WO2017199323A1 - Three-dimensional object precursor treatment composition - Google Patents

Three-dimensional object precursor treatment composition Download PDF

Info

Publication number
WO2017199323A1
WO2017199323A1 PCT/JP2016/064560 JP2016064560W WO2017199323A1 WO 2017199323 A1 WO2017199323 A1 WO 2017199323A1 JP 2016064560 W JP2016064560 W JP 2016064560W WO 2017199323 A1 WO2017199323 A1 WO 2017199323A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional object
object precursor
acrylate
agent composition
support material
Prior art date
Application number
PCT/JP2016/064560
Other languages
French (fr)
Japanese (ja)
Inventor
橋本 良一
栄二 樫原
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to PCT/JP2016/064560 priority Critical patent/WO2017199323A1/en
Priority to TW106115578A priority patent/TW201809205A/en
Publication of WO2017199323A1 publication Critical patent/WO2017199323A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00

Definitions

  • the present invention relates to a three-dimensional object precursor treating agent composition.
  • the 3D printer is a type of rapid prototyping and is a three-dimensional printer that forms a three-dimensional object based on 3D data such as 3D CAD, 3D CG, and the like.
  • a 3D printer system a hot melt lamination system (hereinafter also referred to as an FDM system), an inkjet ultraviolet curing system, an optical modeling system, a laser sintering system, and the like are known.
  • the FDM method is a modeling method for obtaining a three-dimensional object by heating / melting and extruding and laminating polymer filaments, and unlike other methods, does not use a material reaction.
  • FDM 3D printers are small and inexpensive, and have become popular in recent years as devices with little post-processing.
  • a three-dimensional object is formed by stacking a modeling material constituting the three-dimensional object and a support material for supporting the three-dimensional structure of the modeling material.
  • the carboxylic acid in the (meth) acrylic acid copolymer is neutralized by an alkali. It is used to dissolve and dissolve in an alkaline aqueous solution.
  • the (meth) acrylic acid-based copolymer contained in the support material used in this method is dissolved in the hydrophobic group and the three-dimensional object precursor treating agent from the viewpoint of heating / melt extrusion by a 3D printer and lamination.
  • each has a hydrophilic group, so that treatment alone is not sufficient, and a method of removing the support material by further immersing in an organic solvent or heated water is mentioned (for example, No. 2014-83744 and JP-A-2016-2683).
  • the three-dimensional object precursor treating agent composition of the present invention comprises a three-dimensional object and a support material containing a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units.
  • the method for producing a three-dimensional object of the present invention includes a modeling step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and bringing the three-dimensional object precursor into contact with the three-dimensional object precursor treatment composition. And a method of manufacturing a three-dimensional object by a hot melt lamination method having a support material removal step of removing the support material.
  • a conventional three-dimensional object precursor treatment agent takes time to remove a support material containing a (meth) acrylic acid-based copolymer having a hydrophilic group and a hydrophobic group.
  • the reactivity can be increased by increasing the concentration of alkali in the three-dimensional object precursor treatment agent or increasing the temperature when the three-dimensional object precursor is immersed in the three-dimensional object precursor treatment agent. It is possible to raise.
  • the removal capability of the support material is significantly reduced.
  • a three-dimensional object precursor treatment agent is used repeatedly, but this not only consumes the active ingredient of the three-dimensional object precursor treatment agent for these dissolution and dispersion, but also dissolves and disperses the support material in three dimensions. If it is not uniformly dispersed in the object precursor treating agent, there is a high possibility that problems such as redeposition will occur.
  • the present invention provides a three-dimensional object precursor treating agent composition capable of quickly removing a support material containing a (meth) acrylic acid copolymer in a gap between three-dimensional objects, and the three-dimensional object.
  • a method for producing a three-dimensional object by a hot melt lamination method using an object precursor treating agent composition is provided.
  • the three-dimensional object precursor treating agent composition of the present invention comprises a three-dimensional object and a support material containing a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units.
  • the method for producing a three-dimensional object of the present invention includes a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and bringing the three-dimensional object precursor into contact with the three-dimensional object precursor treating agent composition. It is a manufacturing method of the three-dimensional object by the hot melt lamination system which has the support material removal process which removes the said support material.
  • a three-dimensional object precursor treating agent composition capable of quickly removing a support material containing a (meth) acrylic acid copolymer in a gap between three-dimensional objects in a small amount, and the tertiary It is possible to provide a method for producing a three-dimensional object by a hot melt lamination method using the original object precursor treating agent composition.
  • the three-dimensional object precursor treating agent composition of the present embodiment includes a three-dimensional object and a three-dimensional object including a support material including a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units.
  • a three-dimensional object precursor treating agent composition for removing the support material from an object precursor, the three-dimensional object precursor treating agent composition comprising: (a) an alkaline agent; and (b) a nonionic system Contains penetrant.
  • the reactivity can be increased by increasing the concentration of alkali in the three-dimensional object precursor treating agent or by increasing the temperature when the three-dimensional object precursor is immersed in the three-dimensional object precursor treating agent.
  • the support material swells, and the support material cannot be removed promptly.
  • the alkali metal salt contained in the conventional three-dimensional object precursor treating agent composition is the most. It was considered as an excellent active ingredient. However, it has been found that the alkali metal salt impedes water and swells instead, thereby inhibiting removal.
  • the swelling of the (meth) acrylic acid copolymer is suppressed by including (a) an alkaline agent and (b) a nonionic penetrant, Also, the support material containing the (meth) acrylic acid copolymer can be quickly removed.
  • the alkali agent (a) may be either an inorganic alkali agent or an organic alkali agent.
  • the inorganic alkali agent include alkali metal hydroxides and alkali metal carbonates.
  • the organic alkali agent include organic amine compounds.
  • alkali metal hydroxide and alkali metal carbonate examples include lithium hydroxide, sodium hydroxide, and potassium hydroxide.
  • alkali metal carbonate examples include lithium carbonate, sodium carbonate, and potassium carbonate.
  • the total content of the alkali metal hydroxide and alkali metal carbonate in the three-dimensional object precursor treating agent composition is 2.5% by mass from the viewpoint of quickly removing the support material from the three-dimensional object precursor. Is less than 2.0% by mass, more preferably 1.0% by mass or less, still more preferably less than 0.5% by mass, preferably 0% by mass or more, and more preferably. Is 0.01% by mass or more, more preferably 0.25% by mass or more.
  • organic amine compounds examples include primary monoamine compounds, secondary monoamine compounds, tertiary monoamine compounds, primary diamine compounds, secondary diamine compounds, tertiary diamine compounds, primary triamine compounds, secondary triamine compounds, and tertiary. Examples thereof include at least one selected from the group consisting of triamine compounds.
  • Examples of the primary monoamine compound include methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, n-amylamine, isoamylamine, n-hexylamine, n-heptylamine, n-octylamine, Examples thereof include n-decylamine and n-octadecylamine.
  • Examples of the secondary monoamine compound include methylethanolamine, ethylethanolamine, diisopropanolamine, diisopropylamine, diethanolamine, butylethanolamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, methylethylamine, methylpropylamine, and methylbutylamine. , Methylhexylamine, dipentylamine, piperidine, morpholine, 2,6-dimethylmorpholine, and the like.
  • methylethanolamine, ethylethanolamine, diisopropanolamine, butylethanolamine, and diisopropylamine from the viewpoint of suppressing the swelling of the (meth) acrylic acid copolymer and expressing good removal of the support material
  • tertiary monoamine compound examples include trimethylamine, triethylamine, dimethylethylamine, diethylmethylamine, tripropylamine, tributylamine, tripentylamine, triethanolamine, hydroxyethylpiperazine, dimethylaminoethanol, diethylaminoethanol, N-tert-butyl.
  • Diethanolamine dimethylaminoethoxyethanol (trade name KL-26; manufactured by Kao Corporation), ethyldiethanolamine, butyldiethanolamine, 6-dimethylamino-1-hexanol (trade name KL-25; manufactured by Kao Corporation), 5- (dimethyl Amino) -2-pentanol, 5- (dimethylamino) -1-pentanol, 3- (diethylamino) -1-propanol, n-methylmorpholine, n-e Rumoruhorin, and 4- (2-hydroxyethyl) morpholine and the like.
  • dimethylaminoethanol, diethylaminoethanol, N-tert-butyldiethanolamine, dimethylaminoethoxyethanol are used from the viewpoint of suppressing the swelling of the (meth) acrylic acid copolymer and exhibiting good removal of the support material.
  • At least one selected from the group consisting of ethyldiethanolamine and 6-dimethylamino-1-hexanol is preferred, and 6-dimethylamino-1-hexanol is more preferred.
  • Examples of the primary diamine compound include ethylenediamine, 1,4-diaminobutane, 1,6-diaminohexane, and the like.
  • Examples of the secondary diamine compound include piperazine and hydroxyethyl piperazine.
  • hydroxyethylpiperazine is preferable from the viewpoint of suppressing swelling of the (meth) acrylic acid copolymer and expressing good removal of the support material.
  • Examples of the tertiary diamine compound include tetraethylhexanediamine, tetramethylhexanediamine (trade name KL-1; manufactured by Kao Corporation), tetramethylpropanediamine (trade name KL-2; manufactured by Kao Corporation), and (2-dimethyl).
  • Examples include aminoethyl) methylethanolamine (trade name KL-28; manufactured by Kao Corporation), tetramethylethylenediamine, dipiperidinoethane, dipyrrolidinoethane, spartein, and trimethylaminopropylethanolamine.
  • tetramethylhexanediamine tetramethylpropanediamine
  • (2-dimethylaminoethyl) are used from the viewpoint of suppressing the swelling of the (meth) acrylic acid copolymer and expressing good removal of the support material.
  • At least one selected from the group consisting of methylethanolamine is preferred.
  • Examples of the primary triamine compound include 1,2,3-triaminopropane, triaminohexane, triaminononane, triaminododecane, and 1,3,6-triaminohexane.
  • Examples of the secondary triamine compound include N, N ′′ -dimethyldiethylenetriamine, N, N ′′ -diethyldiethylenetriamine, N, N ′′ -dipropyldiethylenetriamine, and N, N ′′ -dibutyldiethylenetriamine.
  • Examples of the tertiary triamine compound include N, N, N ′, N ′′, N ′′ -pentamethyldiethylenetriamine, N, N, N ′, N ′′, N ′′ -pentaethyldiethylenetriamine, N, N, N ′, N “, N” -pentapropyldiethylenetriamine, N, N, N ′, N ′′, N ′′ -pentabutyldiethylenetriamine and the like can be exemplified.
  • a secondary diamine compound, a tertiary diamine compound, a secondary triamine compound from the viewpoint of expressing good removal of the support material by suppressing swelling of the (meth) acrylic acid copolymer, and at least one selected from the group consisting of tertiary diamine compounds and at least one selected from the group consisting of secondary diamine compounds and tertiary diamine compounds are more preferable.
  • organic amine compounds from the viewpoint of suppressing swelling of the (meth) acrylic acid-based copolymer and imparting quick dispersion into the cleaning liquid to express good removal of the support material, an alcoholic hydroxyl group
  • the content of the organic amine compound in the three-dimensional object precursor treating agent composition is 0 from the viewpoint of suppressing the swelling of the (meth) acrylic acid copolymer and expressing good removal of the support material. 0.1 mass% or more is preferable, 0.5 mass% or more is more preferable, and 1.0 mass% or more is still more preferable.
  • the content of the organic amine compound in the three-dimensional object precursor treating agent composition is 20 from the viewpoint of suppressing the swelling of the (meth) acrylic acid copolymer and expressing good removal of the support material. % By mass or less is preferable, 15% by mass or less is more preferable, 10% by mass or less is further preferable, and 8% by mass or less is even more preferable.
  • the content of the organic amine compound in the composition for treating a three-dimensional object precursor is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass, and 5 to 10% by mass is more preferable, and 1.0 to 8% by mass is even more preferable.
  • the nonionic penetrant in the present embodiment is a nonionic compound having a hydrophilic part such as an oxyalkylene group and a hydrophobic part such as a hydrocarbon group. More specifically, an oxyalkylene adduct having at least one group selected from the group consisting of an alkyl group having 4 to 14 carbon atoms, an alkenyl group having 3 to 30 carbon atoms, and an aryl group having 6 to 30 carbon atoms. It is preferable that
  • the nonionic penetrant has a viewpoint of quickly removing the support material in the gap between the three-dimensional objects, and suppresses the swelling of the (meth) acrylic acid copolymer, thereby improving the support material's good removability.
  • a polyoxyalkylene alkyl ether represented by the following general formula (1) is used.
  • R 1 —O— (AO) m—H (1)
  • R 1 is an alkyl group having 4 to 14 carbon atoms, an alkenyl group having 3 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms
  • AO is an oxyalkylene having 1 to 50 carbon atoms.
  • m is the average number of moles of AO added, and m is a number from 1 to 20.
  • the number of carbon atoms of the alkyl group represented by R 1 is a support material that suppresses the swelling of the (meth) acrylic acid copolymer from the viewpoint of quickly removing the support material in the gaps of the three-dimensional object. Is preferably 4 or more, more preferably 5 or more, and still more preferably 6 or more from the viewpoint of maintaining good removability for a long time. From the same viewpoint, the number of carbon atoms of the alkyl group represented by R 1 is preferably 14 or less, more preferably 12 or less, and still more preferably 10 or less. Taking these viewpoints together, the number of carbon atoms of the alkyl group represented by R 1 is preferably 4 to 14, more preferably 5 to 12, and still more preferably 6 to 10.
  • Examples of the alkyl group represented by R 1 include hexyl, 2-ethylhexyl, isononyl, 2-hexyldecyl, and the like. Among these, a hexyl group is preferred from the viewpoint of achieving both gap cleaning properties and durability. And 2-ethylhexyl group is preferable, and 2-ethylhexyl group is more preferable.
  • the carbon number of the alkenyl group represented by R 1 is a support material that suppresses the swelling of the (meth) acrylic acid-based copolymer from the viewpoint of quickly removing the support material in the gaps of the three-dimensional object. Is preferably 3 or more, more preferably 4 or more, and still more preferably 5 or more from the viewpoint of maintaining good removability for a long time.
  • the carbon number of the alkenyl group represented by R 1 is preferably 30 or less, more preferably 20 or less, and still more preferably 18 or less from the same viewpoint. Taking these viewpoints together, the carbon number of the alkenyl group represented by R 1 is preferably 3 to 30, more preferably 4 to 20, and still more preferably 6 to 18.
  • the number of carbon atoms of the aryl group represented by R 1 is a support material that suppresses the swelling of the (meth) acrylic acid copolymer and the viewpoint of quickly removing the support material in the gaps of the three-dimensional object. Is preferably 6 or more, more preferably 12 or more from the viewpoint of maintaining good removability for a long time.
  • the number of carbon atoms of the aryl group represented by R 1 is preferably 30 or less and more preferably 24 or less from the same viewpoint. Taking these viewpoints together, the aryl group represented by R 1 preferably has 6 to 30 carbon atoms, and more preferably 12 to 24 carbon atoms.
  • Examples of the aryl group represented by R 1 include a phenyl group, a styrenated phenyl group, a phenylethyl group, a distyrenated phenyl group, a tristyrenated phenyl group, a benzyl group, a benzylated phenyl group, a dibenzylated phenyl group, and a tribenzylated group.
  • Phenyl groups and the like can be exemplified, but among these, the viewpoint of quickly removing the support material in the gap of the three-dimensional object, and the good support material by suppressing the swelling of the (meth) acrylic acid copolymer A benzylated phenyl group is preferable from the viewpoint of maintaining removability for a long time.
  • the benzylated phenyl group is a phenyl group substituted with one or more benzyl groups.
  • the hydrogen atom of the benzene ring or the hydrogen atom of the methylene group may be substituted with a short chain hydrocarbon group such as a methyl group, for example, an alkyl group having 1 to 4 carbon atoms.
  • a styrene group is included in a benzyl group.
  • benzylated phenyl group examples include a monostyrenated phenyl group, a distyrenated phenyl group, a monobenzylated phenyl group, and a dibenzylated phenyl group, and among these, a support material in a gap between three-dimensional objects.
  • Monostyrenated phenyl group and distyrenated phenyl group from the viewpoint of promptly removing water and from the viewpoint of suppressing the swelling of the (meth) acrylic acid copolymer and maintaining good removability of the support material for a long time 1 or more types selected from are preferable, and a distyrenated phenyl group is more preferable.
  • the number of carbon atoms of the oxyalkylene group represented by AO is the viewpoint of quickly removing the support material in the gaps of the three-dimensional object, and the swelling of the (meth) acrylic acid copolymer Is preferably 1 or more, more preferably 2 or more, more preferably 3 or more, and still more preferably 4 or more, from the viewpoint of suppressing the above-mentioned and maintaining good removability of the support material for a long time.
  • the number of carbon atoms of the oxyalkylene group represented by AO is preferably 50 or less, more preferably 20 or less, and still more preferably 18 or less from the same viewpoint. Taking these viewpoints together, the number of carbon atoms of the oxyalkylene group represented by AO in the general formula (1) is preferably 1 to 50, more preferably 2 to 20, further preferably 3 to 20, and 4 to 18 Is even more preferable.
  • the m is a viewpoint of quickly removing the support material in the gap between the three-dimensional objects, and suppresses the swelling of the (meth) acrylic acid-based copolymer and maintains good removability of the support material for a long time. From the viewpoint, 1 or more is preferable, and 2 or more is more preferable. From the viewpoint of suppressing foaming, m is preferably 20 or less, more preferably 18 or less, and still more preferably 12 or less. Taking these viewpoints together, the m is preferably 1 to 20, more preferably 2 to 18, and still more preferably 2 to 12.
  • the content of the (b) nonionic penetrant is the viewpoint of quickly removing the support material in the gap between the three-dimensional objects, and the swelling of the (meth) acrylic acid copolymer is suppressed. From the viewpoint of maintaining good removability for a long time, the content is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more in the three-dimensional object precursor treating agent composition.
  • the content of the (b) nonionic penetrant is the viewpoint of quickly removing the support material in the gap between the three-dimensional objects, and the swelling of the (meth) acrylic acid copolymer is suppressed.
  • the content of the nonionic penetrant (b) is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass in the three-dimensional object precursor treating agent composition. preferable.
  • the three-dimensional object precursor treating agent composition may contain a surfactant.
  • the support material in the gaps of the three-dimensional object can be quickly removed, and further, the (meth) acrylic acid copolymer is swollen. It is possible to maintain good removability of the support material for a long time.
  • the (b) nonionic penetrant is not included in the (c) surfactant.
  • surfactant examples include nonionic surfactants, amphoteric surfactants, and anionic surfactants.
  • anionic surfactant examples include alkylbenzene sulfonate, alkyl or alkenyl ether sulfate, alkyl or alkenyl sulfate, olefin sulfonate, alkane sulfonate, saturated or unsaturated fatty acid salt, alkyl or alkenyl ether carboxylate , ⁇ -sulfo fatty acid salts, N-acyl amino acid salts, phosphoric acid mono- or diesters, sulfosuccinic acid esters, and the like.
  • alkyl ether sulfate examples include polyoxyethylene alkyl ether sulfate.
  • At least one selected from the group consisting of alkyl sulfates, alkyl ether sulfates, saturated fatty acid salts, and alkyl ether carboxylates is preferred.
  • Counter ions of the anionic group of these anionic surfactants include alkali metal ions such as sodium ion and potassium ion; alkaline earth metal ions such as calcium ion and magnesium ion; ammonium ion; alkanol group having 2 or 3 carbon atoms And alkanolamine salts having 1 to 3 (for example, monoethanolamine salt, diethanolamine salt, triethanolamine salt, triisopropanolamine salt, etc.).
  • amphoteric surfactant examples include imidazoline, carbobetaine, amide betaine, sulfobetaine, hydroxysulfobetaine, amide sulfobetaine and the like, and betaine surfactants such as alkyldimethylaminoacetic acid betaine and fatty acid amidopropyl betaine are more preferable. Fatty acid amidopropyl betaine is more preferable.
  • nonionic surfactant examples include polyoxyalkylene alkyl ethers, polyoxyalkylene alkenyl ethers, polyoxyethylene distyrenated phenyl ethers, higher fatty acid sucrose esters, polyglycerin fatty acid esters, higher grades other than the nonionic penetrant (b).
  • examples include fatty acid mono- or diethanolamide, polyoxyethylene hydrogenated castor oil, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbite fatty acid ester, alkyl saccharide, alkyl amine oxide, alkyl amido amine oxide and the like. Of these, at least one selected from the group consisting of polyoxyalkylene alkyl ethers and polyoxyethylene distyrenated phenyl ethers is preferred.
  • the polyoxyalkylene alkyl ethers other than the (b) nonionic penetrant suppress the swelling of the (meth) acrylic acid-based copolymer from the viewpoint of quickly removing the support material in the gap between the three-dimensional objects. From the viewpoint of maintaining good removability of the support material for a long time, it is a polyoxyalkylene alkyl ether represented by the following general formula (2).
  • R 2 O— (EO) p (PO) q—H (2)
  • R 2 represents an alkyl group having 15 or more carbon atoms
  • EO represents an oxyethylene group
  • PO represents an oxypropylene group
  • p and q are average added moles of EO and PO, respectively.
  • P is a number from 1 to 20
  • q is a number from 0 to 20.
  • the content of the surfactant is 0.05% by mass or less from the viewpoint of promptly removing the support material in the gap between the three-dimensional objects and maintaining good removability of the support material for a long time.
  • substantially 0% by mass is more preferable.
  • the three-dimensional object precursor treatment agent composition is water, a water-soluble organic solvent, ethylenediaminetetraacetate, carboxymethylcellulose, polyvinylpyrrolidone, polyacrylate, as necessary, as long as the effects of the present invention are not impaired.
  • Builder components such as alginates, thickeners, pH adjusters, preservatives, rust inhibitors, pigments, colorants and the like may be included.
  • the developer composition containing the colorant changes color when the support material dissolves. Therefore, the colorant is also expected to function as an indicator that indicates the degree of progress and completion of development. it can.
  • the water content may be the balance of the three-dimensional object precursor treating agent composition (a total amount of 100% by mass).
  • the content of the water in the three-dimensional object precursor treating agent composition improves the stability and handling of the developer composition, and also improves the waste liquid treatability, etc.
  • the content of the water in the three-dimensional object precursor treating agent composition improves the stability and handling of the developer composition, and also improves the waste liquid treatability, etc.
  • To 99 mass% or less is preferable, 98 mass% or less is more preferable, and 97 mass% or less is still more preferable.
  • the water-soluble organic solvent exhibits the performance of disintegrating the support material and dissolving it in the developer composition.
  • the water-soluble organic solvent is preferably one that dissolves 1.5% by mass or more in 20 ° C. water.
  • Examples of the water-soluble organic solvent include water-soluble organic solvents selected from monohydric alcohols, polyhydric alcohols, and glycol ethers.
  • Examples of the monohydric alcohol include monohydric alcohols having 1 to 5 carbon atoms. Specifically, a monohydric alcohol selected from methyl alcohol, ethyl alcohol, 1-propyl alcohol, isopropyl alcohol, allyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, and amyl alcohol is used. Can be mentioned.
  • Examples of the polyhydric alcohol include alkylene glycols having a repeating unit having 2 to 3 carbon atoms (hereinafter referred to as C2-C3 alkylene glycol).
  • C2-C3 alkylene glycols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol, octaethylene glycol, nonaethylene glycol, decaethylene glycol, propylene glycol, dipropylene Examples include glycol and tripropylene glycol.
  • the C2-C3 alkylene glycol preferably has 1 to 10 oxyethylene groups or oxypropylene groups which are repeating units.
  • examples of polyhydric alcohols other than C2 to C3 alkylene glycol include polyhydric alcohols having 2 to 8 carbon atoms. Specifically, trimethylene glycol, 1,3-octylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,2-butanediol, 1 , 3-butanediol, 1,4-butanediol, 1,4-butenediol, 1,4-pentanediol, 1,5-pentanediol, 1,5-hexanediol, 1,6-hexanediol, glycerin, Examples include trimethylolethane and trimethylolpropane.
  • the water-soluble organic solvents may be used alone or in combination of two or more.
  • a water-soluble organic solvent selected from propylene glycol, dipropylene glycol, and tripropylene glycol is preferable, and a water-soluble organic solvent selected from ethyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, and dipropylene glycol is more preferable.
  • the three-dimensional object manufacturing method of the present embodiment includes a three-dimensional object and a three-dimensional object precursor including a support material including a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units. And a method for producing a three-dimensional object by a hot melt lamination method, which has a support material removing step of bringing the three-dimensional object precursor into contact with the three-dimensional object precursor treating agent composition and removing the support material. It is. According to the method for producing a three-dimensional object of this embodiment, the support material containing the methacrylic acid copolymer can be removed more quickly than in the past. The reason why such an effect is exhibited may be the same as the reason why the three-dimensional object precursor treating agent composition exhibits the effect.
  • a modeling process for obtaining a three-dimensional object precursor including a three-dimensional object and a support material including a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units is a known hot-melt lamination method.
  • the step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material in the method for producing a three-dimensional object by the 3D printer can be used.
  • the modeling material that is the material of the three-dimensional object can be used without particular limitation as long as it is a resin that is used as a modeling material in a conventional FDM three-dimensional object manufacturing method.
  • the modeling material include thermoplastic resins such as ABS resin, polylactic acid resin, polycarbonate resin, and polyphenylsulfone resin.
  • ABS resin and / or polylactic acid resin are preferable from the viewpoint of modeling by a 3D printer. Is more preferable, and ABS resin is more preferable.
  • the three-dimensional modeling soluble material that is a material of the support material includes a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units.
  • hydrophilic monomer examples include acrylic acid, methacrylic acid, diethylaminoethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, glycidyl acrylate, tetrahydrofurfuryl acrylate, diethylaminoethyl methacrylate, and methacrylic acid 2 -Hydroxyethyl, 2-hydroxypropyl methacrylate, glycidyl methacrylate, tetrahydrofurfuryl methacrylate, itaconic acid, maleic acid, fumaric acid, ⁇ -hydroxyacrylic acid and the like.
  • at least one selected from the group consisting of acrylic acid and methacrylic acid is preferable from the viewpoint of the removability of the support material.
  • hydrophobic monomer examples include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, tertiary butyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, isodecyl acrylate, acrylic Lauryl acid, tridecyl acrylate, cetyl acrylate, stearyl acrylate, cyclohexyl acrylate, benzyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, isobutyl methacrylate, tertiary butyl methacrylate, methacrylic acid 2-ethylhexyl acid, octyl methacrylate, isodecyl methacrylate, lauryl methacrylate, tridec
  • the (meth) acrylic acid copolymer may contain monomer units other than the hydrophilic monomer and the hydrophobic monomer.
  • the support material removing step is a step of removing the support material by bringing the three-dimensional object precursor into contact with the three-dimensional object precursor treating agent composition.
  • the method of bringing the three-dimensional object precursor into contact with the three-dimensional object precursor treating agent composition may be agitated after being immersed in the treatment liquid, exposed to a strong water stream, or moved. It is done.
  • a method of immersing the three-dimensional object precursor in the three-dimensional object precursor treating agent composition is preferable. From the viewpoint of improving the removability of the support material, it is possible to promote the dissolution of the support material by irradiating ultrasonic waves during the immersion.
  • the pH of the three-dimensional object precursor treating agent composition is preferably 10 or more, more preferably 11 or more, from the viewpoint of solubility of the support material.
  • the pH of the three-dimensional object precursor treating agent composition is preferably 14 or less, more preferably 13 or less, from the viewpoint of suppressing or reducing damage to the modeling material. Taking these viewpoints together, the pH of the three-dimensional object precursor treating agent composition is preferably 10 to 14, more preferably 10 to 13, and still more preferably 11 to 13.
  • the amount of the three-dimensional object precursor treating agent composition used is preferably 10 times by mass or more and more preferably 20 times by mass or more with respect to the support material from the viewpoint of solubility of the support material.
  • the amount of the three-dimensional object precursor treating agent composition used is preferably 10,000 times by mass or less, more preferably 5000 times by mass or less, still more preferably 1000 times by mass or less, with respect to the support material from the viewpoint of workability. More preferably, it is less than mass times.
  • the temperature of the three-dimensional object precursor treating agent composition in the support material removing step is preferably 25 ° C. or higher, more preferably 40 ° C. or higher, from the viewpoint of solubility of the support material. From the same viewpoint, the temperature of the three-dimensional object precursor treating agent composition in the support material removing step is preferably 80 ° C. or less, and more preferably 70 ° C. or less. Taking these viewpoints together, the temperature of the three-dimensional object precursor treating agent composition in the support material removing step is preferably 25 to 80 ° C, more preferably 40 to 70 ° C.
  • the time for bringing the soluble material for 3D modeling into contact with the 3D object precursor treating agent composition is preferably 5 minutes or more from the viewpoint of the removability of the support material.
  • the time for contacting the three-dimensional modeling soluble material with the three-dimensional object precursor treatment agent composition is preferably 180 minutes or less, more preferably 120 minutes or less from the viewpoint of reducing damage to the three-dimensional object, 90 minutes or less is more preferable, and 60 minutes or less is even more preferable.
  • the time for contacting the three-dimensional modeling soluble material with the three-dimensional object precursor treating agent composition is preferably 5 to 180 minutes, more preferably 5 to 120 minutes, and more preferably 5 to 90 minutes. Is more preferable, and 5 to 60 minutes is even more preferable.
  • ⁇ 1> To remove the support material from a three-dimensional object precursor including a three-dimensional object and a support material containing a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units.
  • the three-dimensional object precursor treatment agent composition wherein the three-dimensional object precursor treatment agent composition contains (a) an alkali agent and (b) a nonionic penetrant.
  • Agent composition ⁇ 2> The three-dimensional object precursor treatment agent composition according to ⁇ 1>, wherein (a) the alkali agent is preferably at least one selected from the group consisting of an inorganic alkali agent and an organic alkali agent.
  • the alkali metal hydroxide is preferably at least one selected from the group consisting of lithium hydroxide, sodium hydroxide, and potassium hydroxide.
  • Treatment agent composition is preferably at least one selected from the group consisting of lithium carbonate, sodium carbonate, and potassium carbonate.
  • the total content of the alkali metal hydroxide and alkali metal carbonate in the three-dimensional object precursor treatment agent composition is less than 2.5% by mass, preferably less than 2.0% by mass. More preferably, it is 1.0 mass% or less, More preferably, it is less than 0.5 mass%, Preferably it is 0 mass% or more, More preferably, it is 0.01 mass% or more, More preferably, it is 0.00.
  • ⁇ 7> The three-dimensional object precursor treatment composition according to any one of ⁇ 2> to ⁇ 6>, wherein the organic alkali agent is preferably an organic amine compound.
  • the organic amine compound is a primary monoamine compound, secondary monoamine compound, tertiary monoamine compound, primary diamine compound, secondary diamine compound, tertiary diamine compound, primary triamine compound, secondary triamine compound, and
  • the primary monoamine compound is methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, n-amylamine, isoamylamine, n-hexylamine, n-heptylamine, n-octyl.
  • the secondary monoamine compound is methylethanolamine, ethylethanolamine, diisopropanolamine, diisopropylamine, diethanolamine, butylethanolamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, methylethylamine, methylpropylamine, Preferably, at least one selected from the group consisting of methylbutylamine, methylhexylamine, dipentylamine, piperidine, morpholine, and 2,6-dimethylmorpholine, methylethanolamine, ethylethanolamine, diisopropanolamine, butylethanolamine, And at least one selected from the group consisting of diisopropylamine is more preferable, and the three-dimensional object precursor according to ⁇ 8> or ⁇ 9> Treatment composition.
  • the tertiary monoamine compound is trimethylamine, triethylamine, dimethylethylamine, diethylmethylamine, tripropylamine, tributylamine, tripentylamine, triethanolamine, hydroxyethylpiperazine, dimethylaminoethanol, diethylaminoethanol, N-tert.
  • the three-dimensional object precursor treating agent composition according to any one of ⁇ 8> to ⁇ 10>, more preferably 6-dimethylamino-1-hexanol.
  • the primary diamine compound is preferably at least one selected from the group consisting of ethylenediamine, 1,4-diaminobutane, and 1,6-diaminohexane, ⁇ 8> to ⁇ 11>
  • a three-dimensional object precursor treatment composition ⁇ 13>
  • the three-dimensional object according to any one of ⁇ 8> to ⁇ 12>, wherein the secondary diamine compound is preferably at least one selected from the group consisting of piperazine and hydroxyethylpiperazine, more preferably hydroxyethylpiperazine.
  • Precursor treatment agent composition is preferably at least one selected from the group consisting of piperazine and hydroxyethylpiperazine, more preferably hydroxyethylpiperazine.
  • the tertiary diamine compound is tetraethylhexanediamine, tetramethylhexanediamine, tetramethylpropanediamine, (2-dimethylaminoethyl) methylethanolamine, tetramethylethylenediamine, dipiperidinoethane, dipyrrolidinoethane, At least one selected from the group consisting of sparteine and trimethylaminopropylethanolamine is preferred, and at least selected from the group consisting of tetramethylhexanediamine, tetramethylpropanediamine, and (2-dimethylaminoethyl) methylethanolamine.
  • the three-dimensional object precursor treating agent composition according to any one of ⁇ 8> to ⁇ 13>, wherein one or more are more preferable.
  • the primary triamine compound is at least one selected from the group consisting of 1,2,3-triaminopropane, triaminohexane, triaminononane, triaminododecane, and 1,3,6-triaminohexane.
  • the secondary triamine compound is at least selected from the group consisting of N, N ′′ -dimethyldiethylenetriamine, N, N ′′ -diethyldiethylenetriamine, N, N ′′ -dipropyldiethylenetriamine, and N, N ′′ -dibutyldiethylenetriamine.
  • the three-dimensional object precursor treating agent composition according to any one of ⁇ 8> to ⁇ 15>, wherein one or more are preferable.
  • the tertiary triamine compound is N, N, N ′, N ′′, N ′′ -pentamethyldiethylenetriamine, N, N, N ′, N ′′, N ′′ -pentaethyldiethylenetriamine, N, N, N ′ , N ′′, N ′′ -pentapropyldiethylenetriamine, and at least one selected from the group consisting of N, N, N ′, N ′′, N ′′ -pentabutyldiethylenetriamine is preferable, any one of ⁇ 8> to ⁇ 16>
  • the organic amine compound is preferably at least one selected from the group consisting of secondary diamine compounds, tertiary diamine compounds, secondary triamine compounds, and tertiary triamine compounds, secondary diamine compounds, and tertiary.
  • the content of the organic amine compound in the three-dimensional object precursor treating agent composition is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and 1.0% by mass or more. More preferably, it is preferably 20% by mass or less, more preferably 15% by mass or less, further preferably 10% by mass or less, still more preferably 8% by mass or less, preferably 0.1 to 20% by mass, 0.5 to 15%.
  • the nonionic penetrant is a nonionic compound having a hydrophilic part such as an oxyalkylene group and a hydrophobic part such as a hydrocarbon group.
  • the nonionic penetrant includes an alkyl group having 4 to 14 carbon atoms and 3 to 3 carbon atoms.
  • it is an oxyalkylene adduct having at least one group selected from the group consisting of 30 alkenyl groups and aryl groups having 6 to 30 carbon atoms, ⁇ 1> to ⁇ 20> Three-dimensional object precursor treating agent composition.
  • the three-dimensional object precursor treating agent composition according to any one of ⁇ 1> to ⁇ 21>, wherein the nonionic penetrant is preferably a polyoxyalkylene alkyl ether represented by the following general formula (1).
  • R 1 —O— (AO) m—H (1) (In the general formula (1), R 1 is an alkyl group having 4 to 14 carbon atoms, an alkenyl group having 3 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms, and AO is an oxyalkylene having 1 to 50 carbon atoms.
  • the number of carbon atoms of the alkyl group represented by R 1 is preferably 4 or more, more preferably 5 or more, still more preferably 6 or more, preferably 14 or less, more preferably 12 or less, and still more preferably 10 or less.
  • the alkyl group represented by R 1 is preferably at least one selected from the group consisting of hexyl, 2-ethylhexyl, isononyl, and 2-hexyldecyl, and is preferably a group consisting of a hexyl group and a 2-ethylhexyl group.
  • the number of carbon atoms of the alkenyl group represented by R 1 is preferably 3 or more, more preferably 4 or more, still more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and still more preferably 18 or less.
  • the number of carbon atoms of the aryl group represented by R 1 is preferably 6 or more, more preferably 12 or more, preferably 30 or less, more preferably 24 or less, preferably 6 to 30, and more preferably 12 to 24
  • the three-dimensional object precursor treating agent composition according to any one of ⁇ 22> to ⁇ 25>.
  • the aryl group includes a phenyl group, a styrenated phenyl group, a phenylethyl group, a distyrenated phenyl group, a tristyrenated phenyl group, a benzyl group, a benzylated phenyl group, a dibenzylated phenyl group, and a tribenzylated phenyl group.
  • the three-dimensional object precursor treatment composition according to any one of ⁇ 22> to ⁇ 26>, wherein at least one selected from the group is preferred, and a benzylated phenyl group is more preferred.
  • the benzylated phenyl group is preferably at least one selected from the group consisting of a monostyrenated phenyl group, a distyrenated phenyl group, a monobenzylated phenyl group, and a dibenzylated phenyl group, a monostyrenated phenyl group, And at least one selected from the group consisting of distyrenated phenyl groups, more preferably distyrenated phenyl groups, and the three-dimensional object precursor treating agent composition according to ⁇ 27>.
  • the number of carbon atoms of the oxyalkylene group represented by AO in the general formula (1) is preferably 1 or more, more preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, and 50 or less.
  • 20 or less is more preferable, 18 or less is more preferable, 1 to 50 is preferable, 2 to 20 is more preferable, 3 to 20 is still more preferable, and 4 to 18 is still more preferable, ⁇ 22> to ⁇ 28>
  • the m is preferably 1 or more, more preferably 2 or more, preferably 20 or less, more preferably 18 or less, still more preferably 12 or less, preferably 1 to 20, more preferably 2 to 18, more preferably 2 to
  • the three-dimensional object precursor treating agent composition according to any one of ⁇ 22> to ⁇ 29>, wherein 12 is more preferred.
  • the content of the nonionic penetrant is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and preferably 10% by mass or less in the three-dimensional object precursor treatment agent composition.
  • composition for treating a three-dimensional object precursor according to any one of ⁇ 22> to ⁇ 30> preferably 5% by mass or less, more preferably 0.05 to 10% by mass, and more preferably 0.1 to 5% by mass.
  • ⁇ 32> The three-dimensional object precursor treatment composition according to any one of ⁇ 1> to ⁇ 31>, further comprising (c) a surfactant.
  • ⁇ 33> The three-dimensional object precursor treatment composition according to ⁇ 32>, wherein the (b) nonionic penetrant is not included in the (c) surfactant.
  • the content of the surfactant in the three-dimensional object precursor treating agent composition is preferably 0.05% by mass or less, and more preferably substantially 0% by mass, ⁇ 32> or ⁇ 33>
  • ⁇ 35> A three-dimensional object, and a modeling process for obtaining a three-dimensional object precursor including a support material including a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units, and the three-dimensional object A method for producing a three-dimensional object by a hot-melt laminating method, comprising a support material removing step of bringing an object precursor into contact with a three-dimensional object precursor treating agent composition and removing the support material, wherein the three-dimensional object precursor A method for producing a three-dimensional object, wherein the treatment composition is the three-dimensional object precursor treatment composition according to any one of ⁇ 1> to ⁇ 34>.
  • the molding material is preferably at least one thermoplastic resin selected from the group consisting of ABS resin, polylactic acid resin, polycarbonate resin, and polyphenylsulfone resin, and ABS resin and / or polylactic acid resin is preferable.
  • the three-dimensional modeling soluble material that is a material of the support material preferably includes a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units, ⁇ 35> or ⁇ 35>36>.
  • the method for producing a three-dimensional object according to 36> is preferably at least one thermoplastic resin selected from the group consisting of ABS resin, polylactic acid resin, polycarbonate resin, and polyphenylsulfone resin, and ABS resin and / or polylactic acid resin is preferable.
  • the hydrophilic monomer is acrylic acid, methacrylic acid, diethylaminoethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, glycidyl acrylate, tetrahydrofurfuryl acrylate, diethylaminoethyl methacrylate, methacrylic acid.
  • At least one selected from the group consisting of 2-hydroxyethyl acid, 2-hydroxypropyl methacrylate, glycidyl methacrylate, tetrahydrofurfuryl methacrylate, itaconic acid, maleic acid, fumaric acid, ⁇ -hydroxyacrylic acid is preferable.
  • the hydrophobic monomer is methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, tertiary butyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, isodecyl acrylate , Lauryl acrylate, tridecyl acrylate, cetyl acrylate, stearyl acrylate, cyclohexyl acrylate, benzyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, isobutyl methacrylate, tertiary butyl methacrylate , 2-ethylhexyl methacrylate, octyl methacrylate, isodecyl methacrylate, lauryl methacrylate, tridecyl methacrylate,
  • the pH of the three-dimensional object precursor treating agent composition is preferably 10 or more, more preferably 11 or more, preferably 14 or less, more preferably 13 or less, more preferably 10 to 14, and more preferably 10 to 13
  • the temperature of the three-dimensional object precursor treating agent composition in the support material removing step is preferably 25 ° C or higher, more preferably 40 ° C or higher, preferably 80 ° C or lower, more preferably 70 ° C or lower, 25
  • ⁇ 42> Use of the composition according to any one of ⁇ 1> to ⁇ 34> as a three-dimensional object precursor treatment agent.
  • Examples 1A to 8A, Comparative Example 1A and Comparative Example 2A> [Production of evaluation samples]
  • ABS Stratasys ABS resin
  • SR-30 a soluble material for three-dimensional modeling (methacrylic acid copolymer manufactured by Stratasys; monomer unit; methacrylic)
  • An evaluation sample three-dimensional object precursor
  • FIG. 1 is a schematic diagram showing the shape of the evaluation sample
  • FIG. 2 is a schematic diagram showing the cross-sectional shape of the evaluation sample.
  • FIG. 1 is a schematic diagram showing the shape of the evaluation sample.
  • the evaluation sample is a three-dimensional object having a trunk portion 1, a leg portion including a leg portion 21 and a leg portion 22, and a three-dimensional object precursor made of a support material.
  • the leg part 21 and the leg part 22 are connected in the trunk
  • FIG. 2 is a schematic view showing the cross-sectional shape of the evaluation sample.
  • the body portion 1 has a shaft passing portion 11.
  • the leg portion 21 and the leg portion 22 are connected by an axis (not shown) passing through the shaft-passing portion 11, and if there is no support material indicated by the support material outer edge portion 3, the leg portion 21 according to the evaluation sample and The leg portion composed of the leg portion 22 is movable with respect to the trunk portion 1.
  • the distance between the shaft connecting the leg portion 21 and the leg portion 22 in the shaft passing portion 11 and the surface of the shaft passing portion 11 is 0.6 mm.
  • Examples 1B to 5B, Comparative Example 1B and Comparative Example 2B> [Evaluation method: endurance operation time] An aqueous solution having the composition shown in Table 3 was prepared and used as a three-dimensional object precursor treating agent composition according to Examples 1B to 5B, Comparative Example 1B, and Comparative Example 2B. The evaluation sample is immersed in the three-dimensional object precursor treatment agent composition according to Examples 1B to 5B, Comparative Example 1B, and Comparative Example 2B at a liquid temperature of 60 ° C., and the leg 21 of FIG. The time (durability moving time) until the leg part which consists of the leg part 22 became movable was measured.
  • Example 1B-5B and Comparative Example 1B and the results of evaluation of the three-dimensional object precursor treating agent composition according to Examples 1A-5A and Comparative Example 1A having the same composition other than the three-dimensional modeling soluble material durability moving time
  • trunk part 11 shaft through part 21: leg part 22: leg part 3: support material outer edge part

Abstract

This three-dimensional object precursor treatment composition is for removing a support material from a three-dimensional object precursor that includes a three-dimensional object and the support material including a (meth) acrylate copolymer having a hydrophylic monomer and a hydrophobic monomer as monomer units therefor. The three-dimensional object precursor treatment composition contains an alkaline agent (a) and a nonionic penetration agent (b). The present invention provides: a three-dimensional object precursor treatment composition capable of rapidly removing, using a small quantity thereof, the support material containing the (meth) acrylate copolymer and present in gaps in the three-dimensional object; and a production method for the three-dimensional object, using a fused deposition modeling method using said three-dimensional object precursor treatment composition.

Description

三次元物体前駆体処理剤組成物Three-dimensional object precursor treatment composition
 本発明は、三次元物体前駆体処理剤組成物に関する。 The present invention relates to a three-dimensional object precursor treating agent composition.
 3Dプリンタは、ラピッドプロトタイピング(Rapid Prototyping)の一種で、3D CAD、3D CGなどの3Dデータを元に三次元物体を造形する立体プリンタである。3Dプリンタの方式としては、熱溶融積層方式(以下、FDM方式とも称する)、インクジェット紫外線硬化方式、光造形方式、レーザー焼結方式等が知られている。これらのうち、FDM方式は重合体フィラメントを加熱/溶融し押し出して積層させて三次元物体を得る造形方式であり、他の方式とは異なり材料の反応を用いない。そのためFDM方式の3Dプリンタは小型かつ低価格であり、後処理が少ない装置として近年普及が進んでいる。当該FDM方式で、より複雑な形状の三次元物体を造形するためには、三次元物体を構成する造形材、及び造形材の三次元構造を支持するためのサポート材を積層して三次元物体前駆体を得て、その後、三次元物体前駆体からサポート材を除去することで目的とする三次元物体を得ることができる。 The 3D printer is a type of rapid prototyping and is a three-dimensional printer that forms a three-dimensional object based on 3D data such as 3D CAD, 3D CG, and the like. As a 3D printer system, a hot melt lamination system (hereinafter also referred to as an FDM system), an inkjet ultraviolet curing system, an optical modeling system, a laser sintering system, and the like are known. Among these, the FDM method is a modeling method for obtaining a three-dimensional object by heating / melting and extruding and laminating polymer filaments, and unlike other methods, does not use a material reaction. For this reason, FDM 3D printers are small and inexpensive, and have become popular in recent years as devices with little post-processing. In order to model a three-dimensional object having a more complicated shape by the FDM method, a three-dimensional object is formed by stacking a modeling material constituting the three-dimensional object and a support material for supporting the three-dimensional structure of the modeling material. By obtaining the precursor and then removing the support material from the three-dimensional object precursor, the target three-dimensional object can be obtained.
 三次元物体前駆体からサポート材を除去する手法として、サポート材に(メタ)アクリル酸系共重合体を用いた場合には、(メタ)アクリル酸系共重合体中のカルボン酸がアルカリにより中和され、アルカリ水溶液に溶解することを利用している。当該手法に用いられるサポート材に含有される(メタ)アクリル酸系共重合体は、3Dプリンタによる加熱/溶融押出と積層性の観点から疎水基と、前記三次元物体前駆体処理剤への溶解性の観点から親水基とをそれぞれ有する為に、それだけの処理では不十分な為に更に有機溶剤や加熱された水に浸漬することによりサポート材を除去する手法が挙げられている(例えば、特開2014-83744号公報及び特開2016-2683号公報)。 As a method for removing the support material from the three-dimensional object precursor, when a (meth) acrylic acid copolymer is used as the support material, the carboxylic acid in the (meth) acrylic acid copolymer is neutralized by an alkali. It is used to dissolve and dissolve in an alkaline aqueous solution. The (meth) acrylic acid-based copolymer contained in the support material used in this method is dissolved in the hydrophobic group and the three-dimensional object precursor treating agent from the viewpoint of heating / melt extrusion by a 3D printer and lamination. From the viewpoint of safety, each has a hydrophilic group, so that treatment alone is not sufficient, and a method of removing the support material by further immersing in an organic solvent or heated water is mentioned (for example, No. 2014-83744 and JP-A-2016-2683).
 本発明の三次元物体前駆体処理剤組成物は、三次元物体と、親水性モノマー及び疎水性モノマーをモノマー単位として有する(メタ)アクリル酸系共重合体を含むサポート材とを含む三次元物体前駆体から、前記サポート材を除去する為の三次元物体前駆体処理剤組成物であって、前記三次元物体前駆体処理剤組成物が、(a)アルカリ剤、及び(b)ノニオン系浸透剤を含有する。 The three-dimensional object precursor treating agent composition of the present invention comprises a three-dimensional object and a support material containing a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units. A three-dimensional object precursor treatment agent composition for removing the support material from a precursor, wherein the three-dimensional object precursor treatment agent composition comprises (a) an alkaline agent, and (b) nonionic permeation. Contains agents.
 本発明の三次元物体の製造方法は、三次元物体及びサポート材を含む三次元物体前駆体を得る造形工程、及び当該三次元物体前駆体を前記三次元物体前駆体処理剤組成物に接触させ、前記サポート材を除去するサポート材除去工程を有する熱溶融積層方式による三次元物体の製造方法である。 The method for producing a three-dimensional object of the present invention includes a modeling step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and bringing the three-dimensional object precursor into contact with the three-dimensional object precursor treatment composition. And a method of manufacturing a three-dimensional object by a hot melt lamination method having a support material removal step of removing the support material.
実施例で用いた評価サンプルの形状を示す概略図Schematic showing the shape of the evaluation sample used in the examples 実施例で用いた評価サンプルの断面の形状を示す概略図Schematic showing the cross-sectional shape of the evaluation sample used in the examples
発明の詳細な説明Detailed Description of the Invention
 従来の三次元物体前駆体処理剤は、親水基と疎水基とを有する(メタ)アクリル酸系共重合体を含有するサポート材の除去に時間がかかる。当該課題に対し、前記三次元物体前駆体処理剤中のアルカリの濃度を上げたり、三次元物体前駆体を前記三次元物体前駆体処理剤に浸漬する際に温度を上げたりして反応性を上げることが考えられる。 A conventional three-dimensional object precursor treatment agent takes time to remove a support material containing a (meth) acrylic acid-based copolymer having a hydrophilic group and a hydrophobic group. In response to the problem, the reactivity can be increased by increasing the concentration of alkali in the three-dimensional object precursor treatment agent or increasing the temperature when the three-dimensional object precursor is immersed in the three-dimensional object precursor treatment agent. It is possible to raise.
 しかし、前記三次元物体前駆体処理剤中のアルカリの濃度を上げたり、三次元物体前駆体を前記三次元物体前駆体処理剤に浸漬する際に温度を上げたりして反応性を上げるとかえって前記サポート材が膨潤する。そのため、三次元物体が狭い隙間を有する場合、当該隙間にあるサポート材を速やかに除去することができなくなることが判明した。 However, increasing the concentration of alkali in the three-dimensional object precursor treating agent or increasing the temperature when the three-dimensional object precursor is immersed in the three-dimensional object precursor treating agent increases the reactivity. The support material swells. Therefore, it has been found that when the three-dimensional object has a narrow gap, the support material in the gap cannot be quickly removed.
 また、従来の三次元物体前駆体処理剤は、サポート材の除去によってサポート材が溶解・分散すると、サポート材の除去能力が著しく低下する。一般に三次元物体前駆体処理剤は繰り返し使用されるが、これにより三次元物体前駆体処理剤の有効成分がこれらの溶解・分散に消費されるだけでなく、溶解・分散したサポート材が三次元物体前駆体処理剤中に均一に分散していないと、再付着等の問題が生じる可能性も高い。 In addition, in the conventional three-dimensional object precursor treatment agent, when the support material is dissolved / dispersed by the removal of the support material, the removal capability of the support material is significantly reduced. In general, a three-dimensional object precursor treatment agent is used repeatedly, but this not only consumes the active ingredient of the three-dimensional object precursor treatment agent for these dissolution and dispersion, but also dissolves and disperses the support material in three dimensions. If it is not uniformly dispersed in the object precursor treating agent, there is a high possibility that problems such as redeposition will occur.
 本発明は、三次元物体の隙間にある、(メタ)アクリル酸系共重合体を含有するサポート材を少量で速やかに除去することができる三次元物体前駆体処理剤組成物、及び当該三次元物体前駆体処理剤組成物を用いた熱溶融積層方式による三次元物体の製造方法を提供する。 The present invention provides a three-dimensional object precursor treating agent composition capable of quickly removing a support material containing a (meth) acrylic acid copolymer in a gap between three-dimensional objects, and the three-dimensional object. Provided is a method for producing a three-dimensional object by a hot melt lamination method using an object precursor treating agent composition.
 本発明の三次元物体前駆体処理剤組成物は、三次元物体と、親水性モノマー及び疎水性モノマーをモノマー単位として有する(メタ)アクリル酸系共重合体を含むサポート材とを含む三次元物体前駆体から、前記サポート材を除去する為の三次元物体前駆体処理剤組成物であって、前記三次元物体前駆体処理剤組成物が、(a)アルカリ剤、及び(b)ノニオン系浸透剤を含有する。 The three-dimensional object precursor treating agent composition of the present invention comprises a three-dimensional object and a support material containing a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units. A three-dimensional object precursor treatment agent composition for removing the support material from a precursor, wherein the three-dimensional object precursor treatment agent composition comprises (a) an alkaline agent, and (b) nonionic permeation. Contains agents.
 本発明の三次元物体の製造方法は、三次元物体及びサポート材を含む三次元物体前駆体を得る工程、及び当該三次元物体前駆体を前記三次元物体前駆体処理剤組成物に接触させ、前記サポート材を除去するサポート材除去工程を有する熱溶融積層方式による三次元物体の製造方法である。 The method for producing a three-dimensional object of the present invention includes a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and bringing the three-dimensional object precursor into contact with the three-dimensional object precursor treating agent composition. It is a manufacturing method of the three-dimensional object by the hot melt lamination system which has the support material removal process which removes the said support material.
 本発明によれば、三次元物体の隙間にある(メタ)アクリル酸系共重合体を含有するサポート材を少量で速やかに除去することができる三次元物体前駆体処理剤組成物、及び当該三次元物体前駆体処理剤組成物を用いた熱溶融積層方式による三次元物体の製造方法を提供することができる。 According to the present invention, a three-dimensional object precursor treating agent composition capable of quickly removing a support material containing a (meth) acrylic acid copolymer in a gap between three-dimensional objects in a small amount, and the tertiary It is possible to provide a method for producing a three-dimensional object by a hot melt lamination method using the original object precursor treating agent composition.
 以下、本発明の一実施形態について説明する。 Hereinafter, an embodiment of the present invention will be described.
<三次元物体前駆体処理剤組成物>
 本実施形態の三次元物体前駆体処理剤組成物は、三次元物体と、親水性モノマー及び疎水性モノマーをモノマー単位として有する(メタ)アクリル酸系共重合体を含むサポート材とを含む三次元物体前駆体から、前記サポート材を除去する為の三次元物体前駆体処理剤組成物であって、前記三次元物体前駆体処理剤組成物が、(a)アルカリ剤、及び(b)ノニオン系浸透剤を含有する。
<Three-dimensional object precursor treating agent composition>
The three-dimensional object precursor treating agent composition of the present embodiment includes a three-dimensional object and a three-dimensional object including a support material including a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units. A three-dimensional object precursor treating agent composition for removing the support material from an object precursor, the three-dimensional object precursor treating agent composition comprising: (a) an alkaline agent; and (b) a nonionic system Contains penetrant.
 前述のように、前記三次元物体前駆体処理剤中のアルカリの濃度を上げたり、三次元物体前駆体を前記三次元物体前駆体処理剤に浸漬する際に温度を上げたりして反応性を上げるとかえって前記サポート材が膨潤し、当該サポート材を速やかに除去することができなくなる。サポート材に含有されている親水基と疎水基とを有する(メタ)アクリル酸系共重合体の除去には、従来の三次元物体前駆体処理剤組成物に含まれているアルカリ金属塩が最も優れた有効成分として考えられていた。しかし、そのアルカリ金属塩が水を抱え込んで膨潤することが原因でかえって、除去を阻害することが判明した。本実施形態の三次元物体前駆体処理剤組成物では、(a)アルカリ剤、及び(b)ノニオン系浸透剤を含むことによって(メタ)アクリル酸系共重合体の膨潤を抑制し、従来よりも速やかに前記(メタ)アクリル酸系共重合体を含有するサポート材を除去することができる。 As described above, the reactivity can be increased by increasing the concentration of alkali in the three-dimensional object precursor treating agent or by increasing the temperature when the three-dimensional object precursor is immersed in the three-dimensional object precursor treating agent. On the contrary, the support material swells, and the support material cannot be removed promptly. For removing the (meth) acrylic acid copolymer having a hydrophilic group and a hydrophobic group contained in the support material, the alkali metal salt contained in the conventional three-dimensional object precursor treating agent composition is the most. It was considered as an excellent active ingredient. However, it has been found that the alkali metal salt impedes water and swells instead, thereby inhibiting removal. In the three-dimensional object precursor treatment agent composition of the present embodiment, the swelling of the (meth) acrylic acid copolymer is suppressed by including (a) an alkaline agent and (b) a nonionic penetrant, Also, the support material containing the (meth) acrylic acid copolymer can be quickly removed.
〔(a)アルカリ剤〕
 前記(a)アルカリ剤は、無機アルカリ剤及び有機アルカリ剤のいずれであっても良い。当該無機アルカリ剤としては、アルカリ金属水酸化物及びアルカリ金属炭酸化物が例示できる。当該有機アルカリ剤としては有機アミン化合物が例示できる。
[(A) Alkaline agent]
The alkali agent (a) may be either an inorganic alkali agent or an organic alkali agent. Examples of the inorganic alkali agent include alkali metal hydroxides and alkali metal carbonates. Examples of the organic alkali agent include organic amine compounds.
[アルカリ金属水酸化物及びアルカリ金属炭酸化物]
 前記アルカリ金属水酸化物は、水酸化リチウム、水酸化ナトリウム、及び水酸化カリウム等が例示できる。
[Alkali metal hydroxide and alkali metal carbonate]
Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, and potassium hydroxide.
 前記アルカリ金属炭酸化物は、炭酸化リチウム、炭酸化ナトリウム、及び炭酸化カリウム等が例示できる。 Examples of the alkali metal carbonate include lithium carbonate, sodium carbonate, and potassium carbonate.
 前記三次元物体前駆体処理剤組成物中の前記アルカリ金属水酸化物及びアルカリ金属炭酸化物の合計含有量は、三次元物体前駆体からサポート材を速やかに除去する観点から、2.5質量%未満であり、好ましくは2.0質量%未満であり、より好ましくは1.0質量%以下であり、更に好ましくは0.5質量%未満であり、好ましくは0質量%以上であり、より好ましくは0.01質量%以上、更に好ましくは0.25質量%以上である。 The total content of the alkali metal hydroxide and alkali metal carbonate in the three-dimensional object precursor treating agent composition is 2.5% by mass from the viewpoint of quickly removing the support material from the three-dimensional object precursor. Is less than 2.0% by mass, more preferably 1.0% by mass or less, still more preferably less than 0.5% by mass, preferably 0% by mass or more, and more preferably. Is 0.01% by mass or more, more preferably 0.25% by mass or more.
[有機アミン化合物]
 前記有機アミン化合物としては、1級モノアミン化合物、2級モノアミン化合物、3級モノアミン化合物、1級ジアミン化合物、2級ジアミン化合物、3級ジアミン化合物、1級トリアミン化合物、2級トリアミン化合物、及び3級トリアミン化合物からなる群より選ばれる少なくとも1種以上が例示できる。
[Organic amine compounds]
Examples of the organic amine compounds include primary monoamine compounds, secondary monoamine compounds, tertiary monoamine compounds, primary diamine compounds, secondary diamine compounds, tertiary diamine compounds, primary triamine compounds, secondary triamine compounds, and tertiary. Examples thereof include at least one selected from the group consisting of triamine compounds.
 前記1級モノアミン化合物としては、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、n-アミルアミン、イソアミルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-デシルアミン、及びn-オクタデシルアミン等が例示できる。 Examples of the primary monoamine compound include methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, n-amylamine, isoamylamine, n-hexylamine, n-heptylamine, n-octylamine, Examples thereof include n-decylamine and n-octadecylamine.
 前記2級モノアミン化合物としては、メチルエタノールアミン、エチルエタノールアミン、ジイソプロパノールアミン、ジイソプロピルアミン、ジエタノールアミン、ブチルエタノールアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、メチルエチルアミン、メチルプロピルアミン、メチルブチルアミン、メチルヘキシルアミン、ジペンチルアミン、ピペリジン、モルホリン、及び2,6-ジメチルモルホリン等が例示できる。これらの中でも、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去を発現する観点からメチルエタノールアミン、エチルエタノールアミン、ジイソプロパノールアミン、ブチルエタノールアミン、及びジイソプロピルアミンからなる群より選ばれる少なくとも1種以上が好ましい。 Examples of the secondary monoamine compound include methylethanolamine, ethylethanolamine, diisopropanolamine, diisopropylamine, diethanolamine, butylethanolamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, methylethylamine, methylpropylamine, and methylbutylamine. , Methylhexylamine, dipentylamine, piperidine, morpholine, 2,6-dimethylmorpholine, and the like. Among these, methylethanolamine, ethylethanolamine, diisopropanolamine, butylethanolamine, and diisopropylamine from the viewpoint of suppressing the swelling of the (meth) acrylic acid copolymer and expressing good removal of the support material At least one selected from the group consisting of
 前記3級モノアミン化合物としては、トリメチルアミン、トリエチルアミン、ジメチルエチルアミン、ジエチルメチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリエタノールアミン、ヒドロキシエチルピペラジン、ジメチルアミノエタノール、ジエチルアミノエタノール、N-tert-ブチルジエタノールアミン、ジメチルアミノエトキシエタノール(商品名KL-26;花王株式会社製)、エチルジエタノールアミン、ブチルジエタノールアミン、6-ジメチルアミノ-1-ヘキサノール(商品名KL-25;花王株式会社製)、5-(ジメチルアミノ)-2-ペンタノール、5-(ジメチルアミノ)-1-ペンタノール、3-(ジエチルアミノ)-1-プロパノール、n-メチルモルホリン、n-エチルモルホリン、及び4-(2-ヒドロキシエチル)モルホリン等が例示できる。これらの中でも、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去を発現する観点から、ジメチルアミノエタノール、ジエチルアミノエタノール、N-tert-ブチルジエタノールアミン、ジメチルアミノエトキシエタノール、エチルジエタノールアミン、及び6-ジメチルアミノ-1-ヘキサノールからなる群より選ばれる少なくとも1種以上が好ましく、6-ジメチルアミノ-1-ヘキサノールがより好ましい。 Examples of the tertiary monoamine compound include trimethylamine, triethylamine, dimethylethylamine, diethylmethylamine, tripropylamine, tributylamine, tripentylamine, triethanolamine, hydroxyethylpiperazine, dimethylaminoethanol, diethylaminoethanol, N-tert-butyl. Diethanolamine, dimethylaminoethoxyethanol (trade name KL-26; manufactured by Kao Corporation), ethyldiethanolamine, butyldiethanolamine, 6-dimethylamino-1-hexanol (trade name KL-25; manufactured by Kao Corporation), 5- (dimethyl Amino) -2-pentanol, 5- (dimethylamino) -1-pentanol, 3- (diethylamino) -1-propanol, n-methylmorpholine, n-e Rumoruhorin, and 4- (2-hydroxyethyl) morpholine and the like. Among these, dimethylaminoethanol, diethylaminoethanol, N-tert-butyldiethanolamine, dimethylaminoethoxyethanol are used from the viewpoint of suppressing the swelling of the (meth) acrylic acid copolymer and exhibiting good removal of the support material. At least one selected from the group consisting of ethyldiethanolamine and 6-dimethylamino-1-hexanol is preferred, and 6-dimethylamino-1-hexanol is more preferred.
 前記1級ジアミン化合物としては、エチレンジアミン、1,4-ジアミノブタン、及び1,6-ジアミノヘキサン等が例示できる。 Examples of the primary diamine compound include ethylenediamine, 1,4-diaminobutane, 1,6-diaminohexane, and the like.
 前記2級ジアミン化合物としては、ピペラジン、ヒドロキシエチルピペラジン等が例示できる。これらの中でも、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去を発現する観点から、ヒドロキシエチルピペラジンが好ましい。 Examples of the secondary diamine compound include piperazine and hydroxyethyl piperazine. Among these, hydroxyethylpiperazine is preferable from the viewpoint of suppressing swelling of the (meth) acrylic acid copolymer and expressing good removal of the support material.
 前記3級ジアミン化合物としては、テトラエチルヘキサンジアミン、テトラメチルヘキサンジアミン(商品名KL-1;花王株式会社製)、テトラメチルプロパンジアミン(商品名KL-2;花王株式会社製)、(2-ジメチルアミノエチル)メチルエタノールアミン(商品名KL-28;花王株式会社製)、テトラメチルエチレンジアミン、ジピペリジノエタン、ジピロリジノエタン、スパルテイン、及びトリメチルアミノプロピルエタノールアミン等が例示できる。これらの中でも、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去を発現する観点から、テトラメチルヘキサンジアミン、テトラメチルプロパンジアミン、及び(2-ジメチルアミノエチル)メチルエタノールアミンからなる群より選ばれる少なくとも1種以上が好ましい。 Examples of the tertiary diamine compound include tetraethylhexanediamine, tetramethylhexanediamine (trade name KL-1; manufactured by Kao Corporation), tetramethylpropanediamine (trade name KL-2; manufactured by Kao Corporation), and (2-dimethyl). Examples include aminoethyl) methylethanolamine (trade name KL-28; manufactured by Kao Corporation), tetramethylethylenediamine, dipiperidinoethane, dipyrrolidinoethane, spartein, and trimethylaminopropylethanolamine. Among these, tetramethylhexanediamine, tetramethylpropanediamine, and (2-dimethylaminoethyl) are used from the viewpoint of suppressing the swelling of the (meth) acrylic acid copolymer and expressing good removal of the support material. At least one selected from the group consisting of methylethanolamine is preferred.
 前記1級トリアミン化合物としては、1,2,3-トリアミノプロパン、トリアミノヘキサン、トリアミノノナン、トリアミノドデカン、及び1,3,6-トリアミノヘキサン等が例示できる。 Examples of the primary triamine compound include 1,2,3-triaminopropane, triaminohexane, triaminononane, triaminododecane, and 1,3,6-triaminohexane.
 前記2級トリアミン化合物としては、N,N”-ジメチルジエチレントリアミン、N,N”-ジエチルジエチレントリアミン、N,N”-ジプロピルジエチレントリアミン、及びN,N”-ジブチルジエチレントリアミン等が例示できる。 Examples of the secondary triamine compound include N, N ″ -dimethyldiethylenetriamine, N, N ″ -diethyldiethylenetriamine, N, N ″ -dipropyldiethylenetriamine, and N, N ″ -dibutyldiethylenetriamine.
 前記3級トリアミン化合物としては、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N,N’,N”,N”-ペンタエチルジエチレントリアミン、N,N,N’,N”,N”-ペンタプロピルジエチレントリアミン、及びN,N,N’,N”,N”-ペンタブチルジエチレントリアミン等が例示できる。 Examples of the tertiary triamine compound include N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine, N, N, N ′, N ″, N ″ -pentaethyldiethylenetriamine, N, N, N ′, N “, N” -pentapropyldiethylenetriamine, N, N, N ′, N ″, N ″ -pentabutyldiethylenetriamine and the like can be exemplified.
 前記有機アミン化合物の中でも、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去を発現する観点から、2級ジアミン化合物、3級ジアミン化合物、2級トリアミン化合物、及び3級トリアミン化合物からなる群より選ばれる少なくとも1種以上が好ましく、2級ジアミン化合物、及び3級ジアミン化合物からなる群より選ばれる少なくとも1種以上がより好ましい。 Among the organic amine compounds, a secondary diamine compound, a tertiary diamine compound, a secondary triamine compound, from the viewpoint of expressing good removal of the support material by suppressing swelling of the (meth) acrylic acid copolymer, And at least one selected from the group consisting of tertiary diamine compounds and at least one selected from the group consisting of secondary diamine compounds and tertiary diamine compounds are more preferable.
 前記有機アミン化合物の中でも、(メタ)アクリル酸系共重合体の膨潤化を抑制して、且つ洗浄液中への速やかな分散を付与しサポート材の良好な除去を発現する観点から、アルコール性水酸基を有するアミン化合物が好ましい。 Among the organic amine compounds, from the viewpoint of suppressing swelling of the (meth) acrylic acid-based copolymer and imparting quick dispersion into the cleaning liquid to express good removal of the support material, an alcoholic hydroxyl group An amine compound having
 前記三次元物体前駆体処理剤組成物中の前記有機アミン化合物の含有量は、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去を発現する観点から、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1.0質量%以上が更に好ましい。前記三次元物体前駆体処理剤組成物中の前記有機アミン化合物の含有量は、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去を発現する観点から、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましく、8質量%以下がより更に好ましい。これらの観点を総合すると前記三次元物体前駆体処理剤組成物中の前記有機アミン化合物の含有量は、0.1~20質量%が好ましく、0.5~15質量%がより好ましく、0.5~10質量%が更に好ましく、1.0~8質量%がより更に好ましい。 The content of the organic amine compound in the three-dimensional object precursor treating agent composition is 0 from the viewpoint of suppressing the swelling of the (meth) acrylic acid copolymer and expressing good removal of the support material. 0.1 mass% or more is preferable, 0.5 mass% or more is more preferable, and 1.0 mass% or more is still more preferable. The content of the organic amine compound in the three-dimensional object precursor treating agent composition is 20 from the viewpoint of suppressing the swelling of the (meth) acrylic acid copolymer and expressing good removal of the support material. % By mass or less is preferable, 15% by mass or less is more preferable, 10% by mass or less is further preferable, and 8% by mass or less is even more preferable. Taking these viewpoints together, the content of the organic amine compound in the composition for treating a three-dimensional object precursor is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass, and 5 to 10% by mass is more preferable, and 1.0 to 8% by mass is even more preferable.
〔(b)ノニオン系浸透剤〕
 本実施形態におけるノニオン系浸透剤は、非イオン性の化合物でオキシアルキレン基等の親水部と炭化水素基等の疎水部を有する化合物である。より具体的には炭素数4~14のアルキル基、炭素数3~30のアルケニル基、及び炭素数6~30のアリール基からなる群より選ばれる少なくとも1種以上の基を有するオキシアルキレン付加物であることが好ましい。
[(B) Nonionic penetrant]
The nonionic penetrant in the present embodiment is a nonionic compound having a hydrophilic part such as an oxyalkylene group and a hydrophobic part such as a hydrocarbon group. More specifically, an oxyalkylene adduct having at least one group selected from the group consisting of an alkyl group having 4 to 14 carbon atoms, an alkenyl group having 3 to 30 carbon atoms, and an aryl group having 6 to 30 carbon atoms. It is preferable that
 前記ノニオン系浸透剤は、三次元物体の隙間にあるサポート材を速やかに除去する観点、及び、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去性を長時間持続させる観点から下記一般式(1)で表されるポリオキシアルキレンアルキルエーテルが用いられる。 The nonionic penetrant has a viewpoint of quickly removing the support material in the gap between the three-dimensional objects, and suppresses the swelling of the (meth) acrylic acid copolymer, thereby improving the support material's good removability. From the viewpoint of maintaining the time, a polyoxyalkylene alkyl ether represented by the following general formula (1) is used.
 R-O-(AO)m-H     (1)
(前記一般式(1)中、Rは炭素数4~14のアルキル基、炭素数3~30のアルケニル基、又は炭素数6~30のアリール基、AOは炭素数1~50のオキシアルキレン基を表し、mはAOの平均付加モル数であり、mは1~20の数を表す。)
R 1 —O— (AO) m—H (1)
(In the general formula (1), R 1 is an alkyl group having 4 to 14 carbon atoms, an alkenyl group having 3 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms, and AO is an oxyalkylene having 1 to 50 carbon atoms. And m is the average number of moles of AO added, and m is a number from 1 to 20.)
 前記Rで表されるアルキル基の炭素数は、三次元物体の隙間にあるサポート材を速やかに除去する観点、及び、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去性を長時間持続させる観点から4以上が好ましく、5以上がより好ましく、6以上が更に好ましい。前記Rで表されるアルキル基の炭素数は、同様の観点から14以下が好ましく、12以下がより好ましく、10以下が更に好ましい。これらの観点を総合すると、前記Rで表されるアルキル基の炭素数は、4~14が好ましく、5~12がより好ましく、6~10が更に好ましい。 The number of carbon atoms of the alkyl group represented by R 1 is a support material that suppresses the swelling of the (meth) acrylic acid copolymer from the viewpoint of quickly removing the support material in the gaps of the three-dimensional object. Is preferably 4 or more, more preferably 5 or more, and still more preferably 6 or more from the viewpoint of maintaining good removability for a long time. From the same viewpoint, the number of carbon atoms of the alkyl group represented by R 1 is preferably 14 or less, more preferably 12 or less, and still more preferably 10 or less. Taking these viewpoints together, the number of carbon atoms of the alkyl group represented by R 1 is preferably 4 to 14, more preferably 5 to 12, and still more preferably 6 to 10.
 前記Rで表されるアルキル基としては、へキシル、2-エチルヘキシル、イソノニル、2-ヘキシルデシル等の基が例示できるが、これらの中でも隙間洗浄性と耐久性を両立する観点からへキシル基や2-エチルヘキシル基が好ましく、2-エチルヘキシル基がより好ましい。 Examples of the alkyl group represented by R 1 include hexyl, 2-ethylhexyl, isononyl, 2-hexyldecyl, and the like. Among these, a hexyl group is preferred from the viewpoint of achieving both gap cleaning properties and durability. And 2-ethylhexyl group is preferable, and 2-ethylhexyl group is more preferable.
 前記Rで表されるアルケニル基の炭素数は、三次元物体の隙間にあるサポート材を速やかに除去する観点、及び、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去性を長時間持続させる観点から3以上が好ましく、4以上がより好ましく、5以上が更に好ましい。前記Rで表されるアルケニル基の炭素数は、同様の観点から30以下が好ましく、20以下がより好ましく、18以下が更に好ましい。これらの観点を総合すると、前記Rで表されるアルケニル基の炭素数は、3~30が好ましく、4~20がより好ましく、6~18が更に好ましい。 The carbon number of the alkenyl group represented by R 1 is a support material that suppresses the swelling of the (meth) acrylic acid-based copolymer from the viewpoint of quickly removing the support material in the gaps of the three-dimensional object. Is preferably 3 or more, more preferably 4 or more, and still more preferably 5 or more from the viewpoint of maintaining good removability for a long time. The carbon number of the alkenyl group represented by R 1 is preferably 30 or less, more preferably 20 or less, and still more preferably 18 or less from the same viewpoint. Taking these viewpoints together, the carbon number of the alkenyl group represented by R 1 is preferably 3 to 30, more preferably 4 to 20, and still more preferably 6 to 18.
 前記Rで表されるアリール基の炭素数は、三次元物体の隙間にあるサポート材を速やかに除去する観点、及び、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去性を長時間持続させる観点から6以上が好ましく、12以上がより好ましい。前記Rで表されるアリール基の炭素数は、同様の観点から30以下が好ましく、24以下がより好ましい。これらの観点を総合すると、前記Rで表されるアリール基の炭素数は、6~30が好ましく、12~24がより好ましい。 The number of carbon atoms of the aryl group represented by R 1 is a support material that suppresses the swelling of the (meth) acrylic acid copolymer and the viewpoint of quickly removing the support material in the gaps of the three-dimensional object. Is preferably 6 or more, more preferably 12 or more from the viewpoint of maintaining good removability for a long time. The number of carbon atoms of the aryl group represented by R 1 is preferably 30 or less and more preferably 24 or less from the same viewpoint. Taking these viewpoints together, the aryl group represented by R 1 preferably has 6 to 30 carbon atoms, and more preferably 12 to 24 carbon atoms.
 前記Rで表されるアリール基としては、フェニル基、スチレン化フェニル基、フェニルエチル基、ジスチレン化フェニル基、トリスチレン化フェニル基、ベンジル基、ベンジル化フェニル基、ジベンジル化フェニル基、トリベンジル化フェニル基等が例示できるが、これらの中でも三次元物体の隙間にあるサポート材を速やかに除去する観点、及び、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去性を長時間持続させる観点からベンジル化フェニル基が好ましい。 Examples of the aryl group represented by R 1 include a phenyl group, a styrenated phenyl group, a phenylethyl group, a distyrenated phenyl group, a tristyrenated phenyl group, a benzyl group, a benzylated phenyl group, a dibenzylated phenyl group, and a tribenzylated group. Phenyl groups and the like can be exemplified, but among these, the viewpoint of quickly removing the support material in the gap of the three-dimensional object, and the good support material by suppressing the swelling of the (meth) acrylic acid copolymer A benzylated phenyl group is preferable from the viewpoint of maintaining removability for a long time.
 前記ベンジル化フェニル基は、1つ以上のベンジル基で置換されたフェニル基である。ベンジル基は、ベンゼン環の水素原子又はメチレン基の水素原子が、メチル基のような短鎖炭化水素基、例えば炭素数1以上4以下のアルキル基で置換されていてもよい。例えば、スチレン基はベンジル基に含まれる。当該ベンジル化フェニル基としては、具体的には、モノスチレン化フェニル基、ジスチレン化フェニル基、モノベンジル化フェニル基、ジベンジル化フェニル基が挙げられ、これらの中でも三次元物体の隙間にあるサポート材を速やかに除去する観点、及び、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去性を長時間持続させる観点からモノスチレン化フェニル基、及びジスチレン化フェニル基から選ばれる1種以上が好ましく、ジスチレン化フェニル基がより好ましい。 The benzylated phenyl group is a phenyl group substituted with one or more benzyl groups. In the benzyl group, the hydrogen atom of the benzene ring or the hydrogen atom of the methylene group may be substituted with a short chain hydrocarbon group such as a methyl group, for example, an alkyl group having 1 to 4 carbon atoms. For example, a styrene group is included in a benzyl group. Specific examples of the benzylated phenyl group include a monostyrenated phenyl group, a distyrenated phenyl group, a monobenzylated phenyl group, and a dibenzylated phenyl group, and among these, a support material in a gap between three-dimensional objects. Monostyrenated phenyl group and distyrenated phenyl group from the viewpoint of promptly removing water and from the viewpoint of suppressing the swelling of the (meth) acrylic acid copolymer and maintaining good removability of the support material for a long time 1 or more types selected from are preferable, and a distyrenated phenyl group is more preferable.
 前記一般式(1)においてAOで表されるオキシアルキレン基の炭素数は、三次元物体の隙間にあるサポート材を速やかに除去する観点、及び、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去性を長時間持続させる観点から1以上が好ましく、2以上がより好ましく、3以上がより好ましく、4以上がより更に好ましい。前記一般式(1)においてAOで表されるオキシアルキレン基の炭素数は、同様の観点から50以下が好ましく、20以下がより好ましく、18以下が更に好ましい。これらの観点を総合すると、前記一般式(1)においてAOで表されるオキシアルキレン基の炭素数は、1~50が好ましく、2~20がより好ましく、3~20が更に好ましく、4~18がより更に好ましい。 In the general formula (1), the number of carbon atoms of the oxyalkylene group represented by AO is the viewpoint of quickly removing the support material in the gaps of the three-dimensional object, and the swelling of the (meth) acrylic acid copolymer Is preferably 1 or more, more preferably 2 or more, more preferably 3 or more, and still more preferably 4 or more, from the viewpoint of suppressing the above-mentioned and maintaining good removability of the support material for a long time. In the general formula (1), the number of carbon atoms of the oxyalkylene group represented by AO is preferably 50 or less, more preferably 20 or less, and still more preferably 18 or less from the same viewpoint. Taking these viewpoints together, the number of carbon atoms of the oxyalkylene group represented by AO in the general formula (1) is preferably 1 to 50, more preferably 2 to 20, further preferably 3 to 20, and 4 to 18 Is even more preferable.
 前記mは、三次元物体の隙間にあるサポート材を速やかに除去する観点、及び、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去性を長時間持続させる観点から1以上が好ましく、2以上がより好ましい。前記mは、泡立ちを抑制する観点から20以下が好ましく18以下がより好ましく、12以下が更に好ましい。これらの観点を総合すると、前記mは、1~20が好ましく、2~18がより好ましく、2~12が更に好ましい。 The m is a viewpoint of quickly removing the support material in the gap between the three-dimensional objects, and suppresses the swelling of the (meth) acrylic acid-based copolymer and maintains good removability of the support material for a long time. From the viewpoint, 1 or more is preferable, and 2 or more is more preferable. From the viewpoint of suppressing foaming, m is preferably 20 or less, more preferably 18 or less, and still more preferably 12 or less. Taking these viewpoints together, the m is preferably 1 to 20, more preferably 2 to 18, and still more preferably 2 to 12.
 前記(b)ノニオン系浸透剤の含有量は、三次元物体の隙間にあるサポート材を速やかに除去する観点、及び、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去性を長時間持続させる観点から、前記三次元物体前駆体処理剤組成物中0.05質量%以上が好ましく、0.1質量%以上がより好ましい。前記(b)ノニオン系浸透剤の含有量は、三次元物体の隙間にあるサポート材を速やかに除去する観点、及び、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去性を長時間持続させる観点から、前記三次元物体前駆体処理剤組成物中10質量%以下が好ましく、5質量%以下がより好ましい。これらの観点を総合すると、前記(b)ノニオン系浸透剤の含有量は、前記三次元物体前駆体処理剤組成物中0.05~10質量%が好ましく、0.1~5質量%がより好ましい。 The content of the (b) nonionic penetrant is the viewpoint of quickly removing the support material in the gap between the three-dimensional objects, and the swelling of the (meth) acrylic acid copolymer is suppressed. From the viewpoint of maintaining good removability for a long time, the content is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more in the three-dimensional object precursor treating agent composition. The content of the (b) nonionic penetrant is the viewpoint of quickly removing the support material in the gap between the three-dimensional objects, and the swelling of the (meth) acrylic acid copolymer is suppressed. From the viewpoint of maintaining good removability for a long time, 10% by mass or less is preferable and 5% by mass or less is more preferable in the three-dimensional object precursor treating agent composition. Summing up these viewpoints, the content of the nonionic penetrant (b) is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass in the three-dimensional object precursor treating agent composition. preferable.
〔(c)界面活性剤〕
 前記三次元物体前駆体処理剤組成物は、界面活性剤を含有することもできる。前記三次元物体前駆体処理剤組成物が界面活性剤を含有すると、三次元物体の隙間にあるサポート材を速やかに除去することができ、更に、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去性を長時間持続させることができる。なお、前記(b)ノニオン浸透剤は当該(c)界面活性剤に含まれない。
[(C) Surfactant]
The three-dimensional object precursor treating agent composition may contain a surfactant. When the three-dimensional object precursor treating agent composition contains a surfactant, the support material in the gaps of the three-dimensional object can be quickly removed, and further, the (meth) acrylic acid copolymer is swollen. It is possible to maintain good removability of the support material for a long time. The (b) nonionic penetrant is not included in the (c) surfactant.
 前記界面活性剤としては、ノニオン界面活性剤、両性界面活性剤、及びアニオン界面活性剤が挙げられる。 Examples of the surfactant include nonionic surfactants, amphoteric surfactants, and anionic surfactants.
 前記アニオン界面活性剤としては、アルキルベンゼンスルホン酸塩、アルキル又はアルケニルエーテル硫酸塩、アルキル又はアルケニル硫酸塩、オレフィンスルホン酸塩、アルカンスルホン酸塩、飽和又は不飽和脂肪酸塩、アルキル又はアルケニルエーテルカルボン酸塩、α-スルホ脂肪酸塩、N-アシルアミノ酸塩、リン酸モノ又はジエステル、スルホコハク酸エステル等が挙げられる。アルキルエーテル硫酸塩としては、ポリオキシエチレンアルキルエーテル硫酸塩が挙げられる。これらのうち、アルキル硫酸塩、アルキルエーテル硫酸塩、飽和脂肪酸塩、及びアルキルエーテルカルボン酸塩からなる群より選ばれる少なくとも1種以上が好ましい。これらアニオン界面活性剤のアニオン性基の対イオンとしては、ナトリウムイオン、カリウムイオン等のアルカリ金属イオン;カルシウムイオン、マグネシウムイオン等のアルカリ土類金属イオン;アンモニウムイオン;炭素数2又は3のアルカノール基を1~3個有するアルカノールアミン塩(例えばモノエタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩、トリイソプロパノールアミン塩等)が挙げられる。 Examples of the anionic surfactant include alkylbenzene sulfonate, alkyl or alkenyl ether sulfate, alkyl or alkenyl sulfate, olefin sulfonate, alkane sulfonate, saturated or unsaturated fatty acid salt, alkyl or alkenyl ether carboxylate , Α-sulfo fatty acid salts, N-acyl amino acid salts, phosphoric acid mono- or diesters, sulfosuccinic acid esters, and the like. Examples of the alkyl ether sulfate include polyoxyethylene alkyl ether sulfate. Of these, at least one selected from the group consisting of alkyl sulfates, alkyl ether sulfates, saturated fatty acid salts, and alkyl ether carboxylates is preferred. Counter ions of the anionic group of these anionic surfactants include alkali metal ions such as sodium ion and potassium ion; alkaline earth metal ions such as calcium ion and magnesium ion; ammonium ion; alkanol group having 2 or 3 carbon atoms And alkanolamine salts having 1 to 3 (for example, monoethanolamine salt, diethanolamine salt, triethanolamine salt, triisopropanolamine salt, etc.).
 前記両性界面活性剤としては、イミダゾリン、カルボベタイン、アミドベタイン、スルホベタイン、ヒドロキシスルホベタイン、アミドスルホベタイン等が挙げられ、アルキルジメチルアミノ酢酸ベタイン、脂肪酸アミドプロピルベタイン等のベタイン界面活性剤がより好ましく、脂肪酸アミドプロピルベタインが更に好ましい。 Examples of the amphoteric surfactant include imidazoline, carbobetaine, amide betaine, sulfobetaine, hydroxysulfobetaine, amide sulfobetaine and the like, and betaine surfactants such as alkyldimethylaminoacetic acid betaine and fatty acid amidopropyl betaine are more preferable. Fatty acid amidopropyl betaine is more preferable.
 前記ノニオン界面活性剤としては、前記(b)ノニオン浸透剤以外のポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルケニルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、高級脂肪酸ショ糖エステル、ポリグリセリン脂肪酸エステル、高級脂肪酸モノ又はジエタノールアミド、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、アルキルサッカライド、アルキルアミンオキサイド、アルキルアミドアミンオキサイド等が挙げられる。これらのうち、ポリオキシアルキレンアルキルエーテル、及びポリオキシエチレンジスチレン化フェニルエーテルからなる群より選ばれる少なくとも1種以上が好ましい。 Examples of the nonionic surfactant include polyoxyalkylene alkyl ethers, polyoxyalkylene alkenyl ethers, polyoxyethylene distyrenated phenyl ethers, higher fatty acid sucrose esters, polyglycerin fatty acid esters, higher grades other than the nonionic penetrant (b). Examples include fatty acid mono- or diethanolamide, polyoxyethylene hydrogenated castor oil, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbite fatty acid ester, alkyl saccharide, alkyl amine oxide, alkyl amido amine oxide and the like. Of these, at least one selected from the group consisting of polyoxyalkylene alkyl ethers and polyoxyethylene distyrenated phenyl ethers is preferred.
 前記(b)ノニオン浸透剤以外のポリオキシアルキレンアルキルエーテルは、三次元物体の隙間にあるサポート材を速やかに除去する観点、及び、(メタ)アクリル酸系共重合体の膨潤化を抑制してサポート材の良好な除去性を長時間持続させる観点から下記一般式(2)で表されるポリオキシアルキレンアルキルエーテルである。 The polyoxyalkylene alkyl ethers other than the (b) nonionic penetrant suppress the swelling of the (meth) acrylic acid-based copolymer from the viewpoint of quickly removing the support material in the gap between the three-dimensional objects. From the viewpoint of maintaining good removability of the support material for a long time, it is a polyoxyalkylene alkyl ether represented by the following general formula (2).
 R-O-(EO)p(PO)q-H     (2)
(前記一般式(2)中、Rは炭素数15以上のアルキル基、EOはオキシエチレン基、POはオキシプロピレン基を表し、p及びqは、それぞれEO及びPOの平均付加モル数であり、pは1~20の数、qは0~20の数を表す。)
R 2 —O— (EO) p (PO) q—H (2)
(In the general formula (2), R 2 represents an alkyl group having 15 or more carbon atoms, EO represents an oxyethylene group, PO represents an oxypropylene group, and p and q are average added moles of EO and PO, respectively. , P is a number from 1 to 20, and q is a number from 0 to 20.)
 前記界面活性剤が多量に含まれると気泡が発生しやすくなる。そのため、前記界面活性剤の含有量は、三次元物体の隙間にあるサポート材を速やかに除去する観点、及びサポート材の良好な除去性を長時間持続させる観点から、0.05質量%以下が好ましく、実質的に0質量%がより好ましい。 When a large amount of the surfactant is contained, bubbles are likely to be generated. Therefore, the content of the surfactant is 0.05% by mass or less from the viewpoint of promptly removing the support material in the gap between the three-dimensional objects and maintaining good removability of the support material for a long time. Preferably, substantially 0% by mass is more preferable.
〔その他〕
 前記三次元物体前駆体処理剤組成物は、本発明の効果を損なわない範囲で、必要に応じて、水、水溶性有機溶剤、エチレンジアミン四酢酸塩、カルボキシメチルセルロース、ポリビニルピロリドン、ポリアクリル酸塩、アルギン酸塩等のビルダー成分、増粘剤、pH調製剤、防腐剤、防錆剤、顔料、着色剤等が含まれていてもよい。着色剤を含有する現像液組成物は、サポート材の種類によっては、サポート材が溶解することで色が変化するため、着色剤は、現像の進行程度や終了時期を示す指示薬としての機能も期待できる。
[Others]
The three-dimensional object precursor treatment agent composition is water, a water-soluble organic solvent, ethylenediaminetetraacetate, carboxymethylcellulose, polyvinylpyrrolidone, polyacrylate, as necessary, as long as the effects of the present invention are not impaired. Builder components such as alginates, thickeners, pH adjusters, preservatives, rust inhibitors, pigments, colorants and the like may be included. Depending on the type of the support material, the developer composition containing the colorant changes color when the support material dissolves. Therefore, the colorant is also expected to function as an indicator that indicates the degree of progress and completion of development. it can.
[水]
 前記水は、超純水、純水、イオン交換水、蒸留水、又は通常の水道水等を用いることができる。水の含有量は、前記三次元物体前駆体処理剤組成物の残部(合計を100質量%とする量)であってよい。前記三次元物体前駆体処理剤組成物中の前記水の含有量は、現像液組成物の安定性及び取り扱い性を向上させ、かつ、廃液処理性等を向上させて環境への配慮を行う観点から20質量%以上が好ましく、40質量%以上がより好ましく、60質量%以上が更に好ましい。前記三次元物体前駆体処理剤組成物中の前記水の含有量は、現像液組成物の安定性及び取り扱い性を向上させ、かつ、廃液処理性等を向上させて環境への配慮を行う観点から99質量%以下が好ましく、98質量%以下がより好ましく、97質量%以下が更に好ましい。
[water]
As the water, ultrapure water, pure water, ion-exchanged water, distilled water, normal tap water, or the like can be used. The water content may be the balance of the three-dimensional object precursor treating agent composition (a total amount of 100% by mass). The content of the water in the three-dimensional object precursor treating agent composition improves the stability and handling of the developer composition, and also improves the waste liquid treatability, etc. To 20% by mass or more, more preferably 40% by mass or more, and still more preferably 60% by mass or more. The content of the water in the three-dimensional object precursor treating agent composition improves the stability and handling of the developer composition, and also improves the waste liquid treatability, etc. To 99 mass% or less is preferable, 98 mass% or less is more preferable, and 97 mass% or less is still more preferable.
[水溶性有機溶剤]
 前記水溶性有機溶剤は、サポート材の崩壊と現像液組成物への溶解の性能を発現する。
[Water-soluble organic solvent]
The water-soluble organic solvent exhibits the performance of disintegrating the support material and dissolving it in the developer composition.
 前記水溶性有機溶剤は、20℃の水に対して1.5質量%以上溶解するものが好ましい。水溶性有機溶剤としては、1価アルコール、多価アルコール、及びグリコールエーテルから選ばれる水溶性有機溶剤が挙げられる。 The water-soluble organic solvent is preferably one that dissolves 1.5% by mass or more in 20 ° C. water. Examples of the water-soluble organic solvent include water-soluble organic solvents selected from monohydric alcohols, polyhydric alcohols, and glycol ethers.
 前記1価アルコールとして、炭素数1以上、5以下の1価アルコールが挙げられる。具体的には、メチルアルコール、エチルアルコール、1-プロピルアルコール、イソプロピルアルコール、アリルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール、及びアミルアルコールから選ばれる1価アルコールが挙げられる。 Examples of the monohydric alcohol include monohydric alcohols having 1 to 5 carbon atoms. Specifically, a monohydric alcohol selected from methyl alcohol, ethyl alcohol, 1-propyl alcohol, isopropyl alcohol, allyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, and amyl alcohol is used. Can be mentioned.
 前記多価アルコールとしては、繰り返し単位の炭素数が2以上、3以下のアルキレングリコール〔以下、C2~C3アルキレングリコールという〕が挙げられる。C2~C3アルキレングリコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ヘプタエチレングリコール、オクタエチレングリコール、ノナエチレングリコール、デカエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコールなどが挙げられる。C2~C3アルキレングリコールは、繰り返し単位であるオキシエチレン基又はオキシプロピレン基を1以上、10以下有するものが好ましい。 Examples of the polyhydric alcohol include alkylene glycols having a repeating unit having 2 to 3 carbon atoms (hereinafter referred to as C2-C3 alkylene glycol). C2-C3 alkylene glycols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol, octaethylene glycol, nonaethylene glycol, decaethylene glycol, propylene glycol, dipropylene Examples include glycol and tripropylene glycol. The C2-C3 alkylene glycol preferably has 1 to 10 oxyethylene groups or oxypropylene groups which are repeating units.
 また、C2~C3アルキレングリコール以外の多価アルコールとして、炭素数2以上、8以下の多価アルコールが挙げられる。具体的には、トリメチレングリコール、1,3-オクチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,4-ブテンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、1,5-ヘキサンジオール、1,6-ヘキサンジオール、グリセリン、トリメチロールエタン、トリメチロールプロパンなどが挙げられる。 In addition, examples of polyhydric alcohols other than C2 to C3 alkylene glycol include polyhydric alcohols having 2 to 8 carbon atoms. Specifically, trimethylene glycol, 1,3-octylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,2-butanediol, 1 , 3-butanediol, 1,4-butanediol, 1,4-butenediol, 1,4-pentanediol, 1,5-pentanediol, 1,5-hexanediol, 1,6-hexanediol, glycerin, Examples include trimethylolethane and trimethylolpropane.
 前記水溶性有機溶剤は、それぞれ単独で用いてもよいが、2種以上を併用してもよい。これらの中でも、サポート材の崩壊と現像液組成物への溶解を更に高める観点から、メチルアルコール、エチルアルコール、1-プロピルアルコール、イソプロピルアルコール、t-ブチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコールから選ばれる水溶性有機溶剤が好ましく、エチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコールから選ばれる水溶性有機溶剤がより好ましい。 The water-soluble organic solvents may be used alone or in combination of two or more. Among these, from the viewpoint of further enhancing disintegration of the support material and dissolution in the developer composition, methyl alcohol, ethyl alcohol, 1-propyl alcohol, isopropyl alcohol, t-butyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, A water-soluble organic solvent selected from propylene glycol, dipropylene glycol, and tripropylene glycol is preferable, and a water-soluble organic solvent selected from ethyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, and dipropylene glycol is more preferable.
<三次元物体の製造方法>
 本実施形態の三次元物体の製造方法は、三次元物体と、親水性モノマー及び疎水性モノマーをモノマー単位として有する(メタ)アクリル酸系共重合体を含むサポート材とを含む三次元物体前駆体を得る造形工程、及び当該三次元物体前駆体を前記三次元物体前駆体処理剤組成物に接触させ、前記サポート材を除去するサポート材除去工程を有する熱溶融積層方式による三次元物体の製造方法である。本実施形態の三次元物体の製造方法によれば、従来よりも速やかに前記メタクリル酸共重合体を含有するサポート材を除去することができる。このような効果を奏する理由としては前記三次元物体前駆体処理剤組成物が前記効果を奏する理由と同様の理由が考えられる。
<Method of manufacturing a three-dimensional object>
The three-dimensional object manufacturing method of the present embodiment includes a three-dimensional object and a three-dimensional object precursor including a support material including a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units. And a method for producing a three-dimensional object by a hot melt lamination method, which has a support material removing step of bringing the three-dimensional object precursor into contact with the three-dimensional object precursor treating agent composition and removing the support material. It is. According to the method for producing a three-dimensional object of this embodiment, the support material containing the methacrylic acid copolymer can be removed more quickly than in the past. The reason why such an effect is exhibited may be the same as the reason why the three-dimensional object precursor treating agent composition exhibits the effect.
〔造形工程〕
 三次元物体と、親水性モノマー及び疎水性モノマーをモノマー単位として有する(メタ)アクリル酸系共重合体を含むサポート材とを含む三次元物体前駆体を得る造形工程は、公知の熱溶融積層方式の3Dプリンタによる三次元物体の製造方法における三次元物体及びサポート材を含む三次元物体前駆体を得る工程を利用することができる。
[Modeling process]
A modeling process for obtaining a three-dimensional object precursor including a three-dimensional object and a support material including a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units is a known hot-melt lamination method. The step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material in the method for producing a three-dimensional object by the 3D printer can be used.
 三次元物体の材料である造形材は、従来のFDM方式の三次元物体の製造方法で造形材として用いられる樹脂であれば特に限定なく用いることが出来る。当該造形材としては、ABS樹脂、ポリ乳酸樹脂、ポリカーボネート樹脂、及びポリフェニルサルフォン樹脂等の熱可塑性樹脂が例示でき、3Dプリンタによる造形性の観点からこれらの中でもABS樹脂及び/又はポリ乳酸樹脂がより好ましく、ABS樹脂が更に好ましい。 The modeling material that is the material of the three-dimensional object can be used without particular limitation as long as it is a resin that is used as a modeling material in a conventional FDM three-dimensional object manufacturing method. Examples of the modeling material include thermoplastic resins such as ABS resin, polylactic acid resin, polycarbonate resin, and polyphenylsulfone resin. Among these, ABS resin and / or polylactic acid resin are preferable from the viewpoint of modeling by a 3D printer. Is more preferable, and ABS resin is more preferable.
 サポート材の材料である三次元造形用可溶性材料は、親水性モノマー及び疎水性モノマーをモノマー単位として有する(メタ)アクリル酸系共重合体を含む。 The three-dimensional modeling soluble material that is a material of the support material includes a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units.
[(メタ)アクリル酸系共重合体]
(親水性モノマー)
 前記親水性モノマーとしては、アクリル酸、メタクリル酸、アクリル酸ジエチルアミノエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸グリシジル、アクリル酸テトラヒドロフルフリル、メタクリル酸ジエチルアミノエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸グリシジル、メタクリル酸テトラヒドロフルフリル、イタコン酸、マレイン酸、フマル酸、α-ヒドロキシアクリル酸等が挙げられる。これらの中でも、サポート材の除去性の観点から、アクリル酸、メタクリル酸からなる群より選ばれる少なくとも1種以上が好ましい。
[(Meth) acrylic acid copolymer]
(Hydrophilic monomer)
Examples of the hydrophilic monomer include acrylic acid, methacrylic acid, diethylaminoethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, glycidyl acrylate, tetrahydrofurfuryl acrylate, diethylaminoethyl methacrylate, and methacrylic acid 2 -Hydroxyethyl, 2-hydroxypropyl methacrylate, glycidyl methacrylate, tetrahydrofurfuryl methacrylate, itaconic acid, maleic acid, fumaric acid, α-hydroxyacrylic acid and the like. Among these, at least one selected from the group consisting of acrylic acid and methacrylic acid is preferable from the viewpoint of the removability of the support material.
(疎水性モノマー)
 前記疎水性モノマーとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸ターシャリーブチル、アクリル酸2-エチルへキシル、アクリル酸オクチル、アクリル酸イソデシル、アクリル酸ラウリル、アクリル酸トリデシル、アクリル酸セチル、アクリル酸ステアリル、アクリル酸シクロヘキシル、アクリル酸ベンジル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸イソブチル、メタクリル酸ターシャリーブチル、メタクリル酸2-エチルへキシル、メタクリル酸オクチル、メタクリル酸イソデシル、メタクリル酸ラウリル,メタクリル酸トリデシル、メタクリル酸セチル、メタクリル酸ステアリル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、スチレン、α-メチレン-γ-バレロラクトン等が挙げられる。
(Hydrophobic monomer)
Examples of the hydrophobic monomer include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, tertiary butyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, isodecyl acrylate, acrylic Lauryl acid, tridecyl acrylate, cetyl acrylate, stearyl acrylate, cyclohexyl acrylate, benzyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, isobutyl methacrylate, tertiary butyl methacrylate, methacrylic acid 2-ethylhexyl acid, octyl methacrylate, isodecyl methacrylate, lauryl methacrylate, tridecyl methacrylate, cetyl methacrylate, stearyl methacrylate, methacrylate Le cyclohexyl, benzyl methacrylate, styrene, alpha-methylene -γ- valerolactone.
 前記(メタ)アクリル酸系共重合体は、前記親水性モノマー及び前記疎水性モノマー以外のモノマーユニットを含有していてもよい。 The (meth) acrylic acid copolymer may contain monomer units other than the hydrophilic monomer and the hydrophobic monomer.
〔サポート材除去工程〕
 前記サポート材除去工程は、前記三次元物体前駆体を前記三次元物体前駆体処理剤組成物に接触させ、前記サポート材を除去する工程である。三次元物体前駆体を前記三次元物体前駆体処理剤組成物に接触させる手法は、処理液中に浸漬後撹拌したり、強い水流中に晒したり、該前駆体自体を動かしたりすることが考えられる。しかし、前駆体の棄損防止の観点、及び作業の容易さの観点から、三次元物体前駆体を前記三次元物体前駆体処理剤組成物に浸漬させる手法が好ましい。サポート材の除去性を向上させる観点から、浸漬中に超音波を照射し、サポート材の溶解を促すこともできる。
[Support material removal process]
The support material removing step is a step of removing the support material by bringing the three-dimensional object precursor into contact with the three-dimensional object precursor treating agent composition. The method of bringing the three-dimensional object precursor into contact with the three-dimensional object precursor treating agent composition may be agitated after being immersed in the treatment liquid, exposed to a strong water stream, or moved. It is done. However, from the viewpoint of preventing loss of the precursor and from the viewpoint of ease of work, a method of immersing the three-dimensional object precursor in the three-dimensional object precursor treating agent composition is preferable. From the viewpoint of improving the removability of the support material, it is possible to promote the dissolution of the support material by irradiating ultrasonic waves during the immersion.
 前記三次元物体前駆体処理剤組成物のpHは、サポート材の溶解性の観点から10以上が好ましく、11以上がより好ましい。また、前記三次元物体前駆体処理剤組成物のpHは、造形材へのダメージ抑制又は低減の観点から14以下が好ましく、13以下がより好ましい。これらの観点を総合すると、前記三次元物体前駆体処理剤組成物のpHは、10~14が好ましく、10~13がより好ましく、11~13が更に好ましい。 The pH of the three-dimensional object precursor treating agent composition is preferably 10 or more, more preferably 11 or more, from the viewpoint of solubility of the support material. The pH of the three-dimensional object precursor treating agent composition is preferably 14 or less, more preferably 13 or less, from the viewpoint of suppressing or reducing damage to the modeling material. Taking these viewpoints together, the pH of the three-dimensional object precursor treating agent composition is preferably 10 to 14, more preferably 10 to 13, and still more preferably 11 to 13.
 前記三次元物体前駆体処理剤組成物の使用量は、サポート材の溶解性の観点から当該サポート材に対して10質量倍以上が好ましく、20質量倍以上がより好ましい。前記三次元物体前駆体処理剤組成物の使用量は、作業性の観点から当該サポート材に対して10000質量倍以下が好ましく、5000質量倍以下がより好ましく、1000質量倍以下が更に好ましく、100質量倍以下が更に好ましい。 The amount of the three-dimensional object precursor treating agent composition used is preferably 10 times by mass or more and more preferably 20 times by mass or more with respect to the support material from the viewpoint of solubility of the support material. The amount of the three-dimensional object precursor treating agent composition used is preferably 10,000 times by mass or less, more preferably 5000 times by mass or less, still more preferably 1000 times by mass or less, with respect to the support material from the viewpoint of workability. More preferably, it is less than mass times.
 当該サポート材除去工程における前記三次元物体前駆体処理剤組成物の温度は、サポート材の溶解性の観点から25℃以上が好ましく、40℃以上がより好ましい。当該サポート材除去工程における前記三次元物体前駆体処理剤組成物の温度は、同様の観点から80℃以下が好ましく、70℃以下がより好ましい。これらの観点を総合すると、当該サポート材除去工程における前記三次元物体前駆体処理剤組成物の温度は、25~80℃が好ましく、40~70℃がより好ましい。 The temperature of the three-dimensional object precursor treating agent composition in the support material removing step is preferably 25 ° C. or higher, more preferably 40 ° C. or higher, from the viewpoint of solubility of the support material. From the same viewpoint, the temperature of the three-dimensional object precursor treating agent composition in the support material removing step is preferably 80 ° C. or less, and more preferably 70 ° C. or less. Taking these viewpoints together, the temperature of the three-dimensional object precursor treating agent composition in the support material removing step is preferably 25 to 80 ° C, more preferably 40 to 70 ° C.
 前記三次元造形用可溶性材料を前記三次元物体前駆体処理剤組成物に接触させる時間は、サポート材の除去性の観点から5分以上が好ましい。また、前記三次元造形用可溶性材料を前記三次元物体前駆体処理剤組成物に接触させる時間は、三次元物体が受けるダメージを軽減する観点から180分以下が好ましく、120分以下がより好ましく、90分以下が更に好ましく、60分以下がより更に好ましい。これらの観点を総合すると、前記三次元造形用可溶性材料を前記三次元物体前駆体処理剤組成物に接触させる時間は、5~180分が好ましく、5~120分がより好ましく、5~90分が更に好ましく、5~60分がより更に好ましい。 The time for bringing the soluble material for 3D modeling into contact with the 3D object precursor treating agent composition is preferably 5 minutes or more from the viewpoint of the removability of the support material. In addition, the time for contacting the three-dimensional modeling soluble material with the three-dimensional object precursor treatment agent composition is preferably 180 minutes or less, more preferably 120 minutes or less from the viewpoint of reducing damage to the three-dimensional object, 90 minutes or less is more preferable, and 60 minutes or less is even more preferable. Taking these viewpoints together, the time for contacting the three-dimensional modeling soluble material with the three-dimensional object precursor treating agent composition is preferably 5 to 180 minutes, more preferably 5 to 120 minutes, and more preferably 5 to 90 minutes. Is more preferable, and 5 to 60 minutes is even more preferable.
 上述した実施形態に関し、本明細書は更に以下の発明を開示する。 The present specification further discloses the following invention with respect to the above-described embodiment.
<1>三次元物体と、親水性モノマー及び疎水性モノマーをモノマー単位として有する(メタ)アクリル酸系共重合体を含むサポート材とを含む三次元物体前駆体から、前記サポート材を除去する為の三次元物体前駆体処理剤組成物であって、前記三次元物体前駆体処理剤組成物が、(a)アルカリ剤、及び(b)ノニオン系浸透剤を含有する、三次元物体前駆体処理剤組成物。
<2>前記(a)アルカリ剤が、無機アルカリ剤及び有機アルカリ剤からなる群より選ばれる少なくとも1種以上が好ましい、<1>に記載の三次元物体前駆体処理剤組成物。
<3>前記無機アルカリ剤が、アルカリ金属水酸化物及びアルカリ金属炭酸化物からなる群より選ばれる少なくとも1種以上が好ましい、<2>に記載の三次元物体前駆体処理剤組成物。
<4>前記アルカリ金属水酸化物が、水酸化リチウム、水酸化ナトリウム、及び水酸化カリウムからなる群より選ばれる少なくとも1種以上が好ましい、<3>に記載の三次元物体前駆体処理剤組成物。
<5>前記アルカリ金属炭酸化物が、炭酸化リチウム、炭酸化ナトリウム、及び炭酸化カリウムからなる群より選ばれる少なくとも1種以上が好ましい、<3>又は<4>に記載の三次元物体前駆体処理剤組成物。
<6>前記三次元物体前駆体処理剤組成物中の前記アルカリ金属水酸化物及びアルカリ金属炭酸化物の合計含有量が、2.5質量%未満であり、好ましくは2.0質量%未満であり、より好ましくは1.0質量%以下であり、更に好ましくは0.5質量%未満であり、好ましくは0質量%以上であり、より好ましくは0.01質量%以上、更に好ましくは0.25質量%以上である、<3>~<5>いずれかに記載の三次元物体前駆体処理剤組成物。
<7>前記有機アルカリ剤が、有機アミン化合物が好ましい、<2>~<6>いずれかに記載の三次元物体前駆体処理剤組成物。
<8>前記有機アミン化合物が、1級モノアミン化合物、2級モノアミン化合物、3級モノアミン化合物、1級ジアミン化合物、2級ジアミン化合物、3級ジアミン化合物、1級トリアミン化合物、2級トリアミン化合物、及び3級トリアミン化合物からなる群より選ばれる少なくとも1種以上が好ましい、<7>に記載の三次元物体前駆体処理剤組成物。
<9>前記1級モノアミン化合物が、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、n-アミルアミン、イソアミルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-デシルアミン、及びn-オクタデシルアミンからなる群より選ばれる少なくとも1種以上が好ましい、<8>に記載の三次元物体前駆体処理剤組成物。
<10>前記2級モノアミン化合物が、メチルエタノールアミン、エチルエタノールアミン、ジイソプロパノールアミン、ジイソプロピルアミン、ジエタノールアミン、ブチルエタノールアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、メチルエチルアミン、メチルプロピルアミン、メチルブチルアミン、メチルヘキシルアミン、ジペンチルアミン、ピペリジン、モルホリン、及び2,6-ジメチルモルホリンからなる群より選ばれる少なくとも1種以上が好ましく、メチルエタノールアミン、エチルエタノールアミン、ジイソプロパノールアミン、ブチルエタノールアミン、及びジイソプロピルアミンからなる群より選ばれる少なくとも1種以上がより好ましい、<8>又は<9>に記載の三次元物体前駆体処理剤組成物。
<11>前記3級モノアミン化合物が、トリメチルアミン、トリエチルアミン、ジメチルエチルアミン、ジエチルメチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリエタノールアミン、ヒドロキシエチルピペラジン、ジメチルアミノエタノール、ジエチルアミノエタノール、N-tert-ブチルジエタノールアミン、ジメチルアミノエトキシエタノール、エチルジエタノールアミン、ブチルジエタノールアミン、6-ジメチルアミノ-1-ヘキサノール、5-(ジメチルアミノ)-2-ペンタノール、5-(ジメチルアミノ)-1-ペンタノール、3-(ジエチルアミノ)-1-プロパノール、n-メチルモルホリン、n-エチルモルホリン、及び4-(2-ヒドロキシエチル)モルホリンからなる群より選ばれる少なくとも1種以上が好ましく、ジメチルアミノエタノール、ジエチルアミノエタノール、N-tert-ブチルジエタノールアミン、ジメチルアミノエトキシエタノール、エチルジエタノールアミン、及び6-ジメチルアミノ-1-ヘキサノールからなる群より選ばれる少なくとも1種以上がより好ましく、6-ジメチルアミノ-1-ヘキサノールが更に好ましい、<8>~<10>いずれかに記載の三次元物体前駆体処理剤組成物。
<12>前記1級ジアミン化合物が、エチレンジアミン、1,4-ジアミノブタン、及び1,6-ジアミノヘキサンからなる群より選ばれる少なくとも1種以上が好ましい、<8>~<11>いずれかに記載の三次元物体前駆体処理剤組成物。
<13>前記2級ジアミン化合物が、ピペラジン、ヒドロキシエチルピペラジンからなる群より選ばれる少なくとも1種以上が好ましく、ヒドロキシエチルピペラジンがより好ましい、<8>~<12>いずれかに記載の三次元物体前駆体処理剤組成物。
<14>前記3級ジアミン化合物が、テトラエチルヘキサンジアミン、テトラメチルヘキサンジアミン、テトラメチルプロパンジアミン、(2-ジメチルアミノエチル)メチルエタノールアミン、テトラメチルエチレンジアミン、ジピペリジノエタン、ジピロリジノエタン、スパルテイン、及びトリメチルアミノプロピルエタノールアミンからなる群より選ばれる少なくとも1種以上が好ましく、テトラメチルヘキサンジアミン、テトラメチルプロパンジアミン、及び(2-ジメチルアミノエチル)メチルエタノールアミンからなる群より選ばれる少なくとも1種以上がより好ましい、<8>~<13>いずれかに記載の三次元物体前駆体処理剤組成物。
<15>前記1級トリアミン化合物が、1,2,3-トリアミノプロパン、トリアミノヘキサン、トリアミノノナン、トリアミノドデカン、及び1,3,6-トリアミノヘキサンからなる群より選ばれる少なくとも1種以上が好ましい、<8>~<14>いずれかに記載の三次元物体前駆体処理剤組成物。
<16>前記2級トリアミン化合物が、N,N”-ジメチルジエチレントリアミン、N,N”-ジエチルジエチレントリアミン、N,N”-ジプロピルジエチレントリアミン、及びN,N”-ジブチルジエチレントリアミンからなる群より選ばれる少なくとも1種以上が好ましい、<8>~<15>いずれかに記載の三次元物体前駆体処理剤組成物。
<17>前記3級トリアミン化合物が、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N,N’,N”,N”-ペンタエチルジエチレントリアミン、N,N,N’,N”,N”-ペンタプロピルジエチレントリアミン、及びN,N,N’,N”,N”-ペンタブチルジエチレントリアミンからなる群より選ばれる少なくとも1種以上が好ましい、<8>~<16>いずれかに記載の三次元物体前駆体処理剤組成物。
<18>前記有機アミン化合物が、2級ジアミン化合物、3級ジアミン化合物、2級トリアミン化合物、及び3級トリアミン化合物からなる群より選ばれる少なくとも1種以上が好ましく、2級ジアミン化合物、及び3級ジアミン化合物からなる群より選ばれる少なくとも1種以上がより好ましい、<8>~<17>いずれかに記載の三次元物体前駆体処理剤組成物。
<19>前記有機アミン化合物が、アルコール性水酸基を有するアミン化合物が好ましい、<8>~<18>いずれかに記載の三次元物体前駆体処理剤組成物。
<20>前記三次元物体前駆体処理剤組成物中の前記有機アミン化合物の含有量が、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1.0質量%以上が更に好ましく、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましく、8質量%以下がより更に好ましく、0.1~20質量%が好ましく、0.5~15質量%がより好ましく、0.5~10質量%が更に好ましく、1.0~8質量%がより更に好ましい、<8>~<19>いずれかに記載の三次元物体前駆体処理剤組成物。
<21>前記ノニオン系浸透剤が、非イオン性の化合物でオキシアルキレン基等の親水部と炭化水素基等の疎水部を有する化合物であり、炭素数4~14のアルキル基、炭素数3~30のアルケニル基、及び炭素数6~30のアリール基からなる群より選ばれる少なくとも1種以上の基を有するオキシアルキレン付加物であることが好ましい、<1>~<20>いずれかに記載の三次元物体前駆体処理剤組成物。
<22>前記ノニオン系浸透剤が、下記一般式(1)で表されるポリオキシアルキレンアルキルエーテルが好ましい、<1>~<21>いずれかに記載の三次元物体前駆体処理剤組成物。
-O-(AO)m-H     (1)
(前記一般式(1)中、Rは炭素数4~14のアルキル基、炭素数3~30のアルケニル基、又は炭素数6~30のアリール基、AOは炭素数1~50のオキシアルキレン基を表し、mはAOの平均付加モル数であり、mは1~20の数を表す。)
<23>前記Rで表されるアルキル基の炭素数が、4以上が好ましく、5以上がより好ましく、6以上が更に好ましく、14以下が好ましく、12以下がより好ましく、10以下が更に好ましく、4~14が好ましく、5~12がより好ましく、6~10が更に好ましい、<22>に記載の三次元物体前駆体処理剤組成物。
<24>前記Rで表されるアルキル基が、ヘキシル、2-エチルヘキシル、イソノニル、2-ヘキシルデシルからなる群より選ばれる少なくとも1種以上が好ましく、へキシル基、2-エチルヘキシル基からなる群より選ばれる少なくとも1種以上がより好ましく、2-エチルヘキシル基が更に好ましい、<22>又は<23>に記載の三次元物体前駆体処理剤組成物。
<25>前記Rで表されるアルケニル基の炭素数が、3以上が好ましく、4以上がより好ましく、5以上が更に好ましく、30以下が好ましく、20以下がより好ましく、18以下が更に好ましく、3~30が好ましく、4~20がより好ましく、6~18が更に好ましい、<22>~<24>いずれかに記載の三次元物体前駆体処理剤組成物。
<26>前記Rで表されるアリール基の炭素数が、6以上が好ましく、12以上がより好ましく、30以下が好ましく、24以下がより好ましく、6~30が好ましく、12~24がより好ましい、<22>~<25>いずれかに記載の三次元物体前駆体処理剤組成物。
<27>前記アリール基が、フェニル基、スチレン化フェニル基、フェニルエチル基、ジスチレン化フェニル基、トリスチレン化フェニル基、ベンジル基、ベンジル化フェニル基、ジベンジル化フェニル基、トリベンジル化フェニル基からなる群より選ばれる少なくとも1種以上が好ましく、ベンジル化フェニル基がより好ましい、<22>~<26>いずれかに記載の三次元物体前駆体処理剤組成物。
<28>前記ベンジル化フェニル基が、モノスチレン化フェニル基、ジスチレン化フェニル基、モノベンジル化フェニル基、ジベンジル化フェニル基からなる群より選ばれる少なくとも1種以上が好ましく、モノスチレン化フェニル基、及びジスチレン化フェニル基からなる群より選ばれる少なくとも1種以上がより好ましく、ジスチレン化フェニル基が更に好ましい、<27>に記載の三次元物体前駆体処理剤組成物。
<29>前記一般式(1)においてAOで表されるオキシアルキレン基の炭素数が、1以上が好ましく、2以上がより好ましく、3以上がより好ましく、4以上がより更に好ましく、50以下が好ましく、20以下がより好ましく、18以下が更に好ましく、1~50が好ましく、2~20がより好ましく、3~20が更に好ましく、4~18がより更に好ましい、<22>~<28>いずれかに記載の三次元物体前駆体処理剤組成物。
<30>前記mが、1以上が好ましく、2以上がより好ましく、20以下が好ましく、18以下がより好ましく、12以下が更に好ましく、1~20が好ましく、2~18がより好ましく、2~12が更に好ましい、<22>~<29>いずれかに記載の三次元物体前駆体処理剤組成物。
<31>前記ノニオン系浸透剤の含有量が、前記三次元物体前駆体処理剤組成物中0.05質量%以上が好ましく、0.1質量%以上がより好ましく、10質量%以下が好ましく、5質量%以下がより好ましく、0.05~10質量%が好ましく、0.1~5質量%がより好ましい、<22>~<30>いずれかに記載の三次元物体前駆体処理剤組成物。
<32>更に、(c)界面活性剤を含有する、<1>~<31>いずれかに記載の三次元物体前駆体処理剤組成物。
<33>前記(b)ノニオン浸透剤が、前記(c)界面活性剤に含まれない、<32>に記載の三次元物体前駆体処理剤組成物。
<34>前記三次元物体前駆体処理剤組成物中の前記界面活性剤の含有量が、0.05質量%以下が好ましく、実質的に0質量%がより好ましい、<32>又は<33>に記載の三次元物体前駆体処理剤組成物。
<35>三次元物体と、親水性モノマー及び疎水性モノマーをモノマー単位として有する(メタ)アクリル酸系共重合体を含むサポート材とを含む三次元物体前駆体を得る造形工程、及び当該三次元物体前駆体を三次元物体前駆体処理剤組成物に接触させ、前記サポート材を除去するサポート材除去工程を有する熱溶融積層方式による三次元物体の製造方法であって、前記三次元物体前駆体処理剤組成物が、<1>~<34>いずれかに記載の三次元物体前駆体処理剤組成物である、三次元物体の製造方法。
<36>前記造形材が、ABS樹脂、ポリ乳酸樹脂、ポリカーボネート樹脂、及びポリフェニルサルフォン樹脂からなる群より選ばれる少なくとも1種以上の熱可塑性樹脂が好ましく、ABS樹脂及び/又はポリ乳酸樹脂がより好ましく、ABS樹脂が更に好ましい、<35>に記載の三次元物体の製造方法。
<37>前記サポート材の材料である三次元造形用可溶性材料が、親水性モノマー及び疎水性モノマーをモノマー単位として有する(メタ)アクリル酸系共重合体を含むのが好ましい、<35>又は<36>に記載の三次元物体の製造方法。
<38>前記親水性モノマーが、アクリル酸、メタクリル酸、アクリル酸ジエチルアミノエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸グリシジル、アクリル酸テトラヒドロフルフリル、メタクリル酸ジエチルアミノエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸グリシジル、メタクリル酸テトラヒドロフルフリル、イタコン酸、マレイン酸、フマル酸、α-ヒドロキシアクリル酸からなる群より選ばれる少なくとも1種以上が好ましく、アクリル酸、メタクリル酸からなる群より選ばれる少なくとも1種以上がより好ましい、<35>~<37>いずれかに記載の三次元物体の製造方法。
<39>前記疎水性モノマーが、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸ターシャリーブチル、アクリル酸2-エチルへキシル、アクリル酸オクチル、アクリル酸イソデシル、アクリル酸ラウリル、アクリル酸トリデシル、アクリル酸セチル、アクリル酸ステアリル、アクリル酸シクロヘキシル、アクリル酸ベンジル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸イソブチル、メタクリル酸ターシャリーブチル、メタクリル酸2-エチルへキシル、メタクリル酸オクチル、メタクリル酸イソデシル、メタクリル酸ラウリル,メタクリル酸トリデシル、メタクリル酸セチル、メタクリル酸ステアリル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、スチレン、α-メチレン-γ-バレロラクトンからなる群より選ばれる少なくとも1種以上が好ましい、<35>~<38>いずれかに記載の三次元物体の製造方法。
<40>前記三次元物体前駆体処理剤組成物のpHが、10以上が好ましく、11以上がより好ましく、14以下が好ましく、13以下がより好ましく、10~14が好ましく、10~13がより好ましく、11~13が更に好ましい、<35>~<39>いずれかに記載の三次元物体の製造方法。
<41>前記サポート材除去工程における前記三次元物体前駆体処理剤組成物の温度が、25℃以上が好ましく、40℃以上がより好ましく、80℃以下が好ましく、70℃以下がより好ましく、25~80℃が好ましく、40~70℃がより好ましい、<35>~<40>いずれかに記載の三次元物体の製造方法。
<42><1>~<34>いずれかに記載の組成物の三次元物体前駆体処理剤としての使用。
<43>三次元物体と、親水性モノマー及び疎水性モノマーをモノマー単位として有する(メタ)アクリル酸系共重合体を含むサポート材とを含む三次元物体前駆体を<1>~<34>いずれかに記載の三次元物体前駆体処理剤組成物に接触させ、前記サポート材を除去するサポート材除去方法。
<1> To remove the support material from a three-dimensional object precursor including a three-dimensional object and a support material containing a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units. The three-dimensional object precursor treatment agent composition, wherein the three-dimensional object precursor treatment agent composition contains (a) an alkali agent and (b) a nonionic penetrant. Agent composition.
<2> The three-dimensional object precursor treatment agent composition according to <1>, wherein (a) the alkali agent is preferably at least one selected from the group consisting of an inorganic alkali agent and an organic alkali agent.
<3> The three-dimensional object precursor treatment composition according to <2>, wherein the inorganic alkali agent is preferably at least one selected from the group consisting of alkali metal hydroxides and alkali metal carbonates.
<4> The three-dimensional object precursor treatment composition according to <3>, wherein the alkali metal hydroxide is preferably at least one selected from the group consisting of lithium hydroxide, sodium hydroxide, and potassium hydroxide. object.
<5> The three-dimensional object precursor according to <3> or <4>, wherein the alkali metal carbonate is preferably at least one selected from the group consisting of lithium carbonate, sodium carbonate, and potassium carbonate. Treatment agent composition.
<6> The total content of the alkali metal hydroxide and alkali metal carbonate in the three-dimensional object precursor treatment agent composition is less than 2.5% by mass, preferably less than 2.0% by mass. More preferably, it is 1.0 mass% or less, More preferably, it is less than 0.5 mass%, Preferably it is 0 mass% or more, More preferably, it is 0.01 mass% or more, More preferably, it is 0.00. The three-dimensional object precursor treatment agent composition according to any one of <3> to <5>, which is 25% by mass or more.
<7> The three-dimensional object precursor treatment composition according to any one of <2> to <6>, wherein the organic alkali agent is preferably an organic amine compound.
<8> The organic amine compound is a primary monoamine compound, secondary monoamine compound, tertiary monoamine compound, primary diamine compound, secondary diamine compound, tertiary diamine compound, primary triamine compound, secondary triamine compound, and The three-dimensional object precursor treating agent composition according to <7>, wherein at least one selected from the group consisting of tertiary triamine compounds is preferred.
<9> The primary monoamine compound is methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, n-amylamine, isoamylamine, n-hexylamine, n-heptylamine, n-octyl. The three-dimensional object precursor treatment composition according to <8>, wherein at least one selected from the group consisting of amine, n-decylamine, and n-octadecylamine is preferable.
<10> The secondary monoamine compound is methylethanolamine, ethylethanolamine, diisopropanolamine, diisopropylamine, diethanolamine, butylethanolamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, methylethylamine, methylpropylamine, Preferably, at least one selected from the group consisting of methylbutylamine, methylhexylamine, dipentylamine, piperidine, morpholine, and 2,6-dimethylmorpholine, methylethanolamine, ethylethanolamine, diisopropanolamine, butylethanolamine, And at least one selected from the group consisting of diisopropylamine is more preferable, and the three-dimensional object precursor according to <8> or <9> Treatment composition.
<11> The tertiary monoamine compound is trimethylamine, triethylamine, dimethylethylamine, diethylmethylamine, tripropylamine, tributylamine, tripentylamine, triethanolamine, hydroxyethylpiperazine, dimethylaminoethanol, diethylaminoethanol, N-tert. -Butyldiethanolamine, dimethylaminoethoxyethanol, ethyldiethanolamine, butyldiethanolamine, 6-dimethylamino-1-hexanol, 5- (dimethylamino) -2-pentanol, 5- (dimethylamino) -1-pentanol, 3- (Diethylamino) -1-propanol, n-methylmorpholine, n-ethylmorpholine, and 4- (2-hydroxyethyl) morpholine And at least one selected from the group consisting of dimethylaminoethanol, diethylaminoethanol, N-tert-butyldiethanolamine, dimethylaminoethoxyethanol, ethyldiethanolamine, and 6-dimethylamino-1-hexanol. The three-dimensional object precursor treating agent composition according to any one of <8> to <10>, more preferably 6-dimethylamino-1-hexanol.
<12> The primary diamine compound is preferably at least one selected from the group consisting of ethylenediamine, 1,4-diaminobutane, and 1,6-diaminohexane, <8> to <11> A three-dimensional object precursor treatment composition.
<13> The three-dimensional object according to any one of <8> to <12>, wherein the secondary diamine compound is preferably at least one selected from the group consisting of piperazine and hydroxyethylpiperazine, more preferably hydroxyethylpiperazine. Precursor treatment agent composition.
<14> The tertiary diamine compound is tetraethylhexanediamine, tetramethylhexanediamine, tetramethylpropanediamine, (2-dimethylaminoethyl) methylethanolamine, tetramethylethylenediamine, dipiperidinoethane, dipyrrolidinoethane, At least one selected from the group consisting of sparteine and trimethylaminopropylethanolamine is preferred, and at least selected from the group consisting of tetramethylhexanediamine, tetramethylpropanediamine, and (2-dimethylaminoethyl) methylethanolamine. The three-dimensional object precursor treating agent composition according to any one of <8> to <13>, wherein one or more are more preferable.
<15> The primary triamine compound is at least one selected from the group consisting of 1,2,3-triaminopropane, triaminohexane, triaminononane, triaminododecane, and 1,3,6-triaminohexane. The three-dimensional object precursor treating agent composition according to any one of <8> to <14>, wherein at least one species is preferred.
<16> The secondary triamine compound is at least selected from the group consisting of N, N ″ -dimethyldiethylenetriamine, N, N ″ -diethyldiethylenetriamine, N, N ″ -dipropyldiethylenetriamine, and N, N ″ -dibutyldiethylenetriamine. The three-dimensional object precursor treating agent composition according to any one of <8> to <15>, wherein one or more are preferable.
<17> The tertiary triamine compound is N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine, N, N, N ′, N ″, N ″ -pentaethyldiethylenetriamine, N, N, N ′ , N ″, N ″ -pentapropyldiethylenetriamine, and at least one selected from the group consisting of N, N, N ′, N ″, N ″ -pentabutyldiethylenetriamine is preferable, any one of <8> to <16> The three-dimensional object precursor treating agent composition described in 1.
<18> The organic amine compound is preferably at least one selected from the group consisting of secondary diamine compounds, tertiary diamine compounds, secondary triamine compounds, and tertiary triamine compounds, secondary diamine compounds, and tertiary. The three-dimensional object precursor treating agent composition according to any one of <8> to <17>, wherein at least one selected from the group consisting of diamine compounds is more preferred.
<19> The three-dimensional object precursor treating agent composition according to any one of <8> to <18>, wherein the organic amine compound is preferably an amine compound having an alcoholic hydroxyl group.
<20> The content of the organic amine compound in the three-dimensional object precursor treating agent composition is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and 1.0% by mass or more. More preferably, it is preferably 20% by mass or less, more preferably 15% by mass or less, further preferably 10% by mass or less, still more preferably 8% by mass or less, preferably 0.1 to 20% by mass, 0.5 to 15%. The composition for treating a three-dimensional object precursor according to any one of <8> to <19>, more preferably 0.5% by weight, further preferably 0.5 to 10% by weight, and still more preferably 1.0 to 8% by weight. .
<21> The nonionic penetrant is a nonionic compound having a hydrophilic part such as an oxyalkylene group and a hydrophobic part such as a hydrocarbon group. The nonionic penetrant includes an alkyl group having 4 to 14 carbon atoms and 3 to 3 carbon atoms. Preferably, it is an oxyalkylene adduct having at least one group selected from the group consisting of 30 alkenyl groups and aryl groups having 6 to 30 carbon atoms, <1> to <20> Three-dimensional object precursor treating agent composition.
<22> The three-dimensional object precursor treating agent composition according to any one of <1> to <21>, wherein the nonionic penetrant is preferably a polyoxyalkylene alkyl ether represented by the following general formula (1).
R 1 —O— (AO) m—H (1)
(In the general formula (1), R 1 is an alkyl group having 4 to 14 carbon atoms, an alkenyl group having 3 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms, and AO is an oxyalkylene having 1 to 50 carbon atoms. And m is the average number of moles of AO added, and m is a number from 1 to 20.)
<23> The number of carbon atoms of the alkyl group represented by R 1 is preferably 4 or more, more preferably 5 or more, still more preferably 6 or more, preferably 14 or less, more preferably 12 or less, and still more preferably 10 or less. The three-dimensional object precursor treatment composition according to <22>, preferably 4 to 14, more preferably 5 to 12, and still more preferably 6 to 10.
<24> The alkyl group represented by R 1 is preferably at least one selected from the group consisting of hexyl, 2-ethylhexyl, isononyl, and 2-hexyldecyl, and is preferably a group consisting of a hexyl group and a 2-ethylhexyl group. The three-dimensional object precursor treating agent composition according to <22> or <23>, wherein at least one or more selected from the above is more preferable, and a 2-ethylhexyl group is still more preferable.
<25> The number of carbon atoms of the alkenyl group represented by R 1 is preferably 3 or more, more preferably 4 or more, still more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and still more preferably 18 or less. The three-dimensional object precursor treatment composition according to any one of <22> to <24>, preferably 3 to 30, more preferably 4 to 20, and still more preferably 6 to 18.
<26> The number of carbon atoms of the aryl group represented by R 1 is preferably 6 or more, more preferably 12 or more, preferably 30 or less, more preferably 24 or less, preferably 6 to 30, and more preferably 12 to 24 The three-dimensional object precursor treating agent composition according to any one of <22> to <25>.
<27> The aryl group includes a phenyl group, a styrenated phenyl group, a phenylethyl group, a distyrenated phenyl group, a tristyrenated phenyl group, a benzyl group, a benzylated phenyl group, a dibenzylated phenyl group, and a tribenzylated phenyl group. The three-dimensional object precursor treatment composition according to any one of <22> to <26>, wherein at least one selected from the group is preferred, and a benzylated phenyl group is more preferred.
<28> The benzylated phenyl group is preferably at least one selected from the group consisting of a monostyrenated phenyl group, a distyrenated phenyl group, a monobenzylated phenyl group, and a dibenzylated phenyl group, a monostyrenated phenyl group, And at least one selected from the group consisting of distyrenated phenyl groups, more preferably distyrenated phenyl groups, and the three-dimensional object precursor treating agent composition according to <27>.
<29> The number of carbon atoms of the oxyalkylene group represented by AO in the general formula (1) is preferably 1 or more, more preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, and 50 or less. Preferably, 20 or less is more preferable, 18 or less is more preferable, 1 to 50 is preferable, 2 to 20 is more preferable, 3 to 20 is still more preferable, and 4 to 18 is still more preferable, <22> to <28> The three-dimensional object precursor treating agent composition according to claim 1.
<30> The m is preferably 1 or more, more preferably 2 or more, preferably 20 or less, more preferably 18 or less, still more preferably 12 or less, preferably 1 to 20, more preferably 2 to 18, more preferably 2 to The three-dimensional object precursor treating agent composition according to any one of <22> to <29>, wherein 12 is more preferred.
<31> The content of the nonionic penetrant is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and preferably 10% by mass or less in the three-dimensional object precursor treatment agent composition. The composition for treating a three-dimensional object precursor according to any one of <22> to <30>, preferably 5% by mass or less, more preferably 0.05 to 10% by mass, and more preferably 0.1 to 5% by mass. .
<32> The three-dimensional object precursor treatment composition according to any one of <1> to <31>, further comprising (c) a surfactant.
<33> The three-dimensional object precursor treatment composition according to <32>, wherein the (b) nonionic penetrant is not included in the (c) surfactant.
<34> The content of the surfactant in the three-dimensional object precursor treating agent composition is preferably 0.05% by mass or less, and more preferably substantially 0% by mass, <32> or <33> The three-dimensional object precursor treating agent composition described in 1.
<35> A three-dimensional object, and a modeling process for obtaining a three-dimensional object precursor including a support material including a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units, and the three-dimensional object A method for producing a three-dimensional object by a hot-melt laminating method, comprising a support material removing step of bringing an object precursor into contact with a three-dimensional object precursor treating agent composition and removing the support material, wherein the three-dimensional object precursor A method for producing a three-dimensional object, wherein the treatment composition is the three-dimensional object precursor treatment composition according to any one of <1> to <34>.
<36> The molding material is preferably at least one thermoplastic resin selected from the group consisting of ABS resin, polylactic acid resin, polycarbonate resin, and polyphenylsulfone resin, and ABS resin and / or polylactic acid resin is preferable. The method for producing a three-dimensional object according to <35>, more preferably an ABS resin.
<37> The three-dimensional modeling soluble material that is a material of the support material preferably includes a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units, <35> or <35>36>. The method for producing a three-dimensional object according to 36>.
<38> The hydrophilic monomer is acrylic acid, methacrylic acid, diethylaminoethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, glycidyl acrylate, tetrahydrofurfuryl acrylate, diethylaminoethyl methacrylate, methacrylic acid. At least one selected from the group consisting of 2-hydroxyethyl acid, 2-hydroxypropyl methacrylate, glycidyl methacrylate, tetrahydrofurfuryl methacrylate, itaconic acid, maleic acid, fumaric acid, α-hydroxyacrylic acid is preferable, The method for producing a three-dimensional object according to any one of <35> to <37>, wherein at least one selected from the group consisting of acrylic acid and methacrylic acid is more preferable.
<39> The hydrophobic monomer is methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, tertiary butyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, isodecyl acrylate , Lauryl acrylate, tridecyl acrylate, cetyl acrylate, stearyl acrylate, cyclohexyl acrylate, benzyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, isobutyl methacrylate, tertiary butyl methacrylate , 2-ethylhexyl methacrylate, octyl methacrylate, isodecyl methacrylate, lauryl methacrylate, tridecyl methacrylate, cetyl methacrylate, stearyl methacrylate, meta Cyclohexyl acrylic acid, benzyl methacrylate, styrene, at least one or more preferably selected from the group consisting of α- methylene -γ- valerolactone, <35> - <38> three-dimensional object manufacturing method according to any one.
<40> The pH of the three-dimensional object precursor treating agent composition is preferably 10 or more, more preferably 11 or more, preferably 14 or less, more preferably 13 or less, more preferably 10 to 14, and more preferably 10 to 13 The method for producing a three-dimensional object according to any one of <35> to <39>, preferably 11 to 13.
<41> The temperature of the three-dimensional object precursor treating agent composition in the support material removing step is preferably 25 ° C or higher, more preferably 40 ° C or higher, preferably 80 ° C or lower, more preferably 70 ° C or lower, 25 The method for producing a three-dimensional object according to any one of <35> to <40>, preferably from 80 to 80 ° C, more preferably from 40 to 70 ° C.
<42> Use of the composition according to any one of <1> to <34> as a three-dimensional object precursor treatment agent.
Any one of <1> to <34> including a <43> three-dimensional object and a three-dimensional object precursor including a support material including a (meth) acrylic acid copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units A support material removing method for removing the support material by contacting the three-dimensional object precursor treating agent composition according to claim 1.
<実施例1A~8A、比較例1A及び比較例2A>
〔評価サンプルの作製〕
 ストラタシス社製のFDM方式3DプリンタFortus250MCにて、造形材としてABS(ストラタシス社製ABS樹脂)、三次元造形用可溶性材料としてSR-30(ストラタシス社製メタクリル酸系共重合体;(モノマー単位;メタクリル酸45質量%、スチレン34質量%、アクリル酸n-ブチル21質量%))を用い、評価サンプル(三次元物体前駆体)を作製した。図1は当該評価サンプルの形状を示す概略図であり、図2は当該評価サンプルの断面の形状を示す概略図である。
<Examples 1A to 8A, Comparative Example 1A and Comparative Example 2A>
[Production of evaluation samples]
In the FDM 3D printer Fortus250MC manufactured by Stratasys, ABS (Stratasys ABS resin) as a modeling material, SR-30 as a soluble material for three-dimensional modeling (methacrylic acid copolymer manufactured by Stratasys; monomer unit; methacrylic) An evaluation sample (three-dimensional object precursor) was prepared using 45% by mass of acid, 34% by mass of styrene, and 21% by mass of n-butyl acrylate). FIG. 1 is a schematic diagram showing the shape of the evaluation sample, and FIG. 2 is a schematic diagram showing the cross-sectional shape of the evaluation sample.
 図1は当該評価サンプルの形状を示す概略図である。図1において、当該評価サンプルは胴部1、並びに脚部21及び脚部22からなる脚部を有する三次元物体と、サポート材からなる三次元物体前駆体である。脚部21及び脚部22は、胴部1内でつながっており一つの部材となっている。前記サポート材は、評価サンプルの形状の理解を助けるために外縁部のみをサポート材外縁部3として示す。図2は当該評価サンプルの断面の形状を示す概略図である。図2において、胴部1は軸通し部11を有する。脚部21と脚部22は当該軸通し部11を通る軸(図示せず)でつながっており、サポート材外縁部3で示されるサポート材が無い状態であれば評価サンプルに係る脚部21及び脚部22からなる脚部は胴部1に対して可動である。前記軸通し部11内にある、脚部21と脚部22とを繋げる軸と、当該軸通し部11の表面との距離は0.6mmである。 FIG. 1 is a schematic diagram showing the shape of the evaluation sample. In FIG. 1, the evaluation sample is a three-dimensional object having a trunk portion 1, a leg portion including a leg portion 21 and a leg portion 22, and a three-dimensional object precursor made of a support material. The leg part 21 and the leg part 22 are connected in the trunk | drum 1, and are one member. In order to assist understanding of the shape of the evaluation sample, only the outer edge portion of the support material is shown as the support material outer edge portion 3. FIG. 2 is a schematic view showing the cross-sectional shape of the evaluation sample. In FIG. 2, the body portion 1 has a shaft passing portion 11. The leg portion 21 and the leg portion 22 are connected by an axis (not shown) passing through the shaft-passing portion 11, and if there is no support material indicated by the support material outer edge portion 3, the leg portion 21 according to the evaluation sample and The leg portion composed of the leg portion 22 is movable with respect to the trunk portion 1. The distance between the shaft connecting the leg portion 21 and the leg portion 22 in the shaft passing portion 11 and the surface of the shaft passing portion 11 is 0.6 mm.
〔評価方法:初期可動時間〕
 表1に示す組成の水溶液を調製し、実施例1A~8A、比較例1A及び比較例2Aに係る三次元物体前駆体処理剤組成物とした。液温を60℃にした実施例1A~8A、比較例1A及び比較例2Aに係る三次元物体前駆体処理剤組成物に前記評価サンプルを浸漬させ、当該評価サンプルの図1の脚部21及び脚部22からなる脚部が可動する様になるまでの時間(初期可動時間)を計測した。評価結果を表1に示す。なお、表1中のウォーター・ワークス3質量%水溶液の組成は表2に示す。
[Evaluation method: Initial operating time]
Aqueous solutions having the compositions shown in Table 1 were prepared and used as the three-dimensional object precursor treating agent compositions according to Examples 1A to 8A, Comparative Example 1A, and Comparative Example 2A. The evaluation sample is immersed in the three-dimensional object precursor treatment agent composition according to Examples 1A to 8A, Comparative Example 1A, and Comparative Example 2A at a liquid temperature of 60 ° C., and the leg 21 of FIG. The time until the leg part consisting of the leg part 22 becomes movable (initial movable time) was measured. The evaluation results are shown in Table 1. The composition of a 3% by weight aqueous solution of Water Works in Table 1 is shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
<実施例1B~5B、比較例1B及び比較例2B>
〔評価方法:耐久可動時間〕
 表3に示す組成の水溶液を調製し、実施例1B~5B、比較例1B及び比較例2Bに係る三次元物体前駆体処理剤組成物とした。液温を60℃にした実施例1B~5B、比較例1B及び比較例2Bに係る三次元物体前駆体処理剤組成物に前記評価サンプルを浸漬させ、当該評価サンプルの図1の脚部21及び脚部22からなる脚部が可動する様になるまでの時間(耐久可動時間)を計測した。実施例1B~5B、比較例1B及び比較例2Bに係る三次元物体前駆体処理剤組成物には三次元造形用可溶性材料が含まれているので、三次元物体前駆体を接触させてサポート材を除去するサポート材除去工程の三次元物体前駆体処理剤組成物の状態に近くなると仮定できる。実施例1B~5B及び比較例1Bと三次元造形用可溶性材料以外の配合がそれぞれ同じ実施例1A~5A、比較例1Aに係る三次元物体前駆体処理剤組成物の評価結果(耐久可動時間)と、当該実施例1B~5B及び比較例1Bの評価結果の差が小さいほどサポート材の除去性を長時間維持できると判断できる。評価結果を表3に示す。
<Examples 1B to 5B, Comparative Example 1B and Comparative Example 2B>
[Evaluation method: endurance operation time]
An aqueous solution having the composition shown in Table 3 was prepared and used as a three-dimensional object precursor treating agent composition according to Examples 1B to 5B, Comparative Example 1B, and Comparative Example 2B. The evaluation sample is immersed in the three-dimensional object precursor treatment agent composition according to Examples 1B to 5B, Comparative Example 1B, and Comparative Example 2B at a liquid temperature of 60 ° C., and the leg 21 of FIG. The time (durability moving time) until the leg part which consists of the leg part 22 became movable was measured. Since the three-dimensional object precursor treating agent composition according to Examples 1B to 5B, Comparative Example 1B, and Comparative Example 2B contains a soluble material for three-dimensional modeling, the support material is brought into contact with the three-dimensional object precursor. It can be assumed that the state of the three-dimensional object precursor treating agent composition in the support material removing process for removing the substrate is close. Example 1B-5B and Comparative Example 1B and the results of evaluation of the three-dimensional object precursor treating agent composition according to Examples 1A-5A and Comparative Example 1A having the same composition other than the three-dimensional modeling soluble material (durability moving time) It can be determined that the smaller the difference between the evaluation results of Examples 1B to 5B and Comparative Example 1B, the longer the support material removability can be maintained. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 
 
Figure JPOXMLDOC01-appb-T000003
 
 
1:胴部
11:軸通し部
21:脚部
22:脚部
3:サポート材外縁部
1: trunk part 11: shaft through part 21: leg part 22: leg part 3: support material outer edge part

Claims (15)

  1.  三次元物体と、親水性モノマー及び疎水性モノマーをモノマー単位として有する(メタ)アクリル酸系共重合体を含むサポート材とを含む三次元物体前駆体から、前記サポート材を除去する為の三次元物体前駆体処理剤組成物であって、
     前記三次元物体前駆体処理剤組成物が、(a)アルカリ剤、及び(b)ノニオン系浸透剤を含有する、三次元物体前駆体処理剤組成物。
    Three-dimensional object for removing the support material from a three-dimensional object precursor comprising a three-dimensional object and a support material containing a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units An object precursor treating agent composition comprising:
    The three-dimensional object precursor treating agent composition, wherein the three-dimensional object precursor treating agent composition contains (a) an alkali agent and (b) a nonionic penetrant.
  2.  前記(b)ノニオン系浸透剤が、炭素数4~14のアルキル基、炭素数3~30のアルケニル基、及び炭素数6~30のアリール基からなる群より選ばれる少なくとも1種以上の基を有するオキシアルキレン付加物である、請求項1に記載の三次元物体前駆体処理剤組成物。 The nonionic penetrant (b) has at least one group selected from the group consisting of an alkyl group having 4 to 14 carbon atoms, an alkenyl group having 3 to 30 carbon atoms, and an aryl group having 6 to 30 carbon atoms. The three-dimensional object precursor treating agent composition according to claim 1, which is an oxyalkylene adduct.
  3.  前記(b)ノニオン系浸透剤が下記一般式(1)で表されるポリオキシアルキレンアルキルエーテルである請求項1又は2記載の三次元物体前駆体処理剤組成物。
     R-O-(AO)m-H     (1)
    (前記一般式(1)中、Rは炭素数4~14のアルキル基、炭素数3~30のアルケニル基、又は炭素数6~30のアリール基、AOは炭素数1~50のオキシアルキレン基を表し、mはAOの平均付加モル数であり、mは1~20の数を表す。)
    The three-dimensional object precursor treating agent composition according to claim 1 or 2, wherein the nonionic penetrant (b) is a polyoxyalkylene alkyl ether represented by the following general formula (1).
    R 1 —O— (AO) m—H (1)
    (In the general formula (1), R 1 is an alkyl group having 4 to 14 carbon atoms, an alkenyl group having 3 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms, and AO is an oxyalkylene having 1 to 50 carbon atoms. And m is the average number of moles of AO added, and m is a number from 1 to 20.)
  4.  前記三次元物体前駆体処理剤組成物中の前記(b)ノニオン系浸透剤の含有量が、0.05質量%以上10質量%以下である、請求項1~3いずれか1項に記載の三次元物体前駆体処理剤組成物。 The content of the (b) nonionic penetrant in the three-dimensional object precursor treating agent composition is 0.05% by mass or more and 10% by mass or less. Three-dimensional object precursor treating agent composition.
  5.  前記(a)アルカリ剤が、有機アミン化合物を含有する、請求項1~4いずれか1項に記載の三次元物体前駆体処理剤組成物。 The three-dimensional object precursor treating agent composition according to any one of claims 1 to 4, wherein the (a) alkali agent contains an organic amine compound.
  6.  前記有機アミン化合物が、2級ジアミン化合物、3級ジアミン化合物、2級トリアミン化合物、及び3級トリアミン化合物からなる群より選ばれる少なくとも1種以上である、請求項5に記載の三次元物体前駆体処理剤組成物。 The three-dimensional object precursor according to claim 5, wherein the organic amine compound is at least one selected from the group consisting of a secondary diamine compound, a tertiary diamine compound, a secondary triamine compound, and a tertiary triamine compound. Treatment agent composition.
  7.  前記三次元物体前駆体処理剤組成物中の前記有機アミン化合物の含有量が、0.1~20質量%である、請求項1~6いずれか1項に記載の三次元物体前駆体処理剤組成物。 The three-dimensional object precursor treating agent according to any one of claims 1 to 6, wherein the content of the organic amine compound in the three-dimensional object precursor treating agent composition is 0.1 to 20% by mass. Composition.
  8.  更に、(c)界面活性剤を含有する、請求項1~7いずれか1項に記載の三次元物体前駆体処理剤組成物。 The three-dimensional object precursor treatment composition according to any one of claims 1 to 7, further comprising (c) a surfactant.
  9.  前記三次元物体前駆体処理剤組成物中の前記(c)界面活性剤の含有量が、0.05質量%以下である、請求項8に記載の三次元物体前駆体処理剤組成物。 The three-dimensional object precursor treating agent composition according to claim 8, wherein the content of the surfactant (c) in the three-dimensional object precursor treating agent composition is 0.05% by mass or less.
  10.  三次元物体と、親水性モノマー及び疎水性モノマーをモノマー単位として有する(メタ)アクリル酸系共重合体を含むサポート材とを含む三次元物体前駆体を得る造形工程、及び当該三次元物体前駆体を三次元物体前駆体処理剤組成物に接触させ、前記サポート材を除去するサポート材除去工程を有する熱溶融積層方式による三次元物体の製造方法であって、前記三次元物体前駆体処理剤組成物が、請求項1~9いずれか1項に記載の三次元物体前駆体処理剤組成物である、三次元物体の製造方法。 A modeling process for obtaining a three-dimensional object precursor including a three-dimensional object and a support material including a (meth) acrylic acid-based copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units, and the three-dimensional object precursor Is a method for producing a three-dimensional object by a hot melt laminating method having a support material removal step of contacting the three-dimensional object precursor treatment agent composition and removing the support material, the composition comprising the three-dimensional object precursor treatment agent composition A method for producing a three-dimensional object, wherein the object is the three-dimensional object precursor treating agent composition according to any one of claims 1 to 9.
  11.  前記親水性モノマーが、アクリル酸、メタクリル酸、アクリル酸ジエチルアミノエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸グリシジル、アクリル酸テトラヒドロフルフリル、メタクリル酸ジエチルアミノエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸グリシジル、メタクリル酸テトラヒドロフルフリル、イタコン酸、マレイン酸、フマル酸、α-ヒドロキシアクリル酸からなる群より選ばれる少なくとも1種以上できる、請求項10に記載の三次元物体の製造方法。 The hydrophilic monomer is acrylic acid, methacrylic acid, diethylaminoethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, glycidyl acrylate, tetrahydrofurfuryl acrylate, diethylaminoethyl methacrylate, 2-methacrylic acid 2- 11. At least one selected from the group consisting of hydroxyethyl, 2-hydroxypropyl methacrylate, glycidyl methacrylate, tetrahydrofurfuryl methacrylate, itaconic acid, maleic acid, fumaric acid and α-hydroxyacrylic acid can be used. The manufacturing method of the three-dimensional object of description.
  12.  前記疎水性モノマーが、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸ターシャリーブチル、アクリル酸2-エチルへキシル、アクリル酸オクチル、アクリル酸イソデシル、アクリル酸ラウリル、アクリル酸トリデシル、アクリル酸セチル、アクリル酸ステアリル、アクリル酸シクロヘキシル、アクリル酸ベンジル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸イソブチル、メタクリル酸ターシャリーブチル、メタクリル酸2-エチルへキシル、メタクリル酸オクチル、メタクリル酸イソデシル、メタクリル酸ラウリル,メタクリル酸トリデシル、メタクリル酸セチル、メタクリル酸ステアリル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、スチレン、α-メチレン-γ-バレロラクトンからなる群より選ばれる少なくとも1種以上できる、請求項10又は11に記載の三次元物体の製造方法。 The hydrophobic monomer is methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, tertiary butyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, isodecyl acrylate, acrylic acid Lauryl, tridecyl acrylate, cetyl acrylate, stearyl acrylate, cyclohexyl acrylate, benzyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, isobutyl methacrylate, tertiary butyl methacrylate, methacrylic acid 2-ethylhexyl, octyl methacrylate, isodecyl methacrylate, lauryl methacrylate, tridecyl methacrylate, cetyl methacrylate, stearyl methacrylate, methacryl Cyclohexyl, benzyl methacrylate, styrene, can be at least one selected from the group consisting of α- methylene -γ- valerolactone, three-dimensional object manufacturing method according to claim 10 or 11.
  13.  前記三次元物体前駆体処理剤組成物のpHが10~14である、請求項10~12いずれか1項に記載の三次元物体の製造方法。 The method for producing a three-dimensional object according to any one of claims 10 to 12, wherein the three-dimensional object precursor treating agent composition has a pH of 10 to 14.
  14.  請求項1~9いずれか1項に記載の組成物の三次元物体前駆体処理剤としての使用。  Use of the composition according to any one of claims 1 to 9 as a three-dimensional object precursor treatment agent.
  15.  親水性モノマー及び疎水性モノマーをモノマー単位として有する(メタ)アクリル酸系共重合体を含むサポート材を含む三次元物体前駆体を請求項1~9いずれか1項に記載の三次元物体前駆体処理剤組成物に接触させ、前記サポート材を除去するサポート材除去方法。 The three-dimensional object precursor according to any one of claims 1 to 9, wherein the three-dimensional object precursor includes a support material including a (meth) acrylic acid copolymer having a hydrophilic monomer and a hydrophobic monomer as monomer units. A support material removing method of contacting the treatment agent composition and removing the support material.
PCT/JP2016/064560 2016-05-17 2016-05-17 Three-dimensional object precursor treatment composition WO2017199323A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/064560 WO2017199323A1 (en) 2016-05-17 2016-05-17 Three-dimensional object precursor treatment composition
TW106115578A TW201809205A (en) 2016-05-17 2017-05-11 Three-dimensional object precursor treatment composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064560 WO2017199323A1 (en) 2016-05-17 2016-05-17 Three-dimensional object precursor treatment composition

Publications (1)

Publication Number Publication Date
WO2017199323A1 true WO2017199323A1 (en) 2017-11-23

Family

ID=60326296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064560 WO2017199323A1 (en) 2016-05-17 2016-05-17 Three-dimensional object precursor treatment composition

Country Status (2)

Country Link
TW (1) TW201809205A (en)
WO (1) WO2017199323A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110935A1 (en) 2018-11-26 2020-06-04 花王株式会社 Three-dimensional object precursor treatment agent composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354996A (en) * 2000-06-09 2001-12-25 Jsr Corp Detergent and cleaning process for optically shaped articles
JP2012052024A (en) * 2010-09-01 2012-03-15 Arakawa Chem Ind Co Ltd Detergent composition for optical molding resin molded product
JP2014083744A (en) * 2012-10-23 2014-05-12 Kao Corp Developing liquid composition for 3d printing molded object
WO2016059987A1 (en) * 2014-10-14 2016-04-21 花王株式会社 Soluble material for three-dimensional molding
JP2016078284A (en) * 2014-10-14 2016-05-16 花王株式会社 Soluble material for three-dimensional molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354996A (en) * 2000-06-09 2001-12-25 Jsr Corp Detergent and cleaning process for optically shaped articles
JP2012052024A (en) * 2010-09-01 2012-03-15 Arakawa Chem Ind Co Ltd Detergent composition for optical molding resin molded product
JP2014083744A (en) * 2012-10-23 2014-05-12 Kao Corp Developing liquid composition for 3d printing molded object
WO2016059987A1 (en) * 2014-10-14 2016-04-21 花王株式会社 Soluble material for three-dimensional molding
JP2016078284A (en) * 2014-10-14 2016-05-16 花王株式会社 Soluble material for three-dimensional molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110935A1 (en) 2018-11-26 2020-06-04 花王株式会社 Three-dimensional object precursor treatment agent composition

Also Published As

Publication number Publication date
TW201809205A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
JP5980088B2 (en) Developer composition for 3D printer modeled object, method for developing 3D printer modeled object, and method for manufacturing 3D printer modeled object
EP2773736B1 (en) Structured detergent or cleaning agent having a flow limit ii
CA2723451A1 (en) Microemulsion composition and method for treatment of a subterranean formation
DE102005044513A1 (en) Cleaning agent for hard surfaces
US20210214652A1 (en) 3d printed parts made by additive manufacturing using post processing cleaners
WO2017199323A1 (en) Three-dimensional object precursor treatment composition
CN106178965A (en) A kind of Membrane cleaning protective agent
WO2017199324A1 (en) Three-dimensional object precursor treatment composition
CA2496494A1 (en) Water soluble sachet containing hard surface cleaner
JP7108406B2 (en) COMPOSITION FOR REMOVING SUPPORT MATERIAL FOR 3D PRINTER, FINISHING AGENT FOR MOLDED MODEL MATERIAL, AND METHOD FOR MANUFACTURING MODEL MATERIAL MOLDED PRODUCT
JP2012233063A (en) Cleaning liquid for optical glass and method for cleaning optical glass
CN112805141B (en) Three-dimensional object precursor treatment agent composition
JP5700553B2 (en) Cleaning composition for hard surface
JP6920140B2 (en) Three-dimensional object precursor treatment agent composition
JP2018176469A (en) Three-dimensional object precursor treating agent composition
CN114181784A (en) Composition for cleaning blue-light-proof resin lens and preparation method and application thereof
JP2015127382A (en) Remover for floor polish, and removal method of floor polish
DE102011085638A1 (en) Liquid detergent/cleaning agent, useful e.g. to wash textile sheet, comprises a specified range of anionic surfactant e.g. sulfate surfactant, nonionic surfactant e.g. fatty acid amide, inorganic salt and cosurfactant e.g. aryl alcohol
JP6894363B2 (en) Detergent composition for plastic lens molded glass molds
JP2004189944A (en) Detergent for removing resin like stain and cleaning method
US20200180226A1 (en) Three-dimensional object precursor treatment agent composition
JP6783220B2 (en) Support material recovery agent
JP2022109460A (en) Three-dimensional object precursor treatment composition
JP2001355000A (en) Detergent composition for agricultural facility
DE10063427A1 (en) Liquid cleaning composition, especially for hard surfaces, comprises amphoteric polymer, antibacterial agent, nonionic surfactant and solvent

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902343

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP