WO2017199342A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2017199342A1
WO2017199342A1 PCT/JP2016/064629 JP2016064629W WO2017199342A1 WO 2017199342 A1 WO2017199342 A1 WO 2017199342A1 JP 2016064629 W JP2016064629 W JP 2016064629W WO 2017199342 A1 WO2017199342 A1 WO 2017199342A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
control unit
indoor
unit
Prior art date
Application number
PCT/JP2016/064629
Other languages
French (fr)
Japanese (ja)
Inventor
将広 上條
康巨 鈴木
昌彦 高木
健裕 田中
和樹 渡部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/064629 priority Critical patent/WO2017199342A1/en
Priority to JP2016569088A priority patent/JP6121075B1/en
Priority to US16/082,988 priority patent/US20190072291A1/en
Priority to CN201780028510.1A priority patent/CN109154464A/en
Priority to PCT/JP2017/017661 priority patent/WO2017199808A1/en
Priority to JP2018518238A priority patent/JPWO2017199808A1/en
Priority to EP17799233.6A priority patent/EP3460360A4/en
Publication of WO2017199342A1 publication Critical patent/WO2017199342A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves

Definitions

  • the present invention relates to a refrigeration cycle apparatus having a refrigerant detection function.
  • Patent Document 1 describes an air conditioner using a flammable refrigerant, which includes a gas sensor for detecting a flammable refrigerant gas on the outer surface of an indoor unit.
  • the indoor unit is a floor type, and the gas sensor is provided at the lower part of the indoor unit. If the sensor detection voltage of the gas sensor is equal to or higher than a reference value, the control unit of this air conditioner determines that the flammable refrigerant has leaked, immediately issues an alarm by an alarm device, and turns on the fan installed in the indoor unit. Rotate. Thereby, the user can know that the flammable refrigerant has leaked, and can take measures such as a procedure for ventilating the room and calling a service person for repair.
  • the processing performed first by a service person who has received a refrigerant leak notification and arrived at the site varies depending on the presence or absence of refrigerant in the refrigerant circuit. If the refrigerant in the refrigerant pipe remains, the service person will connect the extension pipe of the outdoor unit so that no more refrigerant will leak from the leaked part of the indoor unit before checking and repairing the leaked part. It is necessary to take measures such as closing the valve. On the other hand, when there is no refrigerant in the refrigerant pipe, the service person can immediately check the leak location and start a series of operations for repairing the found leak location.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration cycle apparatus that enables rapid processing thereafter when refrigerant leakage occurs.
  • An refrigeration cycle apparatus includes a load-side heat exchanger that constitutes a refrigeration cycle in which refrigerant circulates, a refrigerant detection means that detects refrigerant, and an air blower fan, and an indoor unit that is installed indoors; A control unit that controls the indoor unit; and a notification unit that notifies information related to the refrigerant.
  • the control unit causes the notification unit to determine a countermeasure procedure for refrigerant leakage. The coping information is notified.
  • the countermeasure information for determining the countermeasure procedure for the refrigerant leakage is notified. Therefore, the service person corresponding to the refrigerant leakage can quickly start an appropriate initial movement process.
  • FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of an air conditioner according to an embodiment of the present invention.
  • the dimensional relationship and shape of each component may differ from the actual ones.
  • the air conditioner 100 has a refrigerant circuit 40 for circulating the refrigerant.
  • the refrigerant circuit 40 includes a compressor 3, a refrigerant flow switching device 4, a heat source side heat exchanger 5 (for example, an outdoor heat exchanger), a decompression device 6, and a load side heat exchanger 7 (for example, an indoor heat exchanger).
  • the air conditioner 100 has the outdoor unit 2 installed, for example, outdoors as a heat source unit.
  • the air conditioner 100 has, for example, an indoor unit 1 installed indoors as a load unit.
  • the indoor unit 1 and the outdoor unit 2 are connected via extension pipes 10a and 10b that are part of the refrigerant pipe.
  • a slightly flammable refrigerant such as HFO-1234yf or HFO-1234ze, or a strong flammable refrigerant such as R290 or R1270 is used.
  • These refrigerants may be used as a single refrigerant, or may be used as a mixed refrigerant in which two or more kinds are mixed.
  • a refrigerant having a flammability at or above a slight combustion level (for example, 2 L or more in the ASHRAE 34 classification) may be referred to as a “flammable refrigerant”.
  • non-flammable refrigerants such as R22 and R410A having nonflammability (for example, 1 in the ASHRAE 34 classification) can be used. These refrigerants have, for example, higher density than air under atmospheric pressure.
  • the compressor 3 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant.
  • the refrigerant flow switching device 4 switches the flow direction of the refrigerant in the refrigerant circuit 40 between the cooling operation and the heating operation.
  • a four-way valve is used as the refrigerant flow switching device 4.
  • the heat source side heat exchanger 5 is a heat exchanger that functions as a radiator (for example, a condenser) during cooling operation and functions as an evaporator during heating operation. In the heat source side heat exchanger 5, heat exchange is performed between the refrigerant circulating in the interior and the outdoor air blown by an outdoor blower fan 5f described later.
  • the decompression device 6 decompresses the high-pressure refrigerant into a low-pressure refrigerant.
  • an electronic expansion valve whose opening degree can be adjusted is used.
  • the load-side heat exchanger 7 is a heat exchanger that functions as an evaporator during cooling operation and functions as a radiator (for example, a condenser) during heating operation. In the load-side heat exchanger 7, heat exchange is performed between the refrigerant circulating in the interior and air blown by an indoor blower fan 7f described later.
  • the cooling operation is an operation for supplying a low-temperature and low-pressure refrigerant to the load-side heat exchanger 7
  • the heating operation is an operation for supplying a high-temperature and high-pressure refrigerant to the load-side heat exchanger 7. It is.
  • a compressor 3, a refrigerant flow switching device 4, a heat source side heat exchanger 5 and a pressure reducing device 6 are accommodated.
  • the outdoor unit 2 accommodates an outdoor blower fan 5 f that supplies outdoor air to the heat source side heat exchanger 5.
  • the outdoor fan 5f is installed to face the heat source side heat exchanger 5. By rotating the outdoor fan 5f, an air flow passing through the heat source side heat exchanger 5 is generated.
  • a propeller fan is used as the outdoor blower fan 5f.
  • the outdoor fan 5f is arranged, for example, on the downstream side of the heat source side heat exchanger 5 in the air flow generated by the outdoor fan 5f.
  • the outdoor unit 2 includes a refrigerant pipe connecting the extension pipe connection valve 13a on the gas side during the cooling operation and the refrigerant flow switching device 4 as a refrigerant pipe, a suction pipe 11 connected to the suction side of the compressor 3, A discharge pipe 12 connected to the discharge side of the compressor 3, a refrigerant pipe connecting the refrigerant flow switching device 4 and the heat source side heat exchanger 5, a refrigerant pipe connecting the heat source side heat exchanger 5 and the decompression device 6, And the refrigerant
  • the extension pipe connection valve 13a is a two-way valve that can be switched between open and closed, and a flare joint is attached to one end thereof.
  • the extension pipe connection valve 13b is a three-way valve that can be switched between open and closed.
  • a service port 14a used for evacuation which is a pre-operation for filling the refrigerant into the refrigerant circuit 40, is attached, and a flare joint is attached to the other end.
  • the high-temperature and high-pressure gas refrigerant compressed by the compressor 3 flows through the discharge pipe 12 during both the cooling operation and the heating operation.
  • a low-temperature and low-pressure gas refrigerant or two-phase refrigerant that has undergone an evaporating action flows through the suction pipe 11 in both the cooling operation and the heating operation.
  • a service port 14b with a low-pressure side flare joint is connected to the suction pipe 11, and a service port 14c with a flare joint on the high-pressure side is connected to the discharge pipe 12.
  • the service ports 14b and 14c are used for measuring the operating pressure by connecting a pressure gauge at the time of installation or repair of the air conditioner 100.
  • the indoor unit 1 accommodates a load side heat exchanger 7. Further, the indoor unit 1 is provided with an indoor fan 7f that supplies air to the load-side heat exchanger 7. By rotating the indoor blower fan 7f, an air flow passing through the load-side heat exchanger 7 is generated.
  • a centrifugal fan for example, a sirocco fan, a turbo fan, etc.
  • a cross flow fan for example, a diagonal fan
  • an axial fan for example, a propeller fan
  • the indoor blower fan 7f of this example is disposed on the upstream side of the load side heat exchanger 7 in the air flow generated by the indoor blower fan 7f, but is disposed on the downstream side of the load side heat exchanger 7. Also good.
  • a joint portion 15a for example, a flare joint for connecting the extension piping 10a is provided at a connection portion with the extension piping 10a on the gas side.
  • a joint part 15b for example, a flare joint for connecting the extension pipe 10b is provided in the connection part with the liquid side extension pipe 10b. It has been.
  • the indoor unit 1 includes the intake air temperature sensor 91 that detects the temperature of the indoor air sucked from the room, and the refrigerant temperature at the inlet portion during the cooling operation of the load side heat exchanger 7 (the outlet portion during the heating operation).
  • a heat exchanger inlet temperature sensor 92 to detect, a heat exchanger temperature sensor 93 to detect the refrigerant temperature (evaporation temperature or condensation temperature) of the two-phase part of the load side heat exchanger 7 are provided.
  • the indoor unit 1 is provided with a refrigerant detection means 99 (for example, a semiconductor gas sensor) described later. These sensors are configured to output detection signals to the control unit 30 that controls the indoor unit 1 or the air conditioner 100 as a whole.
  • the control unit 30 is a microcomputer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Randam Access Memory), an I / O (Input / Output) port, etc. There is.)
  • the control unit 30 can perform data communication with the operation unit of the remote controller described later.
  • the operation unit accepts an operation by the user and outputs an operation signal based on the operation to the control unit 30.
  • the control unit 30 controls the entire operation of the indoor unit 1 or the air conditioner 100 including the operation of the indoor blower fan 7f based on the operation signal from the operation unit, the detection signal from the sensors, and the like.
  • control unit 30 of the present embodiment can switch between energization and non-energization of the refrigerant detection means 99.
  • the control unit 30 may be provided in the housing of the indoor unit 1 or may be provided in the housing of the outdoor unit 2.
  • control part 30 may be comprised by the outdoor unit control part provided in the outdoor unit 2, and the indoor unit control part provided in the indoor unit 1 and capable of data communication with the outdoor unit control part.
  • a solid line arrow indicates the flow direction of the refrigerant during the cooling operation.
  • the refrigerant flow path switching device 4 switches the refrigerant flow path as indicated by a solid line, and the refrigerant circuit 40 is configured so that the low-temperature and low-pressure refrigerant flows through the load-side heat exchanger 7.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 first flows into the heat source side heat exchanger 5 through the refrigerant flow switching device 4.
  • the heat source side heat exchanger 5 functions as a condenser. That is, in the heat source side heat exchanger 5, heat exchange is performed between the refrigerant circulating in the interior and the outdoor air blown by the outdoor blower fan 5f, and the condensation heat of the refrigerant is radiated to the outdoor air. Thereby, the refrigerant flowing into the heat source side heat exchanger 5 is condensed and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flows into the decompression device 6 and is decompressed to become a low-pressure two-phase refrigerant.
  • the low-pressure two-phase refrigerant flows into the load side heat exchanger 7 of the indoor unit 1 via the extension pipe 10b.
  • the load side heat exchanger 7 functions as an evaporator. That is, in the load-side heat exchanger 7, heat exchange is performed between the refrigerant circulating inside and the air (for example, indoor air) blown by the indoor blower fan 7f, and the evaporation heat of the refrigerant is absorbed from the blown air.
  • the refrigerant flowing into the load-side heat exchanger 7 evaporates to become a low-pressure gas refrigerant or a two-phase refrigerant. Further, the air blown by the indoor blower fan 7f is cooled by the endothermic action of the refrigerant.
  • the low-pressure gas refrigerant or two-phase refrigerant evaporated in the load side heat exchanger 7 is sucked into the compressor 3 via the extension pipe 10 a and the refrigerant flow switching device 4.
  • the refrigerant sucked into the compressor 3 is compressed into a high-temperature and high-pressure gas refrigerant. In the cooling operation, the above cycle is repeated.
  • the refrigerant flow path switching device 4 switches the refrigerant flow paths as indicated by dotted lines, and the refrigerant circuit 40 is configured so that the high-temperature and high-pressure refrigerant flows through the load-side heat exchanger 7.
  • the refrigerant flows in the opposite direction to that during the cooling operation, and the load side heat exchanger 7 functions as a condenser.
  • FIG. 2 is a front view showing an appearance of the indoor unit of the air conditioner according to the embodiment of the present invention.
  • FIG. 3 is a front view schematically showing the internal structure of the indoor unit of the air conditioner according to the embodiment of the present invention.
  • FIG. 4 is a side view schematically showing the internal structure of the indoor unit of the air conditioner according to the embodiment of the present invention.
  • the left side in FIG. 4 shows the front side of the indoor unit 1 (that is, the indoor space side).
  • the indoor unit 1 is exemplified by a floor-standing indoor unit 1 installed on the floor surface of the indoor space serving as the air-conditioning target space.
  • the positional relationship (for example, vertical relationship etc.) between each structural member in the following description is a thing when installing the indoor unit 1 in the state which can be used in principle.
  • the indoor unit 1 includes a casing 111 having a vertically long rectangular parallelepiped shape.
  • a suction port 112 for sucking air in the indoor space is formed in the lower front portion of the housing 111.
  • the suction port 112 of the present embodiment is provided below the center part in the vertical direction of the casing 111 and at a position near the floor surface.
  • the air sucked from the suction port 112 is blown out into the room.
  • An outlet 113 is formed.
  • the housing 111 is a hollow box, and a front opening is formed on the front surface of the housing 111.
  • the casing 111 includes a first front panel 114a, a second front panel 114b, and a third front panel 114c that are detachably attached to the front opening.
  • the first front panel 114a, the second front panel 114b, and the third front panel 114c all have a substantially rectangular flat plate-like outer shape.
  • the first front panel 114a is detachably attached to the lower portion of the front opening of the casing 111.
  • the suction port 112 is formed in the first front panel 114a.
  • the second front panel 114b is disposed adjacent to and above the first front panel 114a, and is detachably attached to the central portion of the front opening of the housing 111 in the vertical direction.
  • the operation unit is provided on the second front panel 114b.
  • the third front panel 114c is disposed adjacent to and above the second front panel 114b, and is detachably attached to the upper portion of the front opening of the housing 111.
  • the above-described air outlet 113 is formed in the third front panel 114c.
  • the internal space of the housing 111 is roughly divided into a space 115a serving as a blower section and a space 115b positioned above the space 115a and serving as a heat exchange section.
  • the space 115a and the space 115b are partitioned by the partition portion 20.
  • the partition part 20 has a flat plate shape, for example, and is arranged substantially horizontally.
  • the partition portion 20 is formed with at least an air passage opening 20a serving as an air passage between the space 115a and the space 115b.
  • the space 115a is exposed to the front side by removing the first front panel 114a from the housing 111, and the space 115b is obtained by removing the second front panel 114b and the third front panel 114c from the housing 111. Is exposed on the front side.
  • the height at which the partition portion 20 is installed generally matches the height of the upper end of the first front panel 114a or the lower end of the second front panel 114b.
  • the partition portion 20 may be formed integrally with a fan casing 108 described later, or may be formed integrally with a drain pan described later, or as a separate body from the fan casing 108 and the drain pan. It may be formed.
  • an indoor blower fan 7f that causes an air flow from the inlet 112 to the outlet 113 to be generated in the air passage 81 in the housing 111 is disposed.
  • the indoor blower fan 7f of the present embodiment is a sirocco fan that includes a motor (not shown) and an impeller 107 that is connected to an output shaft of the motor and has a plurality of blades arranged at equal intervals in the circumferential direction, for example. is there.
  • the rotating shaft of the impeller 107 is disposed so as to be substantially parallel to the depth direction of the casing 111.
  • the rotational speed of the indoor blower fan 7f is set to be variable in multiple stages (for example, two or more stages) or continuously by control of the control unit 30 based on the set air volume set by the user.
  • the impeller 107 of the indoor fan 7f is covered with a spiral fan casing 108.
  • the fan casing 108 is formed separately from the casing 111, for example.
  • a suction opening 108 b that sucks room air into the fan casing 108 through the suction port 112 is formed.
  • the suction opening 108 b is disposed so as to face the suction port 112.
  • a blowout opening 108a for blowing out the blown air is formed.
  • the blowout opening 108 a is disposed so as to face upward, and is connected to the space 115 b through the air passage opening 20 a of the partition part 20.
  • the outlet opening 108a communicates with the space 115b via the air passage opening 20a.
  • the opening end of the outlet opening 108a and the opening end of the air passage opening 20a may be directly connected or indirectly connected via a duct member or the like.
  • an electrical component box 25 in which a microcomputer, various electrical components, a substrate, and the like constituting the control unit 30 are accommodated is provided.
  • the load side heat exchanger 7 is arranged in the air passage 81 in the space 115b.
  • a drain pan (not shown) that receives condensed water condensed on the surface of the load side heat exchanger 7 is provided below the load side heat exchanger 7.
  • the drain pan may be formed as a part of the partition part 20, or may be formed separately from the partition part 20 and disposed on the partition part 20.
  • a refrigerant detection means 99 is provided at a position near the lower side of the space 115a.
  • an energization type refrigerant detection means including an energization type gas sensor such as a semiconductor gas sensor or a hot wire type semiconductor gas sensor is used.
  • the refrigerant detection unit 99 detects, for example, the refrigerant concentration in the air around the refrigerant detection unit 99 and outputs a detection signal to the control unit 30. In the control unit 30, processing related to refrigerant leakage is executed based on the detection signal from the refrigerant detection means 99.
  • the refrigerant detection means 99 of the present embodiment is provided in a position lower in the casing 111 than the load-side heat exchanger 7 and the joint portions 15a and 15b. Thereby, at least when the indoor blower fan 7f is stopped, the refrigerant detection means 99 can reliably detect the leaked refrigerant.
  • the refrigerant detection means 99 is provided at a position closer to the lower side of the space 115a, but the installation position of the refrigerant detection means 99 may be another position.
  • FIG. 5 is a front view of the remote controller of the indoor unit of the air conditioner according to the embodiment of the present invention.
  • the remote control 26 has a display unit 26a and an operation unit 26b. When the user operates the operation unit 26b of the remote control 26, the operation start operation, the operation end operation, the operation mode switching, the set temperature, the set air volume, and the like of the air conditioner 100 are performed.
  • the display unit 26a of the remote control 26 includes a status display area 261, an abnormal code display area 262, a current time display area 263, and a handling information display area 264 in which information for determining a handling procedure for refrigerant leakage is displayed.
  • a character string indicating the refrigerant leakage is displayed in the state display area 261.
  • FIG. 5 shows a state in which the characters “Rayby Law” are displayed as an example.
  • the abnormality code display area 262 when an abnormality occurs in the air conditioner 100, a predetermined code corresponding to the abnormality content is displayed. In FIG. 5, a two-digit code is displayed as an example.
  • This code is described in a manual or the like used by a service person in charge of maintenance and repair of the air conditioner 100.
  • the service person can manually check the code displayed in the abnormal code display area 262. It is possible to check what kind of abnormality has occurred in the air conditioner 100 and determine how to deal with it. For example, as shown in FIG. 5, in a situation where a character string indicating refrigerant leakage is displayed in the state display area 261, a code indicating refrigerant leakage is displayed in the abnormal code display area 262. That is, the same information is displayed in the status display area 261 and the abnormal code display area 262.
  • FIG. 6 is a control block diagram of the indoor unit of the air conditioner according to the embodiment of the present invention.
  • Information corresponding to the operation content of the operation unit 26 b of the remote control 26 by the user and the detection result by the refrigerant detection means 99 are input to the control unit 30.
  • the control signal which controls the display part 26a of the remote control 26 and the indoor ventilation fan 7f is output.
  • the elapsed time measured by the timer 101 is input to the control unit 30.
  • the elapsed time is displayed in the countermeasure information display area 264 of the display unit 26 a of the remote control 26 under the control of the control unit 30.
  • This timer 101 may be built in the control unit 30 or may be built in the remote control 26.
  • FIG. 7 is a flowchart showing an example of the refrigerant leakage detection process executed by the control unit 30 of the air conditioner 100 according to the present embodiment.
  • the refrigerant leakage detection process is repeatedly executed at predetermined time intervals at all times including during operation and stop of the air conditioner 100 or only when the air conditioner 100 is stopped.
  • the control unit 30 acquires information on the refrigerant concentration around the refrigerant detection means 99 based on the detection signal from the refrigerant detection means 99.
  • step S2 the control unit 30 checks whether or not the refrigerant concentration around the refrigerant detection means 99 is equal to or higher than a preset threshold value. If it is confirmed that the refrigerant concentration around the refrigerant detection means 99 is equal to or higher than the threshold value, the process proceeds to step S3. For example, when the refrigerant sealed in the refrigerant circuit 40 is flammable, the threshold is set to a quarter of the lower combustion limit LFL (Lower Flammable Limit).
  • LFL Lower Flammable Limit
  • step S3 when the indoor blower fan 7f is stopped, the control unit 30 starts the operation of the indoor blower fan 7f.
  • the indoor fan 7f is already in operation, the operation is continued as it is. That is, in order to prevent an air concentration that is not suitable as a work environment due to leakage of the refrigerant, the control unit 30 forces the indoor fan 7f to be in an operating state. Further, when the leaking refrigerant is a flammable refrigerant, the control unit 30 forcibly puts the indoor blower fan 7f into an operating state in order to prevent the refrigerant concentration from reaching the flammable concentration range.
  • step S4 the control unit 30 starts the timer 101 and starts measuring elapsed time.
  • the control unit 30 displays a character string informing that the refrigerant is leaking in the state display area 261 of the display unit 26a of the remote control 26.
  • the control unit 30 displays an abnormal code for refrigerant leakage in the abnormal code display area 262.
  • the control unit 30 displays the elapsed time acquired from the timer 101 in the handling information display area 264.
  • step S2 if the refrigerant concentration around the refrigerant detection means 99 has not reached the threshold value in step S2, it is determined that the refrigerant has not leaked. In this case, the processes in steps S3 to S5 described above are not executed and the process ends.
  • the character string indicating that the refrigerant is leaking is displayed in the state display area 261 on the display unit 26a of the remote control 26.
  • the abnormality code display area 262 displays a code indicating the state of leakage
  • the countermeasure information display area 264 displays an elapsed time since the refrigerant leakage was detected and the indoor fan 7f was operated. That is, in addition to the information indicating that the refrigerant is leaking, the leakage of the refrigerant is detected, and the elapsed time after the indoor blower fan 7f is in the operating state is provided to the user.
  • the user who has confirmed that the character string indicating the refrigerant leakage is displayed in the status display area 261 indicates the code displayed in the abnormal code display area 262 and the elapsed time displayed in the countermeasure information display area 264.
  • the serviceman can accurately determine the state of refrigerant leakage in the air conditioner 100.
  • Information for judging the contents of the abnormal code and the state of refrigerant leakage is described in a manual used by service personnel. For example, the time T until the refrigerant leaks from the brazing part or the joint parts 15a and 15b of the load side heat exchanger 7 and all the refrigerant sealed in the refrigerant circuit 40 leaks is enclosed in the refrigerant circuit 40.
  • the refrigerant amount m, the assumed leakage speed v, the time T described above, and the like are also described in the serviceman's manual. Further, even when the service person is informed only by the user that the refrigerant is leaking, the service person who has arrived at the job site is not limited to the above information and the service person displayed in each display area of the display unit 26a. By confirming the manual used by the air conditioner, it is possible to accurately determine the state of refrigerant leakage in the air conditioner 100. As a result, the service person can quickly perform an appropriate initial response when the refrigerant leaks.
  • the countermeasure information display area 264 displays an elapsed time less than the time T.
  • a serviceman who has obtained information on the elapsed time from the user has a possibility that a flammable concentration range may be formed if the refrigerant remains and the leakage continues thereafter, if the refrigerant is flammable. I can understand. Therefore, it can be determined that the user should be instructed to ventilate the room. Further, even if the service person arrives at the site without obtaining such information in advance, the service person himself may check the information displayed on the display unit 26a, so that the refrigerant may remain.
  • the remote control 26 having the display unit 26a for notifying information on refrigerant leakage is provided on the design surface of the casing 111. Therefore, it is possible for a user and a service person to easily visually recognize and acquire information on refrigerant leakage.
  • the indoor unit 1 may include a battery. If the breaker is dropped and the supply of commercial power is stopped, the indoor blower fan 7f stops. However, if the indoor unit 1 is equipped with a battery, even if the supply of commercial power is interrupted, by supplying power from the battery of the indoor unit 1, the operation of the indoor fan 7f and the measurement of elapsed time by the timer 101 are performed. And the display of the information regarding the refrigerant leakage on the display unit 26a can be continuously performed.
  • the timer 101 is started after detecting the leakage of the refrigerant and starting the indoor blower fan 7f.
  • the present invention is not limited to this.
  • the timer 101 may be started, and then the indoor fan 7f may be started to operate.
  • the elapsed time measured by the timer 101 is displayed in the countermeasure information display area 264 of the display unit 26a of the remote control 26, but the present invention is not limited to this.
  • the length of the predetermined time is set so that the discharged refrigerant is not diffused by the indoor blower fan 7f to form a combustible concentration.
  • information related to refrigerant leakage and information for the serviceman to determine the handling procedure at the time of refrigerant leakage are displayed on the display unit 26a of the remote control 26, but the present invention is not limited to this.
  • a display device or a display attached separately to the air conditioner 100 may be used.
  • information regarding refrigerant leakage and information for the serviceman to determine the countermeasure procedure at the time of refrigerant leakage are notified by text display, but the present invention is not limited to this. Such information may be notified by lighting and blinking of the lamp, or may be configured to be notified by voice.
  • the indoor unit 1 of the air conditioner 100 has been described as an example, but the present invention is not limited to this.
  • the outdoor unit 2 may be provided with the above-described display unit 26a.
  • the air conditioner 100 has been described as an example in the present embodiment, the present invention is not limited to this. You may comprise as mentioned above so that the information regarding refrigerant

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is a refrigeration cycle device that enables prompt processing after the occurrence of refrigerant leakage. In this refrigeration cycle device, when a refrigerant is detected by a refrigerant detection means, a notification means notifies the occurrence of leakage of the refrigerant, and also notifies countermeasure information for determining a countermeasure procedure against said refrigerant leakage.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷媒検知機能を備えた冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle apparatus having a refrigerant detection function.
 特許文献1には、可燃性冷媒を用いた空気調和装置において、室内機の外表面に可燃性冷媒ガスを検知するためのガスセンサを備えたものが記載されている。室内機は床置形になっており、ガスセンサは室内機の下部に設けられている。この空気調和装置の制御部は、ガスセンサのセンサ検知電圧が基準値以上であれば、可燃性冷媒が漏洩したと判断して、直ちに警報器によって警報を発し、室内機内に配設されたファンを回転させる。これにより、ユーザは可燃性冷媒が漏洩したことを知ることができ、室内を換気する処置および修理のためにサービスマンを呼ぶ等の処置をとることができる。 Patent Document 1 describes an air conditioner using a flammable refrigerant, which includes a gas sensor for detecting a flammable refrigerant gas on the outer surface of an indoor unit. The indoor unit is a floor type, and the gas sensor is provided at the lower part of the indoor unit. If the sensor detection voltage of the gas sensor is equal to or higher than a reference value, the control unit of this air conditioner determines that the flammable refrigerant has leaked, immediately issues an alarm by an alarm device, and turns on the fan installed in the indoor unit. Rotate. Thereby, the user can know that the flammable refrigerant has leaked, and can take measures such as a procedure for ventilating the room and calling a service person for repair.
特許第4599699号公報Japanese Patent No. 4599699
 冷媒漏洩の連絡を受け、現場に到着したサービスマンが最初に行う処理は、冷媒回路内の冷媒の有無に応じて異なってくる。冷媒配管内の冷媒が残っている場合、サービスマンは、漏洩箇所の確認および修理を開始する前に、室内機の漏洩箇所からこれ以上冷媒が漏洩することがないように室外機の延長配管接続バルブを閉める等の対応をしなければならない。一方、冷媒配管内に冷媒が無い場合、サービスマンは、直ちに漏洩箇所の確認をし、発見された漏洩箇所を修理するという一連の作業を開始することができる。 The processing performed first by a service person who has received a refrigerant leak notification and arrived at the site varies depending on the presence or absence of refrigerant in the refrigerant circuit. If the refrigerant in the refrigerant pipe remains, the service person will connect the extension pipe of the outdoor unit so that no more refrigerant will leak from the leaked part of the indoor unit before checking and repairing the leaked part. It is necessary to take measures such as closing the valve. On the other hand, when there is no refrigerant in the refrigerant pipe, the service person can immediately check the leak location and start a series of operations for repairing the found leak location.
 しかしながら、特許文献1の空気調和装置の制御部により報知されるのは、可燃性冷媒の漏洩発生のみである。従って、室内機のメンテナンスを開始するサービスマンにとって、上述のどの段階から作業を開始すればよいのか直ちに判断することができない。その結果、冷媒の漏洩の知らせを受けたサービスマンが適切な対応を迅速に行うことができないという問題がある。 However, it is only the occurrence of leakage of the flammable refrigerant that is notified by the control unit of the air conditioner of Patent Document 1. Therefore, it is impossible for the service person who starts the maintenance of the indoor unit to immediately determine from which stage the work should be started. As a result, there is a problem that the service person who has been notified of the leakage of the refrigerant cannot quickly take appropriate action.
 本発明は、上記のような課題を解決するためになされたものであり、冷媒漏洩が発生した場合、その後の迅速な処理を可能にする冷凍サイクル装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration cycle apparatus that enables rapid processing thereafter when refrigerant leakage occurs.
 本発明に係る冷凍サイクル装置は、冷媒が循環する冷凍サイクルを構成する負荷側熱交換器と、冷媒を検知する冷媒検知手段と、送風ファンとを有し、室内に設置される室内機と、室内機を制御する制御部と、冷媒に関する情報を報知する報知手段とを備え、制御部は、冷媒検知手段により冷媒が検知されたとき、報知手段に、冷媒漏洩の対処手順を判断するための対処情報を報知させるものである。 An refrigeration cycle apparatus according to the present invention includes a load-side heat exchanger that constitutes a refrigeration cycle in which refrigerant circulates, a refrigerant detection means that detects refrigerant, and an air blower fan, and an indoor unit that is installed indoors; A control unit that controls the indoor unit; and a notification unit that notifies information related to the refrigerant. When the refrigerant is detected by the refrigerant detection unit, the control unit causes the notification unit to determine a countermeasure procedure for refrigerant leakage. The coping information is notified.
 本発明に係る冷凍サイクル装置によると、冷媒検知手段により冷媒が検知されたとき、冷媒漏洩の対処手順を判断するための対処情報が報知される。従って、冷媒漏洩に対応するサービスマンが、適切な初動処理を迅速に開始することができる。 According to the refrigeration cycle apparatus according to the present invention, when the refrigerant is detected by the refrigerant detecting means, the countermeasure information for determining the countermeasure procedure for the refrigerant leakage is notified. Therefore, the service person corresponding to the refrigerant leakage can quickly start an appropriate initial movement process.
本発明の実施の形態に係る空気調和機の概略構成を示す冷媒回路図である。It is a refrigerant circuit figure showing a schematic structure of an air harmony machine concerning an embodiment of the invention. 本発明の実施の形態に係る空気調和機の室内機の外観を示す正面図である。It is a front view which shows the external appearance of the indoor unit of the air conditioner which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和機の室内機の内部構造を模式的に示す正面図である。It is a front view which shows typically the internal structure of the indoor unit of the air conditioner which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和機の室内機の内部構造を模式的に示す側面図である。It is a side view which shows typically the internal structure of the indoor unit of the air conditioner which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和機の室内機のリモコンの正面図である。It is a front view of the remote control of the indoor unit of the air conditioner according to the embodiment of the present invention. 本発明の実施の形態に係る空気調和機の室内機の制御ブロック図である。It is a control block diagram of the indoor unit of the air conditioner according to the embodiment of the present invention. 本発明の実施の形態に係る空気調和機の制御部で実行される冷媒漏洩検知処理の一例を示すフローチャートである。It is a flowchart which shows an example of the refrigerant | coolant leak detection process performed by the control part of the air conditioner which concerns on embodiment of this invention.
 以下に、本発明における冷凍サイクル装置の実施の形態を図面に基づいて詳細に説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the refrigeration cycle apparatus according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments described below.
実施の形態.
 本発明の実施の形態に係る空気調和機について説明する。図1は、本発明の実施の形態に係る空気調和機の概略構成を示す冷媒回路図である。なお、図1を含む以下の図面では、各構成部材の寸法の関係や形状等が実際のものとは異なる場合がある。
Embodiment.
An air conditioner according to an embodiment of the present invention will be described. FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of an air conditioner according to an embodiment of the present invention. In the following drawings including FIG. 1, the dimensional relationship and shape of each component may differ from the actual ones.
 図1に示すように、空気調和機100は、冷媒を循環させる冷媒回路40を有している。冷媒回路40は、圧縮機3、冷媒流路切替装置4、熱源側熱交換器5(例えば、室外熱交換器)、減圧装置6、及び負荷側熱交換器7(例えば、室内熱交換器)が冷媒配管を介して順次環状に接続された構成を有している。また、空気調和機100は、熱源ユニットとして、例えば室外に設置される室外機2を有している。さらに、空気調和機100は、負荷ユニットとして、例えば室内に設置される室内機1を有している。室内機1と室外機2との間は、冷媒配管の一部である延長配管10a、10bを介して接続されている。 As shown in FIG. 1, the air conditioner 100 has a refrigerant circuit 40 for circulating the refrigerant. The refrigerant circuit 40 includes a compressor 3, a refrigerant flow switching device 4, a heat source side heat exchanger 5 (for example, an outdoor heat exchanger), a decompression device 6, and a load side heat exchanger 7 (for example, an indoor heat exchanger). Are sequentially connected in an annular shape through refrigerant piping. Moreover, the air conditioner 100 has the outdoor unit 2 installed, for example, outdoors as a heat source unit. Furthermore, the air conditioner 100 has, for example, an indoor unit 1 installed indoors as a load unit. The indoor unit 1 and the outdoor unit 2 are connected via extension pipes 10a and 10b that are part of the refrigerant pipe.
 冷媒回路40を循環する冷媒としては、例えば、HFO-1234yf、HFO-1234ze等の微燃性冷媒、又は、R290、R1270等の強燃性冷媒が用いられる。これらの冷媒は単一冷媒として用いられてもよいし、2種以上が混合された混合冷媒として用いられてもよい。以下、微燃レベル以上(例えば、ASHRAE34の分類で2L以上)の可燃性を有する冷媒のことを「可燃性冷媒」という場合がある。また、冷媒回路40を循環する冷媒としては、不燃性(例えば、ASHRAE34の分類で1)を有するR22、R410A等の不燃性冷媒を用いることもできる。これらの冷媒は、例えば、大気圧下において空気よりも大きい密度を有している。 As the refrigerant circulating in the refrigerant circuit 40, for example, a slightly flammable refrigerant such as HFO-1234yf or HFO-1234ze, or a strong flammable refrigerant such as R290 or R1270 is used. These refrigerants may be used as a single refrigerant, or may be used as a mixed refrigerant in which two or more kinds are mixed. Hereinafter, a refrigerant having a flammability at or above a slight combustion level (for example, 2 L or more in the ASHRAE 34 classification) may be referred to as a “flammable refrigerant”. Further, as the refrigerant circulating in the refrigerant circuit 40, non-flammable refrigerants such as R22 and R410A having nonflammability (for example, 1 in the ASHRAE 34 classification) can be used. These refrigerants have, for example, higher density than air under atmospheric pressure.
 圧縮機3は、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出する流体機械である。冷媒流路切替装置4は、冷房運転時と暖房運転時とで冷媒回路40内の冷媒の流れ方向を切り替えるものである。冷媒流路切替装置4としては、例えば四方弁が用いられる。熱源側熱交換器5は、冷房運転時には放熱器(例えば、凝縮器)として機能し、暖房運転時には蒸発器として機能する熱交換器である。熱源側熱交換器5では、内部を流通する冷媒と、後述する室外送風ファン5fにより送風される室外空気との熱交換が行われる。減圧装置6は、高圧冷媒を減圧して低圧冷媒とするものである。減圧装置6としては、例えば開度を調節可能な電子膨張弁などが用いられる。負荷側熱交換器7は、冷房運転時には蒸発器として機能し、暖房運転時には放熱器(例えば、凝縮器)として機能する熱交換器である。負荷側熱交換器7では、内部を流通する冷媒と、後述する室内送風ファン7fにより送風される空気との熱交換が行われる。ここで、冷房運転とは、負荷側熱交換器7に低温低圧の冷媒を供給する運転のことであり、暖房運転とは、負荷側熱交換器7に高温高圧の冷媒を供給する運転のことである。 The compressor 3 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant. The refrigerant flow switching device 4 switches the flow direction of the refrigerant in the refrigerant circuit 40 between the cooling operation and the heating operation. For example, a four-way valve is used as the refrigerant flow switching device 4. The heat source side heat exchanger 5 is a heat exchanger that functions as a radiator (for example, a condenser) during cooling operation and functions as an evaporator during heating operation. In the heat source side heat exchanger 5, heat exchange is performed between the refrigerant circulating in the interior and the outdoor air blown by an outdoor blower fan 5f described later. The decompression device 6 decompresses the high-pressure refrigerant into a low-pressure refrigerant. As the decompression device 6, for example, an electronic expansion valve whose opening degree can be adjusted is used. The load-side heat exchanger 7 is a heat exchanger that functions as an evaporator during cooling operation and functions as a radiator (for example, a condenser) during heating operation. In the load-side heat exchanger 7, heat exchange is performed between the refrigerant circulating in the interior and air blown by an indoor blower fan 7f described later. Here, the cooling operation is an operation for supplying a low-temperature and low-pressure refrigerant to the load-side heat exchanger 7, and the heating operation is an operation for supplying a high-temperature and high-pressure refrigerant to the load-side heat exchanger 7. It is.
 室外機2には、圧縮機3、冷媒流路切替装置4、熱源側熱交換器5及び減圧装置6が収容されている。また、室外機2には、熱源側熱交換器5に室外空気を供給する室外送風ファン5fが収容されている。室外送風ファン5fは、熱源側熱交換器5に対向して設置されている。室外送風ファン5fを回転させることで、熱源側熱交換器5を通過する空気流が生成される。室外送風ファン5fとしては、例えばプロペラファンが用いられている。室外送風ファン5fは、当該室外送風ファン5fが生成する空気流において、例えば熱源側熱交換器5の下流側に配置されている。 In the outdoor unit 2, a compressor 3, a refrigerant flow switching device 4, a heat source side heat exchanger 5 and a pressure reducing device 6 are accommodated. In addition, the outdoor unit 2 accommodates an outdoor blower fan 5 f that supplies outdoor air to the heat source side heat exchanger 5. The outdoor fan 5f is installed to face the heat source side heat exchanger 5. By rotating the outdoor fan 5f, an air flow passing through the heat source side heat exchanger 5 is generated. For example, a propeller fan is used as the outdoor blower fan 5f. The outdoor fan 5f is arranged, for example, on the downstream side of the heat source side heat exchanger 5 in the air flow generated by the outdoor fan 5f.
 室外機2には、冷媒配管として、冷房運転時にガス側となる延長配管接続バルブ13aと冷媒流路切替装置4とを繋ぐ冷媒配管、圧縮機3の吸入側に接続されている吸入配管11、圧縮機3の吐出側に接続されている吐出配管12、冷媒流路切替装置4と熱源側熱交換器5とを繋ぐ冷媒配管、熱源側熱交換器5と減圧装置6とを繋ぐ冷媒配管、及び、冷房運転時に液側となる延長配管接続バルブ13bと減圧装置6とを繋ぐ冷媒配管、が配置されている。延長配管接続バルブ13aは、開放及び閉止の切替えが可能な二方弁で構成されており、その一端にフレア継手が取り付けられている。また、延長配管接続バルブ13bは、開放及び閉止の切替えが可能な三方弁で構成されている。延長配管接続バルブ13bの一端には、冷媒回路40に冷媒を充填する前作業である真空引きの際に使用するサービス口14aが取り付けられ、他の一端にはフレア継手が取り付けられている。 The outdoor unit 2 includes a refrigerant pipe connecting the extension pipe connection valve 13a on the gas side during the cooling operation and the refrigerant flow switching device 4 as a refrigerant pipe, a suction pipe 11 connected to the suction side of the compressor 3, A discharge pipe 12 connected to the discharge side of the compressor 3, a refrigerant pipe connecting the refrigerant flow switching device 4 and the heat source side heat exchanger 5, a refrigerant pipe connecting the heat source side heat exchanger 5 and the decompression device 6, And the refrigerant | coolant piping which connects the extended piping connection valve 13b and the decompression device 6 which become a liquid side at the time of cooling operation is arrange | positioned. The extension pipe connection valve 13a is a two-way valve that can be switched between open and closed, and a flare joint is attached to one end thereof. The extension pipe connection valve 13b is a three-way valve that can be switched between open and closed. At one end of the extension pipe connection valve 13b, a service port 14a used for evacuation, which is a pre-operation for filling the refrigerant into the refrigerant circuit 40, is attached, and a flare joint is attached to the other end.
 吐出配管12には、冷房運転時及び暖房運転時のいずれにおいても、圧縮機3で圧縮された高温高圧のガス冷媒が流れる。吸入配管11には、冷房運転時及び暖房運転時のいずれにおいても、蒸発作用を経た低温低圧のガス冷媒又は二相冷媒が流れる。吸入配管11には、低圧側のフレア継手付きのサービス口14bが接続されており、吐出配管12には、高圧側のフレア継手付きのサービス口14cが接続されている。サービス口14b、14cは、空気調和機100の据付け時や修理時の試運転の際に圧力計を接続して、運転圧力を計測するために使用される。 The high-temperature and high-pressure gas refrigerant compressed by the compressor 3 flows through the discharge pipe 12 during both the cooling operation and the heating operation. A low-temperature and low-pressure gas refrigerant or two-phase refrigerant that has undergone an evaporating action flows through the suction pipe 11 in both the cooling operation and the heating operation. A service port 14b with a low-pressure side flare joint is connected to the suction pipe 11, and a service port 14c with a flare joint on the high-pressure side is connected to the discharge pipe 12. The service ports 14b and 14c are used for measuring the operating pressure by connecting a pressure gauge at the time of installation or repair of the air conditioner 100.
 室内機1には、負荷側熱交換器7が収容されている。また、室内機1には、負荷側熱交換器7に空気を供給する室内送風ファン7fが設置されている。室内送風ファン7fを回転させることで、負荷側熱交換器7を通過する空気流が生成される。室内送風ファン7fとしては、室内機1の形態によって、遠心ファン(例えば、シロッコファン、ターボファン等)、クロスフローファン、斜流ファン、軸流ファン(例えば、プロペラファン)などが用いられる。本例の室内送風ファン7fは、当該室内送風ファン7fが生成する空気流において負荷側熱交換器7の上流側に配置されているが、負荷側熱交換器7の下流側に配置されていてもよい。 The indoor unit 1 accommodates a load side heat exchanger 7. Further, the indoor unit 1 is provided with an indoor fan 7f that supplies air to the load-side heat exchanger 7. By rotating the indoor blower fan 7f, an air flow passing through the load-side heat exchanger 7 is generated. As the indoor fan 7f, a centrifugal fan (for example, a sirocco fan, a turbo fan, etc.), a cross flow fan, a diagonal fan, an axial fan (for example, a propeller fan), or the like is used depending on the form of the indoor unit 1. The indoor blower fan 7f of this example is disposed on the upstream side of the load side heat exchanger 7 in the air flow generated by the indoor blower fan 7f, but is disposed on the downstream side of the load side heat exchanger 7. Also good.
 室内機1の冷媒配管のうちガス側の室内配管9aにおいて、ガス側の延長配管10aとの接続部には、延長配管10aを接続するための継手部15a(例えば、フレア継手)が設けられている。また、室内機1の冷媒配管のうち液側の室内配管9bにおいて、液側の延長配管10bとの接続部には、延長配管10bを接続するための継手部15b(例えば、フレア継手)が設けられている。 In the indoor piping 9a on the gas side of the refrigerant piping of the indoor unit 1, a joint portion 15a (for example, a flare joint) for connecting the extension piping 10a is provided at a connection portion with the extension piping 10a on the gas side. Yes. In addition, in the liquid side indoor pipe 9b among the refrigerant pipes of the indoor unit 1, a joint part 15b (for example, a flare joint) for connecting the extension pipe 10b is provided in the connection part with the liquid side extension pipe 10b. It has been.
 また、室内機1には、室内から吸い込まれる室内空気の温度を検出する吸込空気温度センサ91、負荷側熱交換器7の冷房運転時の入口部(暖房運転時の出口部)の冷媒温度を検出する熱交換器入口温度センサ92、負荷側熱交換器7の二相部の冷媒温度(蒸発温度又は凝縮温度)を検出する熱交換器温度センサ93等が設けられている。さらに、室内機1には、後述する冷媒検知手段99(例えば、半導体式ガスセンサ)が設けられている。これらのセンサ類は、室内機1又は空気調和機100全体を制御する制御部30に検出信号を出力するようになっている。 In addition, the indoor unit 1 includes the intake air temperature sensor 91 that detects the temperature of the indoor air sucked from the room, and the refrigerant temperature at the inlet portion during the cooling operation of the load side heat exchanger 7 (the outlet portion during the heating operation). A heat exchanger inlet temperature sensor 92 to detect, a heat exchanger temperature sensor 93 to detect the refrigerant temperature (evaporation temperature or condensation temperature) of the two-phase part of the load side heat exchanger 7 are provided. Furthermore, the indoor unit 1 is provided with a refrigerant detection means 99 (for example, a semiconductor gas sensor) described later. These sensors are configured to output detection signals to the control unit 30 that controls the indoor unit 1 or the air conditioner 100 as a whole.
 制御部30は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Randam Acces Memory)、I/O(Input/Output)ポート等を備えたマイクロコンピュータ(以下、「マイコン」という場合がある。)を有している。制御部30は、後述するリモコンの操作部との間で相互にデータ通信を行うことができるようになっている。操作部は、ユーザによる操作を受け付け、操作に基づく操作信号を制御部30に出力するものである。本実施の形態の制御部30は、操作部からの操作信号やセンサ類からの検出信号等に基づき、室内送風ファン7fの動作を含む室内機1又は空気調和機100全体の動作を制御する。また、本実施の形態の制御部30は、冷媒検知手段99への通電及び非通電を切り替えることができるようになっている。制御部30は、室内機1の筐体内に設けられていてもよいし、室外機2の筐体内に設けられていてもよい。また、制御部30は、室外機2に設けられる室外機制御部と、室内機1に設けられ、室外機制御部とデータ通信可能な室内機制御部と、により構成されていてもよい。 The control unit 30 is a microcomputer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Randam Access Memory), an I / O (Input / Output) port, etc. There is.) The control unit 30 can perform data communication with the operation unit of the remote controller described later. The operation unit accepts an operation by the user and outputs an operation signal based on the operation to the control unit 30. The control unit 30 according to the present embodiment controls the entire operation of the indoor unit 1 or the air conditioner 100 including the operation of the indoor blower fan 7f based on the operation signal from the operation unit, the detection signal from the sensors, and the like. In addition, the control unit 30 of the present embodiment can switch between energization and non-energization of the refrigerant detection means 99. The control unit 30 may be provided in the housing of the indoor unit 1 or may be provided in the housing of the outdoor unit 2. Moreover, the control part 30 may be comprised by the outdoor unit control part provided in the outdoor unit 2, and the indoor unit control part provided in the indoor unit 1 and capable of data communication with the outdoor unit control part.
 次に、空気調和機100の冷媒回路40の動作について説明する。まず、冷房運転時の動作について説明する。図1において、実線矢印は、冷房運転時の冷媒の流れ方向を示している。冷房運転では、冷媒流路切替装置4によって冷媒流路が実線で示すように切り替えられ、負荷側熱交換器7に低温低圧の冷媒が流れるように冷媒回路40が構成される。 Next, the operation of the refrigerant circuit 40 of the air conditioner 100 will be described. First, the operation during the cooling operation will be described. In FIG. 1, a solid line arrow indicates the flow direction of the refrigerant during the cooling operation. In the cooling operation, the refrigerant flow path switching device 4 switches the refrigerant flow path as indicated by a solid line, and the refrigerant circuit 40 is configured so that the low-temperature and low-pressure refrigerant flows through the load-side heat exchanger 7.
 圧縮機3から吐出された高温高圧のガス冷媒は、冷媒流路切替装置4を経てまず熱源側熱交換器5へと流入する。冷房運転では、熱源側熱交換器5は凝縮器として機能する。すなわち、熱源側熱交換器5では、内部を流通する冷媒と、室外送風ファン5fにより送風される室外空気との熱交換が行われ、冷媒の凝縮熱が室外空気に放熱される。これにより、熱源側熱交換器5に流入した冷媒は、凝縮して高圧の液冷媒となる。高圧の液冷媒は、減圧装置6に流入し、減圧されて低圧の二相冷媒となる。低圧の二相冷媒は、延長配管10bを経由して室内機1の負荷側熱交換器7に流入する。冷房運転では、負荷側熱交換器7は蒸発器として機能する。すなわち、負荷側熱交換器7では、内部を流通する冷媒と、室内送風ファン7fにより送風される空気(例えば、室内空気)との熱交換が行われ、冷媒の蒸発熱が送風空気から吸熱される。これにより、負荷側熱交換器7に流入した冷媒は、蒸発して低圧のガス冷媒又は二相冷媒となる。また、室内送風ファン7fにより送風される空気は、冷媒の吸熱作用によって冷却される。負荷側熱交換器7で蒸発した低圧のガス冷媒又は二相冷媒は、延長配管10a及び冷媒流路切替装置4を経由して圧縮機3に吸入される。圧縮機3に吸入された冷媒は、圧縮されて高温高圧のガス冷媒となる。冷房運転では、以上のサイクルが繰り返される。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 3 first flows into the heat source side heat exchanger 5 through the refrigerant flow switching device 4. In the cooling operation, the heat source side heat exchanger 5 functions as a condenser. That is, in the heat source side heat exchanger 5, heat exchange is performed between the refrigerant circulating in the interior and the outdoor air blown by the outdoor blower fan 5f, and the condensation heat of the refrigerant is radiated to the outdoor air. Thereby, the refrigerant flowing into the heat source side heat exchanger 5 is condensed and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flows into the decompression device 6 and is decompressed to become a low-pressure two-phase refrigerant. The low-pressure two-phase refrigerant flows into the load side heat exchanger 7 of the indoor unit 1 via the extension pipe 10b. In the cooling operation, the load side heat exchanger 7 functions as an evaporator. That is, in the load-side heat exchanger 7, heat exchange is performed between the refrigerant circulating inside and the air (for example, indoor air) blown by the indoor blower fan 7f, and the evaporation heat of the refrigerant is absorbed from the blown air. The Thereby, the refrigerant flowing into the load-side heat exchanger 7 evaporates to become a low-pressure gas refrigerant or a two-phase refrigerant. Further, the air blown by the indoor blower fan 7f is cooled by the endothermic action of the refrigerant. The low-pressure gas refrigerant or two-phase refrigerant evaporated in the load side heat exchanger 7 is sucked into the compressor 3 via the extension pipe 10 a and the refrigerant flow switching device 4. The refrigerant sucked into the compressor 3 is compressed into a high-temperature and high-pressure gas refrigerant. In the cooling operation, the above cycle is repeated.
 次に、暖房運転時の動作について説明する。図1において、点線矢印は、暖房運転時の冷媒の流れ方向を示している。暖房運転では、冷媒流路切替装置4によって冷媒流路が点線で示すように切り替えられ、負荷側熱交換器7に高温高圧の冷媒が流れるように冷媒回路40が構成される。暖房運転時には、冷媒は冷房運転時とは逆方向に流れ、負荷側熱交換器7は凝縮器として機能する。すなわち、負荷側熱交換器7では、内部を流通する冷媒と、室内送風ファン7fにより送風される空気との熱交換が行われ、冷媒の凝縮熱が送風空気に放熱される。これにより、室内送風ファン7fにより送風される空気は、冷媒の放熱作用によって加熱される。 Next, the operation during heating operation will be described. In FIG. 1, the dotted line arrows indicate the flow direction of the refrigerant during the heating operation. In the heating operation, the refrigerant flow path switching device 4 switches the refrigerant flow paths as indicated by dotted lines, and the refrigerant circuit 40 is configured so that the high-temperature and high-pressure refrigerant flows through the load-side heat exchanger 7. During the heating operation, the refrigerant flows in the opposite direction to that during the cooling operation, and the load side heat exchanger 7 functions as a condenser. That is, in the load-side heat exchanger 7, heat exchange is performed between the refrigerant circulating inside and the air blown by the indoor blower fan 7f, and the heat of condensation of the refrigerant is radiated to the blown air. Thereby, the air blown by the indoor fan 7f is heated by the heat radiation action of the refrigerant.
 図2は、本発明の実施の形態に係る空気調和機の室内機の外観を示す正面図である。図3は、本発明の実施の形態に係る空気調和機の室内機の内部構造を模式的に示す正面図である。図4は、本発明の実施の形態に係る空気調和機の室内機の内部構造を模式的に示す側面図である。図4における左方は、室内機1の前面側(すなわち、室内空間側)を示している。本実施の形態では、室内機1として、空調対象空間となる室内空間の床面上に設置される床置形の室内機1を例示している。なお、以下の説明における各構成部材同士の位置関係(例えば、上下関係等)は、原則として、室内機1を使用可能な状態に設置したときのものである。 FIG. 2 is a front view showing an appearance of the indoor unit of the air conditioner according to the embodiment of the present invention. FIG. 3 is a front view schematically showing the internal structure of the indoor unit of the air conditioner according to the embodiment of the present invention. FIG. 4 is a side view schematically showing the internal structure of the indoor unit of the air conditioner according to the embodiment of the present invention. The left side in FIG. 4 shows the front side of the indoor unit 1 (that is, the indoor space side). In the present embodiment, the indoor unit 1 is exemplified by a floor-standing indoor unit 1 installed on the floor surface of the indoor space serving as the air-conditioning target space. In addition, the positional relationship (for example, vertical relationship etc.) between each structural member in the following description is a thing when installing the indoor unit 1 in the state which can be used in principle.
 図2~4に示すように、室内機1は、縦長の直方体状の形状を有する筐体111を備えている。筐体111の前面下部には、室内空間の空気を吸い込む吸込口112が形成されている。本実施の形態の吸込口112は、筐体111の上下方向において中央部よりも下方であり、床面近傍の位置に設けられている。筐体111の前面上部、すなわち吸込口112よりも高さの高い位置(例えば、筐体111の上下方向における中央部よりも上方)には、吸込口112から吸い込まれた空気を室内に吹き出す吹出口113が形成されている。 As shown in FIGS. 2 to 4, the indoor unit 1 includes a casing 111 having a vertically long rectangular parallelepiped shape. A suction port 112 for sucking air in the indoor space is formed in the lower front portion of the housing 111. The suction port 112 of the present embodiment is provided below the center part in the vertical direction of the casing 111 and at a position near the floor surface. At the upper part of the front surface of the casing 111, that is, at a position higher than the suction port 112 (for example, above the center in the vertical direction of the casing 111), the air sucked from the suction port 112 is blown out into the room. An outlet 113 is formed.
 筐体111は中空の箱体であり、筐体111の前面には前面開口部が形成されている。筐体111は、前面開口部に対して着脱可能に取り付けられる第1前面パネル114a、第2前面パネル114b及び第3前面パネル114cを備えている。第1前面パネル114a、第2前面パネル114b及び第3前面パネル114cは、いずれも略長方形平板状の外形状を有している。第1前面パネル114aは、筐体111の前面開口部の下部に対して着脱可能に取り付けられている。第1前面パネル114aには、上記の吸込口112が形成されている。第2前面パネル114bは、第1前面パネル114aの上方に隣接して配置されており、筐体111の前面開口部の上下方向における中央部に対して着脱可能に取り付けられている。第2前面パネル114bには、上記の操作部が設けられている。第3前面パネル114cは、第2前面パネル114bの上方に隣接して配置されており、筐体111の前面開口部の上部に対して着脱可能に取り付けられている。第3前面パネル114cには、上記の吹出口113が形成されている。 The housing 111 is a hollow box, and a front opening is formed on the front surface of the housing 111. The casing 111 includes a first front panel 114a, a second front panel 114b, and a third front panel 114c that are detachably attached to the front opening. The first front panel 114a, the second front panel 114b, and the third front panel 114c all have a substantially rectangular flat plate-like outer shape. The first front panel 114a is detachably attached to the lower portion of the front opening of the casing 111. The suction port 112 is formed in the first front panel 114a. The second front panel 114b is disposed adjacent to and above the first front panel 114a, and is detachably attached to the central portion of the front opening of the housing 111 in the vertical direction. The operation unit is provided on the second front panel 114b. The third front panel 114c is disposed adjacent to and above the second front panel 114b, and is detachably attached to the upper portion of the front opening of the housing 111. The above-described air outlet 113 is formed in the third front panel 114c.
 筐体111の内部空間は、送風部となる空間115aと、空間115aの上方に位置し、熱交換部となる空間115bと、に大まかに分けられている。空間115aと空間115bとの間は、仕切部20によって仕切られている。仕切部20は、例えば、平板状の形状を有しており、概ね水平に配置されている。仕切部20には、空間115aと空間115bとの間の風路となる風路開口部20aが少なくとも形成されている。空間115aは、第1前面パネル114aを筐体111から取り外すことによって前面側に露出するようになっており、空間115bは、第2前面パネル114b及び第3前面パネル114cを筐体111から取り外すことによって前面側に露出するようになっている。すなわち、仕切部20が設置されている高さは、第1前面パネル114aの上端又は第2前面パネル114bの下端の高さと概ね一致している。ここで、仕切部20は、後述するファンケーシング108と一体的に形成されていてもよいし、後述するドレンパンと一体的に形成されていてもよいし、ファンケーシング108及びドレンパンとは別体として形成されていてもよい。 The internal space of the housing 111 is roughly divided into a space 115a serving as a blower section and a space 115b positioned above the space 115a and serving as a heat exchange section. The space 115a and the space 115b are partitioned by the partition portion 20. The partition part 20 has a flat plate shape, for example, and is arranged substantially horizontally. The partition portion 20 is formed with at least an air passage opening 20a serving as an air passage between the space 115a and the space 115b. The space 115a is exposed to the front side by removing the first front panel 114a from the housing 111, and the space 115b is obtained by removing the second front panel 114b and the third front panel 114c from the housing 111. Is exposed on the front side. That is, the height at which the partition portion 20 is installed generally matches the height of the upper end of the first front panel 114a or the lower end of the second front panel 114b. Here, the partition portion 20 may be formed integrally with a fan casing 108 described later, or may be formed integrally with a drain pan described later, or as a separate body from the fan casing 108 and the drain pan. It may be formed.
 空間115aには、吸込口112から吹出口113に向かう空気の流れを筐体111内の風路81に生じさせる室内送風ファン7fが配置されている。本実施の形態の室内送風ファン7fは、不図示のモータと、モータの出力軸に接続され、複数の翼が周方向に例えば等間隔で配置された羽根車107と、を備えたシロッコファンである。羽根車107の回転軸は、筐体111の奥行方向とほぼ平行になるように配置されている。室内送風ファン7fの回転速度は、ユーザに設定された設定風量等に基づいた制御部30の制御により、多段階(例えば、2段階以上)又は連続的に可変に設定される。 In the space 115a, an indoor blower fan 7f that causes an air flow from the inlet 112 to the outlet 113 to be generated in the air passage 81 in the housing 111 is disposed. The indoor blower fan 7f of the present embodiment is a sirocco fan that includes a motor (not shown) and an impeller 107 that is connected to an output shaft of the motor and has a plurality of blades arranged at equal intervals in the circumferential direction, for example. is there. The rotating shaft of the impeller 107 is disposed so as to be substantially parallel to the depth direction of the casing 111. The rotational speed of the indoor blower fan 7f is set to be variable in multiple stages (for example, two or more stages) or continuously by control of the control unit 30 based on the set air volume set by the user.
 室内送風ファン7fの羽根車107は、渦巻状のファンケーシング108で覆われている。ファンケーシング108は、例えば筐体111とは別体で形成されている。ファンケーシング108の渦巻中心付近には、吸込口112を介してファンケーシング108内に室内空気を吸い込む吸込開口部108bが形成されている。吸込開口部108bは、吸込口112に対向するように配置されている。また、ファンケーシング108の渦巻の接線方向には、送風空気を吹き出す吹出開口部108aが形成されている。吹出開口部108aは、上方を向くように配置されており、仕切部20の風路開口部20aを介して空間115bに接続されている。言い換えれば、吹出開口部108aは、風路開口部20aを介して空間115bと連通している。吹出開口部108aの開口端と風路開口部20aの開口端との間は、直接繋がっていてもよいし、ダクト部材等を介して間接的に繋がっていてもよい。 The impeller 107 of the indoor fan 7f is covered with a spiral fan casing 108. The fan casing 108 is formed separately from the casing 111, for example. In the vicinity of the spiral center of the fan casing 108, a suction opening 108 b that sucks room air into the fan casing 108 through the suction port 112 is formed. The suction opening 108 b is disposed so as to face the suction port 112. Further, in the tangential direction of the spiral of the fan casing 108, a blowout opening 108a for blowing out the blown air is formed. The blowout opening 108 a is disposed so as to face upward, and is connected to the space 115 b through the air passage opening 20 a of the partition part 20. In other words, the outlet opening 108a communicates with the space 115b via the air passage opening 20a. The opening end of the outlet opening 108a and the opening end of the air passage opening 20a may be directly connected or indirectly connected via a duct member or the like.
 また、空間115aには、例えば制御部30を構成するマイコン、各種電気部品、基板などが収容される電気品箱25が設けられている。 Further, in the space 115a, for example, an electrical component box 25 in which a microcomputer, various electrical components, a substrate, and the like constituting the control unit 30 are accommodated is provided.
 空間115b内の風路81には、負荷側熱交換器7が配置されている。負荷側熱交換器7の下方には、負荷側熱交換器7の表面で凝縮した凝縮水を受けるドレンパン(図示せず)が設けられている。ドレンパンは、仕切部20の一部として形成されていてもよいし、仕切部20とは別体として形成されて仕切部20上に配置されていてもよい。 The load side heat exchanger 7 is arranged in the air passage 81 in the space 115b. A drain pan (not shown) that receives condensed water condensed on the surface of the load side heat exchanger 7 is provided below the load side heat exchanger 7. The drain pan may be formed as a part of the partition part 20, or may be formed separately from the partition part 20 and disposed on the partition part 20.
 空間115aの下方寄りの位置には、冷媒検知手段99が設けられている。冷媒検知手段99としては、半導体式ガスセンサ又は熱線型半導体式ガスセンサ等の通電式ガスセンサを含む通電式の冷媒検知手段が用いられる。冷媒検知手段99は、例えば、当該冷媒検知手段99の周囲の空気中における冷媒濃度を検知し、検知信号を制御部30に出力する。制御部30では、冷媒検知手段99からの検知信号に基づき冷媒の漏洩に関する処理が実行される。 A refrigerant detection means 99 is provided at a position near the lower side of the space 115a. As the refrigerant detection means 99, an energization type refrigerant detection means including an energization type gas sensor such as a semiconductor gas sensor or a hot wire type semiconductor gas sensor is used. The refrigerant detection unit 99 detects, for example, the refrigerant concentration in the air around the refrigerant detection unit 99 and outputs a detection signal to the control unit 30. In the control unit 30, processing related to refrigerant leakage is executed based on the detection signal from the refrigerant detection means 99.
 室内機1において冷媒漏洩のおそれがあるのは、負荷側熱交換器7のろう付け部及び継手部15a、15bである。また、本実施の形態で用いられる冷媒は、大気圧下において空気よりも大きい密度を有している。したがって、本実施の形態の冷媒検知手段99は、筐体111内において負荷側熱交換器7及び継手部15a、15bよりも高さが低い位置に設けられている。これにより、少なくとも室内送風ファン7fの停止時において、冷媒検知手段99では、漏洩した冷媒を確実に検知することができる。なお、本実施の形態では、冷媒検知手段99が空間115aの下方寄りの位置に設けられているが、冷媒検知手段99の設置位置は他の位置であってもよい。 In the indoor unit 1, there is a risk of refrigerant leakage in the brazed portion and the joint portions 15 a and 15 b of the load side heat exchanger 7. Further, the refrigerant used in the present embodiment has a density higher than that of air under atmospheric pressure. Therefore, the refrigerant detection means 99 of the present embodiment is provided in a position lower in the casing 111 than the load-side heat exchanger 7 and the joint portions 15a and 15b. Thereby, at least when the indoor blower fan 7f is stopped, the refrigerant detection means 99 can reliably detect the leaked refrigerant. In the present embodiment, the refrigerant detection means 99 is provided at a position closer to the lower side of the space 115a, but the installation position of the refrigerant detection means 99 may be another position.
 図2に示すように、筐体111の前面のうち、吸込口112よりも上方で吹出口113よりも下方には、リモコン26が配置されている。すなわち、リモコン26は筐体111の意匠面に設けられている。図5は、本発明の実施の形態に係る空気調和機の室内機のリモコンの正面図である。リモコン26は、表示部26aと操作部26bとを有している。リモコン26の操作部26bをユーザが操作することにより、空気調和機100の運転開始操作、運転終了操作、運転モードの切替え、設定温度及び設定風量の設定などが行われる。 As shown in FIG. 2, a remote controller 26 is disposed on the front surface of the casing 111 above the suction port 112 and below the air outlet 113. That is, the remote control 26 is provided on the design surface of the casing 111. FIG. 5 is a front view of the remote controller of the indoor unit of the air conditioner according to the embodiment of the present invention. The remote control 26 has a display unit 26a and an operation unit 26b. When the user operates the operation unit 26b of the remote control 26, the operation start operation, the operation end operation, the operation mode switching, the set temperature, the set air volume, and the like of the air conditioner 100 are performed.
 リモコン26の表示部26aは、状態表示領域261と、異常コード表示領域262と、現在時刻表示領域263と、冷媒漏洩の対処手順を判断するための情報が表示される対処情報表示領域264とを有している。制御部30により冷媒が漏洩していると判断されると、状態表示領域261には冷媒漏洩を示す文字列が表示される。図5には、その一例として「レイバイロウエイ」という文字が表示されている状態が示されている。異常コード表示領域262には、空気調和機100に異常が発生した場合、その異常内容に対応して予め定められているコードが表示される。図5には、その一例として2桁のコードが表示されている。このコードは、空気調和機100の保守および修理を担当するサービスマンが使用するマニュアル等に記載されており、サービスマンは、異常コード表示領域262に表示されているコードをマニュアルで確認することにより、空気調和機100にどのような異常が発生しているかを確認し、どのように対処すべきかを判断することできるようになっている。例えば、図5に示すように、状態表示領域261に冷媒漏洩を示す文字列が表示される状況において、異常コード表示領域262には、冷媒漏洩を意味するコードが表示される。すなわち、状態表示領域261と異常コード表示領域262には、同じ内容の情報が表示される。 The display unit 26a of the remote control 26 includes a status display area 261, an abnormal code display area 262, a current time display area 263, and a handling information display area 264 in which information for determining a handling procedure for refrigerant leakage is displayed. Have. When the control unit 30 determines that the refrigerant is leaking, a character string indicating the refrigerant leakage is displayed in the state display area 261. FIG. 5 shows a state in which the characters “Rayby Law” are displayed as an example. In the abnormality code display area 262, when an abnormality occurs in the air conditioner 100, a predetermined code corresponding to the abnormality content is displayed. In FIG. 5, a two-digit code is displayed as an example. This code is described in a manual or the like used by a service person in charge of maintenance and repair of the air conditioner 100. The service person can manually check the code displayed in the abnormal code display area 262. It is possible to check what kind of abnormality has occurred in the air conditioner 100 and determine how to deal with it. For example, as shown in FIG. 5, in a situation where a character string indicating refrigerant leakage is displayed in the state display area 261, a code indicating refrigerant leakage is displayed in the abnormal code display area 262. That is, the same information is displayed in the status display area 261 and the abnormal code display area 262.
 図6は、本発明の実施の形態に係る空気調和機の室内機の制御ブロック図である。制御部30には、ユーザによるリモコン26の操作部26bの操作内容に対応する情報、冷媒検知手段99による検知結果が入力される。制御部30からは、リモコン26の表示部26a、室内送風ファン7fを制御する制御信号が出力される。タイマー101により計測される経過時間は制御部30に入力される。経過時間は、制御部30の制御により、リモコン26の表示部26aの対処情報表示領域264に表示される。このタイマー101は、制御部30に内蔵されていてもよいし、リモコン26に内蔵されていてもよい。 FIG. 6 is a control block diagram of the indoor unit of the air conditioner according to the embodiment of the present invention. Information corresponding to the operation content of the operation unit 26 b of the remote control 26 by the user and the detection result by the refrigerant detection means 99 are input to the control unit 30. From the control part 30, the control signal which controls the display part 26a of the remote control 26 and the indoor ventilation fan 7f is output. The elapsed time measured by the timer 101 is input to the control unit 30. The elapsed time is displayed in the countermeasure information display area 264 of the display unit 26 a of the remote control 26 under the control of the control unit 30. This timer 101 may be built in the control unit 30 or may be built in the remote control 26.
 図7は、本実施の形態に係る空気調和機100の制御部30で実行される冷媒漏洩検知処理の一例を示すフローチャートである。この冷媒漏洩検知処理は、空気調和機100の運転中及び停止中を含む常時、若しくは空気調和機100の停止中のみに、所定の時間間隔で繰り返して実行されるものである。 FIG. 7 is a flowchart showing an example of the refrigerant leakage detection process executed by the control unit 30 of the air conditioner 100 according to the present embodiment. The refrigerant leakage detection process is repeatedly executed at predetermined time intervals at all times including during operation and stop of the air conditioner 100 or only when the air conditioner 100 is stopped.
 図7のステップS1において、制御部30は、冷媒検知手段99からの検知信号に基づき、冷媒検知手段99の周囲の冷媒濃度の情報を取得する。次いで、ステップS2において、制御部30は、冷媒検知手段99の周囲の冷媒濃度が予め設定された閾値以上であるか否かをチェックする。冷媒検知手段99の周囲の冷媒濃度が閾値以上であることが確認されたら、ステップS3へ進む。例えば、冷媒回路40に封入されている冷媒が可燃性であった場合、閾値は燃焼下限界LFL(Lower Flammable Limit)の4分の1などに設定される。 7, the control unit 30 acquires information on the refrigerant concentration around the refrigerant detection means 99 based on the detection signal from the refrigerant detection means 99. Next, in step S2, the control unit 30 checks whether or not the refrigerant concentration around the refrigerant detection means 99 is equal to or higher than a preset threshold value. If it is confirmed that the refrigerant concentration around the refrigerant detection means 99 is equal to or higher than the threshold value, the process proceeds to step S3. For example, when the refrigerant sealed in the refrigerant circuit 40 is flammable, the threshold is set to a quarter of the lower combustion limit LFL (Lower Flammable Limit).
 従って、冷媒検知手段99の周囲の冷媒濃度が閾値以上である場合、負荷側熱交換器7のろう付け部、若しくは継手部15a、15bから冷媒が漏洩していると判断される。ステップS3では、制御部30は室内送風ファン7fが停止していた場合、室内送風ファン7fの運転を開始する。室内送風ファン7fが既に運転している場合には、そのまま運転を継続する。すなわち、冷媒の漏洩によって、作業環境として適していない空気濃度になることを防止するために、制御部30は、室内送風ファン7fを強制的に運転状態にする。また、漏洩している冷媒が可燃性冷媒であった場合は冷媒の濃度が可燃濃度域に達するのを防止するために、制御部30は、室内送風ファン7fを強制的に運転状態にする。 Therefore, when the refrigerant concentration around the refrigerant detection means 99 is equal to or higher than the threshold value, it is determined that the refrigerant is leaking from the brazed part or the joint parts 15a and 15b of the load side heat exchanger 7. In step S3, when the indoor blower fan 7f is stopped, the control unit 30 starts the operation of the indoor blower fan 7f. When the indoor fan 7f is already in operation, the operation is continued as it is. That is, in order to prevent an air concentration that is not suitable as a work environment due to leakage of the refrigerant, the control unit 30 forces the indoor fan 7f to be in an operating state. Further, when the leaking refrigerant is a flammable refrigerant, the control unit 30 forcibly puts the indoor blower fan 7f into an operating state in order to prevent the refrigerant concentration from reaching the flammable concentration range.
 次いで、ステップS4へ進み、制御部30はタイマー101をスタートさせ、経過時間の計測をスタートする。なお、ステップS3とステップS4の順序は逆でも良く、制御部30はタイマー101をスタートさせ、経過時間の計測をスタートさせた後、室内送風ファン7fの運転を開始しても良い。そして、ステップS5において、制御部30は、図5に示されているように、リモコン26の表示部26aの状態表示領域261に、冷媒が漏洩していることを報知する文字列を表示する。また、制御部30は、異常コード表示領域262に、冷媒漏洩の異常コードを表示する。また、制御部30は、対処情報表示領域264に、タイマー101から取得される経過時間を表示する。 Then, the process proceeds to step S4, where the control unit 30 starts the timer 101 and starts measuring elapsed time. Note that the order of step S3 and step S4 may be reversed, and the controller 30 may start the timer 101 and start the elapsed time, and then start the operation of the indoor fan 7f. In step S5, as shown in FIG. 5, the control unit 30 displays a character string informing that the refrigerant is leaking in the state display area 261 of the display unit 26a of the remote control 26. In addition, the control unit 30 displays an abnormal code for refrigerant leakage in the abnormal code display area 262. Further, the control unit 30 displays the elapsed time acquired from the timer 101 in the handling information display area 264.
 一方、ステップS2において、冷媒検知手段99の周囲の冷媒濃度が閾値に達していない場合、冷媒は漏洩していないと判断される。この場合は、上述のステップS3~S5の処理は実行せず、終了する。 On the other hand, if the refrigerant concentration around the refrigerant detection means 99 has not reached the threshold value in step S2, it is determined that the refrigerant has not leaked. In this case, the processes in steps S3 to S5 described above are not executed and the process ends.
 以上のように、本実施の形態によれば、冷媒が漏洩している場合、リモコン26の表示部26aにおいて、状態表示領域261には冷媒が漏洩していることを示す文字列が表示され、異常コード表示領域262には漏洩の状況を示すコードが表示され、対処情報表示領域264には冷媒の漏洩が検知されて室内送風ファン7fが運転されてからの経過時間が表示される。すなわち、冷媒の漏洩していることを示す情報に加え、冷媒の漏洩が検知され、室内送風ファン7fが運転状態になってからの経過時間がユーザに提供される。従って、状態表示領域261に冷媒漏洩を示す文字列が表示されていることを確認したユーザが、異常コード表示領域262に表示されているコード、対処情報表示領域264に表示されている経過時間を事前にサービスマンに伝えることで、サービスマンは空気調和機100における冷媒漏洩の状況を的確に判断することができる。なお、異常コードの内容や冷媒漏洩の状況を判断するための情報はサービスマンが使用するマニュアルに記載されている。例えば、負荷側熱交換器7のろう付け部若しくは継手部15a、15b等から冷媒が漏洩し、冷媒回路40に封入されている冷媒が全て漏洩するまでの時間Tは、冷媒回路40に封入されている冷媒量(kg)をmとし、冷媒の想定漏洩速度(kg/h)vからT=m/vで計算できる。上述の冷媒量mや想定漏洩速度v、上述の時間Tなどもサービスマンのマニュアルに記載されている。また、サービスマンがユーザから冷媒が漏洩していることのみを知らされた場合であっても、現場に到着したサービスマンは表示部26aの各表示領域に表示されている上述の情報とサービスマンが使用するマニュアルとを確認することで、空気調和機100における冷媒漏洩の状況を的確に判断することができる。その結果、サービスマンは、冷媒漏洩時において適切な初動対応を迅速に行うことができる。 As described above, according to the present embodiment, when the refrigerant is leaking, the character string indicating that the refrigerant is leaking is displayed in the state display area 261 on the display unit 26a of the remote control 26. The abnormality code display area 262 displays a code indicating the state of leakage, and the countermeasure information display area 264 displays an elapsed time since the refrigerant leakage was detected and the indoor fan 7f was operated. That is, in addition to the information indicating that the refrigerant is leaking, the leakage of the refrigerant is detected, and the elapsed time after the indoor blower fan 7f is in the operating state is provided to the user. Therefore, the user who has confirmed that the character string indicating the refrigerant leakage is displayed in the status display area 261 indicates the code displayed in the abnormal code display area 262 and the elapsed time displayed in the countermeasure information display area 264. By notifying the serviceman in advance, the serviceman can accurately determine the state of refrigerant leakage in the air conditioner 100. Information for judging the contents of the abnormal code and the state of refrigerant leakage is described in a manual used by service personnel. For example, the time T until the refrigerant leaks from the brazing part or the joint parts 15a and 15b of the load side heat exchanger 7 and all the refrigerant sealed in the refrigerant circuit 40 leaks is enclosed in the refrigerant circuit 40. The amount of refrigerant (kg) that is present is m, and it can be calculated by T = m / v from the assumed leakage rate (kg / h) v of the refrigerant. The refrigerant amount m, the assumed leakage speed v, the time T described above, and the like are also described in the serviceman's manual. Further, even when the service person is informed only by the user that the refrigerant is leaking, the service person who has arrived at the job site is not limited to the above information and the service person displayed in each display area of the display unit 26a. By confirming the manual used by the air conditioner, it is possible to accurately determine the state of refrigerant leakage in the air conditioner 100. As a result, the service person can quickly perform an appropriate initial response when the refrigerant leaks.
 経過時間が上述の時間Tを経過していない場合、対処情報表示領域264には時間T未満の経過時間が表示されている。ユーザから経過時間の情報を得たサービスマンは、冷媒が残存しており、その後も漏洩が継続することで、冷媒が可燃性であった場合には可燃濃度域が形成される可能性があることが把握できる。従って、ユーザに対し、室内の換気を指示すべきとの判断をすることができる。また、サービスマンが事前にこれらの情報を得ずに現場に到着したとしても、サービスマン自身が表示部26aに表示されている情報を確認することにより、冷媒が残存している可能性があり直ちに室内の換気を行い、これ以上の漏洩を防ぐために室外機2の延長配管接続バルブ13a、13bを閉じる等の作業が必要であると把握できる。従って、冷媒が残存しており漏洩し続けているにもかかわらず、ブレーカーを落として室内送風ファン7fの運転を停止する等の不適切な処理を回避することもできる。 When the elapsed time does not exceed the above-described time T, the countermeasure information display area 264 displays an elapsed time less than the time T. A serviceman who has obtained information on the elapsed time from the user has a possibility that a flammable concentration range may be formed if the refrigerant remains and the leakage continues thereafter, if the refrigerant is flammable. I can understand. Therefore, it can be determined that the user should be instructed to ventilate the room. Further, even if the service person arrives at the site without obtaining such information in advance, the service person himself may check the information displayed on the display unit 26a, so that the refrigerant may remain. Immediately ventilate the room, and in order to prevent further leakage, it can be grasped that work such as closing the extension pipe connection valves 13a, 13b of the outdoor unit 2 is necessary. Therefore, although the refrigerant remains and continues to leak, it is possible to avoid inappropriate processing such as dropping the breaker and stopping the operation of the indoor fan 7f.
 また、上述の時間Tが経過している場合、状態表示領域261には冷媒が漏洩していることを示す文字列が表示され、対処情報表示領域264には時間T以上の経過時間が表示されている。これらの情報を得たサービスマンは、現場において、冷媒回路40内に封入されていた冷媒は全量放出されており、冷媒がさらに漏洩することはなく、漏洩冷媒が可燃性であった場合に室内送風ファン7fを停止しても可燃濃度域を形成することはないと判断できる。従って、サービスマンは、これ以上の漏洩を防ぐために室外機2の延長配管接続バルブ13a、13bを閉じる等の煩雑な作業をすることなく、直ちにブレーカーを落として室内送風ファン7fの運転を停止し、漏洩箇所の確認を開始することができる。 When the above-described time T has elapsed, a character string indicating that the refrigerant has leaked is displayed in the state display area 261, and an elapsed time of time T or more is displayed in the handling information display area 264. ing. The service person who has obtained this information has released all the refrigerant sealed in the refrigerant circuit 40 at the site, and the refrigerant will not leak further, and if the leaked refrigerant is flammable, It can be determined that the combustible concentration range is not formed even when the blower fan 7f is stopped. Accordingly, the service man immediately stops the operation of the indoor fan 7f by dropping the breaker without performing complicated work such as closing the extension pipe connection valves 13a and 13b of the outdoor unit 2 in order to prevent further leakage. The confirmation of the leaked location can be started.
 本実施の形態では、冷媒漏洩に関する情報が報知される表示部26aを有するリモコン26は筐体111の意匠面に設けられている。従って、ユーザおよびサービスマンにとって冷媒漏洩に関する情報を容易に視認し取得することができる。 In the present embodiment, the remote control 26 having the display unit 26a for notifying information on refrigerant leakage is provided on the design surface of the casing 111. Therefore, it is possible for a user and a service person to easily visually recognize and acquire information on refrigerant leakage.
 本実施の形態において、室内機1がバッテリを備える構成としてもよい。ブレーカーを落として商用電源の供給を止めれば室内送風ファン7fは停止する。しかし、室内機1がバッテリを具備していれば、商用電力の供給が途絶えたとしても、室内機1のバッテリから電力供給することにより、室内送風ファン7fの運転、タイマー101による経過時間の計測、および表示部26aへの冷媒漏洩に関する情報の表示を継続して行うことができる。 In the present embodiment, the indoor unit 1 may include a battery. If the breaker is dropped and the supply of commercial power is stopped, the indoor blower fan 7f stops. However, if the indoor unit 1 is equipped with a battery, even if the supply of commercial power is interrupted, by supplying power from the battery of the indoor unit 1, the operation of the indoor fan 7f and the measurement of elapsed time by the timer 101 are performed. And the display of the information regarding the refrigerant leakage on the display unit 26a can be continuously performed.
 本実施の形態では、冷媒の漏洩を検知し、室内送風ファン7fの運転を開始した後、タイマー101をスタートさせているがこれに限るものではない。冷媒の漏洩を検知したらタイマー101をスタートさせ、その後、室内送風ファン7fの運転を開始するよう制御してもよい。 In the present embodiment, the timer 101 is started after detecting the leakage of the refrigerant and starting the indoor blower fan 7f. However, the present invention is not limited to this. When the leakage of the refrigerant is detected, the timer 101 may be started, and then the indoor fan 7f may be started to operate.
 本実施の形態では、リモコン26の表示部26aの対処情報表示領域264にタイマー101により計時される経過時間を表示しているが、これに限るものではない。 In the present embodiment, the elapsed time measured by the timer 101 is displayed in the countermeasure information display area 264 of the display unit 26a of the remote control 26, but the present invention is not limited to this.
 また、図7のステップS3で運転が開始された室内送風ファン7fを、予め設定された所定時間が経過した後に停止されるようにしてもよい。例えば、この所定時間の長さは、放出された冷媒が室内送風ファン7fにより拡散され可燃濃度を形成しないよう、設定される。このように制御することにより、サービスマンが室内送風ファン7fを停止する処理を省くことができ、負担が軽減される。 Moreover, you may make it stop the indoor ventilation fan 7f by which the driving | operation was started by step S3 of FIG. 7 after predetermined time passed. For example, the length of the predetermined time is set so that the discharged refrigerant is not diffused by the indoor blower fan 7f to form a combustible concentration. By controlling in this way, the service person can omit the process of stopping the indoor blower fan 7f, and the burden is reduced.
 本実施の形態において、冷媒漏洩に関する情報およびサービスマンにとって冷媒漏洩時の対処手順を判断するための情報をリモコン26の表示部26aに表示しているが、これに限るものではない。空気調和機100に別途取り付けられる表示デバイス若しくはディスプレイ等であってもよい。 In the present embodiment, information related to refrigerant leakage and information for the serviceman to determine the handling procedure at the time of refrigerant leakage are displayed on the display unit 26a of the remote control 26, but the present invention is not limited to this. A display device or a display attached separately to the air conditioner 100 may be used.
 また、本実施の形態において、冷媒漏洩に関する情報およびサービスマンにとって冷媒漏洩時対処手順を判断するための情報を文字表示で報知しているが、これに限るものではない。これらの情報をランプの点灯および点滅で報知するよう構成してもよく、あるいは音声で報知するよう構成してもよい。 Further, in the present embodiment, information regarding refrigerant leakage and information for the serviceman to determine the countermeasure procedure at the time of refrigerant leakage are notified by text display, but the present invention is not limited to this. Such information may be notified by lighting and blinking of the lamp, or may be configured to be notified by voice.
 本実施の形態では、空気調和機100の室内機1を例に説明したが、これに限るものではない。室外機2に上述の表示部26aを設けてもよい。また、本実施の形態では空気調和機100を例に説明したが、これに限るものではない。ヒートポンプ給湯機、チラー、ショーケース等の他の冷凍サイクル装置や冷凍サイクルシステムに、冷媒漏洩に関する情報を表示するよう、上述のように構成してもよい。 In the present embodiment, the indoor unit 1 of the air conditioner 100 has been described as an example, but the present invention is not limited to this. The outdoor unit 2 may be provided with the above-described display unit 26a. Moreover, although the air conditioner 100 has been described as an example in the present embodiment, the present invention is not limited to this. You may comprise as mentioned above so that the information regarding refrigerant | coolant leakage may be displayed on other refrigeration cycle apparatuses, such as a heat pump water heater, a chiller, and a showcase, and a refrigeration cycle system.
 1 室内機、2 室外機、3 圧縮機、4 冷媒流路切替装置、5 熱源側熱交換器、5f 室外送風ファン、6 減圧装置、7 負荷側熱交換器、7f 室内送風ファン、9a、9b 室内配管、10a、10b 延長配管、11 吸入配管、12 吐出配管、13a、13b 延長配管接続バルブ、14a、14b、14c サービス口、15a、15b 継手部、20 仕切部、20a 風路開口部、25 電気品箱、26 リモコン、26a 表示部、26b 操作部、30 制御部、40 冷媒回路、81 風路、91 吸込空気温度センサ、92 熱交換器入口温度センサ、93 熱交換器温度センサ、99 冷媒検知手段、100 空気調和機、101 タイマー、107 羽根車、108 ファンケーシング、108a 吹出開口部、108b 吸込開口部、111 筐体、112 吸込口、113 吹出口、114a 第1前面パネル、114b 第2前面パネル、114c 第3前面パネル、115a、115b 空間、261 状態表示領域、262 異常コード表示領域、263 現在時刻表示領域、264 対処情報表示領域。 1 indoor unit, 2 outdoor unit, 3 compressor, 4 refrigerant flow switching device, 5 heat source side heat exchanger, 5f outdoor fan, 6 decompressor, 7 load side heat exchanger, 7f indoor fan, 9a, 9b Indoor piping, 10a, 10b extension piping, 11 suction piping, 12 discharge piping, 13a, 13b extension piping connection valve, 14a, 14b, 14c service port, 15a, 15b joint section, 20 partition section, 20a air passage opening section, 25 Electrical box, 26 remote control, 26a display unit, 26b operation unit, 30 control unit, 40 refrigerant circuit, 81 air passage, 91 intake air temperature sensor, 92 heat exchanger inlet temperature sensor, 93 heat exchanger temperature sensor, 99 refrigerant Detection means, 100 air conditioner, 101 timer, 107 impeller, 108 fan casing, 108a Exit opening, 108b Suction opening, 111 Housing, 112 Suction inlet, 113 Outlet, 114a First front panel, 114b Second front panel, 114c Third front panel, 115a, 115b space, 261 Status display area, 262 Error code display area, 263 Current time display area, 264 Handling information display area.

Claims (9)

  1.  冷媒が循環する冷凍サイクルを構成する負荷側熱交換器と、前記冷媒を検知する冷媒検知手段と、送風ファンとを有し、室内に設置される室内機と、
     前記室内機を制御する制御部と、
     前記冷媒に関する情報を報知する報知手段とを備え、
     前記制御部は、前記冷媒検知手段により前記冷媒が検知されたとき、前記報知手段に、冷媒漏洩の対処手順を判断するための対処情報を報知させる冷凍サイクル装置。
    An indoor unit having a load-side heat exchanger constituting a refrigeration cycle in which the refrigerant circulates, a refrigerant detecting means for detecting the refrigerant, and a blower fan, and installed indoors;
    A control unit for controlling the indoor unit;
    An informing means for informing information on the refrigerant,
    The said control part is a refrigerating-cycle apparatus which makes the said alerting | reporting means alert | report the countermeasure information for judging the countermeasure procedure of a refrigerant | coolant leakage, when the said refrigerant | coolant detection means detects the said refrigerant | coolant.
  2.  前記制御部は、前記報知手段に冷媒漏洩の発生を報知させる請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the control unit causes the notification unit to notify the occurrence of refrigerant leakage.
  3.  さらに時間を計測するタイマーを備え、
     前記制御部は、前記報知手段に、前記対処情報として前記タイマーにより計測される経過時間を報知させる請求項1または2のいずれかに記載の冷凍サイクル装置。
    In addition, it has a timer to measure time,
    The refrigeration cycle apparatus according to claim 1, wherein the control unit causes the notification unit to notify an elapsed time measured by the timer as the countermeasure information.
  4.  前記制御部は、前記冷媒検知手段により前記冷媒が検知されたら、前記送風ファンを運転状態にしてから前記タイマーをスタートさせる請求項3に記載の冷凍サイクル装置。 4. The refrigeration cycle apparatus according to claim 3, wherein when the refrigerant is detected by the refrigerant detecting means, the control unit starts the timer after setting the blower fan in an operating state.
  5.  前記制御部は、前記冷媒検知手段により前記冷媒が検知されたら、前記タイマーをスタートさせてから前記送風ファンを運転状態にする請求項3に記載の冷凍サイクル装置。 4. The refrigeration cycle apparatus according to claim 3, wherein when the refrigerant is detected by the refrigerant detection means, the control unit starts the timer and then puts the blower fan into an operating state.
  6.  前記制御部は、前記冷媒検知手段により前記冷媒が検知されたとき、前記送風ファンを運転状態にする請求項1~5のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein when the refrigerant is detected by the refrigerant detection means, the control unit puts the blower fan into an operating state.
  7.  前記報知手段は、前記室内機の筐体の意匠面に設けられている表示機構である請求項1~6のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the notification means is a display mechanism provided on a design surface of a casing of the indoor unit.
  8.  前記室内機はバッテリを有している請求項1~7のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 7, wherein the indoor unit includes a battery.
  9.  前記制御部は、前記冷媒検知手段により前記冷媒が検知された後、予め設定された時間が経過したら前記送風ファンを停止する請求項1~8のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein the control unit stops the blower fan when a preset time has elapsed after the refrigerant is detected by the refrigerant detection means.
PCT/JP2016/064629 2016-05-17 2016-05-17 Refrigeration cycle device WO2017199342A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2016/064629 WO2017199342A1 (en) 2016-05-17 2016-05-17 Refrigeration cycle device
JP2016569088A JP6121075B1 (en) 2016-05-17 2016-05-17 Refrigeration cycle equipment
US16/082,988 US20190072291A1 (en) 2016-05-17 2017-05-10 Refrigeration cycle apparatus
CN201780028510.1A CN109154464A (en) 2016-05-17 2017-05-10 Refrigerating circulatory device
PCT/JP2017/017661 WO2017199808A1 (en) 2016-05-17 2017-05-10 Refrigeration cycle device
JP2018518238A JPWO2017199808A1 (en) 2016-05-17 2017-05-10 Refrigeration cycle equipment
EP17799233.6A EP3460360A4 (en) 2016-05-17 2017-05-10 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064629 WO2017199342A1 (en) 2016-05-17 2016-05-17 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2017199342A1 true WO2017199342A1 (en) 2017-11-23

Family

ID=58666494

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/064629 WO2017199342A1 (en) 2016-05-17 2016-05-17 Refrigeration cycle device
PCT/JP2017/017661 WO2017199808A1 (en) 2016-05-17 2017-05-10 Refrigeration cycle device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017661 WO2017199808A1 (en) 2016-05-17 2017-05-10 Refrigeration cycle device

Country Status (5)

Country Link
US (1) US20190072291A1 (en)
EP (1) EP3460360A4 (en)
JP (2) JP6121075B1 (en)
CN (1) CN109154464A (en)
WO (2) WO2017199342A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020034252A (en) * 2018-08-31 2020-03-05 日立ジョンソンコントロールズ空調株式会社 Air conditioner
WO2021220355A1 (en) * 2020-04-27 2021-11-04 三菱電機株式会社 Refrigeration cycle device
JP2022006762A (en) * 2020-06-25 2022-01-13 パナソニックIpマネジメント株式会社 Air conditioner

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017418267B2 (en) * 2017-06-15 2020-10-29 Mitsubishi Electric Corporation Air-conditioning apparatus
AU2018422256B2 (en) * 2018-05-10 2021-11-18 Mitsubishi Electric Corporation Refrigerant leakage determination device, air-conditioning apparatus, and refrigerant leakage determination method
US11579601B2 (en) * 2019-01-15 2023-02-14 Pricemy Developer LLC Methods and devices for a building monitoring system
EP3954952A4 (en) * 2019-04-09 2022-03-23 Mitsubishi Electric Corporation Refrigeration device
CN110044033A (en) * 2019-04-29 2019-07-23 广东美的制冷设备有限公司 Refrigerant leakage detection method, system and the air-conditioning of air-conditioning
US11408624B2 (en) * 2019-10-15 2022-08-09 Carrier Corporation Refrigerant leak detection
EP3875861B1 (en) * 2020-03-06 2023-05-17 Daikin Industries, Ltd. Air-conditioner, air-conditioning system, and method for monitoring air-conditioner
US20220252291A1 (en) * 2021-02-05 2022-08-11 Emerson Climate Technologies, Inc. Mitigation State Verification Systems And Methods
JP7260806B2 (en) * 2021-04-27 2023-04-19 ダイキン工業株式会社 Air conditioning system, operation control method thereof, and operation control device for air conditioning system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207261A (en) * 2002-01-17 2003-07-25 Toshiba Corp Refrigerator
JP2010078285A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Heat pump water heater
JP2015094515A (en) * 2013-11-12 2015-05-18 ダイキン工業株式会社 Indoor unit
JP2015197279A (en) * 2014-04-03 2015-11-09 ダイキン工業株式会社 controller
JP2016029322A (en) * 2014-07-15 2016-03-03 三菱電機株式会社 Air conditioner
JP2016065674A (en) * 2014-09-25 2016-04-28 三菱電機株式会社 Heat pump device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157699A (en) * 1984-01-27 1985-08-17 ホーチキ株式会社 Abnormal state alarm
JP3211405B2 (en) * 1992-10-01 2001-09-25 株式会社日立製作所 Refrigerant composition detector
JP3523381B2 (en) * 1995-07-26 2004-04-26 株式会社日立製作所 refrigerator
JPH11211292A (en) * 1998-01-26 1999-08-06 Matsushita Electric Ind Co Ltd Refrigerant leakage detector and refrigerant leakage detection method for freezer
JPH11230648A (en) * 1998-02-13 1999-08-27 Matsushita Electric Ind Co Ltd Refrigerant leakage alarm for freezing apparatus using combustible refrigerant
JP2002039649A (en) * 2000-07-24 2002-02-06 Funai Electric Co Ltd Operation alarm device of air conditioner
JP4599699B2 (en) 2000-09-26 2010-12-15 ダイキン工業株式会社 Air conditioner
EP1475588A4 (en) * 2002-01-15 2008-04-09 Toshiba Kk Refrigerator having alarm device for alarming leakage of refrigerant
US6955198B2 (en) * 2003-09-09 2005-10-18 Advanced Technology Materials, Inc. Auto-switching system for switch-over of gas storage and dispensing vessels in a multi-vessel array
JP4265982B2 (en) * 2004-02-25 2009-05-20 三菱電機株式会社 Equipment diagnostic equipment, refrigeration cycle equipment, refrigeration cycle monitoring system
JP5188800B2 (en) * 2007-12-21 2013-04-24 オリンパスメディカルシステムズ株式会社 Endoscope cleaning / disinfecting apparatus and water leakage detection method using the endoscope cleaning / disinfecting apparatus
US7834772B2 (en) * 2008-04-05 2010-11-16 Frederick Robert W Copper-watcher
US8174398B2 (en) * 2009-07-31 2012-05-08 Abraham Wien Leak sensor monitor
CN103322641B (en) * 2012-03-21 2016-06-01 广东美芝精密制造有限公司 Use the method for controlling security of flammable coolant air-conditioner
JP2013250038A (en) * 2012-06-04 2013-12-12 Daikin Industries Ltd Refrigeration device management system
KR20140056965A (en) * 2012-11-02 2014-05-12 엘지전자 주식회사 An air conditioner and a control method thereof
JP5818849B2 (en) * 2013-08-26 2015-11-18 三菱電機株式会社 Air conditioner and refrigerant leakage detection method
JP2015183978A (en) * 2014-03-26 2015-10-22 株式会社鷺宮製作所 alarm display device
JP6345240B2 (en) * 2014-06-20 2018-06-20 日立ジョンソンコントロールズ空調株式会社 Display device, method and program
JP6252684B2 (en) * 2014-09-26 2017-12-27 三菱電機株式会社 Refrigerant leak detection device and refrigeration cycle device provided with the same
US9684312B1 (en) * 2014-11-22 2017-06-20 Orbit Irrigation Products, Inc. Resource consumption measurement system and method
JP6468347B2 (en) * 2015-03-31 2019-02-13 ダイキン工業株式会社 Air conditioner
JP2017053509A (en) * 2015-09-08 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioning system and warning notification method of air conditioning system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207261A (en) * 2002-01-17 2003-07-25 Toshiba Corp Refrigerator
JP2010078285A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Heat pump water heater
JP2015094515A (en) * 2013-11-12 2015-05-18 ダイキン工業株式会社 Indoor unit
JP2015197279A (en) * 2014-04-03 2015-11-09 ダイキン工業株式会社 controller
JP2016029322A (en) * 2014-07-15 2016-03-03 三菱電機株式会社 Air conditioner
JP2016065674A (en) * 2014-09-25 2016-04-28 三菱電機株式会社 Heat pump device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020034252A (en) * 2018-08-31 2020-03-05 日立ジョンソンコントロールズ空調株式会社 Air conditioner
WO2021220355A1 (en) * 2020-04-27 2021-11-04 三菱電機株式会社 Refrigeration cycle device
JPWO2021220355A1 (en) * 2020-04-27 2021-11-04
JP7233607B2 (en) 2020-04-27 2023-03-06 三菱電機株式会社 refrigeration cycle equipment
JP2022006762A (en) * 2020-06-25 2022-01-13 パナソニックIpマネジメント株式会社 Air conditioner
JP7474923B2 (en) 2020-06-25 2024-04-26 パナソニックIpマネジメント株式会社 Air conditioners

Also Published As

Publication number Publication date
JPWO2017199342A1 (en) 2018-05-31
CN109154464A (en) 2019-01-04
EP3460360A4 (en) 2019-05-08
JP6121075B1 (en) 2017-04-26
WO2017199808A1 (en) 2017-11-23
US20190072291A1 (en) 2019-03-07
EP3460360A1 (en) 2019-03-27
JPWO2017199808A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6121075B1 (en) Refrigeration cycle equipment
JP6143977B1 (en) Refrigeration cycle apparatus and refrigeration cycle system
JP6289757B2 (en) Refrigeration cycle apparatus and refrigeration cycle system
JP6198922B2 (en) Refrigeration cycle apparatus and refrigeration cycle system
EP3591304B1 (en) Refrigeration cycle device and refrigeration cycle system
AU2016404760B2 (en) Refrigeration cycle apparatus
CN109073306B (en) Refrigeration cycle device
JP6598878B2 (en) Refrigeration cycle equipment
JP6157789B1 (en) Refrigeration cycle apparatus and refrigerant leakage detection method
WO2018092197A1 (en) Air conditioning apparatus and refrigerant leakage detection method
WO2017037841A1 (en) Refrigeration cycle apparatus and method for positioning same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016569088

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902362

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902362

Country of ref document: EP

Kind code of ref document: A1