps S62 to S64 has been completed for all load increase nodes (step S65: Yes), the processing of FIG. As a result, the bypass paths of all the load increase nodes are set in the bypass path table of the load increase node, and the bypass path table of the load increase node is completed.
  • the bypass route table of the load increase node is stored in the storage unit 20 by the route update unit 34.
  • FIG. 23 is a diagram illustrating an example of the bypass route table of the load increase node.
  • the bypass route table 25 illustrated in FIG. 23 includes information on the bypass route of each load increasing node.
  • the bypass path of the load increase node is indicated by a combination of the node ID of the upper node and the node ID of the lower node.
  • the “first node” is the upper node It is the node ID
  • “second node” is the node ID of the lower node.
  • the bypass route table 25 shown in FIG. 23 shows an example when the node IDs of the load increase nodes are “N2-11” and “N2-13”. That is, a combination of the node ID “N1” of the upper node of the load increasing node and the node ID “N2-12” of the lower node of the load increasing node as a bypass path of the load increasing node of the node ID “N2-11” Is set in the bypass route table 25. Further, as a bypass path of the load increasing node with the node ID “N2-13”, the node ID “N2-12” of the upper node of the load increasing node and the node ID “N2-14” of the lower node of the load increasing node Are set in the bypass route table 25.
  • FIG. 24 is a flowchart showing an example of the S / N ratio change process in step S52 of FIG.
  • the route update unit 34 selects one node ID as a selected node ID (step S71).
  • the path updating unit 34 determines whether there is a bypass path having a combination of node IDs that matches the path candidate of the selected node ID (step S72).
  • step S ⁇ b> 72 the route update unit 34 determines whether or not the route candidate of “node ID” that matches the selected node ID is set as the bypass route set in the bypass route table 25 in the route candidate table 23. To do.
  • the route candidate table 23 is in the state shown in FIG. 13, and the bypass route table 25 is in the state shown in FIG.
  • the route candidate table 23 includes a combination of the node ID “N2-12” and the node ID “N1”, the node ID “N2-12”, and the node as the route candidates with the selected node ID “N2-12”.
  • the combination of ID “N2-11” is included.
  • the bypass route table 25 includes a combination of the node ID “N2-12” and the node ID “N1” as the bypass route. Therefore, in this case, the path update unit 34 determines that there is a bypass path having a combination of node IDs that matches the path candidate of the selected node ID.
  • step S72 When the path update unit 34 determines that there is a bypass path having a combination of node IDs that matches the path candidate of the selected node ID (step S72: Yes), the same node as the bypass path of the selected node ID The route S / N ratio associated with the ID combination route candidate is lowered by the predetermined value Vsn (step S73).
  • step S73 ends, or when the path update unit 34 determines that there is no bypass path with a combination of node IDs that matches the path candidate of the selected node ID (step S72: No), all It is determined whether or not the processing of step S72 is completed for the node ID (step S74). When it is determined that the process of step S72 has not been completed for all node IDs (step S74: No), the route update unit 34 selects a node ID that has not been subjected to the process of step S72 ( Step S75), the process proceeds to step S72.
  • step S74 If the route update unit 34 determines that the process of step S72 has been completed for all node IDs (step S74: Yes), the process of FIG. As a result, the S / N ratio for the route associated with the route candidate having the same node ID combination as the bypass route of each load increasing node among the route candidates in the route candidate table 23 is lowered by the predetermined value Vsn.
  • the route candidate table 23 is in the state shown in FIG. 13 and the bypass route table 25 is in the state shown in FIG.
  • the path candidate of the combination of the node ID “N1” and the node ID “N2-12” and the path candidate of the combination of the node ID “N2-12” and the node ID “N2-14” are associated with each other.
  • the route S / N ratio is lowered by a predetermined value Vsn.
  • FIG. 25 is a diagram illustrating an example of the route candidate table 23 when the route S / N ratio is changed.
  • the route S / N ratio of the route candidate of the combination of the node ID “N2-12” and the node ID “N1” is changed from “75” to “45”, and the node ID “N2-
  • the S / N ratio for the route candidate of the combination of “14” and the node ID “N2-12” is changed from “76” to “46”.
  • FIG. 26 is a flowchart showing an example of the route reconstruction process in step S53 of FIG.
  • the route updating unit 34 selects one node ID as a target node (step S81).
  • the route update unit 34 extracts one or more route candidates whose route S / N ratio is greater than the threshold value Vth from the route candidates of the target node in the route candidate table 23 (step S82).
  • the route update unit 34 extracts a route candidate having the smallest number of hops from the one or more route candidates extracted in step S82 (step S83).
  • the route update unit 34 determines whether or not the number of route candidates extracted in step S83 is one (step S84). If the route update unit 34 determines that the number of route candidates extracted in step S83 is one (step S84: Yes), the route update unit 34 performs route setting processing for setting the extracted route candidate as the route of the target node (step S84). S85).
  • step S84 When the route update unit 34 determines that the number of route candidates extracted in step S83 is not one (step S84: No), the route S / N ratio is the largest among the plurality of route candidates extracted in step S83.
  • a route setting process for setting the route candidate of the target node as the route of the target node is performed (step S86).
  • step S85 When the process of step S85 is completed or when the process of step S86 is completed, the path update unit 34 determines whether the path setting process has been completed for all the nodes (step S87).
  • step S87: No the route update unit 34 selects the next node that has not been subjected to the route setting process as a target node (step S88). Then, the process proceeds to step S82. If the path update unit 34 determines that the path setting process has been completed for all nodes (step S87: Yes), the process of FIG. 26 ends.
  • the route is reconstructed with the route S / N ratio of the route bypassing the load increase node being reduced, so the route via the load increase node is set without bypassing the load increase node. Will come to be. Therefore, even if the noise that travels from the power line 4 to the power line 3 of the customer where the load increase node is installed increases and the communication environment in the PLC deteriorates, the load increase node is relayed without bypassing the load increase node. Therefore, it is possible to suppress a decrease in communication quality in the PLC.
  • the route candidate of the node with the node ID “N2-12” is the first route candidate of the combination of the node ID “N2-12” and the node ID “N1”, and the node ID “N2-12”.
  • ”And node ID“ N2-11 ” are two second route candidates.
  • the S / N ratio for the route of the first route candidate is “45”, which is smaller than the threshold value Vth.
  • the S / N ratio for the route of the second route candidate is “80”, which is equal to or greater than the threshold value Vth. Therefore, the route update unit 34 sets the second route candidate as the route of the node having the node ID “N2-12”.
  • the data whose source is the node with the node ID “N2-12” is transmitted to the node with the node ID “N2-11”, and transferred from the node with the node ID “N2-11” to the information collecting apparatus 1.
  • the S / N ratio for the route of the first route candidate in the node with the node ID “N2-12” is “75”, which is the same as the measured S / N ratio, and the threshold value Vth or higher.
  • the first route candidate having a small number of hops is set as the route of the node having the node ID “N2-12”. Therefore, the data whose source is the node with the node ID “N2-12” is directly transferred to the information collecting apparatus 1 without going through the node with the node ID “N2-11”.
  • the node with the node ID “N2-11” is not bypassed without bypassing the node with the node ID “N2-11” that is the load increase node.
  • the route that has passed is selected.
  • the route candidate of the node with the node ID “N2-14” is the first route candidate of the combination of the node ID “N2-14” and the node ID “N2-11”, and the node ID “N2- 14 ”and the node ID“ N2-12 ”combination of the second route candidate, and the node ID“ N2-14 ”and node ID“ N2-13 ”combination of the third route candidate.
  • the route S / N ratio of the first route candidate is “20”, which is smaller than the threshold Vth
  • the route S / N ratio of the second route candidate is “46”, which is smaller than the threshold Vth.
  • the S / N ratio for the route of the third route candidate is “75”, which is equal to or higher than the threshold value Vth. Therefore, the route update unit 34 sets the third route candidate as the route of the node having the node ID “N2-14”.
  • the data whose source is the node with the node ID “N2-14” is transmitted to the node with the node ID “N2-13” and transferred to the information collecting apparatus 1 via the node with the node ID “N2-13”. Is done.
  • the S / N ratio for the route of the second route candidate in the node with the node ID “N2-14” is the same as the measured S / N ratio. Since “76” is equal to or greater than the threshold value Vth and is larger than the route S / N ratio of the third route candidate, the second route candidate is set as the route of the node having the node ID “N2-14”. Therefore, the data whose source is the node with the node ID “N2-14” is directly transferred to the information collecting apparatus 1 without going through the node with the node ID “N2-12”.
  • the route updating unit 34 increases the number of routes including the load increasing node, so that it is possible to increase the number of hops in the vicinity of a customer whose load may increase, and communication quality in the PLC Can be suppressed.
  • the route update unit 34 changes the route S / N ratio of the load increase node by lowering the route S / N ratio of the load increase node by the predetermined value Vsn.
  • the change of the / N ratio is not limited to the example described above.
  • the route update unit 34 can set the route S / N ratio of the load increase node to a value equal to or less than the threshold value Vth. Thereby, it is possible to increase the number of routes including the load increase node with high accuracy.
  • the path updating unit 34 can also increase the predetermined value Vsn as the power amount data or power value data increases. When the node that was the load increase node is no longer the load increase node, the route S / N ratio associated with the route candidate is changed by the route update unit 34 to the same value as the measured S / N ratio.
  • the route update unit 34 has changed the route S / N ratio of the load increase node, but may associate information indicating the load increase node with the route candidate in the route candidate table 23. In this case, the route update unit 34 can accurately increase the route including the load increase node by not setting the route candidate associated with the information indicating the load increase node as the route. Note that the route update unit 34 deletes the information indicating the load increase node associated with the route candidate when the node that was the load increase node is no longer the load increase node.
  • the first S / N ratio that is the S / N ratio at the time of signal reception at the node on the path from the information collecting device 1 to the smart meter 2 is set as the “measurement S / N ratio”.
  • the second S / N ratio that is the S / N ratio at the time of signal reception at the node on the path from the smart meter 2 to the information collecting device 1 can be set as the “measurement S / N ratio”.
  • an average value of the first S / N ratio and the second S / N ratio, or a value obtained by weighting and adding may be used as the “measurement S / N ratio”.
  • the physical arrangement table 21 is set in advance, but the physical arrangement table 21 may be automatically generated by the control unit 30.
  • the control unit 30 can automatically generate the physical arrangement table 21 with a source having an S / N ratio for each source obtained by the proximity search response message shown in FIG. .
  • FIG. 27 is a diagram of a hardware configuration example of the information collection device 1 according to the first embodiment.
  • the information collection device 1 includes a computer including a processor 201, a memory 202, and a communication device 203.
  • the processor 201, the memory 202, and the communication device 203 can transmit / receive data to / from each other via the bus 204.
  • the communication unit 10 of the information collection device 1 is realized by the communication device 203.
  • the storage unit 20 of the information collection device 1 is realized by the memory 202.
  • the memory 202 includes a recording medium on which a computer readable program is recorded.
  • the processor 201 reads out and executes the program stored in the memory 202, thereby executing the functions of the information collecting unit 31, the path setting unit 32, the load state monitoring unit 33, and the path updating unit 34.
  • the processor 201 is an example of a processing circuit, and includes one or more of a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a system LSI (Large Scale Integration).
  • the memory 202 is a nonvolatile or volatile semiconductor such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), etc. Memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk or DVD (Digital Versatile Disc).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), etc.
  • Memory magnetic disk, flexible disk, optical disk, compact disk, mini disk or DVD (Digital Versatile Disc).
  • the information collecting unit 31, the path setting unit 32, the load state monitoring unit 33, the path updating unit 34, and the storage unit 20 are dedicated hardware that realizes the same functions as the processor 201 and the memory 202 shown in FIG. It may be realized.
  • the dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, a processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a processing circuit that combines these. is there.
  • a part of the information collecting unit 31, the path setting unit 32, the load state monitoring unit 33, the path updating unit 34, and the storage unit 20 is realized by dedicated hardware, and the rest is processed by the processor 201 and the memory 202 shown in FIG. It may be realized.
  • the information collecting apparatus 1 performs multi-hop communication using the smart meter 2 and the power line 3 that are installed in each of a plurality of consumers and measure electrical information related to the power of the consumers.
  • the information collection device 1 includes an information collection unit 31 that acquires measurement information that is a measurement result of electrical information from the smart meter 2, a load state monitoring unit 33 that monitors a load state of a consumer based on the measurement information, a load And a route update unit 34 for updating a route in multi-hop communication based on the state of By monitoring the state of the load, the state in which the communication quality in the PLC may be lowered is grasped in advance, and before the communication quality in the PLC is lowered, between the information collecting apparatus 1 and each smart meter 2 The route can be reconstructed. Thereby, the fall of the communication quality in PLC can be suppressed.
  • the load state monitoring unit 33 detects a customer satisfying a route update condition in which a load state is set in advance among a plurality of customers.
  • the route update unit 34 can increase the number of routes including the smart meter 2 installed in a customer who satisfies the route update condition. Thereby, for example, the number of hops can be increased in the vicinity of a customer whose load has increased, and it is possible to suppress a decrease in communication quality in the PLC.
  • the route update unit 34 adds a route to the next smart meter, which is the smart meter 2 physically adjacent to the target smart meter 2 that is the smart meter 2 installed in the consumer that satisfies the route update condition, via the power line 3.
  • Inclusion of the target smart meter increases the number of routes including the target smart meter.
  • the information collection device 1 is second communication quality information for route selection set based on a measured S / N ratio, which is an example of first communication quality information indicating communication quality between smart meters 2.
  • a storage unit 20 is provided for storing a route candidate table 23 having a route S / N ratio.
  • the route update unit 34 changes the route S / N ratio between the smart meters 2 adjacent to the load increase node, and the route of the smart meter 2 adjacent to the load increase node based on the changed route S / N ratio. To change. Thereby, in the information collection device 1 that performs route update processing for selecting a route using the S / N ratio, the route update processing can be performed by adding the route S / N ratio. 1 development cost can be suppressed.
  • the information collection unit 31 shortens the collection period Tc, which is a period for acquiring measurement information, based on the load state of the consumer. By shortening the collection cycle Tc, it is possible to analyze the load state of the consumer with high resolution. Thereby, when the state of the load on the consumer is a state to be analyzed with high resolution, the state of the load on the consumer can be analyzed with high resolution.
  • the load state monitoring unit 33 can predict the load state of the consumer.
  • the route update unit 34 updates the route based on the load state predicted by the load state monitoring unit 33. Therefore, for example, by predicting a time zone in which the amount of power used greatly increases in a short time in each consumer, for example, it is possible to avoid the occurrence of a processing load due to processing for monitoring the load state in real time. .
  • Embodiment 2 is different from the first embodiment in that a process for updating a route is added so that a route that bypasses an adjacent node that is a node adjacent to the load increase node is not formed.
  • constituent elements having the same functions as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the information collecting apparatus 1 in the first embodiment are mainly described.
  • FIG. 28 is a diagram illustrating a configuration example of the information collection apparatus according to the second embodiment of the present invention.
  • the information collection apparatus 1A according to the second embodiment has a function of updating a route so that a route that bypasses a node adjacent to the load increase node is not formed in addition to the function of the route update unit 34.
  • the route update unit 34A is provided.
  • FIG. 29 is a flowchart of an example of a route reconstruction process with priority on the S / N ratio according to the second embodiment.
  • the processes in steps S101 and S104 shown in FIG. 29 are the same as the processes in steps S51 and S53 shown in FIG.
  • step S101 when the route updating unit 34A completes the process of step S101, it creates a bypass route table for creating a bypass route table of an adjacent node, which is a node adjacent to the higher side and the lower side, in each load increasing node. Processing is performed (step S102).
  • the bypass route creation process in step S102 is the process in steps S111 to S117 shown in FIG. 30, and will be described later.
  • the path update unit 34A selects a path S associated with a path candidate whose node ID combination matches one of the bypass path of the load increasing node and the bypass path of the adjacent node in the path candidate table 23.
  • An S / N ratio changing process for changing the / N ratio is performed (step S103).
  • the S / N ratio changing process of step S103 is the process of steps S121 to S125 shown in FIG. 31, and will be described later.
  • FIG. 30 is a flowchart showing an example of the bypass route table creation process of the adjacent node in step S102 shown in FIG. As illustrated in FIG. 30, the path update unit 34A acquires the node ID of one load increase node from the storage unit 20 (step S111).
  • the path update unit 34A extracts the node ID of the adjacent node that is the node adjacent to the load increase node from the physical arrangement table 21 (step S112). Specifically, in step S112, the route updating unit 34A determines the node ID of the upper side adjacent node that is the upper side node of the load increasing node and the node ID of the lower side adjacent node that is the lower side of the load increasing node. To extract.
  • the path update unit 34A extracts the node ID of the higher-order node of the adjacent node from the physical arrangement table 21 (step S113). Further, the path updating unit 34A extracts the node ID of the lower side node of the adjacent node from the physical arrangement table 21 (step S114). Then, the path updating unit 34A sets a bypass path in which the higher order node and the lower order node of the adjacent node are associated with each other as a bypass path of the adjacent node in the bypass path table of the adjacent node (Step S115).
  • the route updating unit 34A extracts the node ID “N-12” as the node ID of the upper side adjacent node in step S112, The node ID “N-14” is extracted as the node ID of the side adjacent node.
  • the path updating unit 34A extracts “N-11” as the node ID of the upper side node of the upper side adjacent node.
  • the path updating unit 34A uses the node ID of the lower side node of the upper side node as the node ID of the lower side node. The ID “N-13” is extracted.
  • step S114 the route updating unit 34A extracts “N-13” as the node ID of the upper node of the lower neighbor node, and as the node ID of the lower node of the lower neighbor node in step S114. , “N ⁇ 1n” are extracted. It is assumed that the node with the node ID “N ⁇ 1n” is adjacent to the node with the node ID “N-14”.
  • the path updating unit 34A sets the bypass path of the combination of the node ID “N-11” and the node ID “N-13” in the bypass path table of the adjacent node as the bypass path of the upper side adjacent node. Further, the path updating unit 34A sets the bypass path of the combination of the node ID “N-13” and the node ID “N-1n” as the bypass path of the lower side adjacent node in the bypass path table of the adjacent node.
  • the path updating unit 34A can also set a bypass path, which is a combination of the node ID of the higher-order node of the higher-order adjacent node and the node ID of the lower-order node of the lower-order adjacent node, in the bypass path table of the adjacent node.
  • a bypass path which is a combination of the node ID of the higher-order node of the higher-order adjacent node and the node ID of the lower-order node of the lower-order adjacent node.
  • a combination of the node ID “N-11” and the node ID “N-1n” can be set in the bypass path table of the adjacent node.
  • the route updating unit 34A determines whether or not the processing in steps S112 to S115 has been completed for all nodes adjacent to the load increase node (step S116). If the path updating unit 34A determines that the processing of steps S112 to S115 has not been completed for all the nodes adjacent to the load increase node (step S116: No), the next load that has not performed the processing of steps S112 to S115.
  • the node ID of the increased node is acquired from the storage unit 20 (step S117), and the processes of steps S112 to S115 are executed.
  • step S116 Yes
  • the processing in FIG. 30 ends. Thereby, the bypass route of the adjacent node which is a node adjacent to all the load increase nodes is set in the bypass route table, and the bypass route table of the adjacent node is completed.
  • the bypass route table of the adjacent node is stored in the storage unit 20 by the route update unit 34A.
  • FIG. 31 is a flowchart showing an example of the S / N ratio changing process in step S113 of FIG. Note that the processing in steps S121 and S123 to S125 shown in FIG. 31 is the same as the processing in steps S71 and S73 to S75 shown in FIG.
  • step S122 shown in FIG. 31 the route updating unit 34A selects a node that matches the route candidate of the selected node ID among the bypass routes included in the bypass route table of the load increase node and the bypass route table of the adjacent node. It is determined whether there is a bypass path with a combination of IDs.
  • step S122 When the path update unit 34A determines that there is a bypass path having a combination of node IDs that matches the path candidate of the selected node ID (step S122: Yes), the same node as the bypass path of the selected node ID The route S / N ratio associated with the route combination of the ID combination is lowered by the predetermined value Vsn (step S123).
  • the S / N ratio for the route candidate that bypasses the adjacent nodes adjacent to the higher side and the lower side of the load increasing node is lowered, the number of routes including the adjacent node can be increased. Therefore, the number of hops can be further increased in the vicinity of a customer whose load has increased, and it is possible to suppress a decrease in communication quality in the PLC.
  • the route update unit 34A described above performs processing for lowering the route S / N ratio by the predetermined value Vsn. Similar to the processing of the route update unit 34, the route S / N ratio of the load increase node is less than or equal to the threshold value Vth. It can also be set to a value. Further, similarly to the route update unit 34, the route update unit 34 ⁇ / b> A can also associate information indicating the load increase node with the route candidate in the route candidate table 23.
  • the hardware configuration example of the information collecting apparatus 1A according to the second embodiment is the same as the information collecting apparatus 1 shown in FIG.
  • the processor 201 can execute the function of the path updating unit 34A by reading and executing the program stored in the memory 202.
  • the path updating unit 34A of the information collection apparatus 1A sets the adjacent node in the path of the node that is physically adjacent to the adjacent node that is an example of the adjacent smart meter via the power line 3. Inclusion increases the number of routes that include neighboring smart meters. As a result, in addition to the load increasing node, the route can be updated so as not to bypass the neighboring smart meter, the number of hops can be further increased in the vicinity of the customer with increased load, and the communication quality in the PLC is lowered. This can be further suppressed.
  • the route update unit 34A can increase the number of nodes that are the targets of the bypass route as the predicted load on the consumer increases.
  • the path updating unit 34A can also update the path by creating a bypass path that bypasses a node further adjacent to the adjacent node adjacent to the load increase node.
  • the route update unit 34A combines the two nodes selected from the node adjacent to the upper side adjacent node and the node adjacent to the upper side adjacent node into the bypass node of the adjacent node.
  • the node ID of one of the upper side neighboring nodes can be used.
  • the path updating unit 34A can set a combination of the node ID of the higher-order node of the higher-order neighboring node and the node ID of the lower-order neighboring node in the bypass path table of the neighboring node.
  • the path updating unit 34A can set the combination of the node ID “N-11” and the node ID “N-14” in the bypass path table of the adjacent node.
  • the path updating unit 34A can also set a combination of the node ID of the upper side adjacent node and the node ID of the lower side node of the lower side adjacent node in the bypass path table of the adjacent node. For example, in the case of the above-described example, the path updating unit 34A can set the combination of the node ID “N-12” and the node ID “N ⁇ 1n” in the bypass path table of the adjacent node.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1, 1A information collection device 2, 2-11, 12-12, 2-13, 2-14, ..., 2-1n, 2-21, 22-22, 2-23, 2-24, ... ..., 2-2m smart meter, 3,3-1,3-2,4,4-11,4-12,4-13,4-14, ..., 4-1n, 4-21,4 -22, 4-23, 4-24, ..., 4-2m power line, 5 measuring terminals, 6 PLC slave module, 8, 8-1, 8-2, ..., 8-k electrical equipment, 10, 63 communication unit, 20, 42, 52, 62 storage unit, 21 physical arrangement table, 22 measurement information table, 23 route candidate table, 24 route information storage area, 25 bypass route table, 30, 53, 61 control unit, 31 Information collection unit, 32 route setting unit, 33 load status monitoring unit, 34, 3 A route updating unit, 51 measurement unit, 100 an automatic meter reading system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Selective Calling Equipment (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Telephonic Communication Services (AREA)

Abstract

An information collection device (1) is provided with: an information collection unit (31) that acquires measurement information that is a result of measurement of electricity information from a smart meter placed at each of a plurality of consumers for measuring electricity information related to the electric power of the consumer; a load status monitoring unit (33) that monitors, on the basis of the measurement information, the status of the load at the consumer; and a path updating unit (34) that updates, on the basis of the status of the load at the consumer, the path in a multihop communication.

Description

情報収集装置、自動検針システム、および経路更新方法Information collection device, automatic meter reading system, and route update method
 本発明は、各需要家における電力に関する情報を電力線搬送通信(Power Line Communication、以下PLCと称する)を用いて収集する情報収集装置、自動検針システム、および経路更新方法に関する。 The present invention relates to an information collecting apparatus, an automatic meter reading system, and a route updating method for collecting information on electric power at each customer by using power line communication (hereinafter referred to as PLC).
 近年、各需要家にスマートメーターを設置し、通信機能により各需要家の使用電力量などの情報をコンセントレータと呼ばれる情報収集装置が収集する自動検針システムが普及している。自動検針システムで使用される通信方式はいくつか存在するが、その中の1つにPLCが存在する。 In recent years, an automatic meter reading system in which a smart meter is installed at each consumer and an information collecting device called a concentrator collects information such as the amount of power used by each consumer through a communication function has become widespread. There are several communication methods used in the automatic meter reading system, and one of them is PLC.
 PLCは、通信を行う1台の親機と複数の子機の各々との間の減衰特性および雑音特性が子装置ごとに異なる。そのため、親機と各子機との間の通信品質に基づいて、親機と各子機との間のマルチホップ通信における経路が構築される技術が用いられている。例えば、特許文献1に記載された発明では、子機間の通信品質を検知し、検出した通信品質が良い経路を選択して経路の構築を行っている。 PLC has different attenuation characteristics and noise characteristics for each slave unit between a single master unit and a plurality of slave units for communication. Therefore, a technique is used in which a path in multi-hop communication between the parent device and each child device is constructed based on the communication quality between the parent device and each child device. For example, in the invention described in Patent Document 1, the communication quality between the slave units is detected, and the route with the detected good communication quality is selected to construct the route.
特開2015-220657号公報Japanese Patent Laid-Open No. 2015-220657
 需要家の宅内のコンセントには家電機器およびネットワーク端末などの種々の電気機器が接続されており、これら電気機器の接続状況および動作状態によって需要家における負荷の状態は時々刻々と変化する。そして、需要家における負荷の状態によっては、通信線として使用する電力線に乗るノイズが増加し、通信品質が低下してしまう可能性がある。 Various electrical devices such as home appliances and network terminals are connected to the outlets in the customer's homes, and the load state of the consumer changes from moment to moment depending on the connection status and operation status of these electrical devices. And depending on the load state in a consumer, the noise which rides on the power line used as a communication line may increase, and communication quality may fall.
 マンションなどの集合住宅の場合、共通の電力線を設け、共通の電力線から需要家ごとの電力線に電力を分岐させて供給する形態が一般的である。そのため、集合住宅に設置されたスマートメーターと情報収集装置とにより自動検針システムが形成されている場合、ある需要家で発生したノイズの影響が他の需要家に設置されたスマートメーターと情報収集装置との間の通信にも及び、使用電力量などの情報である検針データの収集が広範囲にわたってできなくなるなどの不都合が生じる可能性がある。 In the case of apartment houses such as condominiums, a common power line is provided, and power is branched and supplied from the common power line to the power line of each consumer. Therefore, when an automatic meter-reading system is formed by smart meters and information collection devices installed in apartment houses, the effects of noise generated by one consumer are affected by smart meters and information collection devices installed by other consumers. There is a possibility that inconveniences such as the inability to collect meter reading data, which is information such as the amount of power used, over a wide range may occur.
 特許文献1に記載の技術では、子機間の通信品質を検出し、検出した通信品質が良い経路を選択して経路を更新することから、子機間の通信品質が低下してから経路が再構築されるまでの間、PLCにおける通信品質の低下を抑制することが難しい。 In the technique described in Patent Document 1, the communication quality between the slave units is detected, and the route with the detected good communication quality is selected and updated. Until it is reconstructed, it is difficult to suppress a decrease in communication quality in the PLC.
 本発明は、上記に鑑みてなされたものであって、PLCにおける通信品質の低下を抑制することができる情報収集装置、自動検針システム、および経路更新方法を得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain an information collection device, an automatic meter reading system, and a route update method that can suppress a decrease in communication quality in a PLC.
 上述した課題を解決し、目的を達成するために、本発明は、複数の需要家の各々に設置されて前記需要家の電力に関する電気情報を計測するスマートメーターと電力線を使用したマルチホップ通信を行う情報収集装置において、前記スマートメーターから前記電気情報の計測結果である計測情報を取得する情報収集部と、前記計測情報に基づいて、前記需要家における負荷の状態を監視する負荷状態監視部と、前記負荷の状態に基づいて、前記マルチホップ通信における経路を更新する経路更新部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a multi-hop communication using a smart meter and a power line that are installed in each of a plurality of consumers and measure electrical information related to the power of the consumers. In the information collecting device to perform, an information collecting unit that acquires measurement information that is a measurement result of the electrical information from the smart meter, and a load state monitoring unit that monitors a load state in the consumer based on the measurement information; And a route updating unit that updates a route in the multi-hop communication based on the state of the load.
 本発明によれば、PLCにおける通信品質の低下を抑制することができる、という効果を奏する。 According to the present invention, there is an effect that it is possible to suppress a decrease in communication quality in the PLC.
実施の形態1にかかる自動検針システムの構成例を示す図The figure which shows the structural example of the automatic meter-reading system concerning Embodiment 1. FIG. 実施の形態1にかかる需要家に設置されたスマートメーター、電力線、および需要家の負荷の関係を示す図The figure which shows the relationship between the smart meter installed in the consumer concerning Embodiment 1, a power line, and the load of a consumer. 実施の形態1にかかる情報収集装置による再構築の前後の経路状態の一例を示す図The figure which shows an example of the path | route state before and behind reconstruction by the information collection device concerning Embodiment 1. 実施の形態1にかかる需要家における使用電力量の時間的な変化を示す図The figure which shows the time change of the electric power consumption in the consumer concerning Embodiment 1. FIG. 実施の形態1にかかるスマートメーターの構成例を示す図The figure which shows the structural example of the smart meter concerning Embodiment 1. FIG. 実施の形態1にかかる情報収集装置の構成例を示す図1 is a diagram illustrating a configuration example of an information collection device according to a first embodiment. 実施の形態1にかかる物理配置テーブルの一例を示す図FIG. 3 is a diagram illustrating an example of a physical arrangement table according to the first embodiment. 実施の形態1にかかる計測情報テーブルの一例を示す図The figure which shows an example of the measurement information table concerning Embodiment 1. FIG. 実施の形態1にかかる近接探索要求メッセージの一例を示す図The figure which shows an example of the proximity search request message concerning Embodiment 1. 実施の形態1にかかる近接探索応答メッセージの一例を示す図The figure which shows an example of the proximity search response message concerning Embodiment 1. 実施の形態1にかかる新規参入を行うスマートメーターから送信される参入要求メッセージの一例を示す図The figure which shows an example of the entry request message transmitted from the smart meter which performs the new entry concerning Embodiment 1 実施の形態1にかかるスマートメーターで転送される参入要求メッセージの一例を示す図The figure which shows an example of the entry request message transferred with the smart meter concerning Embodiment 1. 実施の形態1にかかる経路候補テーブルの一部を一例として示す図The figure which shows a part of route candidate table concerning Embodiment 1 as an example. 実施の形態1にかかる各スマートメーターの経路情報の一例を示す図The figure which shows an example of the route information of each smart meter concerning Embodiment 1. 実施の形態1にかかる各スマートメーターが保持する経路情報の一例を示す図The figure which shows an example of the routing information which each smart meter concerning Embodiment 1 hold | maintains 実施の形態1にかかる情報要求メッセージの一例を示す図The figure which shows an example of the information request message concerning Embodiment 1. 実施の形態1にかかる自動検針システムの動作例を示すシーケンス図FIG. 3 is a sequence diagram showing an operation example of the automatic meter reading system according to the first embodiment. 実施の形態1にかかる負荷増ノード検出処理の一例を示すフローチャート10 is a flowchart illustrating an example of a load increase node detection process according to the first embodiment. 実施の形態1にかかる収集周期変更処理の一例を示すフローチャート3 is a flowchart illustrating an example of a collection cycle changing process according to the first embodiment. 実施の形態1にかかる経路再構築処理の一例を示すフローチャートFIG. 3 is a flowchart illustrating an example of a route reconstruction process according to the first embodiment; 実施の形態1にかかるS/N比優先の経路再構築処理の一例を示すフローチャート10 is a flowchart illustrating an example of a route reconstruction process with priority on the S / N ratio according to the first embodiment; 実施の形態1にかかるバイパス経路テーブル作成処理の一例を示すフローチャート1 is a flowchart illustrating an example of a bypass route table creation process according to the first embodiment; 実施の形態1にかかるバイパス経路テーブルの一例を示す図The figure which shows an example of the bypass route table concerning Embodiment 1. FIG. 実施の形態1にかかるS/N比変更処理の一例を示すフローチャート1 is a flowchart illustrating an example of an S / N ratio change process according to the first embodiment. 実施の形態1にかかる経路用S/N比が変更された場合の経路候補テーブルの一例を示す図The figure which shows an example of the route candidate table when the S / N ratio for routes concerning Embodiment 1 is changed. 実施の形態1にかかる経路再構築処理の一例を示すフローチャートFIG. 3 is a flowchart illustrating an example of a route reconstruction process according to the first embodiment; 実施の形態1にかかる情報収集装置のハードウェア構成例を示す図1 is a diagram illustrating a hardware configuration example of an information collection apparatus according to a first embodiment; 実施の形態2にかかる情報収集装置の構成例を示す図The figure which shows the structural example of the information collection device concerning Embodiment 2. 実施の形態2にかかるS/N比優先の経路再構築処理の一例を示すフローチャート10 is a flowchart illustrating an example of a route reconstruction process with priority on the S / N ratio according to the second embodiment; 実施の形態2にかかる隣ノードのバイパス経路テーブル作成処理の一例を示すフローチャートThe flowchart which shows an example of the bypass route table preparation process of the adjacent node concerning Embodiment 2. 実施の形態2にかかるS/N比変更処理の一例を示すフローチャート10 is a flowchart illustrating an example of an S / N ratio change process according to the second embodiment.
 以下に、本発明の実施の形態にかかる情報収集装置、自動検針システム、および経路更新方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an information collection device, an automatic meter reading system, and a route update method according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、実施の形態1にかかる自動検針システムの構成例を示す図である。図1に示すように、実施の形態1にかかる自動検針システム100は、需要家における電力に関する電気情報を収集する情報収集装置1と、需要家に設置されたスマートメーター2-11,2-12,2-13,2-14,・・・,2-1n,2-21,2-22,2-23,2-24,・・・,2-2mとを備える。「n」および「m」は、5以上の整数であり、以下において、n=5として説明する場合がある。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration example of an automatic meter reading system according to the first embodiment. As shown in FIG. 1, an automatic meter reading system 100 according to a first embodiment includes an information collection device 1 that collects electrical information related to electric power at a consumer, and smart meters 2-11 and 12-12 installed at the consumer. , 2-13, 2-14, ..., 2-1n, 2-21, 22-22, 2-23, 2-24, ..., 2-2m. “N” and “m” are integers of 5 or more, and may be described below as n = 5.
 各スマートメーター2-11,2-12,2-13,2-14,・・・,2-1nは、電力線4-11,4-12,4-13,4-14,・・・,4-1nを介して共通の電力線3-1に接続される。同様に、各スマートメーター2-21,2-22,2-23,2-24,・・・,2-2mは、電力線4-21,4-22,4-23,4-24,・・・,4-2mを介して、共通の電力線3-2に接続される。 Each of the smart meters 2-11, 12-12, 2-13, 2-14,..., 2-1n is connected to power lines 4-11, 4-12, 4-13, 4-14,. -1n to the common power line 3-1. Similarly, each smart meter 2-21, 22-22, 2-23, 2-24,..., 2-2 m is connected to power lines 4-21, 4-22, 4-23, 4-24,. -It is connected to the common power line 3-2 via 4-2m.
 なお、以下の説明においては、スマートメーター2-11,2-12,2-13,2-14,・・・,2-1n,2-21,2-22,2-23,2-24,・・・,2-2mの各々を区別せずにスマートメーター2と記載する場合がある。また、電力線3-1,3-2の各々を区別せずに電力線3と記載し、電力線4-11,4-12,4-13,4-14,・・・,4-1n,4-21,4-22,4-23,4-24,・・・,4-2mの各々を区別せずに電力線4と記載する場合がある。自動検針システム100は、例えば、マンションなどの集合住宅に設置される。スマートメーター2は、集合住宅の各部屋に設置される。なお、スマートメーター2の数、電力線3の数、および電力線4の数は図1に示す例に限定されず、自動検針システム100の設置対象も集合住宅に限定されない。 In the following explanation, smart meters 2-11, 12-12, 2-13, 2-14,..., 2-1n, 2-21, 22-22, 2-23, 2-24, ..., 2-2m may be described as smart meter 2 without distinction. Further, each of the power lines 3-1 and 3-2 is referred to as a power line 3 without being distinguished, and the power lines 4-11, 4-12, 4-13, 4-14,. 21, 4-22, 4-23, 4-24,..., 4-2 m may be described as the power line 4 without being distinguished from each other. The automatic meter reading system 100 is installed in a housing complex such as an apartment. The smart meter 2 is installed in each room of the apartment house. The number of smart meters 2, the number of power lines 3, and the number of power lines 4 are not limited to the example shown in FIG. 1, and the installation target of the automatic meter reading system 100 is not limited to a housing complex.
 図2は、需要家に設置されたスマートメーター2、電力線4、および需要家の電気機器の関係を示す図である。図2に示すように、電力線4は、需要家に設置されたスマートメーター2を経由して、需要家の電気機器8-1,8-2,・・・,8-kに接続される。「k」は2以上の整数である。電気機器8-1,8-2,・・・,8-kの数、種類、および動作状態などによって、需要家における負荷の状態が変化する。以下においては、電気機器8-1,8-2,・・・,8-kをまとめて電気機器8と記載する。 FIG. 2 is a diagram showing the relationship between the smart meter 2 installed in the consumer, the power line 4, and the consumer's electrical equipment. As shown in FIG. 2, the power line 4 is connected to the consumer electrical devices 8-1, 8-2,..., 8 -k via the smart meter 2 installed in the consumer. “K” is an integer of 2 or more. The state of the load on the consumer varies depending on the number, type, and operating state of the electrical devices 8-1, 8-2,. Hereinafter, the electric devices 8-1, 8-2,..., 8-k are collectively referred to as an electric device 8.
 図1に示す自動検針システム100においては、電力線3を介して行うPLCにより情報収集装置1が各スマートメーター2からデータを収集する。情報収集装置1は、PLCの親機として動作する機能を有する。各スマートメーター2は、電力線4から需要家の電気機器8へ供給される電力に関する電気情報を計測する機能と、PLCの子機として動作する機能とを有する。 In the automatic meter reading system 100 shown in FIG. 1, the information collection device 1 collects data from each smart meter 2 by PLC performed via the power line 3. The information collection device 1 has a function of operating as a master device for the PLC. Each smart meter 2 has a function of measuring electrical information related to power supplied from the power line 4 to the consumer's electrical equipment 8 and a function of operating as a slave unit of the PLC.
 情報収集装置1および各スマートメーター2は、PLCネットワークを形成し、マルチホップ通信によりデータを送受信する。すなわち、各スマートメーター2は、データを中継する機能を有しており、情報収集装置1宛のデータを他のスマートメーター2から受信すると、受信したデータを情報収集装置1に向けて転送する。また、各スマートメーター2は、情報収集装置1が送信元の他のスマートメーター2宛のデータを受信すると、受信したデータを宛先の他のスマートメーター2に向けて転送する。 The information collection device 1 and each smart meter 2 form a PLC network, and transmit and receive data by multi-hop communication. That is, each smart meter 2 has a function of relaying data. When data addressed to the information collection device 1 is received from another smart meter 2, the received data is transferred to the information collection device 1. Further, when the information collection device 1 receives data addressed to the other smart meter 2 of the transmission source, each smart meter 2 transfers the received data to the other smart meter 2 of the destination.
 以下において、PLCネットワークを形成する情報収集装置1およびスマートメーター2の各々を「ノード」と記載し、情報収集装置1およびスマートメーター2の各々の識別情報をノードIDと記載する場合がある。また、経路上におけるノード間の通信をホップと記載し、ノード間の通信の回数をホップ数と記載する。なお、経路上の任意のノードからデータの送信先になるノードを「次ホップのノード」と記載し、経路上の任意のノードへのデータの送信元になるノードを「前ホップのノード」と記載する場合がある。 Hereinafter, each of the information collection device 1 and the smart meter 2 forming the PLC network may be referred to as a “node”, and identification information of each of the information collection device 1 and the smart meter 2 may be referred to as a node ID. Further, communication between nodes on the route is described as hops, and the number of communication between nodes is described as the number of hops. Note that the node that is the destination of data from any node on the route is described as “next hop node”, and the node that is the source of data transmission to any node on the route is referred to as “previous hop node”. May be described.
 また、以下においては、情報収集装置1およびスマートメーター2の各々の符号の先頭に「N」を付加したものがノードIDであるものする。例えば、情報収集装置1のノードIDを「N1」とし、スマートメーター2-11のノードIDを「N2-11」とし、スマートメーター2-2mのノードIDを「N2-2m」とする。なお、ノードIDは、上述の例に限定されない。 Also, in the following, it is assumed that the node ID is the one in which the sign of each of the information collection device 1 and the smart meter 2 is prefixed with “N”. For example, the node ID of the information collection device 1 is “N1”, the node ID of the smart meter 2-11 is “N2-11”, and the node ID of the smart meter 2-2m is “N2-2m”. Note that the node ID is not limited to the above example.
 情報収集装置1およびスマートメーター2の各々は、PLCネットワークでの信号受信時のS/N比を算出する機能を有する。S/N比は、通信品質を示す情報であり、信号対雑音比率(Signal-to-Noise Ratio)である。情報収集装置1は、各スマートメーター2からS/N比を取得し、取得したS/N比に基づいて、情報収集装置1と各スマートメーター2との間の経路を構築する。これにより、情報収集装置1と各スマートメーター2との間の通信品質を考慮した経路を構築することができる。 Each of the information collection device 1 and the smart meter 2 has a function of calculating an S / N ratio at the time of signal reception on the PLC network. The S / N ratio is information indicating communication quality, and is a signal-to-noise ratio. The information collection device 1 acquires the S / N ratio from each smart meter 2 and constructs a path between the information collection device 1 and each smart meter 2 based on the acquired S / N ratio. Thereby, the path | route which considered the communication quality between the information collection device 1 and each smart meter 2 can be constructed | assembled.
 さらに、情報収集装置1は、各スマートメーター2から取得した計測情報に基づいて、各需要家における負荷の状態を監視しており、負荷の増加によってPLCにおける通信品質が低下する前に、情報収集装置1と各スマートメーター2との間の経路を再構築することができる。これにより、PLCにおける通信品質の低下を抑制することができる。 Furthermore, the information collection device 1 monitors the load state of each customer based on the measurement information acquired from each smart meter 2, and collects information before the communication quality in the PLC deteriorates due to the increase in load. The path between the device 1 and each smart meter 2 can be reconstructed. Thereby, the fall of the communication quality in PLC can be suppressed.
 図3は、情報収集装置1による再構築の前後の経路状態の一例を示す図である。図3に示す第1経路では、スマートメーター2-1nから情報収集装置1へ向かう経路に、スマートメーター2-14,2-12が含まれており、スマートメーター2-1nから送信される情報収集装置1宛のデータは、スマートメーター2-14,2-12により順次転送されて、情報収集装置1で受信される。 FIG. 3 is a diagram illustrating an example of a path state before and after reconstruction by the information collection apparatus 1. In the first route shown in FIG. 3, the route from the smart meter 2-1n to the information collecting device 1 includes the smart meters 2-14 and 2-12, and the information collected from the smart meter 2-1n is collected. Data addressed to the device 1 is sequentially transferred by the smart meters 2-14 and 2-12 and received by the information collecting device 1.
 スマートメーター2-13が設置された需要家において負荷の増加によってノイズが増加した場合、スマートメーター2-13と情報収集装置1との間の通信のみならず、スマートメーター2-13以外のスマートメーター2と情報収集装置1との間の通信にも影響を及ぼす場合がある。これは、共通の電力線3-1に複数のスマートメーター2-11,2-12,2-13,2-14,・・・,2-1nが接続されており、スマートメーター2-13が接続された電力線4-13を介して共通の電力線3-1へノイズが伝わるためである。 When noise is increased due to an increase in load at a customer where the smart meter 2-13 is installed, not only communication between the smart meter 2-13 and the information collecting device 1 but also smart meters other than the smart meter 2-13 2 and the information collecting apparatus 1 may also be affected. This is because a plurality of smart meters 2-11, 12-12, 2-13, 2-14,..., 2-1n are connected to the common power line 3-1, and the smart meter 2-13 is connected. This is because noise is transmitted to the common power line 3-1 through the power line 4-13.
 そこで、情報収集装置1は、スマートメーター2が設置された需要家における負荷の状態が予め設定された経路更新条件を満たす場合、経路を更新して再構築する。経路更新条件は、電気機器8へ供給される電力および電流の少なくとも一つの状態の条件を含む。 Therefore, the information collection device 1 updates and reconstructs the route when the load state at the customer where the smart meter 2 is installed satisfies the route update condition set in advance. The route update condition includes a condition of at least one state of electric power and current supplied to the electric device 8.
 図4は、需要家の電気機器8へ電力線4を介して供給される電力の量である使用電力量の時間的な変化を示す図である。図4において横軸は時刻を表し、縦軸は使用電力量を表す。情報収集装置1は、需要家の使用電力量を示す電力量データが閾値Pth1以上である場合に、経路更新条件を満たすと判定する。図4に示す例では、PLCにおける通信品質に影響する大きさのノイズが発生する使用電力量よりも小さい閾値Pth1が設定されている。情報収集装置1は、電力量データが閾値Pth1以上である場合に、PLCネットワークの経路を再構築する。 FIG. 4 is a diagram showing a temporal change in the amount of power used, which is the amount of power supplied to the customer's electrical equipment 8 via the power line 4. In FIG. 4, the horizontal axis represents time, and the vertical axis represents the amount of power used. The information collection device 1 determines that the route update condition is satisfied when the power amount data indicating the power usage amount of the consumer is equal to or greater than the threshold value Pth1. In the example illustrated in FIG. 4, a threshold value Pth <b> 1 is set that is smaller than the amount of power used that generates noise having a magnitude that affects communication quality in the PLC. The information collection device 1 reconstructs the path of the PLC network when the power amount data is equal to or greater than the threshold value Pth1.
 なお、上述した経路更新条件は、電力量データが閾値Pth1以上であることに限定されず、経路更新条件は、電力量データの増加率、需要家の電気機器8へ供給される電流の値を示す電流値データの大きさ、または電流値データの増加率の条件であってもよい。また、経路更新条件は、電力量データの大きさ、電力量データの増加率、電流値データの大きさ、および電流値データの増加率のうち2以上を組み合わせた条件であってもよい。すなわち、経路更新条件は、負荷の状態が、PLCにおける通信品質を低下させる大きさのノイズが発生する状態の前段階の状態である可能性があることを検出することができるように設定されていればよい。 Note that the route update condition described above is not limited to the amount of power data being equal to or greater than the threshold value Pth1, and the route update condition includes the rate of increase in the amount of power data and the value of the current supplied to the consumer's electrical equipment 8. It may be the condition of the magnitude of the current value data to be shown or the rate of increase of the current value data. The path update condition may be a condition in which two or more of the magnitude of the power amount data, the increase rate of the power amount data, the magnitude of the current value data, and the increase rate of the current value data are combined. In other words, the route update condition is set so that it is possible to detect that the load state may be a state in the previous stage of the state in which noise of a magnitude that reduces communication quality in the PLC is generated. Just do it.
 図3に示す第2経路では、スマートメーター2-13が設置された需要家における負荷状態が経路更新条件を満たす場合に再構築された経路を示している。スマートメーター2-1nから情報収集装置1へ向かう経路に、上述した経路更新条件を満たす需要家に設置されたスマートメーター2-13が追加される。 The second route shown in FIG. 3 shows a route reconstructed when the load state at the customer where the smart meter 2-13 is installed satisfies the route update condition. A smart meter 2-13 installed at a customer who satisfies the above-described route update condition is added to the route from the smart meter 2-1n to the information collection device 1.
 図3に示す第2経路では、スマートメーター2-1nから送信される情報収集装置1宛のデータは、スマートメーター2-14,2-12に加え、スマートメーター2-13によっても転送され、情報収集装置1で受信される。このように、経路更新条件を満たす需要家の付近ではホップ数が増加するように、情報収集装置1とスマートメーター2-1nとの間の通信の経路が再構築される。 In the second route shown in FIG. 3, the data addressed to the information collecting device 1 transmitted from the smart meter 2-1n is transferred by the smart meter 2-13 in addition to the smart meters 2-14 and 2-12, Received by the collection device 1. In this way, the communication path between the information collection device 1 and the smart meter 2-1n is reconstructed so that the number of hops increases near the customer who satisfies the path update condition.
 したがって、PLCにおける通信品質を低下させる大きさのノイズが発生すると予測される需要家の付近の電力線3-1において1ホップで信号が伝わる部分の長さを短くすることができ、信号の減衰量を低減できる。そのため、ノイズが増加した場合であっても、情報収集装置1とスマートメーター2-1nとの間の通信品質が低下することを抑制することができる。 Therefore, it is possible to reduce the length of the portion where the signal is transmitted in one hop in the power line 3-1 near the consumer where the noise is expected to be generated to reduce the communication quality in the PLC. Can be reduced. For this reason, even when noise increases, it is possible to suppress a decrease in communication quality between the information collection device 1 and the smart meter 2-1n.
 なお、上述した例では、情報収集装置1とスマートメーター2-1nとの間の通信の経路について説明したが、スマートメーター2-1n以外のスマートメーター2と情報収集装置1との間の通信の経路も経路更新条件に基づいて同様に再構築される。 In the above example, the communication path between the information collection device 1 and the smart meter 2-1n has been described. However, the communication between the smart meter 2 other than the smart meter 2-1n and the information collection device 1 is described. The route is similarly reconstructed based on the route update condition.
 図5は、実施の形態1にかかるスマートメーター2の構成例を示す図である。スマートメーター2は、電気機器8に供給される電力に関する電気情報を計測する計測端末5と、計測端末5が計測した計測値を計測情報として情報収集装置1宛に送信するPLC子機モジュール6と、を備える。 FIG. 5 is a diagram illustrating a configuration example of the smart meter 2 according to the first embodiment. The smart meter 2 includes a measurement terminal 5 that measures electrical information related to the power supplied to the electrical device 8, and a PLC slave module 6 that transmits the measurement value measured by the measurement terminal 5 to the information collection device 1 as measurement information. .
 計測端末5は、スマートメーター2に接続された電力線4を介して電気機器8へ供給される電力に関する情報、具体的には、電圧、電流、デマンド、電力量、および高調波などを計測する計測部51と、この計測部51が計測した計測値および計測を行った時刻である計測時刻の情報を含む情報である計測情報を記憶する記憶部52と、PLC子機モジュール6からの要求を受けると記憶部52で記憶されている計測情報を読み出してPLC子機モジュール6へ出力する制御部53と、を備える。 The measurement terminal 5 measures information related to the power supplied to the electrical device 8 through the power line 4 connected to the smart meter 2, specifically, voltage, current, demand, power amount, harmonics, and the like. Unit 51, a storage unit 52 that stores measurement information that is information including measurement values measured by the measurement unit 51 and measurement time information that is measurement time, and a request from the PLC slave module 6 And a control unit 53 that reads out the measurement information stored in the storage unit 52 and outputs the measurement information to the PLC slave module 6.
 PLC子機モジュール6は、計測端末5から計測情報を取得する制御部61と、制御部61が計測端末5から取得した計測情報などを記憶する記憶部62と、他のスマートメーター2または情報収集装置1との間で信号を送受信する通信部63とを備える。 The PLC slave module 6 includes a control unit 61 that acquires measurement information from the measurement terminal 5, a storage unit 62 that stores measurement information acquired by the control unit 61 from the measurement terminal 5, and another smart meter 2 or information collection. And a communication unit 63 that transmits and receives signals to and from the device 1.
 通信部63は、電力線4を介して電力線3と接続され、計測端末5から取得した計測情報を含んだ情報収集装置1宛のデータを制御部61から受け取り、受け取った情報収集装置1宛のデータは電力線4および電力線3を介して送信される。また、通信部63は、電力線3および電力線4を介して、情報収集装置1からのメッセージおよびデータを受信する。さらに、通信部63は、他のスマートメーター2から送信された情報収集装置1宛のデータである親機宛データを受信すると、受信した親機宛データを転送する。 The communication unit 63 is connected to the power line 3 via the power line 4, receives data addressed to the information collection device 1 including measurement information acquired from the measurement terminal 5 from the control unit 61, and receives the received data addressed to the information collection device 1 Is transmitted via the power line 4 and the power line 3. Further, the communication unit 63 receives a message and data from the information collection device 1 via the power line 3 and the power line 4. Furthermore, when the communication unit 63 receives the data addressed to the parent device, which is the data addressed to the information collection device 1 transmitted from the other smart meter 2, the communication unit 63 transfers the received data addressed to the parent device.
 なお、他のスマートメーター2から送信された親機宛データを受信したか否かは制御部61が判断する。PLC子機モジュール6は、他のスマートメーター2から親機宛データを受信する際にS/N比を算出し、算出したS/N比を記憶する。S/N比の算出は通信部63が行う。通信部63が算出したS/N比はS/N比を算出した時刻とともに記憶部62に記憶される。 It should be noted that the control unit 61 determines whether or not the data addressed to the parent device transmitted from the other smart meter 2 has been received. The PLC slave unit module 6 calculates the S / N ratio when receiving data addressed to the master unit from another smart meter 2, and stores the calculated S / N ratio. The communication unit 63 calculates the S / N ratio. The S / N ratio calculated by the communication unit 63 is stored in the storage unit 62 together with the time when the S / N ratio is calculated.
 制御部61は、通信部63でS/N比が算出されると、算出されたS/N比と、S/N比を算出した際に受信した親機宛データの送信元のスマートメーター2のノードIDとを取得し、取得したS/N比と送信元のスマートメーター2のノードIDとを対応付けて記憶部62に保管する。記憶部62は、通信部63で算出されたS/N比および対応するスマートメーター2のノードIDに加えて、親機宛データを中継する際の経路情報なども記憶している。 When the communication unit 63 calculates the S / N ratio, the control unit 61 calculates the calculated S / N ratio and the smart meter 2 that is the transmission source of the data addressed to the parent device received when the S / N ratio is calculated. And the acquired S / N ratio and the node ID of the transmission source smart meter 2 are stored in the storage unit 62 in association with each other. In addition to the S / N ratio calculated by the communication unit 63 and the corresponding node ID of the smart meter 2, the storage unit 62 also stores route information when relaying data addressed to the parent device.
 図6は、実施の形態1にかかる情報収集装置1の構成例を示す図である。情報収集装置1の主要な機能は、スマートメーター2からの情報の定期収集、PLCネットワークの通信状態管理、およびPLCネットワークの経路管理である。PLCネットワークの経路管理には、情報収集装置1と各スマートメーター2との間の通信の経路を構築および再構築する処理が含まれる。 FIG. 6 is a diagram illustrating a configuration example of the information collection device 1 according to the first embodiment. The main functions of the information collection device 1 are regular collection of information from the smart meter 2, management of the communication status of the PLC network, and route management of the PLC network. The route management of the PLC network includes a process of constructing and reconstructing a communication route between the information collection device 1 and each smart meter 2.
 情報収集装置1は、スマートメーター2の各々との間で信号を送受信する通信部10と、計測情報を含む各種の情報を記憶する記憶部20と、PLCネットワークを管理すると共に、通信部10を介して各スマートメーター2から情報を収集する制御部30とを備える。 The information collection device 1 manages a communication unit 10 that transmits and receives signals to and from each of the smart meters 2, a storage unit 20 that stores various types of information including measurement information, a PLC network, and a communication unit 10. And a control unit 30 that collects information from each smart meter 2.
 通信部10は、電力線3を介してスマートメーター2の各々と接続されており、PLCの親機として、PLCの子機の機能を有するスマートメーター2の各々とPLCによって信号を送受信する。通信部10は、スマートメーター2から計測情報などのデータを含む信号を受信する際、S/N比を算出する。 The communication unit 10 is connected to each of the smart meters 2 via the power line 3 and transmits / receives a signal to / from each of the smart meters 2 having a function of a slave unit of the PLC as a master unit of the PLC. The communication unit 10 calculates the S / N ratio when receiving a signal including data such as measurement information from the smart meter 2.
 記憶部20は、情報収集装置1からの各スマートメーター2までの配電線の物理的な経路の情報を含む物理配置テーブル21と、各スマートメーター2から収集された計測情報を含む計測情報テーブル22と、各スマートメーター2の経路候補の情報を含む経路候補テーブル23と、各スマートメーター2の経路を示す経路情報を記憶する経路情報記憶領域24とを備える。 The storage unit 20 includes a physical arrangement table 21 that includes information on physical routes of distribution lines from the information collection device 1 to each smart meter 2, and a measurement information table 22 that includes measurement information collected from each smart meter 2. And a route candidate table 23 including information on route candidates of each smart meter 2, and a route information storage area 24 for storing route information indicating the route of each smart meter 2.
 図7は、物理配置テーブル21の一例を示す図である。図7に示す物理配置テーブル21は、電力線3を介して物理的に互いに隣接する2つのスマートメーター2のノードIDが関連付けられた情報を含む。物理的に隣接するとは、電力線3への接続位置が隣り合うことを意味する。 FIG. 7 is a diagram illustrating an example of the physical arrangement table 21. The physical arrangement table 21 illustrated in FIG. 7 includes information in which node IDs of two smart meters 2 physically adjacent to each other via the power line 3 are associated. The phrase “physically adjacent” means that the connection position to the power line 3 is adjacent.
 図7に示す物理配置テーブル21は、各スマートメーター2の「ノードID」と、各スマートメーター2に隣接する他のスマートメーター2である隣ノードのノードIDである「隣ノードID」と、隣ノードとの電力線3を介した物理的な位置関係を示す情報である「位置」とが関連付けられた情報を含む。電力線3-1の場合、スマートメーター2-1nの接続位置が最下位の位置であり、情報収集装置1に近づくほどより上位の位置になり、情報収集装置1が最上位の位置である。 The physical arrangement table 21 shown in FIG. 7 includes a “node ID” of each smart meter 2, a “neighbor node ID” that is a node ID of an adjacent node that is another smart meter 2 adjacent to each smart meter 2, and an adjacent node. It includes information associated with “position”, which is information indicating a physical positional relationship with the node via the power line 3. In the case of the power line 3-1, the connection position of the smart meter 2-1n is the lowest position, and the closer to the information collection device 1, the higher the position, and the information collection device 1 is the highest position.
 図1に示す接続状態では、情報収集装置1とスマートメーター2-11とが電力線3を介して物理的に隣接している。そして、情報収集装置1から見てスマートメーター2-11は下位に位置し、スマートメーター2-11から見て情報収集装置1は上位に位置する。したがって、図7に示すように、「N1」、「N2-11」、および「下位」の組み合わせと、「N2-11」、「N1」、および「上位」の組み合わせが物理配置テーブル21に設定される。他のスマートメーター2についても同様に隣接するスマートメーター2の組み合わせが物理配置テーブル21に設定される。 In the connection state shown in FIG. 1, the information collecting device 1 and the smart meter 2-11 are physically adjacent via the power line 3. The smart meter 2-11 is positioned at the lower position when viewed from the information collecting apparatus 1, and the information collecting apparatus 1 is positioned at the upper position when viewed from the smart meter 2-11. Therefore, as shown in FIG. 7, a combination of “N1”, “N2-11”, and “lower” and a combination of “N2-11”, “N1”, and “upper” are set in the physical arrangement table 21. Is done. Similarly for other smart meters 2, the combination of adjacent smart meters 2 is set in the physical arrangement table 21.
 図8は、計測情報テーブル22の一例を示す図である。図8に示す計測情報テーブル22は、各スマートメーター2から収集された計測情報がスマートメーター2単位で関連付けられたテーブルであり、「ノードID」毎に、「時刻」、「電力量」、および「電流量」を互いに関連付けた情報を含む。 FIG. 8 is a diagram illustrating an example of the measurement information table 22. The measurement information table 22 illustrated in FIG. 8 is a table in which measurement information collected from each smart meter 2 is associated in units of smart meters 2, and for each “node ID”, “time”, “power amount”, and It includes information relating “current amount” to each other.
 「時刻」は、計測情報に含まれる計測時刻を示す情報であり、「電力量」は、計測情報に含まれる電力量データである。電力量データは、需要家の電気機器8において新たに使用された電力の量である使用電力量を示すデータであり、例えば、単位時間Ta当りのデータである。「電流値」は、計測情報に含まれる電流値データである。電流値データは、例えば、単位時間Ta毎に計測される電力線4の電流の実効値を示すデータである。 “Time” is information indicating the measurement time included in the measurement information, and “Power amount” is power amount data included in the measurement information. The power amount data is data indicating the amount of power used, which is the amount of power newly used in the consumer's electrical equipment 8, and is, for example, data per unit time Ta. “Current value” is current value data included in the measurement information. The current value data is data indicating the effective value of the current of the power line 4 measured every unit time Ta, for example.
 図8に示す例では、「P11_n」および「I11_n」は、スマートメーター2-11が設置された需要家の時刻t_nにおける電力量データおよび電流値データである。また、「P11_n-1」および「I11_n-1」は、スマートメーター2-11が設置された需要家の時刻t_n-1における電力量データおよび電流値データである。時刻t_n-1は、時刻t_nより1つ前の時刻である。スマートメーター2-12~2-2mの各々が設置された需要家についても同様に、電力量データおよび電流値データが計測情報テーブル22に設定される。 In the example shown in FIG. 8, “P11_n” and “I11_n” are energy data and current value data at the time t_n of the consumer where the smart meter 2-11 is installed. “P11_n−1” and “I11_n−1” are power amount data and current value data at time t_n−1 of the consumer where the smart meter 2-11 is installed. Time t_n−1 is the time one time before time t_n. Similarly, the electric energy data and the current value data are set in the measurement information table 22 for the consumer in which each of the smart meters 2-12 to 2-2m is installed.
 なお、図示していないが、計測情報テーブル22は、デマンドデータ、および高周波データを含む。デマンドデータは、需要家の電気機器8に供給される電力であって単位時間Ta毎に計測される電力の瞬時値である。高周波データは、電力線4に流れる電流または電圧の高周波成分の実効値を示すデータである。計測情報は、計測情報テーブル22のようなテーブル形式ではなく、他の形式で記憶部20に記憶されてもよい。 Although not shown, the measurement information table 22 includes demand data and high frequency data. The demand data is an electric power supplied to the consumer's electric equipment 8 and is an instantaneous value of the electric power measured every unit time Ta. The high frequency data is data indicating the effective value of the high frequency component of the current or voltage flowing through the power line 4. The measurement information may be stored in the storage unit 20 not in a table format such as the measurement information table 22 but in another format.
 また、計測情報テーブル22に設定される計測情報は、検針データとして用いられる情報であり、制御部30により定期収集される情報である。単位時間Taは、後述する収集周期Tcと同じ時間にすることができ、また、収集周期Tcよりも短い時間であってもよい。なお、計測情報テーブル22に設定される計測情報は、検針データとして用いる計測情報の定期収集とは異なる時間で収集される計測情報であってもよい。 Further, the measurement information set in the measurement information table 22 is information used as meter-reading data, and is information collected periodically by the control unit 30. The unit time Ta can be set to the same time as the collection cycle Tc described later, and may be shorter than the collection cycle Tc. The measurement information set in the measurement information table 22 may be measurement information collected at a time different from the regular collection of measurement information used as meter reading data.
 次に、図6に戻って、情報収集装置1の制御部30の説明を行う。制御部30は、スマートメーター2の各々から情報を収集する情報収集部31と、各スマートメーター2の経路情報を生成する経路設定部32と、各スマートメーター2が設置された需要家の負荷状態を監視する負荷状態監視部33と、経路情報テーブルを更新する経路更新部34とを備える。 Next, returning to FIG. 6, the control unit 30 of the information collecting apparatus 1 will be described. The control unit 30 includes an information collection unit 31 that collects information from each of the smart meters 2, a route setting unit 32 that generates route information of each smart meter 2, and a load state of a consumer in which each smart meter 2 is installed. A load state monitoring unit 33 that monitors the route information table, and a route update unit 34 that updates the route information table.
 情報収集部31は、収集周期Tcで定期的に、各スマートメーター2から計測情報を取得するための情報取得メッセージを通信部10から各スマートメーター2へ送信する。情報収集部31は、情報取得メッセージに応答して各スマートメーター2から送信される計測情報を通信部10から取得し、取得した計測情報を記憶部20に記憶して計測情報テーブル22を更新する。 The information collection unit 31 periodically transmits an information acquisition message for acquiring measurement information from each smart meter 2 to each smart meter 2 at the collection cycle Tc. The information collection unit 31 acquires measurement information transmitted from each smart meter 2 in response to the information acquisition message from the communication unit 10, stores the acquired measurement information in the storage unit 20, and updates the measurement information table 22. .
 また、情報収集部31は、スマートメーター2から計測情報とともにS/N比を通信部10が受信した場合、受信されたS/N比を通信部10から取得し、取得したS/N比を記憶部20に記憶して経路候補テーブル23を更新する。また、情報収集部31は、スマートメーター2から計測情報のみを通信部10が受信した場合、計測情報を受信した際に通信部10が算出したS/N比を通信部10から取得し、取得したS/N比を記憶部20に記憶して経路候補テーブル23を更新する。 Further, when the communication unit 10 receives the S / N ratio together with the measurement information from the smart meter 2, the information collection unit 31 acquires the received S / N ratio from the communication unit 10, and acquires the acquired S / N ratio. The route candidate table 23 is updated by storing in the storage unit 20. In addition, when the communication unit 10 receives only measurement information from the smart meter 2, the information collection unit 31 acquires the S / N ratio calculated by the communication unit 10 when receiving the measurement information from the communication unit 10. The S / N ratio is stored in the storage unit 20 and the route candidate table 23 is updated.
 経路候補テーブル23は、各スマートメーター2-11~2-2mから情報収集部31で取得される経路情報およびS/N比に基づいて生成される。情報収集装置1が、各スマートメーター2までの経路情報を取得する方法に制約は無いが、例えば、国際公開第2013/077090号に記載されているように、次のような方法によって経路情報を取得することができる。 The route candidate table 23 is generated based on the route information and S / N ratio acquired by the information collecting unit 31 from each smart meter 2-11 to 2-2m. Although there is no restriction on the method by which the information collection device 1 acquires route information to each smart meter 2, for example, as described in International Publication No. 2013/077700, route information is obtained by the following method. Can be acquired.
 各スマートメーター2は、新規参入時に、新規参入スマートメーターとして、近接探索要求メッセージをブロードキャストする。各スマートメーター2は、近接探索要求メッセージに応答して近接探索応答メッセージを送信した他のスマートメーター2を次ホップのノードとして情報収集装置1へ宛てて、参入要求メッセージを送信する。参入要求メッセージを受信した隣接するスマートメーター2は、保持している経路情報に基づいて参入要求メッセージを情報収集装置1への経路における次ホップのスマートメーター2へ転送する。 Each smart meter 2 broadcasts a proximity search request message as a new entry smart meter at the time of new entry. Each smart meter 2 transmits an entry request message to the information collection device 1 by using another smart meter 2 that has transmitted the proximity search response message in response to the proximity search request message as a next-hop node. The adjacent smart meter 2 that has received the entry request message transfers the entry request message to the next-hop smart meter 2 in the route to the information collection device 1 based on the route information that is held.
 以降、参入要求メッセージを受信したスマートメーター2は保持している経路情報に基づいて参入要求メッセージを情報収集装置1への次ホップのスマートメーター2へ転送する。これにより、参入要求メッセージは情報収集装置1へ到着し、情報収集装置1の情報収集部31は、参入要求メッセージに基づいて新規参入スマートメーターの経路情報を取得することができる。 Thereafter, the smart meter 2 that has received the entry request message transfers the entry request message to the smart meter 2 of the next hop to the information collection device 1 based on the stored route information. Thereby, the entry request message arrives at the information collection device 1, and the information collection unit 31 of the information collection device 1 can acquire the route information of the new entry smart meter based on the entry request message.
 ここで、スマートメーター2-14が新規参入スマートメーターである場合の例を図9~図12を参照して説明する。図9は、近接探索要求メッセージの一例を示す図であり、図10は、近接探索応答メッセージの一例を示す図である。図11および図12は、参入要求メッセージの一例を示す図である。 Here, an example in which the smart meter 2-14 is a newly entered smart meter will be described with reference to FIGS. FIG. 9 is a diagram illustrating an example of a proximity search request message, and FIG. 10 is a diagram illustrating an example of a proximity search response message. 11 and 12 are diagrams illustrating an example of the entry request message.
 スマートメーター2-14は、参加要求を行う要求ノードとして、図9に示す近接探索要求メッセージをブロードキャストする。近接探索要求メッセージを受信した隣接するスマートメーター2-13は、図10に示す近接探索応答メッセージをスマートメーター2-14へ送信する。図10の近接探索応答メッセージは、スマートメーター2-13における近接探索要求メッセージの受信時におけるS/N比と、スマートメーター2-14から情報収集装置1までの経路のホップ数とを含む。 The smart meter 2-14 broadcasts a proximity search request message shown in FIG. 9 as a request node for requesting participation. The adjacent smart meter 2-13 that has received the proximity search request message transmits a proximity search response message shown in FIG. 10 to the smart meter 2-14. The proximity search response message in FIG. 10 includes the S / N ratio when the smart meter 2-13 receives the proximity search request message, and the number of hops of the route from the smart meter 2-14 to the information collection device 1.
 近接探索応答メッセージを受信したスマートメーター2-14は、スマートメーター2-13を送信先として、参入要求メッセージを送信する。参入要求メッセージには、図11に示すように、要求ノードであるスマートメーター2-14のノードIDと、スマートメーター2-13における近接探索要求ッセージの受信時におけるS/N比を含む。 The smart meter 2-14 that has received the proximity search response message transmits an entry request message with the smart meter 2-13 as a transmission destination. As shown in FIG. 11, the entry request message includes the node ID of the requesting smart meter 2-14 and the S / N ratio when the smart meter 2-13 receives a proximity search request message.
 スマートメーター2-13は、スマートメーター2-14から参入要求メッセージを受信すると、図12に示すように、保持している経路情報で規定される経路をソースルートとして加えた参入要求メッセージを次ホップのスマートメーター2-12へ転送する。スマートメーター2-12は、参入要求メッセージに含まれるソースルートまたは保持している経路情報に基づいて、参入要求メッセージを情報収集装置1へ転送する。なお、後述するように、各スマートメーター2に保持される経路情報が前ホップのノードIDのみである場合、ソースルートには、次ホップのノードである情報収集装置1のノードIDは含まれないが、スマートメーター2-12が参入要求メッセージを転送する際に、次ホップのノードのノードIDをソースノードに付加することができる。 When the smart meter 2-13 receives the entry request message from the smart meter 2-14, as shown in FIG. 12, the smart meter 2-13 adds an entry request message including the route specified by the stored route information as a source route to the next hop. To the smart meter 2-12. The smart meter 2-12 transfers the entry request message to the information collection device 1 based on the source route included in the entry request message or the stored route information. As will be described later, when the route information held in each smart meter 2 is only the node ID of the previous hop, the source route does not include the node ID of the information collection device 1 that is the node of the next hop. However, when the smart meter 2-12 transfers the entry request message, the node ID of the next hop node can be added to the source node.
 情報収集部31は、各スマートメーター2から送信され通信部10で受信された参入要求メッセージに含まれる情報に基づいて、記憶部20に記憶される経路候補テーブル23を更新する。図13は、情報収集装置1が参入要求メッセージに基づいて取得した経路情報およびS/N比を含む経路候補テーブル23の一部を一例として示す図である。経路候補テーブル23には、経路の候補である経路候補の情報が設定される。 The information collection unit 31 updates the route candidate table 23 stored in the storage unit 20 based on information included in the entry request message transmitted from each smart meter 2 and received by the communication unit 10. FIG. 13 is a diagram illustrating an example of a part of the route candidate table 23 including the route information acquired by the information collection device 1 based on the entry request message and the S / N ratio. In the route candidate table 23, information on route candidates that are route candidates is set.
 図13に示す経路候補テーブル23は、各スマートメーター2のノードIDに、「次ホップ」、「計測S/N比」、「経路用S/N比」、「ホップ数」、および「経路」が互いに関連付けられた情報である。以下、経路候補テーブル23を説明する際に、便宜上、経路候補テーブル23の「ノードID」にノードIDが設定されたノードを対象ノードと呼ぶ。 The route candidate table 23 illustrated in FIG. 13 includes “next hop”, “measured S / N ratio”, “S / N ratio for route”, “number of hops”, and “route” for the node ID of each smart meter 2. Is information associated with each other. Hereinafter, when the route candidate table 23 is described, for convenience, a node in which the node ID is set in the “node ID” of the route candidate table 23 is referred to as a target node.
 「次ホップ」は、対象ノードから情報収集装置1へ向かう経路における対象ノードの次ホップのスマートメーター2のノードIDである。経路候補テーブル23に示す「ノードID」と「次ホップ」のノードとの組み合わせが経路の候補である経路候補の情報である。「計測S/N比」は、次ホップのスマートメーター2における対象ノードからの信号受信時のS/N比である。「経路用S/N比」は、計測S/N比を元にした経路構築に使用するS/N比であり、「ホップ数」は、経路候補における情報収集装置1までのホップ数である。「経路」は、情報収集装置1までの間で転送を行うスマートメーター2のノードIDを含む。 “Next hop” is the node ID of the smart meter 2 of the next hop of the target node on the route from the target node to the information collection device 1. A combination of the “node ID” and the “next hop” node shown in the route candidate table 23 is route candidate information that is a route candidate. The “measured S / N ratio” is the S / N ratio at the time of signal reception from the target node in the smart meter 2 at the next hop. "Route S / N ratio" is the S / N ratio used for route construction based on the measured S / N ratio, and "Hop number" is the number of hops to the information collection device 1 in the route candidate. . The “route” includes the node ID of the smart meter 2 that performs transfer to the information collection device 1.
 経路候補テーブル23が図13に示す状態である場合、例えば、スマートメーター2-13には、情報収集装置1と直接通信する経路候補と、スマートメーター2-11を経由する経路候補と、スマートメーター2-12を経由する経路候補とが設定されている。なお、図13では、簡略化のためスマートメーター2-11~2-1nのみを記載し、スマートメーター2-21~2-2mについては省略している。 When the route candidate table 23 is in the state shown in FIG. 13, for example, the smart meter 2-13 includes a route candidate that communicates directly with the information collection device 1, a route candidate that passes through the smart meter 2-11, and a smart meter. 2-12 route candidates are set. In FIG. 13, only the smart meters 2-11 to 2-1n are shown for simplification, and the smart meters 2-21 to 2-2m are omitted.
 図6に戻って、制御部30の説明を続ける。制御部30の経路設定部32は、経路候補テーブル23に含まれる各スマートメーター2の経路候補の中から、各スマートメーター2の経路を決定し、決定した経路を示す経路情報を経路情報記憶領域24に記憶する。 Referring back to FIG. 6, the description of the control unit 30 is continued. The route setting unit 32 of the control unit 30 determines the route of each smart meter 2 from the route candidates of each smart meter 2 included in the route candidate table 23, and stores the route information indicating the determined route in the route information storage area. 24.
 情報収集装置1が、各スマートメーター2の経路情報を決定する方法に制約は無いが、例えば、上記特許文献1である特開2015-220657号公報に記載されているような方法、および、S/N比が所定値より大きく、かつホップ数が少ない経路を選択するホップ数優先の経路構築方法などがある。ホップ数優先の経路構築方法では、S/N比が閾値よりも大きい経路のうちホップ数が最小の経路を選択し、ホップ数が最小の経路が複数あれば、S/N比が大きい方の経路を選択する。 Although there is no restriction on the method by which the information collection device 1 determines the route information of each smart meter 2, for example, a method as described in Japanese Patent Application Laid-Open No. 2015-220657, which is Patent Document 1, and S There is a hop number priority route construction method for selecting a route having a / N ratio larger than a predetermined value and a small number of hops. In the route construction method with priority on the number of hops, the route with the smallest hop number is selected from the routes with the S / N ratio larger than the threshold, and if there are a plurality of routes with the smallest hop number, the one with the larger S / N ratio is selected. Select a route.
 図14は、経路設定部32が決定した各スマートメーター2の経路情報の一例を示す図である。図14に示す各スマートメーター2の経路情報は、「ノードID」、「前ホップ」、および「ホップ数」が関連付けられた情報である。「ノードID」には、各スマートメーター2のノードIDが対象ノードのノードIDとして設定される。「前ホップ」は、対象ノードへ向かう経路に含まれるノードのうち対象ノードの1つ手前のノードのノードIDであり、「ホップ数」は、情報収集装置1から対象ノードまでのホップ数である。 FIG. 14 is a diagram illustrating an example of route information of each smart meter 2 determined by the route setting unit 32. The route information of each smart meter 2 shown in FIG. 14 is information in which “node ID”, “previous hop”, and “hop count” are associated with each other. In “Node ID”, the node ID of each smart meter 2 is set as the node ID of the target node. “Previous hop” is the node ID of the node immediately before the target node among the nodes included in the route toward the target node, and “Hop number” is the number of hops from the information collection device 1 to the target node. .
 図14に示す例では、1つのスマートメーター2について1つの表で示しており、ホップ数ごとにスマートメーター2の表を上から並べて表示している。図14の最上段には、ホップ数が1であるスマートメーター2-11,2-12,および2-21の経路情報が示される。図14の2段目には、ホップ数が2であるスマートメーター2-13,2-14,2-22,2-23,および2-24の経路情報が示される。図14の3段目には、ホップ数が3であるスマートメーター2-1n,および2-2mの経路情報が示されている。 In the example shown in FIG. 14, one smart meter 2 is shown in one table, and the smart meter 2 table is displayed side by side for each number of hops. In the uppermost part of FIG. 14, route information of smart meters 2-11, 12-12 and 2-21 having a hop count of 1 is shown. The second row of FIG. 14 shows route information of smart meters 2-13, 2-14, 2-22, 2-23, and 2-24 with a hop count of two. The third row of FIG. 14 shows route information of smart meters 2-1n and 2-2m having a hop count of 3.
 情報収集装置1の制御部30は、スマートメーター2へメッセージを送信する場合には、経路情報記憶領域24に記憶された経路情報に基づいて、宛先であるスマートメーター2への経路をソースルートとして求め、ソースルートをメッセージヘッダに格納する。そして、制御部30は、ソースルートを格納したメッセージを、ソースルートにおける次ホップのスマートメーター2へ送信する。 When transmitting a message to the smart meter 2, the control unit 30 of the information collection device 1 sets a route to the destination smart meter 2 as a source route based on the route information stored in the route information storage area 24. Obtain the source route in the message header. And the control part 30 transmits the message which stored the source route to the smart meter 2 of the next hop in a source route.
 制御部30は、例えば、スマートメーター2-1nにメッセージを送信する場合、図14の3段目の左のスマートメーター2-1nの経路情報を参照して、前ホップのスマートメーター2がスマートメーター2-14であると把握する。さらに、制御部30は、スマートメーター2-14の経路情報を参照して前ホップのスマートメーター2がスマートメーター2-12であると把握し、さらにスマートメーター2-12の経路情報を参照して前ホップのノードがPLCの親機である情報収集装置1であることを把握する。 For example, when transmitting a message to the smart meter 2-1n, the control unit 30 refers to the route information of the left smart meter 2-1n in FIG. 2-14. Further, the control unit 30 refers to the route information of the smart meter 2-14 to grasp that the previous hop smart meter 2 is the smart meter 2-12, and further refers to the route information of the smart meter 2-12. It is understood that the previous hop node is the information collection device 1 which is the master unit of the PLC.
 これにより、制御部30は、スマートメーター2-1nへのソースルートが、スマートメーター2-12、スマートメーター2-14、およびスマートメーター2-1nの順番で転送される経路であることがわかる。したがって、制御部30は、スマートメーター2-1n宛のメッセージにこのソースルートを格納して、次ホップのスマートメーター2-12へ送信する。情報収集装置1からのメッセージを受信したスマートメーター2は、メッセージに格納されたソースルートを参照して、ソースルートに従って宛先のスマートメーター2までの転送を行う。 Thereby, the control unit 30 knows that the source route to the smart meter 2-1n is a route that is transferred in the order of the smart meter 2-12, the smart meter 2-14, and the smart meter 2-1n. Therefore, the control unit 30 stores this source route in the message addressed to the smart meter 2-1n and transmits it to the smart meter 2-12 at the next hop. The smart meter 2 that has received the message from the information collection device 1 refers to the source route stored in the message and performs transfer to the destination smart meter 2 according to the source route.
 なお、新たなスマートメーターである新規参入スマートメーターがPLCネットワークに追加される場合は、情報収集装置1の制御部30は、新規参入スマートメーターから参入要求メッセージを受信すると、ソースルートを格納した参入応答メッセージを新規参入スマートメーターに宛てて送信する。新規参入スマートメーターは、受信した参入応答メッセージにより、情報収集装置1への経路情報を取得して保持する。 When a new entry smart meter, which is a new smart meter, is added to the PLC network, the control unit 30 of the information collection device 1 receives the entry request message from the new entry smart meter, and enters the source route stored. A response message is sent to the new entry smart meter. The new entry smart meter acquires and holds the route information to the information collection device 1 by the received entry response message.
 図15は、各スマートメーター2が保持する経路情報の一例を示す図で、スマートメーター2-13の例を示すものである。本実施の形態では、各スマートメーター2が保持する経路情報を最小化するため、各スマートメーター2が保持する経路情報は、情報収集装置1への次ホップのスマートメーター2のノードIDと情報収集装置1までのホップ数で構成される。このように、各スマートメーター2は、経路情報として情報収集装置1への次ホップのスマートメーター2のノードIDを保持し、他のスマートメーター2への経路情報は保持する必要はない。 FIG. 15 is a diagram showing an example of route information held by each smart meter 2, and shows an example of the smart meter 2-13. In the present embodiment, in order to minimize the route information held by each smart meter 2, the route information held by each smart meter 2 includes the node ID of the next hop smart meter 2 to the information collection device 1 and the information collection. Consists of the number of hops to device 1. Thus, each smart meter 2 holds the node ID of the smart meter 2 of the next hop to the information collection device 1 as route information, and does not need to hold route information to other smart meters 2.
 スマートメーター2は、情報収集装置1宛のメッセージを送信する際には、自装置が保持している経路情報の次ホップのスマートメーター2へ当該メッセージを送信する。スマートメーター2は、他のスマートメーター2から情報収集装置1宛のメッセージを受信すると、自装置の保持する経路情報に記載されている次ホップのスマートメーター2にメッセージを転送する。 When the smart meter 2 transmits a message addressed to the information collection device 1, the smart meter 2 transmits the message to the smart meter 2 of the next hop of the route information held by the own device. When the smart meter 2 receives a message addressed to the information collection device 1 from another smart meter 2, the smart meter 2 transfers the message to the next-hop smart meter 2 described in the route information held by the own device.
 図16は、情報収集装置1が、スマートメーター2-1n宛に送信した情報要求メッセージの一例を示す図である。図16に示すように、データ要求メッセージには、送信元として情報収集装置1のノードIDと、送信先であるスマートメーター2-1nのノードIDと、送信元から送信先までのホップ数と、ソースルートと、メッセージの種別と、ペイロードとが含まれる。 FIG. 16 is a diagram showing an example of an information request message transmitted from the information collecting apparatus 1 to the smart meter 2-1n. As shown in FIG. 16, in the data request message, the node ID of the information collecting apparatus 1 as a transmission source, the node ID of the smart meter 2-1n as the transmission destination, the number of hops from the transmission source to the transmission destination, Source route, message type, and payload are included.
 次に、実施の形態1にかかる自動検針システム100において、情報収集装置1がスマートメーター2から計測情報を収集する動作について、図17を用いて説明する。図17は、実施の形態1にかかる自動検針システム100の動作例を示すUML(Unified Modeling Language)シーケンス図である。 Next, the operation in which the information collection device 1 collects measurement information from the smart meter 2 in the automatic meter reading system 100 according to the first embodiment will be described with reference to FIG. FIG. 17 is a UML (Unified Modeling Language) sequence diagram illustrating an operation example of the automatic meter reading system 100 according to the first embodiment.
 図17に示す例では、スマートメーター2-11~2-2mの各々から情報収集装置1の制御部30が計測情報およびS/N比などの情報を収集し、収集した情報に基づいて経路を再構築する動作の例を示している。情報収集装置1の制御部30は、図17に示したように、スマートメーター2-11~2-2mに対して情報要求メッセージを個別に通信部10から送信し、スマートメーター2-11~2-2mから通信部10を介して計測情報およびS/N比を収集する処理を、収集周期Tcで周期的に実行する。 In the example shown in FIG. 17, the control unit 30 of the information collection device 1 collects information such as measurement information and S / N ratio from each of the smart meters 2-11 to 2-2m, and routes based on the collected information. An example of the rebuilding operation is shown. As shown in FIG. 17, the control unit 30 of the information collecting apparatus 1 individually transmits information request messages from the communication unit 10 to the smart meters 2-11 to 2-2m, and the smart meters 2-11 to 2-2. The process of collecting measurement information and S / N ratio from -2m via the communication unit 10 is periodically executed at the collection cycle Tc.
 具体的には、情報収集装置1の制御部30は、まず、スマートメーター2-11宛の情報要求メッセージを生成して通信部10から送信する(ステップS11)。情報収集装置1から1ホップ目のスマートメーター2-11は、自装置宛の情報要求メッセージを情報収集装置1から直接受信する。スマートメーター2-11は、自装置宛の情報要求メッセージを受信すると、計測情報を情報収集装置1宛に送信する(ステップS12)。 Specifically, the control unit 30 of the information collection device 1 first generates an information request message addressed to the smart meter 2-11 and transmits it from the communication unit 10 (step S11). The smart meter 2-11 at the first hop from the information collecting apparatus 1 directly receives an information request message addressed to itself from the information collecting apparatus 1. When the smart meter 2-11 receives the information request message addressed to itself, it transmits the measurement information to the information collection device 1 (step S12).
 スマートメーター2-11が情報収集装置1宛に送信する計測情報は、スマートメーター2で計測された電力に関する電気情報と、計測を行った時刻を示す計測時刻情報とを含む情報である。電気情報には、上述したように、電力量データ、デマンドデータ、電流値データ、および高周波データなどが含まれる。 The measurement information transmitted by the smart meter 2-11 to the information collecting device 1 is information including electrical information related to the power measured by the smart meter 2 and measurement time information indicating the time when the measurement was performed. As described above, the electrical information includes power amount data, demand data, current value data, high frequency data, and the like.
 情報収集装置1の制御部30は、スマートメーター2-11から通信部10を介して計測情報を受信すると、計測情報を、計測情報の送信元であるスマートメーター2-11のノードIDと関連付けて記憶部20に記憶して計測情報テーブル22を更新する。また、情報収集装置1の情報収集部31は、計測情報とともにS/N比が送信されていたか否かを確認し、S/N比が送信されていない場合、計測情報の受信時にS/N比を算出し、算出したS/N比で図13に示す経路候補テーブル23の計測S/N比を上書きして更新する。情報収集装置1が計測情報の受信時に算出したS/N比は、情報収集装置1とスマートメーター2-11との間の通信品質を示す情報に相当する。 When receiving the measurement information from the smart meter 2-11 via the communication unit 10, the control unit 30 of the information collecting apparatus 1 associates the measurement information with the node ID of the smart meter 2-11 that is the transmission source of the measurement information. The measurement information table 22 is updated by storing in the storage unit 20. In addition, the information collection unit 31 of the information collection device 1 checks whether or not the S / N ratio is transmitted together with the measurement information. If the S / N ratio is not transmitted, the S / N is received when the measurement information is received. The ratio is calculated and updated by overwriting the measured S / N ratio in the route candidate table 23 shown in FIG. 13 with the calculated S / N ratio. The S / N ratio calculated when the information collection device 1 receives the measurement information corresponds to information indicating the communication quality between the information collection device 1 and the smart meter 2-11.
 なお、図17に示した例では、情報収集装置1の制御部30が1ホップ目のスマートメーター2-11から計測情報を収集する場合、S/N比が情報収集装置1に対して送信されてくることはない。そのため、情報収集装置1の制御部30は、計測情報とともにS/N比が送信されていたか否かを確認するのではなく、計測情報の送信元のスマートメーター2が1ホップ目か否かを確認し、送信元が1ホップ目のスマートメーター2の場合には、計測情報の受信時に算出したS/N比で図13に示す経路候補テーブル23の計測S/N比を更新するようにしてもよい。 In the example shown in FIG. 17, when the control unit 30 of the information collection device 1 collects measurement information from the first hop smart meter 2-11, the S / N ratio is transmitted to the information collection device 1. Never come. Therefore, the control unit 30 of the information collection device 1 does not check whether or not the S / N ratio is transmitted together with the measurement information, but determines whether or not the smart meter 2 that is the transmission source of the measurement information is the first hop. If the transmission source is the smart meter 2 of the first hop, the measurement S / N ratio in the route candidate table 23 shown in FIG. 13 is updated with the S / N ratio calculated when the measurement information is received. Also good.
 情報収集装置1の制御部30は、次に、スマートメーター2-12宛の情報要求メッセージを生成して通信部10から送信する(ステップS13)。スマートメーター2-12は、自装置宛の情報要求メッセージを受信すると、計測情報を情報収集装置1宛に送信する(ステップS14)。 Next, the control unit 30 of the information collection device 1 generates an information request message addressed to the smart meter 2-12 and transmits it from the communication unit 10 (step S13). When the smart meter 2-12 receives the information request message addressed to its own device, the smart meter 2-12 transmits the measurement information to the information collecting device 1 (step S14).
 情報収集装置1の制御部30は、スマートメーター2-12から通信部10を介して計測情報を受信すると、計測情報を、計測情報の送信元であるスマートメーター2-12のノードIDと関連付けて記憶して計測情報テーブル22を更新する。また、情報収集装置1の制御部30は、計測情報とともにS/N比が送信されていたか否かを確認し、S/N比が送信されていていない場合、計測情報の受信時にS/N比を算出し、算出したS/N比で図13に示す経路候補テーブル23の計測S/N比を上書きして更新する。情報収集装置1の制御部30は、次に、スマートメーター2-12に対して実行した動作と同様の動作をスマートメーター2-13に対して実行する。 When receiving the measurement information from the smart meter 2-12 via the communication unit 10, the control unit 30 of the information collecting apparatus 1 associates the measurement information with the node ID of the smart meter 2-12 that is the transmission source of the measurement information. Store and update the measurement information table 22. Further, the control unit 30 of the information collecting apparatus 1 checks whether or not the S / N ratio is transmitted together with the measurement information. If the S / N ratio is not transmitted, the S / N is received when the measurement information is received. The ratio is calculated and updated by overwriting the measured S / N ratio in the route candidate table 23 shown in FIG. 13 with the calculated S / N ratio. Next, the control unit 30 of the information collecting apparatus 1 executes the same operation as that performed on the smart meter 2-12 on the smart meter 2-13.
 情報収集装置1の制御部30は、スマートメーター2-13から計測情報を取得する場合、スマートメーター2-13宛の情報要求メッセージを生成して通信部10から送信する(ステップS15)。情報収集装置1から2ホップ目のスマートメーター2-13は、自装置宛の情報要求メッセージを、スマートメーター2-12を介して受信する。スマートメーター2-13は、自装置宛の情報要求メッセージを受信すると、計測情報を情報収集装置1宛に送信する(ステップS16)。スマートメーター2-13が送信した計測情報は、スマートメーター2-12により中継された後、情報収集装置1に到着する。 When acquiring the measurement information from the smart meter 2-13, the control unit 30 of the information collecting apparatus 1 generates an information request message addressed to the smart meter 2-13 and transmits it from the communication unit 10 (step S15). The smart meter 2-13 at the second hop from the information collecting device 1 receives the information request message addressed to the own device via the smart meter 2-12. When the smart meter 2-13 receives the information request message addressed to its own device, the smart meter 2-13 transmits the measurement information to the information collecting device 1 (step S16). The measurement information transmitted by the smart meter 2-13 is relayed by the smart meter 2-12 and then arrives at the information collection device 1.
 スマートメーター2-13が送信した計測情報を最初に転送するスマートメーター2-12、すなわち、スマートメーター2-13の1ホップ上位のスマートメーター2-12は、計測情報を転送する際、計測情報の受信時に算出したS/N比を、中継する計測情報に付加する。計測情報に付加するS/N比は、スマートメーター2-12とスマートメーター2-13との間の通信品質を示す情報に相当する。 The smart meter 2-12 that first transfers the measurement information transmitted by the smart meter 2-13, that is, the smart meter 2-12 that is one hop higher than the smart meter 2-13, transmits the measurement information. The S / N ratio calculated at the time of reception is added to the measurement information to be relayed. The S / N ratio added to the measurement information corresponds to information indicating the communication quality between the smart meter 2-12 and the smart meter 2-13.
 情報収集装置1の制御部30は、スマートメーター2-13から通信部10を介して計測情報を受信すると、計測情報を、計測情報の送信元であるスマートメーター2-13のノードIDと対応付けて記憶する。この場合、情報収集装置1の制御部30は、計測情報とともにS/N比を受信するため、受信したS/N比を、図13に示す経路候補テーブル23における「ノードID」が「N2-13」で「次ホップ」が「N2-12」の経路候補の「計測S/N比」に上書きして更新する。 When receiving the measurement information from the smart meter 2-13 via the communication unit 10, the control unit 30 of the information collection device 1 associates the measurement information with the node ID of the smart meter 2-13 that is the transmission source of the measurement information. And remember. In this case, since the control unit 30 of the information collecting apparatus 1 receives the S / N ratio together with the measurement information, the received S / N ratio is set to “N2-” in the “node ID” in the route candidate table 23 shown in FIG. 13 ”is updated by overwriting the“ measured S / N ratio ”of the route candidate whose“ next hop ”is“ N2-12 ”.
 情報収集装置1の制御部30は、同様の処理を繰り返し、スマートメーター2-2m宛の情報要求メッセージを生成して通信部10から送信する(ステップS17)。そして、情報収集装置1の制御部30は、スマートメーター2-2mから送信された計測情報と、計測情報を最初に中継するスマートメーター2-14で算出されたS/N比とを通信部10を介して受信し(ステップS18)、受信した計測情報およびS/N比と、スマートメーター2-2mのノードIDとを対応付けて記憶部20に記憶し経路候補テーブル23を更新する。 The control unit 30 of the information collection device 1 repeats the same processing, generates an information request message addressed to the smart meter 2-2m, and transmits it from the communication unit 10 (step S17). The control unit 30 of the information collecting apparatus 1 then transmits the measurement information transmitted from the smart meter 2-2m and the S / N ratio calculated by the smart meter 2-14 that relays the measurement information first, to the communication unit 10. (Step S18), the received measurement information and S / N ratio and the node ID of the smart meter 2-2m are stored in the storage unit 20 in association with each other, and the route candidate table 23 is updated.
 情報収集装置1の制御部30は、スマートメーター2-11~2-2mの全てから計測情報を取得すると、収集した各スマートメーター2の計測情報に含まれる電力量データを用いて、負荷増ノード検出処理(ステップS19)および経路再構築処理(ステップS20)を行う。なお、上述したステップS11からステップS18までにおける制御部30の処理は、情報収集部31が実行する処理である。ステップS19の処理は、後述するように、負荷状態監視部33によって実行され、ステップS20の処理は、経路更新部34によって実行される。 When the control unit 30 of the information collection device 1 acquires the measurement information from all of the smart meters 2-11 to 2-2m, it uses the power amount data included in the collected measurement information of each smart meter 2 to use the load increase node A detection process (step S19) and a route reconstruction process (step S20) are performed. In addition, the process of the control part 30 in step S11 to step S18 mentioned above is a process which the information collection part 31 performs. As will be described later, the process of step S19 is executed by the load state monitoring unit 33, and the process of step S20 is executed by the route updating unit 34.
 図18は、図17のステップS19に示す負荷増ノード検出処理の一例を示すフローチャートである。図18に示すように、制御部30の負荷状態監視部33は、一つのノードを選択ノードとして選択する(ステップS21)。負荷状態監視部33は、選択ノードのノードIDに関連付けられた計測情報を選択ノードの計測情報として計測情報テーブル22から取得する(ステップS22)。 FIG. 18 is a flowchart showing an example of the load increase node detection process shown in step S19 of FIG. As shown in FIG. 18, the load state monitoring unit 33 of the control unit 30 selects one node as a selected node (step S21). The load state monitoring unit 33 acquires the measurement information associated with the node ID of the selected node from the measurement information table 22 as the measurement information of the selected node (Step S22).
 負荷状態監視部33は、選択ノードの計測情報に含まれる電力量データが閾値Pth1以上であるか否かを判定する(ステップS23)。負荷状態監視部33は、電力量データが閾値Pth1以上ではないと判定した場合(ステップS23:No)、選択ノードの計測情報に含まれる電力量データの傾きが閾値ΔPth1以上であるか否かを判定する(ステップS24)。電力量データの傾きは、単位時間当りの電力量データの増加率または増加量を示し、例えば、最新の電力量データと前回以前の過去の電力量データとに基づいて求めることができる。 The load state monitoring unit 33 determines whether or not the power amount data included in the measurement information of the selected node is greater than or equal to the threshold value Pth1 (step S23). When the load state monitoring unit 33 determines that the power amount data is not equal to or greater than the threshold value Pth1 (step S23: No), it determines whether the slope of the power amount data included in the measurement information of the selected node is equal to or greater than the threshold value ΔPth1. Determination is made (step S24). The inclination of the power amount data indicates an increase rate or an increase amount of the power amount data per unit time, and can be obtained based on, for example, the latest power amount data and the past power amount data before the previous time.
 負荷状態監視部33は、電力量データが閾値Pth1以上であると判定した場合(ステップS23:Yes)、または電力量データの傾きが閾値ΔPth1以上であると判定した場合(ステップS24:Yes)、負荷の増加によってPLCの通信品質が低下する状態が到来する可能性を精度よく判定するために、ステップS25の処理を行う。負荷状態監視部33は、ステップS25の処理において、選択ノードの計測情報に含まれる電流値データが閾値Ith1以上であるか否かを判定する(ステップS25)。 When the load state monitoring unit 33 determines that the power amount data is equal to or greater than the threshold value Pth1 (step S23: Yes), or when the slope of the power amount data is determined to be equal to or greater than the threshold value ΔPth1 (step S24: Yes), In order to accurately determine the possibility that a state where the communication quality of the PLC deteriorates due to an increase in load will occur, the process of step S25 is performed. The load state monitoring unit 33 determines whether or not the current value data included in the measurement information of the selected node is greater than or equal to the threshold value Ith1 in the process of step S25 (step S25).
 負荷状態監視部33は、電流値データが閾値Ith1以上であると判定した場合(ステップS25:Yes)、選択ノードを負荷増ノードとして記憶部20に記憶する(ステップS26)。負荷増ノードは、PLCにおける通信品質を低下させる大きさのノイズを発生させる負荷状態になる可能性がある需要家のスマートメーター2である。 When it is determined that the current value data is greater than or equal to the threshold value Ith1 (step S25: Yes), the load state monitoring unit 33 stores the selected node in the storage unit 20 as a load increase node (step S26). The load increase node is a smart meter 2 of a consumer who may be in a load state that generates noise having a magnitude that reduces communication quality in the PLC.
 負荷状態監視部33は、ステップS26の処理が終了した場合、電流値データが閾値Ith1以上ではないと判定した場合(ステップS25:No)、または電力量データの傾きが閾値ΔPth1以上ではないと判定した場合(ステップS24:No)、選択ノードとして全ノードが選択されたか否かを判定する(ステップS27)。 The load state monitoring unit 33 determines that the current value data is not equal to or greater than the threshold value Ith1 when the process of step S26 is completed (step S25: No), or that the slope of the power amount data is not equal to or greater than the threshold value ΔPth1. If so (step S24: No), it is determined whether or not all nodes have been selected as selected nodes (step S27).
 負荷状態監視部33は、全ノードが選択ノードとして選択されていないと判定した場合(ステップS27:No)、未選択のノードを選択ノードとして選択し(ステップS28)、処理をステップS22へ移行する。また、負荷状態監視部33は、全ノードが選択されたと判定した場合(ステップS27:Yes)、図18に示す処理を終了する。 When the load state monitoring unit 33 determines that all the nodes are not selected as the selected nodes (step S27: No), the unselected node is selected as the selected node (step S28), and the process proceeds to step S22. . Further, when it is determined that all nodes have been selected (step S27: Yes), the load state monitoring unit 33 ends the process illustrated in FIG.
 負荷状態監視部33は、電力量データが閾値Pth1以上または電力量データの傾きが閾値ΔPth1以上であり且つ電流値データが閾値Ith1以上であることを上述した経路更新条件とし、かかる経路更新条件を満たす需要家のノードを負荷増ノードとして扱うが、経路更新条件は、上述した例に限定されない。すなわち、経路更新条件は、PLCにおける通信品質を低下させる大きさのノイズが発生する状態の前段階の状態を検出できるように、電力量データ、電流値データ、およびデマンドデータの少なくとも一つの条件を含むものであればよい。また、経路更新条件は、さらに高周波データの条件を付加した条件であってもよい。 The load state monitoring unit 33 uses the path update condition described above that the power amount data is greater than or equal to the threshold value Pth1 or the slope of the power amount data is greater than or equal to the threshold value ΔPth1 and the current value data is greater than or equal to the threshold value Ith1. The satisfying customer node is treated as a load increase node, but the route update condition is not limited to the above-described example. That is, the route update condition is at least one of the power amount data, the current value data, and the demand data so that the state in the previous stage of the state in which noise of a magnitude that degrades the communication quality in the PLC is generated can be detected. It only has to be included. Further, the route update condition may be a condition in which a condition for high-frequency data is further added.
 例えば、負荷状態監視部33は、電流値データの傾きが閾値ΔIth1より大きな閾値ΔIth2以上であることを経路更新条件としたり、電力量データの傾きが閾値ΔPth1より大きな閾値ΔPth2以上であることを経路更新条件としたりすることができる。電流値データの傾きは、単位時間当りの電流値データの増加率または増加量を示し、例えば、最新の電流値データと前回以前の過去の電流値データとに基づいて求めることができる。また、負荷状態監視部33は、電力量データの変動パターンおよび電流値データの変動パターンなどが予め設定された変動パターンであることを経路更新条件とすることもできる。 For example, the load state monitoring unit 33 uses a path update condition that the slope of the current value data is greater than or equal to a threshold value ΔIth2 greater than the threshold value ΔIth1, or indicates that the slope of the power amount data is greater than or equal to a threshold value ΔPth2 greater than the threshold value ΔPth1 Update conditions. The slope of the current value data indicates an increase rate or an increase amount of the current value data per unit time, and can be obtained based on, for example, the latest current value data and past current value data before the previous time. Further, the load state monitoring unit 33 can also set the path update condition that the fluctuation pattern of the electric energy data, the fluctuation pattern of the current value data, and the like are preset fluctuation patterns.
 計測情報を収集する周期である収集周期Tcは短いほど、電力量データの変動および電流値データの変動を高い分解能で解析することができる。そのため、情報収集部31は、上述した経路更新条件よりも緩い条件である周期変更条件を満たす場合に、収集周期Tcを短くすることができる。これにより、負荷増ノードの検出精度を向上させることができる。 As the collection period Tc, which is a period for collecting measurement information, is shorter, fluctuations in the electric energy data and fluctuations in the current value data can be analyzed with higher resolution. Therefore, the information collection unit 31 can shorten the collection period Tc when the period change condition that is a condition looser than the above-described path update condition is satisfied. Thereby, the detection accuracy of a load increase node can be improved.
 図19は、制御部30による収集周期変更処理の一例を示すフローチャートである。図19に示すように、制御部30の情報収集部31は、需要家における負荷の状態が周期変更条件を満たすか否かを判定する(ステップS31)。情報収集部31は、例えば、電力量データが閾値Pth1,Pth2より小さい閾値Pth3以上、または電流値データが閾値Ith1,Ith2より小さい閾値Ith3以上である場合に周期変更条件を満たすと判定することができる。 FIG. 19 is a flowchart showing an example of the collection cycle changing process by the control unit 30. As illustrated in FIG. 19, the information collection unit 31 of the control unit 30 determines whether or not the state of the load on the consumer satisfies the cycle change condition (step S31). For example, the information collection unit 31 determines that the period change condition is satisfied when the power amount data is equal to or greater than the threshold value Pth3 smaller than the threshold values Pth1 and Pth2, or the current value data is equal to or greater than the threshold value Ith3 smaller than the threshold values Ith1 and Ith2. it can.
 周期変更条件は、上述した例に限定されない。すなわち、周期変更条件は、負荷の状態が、経路変更条件で検出しようとする状態の前段階の状態を検出することができるように、電力量データ、電流値データ、およびデマンドデータの少なくとも一つの条件を含むものであればよい。 Cycle change condition is not limited to the above-mentioned example. That is, the cycle change condition is such that at least one of the electric energy data, the current value data, and the demand data is detected so that the state of the load can be detected in the previous stage of the state to be detected by the path change condition. What is necessary is just to include conditions.
 需要家における負荷の状態が周期変更条件を満たさないと判定した場合(ステップS31:No)、収集周期Tcを周期T1に設定する(ステップS32)。周期T1は、例えば、30分である。また、需要家における負荷の状態が周期変更条件を満たすと判定した場合(ステップS31:Yes)、収集周期Tcを周期T2に設定する(ステップS33)。周期T2は、周期T1よりも短い周期であり、例えば、1分である。 When it is determined that the load state at the customer does not satisfy the cycle changing condition (step S31: No), the collection cycle Tc is set to the cycle T1 (step S32). The period T1 is, for example, 30 minutes. Moreover, when it determines with the state of the load in a consumer satisfying a period change condition (step S31: Yes), the collection period Tc is set to the period T2 (step S33). The period T2 is a period shorter than the period T1, for example, 1 minute.
 ステップS32の処理またはステップS33の処理が終了した場合、図19に示す収集周期変更処理を終了する。情報収集部31は、上述した収集周期変更処理を需要家毎に行うことができる。これにより、スマートメーター2毎に計測情報の収集周期Tcを変更することができる。また、上述した収集周期変更処理では、収集周期Tcを周期T1と周期T2とで切り替えるが、電力量データが大きくなるほど段階的または連続的に収集周期Tcが短くなるように収集周期Tcを変更してもよく、電流値データが大きくなるほど段階的または連続的に短い周期を収集周期Tcにしてもよい。 When the process of step S32 or the process of step S33 is completed, the collection cycle changing process shown in FIG. 19 is terminated. The information collection unit 31 can perform the collection cycle changing process described above for each customer. As a result, the measurement information collection cycle Tc can be changed for each smart meter 2. In the above-described collection cycle changing process, the collection cycle Tc is switched between the cycle T1 and the cycle T2. However, the collection cycle Tc is changed so that the collection cycle Tc is shortened stepwise or continuously as the power amount data increases. Alternatively, the collection cycle Tc may be a short cycle stepwise or continuously as the current value data increases.
 なお、上述した経路更新条件および周期変更条件は、スマートメーター2毎に変更することができる。負荷状態監視部33は、記憶部20に記憶された過去の計測情報に基づき、各需要家の負荷の変動パターンを判定し、判定した負荷の変動パターンに基づいて、経路更新条件および周期変更条件を需要家毎に設定することができる。また、負荷状態監視部33は、スマートメーター2の種類毎に、経路更新条件および周期変更条件を設定することもできる。このように、需要家毎またはスマートメーター2の種類毎に経路更新条件および周期変更条件を異ならせることで、負荷増ノードをより精度よく判定することができる。 Note that the above-described route update condition and cycle change condition can be changed for each smart meter 2. The load state monitoring unit 33 determines the load variation pattern of each consumer based on the past measurement information stored in the storage unit 20, and the route update condition and the period change condition based on the determined load variation pattern. Can be set for each consumer. The load state monitoring unit 33 can also set a route update condition and a period change condition for each type of smart meter 2. In this way, by changing the route update condition and the period change condition for each customer or for each type of smart meter 2, the load increase node can be determined with higher accuracy.
 また、負荷状態監視部33は、記憶部20に記憶された計測情報に基づき、各需要家の将来の負荷状態を予測することができる。例えば、負荷状態監視部33は、各需要家において使用電力量が短時間に大きく増加する時間帯などのようにPLCにおける通信品質を低下させる大きさのノイズが発生する時間帯を予測することもできる。なお、負荷状態監視部33は、収集周期Tcが周期T2である場合に収集された計測情報に基づき上述した時間帯を予測することにより、かかる予測精度を向上させることができる。負荷状態監視部33は、予測した時間帯までの時間が予め設定した範囲内である需要家に設置されたスマートメーター2を負荷増ノードとして判定することができる。 Moreover, the load state monitoring unit 33 can predict the future load state of each customer based on the measurement information stored in the storage unit 20. For example, the load state monitoring unit 33 may predict a time period in which noise of a magnitude that degrades the communication quality in the PLC occurs, such as a time period in which the amount of power used increases greatly in a short time in each consumer. it can. Note that the load state monitoring unit 33 can improve the prediction accuracy by predicting the above-described time zone based on the measurement information collected when the collection cycle Tc is the cycle T2. The load state monitoring unit 33 can determine, as a load increase node, the smart meter 2 installed in a consumer whose time until the predicted time zone is within a preset range.
 次に、図17に示すステップS20の経路再構築処理について説明する。図20は、制御部30が実行する経路再構築処理の一例を示すフローチャートである。制御部30の経路更新部34は、図20に示すように、全ノードの中に負荷増ノードがあるか否かを判定する(ステップS40)。 Next, the route reconstruction process in step S20 shown in FIG. 17 will be described. FIG. 20 is a flowchart illustrating an example of a route reconstruction process executed by the control unit 30. As shown in FIG. 20, the route update unit 34 of the control unit 30 determines whether or not there is a load increase node among all the nodes (step S40).
 経路更新部34は、負荷増ノードがあると判定した場合(ステップS40:Yes)、S/N比優先の経路再構築を行い(ステップS41)、負荷増ノードがないと判定した場合(ステップS40:No)、ホップ数優先の経路再構築処理を行う(ステップS42)。 When it is determined that there is a load increasing node (step S40: Yes), the route update unit 34 performs route reconstruction with priority to the S / N ratio (step S41), and when it is determined that there is no load increasing node (step S40). : No), a route reconstruction process with priority on the number of hops is performed (step S42).
 図21は、S/N比優先の経路再構築処理の一例を示すフローチャートである。図21に示すように、経路更新部34は、負荷増ノードのバイパス経路テーブルを作成するバイパス経路作成処理を行う(ステップS51)。ステップS51のバイパス経路作成処理は、図22に示すステップS61~S66の処理であり、後述する。 FIG. 21 is a flowchart showing an example of the route reconstruction process with priority on the S / N ratio. As illustrated in FIG. 21, the route update unit 34 performs a bypass route creation process for creating a bypass route table of the load increase node (step S <b> 51). The bypass route creation process in step S51 is the process in steps S61 to S66 shown in FIG. 22, and will be described later.
 次に、経路更新部34は、経路候補テーブル23のうち負荷増ノードのバイパス経路とノードIDの組み合わせが一致する経路候補に関連付けられた経路用S/N比を変更するS/N比変更処理を行う(ステップS52)。ステップS52のS/N比変更処理は、図24に示すステップS71~S75の処理であり、後述する。 Next, the route update unit 34 changes the S / N ratio change processing for changing the route S / N ratio associated with the route candidate in which the combination of the bypass route of the load increasing node and the node ID matches in the route candidate table 23. Is performed (step S52). The S / N ratio changing process in step S52 is the process in steps S71 to S75 shown in FIG. 24 and will be described later.
 次に、経路更新部34は、S/N比変更処理を施した経路候補テーブル23に基づいて、経路の再構築を行う経路再構築処理を行う(ステップS53)。ステップS53の経路再構築処理は、図26に示すステップS81~S88の処理であり、後述する。 Next, the route updating unit 34 performs route rebuilding processing for rebuilding a route based on the route candidate table 23 subjected to the S / N ratio change processing (step S53). The route reconstruction process in step S53 is the process in steps S81 to S88 shown in FIG. 26 and will be described later.
 図20に示すステップS42のホップ数優先の経路再構築処理は、経路更新部34によって行われる。ホップ数優先の経路再構築処理は、S/N比優先の経路再構築処理のうちステップS51,S52の処理を行わない状態で、ステップS53の処理を行う処理である。 20 is performed by the route updating unit 34. The route rebuilding processing with priority on the number of hops in step S42 shown in FIG. The route rebuilding process with priority on the number of hops is a process of performing the process of step S53 without performing the processes of steps S51 and S52 in the route rebuilding process with priority on the S / N ratio.
 図22は、図21に示すステップS51における負荷増ノードのバイパス経路テーブル作成処理の一例を示すフローチャートである。図22に示すように、経路更新部34は、一つの負荷増ノードのノードIDを記憶部20から取得する(ステップS61)。 FIG. 22 is a flowchart showing an example of the bypass route table creation process of the load increase node in step S51 shown in FIG. As illustrated in FIG. 22, the path update unit 34 acquires the node ID of one load increase node from the storage unit 20 (step S61).
 次に、経路更新部34は、物理配置テーブル21から負荷増ノードの上位側ノードのノードIDを抽出する(ステップS62)。上位側ノードとは、電力線3の接続位置が情報収集装置1側で隣接するノードである。物理配置テーブル21が図7に示す状態であり、かつ、負荷増ノードがノードID「N2-13」のノードである場合、負荷増ノードの上位側ノードは、ノードID「N2-12」のノードである。 Next, the path update unit 34 extracts the node ID of the higher-order node of the load increase node from the physical arrangement table 21 (Step S62). The higher-order node is a node where the connection position of the power line 3 is adjacent on the information collecting apparatus 1 side. When the physical arrangement table 21 is in the state shown in FIG. 7 and the load increase node is a node with the node ID “N2-13”, the upper node of the load increase node is the node with the node ID “N2-12”. It is.
 次に、経路更新部34は、物理配置テーブル21から負荷増ノードの下位側ノードのノードIDを抽出する(ステップS63)。下位側ノードとは、電力線3の接続位置が情報収集装置1と反対側で隣接するノードである。物理配置テーブル21が図7に示す状態であり、かつ、ノードID「N2-13」のノードである場合、負荷増ノードの下位側ノードは、ノードID「N2-14」のノードである。 Next, the path update unit 34 extracts the node ID of the lower node of the load increase node from the physical arrangement table 21 (step S63). The lower side node is a node where the connection position of the power line 3 is adjacent to the information collecting apparatus 1 on the opposite side. When the physical arrangement table 21 is in the state shown in FIG. 7 and the node has the node ID “N2-13”, the lower node of the load increase node is the node with the node ID “N2-14”.
 次に、経路更新部34は、上位側ノードと下位側ノードとを関連付けたバイパス経路を負荷増ノードのバイパス経路として負荷増ノードのバイパス経路テーブルに設定する(ステップS64)。経路更新部34は、全ての負荷増ノードについてステップS62~S64の処理を終了したか否かを判定する(ステップS65)。経路更新部34は、全ての負荷増ノードについてステップS62~S64の処理を終了していないと判定した場合(ステップS65:No)、ステップS62~S64の処理を行っていない次の負荷増ノードのノードIDを記憶部20から取得し(ステップS66)、ステップS62~S64の処理を実行する。 Next, the route update unit 34 sets the bypass route in which the upper node and the lower node are associated with each other as the bypass route of the load increasing node in the bypass route table of the load increasing node (step S64). The path updating unit 34 determines whether or not the processing of steps S62 to S64 has been completed for all load increasing nodes (step S65). When it is determined that the processing of steps S62 to S64 has not been completed for all load increasing nodes (step S65: No), the route updating unit 34 determines the next load increasing node that has not performed the processing of steps S62 to S64. The node ID is acquired from the storage unit 20 (step S66), and the processes of steps S62 to S64 are executed.
 経路更新部34は、全ての負荷増ノードについてステップS62~S64の処理を終了したと判定した場合(ステップS65:Yes)、図22の処理を終了する。これにより、全ての負荷増ノードのバイパス経路が負荷増ノードのバイパス経路テーブルに設定され、負荷増ノードのバイパス経路テーブルが完成する。負荷増ノードのバイパス経路テーブルは、経路更新部34により記憶部20に記憶される。 When the route update unit 34 determines that the processing of steps S62 to S64 has been completed for all load increase nodes (step S65: Yes), the processing of FIG. As a result, the bypass paths of all the load increase nodes are set in the bypass path table of the load increase node, and the bypass path table of the load increase node is completed. The bypass route table of the load increase node is stored in the storage unit 20 by the route update unit 34.
 図23は、負荷増ノードのバイパス経路テーブルの一例を示す図である。図23に示すバイパス経路テーブル25は、各負荷増ノードのバイパス経路の情報を含む。負荷増ノードのバイパス経路は、上位側ノードのノードIDと下位側ノードのノードIDとの組み合わせで示されており、負荷増ノードのバイパス経路テーブルにおいて、「第1ノード」は、上位側ノードのノードIDであり、「第2ノード」は下位側ノードのノードIDである。 FIG. 23 is a diagram illustrating an example of the bypass route table of the load increase node. The bypass route table 25 illustrated in FIG. 23 includes information on the bypass route of each load increasing node. The bypass path of the load increase node is indicated by a combination of the node ID of the upper node and the node ID of the lower node. In the bypass path table of the load increase node, the “first node” is the upper node It is the node ID, and “second node” is the node ID of the lower node.
 図23に示すバイパス経路テーブル25は、負荷増ノードのノードIDが「N2-11」と「N2-13」である場合の例を示している。すなわち、ノードID「N2-11」の負荷増ノードのバイパス経路として、負荷増ノードの上位側ノードのノードID「N1」と負荷増ノードの下位側ノードのノードID「N2-12」との組み合わせがバイパス経路テーブル25に設定される。また、ノードID「N2-13」の負荷増ノードのバイパス経路として、負荷増ノードの上位側ノードのノードID「N2-12」と負荷増ノードの下位側ノードのノードID「N2-14」との組み合わせがバイパス経路テーブル25に設定される。 The bypass route table 25 shown in FIG. 23 shows an example when the node IDs of the load increase nodes are “N2-11” and “N2-13”. That is, a combination of the node ID “N1” of the upper node of the load increasing node and the node ID “N2-12” of the lower node of the load increasing node as a bypass path of the load increasing node of the node ID “N2-11” Is set in the bypass route table 25. Further, as a bypass path of the load increasing node with the node ID “N2-13”, the node ID “N2-12” of the upper node of the load increasing node and the node ID “N2-14” of the lower node of the load increasing node Are set in the bypass route table 25.
 図24は、図21のステップS52のS/N比変更処理の一例を示すフローチャートである。図24に示すように、経路更新部34は、一つのノードIDを選択ノードIDとして選択する(ステップS71)。経路更新部34は、選択されているノードIDの経路候補と一致するノードIDの組み合わせのバイパス経路があるか否かを判定する(ステップS72)。 FIG. 24 is a flowchart showing an example of the S / N ratio change process in step S52 of FIG. As illustrated in FIG. 24, the route update unit 34 selects one node ID as a selected node ID (step S71). The path updating unit 34 determines whether there is a bypass path having a combination of node IDs that matches the path candidate of the selected node ID (step S72).
 ステップS72において、経路更新部34は、経路候補テーブル23において、選択ノードIDと一致する「ノードID」の経路候補が、バイパス経路テーブル25に設定されたバイパス経路として設定されているか否かを判定する。 In step S <b> 72, the route update unit 34 determines whether or not the route candidate of “node ID” that matches the selected node ID is set as the bypass route set in the bypass route table 25 in the route candidate table 23. To do.
 例えば、選択ノードIDが「N2-12」であり、経路候補テーブル23が図13に示す状態であり、バイパス経路テーブル25が図23に示す状態であるとする。この場合、経路候補テーブル23には、選択ノードIDが「N2-12」の経路候補として、ノードID「N2-12」とノードID「N1」の組み合わせと、ノードID「N2-12」とノードID「N2-11」の組み合わせとが含まれる。そして、バイパス経路テーブル25には、バイパス経路として、ノードID「N2-12」とノードID「N1」の組み合わせ含まれる。したがって、この場合、経路更新部34は、選択されているノードIDの経路候補と一致するノードIDの組み合わせのバイパス経路があると判定する。 For example, assume that the selected node ID is “N2-12”, the route candidate table 23 is in the state shown in FIG. 13, and the bypass route table 25 is in the state shown in FIG. In this case, the route candidate table 23 includes a combination of the node ID “N2-12” and the node ID “N1”, the node ID “N2-12”, and the node as the route candidates with the selected node ID “N2-12”. The combination of ID “N2-11” is included. The bypass route table 25 includes a combination of the node ID “N2-12” and the node ID “N1” as the bypass route. Therefore, in this case, the path update unit 34 determines that there is a bypass path having a combination of node IDs that matches the path candidate of the selected node ID.
 経路更新部34は、選択されているノードIDの経路候補と一致するノードIDの組み合わせのバイパス経路があると判定した場合(ステップS72:Yes)、選択されているノードIDのバイパス経路と同じノードIDの組み合わせの経路候補に関連付けられた経路用S/N比を所定値Vsnだけ下げる(ステップS73)。 When the path update unit 34 determines that there is a bypass path having a combination of node IDs that matches the path candidate of the selected node ID (step S72: Yes), the same node as the bypass path of the selected node ID The route S / N ratio associated with the ID combination route candidate is lowered by the predetermined value Vsn (step S73).
 経路更新部34は、ステップS73の処理が終了した場合、または、選択されているノードIDの経路候補と一致するノードIDの組み合わせのバイパス経路がないと判定した場合(ステップS72:No)、全てのノードIDについてステップS72の処理を終了したか否かを判定する(ステップS74)。経路更新部34は、全てのノードIDについてステップS72の処理を終了していないと判定した場合(ステップS74:No)、ステップS72の処理を行っていないノ次のードIDを選択して(ステップS75)、処理をステップS72へ移行する。 When the process of step S73 ends, or when the path update unit 34 determines that there is no bypass path with a combination of node IDs that matches the path candidate of the selected node ID (step S72: No), all It is determined whether or not the processing of step S72 is completed for the node ID (step S74). When it is determined that the process of step S72 has not been completed for all node IDs (step S74: No), the route update unit 34 selects a node ID that has not been subjected to the process of step S72 ( Step S75), the process proceeds to step S72.
 経路更新部34は、全てのノードIDについてステップS72の処理を終了したと判定した場合(ステップS74:Yes)、図24の処理を終了する。これにより、経路候補テーブル23の経路候補のうち各負荷増ノードのバイパス経路と同じノードIDの組み合わせの経路候補に関連付けられた経路用S/N比が所定値Vsnだけ下げられる。 If the route update unit 34 determines that the process of step S72 has been completed for all node IDs (step S74: Yes), the process of FIG. As a result, the S / N ratio for the route associated with the route candidate having the same node ID combination as the bypass route of each load increasing node among the route candidates in the route candidate table 23 is lowered by the predetermined value Vsn.
 ここで、経路候補テーブル23が図13に示す状態であり、バイパス経路テーブル25が図23に示す状態であるとする。この場合、ノードID「N1」とノードID「N2-12」との組み合わせの経路候補とノードID「N2-12」とノードID「N2-14」との組み合わせの経路候補とに各々関連付けられた経路用S/N比が所定値Vsnだけ下げられる。 Here, it is assumed that the route candidate table 23 is in the state shown in FIG. 13 and the bypass route table 25 is in the state shown in FIG. In this case, the path candidate of the combination of the node ID “N1” and the node ID “N2-12” and the path candidate of the combination of the node ID “N2-12” and the node ID “N2-14” are associated with each other. The route S / N ratio is lowered by a predetermined value Vsn.
 Vsn=30と仮定した場合、経路候補テーブル23は、図13に示す状態から図25に示す状態になる。図25は、経路用S/N比が変更された場合の経路候補テーブル23の一例を示す図である。図25に示す例では、ノードID「N2-12」とノードID「N1」との組み合わせの経路候補の経路用S/N比が「75」から「45」へ変更され、ノードID「N2-14」とノードID「N2-12」との組み合わせの経路候補の経路用S/N比が「76」から「46」へ変更されている。 Assuming that Vsn = 30, the route candidate table 23 changes from the state shown in FIG. 13 to the state shown in FIG. FIG. 25 is a diagram illustrating an example of the route candidate table 23 when the route S / N ratio is changed. In the example shown in FIG. 25, the route S / N ratio of the route candidate of the combination of the node ID “N2-12” and the node ID “N1” is changed from “75” to “45”, and the node ID “N2- The S / N ratio for the route candidate of the combination of “14” and the node ID “N2-12” is changed from “76” to “46”.
 図26は、図21のステップS53の経路再構築処理の一例を示すフローチャートである。図26に示すように、経路更新部34は、一つのノードIDを対象ノードとして選択する(ステップS81)。経路更新部34は、経路候補テーブル23における対象ノードの経路候補の中から経路用S/N比が閾値Vthより大きい1以上の経路候補を抽出する(ステップS82)。 FIG. 26 is a flowchart showing an example of the route reconstruction process in step S53 of FIG. As shown in FIG. 26, the route updating unit 34 selects one node ID as a target node (step S81). The route update unit 34 extracts one or more route candidates whose route S / N ratio is greater than the threshold value Vth from the route candidates of the target node in the route candidate table 23 (step S82).
 次に、経路更新部34は、ステップS82で抽出した1以上の経路候補のうちホップ数が最小の経路候補を抽出する(ステップS83)。経路更新部34は、ステップS83で抽出した経路候補の数が1つであるか否かを判定する(ステップS84)。経路更新部34は、ステップS83で抽出した経路候補の数が1つであると判定した場合(ステップS84:Yes)、抽出した経路候補を対象ノードの経路に設定する経路設定処理を行う(ステップS85)。 Next, the route update unit 34 extracts a route candidate having the smallest number of hops from the one or more route candidates extracted in step S82 (step S83). The route update unit 34 determines whether or not the number of route candidates extracted in step S83 is one (step S84). If the route update unit 34 determines that the number of route candidates extracted in step S83 is one (step S84: Yes), the route update unit 34 performs route setting processing for setting the extracted route candidate as the route of the target node (step S84). S85).
 経路更新部34は、ステップS83で抽出した経路候補の数が1つではないと判定した場合(ステップS84:No)、ステップS83で抽出した複数の経路候補のうち経路用S/N比が最大の経路候補を対象ノードの経路に設定する経路設定処理を行う(ステップS86)。経路更新部34は、ステップS85の処理が終了した場合、またはステップS86の処理が終了した場合、全てのノードについて経路設定処理を終了したか否かを判定する(ステップS87)。 When the route update unit 34 determines that the number of route candidates extracted in step S83 is not one (step S84: No), the route S / N ratio is the largest among the plurality of route candidates extracted in step S83. A route setting process for setting the route candidate of the target node as the route of the target node is performed (step S86). When the process of step S85 is completed or when the process of step S86 is completed, the path update unit 34 determines whether the path setting process has been completed for all the nodes (step S87).
 経路更新部34は、全てのノードについて経路設定処理を終了していないと判定した場合(ステップS87:No)、経路設定処理を行っていない次のノードを対象ノードとして選択して(ステップS88)、処理をステップS82へ移行する。経路更新部34は、全てのノードについて経路設定処理を終了したと判定した場合(ステップS87:Yes)、図26の処理を終了する。 When it is determined that the route setting process has not been completed for all nodes (step S87: No), the route update unit 34 selects the next node that has not been subjected to the route setting process as a target node (step S88). Then, the process proceeds to step S82. If the path update unit 34 determines that the path setting process has been completed for all nodes (step S87: Yes), the process of FIG. 26 ends.
 以上の処理により、負荷増ノードをバイパスする経路の経路用S/N比が低減された状態で経路が再構築されることから、負荷増ノードをバイパスしないで負荷増ノードを経由した経路が設定されるようになる。したがって、負荷増ノードが設置された需要家の電力線4から電力線3へ乗るノイズが大きくなってPLCにおける通信環境が悪化したとしても、負荷増ノードをバイパスしないで負荷増ノードで中継されることとなり、PLCにおける通信品質が低下することを抑制することができる。 By the above processing, the route is reconstructed with the route S / N ratio of the route bypassing the load increase node being reduced, so the route via the load increase node is set without bypassing the load increase node. Will come to be. Therefore, even if the noise that travels from the power line 4 to the power line 3 of the customer where the load increase node is installed increases and the communication environment in the PLC deteriorates, the load increase node is relayed without bypassing the load increase node. Therefore, it is possible to suppress a decrease in communication quality in the PLC.
 ここで、負荷増ノードのノードIDが「N2-13」であり、経路候補テーブル23が図13に示す状態から図25に示す状態に変更された経路候補テーブル23が図21のステップS53の処理で用いられる場合を説明する。また、Vth=50であるとする。 Here, the node ID of the load increase node is “N2-13”, and the route candidate table 23 in which the route candidate table 23 is changed from the state shown in FIG. 13 to the state shown in FIG. 25 is processed in step S53 of FIG. The case where it is used in will be described. Further, it is assumed that Vth = 50.
 まず、ノードID「N2-12」のノードの経路の設定について説明する。ノードID「N2-12」のノードの経路候補は、図25に示すように、ノードID「N2-12」とノードID「N1」の組み合わせの第1の経路候補と、ノードID「N2-12」とノードID「N2-11」の組み合わせの第2の経路候補の2つである。 First, the setting of the route of the node with the node ID “N2-12” will be described. As shown in FIG. 25, the route candidate of the node with the node ID “N2-12” is the first route candidate of the combination of the node ID “N2-12” and the node ID “N1”, and the node ID “N2-12”. ”And node ID“ N2-11 ”are two second route candidates.
 第1の経路候補の経路用S/N比は、「45」であり、閾値Vthよりも小さい。第2の経路候補の経路用S/N比は、「80」であり、閾値Vth以上である。したがって、経路更新部34は、第2の経路候補をノードID「N2-12」のノードの経路として設定する。ノードID「N2-12」のノードが送信元になったデータは、ノードID「N2-11」のノードへ送信され、ノードID「N2-11」のノードから情報収集装置1へ転送される。 The S / N ratio for the route of the first route candidate is “45”, which is smaller than the threshold value Vth. The S / N ratio for the route of the second route candidate is “80”, which is equal to or greater than the threshold value Vth. Therefore, the route update unit 34 sets the second route candidate as the route of the node having the node ID “N2-12”. The data whose source is the node with the node ID “N2-12” is transmitted to the node with the node ID “N2-11”, and transferred from the node with the node ID “N2-11” to the information collecting apparatus 1.
 図24に示す処理を行わない場合には、ノードID「N2-12」のノードにおける第1の経路候補の経路用S/N比は計測S/N比と同一の「75」であり、閾値Vth以上である。そのため、ホップ数が少ない第1の経路候補がノードID「N2-12」のノードの経路として設定される。したがって、ノードID「N2-12」のノードが送信元になったデータは、ノードID「N2-11」のノードを介すことなく、情報収集装置1へ直接転送される。 When the processing shown in FIG. 24 is not performed, the S / N ratio for the route of the first route candidate in the node with the node ID “N2-12” is “75”, which is the same as the measured S / N ratio, and the threshold value Vth or higher. For this reason, the first route candidate having a small number of hops is set as the route of the node having the node ID “N2-12”. Therefore, the data whose source is the node with the node ID “N2-12” is directly transferred to the information collecting apparatus 1 without going through the node with the node ID “N2-11”.
 このように、上述したS/N比優先経路への変更処理を行うことで、負荷増ノードであるノードID「N2-11」のノードをバイパスしないで、ノードID「N2-11」のノードを経由した経路が選択されるようになる。 In this way, by performing the above-described change processing to the S / N ratio priority route, the node with the node ID “N2-11” is not bypassed without bypassing the node with the node ID “N2-11” that is the load increase node. The route that has passed is selected.
 次に、ノードID「N2-14」のノードの経路の設定について説明する。ノードID「N2-14」のノードの経路候補は、図25に示すように、ノードID「N2-14」とノードID「N2-11」の組み合わせの第1の経路候補、ノードID「N2-14」とノードID「N2-12」の組み合わせの第2の経路候補、ノードID「N2-14」とノードID「N2-13」の組み合わせの第3の経路候補の3つである。 Next, the setting of the route of the node with the node ID “N2-14” will be described. As shown in FIG. 25, the route candidate of the node with the node ID “N2-14” is the first route candidate of the combination of the node ID “N2-14” and the node ID “N2-11”, and the node ID “N2- 14 ”and the node ID“ N2-12 ”combination of the second route candidate, and the node ID“ N2-14 ”and node ID“ N2-13 ”combination of the third route candidate.
 第1の経路候補の経路用S/N比は、「20」であり、閾値Vthよりも小さく、第2の経路候補の経路用S/N比は、「46」であり、閾値Vthよりも小さいが、第3の経路候補の経路用S/N比は、「75」であり、閾値Vth以上である。したがって、経路更新部34は、第3の経路候補をノードID「N2-14」のノードの経路として設定する。ノードID「N2-14」のノードが送信元になったデータは、ノードID「N2-13」のノードへ送信され、ノードID「N2-13」のノードを経由して情報収集装置1へ転送される。 The route S / N ratio of the first route candidate is “20”, which is smaller than the threshold Vth, and the route S / N ratio of the second route candidate is “46”, which is smaller than the threshold Vth. Although it is small, the S / N ratio for the route of the third route candidate is “75”, which is equal to or higher than the threshold value Vth. Therefore, the route update unit 34 sets the third route candidate as the route of the node having the node ID “N2-14”. The data whose source is the node with the node ID “N2-14” is transmitted to the node with the node ID “N2-13” and transferred to the information collecting apparatus 1 via the node with the node ID “N2-13”. Is done.
 上述したS/N比優先経路への変更処理を行わない場合には、ノードID「N2-14」のノードにおける第2の経路候補の経路用S/N比は計測S/N比と同一の「76」で閾値Vth以上であり、且つ第3の経路候補の経路用S/N比よりも大きいため、第2の経路候補がノードID「N2-14」のノードの経路として設定される。したがって、ノードID「N2-14」のノードが送信元になったデータは、ノードID「N2-12」のノードを介すことなく、情報収集装置1へ直接転送される。 When the above-described change processing to the S / N ratio priority route is not performed, the S / N ratio for the route of the second route candidate in the node with the node ID “N2-14” is the same as the measured S / N ratio. Since “76” is equal to or greater than the threshold value Vth and is larger than the route S / N ratio of the third route candidate, the second route candidate is set as the route of the node having the node ID “N2-14”. Therefore, the data whose source is the node with the node ID “N2-14” is directly transferred to the information collecting apparatus 1 without going through the node with the node ID “N2-12”.
 このように、経路更新部34は、負荷増ノードを含む経路の数を増加させることから、負荷が増加する可能性がある需要家の付近においてホップ数を増加させることができ、PLCにおける通信品質が低下することを抑制することができる。 In this way, the route updating unit 34 increases the number of routes including the load increasing node, so that it is possible to increase the number of hops in the vicinity of a customer whose load may increase, and communication quality in the PLC Can be suppressed.
 なお、上述した例では、経路更新部34は、負荷増ノードの経路用S/N比を所定値Vsnだけ下げることで、負荷増ノードの経路用S/N比を変更するが、経路用S/N比の変更は、上述した例に限定されない。例えば、経路更新部34は、負荷増ノードの経路用S/N比を閾値Vth以下の値に設定することもできる。これにより、負荷増ノードを含む経路を精度よく増加させることができる。また、経路更新部34は、電力量データまたは電力値データが大きくなるほど所定値Vsnを大きくすることもできる。なお、負荷増ノードであったノードが負荷増ノードでなくなった場合、経路候補に関連付けられた経路用S/N比は、経路更新部34によって計測S/N比と同じ値に変更される。 In the example described above, the route update unit 34 changes the route S / N ratio of the load increase node by lowering the route S / N ratio of the load increase node by the predetermined value Vsn. The change of the / N ratio is not limited to the example described above. For example, the route update unit 34 can set the route S / N ratio of the load increase node to a value equal to or less than the threshold value Vth. Thereby, it is possible to increase the number of routes including the load increase node with high accuracy. The path updating unit 34 can also increase the predetermined value Vsn as the power amount data or power value data increases. When the node that was the load increase node is no longer the load increase node, the route S / N ratio associated with the route candidate is changed by the route update unit 34 to the same value as the measured S / N ratio.
 また、上述した例では、経路更新部34は、負荷増ノードの経路用S/N比を変更したが、経路候補テーブル23の経路候補に負荷増ノードを示す情報を関連付けてもよい。この場合、経路更新部34は、負荷増ノードを示す情報が関連付けられた経路候補を経路として設定しないことで、負荷増ノードを含む経路を精度よく増加させることができる。なお、経路更新部34は、負荷増ノードであったノードが負荷増ノードでなくなった場合、経路候補に関連付けられた負荷増ノードを示す情報は削除される。 In the example described above, the route update unit 34 has changed the route S / N ratio of the load increase node, but may associate information indicating the load increase node with the route candidate in the route candidate table 23. In this case, the route update unit 34 can accurately increase the route including the load increase node by not setting the route candidate associated with the information indicating the load increase node as the route. Note that the route update unit 34 deletes the information indicating the load increase node associated with the route candidate when the node that was the load increase node is no longer the load increase node.
 なお、上述した例では、情報収集装置1からのスマートメーター2へ向かう経路におけるノードでの信号受信時のS/N比である第1のS/N比を「計測S/N比」としたが、スマートメーター2から情報収集装置1からへ向かう経路におけるノードでの信号受信時のS/N比である第2のS/N比を「計測S/N比」とすることもできる。また、第1のS/N比と第2のS/N比との平均値、または重み付けして加算した値などを「計測S/N比」とすることもできる。 In the above-described example, the first S / N ratio that is the S / N ratio at the time of signal reception at the node on the path from the information collecting device 1 to the smart meter 2 is set as the “measurement S / N ratio”. However, the second S / N ratio that is the S / N ratio at the time of signal reception at the node on the path from the smart meter 2 to the information collecting device 1 can be set as the “measurement S / N ratio”. Further, an average value of the first S / N ratio and the second S / N ratio, or a value obtained by weighting and adding may be used as the “measurement S / N ratio”.
 また、上述した例では、物理配置テーブル21は、予め設定されるが、物理配置テーブル21は制御部30によって自動的に生成されてもよい。例えば、制御部30は、図10に示す近接探索応答メッセージで得られる送信元ごとのS/N比が、所定値より大きい送信元を隣ノードとして、物理配置テーブル21を自動生成することもできる。 In the above example, the physical arrangement table 21 is set in advance, but the physical arrangement table 21 may be automatically generated by the control unit 30. For example, the control unit 30 can automatically generate the physical arrangement table 21 with a source having an S / N ratio for each source obtained by the proximity search response message shown in FIG. .
 ここで、実施の形態1にかかる情報収集装置1のハードウェア構成について説明する。図27は、実施の形態1にかかる情報収集装置1のハードウェア構成例を示す図である。図27に示すように、情報収集装置1は、プロセッサ201と、メモリ202と、通信装置203とを備えるコンピュータを含む。プロセッサ201、メモリ202および、通信装置203は、バス204によって互いにデータの送受信が可能である。情報収集装置1の通信部10は、通信装置203によって実現される。情報収集装置1の記憶部20は、メモリ202で実現される。メモリ202は、コンピュータが読み取り可能なプログラムが記録された記録媒体を含む。 Here, the hardware configuration of the information collecting apparatus 1 according to the first embodiment will be described. FIG. 27 is a diagram of a hardware configuration example of the information collection device 1 according to the first embodiment. As illustrated in FIG. 27, the information collection device 1 includes a computer including a processor 201, a memory 202, and a communication device 203. The processor 201, the memory 202, and the communication device 203 can transmit / receive data to / from each other via the bus 204. The communication unit 10 of the information collection device 1 is realized by the communication device 203. The storage unit 20 of the information collection device 1 is realized by the memory 202. The memory 202 includes a recording medium on which a computer readable program is recorded.
 プロセッサ201は、メモリ202に記憶されたプログラムを読み出して実行することによって、情報収集部31、経路設定部32、負荷状態監視部33、および経路更新部34の機能を実行する。プロセッサ201は、処理回路の一例であり、CPU(Central Processing Unit)、DSP(Digital Signal Processer)、およびシステムLSI(Large Scale Integration)のうち一つ以上を含む。 The processor 201 reads out and executes the program stored in the memory 202, thereby executing the functions of the information collecting unit 31, the path setting unit 32, the load state monitoring unit 33, and the path updating unit 34. The processor 201 is an example of a processing circuit, and includes one or more of a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a system LSI (Large Scale Integration).
 メモリ202は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクまたはDVD(Digital Versatile Disc)などである。 The memory 202 is a nonvolatile or volatile semiconductor such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), etc. Memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk or DVD (Digital Versatile Disc).
 なお、情報収集部31、経路設定部32、負荷状態監視部33、経路更新部34、および記憶部20を図27に示したプロセッサ201およびメモリ202と同様の機能を実現する専用のハードウェアで実現してもよい。専用のハードウェアは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせた処理回路である。情報収集部31、経路設定部32、負荷状態監視部33、経路更新部34、および記憶部20の一部を専用のハードウェアで実現し、残りを図27に示したプロセッサ201およびメモリ202で実現するようにしてもよい。 The information collecting unit 31, the path setting unit 32, the load state monitoring unit 33, the path updating unit 34, and the storage unit 20 are dedicated hardware that realizes the same functions as the processor 201 and the memory 202 shown in FIG. It may be realized. The dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, a processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a processing circuit that combines these. is there. A part of the information collecting unit 31, the path setting unit 32, the load state monitoring unit 33, the path updating unit 34, and the storage unit 20 is realized by dedicated hardware, and the rest is processed by the processor 201 and the memory 202 shown in FIG. It may be realized.
 以上のように、実施の形態1にかかる情報収集装置1は、複数の需要家の各々に設置されて需要家の電力に関する電気情報を計測するスマートメーター2と電力線3を使用したマルチホップ通信を行う。情報収集装置1は、スマートメーター2から電気情報の計測結果である計測情報を取得する情報収集部31と計測情報に基づいて、需要家における負荷の状態を監視する負荷状態監視部33と、負荷の状態に基づいて、マルチホップ通信における経路を更新する経路更新部34とを備える。負荷の状態を監視することで、PLCにおける通信品質が低下する可能性がある状態を事前に把握し、PLCにおける通信品質が低下する前に、情報収集装置1と各スマートメーター2との間の経路を再構築することができる。これにより、PLCにおける通信品質の低下を抑制することができる。 As described above, the information collecting apparatus 1 according to the first embodiment performs multi-hop communication using the smart meter 2 and the power line 3 that are installed in each of a plurality of consumers and measure electrical information related to the power of the consumers. Do. The information collection device 1 includes an information collection unit 31 that acquires measurement information that is a measurement result of electrical information from the smart meter 2, a load state monitoring unit 33 that monitors a load state of a consumer based on the measurement information, a load And a route update unit 34 for updating a route in multi-hop communication based on the state of By monitoring the state of the load, the state in which the communication quality in the PLC may be lowered is grasped in advance, and before the communication quality in the PLC is lowered, between the information collecting apparatus 1 and each smart meter 2 The route can be reconstructed. Thereby, the fall of the communication quality in PLC can be suppressed.
 また、負荷状態監視部33は、複数の需要家のうち負荷の状態が予め設定された経路更新条件を満たす需要家を検出する。経路更新部34は、経路更新条件を満たす需要家に設置されたスマートメーター2を含む経路の数を増加させることができる。これにより、例えば、負荷が増加した需要家の付近においてホップ数を増加させることができ、PLCにおける通信品質が低下することを抑制することができる。 Further, the load state monitoring unit 33 detects a customer satisfying a route update condition in which a load state is set in advance among a plurality of customers. The route update unit 34 can increase the number of routes including the smart meter 2 installed in a customer who satisfies the route update condition. Thereby, for example, the number of hops can be increased in the vicinity of a customer whose load has increased, and it is possible to suppress a decrease in communication quality in the PLC.
 また、経路更新部34は、経路更新条件を満たす需要家に設置されたスマートメーター2である対象スマートメーターと電力線3を介して物理的に隣接するスマートメーター2である隣スマートメーターの経路に、対象スマートメーターを含ませることで、対象スマートメーターを含む経路の数を増加させる。これにより、例えば、負荷増ノードと負荷増ノードに隣接するノードとの間の組み合わせを経路に含ませることができ、PLCにおける通信品質が低下することをより精度よく抑制することができる。 In addition, the route update unit 34 adds a route to the next smart meter, which is the smart meter 2 physically adjacent to the target smart meter 2 that is the smart meter 2 installed in the consumer that satisfies the route update condition, via the power line 3. Inclusion of the target smart meter increases the number of routes including the target smart meter. Thereby, for example, a combination between a load increasing node and a node adjacent to the load increasing node can be included in the route, and deterioration in communication quality in the PLC can be more accurately suppressed.
 また、情報収集装置1は、スマートメーター2同士の通信品質を示す第1の通信品質情報の一例である計測S/N比に基づいて設定される経路選択用の第2の通信品質情報である経路用S/N比を有する経路候補テーブル23を記憶する記憶部20を備える。経路更新部34は、負荷増ノードに隣接するスマートメーター2同士の経路用S/N比を変更し、変更した経路用S/N比に基づいて、負荷増ノードに隣接するスマートメーター2の経路を変更する。これにより、S/N比を用いて経路を選択する経路更新処理を行う情報収集装置1において、経路用S/N比を追加することで、経路更新処理を行うことができるため、情報収集装置1の開発コストを抑制することができる。 The information collection device 1 is second communication quality information for route selection set based on a measured S / N ratio, which is an example of first communication quality information indicating communication quality between smart meters 2. A storage unit 20 is provided for storing a route candidate table 23 having a route S / N ratio. The route update unit 34 changes the route S / N ratio between the smart meters 2 adjacent to the load increase node, and the route of the smart meter 2 adjacent to the load increase node based on the changed route S / N ratio. To change. Thereby, in the information collection device 1 that performs route update processing for selecting a route using the S / N ratio, the route update processing can be performed by adding the route S / N ratio. 1 development cost can be suppressed.
 また、情報収集部31は、需要家における負荷の状態に基づいて、計測情報を取得する周期である収集周期Tcを短くする。収集周期Tcを短くすることで、需要家における負荷の状態を高い分解能で解析することができる。これにより、需要家における負荷の状態が高い分解能で解析すべき状態である場合に、需要家における負荷の状態を高い分解能で解析することができる。 Also, the information collection unit 31 shortens the collection period Tc, which is a period for acquiring measurement information, based on the load state of the consumer. By shortening the collection cycle Tc, it is possible to analyze the load state of the consumer with high resolution. Thereby, when the state of the load on the consumer is a state to be analyzed with high resolution, the state of the load on the consumer can be analyzed with high resolution.
 また、負荷状態監視部33は、需要家における負荷の状態を予測することができる。経路更新部34は、負荷状態監視部33によって予測された負荷の状態に基づいて、経路を更新する。したがって、例えば、各需要家において使用電力量が短時間に大きく増加する時間帯を予測することで、例えば、負荷の状態をリアルタイムで監視するための処理による処理負荷の発生を回避することができる。 Also, the load state monitoring unit 33 can predict the load state of the consumer. The route update unit 34 updates the route based on the load state predicted by the load state monitoring unit 33. Therefore, for example, by predicting a time zone in which the amount of power used greatly increases in a short time in each consumer, for example, it is possible to avoid the occurrence of a processing load due to processing for monitoring the load state in real time. .
実施の形態2.
 実施の形態2では、負荷増ノードに隣接するノードである隣ノードをバイパスする経路が形成されないように経路を更新する処理が追加される点で、実施の形態1と異なる。以下においては、実施の形態1と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1の情報収集装置1と異なる点を中心に説明する。
Embodiment 2. FIG.
The second embodiment is different from the first embodiment in that a process for updating a route is added so that a route that bypasses an adjacent node that is a node adjacent to the load increase node is not formed. In the following, constituent elements having the same functions as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the information collecting apparatus 1 in the first embodiment are mainly described.
 図28は、本発明の実施の形態2にかかる情報収集装置の構成例を示す図である。図28に示すように、実施の形態2にかかる情報収集装置1Aは、経路更新部34の機能に加え、負荷増ノードの隣ノードをバイパスする経路が形成されないように経路を更新する機能が追加される経路更新部34Aを有する。 FIG. 28 is a diagram illustrating a configuration example of the information collection apparatus according to the second embodiment of the present invention. As shown in FIG. 28, the information collection apparatus 1A according to the second embodiment has a function of updating a route so that a route that bypasses a node adjacent to the load increase node is not formed in addition to the function of the route update unit 34. The route update unit 34A is provided.
 図29は、実施の形態2にかかるS/N比優先の経路再構築処理の一例を示すフローチャートである。図29に示すステップS101,S104の処理は、図21に示すステップS51,S53の処理と同じである。 FIG. 29 is a flowchart of an example of a route reconstruction process with priority on the S / N ratio according to the second embodiment. The processes in steps S101 and S104 shown in FIG. 29 are the same as the processes in steps S51 and S53 shown in FIG.
 図29に示すように、経路更新部34Aは、ステップS101の処理を終了すると、各負荷増ノードに上位側と下位側とで隣り合うノードである隣ノードのバイパス経路テーブルを作成するバイパス経路作成処理を行う(ステップS102)。ステップS102のバイパス経路作成処理は、図30に示すステップS111~S117の処理であり、後述する。 As shown in FIG. 29, when the route updating unit 34A completes the process of step S101, it creates a bypass route table for creating a bypass route table of an adjacent node, which is a node adjacent to the higher side and the lower side, in each load increasing node. Processing is performed (step S102). The bypass route creation process in step S102 is the process in steps S111 to S117 shown in FIG. 30, and will be described later.
 次に、経路更新部34Aは、経路候補テーブル23のうち負荷増ノードのバイパス経路および隣ノードのバイパス経路のいずれかのバイパス経路とノードIDの組み合わせが一致する経路候補に関連付けられた経路用S/N比を変更するS/N比変更処理を行う(ステップS103)。ステップS103のS/N比変更処理は、図31に示すステップS121~S125の処理であり、後述する。 Next, the path update unit 34A selects a path S associated with a path candidate whose node ID combination matches one of the bypass path of the load increasing node and the bypass path of the adjacent node in the path candidate table 23. An S / N ratio changing process for changing the / N ratio is performed (step S103). The S / N ratio changing process of step S103 is the process of steps S121 to S125 shown in FIG. 31, and will be described later.
 図30は、図29に示すステップS102の隣ノードのバイパス経路テーブル作成処理の一例を示すフローチャートである。図30に示すように、経路更新部34Aは、一つの負荷増ノードのノードIDを記憶部20から取得する(ステップS111)。 FIG. 30 is a flowchart showing an example of the bypass route table creation process of the adjacent node in step S102 shown in FIG. As illustrated in FIG. 30, the path update unit 34A acquires the node ID of one load increase node from the storage unit 20 (step S111).
 次に、経路更新部34Aは、物理配置テーブル21から負荷増ノードに隣接するノードである隣ノードのノードIDを抽出する(ステップS112)。具体的には、経路更新部34Aは、ステップS112において、負荷増ノードの上位側の隣ノードである上位側隣ノードのノードIDと負荷増ノードの下位側である下位側隣ノードのノードIDとを抽出する。 Next, the path update unit 34A extracts the node ID of the adjacent node that is the node adjacent to the load increase node from the physical arrangement table 21 (step S112). Specifically, in step S112, the route updating unit 34A determines the node ID of the upper side adjacent node that is the upper side node of the load increasing node and the node ID of the lower side adjacent node that is the lower side of the load increasing node. To extract.
 次に、経路更新部34Aは、物理配置テーブル21から隣ノードの上位側ノードのノードIDを抽出する(ステップS113)。また、経路更新部34Aは、物理配置テーブル21から隣ノードの下位側ノードのノードIDを抽出する(ステップS114)。そして、経路更新部34Aは、隣ノードの上位側ノードと下位側ノードとを関連付けたバイパス経路を隣ノードのバイパス経路として隣ノードのバイパス経路テーブルに設定する(ステップS115)。 Next, the path update unit 34A extracts the node ID of the higher-order node of the adjacent node from the physical arrangement table 21 (step S113). Further, the path updating unit 34A extracts the node ID of the lower side node of the adjacent node from the physical arrangement table 21 (step S114). Then, the path updating unit 34A sets a bypass path in which the higher order node and the lower order node of the adjacent node are associated with each other as a bypass path of the adjacent node in the bypass path table of the adjacent node (Step S115).
 ここで、負荷増ノードがノードID「N-13」のノードとすると、経路更新部34Aは、ステップS112において、上位側隣ノードのノードIDとして、ノードID「N-12」を抽出し、下位側隣ノードのノードIDとして、ノードID「N-14」を抽出する。経路更新部34Aは、ステップS113において、上位側隣ノードの上位側ノードのノードIDとして、「N-11」を抽出し、ステップS114において、上位側隣ノードの下位側ノードのノードIDとして、ノードID「N-13」を抽出する。 Here, if the load increase node is the node having the node ID “N-13”, the route updating unit 34A extracts the node ID “N-12” as the node ID of the upper side adjacent node in step S112, The node ID “N-14” is extracted as the node ID of the side adjacent node. In step S113, the path updating unit 34A extracts “N-11” as the node ID of the upper side node of the upper side adjacent node. In step S114, the path updating unit 34A uses the node ID of the lower side node of the upper side node as the node ID of the lower side node. The ID “N-13” is extracted.
 また、経路更新部34Aは、ステップS114において、下位側隣ノードの上位側ノードのノードIDとして、「N-13」を抽出し、ステップS114において、下位側隣ノードの下位側ノードのノードIDとして、「N-1n」を抽出する。なお、ノードID「N-1n」のノードは、ノードID「N-14」のノードに隣接しているものとする。 In step S114, the route updating unit 34A extracts “N-13” as the node ID of the upper node of the lower neighbor node, and as the node ID of the lower node of the lower neighbor node in step S114. , “N−1n” are extracted. It is assumed that the node with the node ID “N−1n” is adjacent to the node with the node ID “N-14”.
 そして、経路更新部34Aは、ノードID「N-11」とノードID「N-13」との組み合わせのバイパス経路を上位側隣ノードのバイパス経路として隣ノードのバイパス経路テーブルに設定する。また、経路更新部34Aは、ノードID「N-13」とノードID「N-1n」との組み合わせのバイパス経路を下位側隣ノードのバイパス経路として隣ノードのバイパス経路テーブルに設定する。 Then, the path updating unit 34A sets the bypass path of the combination of the node ID “N-11” and the node ID “N-13” in the bypass path table of the adjacent node as the bypass path of the upper side adjacent node. Further, the path updating unit 34A sets the bypass path of the combination of the node ID “N-13” and the node ID “N-1n” as the bypass path of the lower side adjacent node in the bypass path table of the adjacent node.
 なお、経路更新部34Aは、上位側隣ノードの上位側ノードのノードIDと下位側隣ノードの下位側ノードのノードIDとの組み合わせのバイパス経路を隣ノードのバイパス経路テーブルに設定することもできる。例えば、ノードID「N-11」とノードID「N-1n」との組み合わせを隣ノードのバイパス経路テーブルに設定することもできる。 The path updating unit 34A can also set a bypass path, which is a combination of the node ID of the higher-order node of the higher-order adjacent node and the node ID of the lower-order node of the lower-order adjacent node, in the bypass path table of the adjacent node. . For example, a combination of the node ID “N-11” and the node ID “N-1n” can be set in the bypass path table of the adjacent node.
 経路更新部34Aは、全ての負荷増ノードの隣ノードについてステップS112~S115の処理を終了したか否かを判定する(ステップS116)。経路更新部34Aは、全ての負荷増ノードの隣ノードについてステップS112~S115の処理を終了していないと判定した場合(ステップS116:No)、ステップS112~S115の処理を行っていない次の負荷増ノードのノードIDを記憶部20から取得し(ステップS117)、ステップS112~S115の処理を実行する。 The route updating unit 34A determines whether or not the processing in steps S112 to S115 has been completed for all nodes adjacent to the load increase node (step S116). If the path updating unit 34A determines that the processing of steps S112 to S115 has not been completed for all the nodes adjacent to the load increase node (step S116: No), the next load that has not performed the processing of steps S112 to S115. The node ID of the increased node is acquired from the storage unit 20 (step S117), and the processes of steps S112 to S115 are executed.
 経路更新部34Aは、全ての負荷増ノードの隣ノードについてステップS112~S115の処理を終了したと判定した場合(ステップS116:Yes)、図30の処理を終了する。これにより、全ての負荷増ノードに隣接するノードである隣ノードのバイパス経路がバイパス経路テーブルに設定され、隣ノードのバイパス経路テーブルが完成する。隣ノードのバイパス経路テーブルは、経路更新部34Aにより記憶部20に記憶される。 If the route update unit 34A determines that the processing in steps S112 to S115 has been completed for all nodes adjacent to the load increase node (step S116: Yes), the processing in FIG. 30 ends. Thereby, the bypass route of the adjacent node which is a node adjacent to all the load increase nodes is set in the bypass route table, and the bypass route table of the adjacent node is completed. The bypass route table of the adjacent node is stored in the storage unit 20 by the route update unit 34A.
 図31は、図29のステップS113のS/N比変更処理の一例を示すフローチャートである。なお、図31に示すステップS121,S123~S125の処理は、図24に示すステップS71,S73~S75の処理と同じである。 FIG. 31 is a flowchart showing an example of the S / N ratio changing process in step S113 of FIG. Note that the processing in steps S121 and S123 to S125 shown in FIG. 31 is the same as the processing in steps S71 and S73 to S75 shown in FIG.
 図31に示すステップS122において、経路更新部34Aは、負荷増ノードのバイパス経路テーブルと隣ノードのバイパス経路テーブルとに含まれるバイパス経路のうち、選択されているノードIDの経路候補と一致するノードIDの組み合わせのバイパス経路があるか否かを判定する。 In step S122 shown in FIG. 31, the route updating unit 34A selects a node that matches the route candidate of the selected node ID among the bypass routes included in the bypass route table of the load increase node and the bypass route table of the adjacent node. It is determined whether there is a bypass path with a combination of IDs.
 経路更新部34Aは、選択されているノードIDの経路候補と一致するノードIDの組み合わせのバイパス経路があると判定した場合(ステップS122:Yes)、選択されているノードIDのバイパス経路と同じノードIDの組み合わせの経路候補に関連付けられた経路用S/N比を所定値Vsnだけ下げる(ステップS123)。 When the path update unit 34A determines that there is a bypass path having a combination of node IDs that matches the path candidate of the selected node ID (step S122: Yes), the same node as the bypass path of the selected node ID The route S / N ratio associated with the route combination of the ID combination is lowered by the predetermined value Vsn (step S123).
 これにより、負荷増ノードに上位側と下位側とに各々隣接する隣ノードをバイパスする経路候補の経路用S/N比が下げられるため、隣ノードを含む経路の数を増加させることができる。したがって、負荷が増加した需要家の付近においてホップ数をさらに増加させることができ、PLCにおける通信品質が低下することを抑制することができる。 Thereby, since the S / N ratio for the route candidate that bypasses the adjacent nodes adjacent to the higher side and the lower side of the load increasing node is lowered, the number of routes including the adjacent node can be increased. Therefore, the number of hops can be further increased in the vicinity of a customer whose load has increased, and it is possible to suppress a decrease in communication quality in the PLC.
 上述した経路更新部34Aは、経路用S/N比を所定値Vsnだけ下げる処理を行うが、経路更新部34の処理と同様に、負荷増ノードの経路用S/N比を閾値Vth以下の値に設定することもできる。また、経路更新部34Aは、経路更新部34の場合と同様に、経路候補テーブル23の経路候補に負荷増ノードを示す情報を関連付けることもできる。 The route update unit 34A described above performs processing for lowering the route S / N ratio by the predetermined value Vsn. Similar to the processing of the route update unit 34, the route S / N ratio of the load increase node is less than or equal to the threshold value Vth. It can also be set to a value. Further, similarly to the route update unit 34, the route update unit 34 </ b> A can also associate information indicating the load increase node with the route candidate in the route candidate table 23.
 実施の形態2にかかる情報収集装置1Aのハードウェア構成例は、図27に示す情報収集装置1と同じである。プロセッサ201は、メモリ202に記憶されたプログラムを読み出して実行することによって、経路更新部34Aの機能を実行することができる。 The hardware configuration example of the information collecting apparatus 1A according to the second embodiment is the same as the information collecting apparatus 1 shown in FIG. The processor 201 can execute the function of the path updating unit 34A by reading and executing the program stored in the memory 202.
 以上のように、実施の形態2にかかる情報収集装置1Aの経路更新部34Aは、隣スマートメーターの一例である隣ノードと電力線3を介して物理的に隣接するノードの経路に、隣ノードを含ませることで、隣スマートメーターを含む経路の数を増加させる。これにより、負荷増ノードに加えて隣スマートメーターをバイパスしないように経路を更新することができ、負荷が増加した需要家の付近においてホップ数をさらに増加させることができ、PLCにおける通信品質が低下することをさらに抑制することができる。 As described above, the path updating unit 34A of the information collection apparatus 1A according to the second embodiment sets the adjacent node in the path of the node that is physically adjacent to the adjacent node that is an example of the adjacent smart meter via the power line 3. Inclusion increases the number of routes that include neighboring smart meters. As a result, in addition to the load increasing node, the route can be updated so as not to bypass the neighboring smart meter, the number of hops can be further increased in the vicinity of the customer with increased load, and the communication quality in the PLC is lowered. This can be further suppressed.
 なお、経路更新部34Aは、予測される需要家における負荷の大きさが大きいほど、バイパス経路の対象にするノードを増加させることができる。例えば、経路更新部34Aは、負荷増ノードに隣接する隣ノードにさらに隣接するノードをバイパスするバイパス経路を作成して経路を更新することもできる。 Note that the route update unit 34A can increase the number of nodes that are the targets of the bypass route as the predicted load on the consumer increases. For example, the path updating unit 34A can also update the path by creating a bypass path that bypasses a node further adjacent to the adjacent node adjacent to the load increase node.
 また、経路更新部34Aは、上位側隣ノードに隣接するノードと上位側隣ノードに隣接するノードの中から選択された2つのノードを組み合わせて隣ノードのバイパスノードとしたが、上位側隣ノードおよび上位側隣ノードのうち1つのノードのノードIDを用いることもできる。例えば、経路更新部34Aは、上位側隣ノードの上位側ノードのノードIDと下位側隣ノードのノードIDとの組み合わせを隣ノードのバイパス経路テーブルに設定することもできる。例えば、上述の例の場合、経路更新部34Aは、ノードID「N-11」とノードID「N-14」との組み合わせを隣ノードのバイパス経路テーブルに設定することもできる。また、経路更新部34Aは、上位側隣ノードのノードIDと下位側隣ノードの下位側ノードのノードIDとの組み合わせを隣ノードのバイパス経路テーブルに設定することもできる。例えば、上述の例の場合、経路更新部34Aは、ノードID「N-12」とノードID「N-1n」との組み合わせを隣ノードのバイパス経路テーブルに設定することもできる。 In addition, the route update unit 34A combines the two nodes selected from the node adjacent to the upper side adjacent node and the node adjacent to the upper side adjacent node into the bypass node of the adjacent node. Alternatively, the node ID of one of the upper side neighboring nodes can be used. For example, the path updating unit 34A can set a combination of the node ID of the higher-order node of the higher-order neighboring node and the node ID of the lower-order neighboring node in the bypass path table of the neighboring node. For example, in the above example, the path updating unit 34A can set the combination of the node ID “N-11” and the node ID “N-14” in the bypass path table of the adjacent node. The path updating unit 34A can also set a combination of the node ID of the upper side adjacent node and the node ID of the lower side node of the lower side adjacent node in the bypass path table of the adjacent node. For example, in the case of the above-described example, the path updating unit 34A can set the combination of the node ID “N-12” and the node ID “N−1n” in the bypass path table of the adjacent node.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1,1A 情報収集装置、2,2-11,2-12,2-13,2-14,・・・,2-1n,2-21,2-22,2-23,2-24,・・・,2-2m スマートメーター、3,3-1,3-2,4,4-11,4-12,4-13,4-14,・・・,4-1n,4-21,4-22,4-23,4-24,・・・,4-2m 電力線、5 計測端末、6 PLC子機モジュール、8,8-1,8-2,・・・,8-k 電気機器、10,63 通信部、20,42,52,62 記憶部、21 物理配置テーブル、22 計測情報テーブル、23 経路候補テーブル、24 経路情報記憶領域、25 バイパス経路テーブル、30,53,61 制御部、31 情報収集部、32 経路設定部、33 負荷状態監視部、34,34A 経路更新部、51 計測部、100 自動検針システム。 1, 1A information collection device, 2, 2-11, 12-12, 2-13, 2-14, ..., 2-1n, 2-21, 22-22, 2-23, 2-24, ... ..., 2-2m smart meter, 3,3-1,3-2,4,4-11,4-12,4-13,4-14, ..., 4-1n, 4-21,4 -22, 4-23, 4-24, ..., 4-2m power line, 5 measuring terminals, 6 PLC slave module, 8, 8-1, 8-2, ..., 8-k electrical equipment, 10, 63 communication unit, 20, 42, 52, 62 storage unit, 21 physical arrangement table, 22 measurement information table, 23 route candidate table, 24 route information storage area, 25 bypass route table, 30, 53, 61 control unit, 31 Information collection unit, 32 route setting unit, 33 load status monitoring unit, 34, 3 A route updating unit, 51 measurement unit, 100 an automatic meter reading system.

Claims (9)

  1.  複数の需要家の各々に設置されて前記需要家の電力に関する電気情報を計測するスマートメーターと電力線を使用したマルチホップ通信を行う情報収集装置において、
     前記スマートメーターから前記電気情報の計測結果である計測情報を取得する情報収集部と、
     前記計測情報に基づいて、前記需要家における負荷の状態を監視する負荷状態監視部と、
     前記負荷の状態に基づいて、前記マルチホップ通信における経路を更新する経路更新部と、を備える
     ことを特徴とする情報収集装置。
    In an information collecting apparatus that performs multi-hop communication using a smart meter and a power line that is installed in each of a plurality of consumers and measures electrical information related to the power of the consumers,
    An information collection unit for obtaining measurement information that is a measurement result of the electrical information from the smart meter;
    Based on the measurement information, a load state monitoring unit that monitors a load state in the consumer,
    A route updating unit that updates a route in the multi-hop communication based on the state of the load.
  2.  前記負荷状態監視部は、
     前記複数の需要家のうち負荷の状態が予め設定された経路更新条件を満たす需要家を検出し、
     前記経路更新部は、
     前記経路更新条件を満たす需要家に設置されたスマートメーターを含む経路の数を増加させる
     ことを特徴とする請求項1に記載の情報収集装置。
    The load state monitoring unit
    Detecting a customer satisfying a route update condition in which a load state is set in advance among the plurality of consumers;
    The route update unit
    The information collection device according to claim 1, wherein the number of routes including a smart meter installed in a customer who satisfies the route update condition is increased.
  3.  前記経路更新部は、
     前記経路更新条件を満たす需要家に設置されたスマートメーターである対象スマートメーターと前記電力線を介して物理的に隣接するスマートメーターである隣スマートメーターの経路に、前記対象スマートメーターを含ませることで、前記対象スマートメーターを含む経路の数を増加させる
     ことを特徴とする請求項2に記載の情報収集装置。
    The route update unit
    By including the target smart meter in the path of a target smart meter that is a smart meter installed in a consumer that satisfies the path update condition and a neighboring smart meter that is physically adjacent to the smart meter via the power line. The information collection device according to claim 2, wherein the number of routes including the target smart meter is increased.
  4.  前記経路更新部は、
     前記隣スマートメーターと前記電力線を介して物理的に隣接するスマートメーターであるスマートメーターの経路に、前記隣スマートメーターを含ませることで、前記隣スマートメーターを含む経路の数を増加させる
     ことを特徴とする請求項3に記載の情報収集装置。
    The route update unit
    The number of paths including the neighboring smart meter is increased by including the neighboring smart meter in a path of a smart meter that is physically adjacent to the neighboring smart meter via the power line. The information collecting apparatus according to claim 3.
  5.  前記スマートメーター同士の通信品質を示す第1の通信品質情報に基づいて設定される経路選択用の第2の通信品質情報を有する経路候補テーブルを記憶する記憶部を備え、
     前記経路更新部は、
     前記隣スマートメーター同士の第2の通信品質情報を変更し、変更した第2の通信品質情報に基づいて、前記隣スマートメーターの経路を更新する
     ことを特徴とする請求項3または4に記載の情報収集装置。
    A storage unit for storing a route candidate table having second communication quality information for route selection set based on first communication quality information indicating communication quality between the smart meters;
    The route update unit
    The second communication quality information between the neighboring smart meters is changed, and the route of the neighboring smart meter is updated based on the changed second communication quality information. Information collection device.
  6.  前記情報収集部は、
     前記負荷の状態に基づいて、前記計測情報を取得する周期を短くする
     ことを特徴とする請求項1から5のいずれか1つに記載の情報収集装置。
    The information collecting unit
    6. The information collection device according to claim 1, wherein a period for acquiring the measurement information is shortened based on a state of the load.
  7.  前記負荷状態監視部は、
     前記需要家における負荷の状態を予測し、
     前記経路更新部は、
     前記予測された前記負荷の状態に基づいて、前記経路を更新する
     ことを特徴とする請求項1に記載の情報収集装置。
    The load state monitoring unit
    Predicting the state of load at the consumer;
    The route update unit
    The information collection apparatus according to claim 1, wherein the route is updated based on the predicted state of the load.
  8.  複数の需要家の各々に設置されて前記需要家の電力に関する電気情報を計測するスマートメーターと、
     前記スマートメーターと電力線を使用したマルチホップ通信を行って、前記電気情報の計測結果を含んだ計測情報を収集する情報収集装置と、を備え、
     前記情報収集装置は、
     前記スマートメーターから前記計測情報を取得する情報収集部と、
     前記計測情報に基づいて、前記需要家における負荷の状態を監視する負荷状態監視部と、
     前記負荷の状態に基づいて、前記マルチホップ通信における経路を更新する経路更新部と、を備える
     ことを特徴とする自動検針システム。
    A smart meter that is installed in each of a plurality of consumers and measures electrical information related to the power of the consumers;
    An information collection device that performs multi-hop communication using the smart meter and a power line, and collects measurement information including a measurement result of the electrical information,
    The information collecting device includes:
    An information collecting unit for obtaining the measurement information from the smart meter;
    Based on the measurement information, a load state monitoring unit that monitors a load state in the consumer,
    An automatic meter-reading system comprising: a route updating unit that updates a route in the multi-hop communication based on the state of the load.
  9.  複数の需要家の各々に設置されて前記需要家の電力に関する電気情報を計測するスマートメーターと電力線を使用したマルチホップ通信を行う装置が前記マルチホップ通信における経路を更新する経路更新方法であって、
     前記スマートメーターから前記電気情報の計測結果を含む計測情報を取得するステップと、
     前記計測情報に基づいて、前記需要家における負荷の状態を監視するステップと、
     前記負荷の状態に基づいて、前記マルチホップ通信における経路を更新するステップと、を含む
     ことを特徴とする経路更新方法。
    A device for performing multi-hop communication using a smart meter and a power line that is installed in each of a plurality of consumers and measures electrical information related to the power of the consumer and a route update method for updating a route in the multi-hop communication. ,
    Obtaining measurement information including measurement results of the electrical information from the smart meter;
    Monitoring the state of the load on the consumer based on the measurement information;
    Updating the route in the multi-hop communication based on the state of the load.
PCT/JP2017/021379 2017-06-08 2017-06-08 Information collection device, automatic meter-reading system, and path updating method WO2018225226A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019523301A JP6664549B2 (en) 2017-06-08 2017-06-08 Information collection device, automatic meter reading system, and route updating method
PCT/JP2017/021379 WO2018225226A1 (en) 2017-06-08 2017-06-08 Information collection device, automatic meter-reading system, and path updating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021379 WO2018225226A1 (en) 2017-06-08 2017-06-08 Information collection device, automatic meter-reading system, and path updating method

Publications (1)

Publication Number Publication Date
WO2018225226A1 true WO2018225226A1 (en) 2018-12-13

Family

ID=64566149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021379 WO2018225226A1 (en) 2017-06-08 2017-06-08 Information collection device, automatic meter-reading system, and path updating method

Country Status (2)

Country Link
JP (1) JP6664549B2 (en)
WO (1) WO2018225226A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6968312B1 (en) * 2020-06-26 2021-11-17 三菱電機株式会社 Communication terminals, communication systems, power saving control methods and power saving control programs
CN114048197A (en) * 2022-01-13 2022-02-15 浙江大华技术股份有限公司 Tree structure data processing method, electronic equipment and computer readable storage device
JP7366318B1 (en) 2023-02-13 2023-10-20 三菱電機株式会社 Communication system, communication method, and communication program
JP7454955B2 (en) 2020-02-21 2024-03-25 三菱電機株式会社 Information collection system, information collection method, and information collection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106255A (en) * 2011-11-15 2013-05-30 Hitachi Ltd Electrical distribution network communication system, communication path setting device, and method
JP2015167296A (en) * 2014-03-03 2015-09-24 パナソニックIpマネジメント株式会社 communication system and communication device
JP2015220657A (en) * 2014-05-20 2015-12-07 株式会社東芝 Power line carrier communication system and power line carrier communication device
JP2016140013A (en) * 2015-01-29 2016-08-04 京セラ株式会社 Power management device, module system and power management method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9172636B2 (en) * 2012-02-28 2015-10-27 Cisco Technology, Inc. Efficient link repair mechanism triggered by data traffic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106255A (en) * 2011-11-15 2013-05-30 Hitachi Ltd Electrical distribution network communication system, communication path setting device, and method
JP2015167296A (en) * 2014-03-03 2015-09-24 パナソニックIpマネジメント株式会社 communication system and communication device
JP2015220657A (en) * 2014-05-20 2015-12-07 株式会社東芝 Power line carrier communication system and power line carrier communication device
JP2016140013A (en) * 2015-01-29 2016-08-04 京セラ株式会社 Power management device, module system and power management method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454955B2 (en) 2020-02-21 2024-03-25 三菱電機株式会社 Information collection system, information collection method, and information collection device
JP6968312B1 (en) * 2020-06-26 2021-11-17 三菱電機株式会社 Communication terminals, communication systems, power saving control methods and power saving control programs
WO2021260938A1 (en) * 2020-06-26 2021-12-30 三菱電機株式会社 Communication terminal, communication system, power-saving control method, and power-saving control program
CN114048197A (en) * 2022-01-13 2022-02-15 浙江大华技术股份有限公司 Tree structure data processing method, electronic equipment and computer readable storage device
JP7366318B1 (en) 2023-02-13 2023-10-20 三菱電機株式会社 Communication system, communication method, and communication program

Also Published As

Publication number Publication date
JPWO2018225226A1 (en) 2019-11-07
JP6664549B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2018225226A1 (en) Information collection device, automatic meter-reading system, and path updating method
JP5866580B2 (en) Remote meter reading system, slave station, master station
US9791485B2 (en) Determining electric grid topology via a zero crossing technique
AU2013251193B2 (en) Phase detection in mesh network smart grid system
US20130103795A1 (en) Methods of establishing communication in a sensor network and apparatus
JP4552669B2 (en) Communication path setting method, communication path determination device, communication system, and communication path determination program
CN107807288B (en) Transformer DC magnetic bias on-line monitoring system
JP2009302694A (en) Radio communication network system
JP5745167B2 (en) Automatic network topology detection and fraud detection
US9622103B2 (en) Communications network control method, computer product, and system
WO2017217058A1 (en) Communication system and wireless network engineering assistance method
JP2014522143A5 (en)
WO2015193956A1 (en) Sensor network system
JP6754240B2 (en) Wireless communication system
JP2013207428A (en) Broadcast packet transfer method, communication unit, and broadcast packet transfer program
JP2016100803A (en) Data collection wireless communication system, collection management station, communication path establishment method, and wireless communication network system
JP4908473B2 (en) Automatic weighing system
EP3547622A1 (en) Method for network management and apparatus for implementing the same
JP6529668B2 (en) Management device, automatic meter reading system and state monitoring method
JP5621032B2 (en) Remote meter reading system, terminal station used in it, master station
KR20140025307A (en) Method and apparatus for remote metering the consumption of electricity over power line network
Liu et al. An Optimal ZigBee Wireless Sensor Network Design for Energy Storage System
US8964592B2 (en) Wireless terminal device, wireless communication system and control method for wireless terminal device
JP5828077B2 (en) Remote meter reading system, master station, slave station
JP2014107644A (en) Network system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523301

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912889

Country of ref document: EP

Kind code of ref document: A1