WO2017198106A1 - 一种注塑成型模具及其在线质量检测方法 - Google Patents

一种注塑成型模具及其在线质量检测方法 Download PDF

Info

Publication number
WO2017198106A1
WO2017198106A1 PCT/CN2017/083990 CN2017083990W WO2017198106A1 WO 2017198106 A1 WO2017198106 A1 WO 2017198106A1 CN 2017083990 W CN2017083990 W CN 2017083990W WO 2017198106 A1 WO2017198106 A1 WO 2017198106A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection molding
cavity
molding die
voltage signal
sensor body
Prior art date
Application number
PCT/CN2017/083990
Other languages
English (en)
French (fr)
Inventor
姜芝君
莫胜勇
汪智勇
杨毅
高福荣
Original Assignee
群达模具(深圳)有限公司
深圳市福达智能系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 群达模具(深圳)有限公司, 深圳市福达智能系统有限公司 filed Critical 群达模具(深圳)有限公司
Publication of WO2017198106A1 publication Critical patent/WO2017198106A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2602Mould construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/7611Velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/7613Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/76254Mould
    • B29C2945/76257Mould cavity

Definitions

  • the present invention relates to the field of molding devices, and in particular, to an injection molding die and an online quality detecting method thereof.
  • a sensor is generally provided in an injection molding mold to monitor the injection molding process.
  • the existing injection molding dies generally have a single monitoring information (for example, the pressure sensor only measures the pressure information during the injection molding cycle), and the function is single, and it is difficult to monitor various factors in the entire injection molding cycle.
  • the embodiment of the invention provides an injection molding die and an online quality detecting method thereof.
  • the technical solution is as follows:
  • an embodiment of the present invention provides an injection molding die, the method comprising: a fixed template, a movable template, a fixed mold core of the fixed template, and a movable mold core of the movable template a cavity for forming a product, and an in-mold online mass sensor, [0007]
  • the in-mold online quality sensor includes:
  • a sensor body is disposed in the movable mold core and is in contact with the cavity, and the surface of the sensor body is provided with an insulating layer except the contact surface of the cavity, and the sensor The main body is configured to form two poles of the detecting capacitance with the fixed mold core;
  • wiring one end is connected to the sensor body, the other end is connected to a power source for charging the detecting capacitor, or the other end is connected to a computer, and the detecting capacitor is transmitted for the computer
  • the voltage signal throughout the injection cycle is used to monitor at least one of the injection speed in the cavity, the injection weight, the cure rate of the injection, and the shrinkage of the injection molding in the injection molding cycle.
  • the in-mold quality sensor further includes: [0011] a voltage signal amplifier connected to the wiring for amplifying the voltage signal;
  • an analog to digital converter coupled to the voltage signal amplifier for converting a voltage signal amplified by the voltage signal amplifier into a digital signal.
  • the in-mold quality sensor further includes: a wire fixing screw fixedly connected to one end of the wire for using one end of the wire and the The sensor body is fixedly connected.
  • the sensor body is prepared by using a die steel material.
  • the sensor body is a rotating body, and a diameter of one end of the sensor body in contact with the cavity ranges from 1 mm to 5 mm.
  • the injection molding die further includes: a movable mold insert disposed on the movable mold core, wherein the sensor body is disposed through the movable mold In the insert.
  • the sensor body is installed at a front end or an end of the cavity, and the front end of the cavity is a pouring of the cavity near the injection molding die. At one end of the mouth, the end of the cavity is one end away from the gate of the injection molding die.
  • the insulating layer of the sensor body is made of alumina ceramic or zirconia ceramic, and has a thickness of 0.02 mm to 0.50 mm.
  • the wiring is an antistatic induction wire.
  • an embodiment of the present invention provides an online quality detecting method for an injection molding die, the note
  • the plastic molding die is an injection molding die provided by the embodiment of the invention, and the method includes:
  • the voltage signal is used for online monitoring of the injection speed in the cavity in the injection molding cycle, the injection weight, the curing rate of the injection molding, the shrinkage of the injection molding At least one of the rates.
  • an injection molding die is composed of a fixed template, a movable template, and an in-mold online quality sensor, wherein the in-mold online mass sensor is composed of a perceptron body and a wire, and the perceptron body is inserted through the movable mold set in the injection molding die.
  • the core is in contact with the cavity of the injection molding module, and the surface of the sensor body is provided with an insulating layer except for the contact surface of the cavity for forming the two poles of the detection capacitor with the fixed mold core, and one end of the connection is connected with the sensor body.
  • the other end is connected to the power source for charging the detecting capacitor, or the other end is connected to the computer for transmitting a voltage signal for detecting the capacitance of the capacitor during the entire injection molding cycle, and the voltage signal is used for online monitoring of the cavity during the injection molding cycle.
  • a voltage signal for detecting the capacitance of the capacitor during the entire injection molding cycle
  • the voltage signal is used for online monitoring of the cavity during the injection molding cycle.
  • the in-mole quality sensor is based on the change of the dielectric constant of the capacitor, and causes the change of the voltage signal in the detecting capacitor to work, so that the injection molding mold equipped with the Monet online quality sensor can monitor the injection molding medium-sized online.
  • the injection molding speed in the cavity, the injection weight, the curing rate of the injection molding, and the shrinkage rate of the injection molding are rich in monitoring content, which can effectively reflect various injection molding information that needs attention in the injection molding cycle, and is highly practical, and further, the injection molding
  • the in-mold online mass sensor of the mold assembly utilizes the fixed mold core of the existing injection molding mold as an electrode for detecting the capacitance, effectively reducing the complexity of the structure of the in-mold quality sensor and the manufacturing cost, so that the injection molding Molding molds are low in manufacturing cost and economical.
  • FIG. 1 is a schematic structural view of an injection molding die according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of an in-mole online quality sensor according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a principle of detecting capacitance molding according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a detection result of a voltage signal according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of an in-mole online quality sensor according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of a mounting position of an in-mold online quality sensor according to Embodiment 1 of the present invention.
  • FIG. 7 is a flow chart of an online quality detecting method for an injection molding die according to a second embodiment of the present invention.
  • Embodiments of the present invention provide an injection molding mold suitable for various non-conductive filling materials.
  • the injection molding mold may include: a fixed template 100, a movable template 200, and a fixed mold of the fixed template 100.
  • the cavity 300 for forming a product between the core 110 and the movable mold core 210 of the movable die plate 200 (the cavity 300 is shown in FIG. 1 is relatively small, specifically FIG. 3), and the in-mold online mass sensor 400.
  • the in-mold online quality sensor 400 may include:
  • the sensor body 1 is disposed in the movable mold core 210 and is in contact with the cavity 300 (ie, the sensor body 1 is inserted into the movable mold core 210, and one end surface thereof is in contact with the cavity 300, In practical applications, the sensor body 1 and the cavity 300 are in contact with each other, the same mold core 210 and the cavity 300 are in the same plane, and the surface of the sensor body 1 is provided with an insulating layer except for the contact surface of the cavity 210.
  • the sensor body 1 is configured to form two poles of the detection capacitance with the fixed mold core 110.
  • the wiring 2 is connected to the sensor body 1 at one end, and is connected to a power source at the other end for charging the detecting capacitor, or the other end is connected to the computer for transmitting the detecting capacitor for the computer throughout the injection molding cycle.
  • the voltage signal is used to monitor at least one of the injection speed in the cavity 300, the injection weight, the curing rate of the injection molding, and the shrinkage of the injection molding in the injection molding cycle.
  • the other end of the wiring 2 can be connected to the computer, and the voltage is detected by the computer to detect the capacitance, and the computer transmits the voltage of the detection capacitor during the entire injection molding cycle.
  • the surface of the sensor body 1 is provided with an insulating layer except for the contact surface with the cavity 210, and has a cavity 300 spaced apart from the fixed mold core 110, and the sensor body 1 is
  • the fixed mold core 110 is generally made of a conductive material, and under the action of the air-insulated cavity 300, a detecting capacitor is formed, wherein the sensor body 1 can be charged by an external power source, and the fixed mold core 110 is Ground.
  • the capacitance of the detection capacitor depends only on the dielectric constant, and the dielectric constant depends on the relationship between the sensor body 1 and the fixed mold core 110.
  • the medium is gone.
  • the cavity 300 is gradually filled with air by the hot-melt filling material, and then cooled by the hot-melt filling material to the solid filling material.
  • the voltage of the detecting capacitor is detected. It is inversely proportional to the dielectric constant. Specifically, you can refer to the following formula:
  • U is a voltage signal
  • C is a capacitance value of the detection capacitor
  • Q is a charge amount of the detection capacitor
  • A is a facing area of the sensor body 1 and the fixed mold core 110
  • D is a sensor body 1 The distance from the fixed mold core 110
  • is the dielectric constant.
  • the mold closing phase is first experienced, that is, the fixed template 100 is in contact with the movable template 200. Thereafter, the detecting capacitor is activated after being charged, and due to the cavity 300.
  • the dielectric constant of the detection capacitor remains unchanged, and the corresponding voltage signal remains unchanged; then the filling material is injected into the cavity 300 at a constant rate (ie, the injection phase in Figure 3), due to the dielectric of the filler material.
  • the constant is smaller than the dielectric constant of air.
  • the dielectric constant of the detecting capacitor decreases, and the corresponding voltage signal becomes larger.
  • the cavity 300 fills the filling material, it enters.
  • the packing phase a small amount of filler material is still injected into the cavity 300 to fill the gap formed by the curing shrinkage of the first injected filler material.
  • the detection is performed.
  • the dielectric constant of the capacitor will still decrease by a small amount, and the corresponding voltage signal will increase a little. After the pressure holding phase, it will enter the cooling phase.
  • the filling material 300 is injected into the cavity, the filling material Jian start cooling liquid to a solid state, along with the dielectric constant of the capacitance detection has increased; Finally, when the filling material After the cooling is formed, the mold is smashed (ie, enters the mold stage), and the detection capacitance is disabled as the fixed template 100 and the movable mold 200 are separated.
  • the voltage signal of the in-mole quality sensor 400 is shown in FIG. 3, and the variation characteristics of the voltage signal at different stages are different, respectively reflecting the processes and filling of different stages.
  • Material quality information Specifically as follows:
  • the in-mold quality sensor 400 can use this signal to detect the position of the front end of the liquid filling material in the cavity 300, thereby obtaining the filling speed of the filling material (for example: dividing a plurality of distances at a predetermined distance)
  • the in-mold online quality sensor 400 compares the plurality of in-mode on-line quality sensors 400 to detect a significant increase in the inter-turn difference of the voltage signal to calculate the fill speed).
  • the slope of the voltage signal changes significantly, and the rise is slow, because only a small amount of liquid filling material continues to be pressed into the (injection) cavity 300 after the cavity 300 is filled, to supplement the filling material.
  • the computer connected to the in-mold quality sensor 400 can use this signal to detect the weight of the filling material on-line (for example: according to the known injection speed, and the duration of the injection phase, to obtain the weight of the filling material). Information).
  • a computer coupled to the in-mold on-line quality sensor 400 can utilize the process characteristics of the measurement signal combining process to detect product cure rate and shrinkage.
  • the in-mold online quality sensor 400 may further include:
  • a voltage signal amplifier 4 connected to the wiring 2, is used to amplify the voltage signal.
  • the analog-to-digital converter 5 is connected to the voltage signal amplifier 4 for converting the voltage signal amplified by the voltage signal amplifier 4 into a digital signal.
  • the voltage signal on the sensor body 1 is amplified and converted into a computer-recognizable digital signal, which facilitates rapid analysis of the processed data by a computer connected to the in-mold quality sensor 400.
  • the sensor body 1 is provided with a fixing screw center hole (not shown in the drawing) for extending one end of the wire 2.
  • the in-mold quality sensor 400 may further include: a wire fixing screw 3 fixedly connected to one end of the wire 2 (for example: welding) and matched with a center hole of the fixing screw (for example, a screw connection) for connecting the wire 2 One end is fixedly connected to the sensor body 1 to prevent the wire 2 from coming off the sensor body 1.
  • the sensor body 1 may be made of a mold steel material (for example: P20, S136, 718, 718)
  • the sensor body 1 may be a rotating body, and the diameter of one end of the sensor body 1 in contact with the cavity 300 ranges from 1 mm to 5 mm, and the specific size can be customized according to design requirements.
  • the injection molding die further includes: a movable mold insert 220 disposed on the movable mold core 210, and the sensor main body 1 is disposed in the movable mold insert 220.
  • the movable mold insert 220 is required to be assisted, and the sensor body 1 can be disposed through the movable mold insert 220.
  • the sensor body 1 can be disposed through the movable mold insert 220.
  • it can also be disposed in the movable mold core 210 at the same time.
  • the sensor body 1 may be installed at the front end or the end of the cavity 300, and the front end of the cavity 300.
  • the cavity 300 is near one end of the injection molding die 310, and the end of the cavity 300 is away from the injection molding die entrance 310.
  • the in-line quality sensor 40 0 is set by using the above two positions because the filling material of the filling material at the front end or the end position of the cavity 300 can best fully represent the filling material in the cavity 300. Forming fill condition.
  • the insulating layer of the sensor body 1 is made of alumina ceramic or zirconia ceramic and has a thickness of 0.02 mm to 0.50 mm.
  • the outer surface of the sensor body 1 is a high-temperature and friction-resistant high-insulation layer, and is sprayed on the surface of the metal substrate by a high-pressure of 100 MPa or more at a high temperature of 3000 ° C or higher, and the thickness of the insulating layer is 0.02mm ⁇ 0.50mm, the surface is polished and polished, the dimensional tolerance can reach 0.005mm ⁇ 0.01mm, the surface finish can reach above V9, the heat insulation effect is above 200°C, the thermal spray coefficient is close to steel, Mohs The hardness reaches 8.5 or more.
  • the processing flow of spraying the insulating layer on the surface of the sensor body 1 is as follows: sensor body preparation ⁇ perceptor body processing ⁇ perceptor body drilling screw hole ⁇ sensor body screw hole tapping tooth ⁇ perceptor body surface insulation layer Spraying ⁇ Insulating layer surface polishing and light-saving processing ⁇ In-mold online mass sensor size detection.
  • connection 2 can be an ordinary power line or an anti-static induction wire, preferably an anti-static induction.
  • Wire, wire fixing screw 3 is M2, M3 or M4.
  • an injection molding die is composed of a fixed template, a movable template, and an in-mold online quality sensor, wherein the in-mold online quality sensor is composed of a sensor body and a wire, and the sensor body is disposed through the injection molding die.
  • the movable mold core is in contact with the cavity of the injection molding module, and the surface of the sensor body is provided with an insulating layer except for the contact surface of the cavity for forming the two poles of the detecting capacitor with the fixed mold core, the end of the wiring and the sensing
  • the main body is connected, and the other end is connected to a power source for charging the detecting capacitor, or the other end is connected to the computer, and is used for transmitting a voltage signal for the computer to detect the capacitance during the entire injection molding cycle, and the voltage signal is used for online monitoring. At least one of the injection speed in the cavity, the injection weight, the curing rate of the injection molding, and the shrinkage of the injection molding in the injection molding cycle.
  • the in-mole quality sensor is based on the change of the dielectric constant of the capacitor, and causes the change of the voltage signal in the detecting capacitor to work, so that the injection molding mold equipped with the Monet online quality sensor can monitor the injection molding medium-sized online.
  • the injection molding speed in the cavity, the injection weight, the curing rate of the injection molding, and the shrinkage rate of the injection molding are rich in monitoring content, which can effectively reflect various injection molding information that needs attention in the injection molding cycle, and is highly practical, and further, the injection molding
  • the in-mold online mass sensor of the mold assembly utilizes the fixed mold core of the existing injection molding mold as an electrode for detecting the capacitance, effectively reducing the complexity of the structure of the in-mold quality sensor and the manufacturing cost, so that the injection molding Molding molds are low in manufacturing cost and economical.
  • An embodiment of the present invention provides an online quality detecting method for an injection molding die, which is the injection molding die described in Embodiment 1, see FIG. 7, and the method includes:
  • Step S21 the injection molding die is closed, so that the sensor body of the in-mold quality sensor installed in the injection molding die and the fixed mold core of the injection molding die constitute a detection capacitance.
  • the formation of the detection capacitor is originally described in the first embodiment, and details are not described herein.
  • Step S22 charging a predetermined amount of power for detecting the capacitance.
  • Step S23 injecting a preset filling material into the cavity of the injection molding die.
  • Step S24 the actual monitoring and detecting the voltage signal of the capacitor during the whole injection molding period, the voltage signal can be used for online monitoring of the injection speed in the cavity in the injection molding cycle, the injection weight, the curing rate of the injection molding, and the shrinkage ratio of the injection molding. at least one.
  • the injection molding die is closed, so that the sensing body of the in-mold quality sensor installed in the injection molding die and the fixed molding core of the injection molding die constitute a detecting capacitance; Filling the predetermined amount of electricity; injecting a preset filling material into the cavity of the injection molding die; and monitoring the voltage signal of the capacitor during the entire injection molding cycle, the voltage signal can be used for online monitoring of the injection speed in the cavity during the injection molding cycle, At least one of injection weight, curing rate of injection molding, and shrinkage of injection molding.
  • the voltage signal monitored by the online quality detecting method can monitor at least one of the injection speed, the injection weight, the curing rate of the injection molding, and the shrinkage rate of the injection molding in the injection molding cycle, and the monitoring content is rich, which can effectively reflect the injection molding cycle.
  • the monitoring content is rich, which can effectively reflect the injection molding cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

一种注塑成型模具及其在线质量检测方法,注塑成型模具包括:定模板(100)、动模板(200)、型腔(300)、以及模内在线质量感知器(400),模内在线质量感知器(400)包括:感知器主体(1),其表面除与型腔(300)接触面外均设置有绝缘层,用于与定模模芯(110)构成检测电容的两极;接线(2),一端与感知器主体(1)连接,其另一端与电源连接,用于为检测电容充电,或者,其另一端与计算机连接,用于为计算机传输检测电容在整个注塑周期中的电压信号。注塑成型模具在整个注塑周期中通过检测电压信号,及时获取注塑周期中型腔内的注塑速度、注塑重量、注塑的固化速率和注塑的收缩率中至少一个,监测内容丰富。

Description

一种注塑成型模具及其在线质量检测方法 技术领域
[0001] 本发明涉及成型装置技术领域, 特别涉及一种注塑成型模具及其在线质量检测 方法。
背景技术
[0002] 随着产品市场竞争激烈的升华, 提倡高效、 节能、 环保、 低成本就越来越成为 企业于竞争中取胜的法宝和根本, 关键的环节之一就是对注塑产品生产过程的 高效性、 品质监测和控制的高智能性以及低成本支出、 有效资源高效利用等方 面提出更高、 更具竞争力、 更智能、 更自动化的要求。
[0003] 在注塑成型的试模阶段, 必须对制品的成型工艺进行设置和优化, 进而减少试 模次数, 缩短试模吋间。 同吋注塑成型过程是一种典型的批次过程, 维持良好 而稳定的成型过程是获得高质量制品的必须条件, 而要达到这一条件必须以精 准的注塑过程质量控制为基础。
[0004] 为了解决上述问题, 一般会在注塑成型模具中设置传感器, 以对注塑成型过程 进行监测。 但是, 现有的注塑成型模具一般所能监测的信息比较单一 (例如压 力传感器仅测量注塑周期中的压力信息) , 功能单一, 难以对整个注塑周期中 多方面因素进行监测。
技术问题
问题的解决方案
技术解决方案
[0005] 为了解决现有具有传感器的注塑成型模具监测信息单一, 难以满足企业需求的 问题, 本发明实施例提供了一种注塑成型模具及其在线质量检测方法。 所述技 术方案如下:
[0006] 一方面, 本发明实施例提供了一种注塑成型模具, 所述方法包括: 定模板、 动 模板、 由所述定模板的定模模芯和所述动模板的动模模芯之间用于形成产品的 型腔、 以及模内在线质量感知器, [0007] 所述模内在线质量感知器包括:
[0008] 感知器主体, 贯穿设置在所述动模模芯中且与所述型腔接触, 所述感知器主体 表面除与所述型腔接触面外均设置有绝缘层, 所述感知器主体用于与所述定模 模芯构成检测电容的两极;
[0009] 接线, 一端与所述感知器主体连接, 其另一端与电源连接, 用于为所述检测电 容充电, 或者, 其另一端与计算机连接, 用于为所述计算机传输所述检测电容 在整个注塑周期中的电压信号, 所述电压信号用于在线监控注塑周期中所述型 腔内的注塑速度、 注塑重量、 注塑的固化速率、 注塑的收缩率中至少一个。
[0010] 在本发明实施例上述的注塑成型模具中, 所述模内在线质量感知器还包括: [0011] 电压信号放大器, 与所述接线连接, 用于放大所述电压信号;
[0012] 模数转化器, 与所述电压信号放大器连接, 用于将所述电压信号放大器放大的 电压信号转化为数字信号。
[0013] 在本发明实施例上述的注塑成型模具中, 所述模内在线质量感知器还包括: 接 线固定螺丝, 与所述接线的一端固定连接, 用于将所述接线的一端与所述感知 器主体固定连接。
[0014] 在本发明实施例上述的注塑成型模具中, 所述感知器主体采用模具钢材料制备
[0015] 在本发明实施例上述的注塑成型模具中, 所述感知器主体为回转体, 所述感知 器主体与所述型腔接触的一端的直径范围为 lmm~5mm。
[0016] 在本发明实施例上述的注塑成型模具中, 所述注塑成型模具还包括: 设置在所 述动模模芯上的动模镶件, 所述感知器主体贯穿设置在所述动模镶件中。
[0017] 在本发明实施例上述的注塑成型模具中, 所述感知器主体安装在所述型腔的前 端或末端, 所述型腔的前端为所述型腔靠近所述注塑成型模具进浇口的一端, 所述型腔的末端为远离所述注塑成型模具进浇口的一端。
[0018] 在本发明实施例上述的注塑成型模具中, 所述感知器主体的绝缘层由氧化铝陶 瓷或氧化锆陶瓷制备, 其厚度为 0.02mm〜0.50mm。
[0019] 在本发明实施例上述的注塑成型模具中, 所述接线为防静电感应电线。
[0020] 另一方面, 本发明实施例提供了一种注塑成型模具的在线质量检测方法, 该注 塑成型模具为发明实施例提供的注塑成型模具, 所述方法包括:
[0021] 将所述注塑成型模具关模, 以使安装在所述注塑成型模具内的模内在线质量感 知器的感知器主体与所述注塑成型模具的定模模芯构成检测电容;
[0022] 为所述检测电容充预定电量;
[0023] 向所述注塑成型模具的型腔中, 注入预设填充材料;
[0024] 实吋监测所述检测电容在整个注塑周期中的电压信号, 所述电压信号用于在线 监控注塑周期中所述型腔内的注塑速度、 注塑重量、 注塑的固化速率、 注塑的 收缩率中至少一个。
发明的有益效果
有益效果
[0025] 本发明实施例提供的技术方案带来的有益效果是:
[0026] 通过定模板、 动模板、 模内在线质量感知器组成注塑成型模具, 其中, 模内在 线质量感知器由感知器主体和接线构成, 感知器主体贯穿设置在注塑成型模具 的动模模芯中且与注塑模块的型腔接触, 感知器主体表面除与型腔接触面外均 设置有绝缘层, 以用于与定模模芯构成检测电容的两极, 接线一端与感知器主 体连接, 其另一端与电源连接, 用于为检测电容充电, 或者, 其另一端与计算 机连接, 用于为计算机传输检测电容在整个注塑周期中的电压信号, 该电压信 号用于在线监控注塑周期中型腔内的注塑速度、 注塑重量、 注塑的固化速率、 注塑的收缩率中至少一个。 该模内在线质量感知器是基于电容的介电常数变化 , 而引起检测电容中电压信号的变化来工作的, 这样装配有该莫内在线质量感 知器的注塑成型模具, 能够在线监控注塑周期中型腔内的注塑速度、 注塑重量 、 注塑的固化速率、 注塑的收缩率中至少一个, 监测内容丰富, 能有效反映出 注塑周期中多种需要关注的注塑信息, 实用性强, 此外, 该注塑成型模具装配 的模内在线质量感知器利用了现有注塑成型模具的定模模芯作为检测电容的一 个电极, 有效降低了模内在线质量感知器的结构的复杂程度、 和制造成本, 使 得该注塑成型模具的制造成本低, 经济性强。
对附图的简要说明
附图说明 [0027] 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要 使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一 些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还 可以根据这些附图获得其他的附图。
[0028] 图 1是本发明实施例一提供的一种注塑成型模具的结构示意图;
[0029] 图 2是本发明实施例一提供的一种模内在线质量感知器的结构示意图;
[0030] 图 3是本发明实施例一提供的一种检测电容成型原理的结构示意图;
[0031] 图 4是本发明实施例一提供的一种电压信号的检测结果图;
[0032] 图 5是本发明实施例一提供的一种模内在线质量感知器的结构示意图;
[0033] 图 6是本发明实施例一提供的一种模内在线质量感知器安装位示意图;
[0034] 图 7是本发明实施例二提供的一种注塑成型模具的在线质量检测方法流程图。
本发明的实施方式
[0035] 为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施 方式作进一步地详细描述。
[0036] 实施例一
[0037] 本发明实施例提供了一种注塑成型模具, 适用于各种非导电填充材料, 参见图 1, 该注塑成型模具可以包括: 定模板 100、 动模板 200、 由定模板 100的定模模 芯 110和动模板 200的动模模芯 210之间用于形成产品的型腔 300 (图 1中型腔 300 显示得比较小, 具体可以参考图 3) 、 以及模内在线质量感知器 400。
[0038] 参见图 2, 该模内在线质量感知器 400可以包括:
[0039] 感知器主体 1, 贯穿设置在动模模芯 210中且与型腔 300接触 (即感知器主体 1插 装在动模模芯 210中, 且其一端端面与型腔 300接触, 在实际应用中, 感知器主 体 1与型腔 300接触面, 同动模模芯 210与型腔 300接触面处于同一平面) , 感知 器主体 1表面除与型腔 210接触面外均设置有绝缘层, 感知器主体 1用于与定模模 芯 110构成检测电容的两极。
[0040] 接线 2, 一端与感知器主体 1连接, 其另一端与电源连接, 用于为检测电容充电 , 或者, 其另一端与计算机连接, 用于为计算机传输检测电容在整个注塑周期 中的电压信号, 该电压信号用于在线监控注塑周期中型腔 300内的注塑速度、 注 塑重量、 注塑的固化速率、 注塑的收缩率中至少一个。 在实际应用中, 由于一 般的计算机都具有电源, 接线 2的另一端可以与计算机连接, 既通过计算机为检 测电容充电, 又为计算机传输检测电容在整个注塑周期中的电压信号。
[0041] 在本实施例中, 参见图 3, 感知器主体 1表面除与型腔 210接触面外均设置有绝 缘层, 并与定模模芯 110之间隔有型腔 300, 感知器主体 1和定模模芯 110—般都 由导电材料制备, 在空气绝缘的型腔 300作用下, 形成检测电容, 其中, 感知器 主体 1可以在外接电源的作用下充电, 而定模模芯 110则接地。
[0042] 进一步地, 该检测电容的容值在模内在线质量感知器 400安装好后, 仅取决于 介电常数, 而介电常数则取决于感知器主体 1与定模模芯 110之间的介质了。 在 整个注塑周期中, 型腔 300中由空气逐渐填充热熔的填充材料, 然后由热熔的填 充材料冷却至固态填充材料, 在检测电容的充电电荷量一定的条件下, 其检测 电容的电压与介电常数成反比例关系。 具体地, 可以参见如下公式:
[0043]
Figure imgf000007_0001
[0044] 其中, U为电压信号, C为检测电容的电容值, Q为检测电容的充电电荷量, A 为感知器主体 1与定模模芯 110的正对面积, D为感知器主体 1与定模模芯 110之间 的距离, ε为介电常数。
[0045] 参见图 4, 在整个注塑周期中, 首先经历关模阶段, 即定模板 100与动模板 200 接触在一起, 此吋, 检测电容在经过充电后幵始生效, 且由于型腔 300内仅为空 气, 检测电容的介电常数保持不变, 相应的电压信号保持不变; 然后幵始向型 腔 300中匀速注入填充材料 (即图 3中的注射阶段) , 由于填充材料的介电常数 小于空气的介电常数, 随着填充材料的不断注入, 检测电容的介电常数随之减 小, 相应的电压信号则随之变大; 随着型腔 300注满填充材料后, 将进入保压阶 段, 即仍会有少量的填充材料注入到型腔 300中, 以填补先注入的填充材料因固 化收缩而形成的间隙, 在保压阶段中, 由于仍会有填充材料的注入, 检测电容 的介电常数仍会有少量的减小, 相应的电压信号则随之有少量的增大; 保压阶 段过后幵始进入冷却阶段, 此吋, 停止向型腔 300中注入填充材料, 液态的填充 材料幵始冷却成固态, 检测电容的介电常数随之有所增大; 最后, 当填充材料 冷却成型后, 打幵模具 (即进入幵模阶段) , 检测电容随着定模板 100与动模板 200的分离而失效。
[0046] 此外, 在整个注塑周期内, 模内在线质量感知器 400的电压信号如图 3所示, 可 见, 电压信号在不同阶段的变化特点是不同的, 分别反映了不同阶段的过程及 填充材料的质量信息。 具体地如下:
[0047] 在注射阶段, 随着液态填充材料被注入型腔, 电容极板间的空气介质迅速被液 态填充材料取代, 电压信号显著增加。 与该模内在线质量感知器 400连接的计算 机可以利用这个信号对液态填充材料前端在型腔 300中的位置进行检测, 进而得 到填充材料的填充速度 (例如: 在相距预设距离处分设多个模内在线质量感知 器 400, 然后比较多个模内在线质量感知器 400幵始检测到电压信号显著增加的 吋间差, 以此来计算填充速度) 。
[0048] 在保压阶段, 电压信号斜率发生明显变化, 上升缓慢, 这是因为型腔 300被充 满后只有少量液态填充材料继续被压入 (注射) 型腔 300中, 用以补充因填充材 料固化收缩而形成的空间 (保压) 。 与该模内在线质量感知器 400连接的计算机 可以利用这个信号, 实现在线对填充材料的重量进行检测 (例如: 根据已知的 注射速度, 和注射阶段持续的吋间, 来获取填充材料的重量信息) 。
[0049] 在冷却阶段, 电压信号变化较为平缓, 伴随有轻微下降趋势。 其原因一方面是 液态填充材料冷却凝固后变为固体, 另一方面是由于型腔 300内形成了微小的空 气层。 与该模内在线质量感知器 400连接的计算机可以利用利用测量信号结合过 程的工艺特点对产品固化速率和收缩率进行检测。
[0050] 可选地, 参见图 5, 该模内在线质量感知器 400还可以包括:
[0051] 电压信号放大器 4, 与接线 2连接, 用于放大电压信号。
[0052] 模数转化器 5, 与电压信号放大器 4连接, 用于将电压信号放大器 4放大的电压 信号转化为数字信号。
[0053] 在本实施例中, 将感知器主体 1上的电压信号通过放大并转化为计算机可识别 的数字信号, 方便与模内在线质量感知器 400连接的计算机快速分析处理数据。
[0054] 可选地, 参见图 2, 感知器主体 1上幵设有用于接线 2的一端伸入的固定螺丝中 心孔 (附图中未标示) 。 [0055] 该模内在线质量感知器 400还可以包括: 接线固定螺丝 3, 与接线 2的一端固定 连接 (例如: 焊接) 并与固定螺丝中心孔配合 (例如螺纹连接) , 用于将接线 2 的一端与感知器主体 1固定连接, 防止接线 2从感知器主体 1中脱落出来。
[0056] 可选地, 感知器主体 1可以采用模具钢材料制备 (例如: P20、 S136、 718、 718
H等) 。
[0057] 进一步地, 参见图 2, 感知器主体 1可以为回转体, 感知器主体 1与型腔 300接触 的一端的直径范围为 lmm~5mm, 具体尺寸可根据设计需要定制。
[0058] 进一步地, 参见图 1, 注塑成型模具还包括: 设置在动模模芯 210上的动模镶件 220, 感知器主体 1贯穿设置在动模镶件 220中。
[0059] 在实际应用中, 由于受成型产品形状的限制, 当成型产品的形状不太规则, 需 要采用动模镶件 220进行辅助吋, 感知器主体 1可以贯穿设置在动模镶件 220中, 当然, 也可以同吋贯穿设置在动模模芯 210中。
[0060] 可选地, 参见图 6, 当成型产品形状较为规则吋, 即型腔 300的形状较为规则吋 , 可以将感知器主体 1安装在型腔 300的前端或末端, 型腔 300的前端为型腔 300 靠近注塑成型模具进浇口 310的一端, 型腔 300的末端为远离注塑成型模具进浇 口 310的一端。 在本实施例中, 采用上述两个位置来设置模内在线质量感知器 40 0, 是因为在型腔 300的前端或末端位置的填充材料的填充状况, 最能全面体现 模腔 300内填充材料成型的填充状况。
[0061] 可选地, 感知器主体 1的绝缘层由氧化铝陶瓷或氧化锆陶瓷制备, 其厚度为 0.02 mm〜0.50mm。 在本实施例中, 感知器主体 1的外表面是耐高温耐摩擦的高度绝 缘层, 在 3000°C以上的高温下通过 lOOOMpa以上的高压喷涂在金属基材的表面上 , 绝缘层的厚度为 0.02mm〜0.50mm, 其表面经过打磨省光加工, 尺寸公差可达 到 0.005mm~0.01mm, 表面光洁度可达到 V9以上, 隔热效果在 200°C以上, 热喷 张系数接近于钢, 莫氏硬度达到 8.5以上。
[0062] 此外, 感知器主体 1表面喷涂绝缘层的加工流程如下: 感知器主体备料→感知 器主体加工→感知器主体钻螺丝孔→感知器主体螺丝孔攻螺牙→感知器主体表面 绝缘层喷涂→绝缘层表面打磨省光加工→模内在线质量感知器尺寸检测。
[0063] 可选地, 接线 2即可为普通电源线也可为防静电感应电线, 优选为防静电感应 电线, 接线固定螺丝 3的大小为 M2、 M3或 M4等。
[0064] 本发明实施例通过定模板、 动模板、 模内在线质量感知器组成注塑成型模具, 其中, 模内在线质量感知器由感知器主体和接线构成, 感知器主体贯穿设置在 注塑成型模具的动模模芯中且与注塑模块的型腔接触, 感知器主体表面除与型 腔接触面外均设置有绝缘层, 以用于与定模模芯构成检测电容的两极, 接线一 端与感知器主体连接, 其另一端与电源连接, 用于为检测电容充电, 或者, 其 另一端与计算机连接, 用于为计算机传输检测电容在整个注塑周期中的电压信 号, 该电压信号用于在线监控注塑周期中型腔内的注塑速度、 注塑重量、 注塑 的固化速率、 注塑的收缩率中至少一个。 该模内在线质量感知器是基于电容的 介电常数变化, 而引起检测电容中电压信号的变化来工作的, 这样装配有该莫 内在线质量感知器的注塑成型模具, 能够在线监控注塑周期中型腔内的注塑速 度、 注塑重量、 注塑的固化速率、 注塑的收缩率中至少一个, 监测内容丰富, 能有效反映出注塑周期中多种需要关注的注塑信息, 实用性强, 此外, 该注塑 成型模具装配的模内在线质量感知器利用了现有注塑成型模具的定模模芯作为 检测电容的一个电极, 有效降低了模内在线质量感知器的结构的复杂程度、 和 制造成本, 使得该注塑成型模具的制造成本低, 经济性强。
[0065] 实施例二
[0066] 本发明实施例提供了一种注塑成型模具的在线质量检测方法, 该注塑成型模具 为实施例一所述的注塑成型模具, 参见图 7, 该方法包括:
[0067] 步骤 S21, 将注塑成型模具关模, 以使安装在注塑成型模具内的模内在线质量 感知器的感知器主体与注塑成型模具的定模模芯构成检测电容。
[0068] 在本实施例中, 检测电容的形成原来在实施例一中以作说明, 这里不在赘述。
[0069] 步骤 S22, 为检测电容充预定电量。
[0070] 步骤 S23, 向注塑成型模具的型腔中, 注入预设填充材料。
[0071] 步骤 S24, 实吋监测检测电容在整个注塑周期中的电压信号, 该电压信号可以 用于在线监控注塑周期中型腔内的注塑速度、 注塑重量、 注塑的固化速率、 注 塑的收缩率中至少一个。
[0072] 在本实施例中, 关于电压信号如何反映上述注塑信息, 在实施例一中以作说明 , 这里不在赘述。
[0073] 本发明实施例通过将注塑成型模具关模, 以使安装在注塑成型模具内的模内在 线质量感知器的感知器主体与注塑成型模具的定模模芯构成检测电容; 为检测 电容充预定电量; 向注塑成型模具的型腔中, 注入预设填充材料; 实吋监测检 测电容在整个注塑周期中的电压信号, 该电压信号可以用于在线监控注塑周期 中型腔内的注塑速度、 注塑重量、 注塑的固化速率、 注塑的收缩率中至少一个 。 该在线质量检测方法所监测的电压信号, 能够在线监控注塑周期中型腔内的 注塑速度、 注塑重量、 注塑的固化速率、 注塑的收缩率中至少一个, 监测内容 丰富, 能有效反映出注塑周期中多种需要关注的注塑信息, 实用性强。
[0074] 上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
[0075] 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神 和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权利要求书
一种注塑成型模具, 其特征在于, 包括: 定模板 (100) 、 动模板 (2 00) 、 由所述定模板 (100) 的定模模芯 (110) 和所述动模板 (200 ) 的动模模芯 (210) 之间用于形成产品的型腔 (300) 、 以及模内在 线质量感知器 (400) ,
所述模内在线质量感知器 (400) 包括:
感知器主体 (1) , 贯穿设置在所述动模模芯 (210) 中且与所述型腔
(300) 接触, 所述感知器主体 (1) 表面除与所述型腔 (210) 接触 面外均设置有绝缘层, 所述感知器主体 (1) 用于与所述定模模芯 (1 10) 构成检测电容的两极;
接线 (2) , 一端与所述感知器主体 (1) 连接, 其另一端与电源连接 , 用于为所述检测电容充电, 或者, 其另一端与计算机连接, 用于为 所述计算机传输所述检测电容在整个注塑周期中的电压信号, 所述电 压信号用于在线监控注塑周期中所述型腔 (300) 内的注塑速度、 注 塑重量、 注塑的固化速率、 注塑的收缩率中至少一个。
根据权利要求 1所述的注塑成型模具, 其特征在于, 所述模内在线质 量感知器 (400) 还包括:
电压信号放大器 (4) , 与所述接线 (2) 连接, 用于放大所述电压信 号;
模数转化器 (5) , 与所述电压信号放大器 (4) 连接, 用于将所述电 压信号放大器 (4) 放大的电压信号转化为数字信号。
根据权利要求 1所述的注塑成型模具, 其特征在于, 所述模内在线质 量感知器 (400) 还包括: 接线固定螺丝 (3) , 与所述接线 (2) 的 一端固定连接, 用于将所述接线 (2) 的一端与所述感知器主体 (1) 固定连接。
根据权利要求 1所述的注塑成型模具, 其特征在于, 所述感知器主体
(1) 采用模具钢材料制备。
根据权利要求 4所述的注塑成型模具, 其特征在于, 所述感知器主体 ( 1) 为回转体, 所述感知器主体 (1) 与所述型腔 (300) 接触的一 端的直径范围为 lmm~5mm。
[权利要求 6] 根据权利要求 5所述的注塑成型模具, 其特征在于, 所述注塑成型模 具还包括: 设置在所述动模模芯 (210) 上的动模镶件 (220) , 所述 感知器主体 (1) 贯穿设置在所述动模镶件 (220) 中。
[权利要求 7] 根据权利要求 5所述的注塑成型模具, 其特征在于, 所述感知器主体
( 1) 安装在所述型腔 (300) 的前端或末端, 所述型腔 (300) 的前 端为所述型腔 (300) 靠近所述注塑成型模具进浇口 (310) 的一端, 所述型腔 (300) 的末端为远离所述注塑成型模具进浇口 (310) 的一 山
[权利要求 8] 根据权利要求 1所述的注塑成型模具, 其特征在于, 所述感知器主体
( 1) 的绝缘层由氧化铝陶瓷或氧化锆陶瓷制备, 其厚度为 0.02mm〜 0.50mm。
[权利要求 9] 根据权利要求 1所述的注塑成型模具, 其特征在于, 所述接线 (2) 为 防静电感应电线。
[权利要求 10] —种权利要求 1所述的注塑成型模具的在线质量检测方法, 其特征在 于, 所述方法包括:
将所述注塑成型模具关模, 以使安装在所述注塑成型模具内的模内在 线质量感知器的感知器主体与所述注塑成型模具的定模模芯构成检测 电容;
为所述检测电容充预定电量;
向所述注塑成型模具的型腔中, 注入预设填充材料;
实吋监测所述检测电容在整个注塑周期中的电压信号, 所述电压信号 用于在线监控注塑周期中所述型腔内的注塑速度、 注塑重量、 注塑的 固化速率、 注塑的收缩率中至少一个。
PCT/CN2017/083990 2016-05-16 2017-05-11 一种注塑成型模具及其在线质量检测方法 WO2017198106A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610323440.X 2016-05-16
CN201610323440.XA CN107379453A (zh) 2016-05-16 2016-05-16 一种注塑成型模具及其在线质量检测方法

Publications (1)

Publication Number Publication Date
WO2017198106A1 true WO2017198106A1 (zh) 2017-11-23

Family

ID=60325681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083990 WO2017198106A1 (zh) 2016-05-16 2017-05-11 一种注塑成型模具及其在线质量检测方法

Country Status (2)

Country Link
CN (1) CN107379453A (zh)
WO (1) WO2017198106A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109342514A (zh) * 2018-09-04 2019-02-15 东莞弗兰德通信科技有限公司 介质塑料的介电常数测量方法及装置
CN114043694B (zh) * 2021-11-22 2024-03-19 广州市香港科大霍英东研究院 一种注塑对象的重量预测方法、关键参数调整方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105415629A (zh) * 2015-11-10 2016-03-23 广州市香港科大霍英东研究院 一种注塑过程在线质量检测仪
CN205185240U (zh) * 2015-11-10 2016-04-27 广州市香港科大霍英东研究院 点电极电容传感器
CN105563784A (zh) * 2016-02-18 2016-05-11 群达模具(深圳)有限公司 一种注塑模具传感器及其传感部件的制造方法
CN205651625U (zh) * 2016-05-16 2016-10-19 群达模具(深圳)有限公司 一种注塑成型模具
CN205889732U (zh) * 2016-05-12 2017-01-18 群达模具(深圳)有限公司 一种用于注塑模具的传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105415629A (zh) * 2015-11-10 2016-03-23 广州市香港科大霍英东研究院 一种注塑过程在线质量检测仪
CN205185240U (zh) * 2015-11-10 2016-04-27 广州市香港科大霍英东研究院 点电极电容传感器
CN105563784A (zh) * 2016-02-18 2016-05-11 群达模具(深圳)有限公司 一种注塑模具传感器及其传感部件的制造方法
CN205889732U (zh) * 2016-05-12 2017-01-18 群达模具(深圳)有限公司 一种用于注塑模具的传感器
CN205651625U (zh) * 2016-05-16 2016-10-19 群达模具(深圳)有限公司 一种注塑成型模具

Also Published As

Publication number Publication date
CN107379453A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2017193968A1 (zh) 一种用于注塑模具的传感器及其在线检测方法
WO2017198106A1 (zh) 一种注塑成型模具及其在线质量检测方法
Gao et al. Development of high efficiency infrared-heating-assisted micro-injection molding for fabricating micro-needle array
CN203267105U (zh) 一种热流道隔热喷咀
CN205889732U (zh) 一种用于注塑模具的传感器
CN105563784A (zh) 一种注塑模具传感器及其传感部件的制造方法
CN203331352U (zh) 一种热流道模具
CN205651625U (zh) 一种注塑成型模具
CN201442330U (zh) 滚塑模具温度监测装置
CN208343397U (zh) 一种新型注塑模具检测装置
CN203994481U (zh) 一种汽车仪表盘面板注塑模具
CN211104571U (zh) 一种文物复制用陶瓷3d打印挤出头
WO2018054087A1 (zh) 一种注塑模具内分体式传感器和注塑模具
CN102179931A (zh) 一种电热胶辊
CN203344286U (zh) 一种带远程控制系统的注塑设备
CN206297115U (zh) 一种注塑模具内分体式传感器和注塑模具
WO2018054086A1 (zh) 一种注塑模具内整体式传感器和注塑模具
CN203567015U (zh) 一种塑料制品注射成型模具
CN203495228U (zh) 一种注射成型喷嘴
CN107589154A (zh) 一种模内熔体传感器和模内熔体传感系统
CN202071353U (zh) 一种电热胶辊
CN205572948U (zh) 一种注塑模具传感器
KR20090086861A (ko) 급속 박막 직가열 장치 및 이를 이용한 극박 플라스틱사출성형 금형
CN207509571U (zh) 一种控制环氧浇注产品沉降的装置
CN206242341U (zh) 一种具有高温警报易硫化的硅胶模具

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798669

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798669

Country of ref document: EP

Kind code of ref document: A1