WO2017197964A1 - 媒体数据处理方法和装置及系统 - Google Patents

媒体数据处理方法和装置及系统 Download PDF

Info

Publication number
WO2017197964A1
WO2017197964A1 PCT/CN2017/076335 CN2017076335W WO2017197964A1 WO 2017197964 A1 WO2017197964 A1 WO 2017197964A1 CN 2017076335 W CN2017076335 W CN 2017076335W WO 2017197964 A1 WO2017197964 A1 WO 2017197964A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
control parameter
conversion control
signal strength
electrical signal
Prior art date
Application number
PCT/CN2017/076335
Other languages
English (en)
French (fr)
Inventor
郑喆坤
林桥洲
于胜韬
李明
尚国强
吴钊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/301,929 priority Critical patent/US11165944B2/en
Priority to EP17798530.6A priority patent/EP3461118B1/en
Publication of WO2017197964A1 publication Critical patent/WO2017197964A1/zh
Priority to US17/493,759 priority patent/US20220030283A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/98Adaptive-dynamic-range coding [ADRC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • H04N5/202Gamma control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/005Adapting incoming signals to the display format of the display terminal

Definitions

  • Embodiments of the present invention relate to the field of communications, and in particular, to a media data processing method, apparatus, and system.
  • SDR Standard Dynamic Range
  • HDR High Dynamic Range
  • HDR images and videos are saved by floating-point data. It takes more memory and bandwidth to store and transmit HDR video. Therefore, it is necessary to develop an efficient HDR video coding technology.
  • the existing HDR video coding technology is mainly divided into two. Class, backward compatible video coding technology and video coding technology based on human perception.
  • the backward compatible video coding technique accurately maps the HDR image by using the human eye visual model mainly by mapping the HDR image to the SDR so that it has backward compatibility with a conventionally supported device with a bit depth of 8 bits.
  • the masking effect of the human eye removes information that has less impact on human perception, thereby saving coded bits.
  • an HDR video coding scheme based on human eye perception and backward compatibility is proposed, and the HDR photoelectric conversion operation is completed by using a Hybrid Log Gamma (HLG) conversion function.
  • HGG Hybrid Log Gamma
  • the method of converting using the HLG conversion function is based only on the highest luminance and ambient luminance of the display device, so that there is a problem of excessive display when displaying media data (such as HDR video or image), that is, using correlation.
  • media data such as HDR video or image
  • correlation When dealing with media data, there is a problem that the processing is not accurate enough.
  • the logarithmic operation involved in using the HLG conversion function The calculation process is more complicated, which greatly increases the complexity of processing the media data on the sink side.
  • the embodiments of the present invention provide a media data processing method, apparatus, and system, to at least solve the problem that the accuracy of media data processing in the related art is low.
  • a method for processing a media data includes: acquiring an optical signal of a sampling point obtained by collecting a media data by a source collection device; and performing the optical signal of the sampling point according to a photoelectric conversion control parameter.
  • the photoelectric conversion is performed to obtain a converted electrical signal, wherein the photoelectric conversion control parameter is determined according to an optical signal intensity of the optical signal of the sampling point; and the electrical signal and the photoelectric conversion control parameter are encoded to obtain a code stream.
  • performing the photoelectric conversion on the optical signal of the sampling point according to the photoelectric conversion control parameter, and obtaining the converted electrical signal includes: determining whether the optical signal intensity of the optical signal of the sampling point is greater than a predetermined threshold; And when the optical signal intensity of the optical signal of the sampling point is greater than the predetermined threshold, the optical signal intensity of the optical signal of the sampling point is photoelectrically converted by the photoelectric conversion control parameter to obtain the optical signal with the sampling point.
  • the electrical signal strength of the electrical signal corresponding to the optical signal strength.
  • the optical signal intensity of the optical signal of the sampling point is photoelectrically converted by using the photoelectric conversion control parameter to obtain an electrical signal of the electrical signal corresponding to the optical signal intensity of the optical signal of the sampling point.
  • Strength includes: Wherein E' is used to indicate an electrical signal strength of the electrical signal corresponding to the optical signal strength of the optical signal at the sampling point, and E is used to indicate the optical signal intensity of the optical signal at the sampling point, p is used to indicate the above-described photoelectric conversion control parameter, and the above E max is used to indicate the maximum brightness value of the reference point; the above a and b represent preset control parameters.
  • the method further includes: acquiring the optical signal strength of the optical signal of the sampling point and the device display brightness of the sink terminal display device;
  • the photoelectric conversion control parameter is determined based on the optical signal intensity of the optical signal of the sampling point and the display brightness of the device.
  • the foregoing optical signal strength of the optical signal obtained by acquiring the sampling point and the device display brightness of the sink terminal display device include: acquiring a maximum optical signal strength of the optical signal strength of the collected optical signal of the sampling point. And minimum optical signal strength; obtaining the highest brightness value and the lowest brightness value of the above-mentioned sink terminal display device.
  • determining the photoelectric conversion control parameter according to the optical signal intensity of the sampling point and the display brightness of the device according to the foregoing sampling point includes: Wherein said p is used to indicate said photoelectric conversion control parameter, said M is for indicating said highest luminance value of said sink terminal display device, said N is for indicating said lowest luminance value of said sink terminal display device, said H is for indicating The maximum optical signal intensity described above, and L is used to indicate the minimum optical signal strength.
  • the obtaining the maximum optical signal strength and the minimum optical signal strength of the optical signal intensity of the optical signal of the collected sampling point include at least one of the following: an optical signal of the optical signal of the collected sampling point In the intensity, obtaining the maximum optical signal intensity and the minimum optical signal intensity in one image; acquiring the maximum optical signal intensity and the minimum optical signal in the plurality of images in the collected optical signal intensity of the optical signal of the sampling point strength.
  • the obtaining the highest brightness value and the lowest brightness value of the information display device of the above-mentioned sink terminal includes at least one of the following: obtaining a highest brightness value and a lowest brightness value preset by the destination terminal display device; The highest brightness value and the lowest brightness value achieved by the above-mentioned sink terminal display device are obtained.
  • encoding the electrical signal and the photoelectric conversion control parameter to obtain a code stream includes: encoding a quantization result obtained by performing quantization processing on the electrical signal strength of the electrical signal; and encoding the photoelectric conversion control parameter; The quantized result and the coded bit encoded by the photoelectric conversion control parameter are written into the code stream.
  • writing the coded bit encoded by the photoelectric conversion control parameter to the code stream includes at least one of: writing the coded bit encoded by the photoelectric conversion control parameter into a parameter set data unit of the code stream; The coded bits encoded by the photoelectric conversion control parameters are written into the supplemental enhancement information data unit of the above code stream; the coded bits encoded by the above photoelectric conversion control parameters are written into the system layer data unit of the code stream.
  • the above-mentioned system layer data unit that encodes the coded bit encoded by the photoelectric conversion control parameter into the code stream includes: writing the coded bit encoded by the photoelectric conversion control parameter into a file format in the system layer data unit. In the data unit and / or in the sub-data unit.
  • the method further includes: establishing, in the code stream, the data unit of the coded bit encoded by the photoelectric conversion control parameter, and the code The association between access units in the stream.
  • the foregoing relationship between the data unit that is used to write the coded bit encoded by the photoelectric conversion control parameter in the foregoing code stream and the access unit in the code stream includes at least one of the following: Referring to the above parameter set data unit; writing the supplementary enhancement information data unit to the access unit; and associating the system layer data unit with the access unit.
  • the associating the system layer data unit with the access unit includes: using a pointer parameter to indicate the access unit associated with the system layer data unit; or writing the system layer data unit to the access The header information of the system layer data unit where the unit is located.
  • a method for processing a media data includes: parsing a code stream, acquiring an electrical signal to be processed, and an electro-optical conversion control parameter; and performing electro-optical conversion on the electrical signal according to the electro-optical conversion control parameter, Obtaining an optical signal intensity of the converted optical signal; controlling the display of the device by the sink terminal according to the optical signal strength of the optical signal.
  • performing the electro-optical conversion on the electrical signal according to the electro-optical conversion control parameter to obtain the optical signal strength of the converted optical signal includes: determining whether the electrical signal strength of the electrical signal is greater than a predetermined threshold; When the electrical signal strength is greater than the predetermined threshold, the electrical signal intensity of the electrical signal is electrically and optically converted by the electrical-to-electrical conversion control parameter to obtain the optical signal intensity of the optical signal corresponding to the electrical signal strength of the electrical signal.
  • the optical signal conversion of the electrical signal strength of the electrical signal by using the electro-optical conversion control parameter to obtain the optical signal strength of the optical signal corresponding to the electrical signal strength of the electrical signal includes: Wherein E is used to indicate the optical signal intensity of the optical signal corresponding to the electrical signal strength of the electrical signal, the E' is used to indicate the electrical signal strength of the electrical signal, and the p is used to indicate the electrical optical conversion Control parameters, the above E max is used to represent the maximum brightness value of the reference point; the above a, b represent the preset control parameters.
  • acquiring the electro-optical conversion control parameter includes: acquiring at least one of the electro-optical conversion control parameters carried in the foregoing code stream; acquiring an optical signal strength of the optical signal carried in the electrical signal, and the device of the foregoing information display device Display brightness; determining the electro-optic conversion control parameter according to the optical signal intensity of the optical signal carried in the electrical signal and the device display brightness of the sink display device.
  • the obtaining the electro-optical conversion control parameter carried in the foregoing code stream includes at least one of: acquiring the electro-optical conversion control parameter carried in the parameter set data unit in the code stream; and acquiring supplementary enhanced information data in the code stream.
  • the electro-optical conversion control parameter carried in the supplementary enhancement information data unit covers the electro-optical conversion control parameter carried in the parameter set data unit and/or the electro-optical conversion control parameter carried in the system layer data unit
  • the electro-optical conversion control parameter carried in the parameter set data unit covers the electro-optical conversion control parameter carried in the system layer data unit.
  • the obtaining the optical signal strength of the optical signal carried in the electrical signal and the display brightness of the device of the information display device include: acquiring the maximum optical signal strength and the minimum optical signal strength carried in the electrical signal; acquiring the above-mentioned sink The terminal displays the highest brightness value and the lowest brightness value of the device; determining the electro-optical conversion control parameter according to the optical signal strength of the optical signal carried in the electrical signal and the device display brightness of the information device of the sink terminal comprises: Wherein, the p is used to indicate the electro-optic conversion control parameter, the M is used to indicate the highest brightness value of the sink display device, and the N is used to indicate the lowest brightness value of the sink display device, and the H is used to indicate The maximum optical signal intensity described above, and L is used to indicate the minimum optical signal strength.
  • the method before the displaying, according to the optical signal strength of the optical signal, the display of the display device of the sink terminal, the method further comprises: performing gamma correction on the optical signal strength of the optical signal.
  • a media data processing apparatus including: a first acquiring unit, configured to acquire an optical signal of a sampling point obtained by collecting a media data by a source collecting device; and a converting unit configured to The photoelectric conversion control parameter photoelectrically converts the optical signal of the sampling point to obtain a converted electrical signal, wherein the photoelectric conversion control parameter is determined according to an optical signal intensity of the optical signal of the sampling point; and the coding unit is set to be The electrical signal and the photoelectric conversion control parameter are encoded to obtain a code stream.
  • the converting unit includes: a determining module, configured to determine whether the optical signal strength of the optical signal of the sampling point is greater than a predetermined threshold; and a conversion module configured to set the optical signal strength of the optical signal at the sampling point When the value is greater than the predetermined threshold value, the optical signal intensity of the optical signal of the sampling point is photoelectrically converted by the photoelectric conversion control parameter to obtain the electrical signal of the electrical signal corresponding to the optical signal intensity of the optical signal of the sampling point. Signal strength.
  • the conversion module performs photoelectric conversion on the optical signal strength of the optical signal of the sampling point by: Wherein E' is used to indicate an electrical signal strength of the electrical signal corresponding to the optical signal strength of the optical signal at the sampling point, and E is used to indicate the optical signal intensity of the optical signal at the sampling point, p is used to indicate the above-described photoelectric conversion control parameter, and the above E max is used to indicate the maximum brightness value of the reference point; the above a and b represent preset control parameters.
  • the method further includes: acquiring, by the second acquiring unit, the optical signal strength and the sink end of the optical signal of the sampling point before performing photoelectric conversion on the optical signal of the sampling point according to the photoelectric conversion control parameter
  • the device of the display device displays brightness; and the determining unit is configured to determine the photoelectric conversion control parameter according to the optical signal intensity of the optical signal of the sampling point and the display brightness of the device.
  • the second acquiring unit includes: a first acquiring module, configured to acquire a maximum optical signal strength and a minimum optical signal strength among optical signal strengths of the collected optical signals of the sampling points; and a second acquiring module, It is set to obtain the highest brightness value and the lowest brightness value of the above-mentioned sink terminal display device.
  • the determining unit determines, by using the foregoing manner, the photoelectric conversion control parameter according to the optical signal intensity of the sampling point and the display brightness of the device:
  • said p is used to indicate said photoelectric conversion control parameter
  • said M is for indicating said highest luminance value of said sink terminal display device
  • said N is for indicating said lowest luminance value of said sink terminal display device
  • said H is for indicating The maximum optical signal intensity described above
  • L is used to indicate the minimum optical signal strength.
  • the coding unit includes: a first coding module configured to encode a quantization result obtained by performing quantization processing on the electrical signal strength of the electrical signal; and a second coding module configured to perform the photoelectric conversion control parameter And a write module configured to write the coded bits encoded by the quantization result and the photoelectric conversion control parameter into the code stream.
  • the writing module is configured to write the coded bit encoded by the photoelectric conversion control parameter into the code stream by using at least one of the following methods: writing the coded bit encoded by the photoelectric conversion control parameter into the parameter of the code stream. And a set data unit; the coded bit encoded by the photoelectric conversion control parameter is written into the supplemental enhancement information data unit of the code stream; and the coded bit encoded by the photoelectric conversion control parameter is written into the system layer data unit of the code stream.
  • the writing module is configured to write the coded bits encoded by the photoelectric conversion control parameter into the system layer data unit of the code stream by writing the coded bits encoded by the photoelectric conversion control parameter into the system.
  • the file format data unit in the layer data unit is in and/or described in the sub data unit.
  • a media data processing apparatus including: an acquiring unit configured to parse a code stream, acquiring an electrical signal to be processed and an electro-optical conversion control parameter; and a converting unit configured to convert according to the electro-optical
  • the control parameter performs electro-optical conversion on the electrical signal to obtain an optical signal intensity of the converted optical signal
  • the display unit is configured to control display of the display device of the sink terminal according to the optical signal strength of the optical signal.
  • the converting unit includes: a determining module, configured to determine whether an electrical signal strength of the electrical signal is greater than a predetermined threshold; and a converting module configured to use the electrical light when the electrical signal strength of the electrical signal is greater than the predetermined threshold Converting control parameters to the above electrical signals
  • the electrical signal intensity is electrically and optically converted to obtain the optical signal intensity of the optical signal corresponding to the electrical signal strength of the electrical signal.
  • the conversion module performs electro-optical conversion on the electrical signal strength of the electrical signal by using the electro-optical conversion control parameter to obtain the optical signal strength of the optical signal corresponding to the electrical signal strength of the electrical signal.
  • E is used to indicate the optical signal intensity of the optical signal corresponding to the electrical signal strength of the electrical signal
  • the E' is used to indicate the electrical signal strength of the electrical signal
  • the p is used to indicate the electrical optical conversion Control parameters
  • the above E max is used to represent the maximum brightness value of the reference point
  • the above a, b represent the preset control parameters.
  • the acquiring unit includes at least one of the following: a first acquiring module configured to acquire the electro-optical switching control parameter carried in the code stream, and a second acquiring module configured to acquire an optical signal carried in the electrical signal The optical signal strength and the device display brightness of the above-mentioned sink terminal display device; the determining module is configured to determine the electro-optical conversion control parameter according to the optical signal strength of the optical signal carried in the electrical signal and the device display brightness of the sink display device .
  • the first acquiring module includes at least one of the following: a first acquiring submodule configured to acquire the electro-optical conversion control parameter carried in the parameter set data unit in the code stream; and the second acquiring submodule is configured to obtain The above-mentioned code stream is supplemented with the above-mentioned electro-optical conversion control parameter carried in the enhanced information data unit.
  • the third acquisition sub-module is configured to acquire the electro-optical conversion control parameter carried in the system layer data unit in the code stream.
  • the electro-optical conversion control parameter carried in the supplementary enhancement information data unit covers the electro-optical conversion control parameter carried in the parameter set data unit and/or the electro-optical conversion control parameter carried in the system layer data unit
  • the electro-optical conversion control parameter carried in the parameter set data unit covers the electro-optical conversion control parameter carried in the system layer data unit.
  • the second acquiring module includes: a first acquiring submodule configured to acquire a maximum optical signal strength and a minimum optical signal strength carried in the electrical signal; and a second acquiring submodule configured to obtain the foregoing sink terminal display device And determining, by the determining module, the electro-optic conversion control parameter according to the optical signal strength of the optical signal carried in the electrical signal and the device display brightness of the information display device of the sink terminal by: Wherein, the p is used to indicate the electro-optic conversion control parameter, the M is used to indicate the highest brightness value of the sink display device, and the N is used to indicate the lowest brightness value of the sink display device, and the H is used to indicate The maximum optical signal intensity described above, and L is used to indicate the minimum optical signal strength.
  • a media data processing system including: a source-side collection device, configured to acquire an optical signal of a sampling point obtained by collecting a media data by a source-side collection device; And photoelectrically converting the optical signal of the sampling point to obtain a converted electrical signal, wherein the photoelectric conversion control parameter is determined according to an optical signal intensity of the optical signal of the sampling point; and the electrical signal and the photoelectric conversion control
  • the parameter is encoded to obtain a code stream; the sink terminal display device is set to parse the code stream, and the electrical signal to be processed and the electro-optic conversion control parameter are obtained; and the electric signal is electrically converted according to the electro-optical conversion control parameter to obtain the converted optical signal.
  • the intensity of the optical signal; the display of the display device of the sink terminal is controlled according to the intensity of the optical signal of the optical signal.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the following steps: acquiring an optical signal of a sampling point obtained by the source collection device acquiring the media data; and photoelectrically converting the optical signal of the sampling point according to the photoelectric conversion control parameter to obtain And a converted electrical signal, wherein the photoelectric conversion control parameter is determined according to an optical signal intensity of the optical signal of the sampling point; and the electrical signal and the photoelectric conversion control parameter are encoded to obtain a code stream.
  • the storage medium is further configured to store program code for performing: determining whether the optical signal strength of the optical signal of the sampling point is greater than a predetermined threshold; and the optical signal strength of the optical signal at the sampling point When the value is greater than the predetermined threshold value, the optical signal intensity of the optical signal of the sampling point is photoelectrically converted by the photoelectric conversion control parameter to obtain the electrical signal of the electrical signal corresponding to the optical signal intensity of the optical signal of the sampling point. Signal strength.
  • the storage medium is further arranged to store program code for performing the following steps: Wherein E' is used to indicate an electrical signal strength of the electrical signal corresponding to the optical signal strength of the optical signal at the sampling point, and E is used to indicate the optical signal intensity of the optical signal at the sampling point, p is used to indicate the above-described photoelectric conversion control parameter, and the above E max is used to indicate the maximum brightness value of the reference point; the above a and b represent preset control parameters.
  • the optical signal of the sampling point obtained by collecting the media data is obtained, and the optical signal of the sampling point is photoelectrically converted according to the photoelectric conversion control parameter to obtain the converted electrical signal, wherein the photoelectric conversion control parameter is based on the sampling point.
  • the optical signal strength of the optical signal is determined; further, the electrical signal and the photoelectric conversion control parameter are encoded to obtain a code stream.
  • the photoelectric conversion control parameter determined according to the optical signal intensity of the optical signal of the sampling point into the code stream thereby adaptively adjusting the photoelectric conversion control parameter for performing photoelectric conversion in combination with the optical signal intensity
  • the adaptively adjusting the conversion curve of the collected optical signals of the collected media data in different light intensity regions, effectively maintaining the detailed information of the media data before and after the photoelectric conversion, so as to improve the media data conversion processing.
  • the effect of the accuracy further overcomes the problem that the photoelectric conversion of the related art is low in accuracy due to the brightness of the display device and the brightness of the ambient light.
  • FIG. 1 is a flow chart of an optional media data processing method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an alternative media data processing system in accordance with an embodiment of the present invention.
  • FIG. 3 is a flow chart of another optional media data processing method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an optional media data processing apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another alternative media data processing apparatus in accordance with an embodiment of the present invention.
  • FIG. 1 is a flowchart of media data processing according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • S104 performing photoelectric conversion on the optical signal of the sampling point according to the photoelectric conversion control parameter, to obtain the converted electrical signal, wherein the photoelectric conversion control parameter is determined according to the optical signal intensity of the optical signal of the sampling point;
  • the foregoing media data processing method may be, but is not limited to, being applied to a media data processing system, where the system includes: a source-side collection device and a sink-side display device.
  • the above device may be, but is not limited to, a related stream generating device and a receiving and playing device in a video communication application, for example, a mobile phone, a computer, a server, a set top box, a portable mobile terminal, a digital camera, a television broadcasting system device, etc.
  • the code stream generating device (source source collecting device) shown in FIG. 2 can be the mobile phone 202
  • the receiving playing device the sink terminal display device
  • the above is only an example, and is not limited in this embodiment.
  • the source-side collection device obtains the optical signal of the sampling point obtained by collecting the media data, and performs photoelectric conversion on the optical signal of the sampling point according to the photoelectric conversion control parameter to obtain the converted electric energy.
  • a signal wherein the photoelectric conversion control parameter is determined according to an optical signal intensity of the optical signal at the sampling point; further, the electrical signal and the photoelectric conversion control parameter are encoded to obtain a code stream.
  • the predetermined photoelectric conversion control parameter is encoded and written into the code stream, thereby adaptively adjusting the photoelectric conversion control parameters for photoelectric conversion in combination with the optical signal intensity, so as to adaptively adjust the collected media data (such as video or image).
  • the conversion curve of the optical signal of the sampling point in different light intensity regions effectively maintains the detailed information of the media data before and after the photoelectric conversion, so as to achieve the effect of improving the accuracy of the media data conversion processing, thereby overcoming the related art in photoelectric conversion only according to the display.
  • the optical signal of the sampling point obtained by acquiring the media data by the source collection device may be, but is not limited to, acquiring the optical signal strength of the optical signal of the sampling point collected by the source collection device.
  • the optical signal strength of the optical signal of the sampling point may be, but is not limited to, represented by a voltage value proportional to the light intensity collected by the source end collecting device.
  • the optical signal strength of the optical signal of the above sampling point may be, but is not limited to, normalized using a reference point (e.g., reference white level).
  • the process of obtaining the voltage value may be the same as the process of acquiring the voltage value E in the related art (the scheme using the HLG conversion parameter), and is not described herein again in this embodiment.
  • the optical signal of the sampling point is photoelectrically converted according to the photoelectric conversion control parameter, and the converted electrical signal includes:
  • the photoelectric conversion control parameter associated with the optical signal intensity of the optical signal of the sampling point is introduced, in the photoelectric conversion process.
  • the brightness range feature of the sampling point is combined, so that when the media data is converted, the conversion curve can be dynamically adaptively adjusted with different brightness range features, thereby achieving an accurate conversion effect on the media data.
  • the photoelectric signal is used to control the optical signal of the sampling point.
  • the optical signal intensity is photoelectrically converted, and the electrical signal strength of the electrical signal corresponding to the optical signal strength of the optical signal of the sampling point is obtained:
  • E' is used to indicate the electrical signal strength of the electrical signal corresponding to the optical signal strength of the optical signal of the sampling point
  • E is used to represent the optical signal strength of the optical signal of the sampling point
  • p is used to represent the photoelectric conversion control parameter
  • E Max is used to represent the maximum brightness value of the reference point
  • a and b represent preset control parameters.
  • a photoelectric conversion function (such as formula (1)) is determined using a rational function curve having a similar characteristic to a logarithmic mapping curve, wherein the photoelectric conversion function includes the above photoelectric conversion control Parameter p.
  • the optical signal intensity of the optical signal of the sampling point is photoelectrically converted by the photoelectric conversion function including the photoelectric conversion control parameter p described above to obtain the electrical signal intensity of the corresponding electrical signal.
  • the electrical signal strength of the electrical signal obtained here can accurately reflect the detailed information of the media data in different light intensity regions, thereby achieving the effect of improving the accuracy of the media data conversion processing.
  • the photoelectric conversion function may be a rational function, and a rational function is used to implement photoelectric conversion.
  • HLG conversion function When the HLG conversion function is used in the related art, complex logarithmic and exponential operations are performed. It will greatly reduce the overall computational complexity of the conversion process, and at the same time achieve the effect of improving the accuracy of data processing.
  • the photoelectric conversion may be performed by a photoelectric conversion method provided in a related art (a scheme using an HLG conversion parameter):
  • r is a reference value.
  • the value of r may be set to 0.5 at the source end.
  • the method before performing photoelectric conversion on the optical signal of the sampling point according to the photoelectric conversion control parameter, the method further includes: acquiring an optical signal strength and a sink end of the optical signal of the sampling point.
  • the device of the display device displays brightness; the photoelectric conversion control parameter is determined according to the optical signal intensity of the optical signal of the sampling point and the display brightness of the device.
  • determining the photoelectric conversion control parameter according to the optical signal intensity of the optical signal of the sampling point and the device display brightness may be, but not limited to, the maximum light among the optical signal strengths of the optical signals according to the collected sampling points.
  • the signal intensity and the minimum optical signal strength, and the highest brightness value and the lowest brightness value displayed by the device of the sink display device determine the photoelectric conversion control parameters.
  • the photoelectric conversion control parameters are calculated in the following manner:
  • M is used to indicate the highest brightness value of the sink display device
  • N is used to indicate the lowest brightness value of the sink display device
  • H is used to indicate the maximum light signal intensity
  • L is used to indicate Minimum optical signal strength.
  • the maximum optical signal strength and the minimum optical signal strength may be, but are not limited to, the maximum optical signal strength in an image in the optical signal strength of the optical signal at the collected sampling point.
  • Minimum optical signal strength may also be, but is not limited to, maximum optical signal strength and minimum optical signal strength in a plurality of images.
  • the highest brightness value and the lowest brightness value of the device at the sink terminal may be, but are not limited to, the highest brightness value and the lowest brightness value preset by the sink terminal display device, and may be, but not limited to, a letter.
  • the source end interacts with the sink terminal to obtain the highest brightness value and the lowest brightness value reached by the sink terminal display device.
  • encoding the electrical signal and the photoelectric conversion control parameter to obtain the code stream includes:
  • the coded bit encoded by the photoelectric conversion control parameter is written into the code stream including at least the following one:
  • the above system layer data unit includes: a file format data unit and a description sub data unit.
  • Writing the coded bits encoded by the photoelectric conversion control parameter to the system layer data unit of the code stream may include: writing the coded bits encoded by the photoelectric conversion control parameter into a file format data unit in the system layer data unit and/or describing In the sub data unit.
  • the method further includes: establishing a data unit of the coded bit encoded by the photoelectric conversion control parameter in the code stream and The association between access units in the code stream.
  • association relationship between the data unit of the coded bit that is encoded in the code stream and the coded bit in the code stream is at least one of the following:
  • associating the system layer data unit with the access unit includes at least one of: (1) using a pointer parameter to indicate an access unit associated with the system layer data unit; and (2) using the system The layer data unit is written in the header information of the system layer data unit where the access unit is located.
  • the optical signal of the collected sampling point is obtained, and the optical signal of the sampling point is photoelectrically converted according to the photoelectric conversion control parameter to obtain the converted electrical signal.
  • the photoelectric conversion control parameter is determined according to the optical signal intensity of the optical signal at the sampling point; further, the electrical signal and the photoelectric conversion control parameter are encoded to obtain a code stream.
  • the photoelectric conversion control parameter determined according to the optical signal intensity of the optical signal of the sampling point into the code stream thereby adaptively adjusting the photoelectric conversion control parameter for performing photoelectric conversion in combination with the optical signal intensity
  • the adaptively adjusting the conversion curve of the collected optical signals of the collected media data in different light intensity regions, effectively maintaining the detailed information of the media data before and after the photoelectric conversion, so as to improve the media data conversion processing.
  • the effect of the accuracy further overcomes the problem that the photoelectric conversion of the related art is low in accuracy due to the brightness of the display device and the brightness of the ambient light.
  • photoelectrically converting the optical signal of the sampling point according to the photoelectric conversion control parameter, and obtaining the converted electrical signal includes:
  • the optical signal strength of the optical signal of the sampling point may be, but is not limited to, represented by a voltage value E proportional to the light intensity collected by the source end collecting device. That is to say, the voltage value E is proportional to the intensity of the light received on the sensor on the acquisition device, and is obtained by normalizing the reference point (eg, reference white level).
  • the reference point eg, reference white level
  • the optical signal strength of the optical signal of the sampling point is determined by using the photoelectric conversion control parameter when the value of the optical signal intensity E of the optical signal at the sampling point is greater than 1.
  • Performing photoelectric conversion to obtain an electrical signal strength of the electrical signal corresponding to the optical signal intensity of the optical signal of the sampling point may include:
  • E' is used to indicate the electrical signal strength of the electrical signal corresponding to the optical signal strength of the optical signal of the sampling point
  • E is used to indicate the optical signal strength of the optical signal of the sampling point
  • p is used to represent the photoelectric conversion control parameter
  • E Max is used to represent the maximum brightness value of the reference point
  • a and b represent preset control parameters.
  • Emax is also a voltage value
  • the value of Emax may be, but not limited to, set to 12.
  • the process of determining the value of Emax here may be, but is not limited to, the same as the process in the related art (the scheme using the HLG conversion parameter), and details are not described herein again in this embodiment.
  • the values of the preset control parameters a and b may be, but are not limited to, 0.17883277 and 0.28466892, respectively.
  • the value of the optical signal strength E of the optical signal at the sampling point is within the range [0, 1], but may be, but not limited to, calculated by the following manner. Electrical signal strength value:
  • r is a reference value.
  • the value of r may be set to 0.5 at the source end.
  • the optical signal intensity of the optical signal of the sampling point is photoelectrically converted by the photoelectric conversion function including the photoelectric conversion control parameter to obtain the electrical signal intensity of the corresponding electrical signal.
  • the electrical signal strength of the electrical signal obtained here can accurately reflect the detailed information of the media data in different light intensity regions, thereby achieving the effect of improving the accuracy of the media data conversion processing.
  • the method before performing photoelectric conversion on the optical signal of the sampling point according to the photoelectric conversion control parameter, the method further includes:
  • acquiring the optical signal strength of the optical signal of the sampling point and the device display brightness of the sink terminal display device include:
  • the maximum optical signal strength and the minimum optical signal strength of the optical signal strength of the optical signal at the collected sampling point are at least one of the following:
  • step S14 acquiring the highest brightness value and the lowest brightness value of the sink display device includes at least one of the following:
  • determining the photoelectric conversion control parameters according to the optical signal strength of the sampling point and the display brightness of the device includes:
  • M is used to indicate the highest brightness value of the sink display device
  • N is used to indicate the lowest brightness value of the sink display device
  • H is used to indicate the maximum light signal intensity
  • L is used to indicate Minimum optical signal strength.
  • the photoelectric conversion control parameter for photoelectric conversion is determined according to the optical signal intensity of the sampling point collected by the collecting device, so that the optical signal intensity of the sampling point in the collected media data is self-determined. Adapt to adjust the conversion curve of different light intensity regions, so that the conversion process can accurately reflect the detailed information before and after the conversion, thus ensuring the media data transfer Change the accuracy of the processing.
  • encoding the electrical signal and the photoelectric conversion control parameters to obtain a code stream includes:
  • the coded bit coded into the code stream after the photoelectric conversion control parameter is encoded includes at least one of the following:
  • writing the coded bits encoded by the photoelectric conversion control parameter into the system layer data unit of the code stream includes: writing the coded bits encoded by the photoelectric conversion control parameter into the file in the system layer data unit.
  • the format data unit is in and/or described in the sub-data unit.
  • the coded bits encoded by the photoelectric conversion control parameters are written into different data units in the code stream, so that the sink end can accurately perform the corresponding electro-optical conversion process after parsing the code stream.
  • the method further includes:
  • the association relationship between the data unit of the coded bit encoded in the code stream and the coded bit in the code stream is established one:
  • associating the system layer data unit with the access unit includes:
  • the access unit is associated with the data unit of the coded bit encoded by the photoelectric conversion control parameter in the code stream, thereby further ensuring that the corresponding stream can be accurately executed after parsing the code stream at the sink end. Electro-optical conversion process.
  • the following example is used to illustrate that the optical signal of the collected sampling point is taken as an example, and the sinking end display device takes the SDR display device as an example, and the source-side collecting device of the embodiment uses the following steps to implement media data processing.
  • the parameters of the SDR display device mainly include the highest brightness value M and the lowest brightness value N that the SDR display device can display.
  • the parameter of the SDR device may be a set value common to the SDR device.
  • the source end can perform capability negotiation with the SDR display device to obtain parameters of the SDR device.
  • the source side calculates the HDR conversion control parameter.
  • the source end obtains the maximum optical signal strength value Hival and the minimum optical signal strength value Loval in the input signal.
  • the source end may obtain a maximum optical signal strength value and a minimum optical signal strength value of each image in the input signal, respectively, and calculate a photoelectric conversion control parameter.
  • the source end may also obtain a maximum optical signal strength value and a minimum optical signal strength value of the plurality of images in the input signal, and calculate the photoelectric conversion control parameter.
  • the source end calculates the photoelectric conversion control parameter according to the following calculation formula:
  • the source end calculates an electrical signal strength value corresponding to the optical signal strength in the input signal.
  • the source side uses the correlation step in the HLG method to calculate the value E of the reference white point normalization of the optical signal strength in the input signal.
  • the source side uses the relevant steps in the HLG method to determine the maximum brightness Emax relative to the reference white point. Among them, Hival is used to represent the maximum optical signal strength H, and Loval is used to represent the minimum optical signal strength L.
  • the following method uses a rational mapping function calculation formula to calculate an electrical signal strength value corresponding to the input optical signal strength:
  • the electrical signal strength value corresponding to the input optical signal is calculated by using the following calculation formula:
  • a and b are preset control parameters, and their values are 0.17883277 and 0.28466892 respectively; r is a reference value of the electrical signal.
  • the source side sets the value of r to 0.5.
  • the source end encodes the electrical signal strength value to obtain an encoded code stream.
  • the foregoing S4 is a step that the source end can select to perform.
  • the source end uses the HLG correlation method to quantize the electrical signal strength value to obtain a binary digitized representation value corresponding to the electrical signal strength value, that is, an HDR video or an image.
  • the source side encodes the HDR video or image using an associated encoder (such as an H.265/HEVC encoder) to obtain an encoded code stream.
  • the source end encodes parameters in the foregoing steps.
  • the photoelectric conversion control parameter p needs to be encoded to obtain photoelectric conversion control parameters.
  • the p-coded bits are encoded, and the coded bits encoded by the photoelectric conversion control parameter p are written into the code stream.
  • the source side writes the coded bits encoded by the photoelectric conversion control parameter p into the coded code stream of the HDR video or image.
  • the source side writes the coded bits encoded by the photoelectric conversion control parameter p into the parameter set data unit in the coded stream of the HDR video or image, and/or writes the coded bits encoded by the photoelectric conversion control parameter p at the source end.
  • the enhanced information data unit is supplemented and appended to the access unit of the HDR video or image.
  • the source end writes the coded bits encoded by the photoelectric conversion control parameter p into the system layer data unit or the file format data unit of the HDR video or the image.
  • the source end may write the coded bits encoded by the photoelectric conversion control parameter p into the description sub-data unit, and associate the description sub-data unit with the corresponding image unit or access unit in the encoded code stream of the HDR video or image. .
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention in essence or the contribution to the related art can be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal device (which may be a cell phone, computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention.
  • FIG. 3 is a flowchart of media data processing according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • the foregoing media data processing method may be, but is not limited to, being applied to a media data processing system, where the system includes: a source-side collection device and a sink-side display device.
  • the above device may be, but is not limited to, a related stream generating device and a receiving and playing device in a video communication application, for example, a mobile phone, a computer, a server, a set top box, a portable mobile terminal, a digital camera, a television broadcasting system device, etc.
  • the code stream generating device (source source collecting device) shown in FIG. 2 can be the mobile phone 202
  • the receiving playing device the sink terminal display device
  • the above is only an example, and is not limited in this embodiment.
  • the sink terminal display device parses the code stream, acquires an electrical signal to be processed, and an electro-optical conversion control parameter; and performs electro-optical conversion on the electrical signal according to the electro-optical conversion control parameter to obtain the converted optical signal.
  • the optical signal strength; further, the display of the display device of the sink terminal is controlled according to the optical signal strength of the optical signal. That is to say, the code stream is parsed at the sink end, and the electro-optical conversion control parameters for the electro-optical conversion process are obtained, and then the electric signal is electro-optically converted according to the electro-optical conversion control parameter to obtain the optical signal intensity of the converted optical signal.
  • the electro-optical conversion control parameter corresponding to the photoelectric conversion control parameter can be used to adaptively adjust the conversion curve of the collected optical signal of the collected media data (such as video or image) in different light intensity regions, effectively maintaining the conversion curve.
  • the detailed information of the media data before and after the photoelectric conversion is to achieve the effect of improving the accuracy of the media data conversion processing, thereby overcoming the problem of low accuracy of media data processing in the related art.
  • the electrical signal is electrically converted according to the electro-optic conversion control parameter, and the optical signal strength of the converted optical signal is obtained by:
  • the electrical signal intensity of the electrical signal is electrically converted by the electrical-to-electrical conversion control parameter to obtain an optical signal intensity of the optical signal corresponding to the electrical signal strength of the electrical signal.
  • the electrical signal strength of the electrical signal is greater than a predetermined threshold.
  • the electrical signal intensity of the electrical signal is electrically converted by using the electro-optical conversion control parameter, and the optical signal strength of the optical signal corresponding to the electrical signal strength of the electrical signal is obtained:
  • E is used to indicate the optical signal strength of the optical signal corresponding to the electrical signal strength of the electrical signal
  • E' is used to represent the electrical signal strength of the electrical signal
  • p is used to represent the electrical light conversion control parameter
  • E max is used to represent the reference point Maximum brightness value
  • a, b represent preset control parameters.
  • the electro-optical conversion function (such as formula (1)) is determined using a rational function curve having a similar characteristic to the log-log curve, wherein the electro-optical conversion function includes the electro-optical conversion control parameter p.
  • the electro-optic conversion is performed by including the electro-optical conversion control parameter p described above to obtain the optical signal intensity of the corresponding optical signal.
  • the optical signal strength of the optical signal obtained herein can accurately reflect the detailed information of the media data in different light intensity regions, thereby achieving the effect of improving the accuracy of the media data conversion processing.
  • the electro-optical conversion function may be a rational function, and a rational function is used to implement the electro-optical conversion mode.
  • the photoelectric conversion may be performed by a photoelectric conversion method provided by a related art (a scheme using an HLG conversion parameter):
  • r is a reference value.
  • the value of r may be set to 0.5 at the source end.
  • acquiring the electro-optic conversion control parameter includes at least one of the following:
  • the photoelectric conversion control parameter of the write code stream can be directly obtained as the electro-optical conversion control parameter, and the optical signal strength of the optical signal carried in the electrical signal and the device display of the sink display device can also be displayed. Brightness determines the electro-optic conversion control parameters.
  • acquiring the electro-optic conversion control parameter carried in the code stream includes at least one of the following:
  • the electro-optical conversion control parameter carried in the supplementary enhancement information data unit covers the electro-optic conversion control parameter carried in the parameter set data unit and/or the electro-optical conversion control parameter carried in the system layer data unit
  • the electro-optic conversion control parameter carried in the parameter set data unit covers the electro-optic conversion control parameter carried in the data unit of the system layer.
  • S1 acquiring an optical signal strength of the optical signal carried in the electrical signal and a device display brightness of the sink terminal display device, including: S12, acquiring the maximum optical signal strength and minimum light carried in the electrical signal. Signal strength; obtaining the highest brightness value and the lowest brightness value of the device at the sink terminal; S2, determining the electro-optic conversion control parameters according to the optical signal strength of the optical signal carried in the electrical signal and the display brightness of the device of the sink display device include:
  • M is used to indicate the highest brightness value of the sink display device
  • N is used to indicate the lowest brightness value of the sink display device
  • H is used to indicate the most
  • L is used to indicate the minimum optical signal strength.
  • the method before controlling display of the sink terminal display device according to the optical signal intensity of the optical signal, the method further includes: S1, performing gamma correction on the optical signal.
  • the code stream is parsed, the electrical signal to be processed and the electro-optic conversion control parameter are obtained; and the electrical signal is electrically converted according to the electro-optical conversion control parameter to obtain the optical signal intensity of the converted optical signal; further, The display of the display device of the sink terminal is controlled according to the optical signal intensity of the optical signal. That is to say, the code stream is parsed at the sink end, and the electro-optical conversion control parameters for the electro-optical conversion process are obtained, and then the electric signal is electro-optically converted according to the electro-optical conversion control parameter to obtain the optical signal intensity of the converted optical signal.
  • the electro-optical conversion control parameter corresponding to the photoelectric conversion control parameter can be used to adaptively adjust the conversion curve of the collected optical signal of the collected media data (such as video or image) in different light intensity regions, effectively maintaining the conversion curve.
  • the detailed information of the media data before and after the photoelectric conversion is to achieve the effect of improving the accuracy of the media data conversion processing, thereby overcoming the problem of low accuracy of media data processing in the related art.
  • the electrical signal is electrically converted according to the electro-optical conversion control parameter, and the optical signal strength of the converted optical signal is obtained by:
  • the electrical signal intensity of the electrical signal is electrically converted by the electrical-to-electrical conversion control parameter to obtain an optical signal intensity of the optical signal corresponding to the electrical signal strength of the electrical signal.
  • the predetermined threshold is r
  • Strength includes:
  • E is used to indicate the optical signal strength of the optical signal corresponding to the electrical signal strength of the electrical signal
  • E' is used to represent the electrical signal strength of the electrical signal
  • p is used to represent the electrical light conversion control parameter
  • E max is used to represent the reference point Maximum brightness value
  • a, b represent preset control parameters.
  • Emax is also a voltage value
  • the value of Emax may be, but not limited to, set to 12.
  • the process of determining the value of Emax here may be, but is not limited to, the same as the process in the related art (the scheme using the HLG conversion parameter), and details are not described herein again in this embodiment.
  • the values of the preset control parameters a and b may be, but are not limited to, 0.17883277 and 0.28466892, respectively.
  • the predetermined threshold is r
  • the electrical signal intensity is electro-optically converted by an electro-optical conversion function including the electro-optical conversion control parameter to obtain an optical signal intensity of the corresponding optical signal.
  • the optical signal strength of the optical signal obtained herein can accurately reflect the detailed information of the media data in different light intensity regions, thereby achieving the effect of improving the accuracy of the media data conversion processing.
  • obtaining electro-optic conversion control parameters includes at least one of the following:
  • acquiring the electro-optic conversion control parameter carried in the code stream includes at least one of the following:
  • the electro-optical conversion control parameter carried in the supplementary enhancement information data unit covers the electro-optical conversion control parameter and/or the system layer data carried in the parameter set data unit.
  • the electro-optic conversion control parameter carried in the unit, and the electro-optical conversion control parameter carried in the parameter set data unit covers the electro-optical conversion control parameter carried in the data unit of the system layer.
  • acquiring the optical signal strength of the optical signal carried in the electrical signal and the device display brightness of the sink display device include: acquiring the maximum optical signal strength and the minimum optical signal strength carried in the electrical signal; The sink terminal displays the highest brightness value and the lowest brightness value of the device. Further, in this embodiment, determining the electro-optic conversion control parameters according to the optical signal strength of the optical signal carried in the electrical signal and the device display brightness of the sink terminal display device includes:
  • M is used to indicate the highest luminance value of the sink display device
  • N is used to indicate the lowest luminance value of the sink display device
  • H is used to indicate the maximum optical signal strength
  • L is used to indicate Minimum optical signal strength.
  • the electro-optic conversion control parameter obtained after parsing the code stream is used in the electro-optical conversion process, and the conversion curve of the different light intensity regions is adaptively adjusted, so that the conversion process can accurately reflect before and after the conversion.
  • the details of the information ensure the accuracy of the media data conversion process.
  • the method before controlling the display of the device on the sink end according to the optical signal strength of the optical signal, the method further includes:
  • the optical signal intensity of the optical signal is gamma corrected, further ensuring the accuracy of the result after the conversion of the media data.
  • the sink terminal display device takes the SDR display device as an example, and the sink terminal display device of the embodiment implements the media data processing method by the following steps:
  • the sink terminal obtains electro-optic conversion control parameters.
  • the sink terminal parses the received code stream (such as a bit stream containing the HDR video or image), and obtains the electro-optic turn Change the control parameter p.
  • the received code stream such as a bit stream containing the HDR video or image
  • the sink layer parses a code stream (such as a bit stream containing an HDR video or an image) in a system layer data unit (a file format data unit or a description sub data unit), and acquires an electro-optical conversion control parameter p.
  • a code stream such as a bit stream containing an HDR video or an image
  • a system layer data unit a file format data unit or a description sub data unit
  • the sink end parses the description sub-data unit, acquires the electro-optical conversion control parameter p, and sets the electro-optic conversion control parameter p to describe the HDR image included in the corresponding image unit or the access unit in the code stream of the HDR video or image. Control parameters used during electro-optic conversion.
  • the sink end parses the parameter set data unit in the parsing code stream (such as a bit stream containing the HDR video or image), acquires the electro-optical conversion control parameter p, and sets the electro-optic conversion control parameter p to an image that references the parameter set in the electro-optic Control parameters used during the conversion process.
  • the parameter set data unit in the parsing code stream such as a bit stream containing the HDR video or image
  • the sink end parsing the code stream (such as the bit stream containing the HDR video or the image), supplementing the enhanced information data unit, acquiring the electro-optical conversion control parameter p, and setting the electro-optic conversion control parameter p to the access unit where the supplementary enhanced information is located
  • the control parameters used in the electro-optical conversion process of the images contained in the image are the code stream (such as the bit stream containing the HDR video or the image), supplementing the enhanced information data unit, acquiring the electro-optical conversion control parameter p, and setting the electro-optic conversion control parameter p to the access unit where the supplementary enhanced information is located.
  • the sink end parses a code stream (such as a bit stream containing an HDR video or an image) in a system layer data unit (a file format data unit or a description sub data unit) (referred to as an electro-optical conversion control parameter p1), and a parsing stream
  • a code stream such as a bit stream containing an HDR video or an image
  • a system layer data unit a file format data unit or a description sub data unit
  • electro-optical conversion control parameter p1 A plurality of electro-optic conversion controls are acquired by a parameter set data unit (referred to as electro-optical conversion control parameter p2) and/or a supplementary enhancement information data unit (referred to as electro-optical conversion control parameter number p3) in a bit stream (such as a bit stream containing HDR video or image)
  • the sink terminal calculates the electro-optical conversion parameter p according to the existing information.
  • the electro-optic conversion control parameter is determined according to the optical signal strength of the optical signal carried in the electrical signal and the device display brightness of the sink terminal display device.
  • the highest brightness value M and the lowest brightness value N that can be displayed by the SDR display device set by the sink terminal are obtained, wherein an optional setting method of the foregoing parameter is: when the sink end includes the SDR display device, the destination is The highest brightness value that can be displayed by the SDR display device is set to M, and the lowest brightness value that can be displayed is set to N; otherwise, the destination end sets the parameters M and N correspondingly to the most display that the universal SDR device can achieve. Brightness value and minimum display brightness value.
  • Another optional setting method of the above parameters is that the sink terminal sets the parameters M and N correspondingly to the most displayed brightness value and the lowest display brightness value that can be achieved by the general SDR device.
  • the sink end determines the maximum optical signal strength value Hival (also referred to as the maximum optical signal strength H) and the minimum light among the sampling points included in the HDR video or image to be displayed carried in the electrical signal.
  • the signal strength value Loval also referred to as the minimum optical signal strength L.
  • the sink end obtains the values of the maximum optical signal strength value Hival and the minimum optical signal strength value Loval by parsing the received code stream (such as a bit stream containing HDR video or image).
  • the sink terminal uses the following calculation formula to calculate the electro-optic conversion control parameters:
  • the sink end obtains the electrical signal strength value of the sample point in the HDR video or image.
  • the sink end maps the sampled value to the electrical signal strength value by using the HLG correlation method on the input HDR video or the sampled value of the sample point in the image.
  • the sink end decodes the received HDR video or image encoded code stream to obtain a sampled value of the sample point.
  • a decoder such as an H.265/HEVC decoder
  • the sink end converts the electrical signal strength value of the sample point in the HDR video or image into a display device optical signal strength value.
  • the sink terminal determines that when the electrical signal strength value E′ is greater than the parameter r, the electrical signal strength value E corresponding to the input optical signal is calculated by using the following calculation formula:
  • a and b are preset control parameters, and their values are 0.17883277 and 0.28466892 respectively; r is a reference value of the electrical signal. Alternatively, the sink terminal sets the value of r to 0.5.
  • the sink end corrects the converted optical signal strength value.
  • the sink end determines the gamma correction parameter by using a method related to the HLG method, and performs gamma correction on the converted optical signal intensity value.
  • the sink end sends the optical signal intensity processed by the gamma correction processing to the display device for display.
  • a media data processing device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 4 is a structural block diagram of a media data processing apparatus according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes:
  • the first obtaining unit 402 is configured to obtain an optical signal of a sampling point obtained by the source collecting device collecting media data
  • the converting unit 404 is configured to perform photoelectric conversion on the optical signal of the sampling point according to the photoelectric conversion control parameter to obtain the converted electrical signal, wherein the photoelectric conversion control parameter is determined according to the optical signal intensity of the optical signal of the sampling point;
  • the encoding unit 406 is configured to encode the electrical signal and the photoelectric conversion control parameter Code stream.
  • the foregoing media data processing apparatus may be, but is not limited to, applied to a media data processing system, where the system includes: a source end collection device and a sink end display device.
  • the above device may be, but is not limited to, a related stream generating device and a receiving and playing device in a video communication application, for example, a mobile phone, a computer, a server, a set top box, a portable mobile terminal, a digital camera, a television broadcasting system device, etc.
  • the code stream generating device (source source collecting device) shown in FIG. 2 can be the mobile phone 202
  • the receiving playing device the sink terminal display device
  • the above is only an example, and is not limited in this embodiment.
  • the source-side collection device acquires the optical signal of the collected sampling point, and photoelectrically converts the optical signal of the sampling point according to the photoelectric conversion control parameter to obtain the converted electrical signal.
  • the photoelectric conversion control parameter is determined according to the optical signal intensity of the optical signal at the sampling point; further, the electrical signal and the photoelectric conversion control parameter are encoded to obtain a code stream.
  • the photoelectric conversion control parameter determined according to the optical signal intensity of the optical signal of the sampling point into the code stream thereby adaptively adjusting the photoelectric conversion control parameter for performing photoelectric conversion in combination with the optical signal intensity
  • the adaptively adjusting the conversion curve of the collected optical signals of the collected media data in different light intensity regions, effectively maintaining the detailed information of the media data before and after the photoelectric conversion, so as to improve the media data conversion processing.
  • the effect of the accuracy further overcomes the problem that the photoelectric conversion of the related art is low in accuracy due to the brightness of the display device and the brightness of the ambient light.
  • acquiring the optical signal of the sampling point obtained by collecting the media data by the source collection device may be, but not limited to, acquiring an optical signal of the optical signal of the sampling point obtained by collecting the media data by the source collection device.
  • Intensity wherein the optical signal strength of the optical signal of the sampling point can be, but is not limited to, represented by a voltage value proportional to the intensity of light collected by the source-side acquisition device.
  • the optical signal strength of the optical signal of the above sampling point may be, but is not limited to, normalized using a reference point (e.g., reference white level).
  • the process of obtaining the above voltage value may be, but is not limited to, related technologies (in The process of obtaining the voltage value E in the scheme using the HLG conversion parameter is the same, and will not be repeated here in this embodiment.
  • the optical signal of the sampling point is photoelectrically converted according to the photoelectric conversion control parameter, and the converted electrical signal includes:
  • the photoelectric conversion control parameter associated with the optical signal intensity of the optical signal of the sampling point is introduced, in the photoelectric conversion process.
  • the brightness range feature of the sampling point is combined, so that when the media data is converted, the conversion curve can be dynamically adaptively adjusted with different brightness range features, thereby achieving an accurate conversion effect on the media data.
  • the optical signal strength of the optical signal of the sampling point is photoelectrically converted by using the photoelectric conversion control parameter, and the electrical signal strength of the electrical signal corresponding to the optical signal strength of the optical signal of the sampling point is obtained:
  • E' is used to indicate the electrical signal strength of the electrical signal corresponding to the optical signal strength of the optical signal of the sampling point
  • E is used to represent the optical signal strength of the optical signal of the sampling point
  • p is used to represent the photoelectric conversion control parameter
  • E Max is used to represent the maximum brightness value of the reference point
  • a and b represent preset control parameters.
  • a photoelectric conversion function (such as formula (1)) is determined using a rational function curve having a similar characteristic to a logarithmic mapping curve, wherein the photoelectric conversion function includes the above photoelectric conversion control Parameter p.
  • the optical signal intensity of the optical signal of the sampling point is photoelectrically converted by the photoelectric conversion function including the photoelectric conversion control parameter p described above to obtain the electrical signal intensity of the corresponding electrical signal.
  • the electrical signal strength of the electrical signal obtained here can be The detailed information of the media data in different light intensity regions is accurately reflected, thereby achieving the effect of improving the accuracy of the media data conversion processing.
  • the photoelectric conversion function may be a rational function, and a rational function is used to implement photoelectric conversion.
  • HLG conversion function When the HLG conversion function is used in the related art, complex logarithmic and exponential operations are performed. It will greatly reduce the overall computational complexity of the conversion process, and at the same time achieve the effect of improving the accuracy of data processing.
  • the photoelectric conversion may be performed by a photoelectric conversion method provided in a related art (a scheme using an HLG conversion parameter):
  • r is a reference value.
  • the value of r may be set to 0.5 at the source end.
  • the method before performing photoelectric conversion on the optical signal of the sampling point according to the photoelectric conversion control parameter, the method further includes: acquiring an optical signal intensity of the optical signal of the sampling point and a device display brightness of the information device of the sink terminal;
  • the photoelectric conversion control parameter is determined according to the optical signal intensity of the optical signal of the sampling point and the display brightness of the device.
  • determining the photoelectric conversion control parameter according to the optical signal intensity of the optical signal of the sampling point and the device display brightness may be, but not limited to, the maximum light among the optical signal strengths of the optical signals according to the collected sampling points.
  • the signal intensity and the minimum optical signal strength, and the highest brightness value and the lowest brightness value displayed by the device of the sink display device determine the photoelectric conversion control parameters.
  • the photoelectric conversion control parameters are calculated in the following manner:
  • M is used to indicate the highest brightness value of the sink display device
  • N is used to indicate the lowest brightness value of the sink display device
  • H is used to indicate the maximum light signal intensity
  • L is used to indicate Minimum optical signal strength.
  • the maximum optical signal strength and the minimum optical signal strength may be However, it is not limited to the maximum optical signal intensity and the minimum optical signal strength in one image of the optical signal intensity of the optical signal at the collected sampling point; and may be, but not limited to, the maximum optical signal strength in the plurality of images. And minimum optical signal strength.
  • the highest brightness value and the lowest brightness value of the device at the sink terminal may be, but are not limited to, the highest brightness value and the lowest brightness value preset by the sink terminal display device, and may be, but not limited to, a letter.
  • the source end interacts with the sink terminal to obtain the highest brightness value and the lowest brightness value reached by the sink terminal display device.
  • encoding the electrical signal and the photoelectric conversion control parameter to obtain the code stream includes:
  • the coded bit coded by the photoelectric conversion control parameter is written into the code stream to include at least one of the following:
  • the above system layer data unit includes: a file format data unit and a description sub data unit.
  • Writing the coded bits encoded by the photoelectric conversion control parameter to the system layer data unit of the code stream may include: writing the coded bits encoded by the photoelectric conversion control parameter into a file format data unit in the system layer data unit and/or describing In the sub data unit.
  • the method further includes: establishing a code after writing the photoelectric conversion control parameter code in the code stream. The association between the data unit of the bit and the access unit in the code stream.
  • association relationship between the data unit of the coded bit that is encoded in the code stream and the coded bit in the code stream is at least one of the following:
  • associating the system layer data unit with the access unit includes at least one of: (1) using a pointer parameter to indicate an access unit associated with the system layer data unit; and (2) using the system The layer data unit is written in the header information of the system layer data unit where the access unit is located.
  • the optical signal of the collected sampling point is obtained, and the optical signal of the sampling point is photoelectrically converted according to the photoelectric conversion control parameter to obtain the converted electrical signal, wherein the photoelectric conversion control parameter is based on the sampling point.
  • the optical signal strength of the optical signal is determined; further, the electrical signal and the photoelectric conversion control parameter are encoded to obtain a code stream.
  • the photoelectric conversion control parameter determined according to the optical signal intensity of the optical signal of the sampling point into the code stream thereby adaptively adjusting the photoelectric conversion control parameter for performing photoelectric conversion in combination with the optical signal intensity
  • the adaptively adjusting the conversion curve of the collected optical signals of the collected media data in different light intensity regions, effectively maintaining the detailed information of the media data before and after the photoelectric conversion, so as to improve the media data conversion processing.
  • the effect of the accuracy further overcomes the problem that the photoelectric conversion of the related art is low in accuracy due to the brightness of the display device and the brightness of the ambient light.
  • the converting unit 404 includes:
  • a judging module configured to determine whether an optical signal strength of the optical signal of the sampling point is greater than a predetermined threshold
  • a conversion module configured to photoelectrically convert the optical signal intensity of the optical signal of the sampling point by using the photoelectric conversion control parameter when the optical signal intensity of the optical signal at the sampling point is greater than a predetermined threshold value, The electrical signal strength of the electrical signal corresponding to the optical signal strength of the optical signal of the sampling point is obtained.
  • the optical signal strength of the optical signal of the sampling point may be, but is not limited to, represented by a voltage value E proportional to the light intensity collected by the source end collecting device. That is to say, the voltage value E is proportional to the intensity of the light received on the sensor on the acquisition device, and is obtained by normalizing the reference point (eg, reference white level).
  • the reference point eg, reference white level
  • the conversion module realizes the optical signal of the optical signal of the sampling point by using the following method: when the value of the optical signal intensity E of the optical signal at the sampling point is greater than 1.
  • Intensity for photoelectric conversion :
  • E' is used to indicate the electrical signal strength of the electrical signal corresponding to the optical signal strength of the optical signal of the sampling point
  • E is used to represent the optical signal strength of the optical signal of the sampling point
  • p is used to represent the photoelectric conversion control parameter
  • E Max is used to represent the maximum brightness value of the reference point
  • a and b represent preset control parameters.
  • Emax is also a voltage value
  • the value of Emax may be, but not limited to, set to 12.
  • the process of determining the value of Emax here may be, but is not limited to, the same as the process in the related art (the scheme using the HLG conversion parameter), and details are not described herein again in this embodiment.
  • the values of the preset control parameters a and b may be, but are not limited to, 0.17883277 and 0.28466892, respectively.
  • the value of the optical signal strength E of the optical signal at the sampling point is within the range [0, 1], but may be, but not limited to, calculated by the following manner. Electrical signal strength value:
  • r is a reference value.
  • the value of r may be set to 0.5 at the source end.
  • photoelectric conversion by the above photoelectric conversion control parameter The function photoelectrically converts the optical signal intensity of the optical signal of the sampling point to obtain the electrical signal strength of the corresponding electrical signal.
  • the electrical signal strength of the electrical signal obtained here can accurately reflect the detailed information of the media data in different light intensity regions, thereby achieving the effect of improving the accuracy of the media data conversion processing.
  • a second obtaining unit configured to acquire an optical signal strength of the optical signal of the sampling point and a display brightness of the device of the sink terminal display device before performing photoelectric conversion on the optical signal of the sampling point according to the photoelectric conversion control parameter;
  • the determining unit is configured to determine the photoelectric conversion control parameter according to the optical signal intensity of the optical signal of the sampling point and the display brightness of the device.
  • the second obtaining unit includes:
  • a first acquisition module configured to acquire a maximum optical signal strength and a minimum optical signal strength among optical signal strengths of optical signals at the collected sampling points;
  • the second obtaining module is configured to obtain a highest brightness value and a lowest brightness value of the display device of the sink terminal.
  • the determining unit determines the photoelectric conversion control parameter according to the optical signal strength of the sampling point and the device display brightness by:
  • M is used to indicate the highest brightness value of the sink display device
  • N is used to indicate the lowest brightness value of the sink display device
  • H is used to indicate the maximum light signal intensity
  • L is used to indicate Minimum optical signal strength.
  • the photoelectric conversion control parameter for photoelectric conversion is determined according to the optical signal intensity of the sampling point collected by the collecting device, so that the optical signal intensity of the sampling point in the collected media data is self-determined. Adapt to adjust the conversion curve of different light intensity regions, so that the conversion process can accurately reflect the detailed information before and after the conversion, thereby ensuring the accuracy of the media data conversion processing.
  • the coding unit includes:
  • the first encoding module is configured to encode the quantized result obtained by quantizing the electrical signal strength of the electrical signal
  • the writing module is configured to write the coded bits encoded by the quantization result and the photoelectric conversion control parameter into the code stream.
  • the writing module implements writing the coded bit encoded by the photoelectric conversion control parameter into the code stream by using at least one of the following manners:
  • the writing module implements the system layer data unit that writes the coded bits encoded by the photoelectric conversion control parameter into the code stream by writing the coded bits encoded by the photoelectric conversion control parameter into the system.
  • the file format data unit in the layer data unit is in and/or described in the sub data unit.
  • the coded bits encoded by the photoelectric conversion control parameters are written into different data units in the code stream, so that the sink end can accurately perform the corresponding electro-optical conversion process after parsing the code stream.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • module may implement a combination of software and/or hardware of a predetermined function.
  • apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 5 is a structural block diagram of a media data processing apparatus according to an embodiment of the present invention. As shown in FIG. 5, the apparatus includes:
  • the obtaining unit 502 is configured to parse the code stream, and obtain an electrical signal to be processed and an electro-optical conversion control parameter;
  • the converting unit 504 is configured to perform electro-optical conversion on the electrical signal according to the electro-optic conversion control parameter to obtain an optical signal intensity of the converted optical signal;
  • the display unit 506 is arranged to control the display of the sink terminal display device according to the optical signal strength of the optical signal.
  • the foregoing media data processing apparatus may be, but is not limited to, applied to a media data processing system, where the system includes: a source end collection device and a sink end display device.
  • the above device may be, but is not limited to, a related stream generating device and a receiving and playing device in a video communication application, for example, a mobile phone, a computer, a server, a set top box, a portable mobile terminal, a digital camera, a television broadcasting system device, etc.
  • the code stream generating device (source source collecting device) shown in FIG. 2 can be the mobile phone 202
  • the receiving playing device the sink terminal display device
  • the above is only an example, and is not limited in this embodiment.
  • the sink terminal display device parses the code stream, acquires an electrical signal to be processed, and an electro-optical conversion control parameter; and performs electro-optical conversion on the electrical signal according to the electro-optical conversion control parameter to obtain the converted optical signal.
  • the optical signal strength; further, the display of the display device of the sink terminal is controlled according to the optical signal strength of the optical signal. That is to say, the code stream is parsed at the sink end, and the electro-optical conversion control parameters for the electro-optical conversion process are obtained, and then the electric signal is electro-optically converted according to the electro-optical conversion control parameter to obtain the optical signal intensity of the converted optical signal.
  • adaptive adjustment acquisition can be achieved by using electro-optical conversion control parameters corresponding to photoelectric conversion control parameters
  • the conversion curve of the optical signal of the sampled data in the different light intensity regions of the obtained media data effectively maintains the detailed information of the media data before and after the photoelectric conversion, so as to achieve the effect of improving the accuracy of the media data conversion processing.
  • the conversion curve of the optical signal of the sampled data in the different light intensity regions of the obtained media data effectively maintains the detailed information of the media data before and after the photoelectric conversion, so as to achieve the effect of improving the accuracy of the media data conversion processing.
  • the converting unit includes:
  • a judging module configured to determine whether an electrical signal strength of the electrical signal is greater than a predetermined threshold
  • the conversion module is configured to perform electro-optical conversion on the electrical signal strength of the electrical signal by using the electro-optical conversion control parameter when the electrical signal strength of the electrical signal is greater than a predetermined threshold, to obtain an optical signal light corresponding to the electrical signal strength of the electrical signal. Signal strength.
  • the electro-optical conversion control parameter when the electrical signal strength of the electrical signal is greater than a predetermined threshold, the electro-optical conversion control parameter is introduced, so that when the media data is converted, the conversion curve can be dynamic with different brightness range characteristics. Adaptive adjustment to achieve accurate conversion of media data.
  • the conversion module performs electro-optical conversion on the electrical signal strength of the electrical signal by using the electro-optical conversion control parameter to obtain an optical signal strength of the optical signal corresponding to the electrical signal strength of the electrical signal:
  • E is used to indicate the optical signal strength of the optical signal corresponding to the electrical signal strength of the electrical signal
  • E' is used to represent the electrical signal strength of the electrical signal
  • p is used to represent the electrical light conversion control parameter
  • E max is used to represent the reference point Maximum brightness value
  • a, b represent preset control parameters.
  • the electro-optical conversion function (such as formula (1)) is determined using a rational function curve having a similar characteristic to the log-log curve, wherein the electro-optical conversion function includes the electro-optical conversion control parameter p.
  • the electro-optic conversion is performed by including the electro-optical conversion control parameter p described above to obtain the optical signal intensity of the corresponding optical signal.
  • the optical signal strength of the optical signal obtained herein can accurately reflect the detailed information of the media data in different light intensity regions, thereby achieving the effect of improving the accuracy of the media data conversion processing.
  • the electro-optical conversion function may be a rational function, and a rational function is used to implement the electro-optical conversion method.
  • the photoelectric conversion may be performed by a photoelectric conversion method provided by a related art (a scheme using an HLG conversion parameter):
  • r is a reference value.
  • the value of r may be set to 0.5 at the source end.
  • the obtaining unit includes at least one of the following:
  • the first obtaining module is configured to obtain an electro-optical conversion control parameter carried in the code stream
  • a second acquiring module configured to acquire an optical signal strength of the optical signal carried in the electrical signal and a display brightness of the device of the sink terminal display device; the determining module is configured to be based on the optical signal strength of the optical signal carried in the electrical signal and The device display brightness of the device on the sink side determines the electro-optic conversion control parameter.
  • the photoelectric conversion control parameter of the write code stream can be directly obtained as the electro-optical conversion control parameter, and the optical signal strength of the optical signal carried in the electrical signal and the device display of the sink display device can also be displayed. Brightness determines the electro-optic conversion control parameters.
  • the first obtaining module includes at least one of the following:
  • the first obtaining submodule is configured to obtain an electro-optic conversion control parameter carried in the data unit of the parameter set in the code stream;
  • a second acquisition sub-module configured to acquire an electro-optical conversion control parameter carried in the supplementary enhancement information data unit in the code stream
  • the third obtaining submodule is configured to obtain an electro-optic conversion control parameter carried in the system layer data unit in the code stream.
  • the electro-optical conversion control parameter carried in the supplementary enhancement information data unit covers the electro-optic conversion control parameter carried in the parameter set data unit and/or the electro-optical conversion control parameter carried in the system layer data unit
  • the electro-optic conversion control parameter carried in the parameter set data unit covers the electro-optic conversion control parameter carried in the data unit of the system layer.
  • the first acquiring module includes: (1) a first acquiring submodule configured to obtain a maximum optical signal strength and a minimum optical signal strength carried in the electrical signal; (2) a second Obtaining a sub-module, configured to obtain a highest brightness value and a lowest brightness value of the display device of the sink terminal;
  • the determining module determines the electro-optic conversion control parameters according to the optical signal strength of the optical signal carried in the electrical signal and the display brightness of the device of the sink terminal display device by:
  • M is used to indicate the highest luminance value of the sink display device
  • N is used to indicate the lowest luminance value of the sink display device
  • H is used to indicate the maximum optical signal strength
  • L is used to indicate Minimum optical signal strength.
  • the method before controlling display of the sink terminal display device according to the optical signal intensity of the optical signal, the method further includes: S1, performing gamma correction on the optical signal.
  • the code stream is parsed, the electrical signal to be processed and the electro-optic conversion control parameter are obtained; and the electrical signal is electrically converted according to the electro-optical conversion control parameter to obtain the optical signal intensity of the converted optical signal; further, The display of the display device of the sink terminal is controlled according to the optical signal intensity of the optical signal. That is to say, the code stream is parsed at the sink end, and the electro-optical conversion control parameters for the electro-optical conversion process are obtained, and then the electric signal is electro-optically converted according to the electro-optical conversion control parameter to obtain the optical signal intensity of the converted optical signal.
  • the electro-optical conversion control parameter corresponding to the photoelectric conversion control parameter can be used to adaptively adjust the conversion curve of the collected optical signal of the collected media data (such as video or image) in different light intensity regions, effectively maintaining the conversion curve.
  • the detailed information of the media data before and after the photoelectric conversion is to achieve the effect of improving the accuracy of the media data conversion processing, thereby overcoming the problem of low accuracy of media data processing in the related art.
  • the conversion unit includes:
  • a judging module configured to determine whether an electrical signal strength of the electrical signal is greater than a predetermined threshold
  • the conversion module is configured to perform electro-optical conversion on the electrical signal strength of the electrical signal by using the electro-optical conversion control parameter when the electrical signal strength of the electrical signal is greater than a predetermined threshold, to obtain an optical signal light corresponding to the electrical signal strength of the electrical signal. Signal strength.
  • the predetermined threshold is r
  • Strength includes:
  • E is used to indicate the optical signal strength of the optical signal corresponding to the electrical signal strength of the electrical signal
  • E' is used to represent the electrical signal strength of the electrical signal
  • p is used to represent the electrical light conversion control parameter
  • E max is used to represent the reference point Maximum brightness value
  • a, b represent preset control parameters.
  • Emax is also a voltage value
  • the value of Emax may be, but not limited to, set to 12.
  • the process of determining the value of Emax here may be, but is not limited to, the same as the process in the related art (the scheme using the HLG conversion parameter), and details are not described herein again in this embodiment.
  • the values of the preset control parameters a and b may be, but are not limited to, 0.17883277 and 0.28466892, respectively.
  • the predetermined threshold is r
  • the electrical signal intensity is electro-optically converted by an electro-optical conversion function including the electro-optical conversion control parameter to obtain an optical signal intensity of the corresponding optical signal.
  • the optical signal strength of the optical signal obtained herein can accurately reflect the detailed information of the media data in different light intensity regions, thereby achieving the effect of improving the accuracy of the media data conversion processing.
  • the acquisition unit includes at least one of the following:
  • the first obtaining module is configured to obtain an electro-optical conversion control parameter carried in the code stream
  • the second acquiring module is configured to obtain an optical signal strength of the optical signal carried in the electrical signal and a device display brightness of the display device of the sink terminal; and the determining module is configured to set the optical signal strength and the destination according to the optical signal carried in the electrical signal.
  • the device display brightness of the end display device determines the electro-optical conversion control parameters.
  • the first obtaining module includes at least one of the following:
  • the first obtaining submodule is configured to obtain an electro-optic conversion control parameter carried in the data unit of the parameter set in the code stream;
  • a second acquisition sub-module configured to obtain an electro-optical conversion control parameter carried in the supplementary enhancement information data unit in the code stream
  • the third obtaining submodule is configured to obtain an electro-optic conversion control parameter carried in the system layer data unit in the code stream.
  • the electro-optical conversion control parameter carried in the supplementary enhancement information data unit covers the electro-optical conversion control parameter carried in the parameter set data unit and/or the electro-optical conversion control parameter carried in the system layer data unit, and the parameter The electro-optical conversion control parameters carried in the data unit cover the electro-optic conversion control parameters carried in the data unit of the system layer.
  • the first acquiring module includes: (1) a first acquiring submodule configured to obtain a maximum optical signal strength and a minimum optical signal strength carried in the electrical signal; (2) a second Obtaining a sub-module, configured to obtain a highest brightness value and a lowest brightness value of the display device of the sink terminal;
  • the determining module determines, according to the optical signal strength of the optical signal carried in the electrical signal and the display brightness of the device of the sink display device, the determining the electrical and optical conversion control parameters by:
  • M is used to indicate the highest luminance value of the sink display device
  • N is used to indicate the lowest luminance value of the sink display device
  • H is used to indicate the maximum optical signal strength
  • L is used to indicate Minimum optical signal strength.
  • the electro-optic conversion control parameter obtained after parsing the code stream is used in the electro-optical conversion process, and the conversion curve of the different light intensity regions is adaptively adjusted, so that the conversion process can accurately reflect before and after the conversion.
  • the details of the information ensure the accuracy of the media data conversion process.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present invention also provide a media data processing system, wherein the system includes:
  • the source-side acquisition device is configured to obtain an optical signal of a sampling point obtained by collecting the media data by the source-side acquisition device; and photoelectrically converting the optical signal of the sampling point according to the photoelectric conversion control parameter to obtain the converted electrical signal, wherein
  • the photoelectric conversion control parameter is determined according to the optical signal intensity of the optical signal at the sampling point; the electrical signal and the photoelectric conversion control parameter are encoded to obtain a code stream;
  • a sink terminal display device configured to parse the code stream, obtain an electrical signal to be processed and an electro-optical conversion control parameter; perform electro-optical conversion on the electrical signal according to the electro-optic conversion control parameter, to obtain an optical signal intensity of the converted optical signal; The optical signal strength of the signal controls the display of the device at the sink end.
  • the foregoing system may include, but is not limited to, a source-side collection device and/or a sink-side display device.
  • the above device may be, but is not limited to, a related stream generating device and a receiving and playing device in a video communication application, for example, a mobile phone, a computer, a server, a set top box, a portable mobile terminal, a digital camera, a television broadcasting system device, etc. .
  • the code stream generating device (source source collecting device) shown in FIG. 2 can be the mobile phone 202
  • the receiving playing device the sink terminal display device
  • the above is only an example, and is not limited in this embodiment.
  • the source-side collection device may, but is not limited to, use the implementation method in the foregoing Embodiment 1, to process the input HDR video or image to generate an HDR video or an image corresponding to the sampling point in the image. Signal strength value.
  • the source-side acquisition device may further convert the electrical signal strength value to a binary digital signal and encode the digital.
  • the source collection device may further comprise an acquisition device for the HDR video or image.
  • the sink-side display device may, but is not limited to, use the implementation method of the foregoing embodiment 2 to process the received HDR video or image stream to convert the HDR video or image into an optical signal strength value for display by the display module.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • E' is used to indicate the electrical signal strength of the electrical signal corresponding to the optical signal strength of the optical signal of the sampling point
  • E is used to represent the optical signal strength of the optical signal of the sampling point
  • p is used to represent the photoelectric conversion control parameter
  • E Max is used to represent the maximum brightness value of the reference point
  • a and b represent preset control parameters.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the optical signal of the sampling point obtained by collecting the media data is acquired, and the optical signal of the sampling point is photoelectrically converted according to the photoelectric conversion control parameter to obtain the converted electrical signal, wherein the photoelectric conversion control parameter is sampled according to the sampling.
  • the optical signal strength of the optical signal of the point is determined; further, the electrical signal and the photoelectric conversion control parameter are encoded to obtain a code stream.
  • the photoelectric conversion control parameter determined according to the optical signal intensity of the optical signal of the sampling point into the code stream thereby adaptively adjusting the photoelectric conversion control parameter for performing photoelectric conversion in combination with the optical signal intensity
  • Reach adaptive adjustment of captured media data such as video or graphics
  • the conversion curve of the optical signal at the sampling point in different light intensity regions effectively maintains the detailed information of the media data before and after the photoelectric conversion, so as to achieve the effect of improving the accuracy of the media data conversion processing, thereby overcoming the photoelectric conversion in the related art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

本发明实施例提供了一种媒体数据处理方法和装置及系统。其中,该方法包括:获取信源端采集设备采集媒体数据得到的采样点的光信号;根据光电转换控制参数对采样点的光信号进行光电转换,得到转换后的电信号,其中,光电转换控制参数根据采样点的光信号的光信号强度确定;对电信号及光电转换控制参数进行编码得到码流。通过本发明实施例,解决了对媒体数据处理的准确性较低的问题,进而达到了提高对媒体数据处理的准确性的效果。

Description

媒体数据处理方法和装置及系统 技术领域
本发明实施例涉及通信领域,具体而言,涉及一种媒体数据处理方法和装置及系统。
背景技术
传统的标准动态范围(Standard Dynamic Range,SDR)媒体数据(如视频或图像)只能反映有限的亮度范围,高动态范围(High Dynamic Range,HDR媒体数据(如视频或图像)则能够反映更大的亮度范围,大幅度拓展对比度和色彩,能够更逼真的显示真实场景。
其中,HDR图像和视频是由浮点型数据保存的,存储和传输HDR视频需要更多的内存和带宽,因此需要发展一种高效的HDR视频编码技术,现存的HDR视频编码技术主要分为两类,向后兼容的视频编码技术和基于人眼感知的视频编码技术。向后兼容的视频编码技术通过将HDR图像映射到SDR,使得其具有向后兼容基于传统的支持比特深度为8比特的设备,基于感知的编码方法主要利用人眼视觉模型来准确地描述HDR图像中人眼的遮掩效应,移除对人眼感知影响较小的信息,从而节省编码的比特。基于上述两种方式,目前提出了一种基于人眼感知并且具备向后兼容能力的HDR视频编码方案,使用混合日志伽马(Hybrid Log Gamma,HLG)转换函数完成HDR的光电转换操作。
然而,使用HLG转换函数进行转换的方法仅依据了显示设备的最高发光亮度和环境光亮度,使得在显示媒体数据(如HDR视频或图像)时存在显示过亮的问题,也就是说,采用相关的方法处理媒体数据时,存在处理不够准确的问题。同时,使用HLG转换函数时所涉及的对数运算, 计算过程较为复杂,这也大大增加了信宿端处理媒体数据时的复杂度。
发明内容
本发明实施例提供了一种媒体数据处理方法和装置及系统,以至少解决相关技术中对媒体数据处理的准确性较低的问题。
根据本发明的一个实施例,提供了一种媒体数据处理方法,包括:获取信源端采集设备采集媒体数据得到的采样点的光信号;根据光电转换控制参数对上述采样点的上述光信号进行光电转换,得到转换后的电信号,其中,上述光电转换控制参数根据上述采样点的上述光信号的光信号强度确定;对上述电信号及上述光电转换控制参数进行编码得到码流。
可选地,上述根据光电转换控制参数对上述采样点的上述光信号进行光电转换,得到转换后的电信号包括:判断上述采样点的上述光信号的上述光信号强度是否大于预定阈值;在上述采样点的上述光信号的上述光信号强度大于上述预定阈值时,利用上述光电转换控制参数对上述采样点的上述光信号的上述光信号强度进行光电转换,得到与上述采样点的上述光信号的上述光信号强度对应的上述电信号的电信号强度。
可选地,上述利用上述光电转换控制参数对上述采样点的上述光信号的上述光信号强度进行光电转换,得到与上述采样点的上述光信号的上述光信号强度对应的上述电信号的电信号强度包括:
Figure PCTCN2017076335-appb-000001
其中,上述E'用于表示与上述采样点的上述光信号的上述光信号强度对应的上述电信号的电信号强度,上述E用于表示上述采样点的上述光信号的上述光信号强度,上述p用于表示上述光电转换控制参数,上述Emax用于表示参考点的最大亮度值;上述a、b表示预设控制参数。
可选地,在上述根据光电转换控制参数对上述采样点的上述光信号进行光电转换之前,还包括:获取上述采样点的上述光信号的上述光信号强度及信宿端显示设备的设备显示亮度;根据上述采样点的上述光信号的上述光信号强度和上述设备显示亮度确定上述光电转换控制参数。
可选地,上述获取上述采样点的上述光信号的上述光信号强度及信宿端显示设备的设备显示亮度包括:获取在采集到的上述采样点的光信号的光信号强度中的最大光信号强度及最小光信号强度;获取上述信宿端显示设备的最高亮度值及最低亮度值。
可选地,上述根据上述采样点的上述光信号强度和上述设备显示亮度确定上述光电转换控制参数包括:
Figure PCTCN2017076335-appb-000002
其中,上述p用于表示上述光电转换控制参数,上述M用于表示上述信宿端显示设备的上述最高亮度值,上述N用于表示上述信宿端显示设备的上述最低亮度值,上述H用于表示上述最大光信号强度,上述L用于表示上述最小光信号强度。
可选地,上述获取在采集到的上述采样点的光信号的光信号强度中的最大光信号强度及最小光信号强度包括以下至少之一:在采集到的上述采样点的光信号的光信号强度中,获取在一个图像中的最大光信号强度及最小光信号强度;在采集到的上述采样点的光信号的光信号强度中,获取在多个图像中的最大光信号强度及最小光信号强度。
可选地,上述获取上述信宿端显示设备的最高亮度值及最低亮度值包括以下至少之一:获取上述信宿端显示设备预设的最高亮度值及最低亮度值;通过与上述信宿端进行交互,以获取上述信宿端显示设备所达到的最高亮度值及最低亮度值。
可选地,对上述电信号及上述光电转换控制参数进行编码得到码流包括:对上述电信号的上述电信号强度进行量化处理后得到的量化结果进行编码;对上述光电转换控制参数进行编码;将上述量化结果及上述光电转换控制参数编码后的编码比特写入上述码流。
可选地,将上述光电转换控制参数编码后的编码比特写入上述码流包括以下至少之一:将上述光电转换控制参数编码后的编码比特写入上述码流的参数集数据单元;将上述光电转换控制参数编码后的编码比特写入上述码流的补充增强信息数据单元;将上述光电转换控制参数编码后的编码比特写入上述码流的系统层数据单元。
可选地,上述将上述光电转换控制参数编码后的编码比特写入上述码流的系统层数据单元包括:将上述光电转换控制参数编码后的编码比特写入上述系统层数据单元中的文件格式数据单元中和/或描述子数据单元中。
可选地,在将上述光电转换控制参数编码后的编码比特写入上述码流之后,还包括:建立在上述码流中写入上述光电转换控制参数编码后的编码比特的数据单元与上述码流中接入单元之间的关联关系。
可选地,上述建立在上述码流中写入上述光电转换控制参数编码后的编码比特的数据单元与上述码流中接入单元之间的关联关系包括以下至少之一:在上述接入单元中引用上述参数集数据单元;将上述补充增强信息数据单元写入上述接入单元;将上述系统层数据单元与上述接入单元进行关联。
可选地,上述将上述系统层数据单元与上述接入单元进行关联包括:使用指针参数指示与上述系统层数据单元关联的上述接入单元;或者,将上述系统层数据单元写入上述接入单元所在系统层数据单元的头信息中。
根据本发明的另一个实施例,提供了一种媒体数据处理方法,包括:解析码流,获取待处理的电信号及电光转换控制参数;根据上述电光转换控制参数对上述电信号进行电光转换,得到转换后的光信号的光信号强度;根据上述光信号的上述光信号强度控制信宿端显示设备的显示。
可选地,上述根据上述电光转换控制参数对上述电信号进行电光转换,得到转换后的光信号的光信号强度包括:判断上述电信号的电信号强度是否大于预定阈值;在上述电信号的上述电信号强度大于上述预定阈值时,利用上述电光转换控制参数对上述电信号的上述电信号强度进行电光转换,得到与上述电信号的上述电信号强度对应的上述光信号的上述光信号强度。
可选地,上述利用上述电光转换控制参数对上述电信号的上述电信号强度进行电光转换,得到与上述电信号的上述电信号强度对应的上述光信号的上述光信号强度包括:
Figure PCTCN2017076335-appb-000003
其中,上述E 用于表示与上述电信号的上述电信号强度对应的上述光信号的上述光信号强度,上述E'用于表示上述电信号的上述电信号强度,上述p用于表示上述电光转换控制参数,上述Emax用于表示参考点的最大亮度值;上述a、b表示预设控制参数。
可选地,获取上述电光转换控制参数包括以下至少之一:获取上述码流中携带的上述电光转换控制参数;获取上述电信号中携带的光信号的光信号强度及上述信宿端显示设备的设备显示亮度;根据上述电信号中携带的上述光信号的上述光信号强度及上述信宿端显示设备的设备显示亮度确定上述电光转换控制参数。
可选地,上述获取上述码流中携带的上述电光转换控制参数包括以下至少之一:获取上述码流中参数集数据单元中携带的上述电光转换控制参数;获取上述码流中补充增强信息数据单元中携带的上述电光转换控制参数;获取上述码流中系统层数据单元中携带的上述电光转换控制参数。
可选地,上述补充增强信息数据单元中携带的上述电光转换控制参数覆盖上述参数集数据单元中携带的上述电光转换控制参数和/或上述系统层数据单元中携带的上述电光转换控制参数,上述参数集数据单元中携带的上述电光转换控制参数覆盖上述系统层数据单元中携带的上述电光转换控制参数。
可选地,上述获取上述电信号中携带的光信号的光信号强度及上述信宿端显示设备的设备显示亮度包括:获取上述电信号中携带的最大光信号强度及最小光信号强度;获取上述信宿端显示设备的最高亮度值及最低亮度值;上述根据上述电信号中携带的上述光信号的上述光信号强度及上述信宿端显示设备的设备显示亮度确定上述电光转换控制参数包括:
Figure PCTCN2017076335-appb-000004
其中,上述p用于表示上述电光转换控制参数,上述M用于表示上述信宿端显示设备的上述最高亮度值,上述N用于表示上述信宿端显示设备的上述最低亮度值,上述H用于表示上述最大光信号强度,上述L用于表示上述最小光信号强度。
可选地,在上述根据上述光信号的上述光信号强度控制信宿端显示设备的显示之前,还包括:对上述光信号的上述光信号强度进行伽马校正。
根据本发明的又一个实施例,提供了一种媒体数据处理装置,包括:第一获取单元,设置为获取信源端采集设备采集媒体数据得到的采样点的光信号;转换单元,设置为根据光电转换控制参数对上述采样点的上述光信号进行光电转换,得到转换后的电信号,其中,上述光电转换控制参数根据上述采样点的上述光信号的光信号强度确定;编码单元,设置为对上述电信号及上述光电转换控制参数进行编码得到码流。
可选地,上述转换单元包括:判断模块,设置为判断上述采样点的上述光信号的上述光信号强度是否大于预定阈值;转换模块,设置为在上述采样点的上述光信号的上述光信号强度大于上述预定阈值时,利用上述光电转换控制参数对上述采样点的上述光信号的上述光信号强度进行光电转换,得到与上述采样点的上述光信号的上述光信号强度对应的上述电信号的电信号强度。
可选地,上述转换模块通过以下方式实现对上述采样点的上述光信号的上述光信号强度进行光电转换:
Figure PCTCN2017076335-appb-000005
其中,上述E'用于表示与上述采样点的上述光信号的上述光信号强度对应的上述电信号的电信号强度,上述E用于表示上述采样点的上述光信号的上述光信号强度,上述p用于表示上述光电转换控制参数,上述Emax用于表示参考点的最大亮度值;上述a、b表示预设控制参数。
可选地,还包括:第二获取单元,设置为在上述根据光电转换控制参数对上述采样点的上述光信号进行光电转换之前,获取上述采样点的上述光信号的上述光信号强度及信宿端显示设备的设备显示亮度;确定单元,设置为根据上述采样点的上述光信号的上述光信号强度和上述设备显示亮度确定上述光电转换控制参数。
可选地,上述第二获取单元包括:第一获取模块,设置为获取在采集到的上述采样点的光信号的光信号强度中的最大光信号强度及最小光信号强度;第二获取模块,设置为获取上述信宿端显示设备的最高亮度值及最低亮度值。
可选地,上述确定单元通过以下方式实现根据上述采样点的上述光信号强度和上述设备显示亮度确定上述光电转换控制参数:
Figure PCTCN2017076335-appb-000006
其中,上述p用于表示上述光电转换控制参数,上述M用于表示上述信宿端显示设备的上述最高亮度值,上述N用于表示上述信宿端显示设备的上述最低亮度值,上述H用于表示上述最大光信号强度,上述L用于表示上述最小光信号强度。
可选地,上述编码单元包括:第一编码模块,设置为对上述电信号的上述电信号强度进行量化处理后得到的量化结果进行编码;第二编码模块,设置为对上述光电转换控制参数进行编码;写入模块,设置为将上述量化结果及上述光电转换控制参数编码后的编码比特写入上述码流。
可选地,上述写入模块通过以下至少一种方式实现将上述光电转换控制参数编码后的编码比特写入上述码流:将上述光电转换控制参数编码后的编码比特写入上述码流的参数集数据单元;将上述光电转换控制参数编码后的编码比特写入上述码流的补充增强信息数据单元;将上述光电转换控制参数编码后的编码比特写入上述码流的系统层数据单元。
可选地,上述写入模块通过以下方式实现将上述光电转换控制参数编码后的编码比特写入上述码流的上述系统层数据单元:将上述光电转换控制参数编码后的编码比特写入上述系统层数据单元中的文件格式数据单元中和/或描述子数据单元中。
根据本发明的又一个实施例,提供了一种媒体数据处理装置,包括:获取单元,设置为解析码流,获取待处理的电信号及电光转换控制参数;转换单元,设置为根据上述电光转换控制参数对上述电信号进行电光转换,得到转换后的光信号的光信号强度;显示单元,设置为根据上述光信号的上述光信号强度控制信宿端显示设备的显示。
可选地,上述转换单元包括:判断模块,设置为判断上述电信号的电信号强度是否大于预定阈值;转换模块,设置为在上述电信号的上述电信号强度大于上述预定阈值时,利用上述电光转换控制参数对上述电信号的 上述电信号强度进行电光转换,得到与上述电信号的上述电信号强度对应的上述光信号的上述光信号强度。
可选地,上述转换模块通过以下方式实现利用上述电光转换控制参数对上述电信号的上述电信号强度进行电光转换,得到与上述电信号的上述电信号强度对应的上述光信号的上述光信号强度:
Figure PCTCN2017076335-appb-000007
其中,上述E用于表示与上述电信号的上述电信号强度对应的上述光信号的上述光信号强度,上述E'用于表示上述电信号的上述电信号强度,上述p用于表示上述电光转换控制参数,上述Emax用于表示参考点的最大亮度值;上述a、b表示预设控制参数。
可选地,上述获取单元包括以下至少之一:第一获取模块,设置为获取上述码流中携带的上述电光转换控制参数;第二获取模块,设置为获取上述电信号中携带的光信号的光信号强度及上述信宿端显示设备的设备显示亮度;确定模块,设置为根据上述电信号中携带的上述光信号的上述光信号强度及上述信宿端显示设备的设备显示亮度确定上述电光转换控制参数。
可选地,上述第一获取模块包括以下至少之一:第一获取子模块,设置为获取上述码流中参数集数据单元中携带的上述电光转换控制参数;第二获取子模块,设置为获取上述码流中补充增强信息数据单元中携带的上述电光转换控制参数;第三获取子模块,设置为获取上述码流中系统层数据单元中携带的上述电光转换控制参数。
可选地,上述补充增强信息数据单元中携带的上述电光转换控制参数覆盖上述参数集数据单元中携带的上述电光转换控制参数和/或上述系统层数据单元中携带的上述电光转换控制参数,上述参数集数据单元中携带的上述电光转换控制参数覆盖上述系统层数据单元中携带的上述电光转换控制参数。
可选地,上述第二获取模块包括:第一获取子模块,设置为获取上述电信号中携带的最大光信号强度及最小光信号强度;第二获取子模块,设置为获取上述信宿端显示设备的最高亮度值及最低亮度值;上述确定模块 通过以下方式实现根据上述电信号中携带的上述光信号的上述光信号强度及上述信宿端显示设备的设备显示亮度确定上述电光转换控制参数包括:
Figure PCTCN2017076335-appb-000008
其中,上述p用于表示上述电光转换控制参数,上述M用于表示上述信宿端显示设备的上述最高亮度值,上述N用于表示上述信宿端显示设备的上述最低亮度值,上述H用于表示上述最大光信号强度,上述L用于表示上述最小光信号强度。
根据本发明的又一个实施例,还提供了一种媒体数据处理系统,包括:信源端采集设备,设置为获取信源端采集设备采集媒体数据得到的采样点的光信号;根据光电转换控制参数对上述采样点的上述光信号进行光电转换,得到转换后的电信号,其中,上述光电转换控制参数根据上述采样点的上述光信号的光信号强度确定;对上述电信号及上述光电转换控制参数进行编码得到码流;信宿端显示设备,设置为解析码流,获取待处理的电信号及电光转换控制参数;根据上述电光转换控制参数对上述电信号进行电光转换,得到转换后的光信号的光信号强度;根据上述光信号的上述光信号强度控制信宿端显示设备的显示。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:获取信源端采集设备采集媒体数据得到的采样点的光信号;根据光电转换控制参数对上述采样点的上述光信号进行光电转换,得到转换后的电信号,其中,上述光电转换控制参数根据上述采样点的上述光信号的光信号强度确定;对上述电信号及上述光电转换控制参数进行编码得到码流。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:判断上述采样点的上述光信号的上述光信号强度是否大于预定阈值;在上述采样点的上述光信号的上述光信号强度大于上述预定阈值时,利用上述光电转换控制参数对上述采样点的上述光信号的上述光信号强度进行光电转换,得到与上述采样点的上述光信号的上述光信号强度对应的上述电信号的电信号强度。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
Figure PCTCN2017076335-appb-000009
其中,上述E'用于表示与上述采样点的上述光信号的上述光信号强度对应的上述电信号的电信号强度,上述E用于表示上述采样点的上述光信号的上述光信号强度,上述p用于表示上述光电转换控制参数,上述Emax用于表示参考点的最大亮度值;上述a、b表示预设控制参数。
通过本发明实施例,获取采集媒体数据得到的采样点的光信号,并根据光电转换控制参数对采样点的光信号进行光电转换,得到转换后的电信号,其中,光电转换控制参数根据采样点的光信号的光信号强度确定;进一步,对上述电信号及光电转换控制参数进行编码得到码流。也就是说,通过将根据采样点的光信号的光信号强度确定的光电转换控制参数进行编码写入码流,从而实现结合光信号强度来自适应调整用于进行光电转换的光电转换控制参数,以达到自适应调整采集到的媒体数据(如视频或图像)在不同光强度区域中采样点的光信号的转换曲线,有效地保持了光电转换前后媒体数据的细节信息,以实现提高媒体数据转化处理的准确性的效果,进而克服相关技术中光电转换仅依据显示设备的亮度及环境光亮度所导致的媒体数据处理准确性较低的问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种可选的媒体数据处理方法的流程图;
图2是根据本发明实施例的一种可选的媒体数据处理系统的示意图;
图3是根据本发明实施例的另一种可选的媒体数据处理方法的流程图;
图4是根据本发明实施例一种可选的媒体数据处理装置的示意图;
图5是根据本发明实施例的另一种可选的媒体数据处理装置的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种媒体数据处理方法,图1是根据本发明实施例的媒体数据处理的流程图,如图1所示,该流程包括如下步骤:
S102,获取信源端采集设备采集媒体数据得到的采样点的光信号;
S104,根据光电转换控制参数对采样点的光信号进行光电转换,得到转换后的电信号,其中,光电转换控制参数根据采样点的光信号的光信号强度确定;
S106,对电信号及光电转换控制参数进行编码得到码流。
可选地,在本实施例中,上述媒体数据处理方法可以但不限于应用于媒体数据处理系统中,其中,该系统包括:信源端采集设备及信宿端显示设备。以视频通信应用为例,上述设备可以但不限于为视频通信应用中相关码流生成设备和接收播放设备,例如,手机、计算机、服务器、机顶盒、便携式移动终端、数字摄像机,电视广播系统设备等。假设如图2所示码流生成设备(信源端采集设备)可以为手机202,接收播放设备(信宿端显示设备)可以为计算机204。上述仅为一种示例,本实施例中对此不做任何限定。
需要说明的是,在本实施例中,信源端采集设备将获取采集媒体数据得到的采样点的光信号,并根据光电转换控制参数对采样点的光信号进行光电转换,得到转换后的电信号,其中,光电转换控制参数根据采样点的光信号的光信号强度确定;进一步,对上述电信号及光电转换控制参数进行编码得到码流。也就是说,通过将根据采样点的光信号的光信号强度确 定的光电转换控制参数进行编码写入码流,从而实现结合光信号强度来自适应调整用于进行光电转换的光电转换控制参数,以达到自适应调整采集到的媒体数据(如视频或图像)在不同光强度区域中采样点的光信号的转换曲线,有效地保持了光电转换前后媒体数据的细节信息,以实现提高媒体数据转化处理的准确性的效果,进而克服相关技术中光电转换仅依据显示设备的亮度及环境光亮度所导致的媒体数据处理准确性较低的问题。
可选地,在本实施例中,获取信源端采集设备采集媒体数据得到的采样点的光信号可以但不限于:获取信源端采集设备采集到的采样点的光信号的光信号强度,其中,上述采样点的光信号的光信号强度可以但不限于通过与信源端采集设备采集到的光强成正比的电压值表示。上述采样点的光信号的光信号强度可以但不限于使用参考点(如参考白光)等级(Reference white level)进行了归一化处理。
需要说明的是,上述电压值的获取过程可以但不限于与相关技术(在使用HLG转换参数的方案)中获取电压值E的过程相同,本实施例中在此不再赘述。
可选地,在本实施例中,根据光电转换控制参数对所述采样点的所述光信号进行光电转换,得到转换后的电信号包括:
S1,判断采样点的光信号的光信号强度是否大于预定阈值;
S2,在采样点的光信号的光信号强度大于预定阈值时,利用光电转换控制参数对采样点的光信号的光信号强度进行光电转换,得到与采样点的光信号的光信号强度对应的电信号的电信号强度。
需要说明的是,在本实施例中,在采样点的光信号的光信号强度大于预定阈值时,通过引入与采样点的光信号的光信号强度关联的光电转换控制参数,在光电转换过程中结合了采样点的亮度范围特征,使得在对媒体数据进行转换处理时,转换曲线可以随不同亮度范围特征进行动态的自适应调整,从而实现对媒体数据的准确转换的效果。
可选地,在本实施例中,利用光电转换控制参数对采样点的光信号的 光信号强度进行光电转换,得到与采样点的光信号的光信号强度对应的电信号的电信号强度包括:
Figure PCTCN2017076335-appb-000010
其中,E'用于表示与采样点的光信号的光信号强度对应的电信号的电信号强度,E用于表示采样点的光信号的光信号强度,p用于表示光电转换控制参数,Emax用于表示参考点的最大亮度值;a、b表示预设控制参数。
也就是说,在信源端的光电转换过程中,使用与对数映射曲线具有相似特性的有理函数曲线确定光电转换函数(如公式(1)),其中,该光电转换函数中包括上述光电转换控制参数p。通过含上述光电转换控制参数p的光电转换函数对采样点的光信号的光信号强度进行光电转换,以得到对应的电信号的电信号强度。其中,这里得到的电信号的电信号强度可以准确反映在不同光强度区域中媒体数据的细节信息,从而实现提高媒体数据转换处理的准确性的效果。此外,在本实施例中,上述光电转换函数可以为有理函数,使用有理函数来实现光电转换的方式,相对于相关技术中使用HLG转换函数的方式时,需要执行复杂的对数和指数操作,将大大降低了转换过程的整体计算复杂度,同时还实现提高了数据处理精度的效果。
此外,在采样点的光信号的光信号强度小于等于预定阈值时,可以但不限于采用相关技术(在使用HLG转换参数的方案)中提供的光电转换方式进行光电转换:
Figure PCTCN2017076335-appb-000011
其中,上述r是参考值。可选地,在信源端可以但不限于将r的值设置为0.5。
可选地,在本实施例中,在根据光电转换控制参数对采样点的光信号进行光电转换之前,还包括:获取采样点的光信号的光信号强度及信宿端 显示设备的设备显示亮度;根据采样点的光信号的光信号强度和设备显示亮度确定光电转换控制参数。
可选地,在本实施例中,根据采样点的光信号的光信号强度和设备显示亮度确定光电转换控制参数可以但不限于根据采集到的采样点的光信号的光信号强度中的最大光信号强度及最小光信号强度,及信宿端显示设备的设备显示的最高亮度值及最低亮度值,来确定光电转换控制参数。
例如,通过以下方式计算光电转换控制参数:
Figure PCTCN2017076335-appb-000012
其中,p用于表示光电转换控制参数,M用于表示信宿端显示设备的最高亮度值,N用于表示信宿端显示设备的最低亮度值,H用于表示最大光信号强度,L用于表示最小光信号强度。
可选地,在本实施例中,上述最大光信号强度及最小光信号强度可以但不限于为在采集到的采样点的光信号的光信号强度中,在一个图像中的最大光信号强度及最小光信号强度;也可以但不限于为在多个图像中的最大光信号强度及最小光信号强度。
可选地,在本实施例中,上述信宿端显示设备的最高亮度值及最低亮度值可以但不限于为信宿端显示设备预设的最高亮度值及最低亮度值,也可以但不限于为信源端通过与信宿端进行交互,以获取信宿端显示设备所达到的最高亮度值及最低亮度值。
可选地,在本实施例中,对电信号及光电转换控制参数进行编码得到码流包括:
S1,对电信号的电信号强度进行量化处理后得到的量化结果进行编码;
S2,对光电转换控制参数进行编码;
S3,将量化结果及光电转换控制参数编码后的编码比特写入码流。
其中,将光电转换控制参数编码后的编码比特写入码流包括以下至少 之一:
1)将光电转换控制参数编码后的编码比特写入码流的参数集数据单元;
2)将光电转换控制参数编码后的编码比特写入码流的补充增强信息数据单元;
3)将光电转换控制参数编码后的编码比特写入码流的系统层数据单元。
需要说明的是,上述系统层数据单元包括:文件格式数据单元、描述子数据单元。这里将光电转换控制参数编码后的编码比特写入码流的系统层数据单元可以包括:将光电转换控制参数编码后的编码比特写入系统层数据单元中的文件格式数据单元中和/或描述子数据单元中。
可选地,在本实施例中,在将光电转换控制参数编码后的编码比特写入码流之后,还包括:建立在码流中写入光电转换控制参数编码后的编码比特的数据单元与码流中接入单元之间的关联关系。
其中,在本实施例中,建立在码流中写入光电转换控制参数编码后的编码比特的数据单元与码流中接入单元之间的关联关系包括以下至少之一:
1)在接入单元中引用参数集数据单元;
2)将补充增强信息数据单元写入接入单元;
3)将系统层数据单元与接入单元进行关联。
需要说明的是,在上述方式3)将系统层数据单元与接入单元进行关联包括以下至少之一:(1)使用指针参数指示与系统层数据单元关联的接入单元;(2)将系统层数据单元写入接入单元所在系统层数据单元的头信息中。
通过本申请提供的实施例,获取采集到的采样点的光信号,并根据光电转换控制参数对采样点的光信号进行光电转换,得到转换后的电信号, 其中,光电转换控制参数根据采样点的光信号的光信号强度确定;进一步,对上述电信号及光电转换控制参数进行编码得到码流。也就是说,通过将根据采样点的光信号的光信号强度确定的光电转换控制参数进行编码写入码流,从而实现结合光信号强度来自适应调整用于进行光电转换的光电转换控制参数,以达到自适应调整采集到的媒体数据(如视频或图像)在不同光强度区域中采样点的光信号的转换曲线,有效地保持了光电转换前后媒体数据的细节信息,以实现提高媒体数据转化处理的准确性的效果,进而克服相关技术中光电转换仅依据显示设备的亮度及环境光亮度所导致的媒体数据处理准确性较低的问题。
作为一种可选的方案,根据光电转换控制参数对采样点的光信号进行光电转换,得到转换后的电信号包括:
S1,判断采样点的光信号的光信号强度是否大于预定阈值;
S2,在采样点的光信号的光信号强度大于预定阈值时,利用光电转换控制参数对采样点的光信号的光信号强度进行光电转换,得到与采样点的光信号的光信号强度对应的电信号的电信号强度。
可选地,在本实施例中,上述采样点的光信号的光信号强度可以但不限于通过与信源端采集设备采集到的光强成正比的电压值E表示。也就是说,该电压值E与采集设备上的传感器上接收到的光强成正比,是使用参考点(如参考白光)等级(Reference white level)进行归一化处理后得到的结果。
可选地,在本实施例中,假设预定阈值为1,则在采样点的光信号的光信号强度E的取值大于1时,利用光电转换控制参数对采样点的光信号的光信号强度进行光电转换,得到与采样点的光信号的光信号强度对应的电信号的电信号强度可以包括:
Figure PCTCN2017076335-appb-000013
其中,E'用于表示与采样点的光信号的光信号强度对应的电信号的 电信号强度,E用于表示采样点的光信号的光信号强度,p用于表示光电转换控制参数,Emax用于表示参考点的最大亮度值;a、b表示预设控制参数。
需要说明的是,在本实施例中,上述Emax也是电压值,Emax的取值可以但不限于设置为12。这里确定Emax的取值的过程可以但不限于与相关技术(在使用HLG转换参数的方案)中的过程相同,本实施例中在此不再赘述。此外,在本实施例中,上述预设控制参数a、b的取值可以但不限于分别是0.17883277、0.28466892。
可选地,在本实施例中,假设预定阈值为1,则在采样点的光信号的光信号强度E的取值在范围[0,1]内时,可以但不限于通过以下方式计算对应的电信号强度值:
Figure PCTCN2017076335-appb-000014
其中,上述r是参考值。可选地,在信源端可以但不限于将r的值设置为0.5。
通过本申请提供的实施例,通过含上述光电转换控制参数的光电转换函数对采样点的光信号的光信号强度进行光电转换,以得到对应的电信号的电信号强度。其中,这里得到的电信号的电信号强度可以准确反映在不同光强度区域中媒体数据的细节信息,从而实现提高媒体数据转换处理的准确性的效果。
作为一种可选的方案,在根据光电转换控制参数对采样点的光信号进行光电转换之前,还包括:
S1,获取采样点的光信号的光信号强度及信宿端显示设备的设备显示亮度;
S2,根据采样点的光信号的光信号强度和设备显示亮度确定光电转换控制参数。
可选地,在本实施例中,获取采样点的光信号的光信号强度及信宿端显示设备的设备显示亮度包括:
S12,获取在采集到的采样点的光信号的光信号强度中的最大光信号强度及最小光信号强度;
S14,获取信宿端显示设备的最高亮度值及最低亮度值。
可选地,在本实施例中,上述步骤S12,获取在采集到的采样点的光信号的光信号强度中的最大光信号强度及最小光信号强度包括以下至少之一:
1)在采集到的采样点的光信号的光信号强度中,获取在一个图像中的最大光信号强度及最小光信号强度;
2)在采集到的采样点的光信号的光信号强度中,获取在多个图像中的最大光信号强度及最小光信号强度。
可选地,在本实施例中,上述步骤S14,获取信宿端显示设备的最高亮度值及最低亮度值包括以下至少之一:
1)获取信宿端显示设备预设的最高亮度值及最低亮度值;
2)通过与信宿端进行交互,以获取信宿端显示设备所达到的最高亮度值及最低亮度值。
可选地,在本实施例中,根据采样点的光信号强度和设备显示亮度确定光电转换控制参数包括:
Figure PCTCN2017076335-appb-000015
其中,p用于表示光电转换控制参数,M用于表示信宿端显示设备的最高亮度值,N用于表示信宿端显示设备的最低亮度值,H用于表示最大光信号强度,L用于表示最小光信号强度。
通过本申请提供的实施例,用于光电转换的光电转换控制参数是根据采集设备采集到的采样点的光信号强度来确定的,这样根据采集到的媒体数据中的采样点的光信号强度自适应调整不同光强度区域的转换曲线,以使转换过程可以准确反映出转换前后的细节信息,进而保证了媒体数据转 换处理的准确性。
作为一种可选的方案,对电信号及光电转换控制参数进行编码得到码流包括:
S1,对电信号的电信号强度进行量化处理后得到的量化结果进行编码;
S2,对光电转换控制参数进行编码;
S3,将量化结果及光电转换控制参数编码后的编码比特写入码流。
可选地,在本实施例中,将光电转换控制参数编码后的编码比特写入码流包括以下至少之一:
1)将光电转换控制参数编码后的编码比特写入码流的参数集数据单元;
2)将光电转换控制参数编码后的编码比特写入码流的补充增强信息数据单元;
3)将光电转换控制参数编码后的编码比特写入码流的系统层数据单元。
可选地,在本实施例中,将光电转换控制参数编码后的编码比特写入码流的系统层数据单元包括:将光电转换控制参数编码后的编码比特写入系统层数据单元中的文件格式数据单元中和/或描述子数据单元中。
通过本申请提供的实施例,通过将光电转换控制参数编码后的编码比特写入码流中不同的数据单元中,以便于信宿端在解析码流后,可以准确执行对应的电光转换过程。
作为一种可选的方案,在将光电转换控制参数编码后的编码比特写入码流之后,还包括:
S1,建立在码流中写入光电转换控制参数编码后的编码比特的数据单元与码流中接入单元之间的关联关系。
可选地,在本实施例中,建立在码流中写入光电转换控制参数编码后的编码比特的数据单元与码流中接入单元之间的关联关系包括以下至少 之一:
1)在接入单元中引用参数集数据单元;
2)将补充增强信息数据单元写入接入单元;
3)将系统层数据单元与接入单元进行关联。
可选地,在本实施例中,将系统层数据单元与接入单元进行关联包括:
(1)使用指针参数指示与系统层数据单元关联的接入单元;或者,
(2)将系统层数据单元写入接入单元所在系统层数据单元的头信息中。
通过本申请提供的实施例,将接入单元与在码流中写入光电转换控制参数编码后的编码比特的数据单元建立关联关系,进一步保证了在信宿端解析码流后,可以准确执行对应的电光转换过程。
具体结合以下示例进行说明,假设采集到的采样点的光信号以输入信号为例,信宿端显示设备以SDR显示设备为例,使用本实施例的信源端采集设备通过以下步骤实现媒体数据处理方法:
S1,确定信宿端的SDR显示设备的参数。
其中,SDR显示设备的参数主要包括SDR显示设备所能显示的最高亮度值M和最低亮度值N。可选地,在本实施例中,SDR设备的参数可以是SDR设备通用的设定值。也可以是信源端与SDR显示设备进行能力协商,获得SDR设备的参数。
S2,信源端计算HDR的转换控制参数。
其中,信源端获得输入信号中的最大光信号强度值Hival和最小光信号强度值Loval。
可选地,信源端可以分别获得输入信号中每个图像的最大光信号强度值和最小光信号强度值,计算光电转换控制参数。可选地,信源端也可以获得输入信号中多个图像的最大光信号强度值和最小光信号强度值,计算光电转换控制参数。
可选地,在本实施例中,信源端按照下述计算式计算光电转换控制参数:
Figure PCTCN2017076335-appb-000016
S3,信源端计算输入信号中光信号强度对应的电信号强度值。
需要说明的是,信源端使用HLG方法中的相关步骤,计算输入信号中光信号强度的参考白点标准化后的值E。此外,信源端使用HLG方法中的相关步骤,确定相对于参考白点的最大亮度Emax。其中,Hival用于表示最大光信号强度H,Loval用于表示最小光信号强度L。
可选地,在本实施例中,当信源端判断:E的取值大于1时,使用下述有理映射函数计算式计算输入光信号强度对应的电信号强度值:
Figure PCTCN2017076335-appb-000017
可选地,在本实施例中,当信源端判断,E的取值在范围[0,1]内时,使用下述计算式计算输入光信号对应的电信号强度值:
Figure PCTCN2017076335-appb-000018
其中,a、b是预设控制参数,其取值分别是0.17883277和0.28466892;r是电信号的参考值。可选地,信源端将r的值设置为0.5。
S4,信源端对电信号强度值进行编码,获得编码码流。
需要说明的是,在本实施例中,上述S4是信源端可选择执行的步骤。
可选地,在本实施例中,信源端使用HLG相关方法对电信号强度值进行量化处理,得到电信号强度值对应的二进制数字化表示值,即HDR视频或图像。信源端使用相关编码器(如H.265/HEVC编码器)对HDR视频或图像进行编码,得到编码码流。
可选地,在本实施例中,信源端对前述步骤中的参数进行编码。在本实施例中,需要对光电转换控制参数p进行编码,获得光电转换控制参数 p编码后的编码比特,并将光电转换控制参数p编码后的编码比特写入码流。
可选地,信源端将光电转换控制参数p编码后的编码比特写入HDR视频或图像的编码码流。信源端将光电转换控制参数p编码后的编码比特写入HDR视频或图像的编码码流中的参数集数据单元,和/或信源端将光电转换控制参数p编码后的编码比特写入补充增强信息数据单元并将该数据单元附加在HDR视频或图像的接入单元中。
可选地,信源端将光电转换控制参数p编码后的编码比特写入HDR视频或图像的编码码流所在系统层数据单元或文件格式数据单元中。例如,信源端可将光电转换控制参数p编码后的编码比特写入描述子数据单元中,将该描述子数据单元与HDR视频或图像的编码码流中对应图像单元或接入单元进行关联。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中提供了一种媒体数据处理方法,图3是根据本发明实施例的媒体数据处理的流程图,如图3所示,该流程包括如下步骤:
S302,解析码流,获取待处理的电信号及电光转换控制参数;
S304,根据电光转换控制参数对电信号进行电光转换,得到转换后的光信号的光信号强度;
S306,根据光信号的光信号强度控制信宿端显示设备的显示。
可选地,在本实施例中,上述媒体数据处理方法可以但不限于应用于媒体数据处理系统中,其中,该系统包括:信源端采集设备及信宿端显示设备。以视频通信应用为例,上述设备可以但不限于为视频通信应用中相关码流生成设备和接收播放设备,例如,手机、计算机、服务器、机顶盒、便携式移动终端、数字摄像机,电视广播系统设备等。假设如图2所示码流生成设备(信源端采集设备)可以为手机202,接收播放设备(信宿端显示设备)可以为计算机204。上述仅为一种示例,本实施例中对此不做任何限定。
需要说明的是,在本实施例中,信宿端显示设备解析码流,获取待处理的电信号及电光转换控制参数;并根据电光转换控制参数对电信号进行电光转换,得到转换后的光信号的光信号强度;进一步,根据光信号的光信号强度控制信宿端显示设备的显示。也就是说,在信宿端解析码流,并获得用于电光转换过程的电光转换控制参数,然后根据电光转换控制参数对电信号进行电光转换,得到转换后的光信号的光信号强度。其中,利用与光电转换控制参数对应的电光转换控制参数,可以达到自适应调整采集到的媒体数据(如视频或图像)在不同光强度区域中采样点的光信号的转换曲线,有效地保持了光电转换前后媒体数据的细节信息,以实现提高媒体数据转化处理的准确性的效果,进而克服相关技术中媒体数据处理准确性较低的问题。
可选地,在本实施例中,根据电光转换控制参数对电信号进行电光转换,得到转换后的光信号的光信号强度包括:
S1,判断电信号的电信号强度是否大于预定阈值;
S2,在电信号的电信号强度大于预定阈值时,利用电光转换控制参数对电信号的电信号强度进行电光转换,得到与电信号的电信号强度对应的光信号的光信号强度。
需要说明的是,在本实施例中,在电信号的电信号强度大于预定阈值 时,通过引入电光转换控制参数,使得在对媒体数据进行转换处理时,转换曲线可以随不同亮度范围特征进行动态的自适应调整,从而实现对媒体数据的准确转换的效果。
可选地,在本实施例中,利用电光转换控制参数对电信号的电信号强度进行电光转换,得到与电信号的电信号强度对应的光信号的光信号强度包括:
Figure PCTCN2017076335-appb-000019
其中,E用于表示与电信号的电信号强度对应的光信号的光信号强度,E'用于表示电信号的电信号强度,p用于表示电光转换控制参数,Emax用于表示参考点的最大亮度值;a、b表示预设控制参数。
也就是说,在信宿端的电光转换过程中,使用与对数映射曲线具有相似特性的有理函数曲线确定电光转换函数(如公式(1)),其中,该电光转换函数中包括上述电光转换控制参数p。通过含上述电光转换控制参数p进行电光转换,以得到对应的光信号的光信号强度。其中,这里得到的光信号的光信号强度可以准确反映在不同光强度区域中媒体数据的细节信息,从而实现提高媒体数据转换处理的准确性的效果。此外,在本实施例中,上述电光转换函数可以为有理函数,使用有理函数来实现电光转换的方式,相对于相关技术中使用HLG转换函数的方式时,需要执行复杂的对数和指数操作,将大大降低了转换过程的整体计算复杂度,同时还实现提高了数据处理精度的效果。
此外,在电信号的电信号强度小于等于预定阈值时,可以但不限于采用相关技术(在使用HLG转换参数的方案)中提供的光电转换方式进行光电转换:
E=(E'/r)2  (2)
其中,上述r是参考值。可选地,在信源端可以但不限于将r的值设置为0.5。
可选地,在本实施例中,获取电光转换控制参数包括以下至少之一:
1)获取码流中携带的电光转换控制参数;
2)获取电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度;根据电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度确定电光转换控制参数。
也就是说,在本实施例中,可以直接获取写入码流的光电转换控制参数作为电光转换控制参数,也可以根据电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度确定电光转换控制参数。
可选地,在本实施例中,获取码流中携带的电光转换控制参数包括以下至少之一:
1)获取码流中参数集数据单元中携带的电光转换控制参数;
2)获取码流中补充增强信息数据单元中携带的电光转换控制参数;
3)获取码流中系统层数据单元中携带的电光转换控制参数。
需要说明的是,在本实施例中,补充增强信息数据单元中携带的电光转换控制参数覆盖参数集数据单元中携带的电光转换控制参数和/或系统层数据单元中携带的电光转换控制参数,参数集数据单元中携带的电光转换控制参数覆盖系统层数据单元中携带的电光转换控制参数。
可选地,在本实施例中,S1,获取电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度包括:S12,获取电信号中携带的最大光信号强度及最小光信号强度;获取信宿端显示设备的最高亮度值及最低亮度值;S2,根据电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度确定电光转换控制参数包括:
Figure PCTCN2017076335-appb-000020
其中,p用于表示电光转换控制参数,M用于表示信宿端显示设备的最高亮度值,N用于表示信宿端显示设备的最低亮度值,H用于表示最 大光信号强度,L用于表示最小光信号强度。
可选地,在本实施例中,在根据光信号的光信号强度控制信宿端显示设备的显示之前,还包括:S1,对光信号进行伽马校正。
通过本申请提供的实施例,解析码流,获取待处理的电信号及电光转换控制参数;并根据电光转换控制参数对电信号进行电光转换,得到转换后的光信号的光信号强度;进一步,根据光信号的光信号强度控制信宿端显示设备的显示。也就是说,在信宿端解析码流,并获得用于电光转换过程的电光转换控制参数,然后根据电光转换控制参数对电信号进行电光转换,得到转换后的光信号的光信号强度。其中,利用与光电转换控制参数对应的电光转换控制参数,可以达到自适应调整采集到的媒体数据(如视频或图像)在不同光强度区域中采样点的光信号的转换曲线,有效地保持了光电转换前后媒体数据的细节信息,以实现提高媒体数据转化处理的准确性的效果,进而克服相关技术中媒体数据处理准确性较低的问题。
作为一种可选的方案,根据电光转换控制参数对电信号进行电光转换,得到转换后的光信号的光信号强度包括:
S1,判断电信号的电信号强度是否大于预定阈值;
S2,在电信号的电信号强度大于预定阈值时,利用电光转换控制参数对电信号的电信号强度进行电光转换,得到与电信号的电信号强度对应的光信号的光信号强度。
可选地,在本实施例中,假设预定阈值为r,信宿端r的取值设置为0.5。则在电信号的电信号强度E'大于r(r=0.5)时,利用电光转换控制参数对电信号的电信号强度进行电光转换,得到与电信号的电信号强度对应的光信号的光信号强度包括:
Figure PCTCN2017076335-appb-000021
其中,E用于表示与电信号的电信号强度对应的光信号的光信号强度,E'用于表示电信号的电信号强度,p用于表示电光转换控制参数,Emax用 于表示参考点的最大亮度值;a、b表示预设控制参数。
需要说明的是,在本实施例中,上述Emax也是电压值,Emax的取值可以但不限于设置为12。这里确定Emax的取值的过程可以但不限于与相关技术(在使用HLG转换参数的方案)中的过程相同,本实施例中在此不再赘述。此外,在本实施例中,上述预设控制参数a、b的取值可以但不限于分别是0.17883277、0.28466892。
可选地,在本实施例中,假设预定阈值为r,信宿端r的取值设置为0.5。则在电信号的电信号强度E'小于等于r(r=0.5)时,可以但不限于通过以下方式计算对应的光信号强度值:
E=(E'/r)2  (5)
通过本申请提供的实施例,通过含上述电光转换控制参数的电光转换函数对电信号强度进行电光转换,以得到对应的光信号的光信号强度。其中,这里得到的光信号的光信号强度可以准确反映在不同光强度区域中媒体数据的细节信息,从而实现提高媒体数据转换处理的准确性的效果。
作为一种可选的方案,获取电光转换控制参数包括以下至少之一:
1)获取码流中携带的电光转换控制参数;
2)获取电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度;根据电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度确定电光转换控制参数。
可选地,在本实施例中,获取码流中携带的电光转换控制参数包括以下至少之一:
(1)获取码流中参数集数据单元中携带的电光转换控制参数;
(2)获取码流中补充增强信息数据单元中携带的电光转换控制参数;
(3)获取码流中系统层数据单元中携带的电光转换控制参数。
可选地,在本实施例中,补充增强信息数据单元中携带的电光转换控制参数覆盖参数集数据单元中携带的电光转换控制参数和/或系统层数据 单元中携带的电光转换控制参数,参数集数据单元中携带的电光转换控制参数覆盖系统层数据单元中携带的电光转换控制参数。
可选地,在本实施例中,获取电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度包括:获取电信号中携带的最大光信号强度及最小光信号强度;获取信宿端显示设备的最高亮度值及最低亮度值。进一步,在本实施例中,根据电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度确定电光转换控制参数包括:
Figure PCTCN2017076335-appb-000022
其中,p用于表示电光转换控制参数,M用于表示信宿端显示设备的最高亮度值,N用于表示信宿端显示设备的最低亮度值,H用于表示最大光信号强度,L用于表示最小光信号强度。
通过本申请提供的实施例,将解析码流后获取到的电光转换控制参数用于电光转换过程中,将实现自适应调整不同光强度区域的转换曲线,以使转换过程可以准确反映出转换前后的细节信息,进而保证了媒体数据转换处理的准确性。
作为一种可选的方案,在根据光信号的光信号强度控制信宿端显示设备的显示之前,还包括:
S1,对光信号的光信号强度进行伽马校正。
通过本申请提供的实施例,对光信号的光信号强度进行伽马校正,进一步保证对媒体数据转换后的结果的准确性。
具体结合以下示例进行说明,假设信宿端显示设备以SDR显示设备为例,使用本实施例的信宿端显示设备通过以下步骤实现媒体数据处理方法:
S1,信宿端获得电光转换控制参数。
其中,作为一种可选的信宿端获取电光转换控制参数的实施方式,信宿端解析接收的码流(如包含HDR视频或图像的比特流),并获取电光转 换控制参数p。
具体地,信宿端解析码流(如包含HDR视频或图像的比特流)所在系统层数据单元(文件格式数据单元或描述子数据单元),获取电光转换控制参数p。例如,信宿端解析描述子数据单元,获取电光转换控制参数p,将电光转换控制参数p设置为描述子数据单元与HDR视频或图像的码流中对应图像单元或接入单元中包含的HDR图像在电光转换过程中使用的控制参数。
可选地,信宿端解析解析码流(如包含HDR视频或图像的比特流)中参数集数据单元,获取电光转换控制参数p,将电光转换控制参数p设置为引用该参数集的图像在电光转换过程中使用的控制参数。
可选地,信宿端解析码流(如包含HDR视频或图像的比特流)中补充增强信息数据单元,获取电光转换控制参数p,将电光转换控制参数p设置为该补充增强信息所在接入单元中所包含图像在电光转换过程中使用的控制参数。
可选地,信宿端解析码流(如包含HDR视频或图像的比特流)所在系统层数据单元(文件格式数据单元或描述子数据单元)(记为电光转换控制参数p1)、以及解析码流(如包含HDR视频或图像的比特流)中的参数集数据单元(记为电光转换控制参数p2)和/或补充增强信息数据单元(记为电光转换控制参数数p3)获取多个电光转换控制参数时,若可获取电光转换控制参数p3,信宿端将电光转换控制参数p设置为p3,反之,信宿端将电光转换控制参数p设置为p2。
可选地,在本实施例中,作为另一种可选的信宿端获取电光转换控制参数的实施方式,信宿端根据已有信息计算电光转换参数p。例如,根据电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度确定电光转换控制参数。
具体地,获取信宿端所设置的SDR显示设备所能显示的最高亮度值M和最低亮度值N,其中,上述参数的一种可选的设置方法是:当信宿端包含SDR显示设备时,信宿端将该SDR显示设备所能显示的最高亮度值设置为M、将所能显示的最低亮度值设置为N;反之,信宿端将参数M和N对应设置为通用SDR设备所能达到的最显示亮度值和最低显示亮度值。上述参数的另一种可选的设置方法是,信宿端将参数M和N对应设置为通用SDR设备所能达到的最显示亮度值和最低显示亮度值。
可选地,在本实施例中,信宿端确定电信号中携带的待显示的HDR视频或图像包含的采样点中的最大光信号强度值Hival(也记作最大光信号强度H)和最小光信号强度值Loval(也记作最小光信号强度L)。如:信宿端通过解析接收的码流(如包含HDR视频或图像的比特流),获得最大光信号强度值Hival和最小光信号强度值Loval的取值。
信宿端使用按照下述计算式计算电光转换控制参数:
Figure PCTCN2017076335-appb-000023
S2,信宿端获得HDR视频或图像中采样点的电信号强度值。
可选地,在本实施例中,信宿端对输入HDR视频或图像中采样点的采样值,使用HLG的相关方法,将采样值对应映射为电信号强度值。
可选地,如果信宿端包含解码器(如H.265/HEVC解码器),信宿端对接收的HDR视频或图像编码码流进行解码,获得采样点的采样值。
S3,信宿端将HDR视频或图像中采样点的电信号强度值转换为显示设备光信号强度值。
可选地,在本实施例中,信宿端判断:当电信号强度值E'大于参数r时,使用下述计算式计算输入光信号对应的电信号强度值E:
Figure PCTCN2017076335-appb-000024
反之,使用下述计算式计算输入光信号对应的电信号强度值E:
E=(E′/r)2  (9)
其中,a、b是预设控制参数,其取值分别是0.17883277和0.28466892;r是电信号的参考值。可选择地,信宿端将r的取值设置为0.5。
S4,信宿端对转换得到的光信号强度值进行校正。
可选地,在本实施例中,信宿端使用HLG方法中相关的方法确定伽玛校正参数,并对转换得到的光信号强度值进行伽玛校正。
可选地,在本实施例中,信宿端将经伽玛校正处理的光信号强度送交显示设备进行显示。
实施例3
在本实施例中还提供了一种媒体数据处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本发明实施例的媒体数据处理装置的结构框图,如图4所示,该装置包括:
1)第一获取单元402,设置为获取信源端采集设备采集媒体数据得到的采样点的光信号;
2)转换单元404,设置为根据光电转换控制参数对采样点的光信号进行光电转换,得到转换后的电信号,其中,光电转换控制参数根据采样点的光信号的光信号强度确定;
3)编码单元406,设置为对电信号及光电转换控制参数进行编码得到 码流。
可选地,在本实施例中,上述媒体数据处理装置可以但不限于应用于媒体数据处理系统中,其中,该系统包括:信源端采集设备及信宿端显示设备。以视频通信应用为例,上述设备可以但不限于为视频通信应用中相关码流生成设备和接收播放设备,例如,手机、计算机、服务器、机顶盒、便携式移动终端、数字摄像机,电视广播系统设备等。假设如图2所示码流生成设备(信源端采集设备)可以为手机202,接收播放设备(信宿端显示设备)可以为计算机204。上述仅为一种示例,本实施例中对此不做任何限定。
需要说明的是,在本实施例中,信源端采集设备将获取采集到的采样点的光信号,并根据光电转换控制参数对采样点的光信号进行光电转换,得到转换后的电信号,其中,光电转换控制参数根据采样点的光信号的光信号强度确定;进一步,对上述电信号及光电转换控制参数进行编码得到码流。也就是说,通过将根据采样点的光信号的光信号强度确定的光电转换控制参数进行编码写入码流,从而实现结合光信号强度来自适应调整用于进行光电转换的光电转换控制参数,以达到自适应调整采集到的媒体数据(如视频或图像)在不同光强度区域中采样点的光信号的转换曲线,有效地保持了光电转换前后媒体数据的细节信息,以实现提高媒体数据转化处理的准确性的效果,进而克服相关技术中光电转换仅依据显示设备的亮度及环境光亮度所导致的媒体数据处理准确性较低的问题。
可选地,在本实施例中,获取信源端采集设备采集媒体数据得到的采样点的光信号可以但不限于:获取信源端采集设备采集媒体数据得到的采样点的光信号的光信号强度,其中,上述采样点的光信号的光信号强度可以但不限于通过与信源端采集设备采集到的光强成正比的电压值表示。上述采样点的光信号的光信号强度可以但不限于使用参考点(如参考白光)等级(Reference white level)进行了归一化处理。
需要说明的是,上述电压值的获取过程可以但不限于与相关技术(在 使用HLG转换参数的方案)中获取电压值E的过程相同,本实施例中在此不再赘述。
可选地,在本实施例中,根据光电转换控制参数对所述采样点的所述光信号进行光电转换,得到转换后的电信号包括:
S1,判断采样点的光信号的光信号强度是否大于预定阈值;
S2,在采样点的光信号的光信号强度大于预定阈值时,利用光电转换控制参数对采样点的光信号的光信号强度进行光电转换,得到与采样点的光信号的光信号强度对应的电信号的电信号强度。
需要说明的是,在本实施例中,在采样点的光信号的光信号强度大于预定阈值时,通过引入与采样点的光信号的光信号强度关联的光电转换控制参数,在光电转换过程中结合了采样点的亮度范围特征,使得在对媒体数据进行转换处理时,转换曲线可以随不同亮度范围特征进行动态的自适应调整,从而实现对媒体数据的准确转换的效果。
可选地,在本实施例中,利用光电转换控制参数对采样点的光信号的光信号强度进行光电转换,得到与采样点的光信号的光信号强度对应的电信号的电信号强度包括:
Figure PCTCN2017076335-appb-000025
其中,E'用于表示与采样点的光信号的光信号强度对应的电信号的电信号强度,E用于表示采样点的光信号的光信号强度,p用于表示光电转换控制参数,Emax用于表示参考点的最大亮度值;a、b表示预设控制参数。
也就是说,在信源端的光电转换过程中,使用与对数映射曲线具有相似特性的有理函数曲线确定光电转换函数(如公式(1)),其中,该光电转换函数中包括上述光电转换控制参数p。通过含上述光电转换控制参数p的光电转换函数对采样点的光信号的光信号强度进行光电转换,以得到对应的电信号的电信号强度。其中,这里得到的电信号的电信号强度可以 准确反映在不同光强度区域中媒体数据的细节信息,从而实现提高媒体数据转换处理的准确性的效果。此外,在本实施例中,上述光电转换函数可以为有理函数,使用有理函数来实现光电转换的方式,相对于相关技术中使用HLG转换函数的方式时,需要执行复杂的对数和指数操作,将大大降低了转换过程的整体计算复杂度,同时还实现提高了数据处理精度的效果。
此外,在采样点的光信号的光信号强度小于等于预定阈值时,可以但不限于采用相关技术(在使用HLG转换参数的方案)中提供的光电转换方式进行光电转换:
Figure PCTCN2017076335-appb-000026
其中,上述r是参考值。可选地,在信源端可以但不限于将r的值设置为0.5。
可选地,在本实施例中,在根据光电转换控制参数对采样点的光信号进行光电转换之前,还包括:获取采样点的光信号的光信号强度及信宿端显示设备的设备显示亮度;根据采样点的光信号的光信号强度和设备显示亮度确定光电转换控制参数。
可选地,在本实施例中,根据采样点的光信号的光信号强度和设备显示亮度确定光电转换控制参数可以但不限于根据采集到的采样点的光信号的光信号强度中的最大光信号强度及最小光信号强度,及信宿端显示设备的设备显示的最高亮度值及最低亮度值,来确定光电转换控制参数。
例如,通过以下方式计算光电转换控制参数:
Figure PCTCN2017076335-appb-000027
其中,p用于表示光电转换控制参数,M用于表示信宿端显示设备的最高亮度值,N用于表示信宿端显示设备的最低亮度值,H用于表示最大光信号强度,L用于表示最小光信号强度。
可选地,在本实施例中,上述最大光信号强度及最小光信号强度可以 但不限于为在采集到的采样点的光信号的光信号强度中,在一个图像中的最大光信号强度及最小光信号强度;也可以但不限于为在多个图像中的最大光信号强度及最小光信号强度。
可选地,在本实施例中,上述信宿端显示设备的最高亮度值及最低亮度值可以但不限于为信宿端显示设备预设的最高亮度值及最低亮度值,也可以但不限于为信源端通过与信宿端进行交互,以获取信宿端显示设备所达到的最高亮度值及最低亮度值。
可选地,在本实施例中,对电信号及光电转换控制参数进行编码得到码流包括:
S1,对电信号的电信号强度进行量化处理后得到的量化结果进行编码;
S2,对光电转换控制参数进行编码;
S3,将量化结果及光电转换控制参数编码后的编码比特写入码流。
其中,将光电转换控制参数编码后的编码比特写入码流包括以下至少之一:
1)将光电转换控制参数编码后的编码比特写入码流的参数集数据单元;
2)将光电转换控制参数编码后的编码比特写入码流的补充增强信息数据单元;
3)将光电转换控制参数编码后的编码比特写入码流的系统层数据单元。
需要说明的是,上述系统层数据单元包括:文件格式数据单元、描述子数据单元。这里将光电转换控制参数编码后的编码比特写入码流的系统层数据单元可以包括:将光电转换控制参数编码后的编码比特写入系统层数据单元中的文件格式数据单元中和/或描述子数据单元中。
可选地,在本实施例中,在将光电转换控制参数编码后的编码比特写入码流之后,还包括:建立在码流中写入光电转换控制参数编码后的编码 比特的数据单元与码流中接入单元之间的关联关系。
其中,在本实施例中,建立在码流中写入光电转换控制参数编码后的编码比特的数据单元与码流中接入单元之间的关联关系包括以下至少之一:
1)在接入单元中引用参数集数据单元;
2)将补充增强信息数据单元写入接入单元;
3)将系统层数据单元与接入单元进行关联。
需要说明的是,在上述方式3)将系统层数据单元与接入单元进行关联包括以下至少之一:(1)使用指针参数指示与系统层数据单元关联的接入单元;(2)将系统层数据单元写入接入单元所在系统层数据单元的头信息中。
通过本申请提供的实施例,获取采集到的采样点的光信号,并根据光电转换控制参数对采样点的光信号进行光电转换,得到转换后的电信号,其中,光电转换控制参数根据采样点的光信号的光信号强度确定;进一步,对上述电信号及光电转换控制参数进行编码得到码流。也就是说,通过将根据采样点的光信号的光信号强度确定的光电转换控制参数进行编码写入码流,从而实现结合光信号强度来自适应调整用于进行光电转换的光电转换控制参数,以达到自适应调整采集到的媒体数据(如视频或图像)在不同光强度区域中采样点的光信号的转换曲线,有效地保持了光电转换前后媒体数据的细节信息,以实现提高媒体数据转化处理的准确性的效果,进而克服相关技术中光电转换仅依据显示设备的亮度及环境光亮度所导致的媒体数据处理准确性较低的问题。
作为一种可选的方案,转换单元404包括:
1)判断模块,设置为判断采样点的光信号的光信号强度是否大于预定阈值;
2)转换模块,设置为在采样点的光信号的光信号强度大于预定阈值时,利用光电转换控制参数对采样点的光信号的光信号强度进行光电转换, 得到与采样点的光信号的光信号强度对应的电信号的电信号强度。
可选地,在本实施例中,上述采样点的光信号的光信号强度可以但不限于通过与信源端采集设备采集到的光强成正比的电压值E表示。也就是说,该电压值E与采集设备上的传感器上接收到的光强成正比,是使用参考点(如参考白光)等级(Reference white level)进行归一化处理后得到的结果。
可选地,在本实施例中,假设预定阈值为1,则在采样点的光信号的光信号强度E的取值大于1时,转换模块通过以下方式实现对采样点的光信号的光信号强度进行光电转换:
Figure PCTCN2017076335-appb-000028
其中,E'用于表示与采样点的光信号的光信号强度对应的电信号的电信号强度,E用于表示采样点的光信号的光信号强度,p用于表示光电转换控制参数,Emax用于表示参考点的最大亮度值;a、b表示预设控制参数。
需要说明的是,在本实施例中,上述Emax也是电压值,Emax的取值可以但不限于设置为12。这里确定Emax的取值的过程可以但不限于与相关技术(在使用HLG转换参数的方案)中的过程相同,本实施例中在此不再赘述。此外,在本实施例中,上述预设控制参数a、b的取值可以但不限于分别是0.17883277、0.28466892。
可选地,在本实施例中,假设预定阈值为1,则在采样点的光信号的光信号强度E的取值在范围[0,1]内时,可以但不限于通过以下方式计算对应的电信号强度值:
Figure PCTCN2017076335-appb-000029
其中,上述r是参考值。可选地,在信源端可以但不限于将r的值设置为0.5。
通过本申请提供的实施例,通过含上述光电转换控制参数的光电转换 函数对采样点的光信号的光信号强度进行光电转换,以得到对应的电信号的电信号强度。其中,这里得到的电信号的电信号强度可以准确反映在不同光强度区域中媒体数据的细节信息,从而实现提高媒体数据转换处理的准确性的效果。
作为一种可选的方案,还包括:
1)第二获取单元,设置为在根据光电转换控制参数对采样点的光信号进行光电转换之前,获取采样点的光信号的光信号强度及信宿端显示设备的设备显示亮度;
2)确定单元,设置为根据采样点的光信号的光信号强度和设备显示亮度确定光电转换控制参数。
可选地,在本实施例中,第二获取单元包括:
(1)第一获取模块,设置为获取在采集到的采样点的光信号的光信号强度中的最大光信号强度及最小光信号强度;
(2)第二获取模块,设置为获取信宿端显示设备的最高亮度值及最低亮度值。
可选地,在本实施例中,确定单元通过以下方式实现根据采样点的光信号强度和设备显示亮度确定光电转换控制参数:
Figure PCTCN2017076335-appb-000030
其中,p用于表示光电转换控制参数,M用于表示信宿端显示设备的最高亮度值,N用于表示信宿端显示设备的最低亮度值,H用于表示最大光信号强度,L用于表示最小光信号强度。
通过本申请提供的实施例,用于光电转换的光电转换控制参数是根据采集设备采集到的采样点的光信号强度来确定的,这样根据采集到的媒体数据中的采样点的光信号强度自适应调整不同光强度区域的转换曲线,以使转换过程可以准确反映出转换前后的细节信息,进而保证了媒体数据转换处理的准确性。
作为一种可选的方案,编码单元包括:
1)第一编码模块,设置为对电信号的电信号强度进行量化处理后得到的量化结果进行编码;
2)第二编码模块,设置为对光电转换控制参数进行编码;
3)写入模块,设置为将量化结果及光电转换控制参数编码后的编码比特写入码流。
可选地,在本实施例中,写入模块通过以下至少一种方式实现将光电转换控制参数编码后的编码比特写入码流:
(1)将光电转换控制参数编码后的编码比特写入码流的参数集数据单元;
(2)将光电转换控制参数编码后的编码比特写入码流的补充增强信息数据单元;
(3)将光电转换控制参数编码后的编码比特写入码流的系统层数据单元。
可选地,在本实施例中,写入模块通过以下方式实现将光电转换控制参数编码后的编码比特写入码流的系统层数据单元:将光电转换控制参数编码后的编码比特写入系统层数据单元中的文件格式数据单元中和/或描述子数据单元中。
通过本申请提供的实施例,通过将光电转换控制参数编码后的编码比特写入码流中不同的数据单元中,以便于信宿端在解析码流后,可以准确执行对应的电光转换过程。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例4
在本实施例中还提供了一种媒体数据处理装置,该装置用于实现上述 实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本发明实施例的媒体数据处理装置的结构框图,如图5所示,该装置包括:
1)获取单元502,设置为解析码流,获取待处理的电信号及电光转换控制参数;
2)转换单元504,设置为根据电光转换控制参数对电信号进行电光转换,得到转换后的光信号的光信号强度;
3)显示单元506,设置为根据光信号的光信号强度控制信宿端显示设备的显示。
可选地,在本实施例中,上述媒体数据处理装置可以但不限于应用于媒体数据处理系统中,其中,该系统包括:信源端采集设备及信宿端显示设备。以视频通信应用为例,上述设备可以但不限于为视频通信应用中相关码流生成设备和接收播放设备,例如,手机、计算机、服务器、机顶盒、便携式移动终端、数字摄像机,电视广播系统设备等。假设如图2所示码流生成设备(信源端采集设备)可以为手机202,接收播放设备(信宿端显示设备)可以为计算机204。上述仅为一种示例,本实施例中对此不做任何限定。
需要说明的是,在本实施例中,信宿端显示设备解析码流,获取待处理的电信号及电光转换控制参数;并根据电光转换控制参数对电信号进行电光转换,得到转换后的光信号的光信号强度;进一步,根据光信号的光信号强度控制信宿端显示设备的显示。也就是说,在信宿端解析码流,并获得用于电光转换过程的电光转换控制参数,然后根据电光转换控制参数对电信号进行电光转换,得到转换后的光信号的光信号强度。其中,利用与光电转换控制参数对应的电光转换控制参数,可以达到自适应调整采集 到的媒体数据(如视频或图像)在不同光强度区域中采样点的光信号的转换曲线,有效地保持了光电转换前后媒体数据的细节信息,以实现提高媒体数据转化处理的准确性的效果,进而克服相关技术中媒体数据处理准确性较低的问题。
可选地,在本实施例中,转换单元包括:
(1)判断模块,设置为判断电信号的电信号强度是否大于预定阈值;
(2)转换模块,设置为在电信号的电信号强度大于预定阈值时,利用电光转换控制参数对电信号的电信号强度进行电光转换,得到与电信号的电信号强度对应的光信号的光信号强度。
需要说明的是,在本实施例中,在电信号的电信号强度大于预定阈值时,通过引入电光转换控制参数,使得在对媒体数据进行转换处理时,转换曲线可以随不同亮度范围特征进行动态的自适应调整,从而实现对媒体数据的准确转换的效果。
可选地,在本实施例中,转换模块通过以下方式实现利用电光转换控制参数对电信号的电信号强度进行电光转换,得到与电信号的电信号强度对应的光信号的光信号强度:
Figure PCTCN2017076335-appb-000031
其中,E用于表示与电信号的电信号强度对应的光信号的光信号强度,E'用于表示电信号的电信号强度,p用于表示电光转换控制参数,Emax用于表示参考点的最大亮度值;a、b表示预设控制参数。
也就是说,在信宿端的电光转换过程中,使用与对数映射曲线具有相似特性的有理函数曲线确定电光转换函数(如公式(1)),其中,该电光转换函数中包括上述电光转换控制参数p。通过含上述电光转换控制参数p进行电光转换,以得到对应的光信号的光信号强度。其中,这里得到的光信号的光信号强度可以准确反映在不同光强度区域中媒体数据的细节信息,从而实现提高媒体数据转换处理的准确性的效果。此外,在本实施 例中,上述电光转换函数可以为有理函数,使用有理函数来实现电光转换的方式,相对于相关技术中使用HLG转换函数的方式时,需要执行复杂的对数和指数操作,将大大降低了转换过程的整体计算复杂度,同时还实现提高了数据处理精度的效果。
此外,在电信号的电信号强度小于等于预定阈值时,可以但不限于采用相关技术(在使用HLG转换参数的方案)中提供的光电转换方式进行光电转换:
E=(E'/r)2  (2)
其中,上述r是参考值。可选地,在信源端可以但不限于将r的值设置为0.5。
可选地,在本实施例中,获取单元包括以下至少之一:
(1)第一获取模块,设置为获取码流中携带的电光转换控制参数;
(2)第二获取模块,设置为获取电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度;确定模块,设置为根据电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度确定电光转换控制参数。
也就是说,在本实施例中,可以直接获取写入码流的光电转换控制参数作为电光转换控制参数,也可以根据电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度确定电光转换控制参数。
可选地,在本实施例中,第一获取模块包括以下至少之一:
(1)第一获取子模块,设置为获取码流中参数集数据单元中携带的电光转换控制参数;
(2)第二获取子模块,设置为获取码流中补充增强信息数据单元中携带的电光转换控制参数;
(3)第三获取子模块,设置为获取码流中系统层数据单元中携带的电光转换控制参数。
需要说明的是,在本实施例中,补充增强信息数据单元中携带的电光转换控制参数覆盖参数集数据单元中携带的电光转换控制参数和/或系统层数据单元中携带的电光转换控制参数,参数集数据单元中携带的电光转换控制参数覆盖系统层数据单元中携带的电光转换控制参数。
可选地,在本实施例中,1)第二获取模块包括:(1)第一获取子模块,设置为获取电信号中携带的最大光信号强度及最小光信号强度;(2)第二获取子模块,设置为获取信宿端显示设备的最高亮度值及最低亮度值;
2)确定模块通过以下方式实现根据电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度确定电光转换控制参数包括:
Figure PCTCN2017076335-appb-000032
其中,p用于表示电光转换控制参数,M用于表示信宿端显示设备的最高亮度值,N用于表示信宿端显示设备的最低亮度值,H用于表示最大光信号强度,L用于表示最小光信号强度。
可选地,在本实施例中,在根据光信号的光信号强度控制信宿端显示设备的显示之前,还包括:S1,对光信号进行伽马校正。
通过本申请提供的实施例,解析码流,获取待处理的电信号及电光转换控制参数;并根据电光转换控制参数对电信号进行电光转换,得到转换后的光信号的光信号强度;进一步,根据光信号的光信号强度控制信宿端显示设备的显示。也就是说,在信宿端解析码流,并获得用于电光转换过程的电光转换控制参数,然后根据电光转换控制参数对电信号进行电光转换,得到转换后的光信号的光信号强度。其中,利用与光电转换控制参数对应的电光转换控制参数,可以达到自适应调整采集到的媒体数据(如视频或图像)在不同光强度区域中采样点的光信号的转换曲线,有效地保持了光电转换前后媒体数据的细节信息,以实现提高媒体数据转化处理的准确性的效果,进而克服相关技术中媒体数据处理准确性较低的问题。
作为一种可选的方案,转换单元包括:
(1)判断模块,设置为判断电信号的电信号强度是否大于预定阈值;
(2)转换模块,设置为在电信号的电信号强度大于预定阈值时,利用电光转换控制参数对电信号的电信号强度进行电光转换,得到与电信号的电信号强度对应的光信号的光信号强度。
可选地,在本实施例中,假设预定阈值为r,信宿端r的取值设置为0.5。则在电信号的电信号强度E'大于r(r=0.5)时,利用电光转换控制参数对电信号的电信号强度进行电光转换,得到与电信号的电信号强度对应的光信号的光信号强度包括:
Figure PCTCN2017076335-appb-000033
其中,E用于表示与电信号的电信号强度对应的光信号的光信号强度,E'用于表示电信号的电信号强度,p用于表示电光转换控制参数,Emax用于表示参考点的最大亮度值;a、b表示预设控制参数。
需要说明的是,在本实施例中,上述Emax也是电压值,Emax的取值可以但不限于设置为12。这里确定Emax的取值的过程可以但不限于与相关技术(在使用HLG转换参数的方案)中的过程相同,本实施例中在此不再赘述。此外,在本实施例中,上述预设控制参数a、b的取值可以但不限于分别是0.17883277、0.28466892。
可选地,在本实施例中,假设预定阈值为r,信宿端r的取值设置为0.5。则在电信号的电信号强度E'小于等于r(r=0.5)时,可以但不限于通过以下方式计算对应的光信号强度值:
E=(E'/r)2  (5)
通过本申请提供的实施例,通过含上述电光转换控制参数的电光转换函数对电信号强度进行电光转换,以得到对应的光信号的光信号强度。其中,这里得到的光信号的光信号强度可以准确反映在不同光强度区域中媒体数据的细节信息,从而实现提高媒体数据转换处理的准确性的效果。
作为一种可选的方案,获取单元包括以下至少之一:
1)第一获取模块,设置为获取码流中携带的电光转换控制参数;
2)第二获取模块,设置为获取电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度;确定模块,设置为根据电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度确定电光转换控制参数。
可选地,在本实施例中,第一获取模块包括以下至少之一:
1)第一获取子模块,设置为获取码流中参数集数据单元中携带的电光转换控制参数;
2)第二获取子模块,设置为获取码流中补充增强信息数据单元中携带的电光转换控制参数;
3)第三获取子模块,设置为获取码流中系统层数据单元中携带的电光转换控制参数。
可选地,在本实施例中,补充增强信息数据单元中携带的电光转换控制参数覆盖参数集数据单元中携带的电光转换控制参数和/或系统层数据单元中携带的电光转换控制参数,参数集数据单元中携带的电光转换控制参数覆盖系统层数据单元中携带的电光转换控制参数。
可选地,在本实施例中,1)第二获取模块包括:(1)第一获取子模块,设置为获取电信号中携带的最大光信号强度及最小光信号强度;(2)第二获取子模块,设置为获取信宿端显示设备的最高亮度值及最低亮度值;
可选地,在本实施例中,确定模块通过以下方式实现根据电信号中携带的光信号的光信号强度及信宿端显示设备的设备显示亮度确定电光转换控制参数包括:
Figure PCTCN2017076335-appb-000034
其中,p用于表示电光转换控制参数,M用于表示信宿端显示设备的最高亮度值,N用于表示信宿端显示设备的最低亮度值,H用于表示最大光信号强度,L用于表示最小光信号强度。
通过本申请提供的实施例,将解析码流后获取到的电光转换控制参数用于电光转换过程中,将实现自适应调整不同光强度区域的转换曲线,以使转换过程可以准确反映出转换前后的细节信息,进而保证了媒体数据转换处理的准确性。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例5
本发明的实施例还提供了媒体数据处理系统,其中,该系统包括:
1)信源端采集设备,设置为获取信源端采集设备采集媒体数据得到的采样点的光信号;根据光电转换控制参数对采样点的光信号进行光电转换,得到转换后的电信号,其中,光电转换控制参数根据采样点的光信号的光信号强度确定;对电信号及光电转换控制参数进行编码得到码流;
2)信宿端显示设备,设置为解析码流,获取待处理的电信号及电光转换控制参数;根据电光转换控制参数对电信号进行电光转换,得到转换后的光信号的光信号强度;根据光信号的光信号强度控制信宿端显示设备的显示。
可选地,在本实施例中,上述系统可以包括但不限于:信源端采集设备和/或信宿端显示设备。以视频通信应用为例,上述设备可以但不限于为视频通信应用中相关码流生成设备和接收播放设备,例如,手机、计算机、服务器、机顶盒、便携式移动终端、数字摄像机,电视广播系统设备等。假设如图2所示码流生成设备(信源端采集设备)可以为手机202,接收播放设备(信宿端显示设备)可以为计算机204。上述仅为一种示例,本实施例中对此不做任何限定。
信源端采集设备可以但不限于使用前述实施例1中的实施方法,对输入的HDR视频或图像进行处理,产生HDR视频或图像中采样点对应的电 信号强度值。可选择地,信源端采集设备可以进一步将电信号强度值转换为二进制数字信号,并对该数字进行进行编码。可选择地,信源端采集设备可以进一步包含HDR视频或图像的采集装置。
信宿端显示设备可以但不限于使用前述实施例2中的实施方法,对接收的HDR视频或图像的码流进行处理,将HDR视频或图像转换为供显示模块进行显示的光信号强度值。
实施例6
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,获取信源端采集设备采集媒体数据得到的采样点的光信号;
S2,根据光电转换控制参数对采样点的光信号进行光电转换,得到转换后的电信号,其中,光电转换控制参数根据采样点的光信号的光信号强度确定;
S3,对电信号及光电转换控制参数进行编码得到码流。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S1,判断采样点的光信号的光信号强度是否大于预定阈值;
S2,在采样点的光信号的光信号强度大于预定阈值时,利用光电转换控制参数对采样点的光信号的光信号强度进行光电转换,得到与采样点的光信号的光信号强度对应的电信号的电信号强度。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
Figure PCTCN2017076335-appb-000035
其中,E'用于表示与采样点的光信号的光信号强度对应的电信号的电信号强度,E用于表示采样点的光信号的光信号强度,p用于表示光电转换控制参数,Emax用于表示参考点的最大亮度值;a、b表示预设控制 参数。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
在本发明实施例中,获取采集媒体数据得到的采样点的光信号,并根据光电转换控制参数对采样点的光信号进行光电转换,得到转换后的电信号,其中,光电转换控制参数根据采样点的光信号的光信号强度确定;进一步,对上述电信号及光电转换控制参数进行编码得到码流。也就是说,通过将根据采样点的光信号的光信号强度确定的光电转换控制参数进行编码写入码流,从而实现结合光信号强度来自适应调整用于进行光电转换的光电转换控制参数,以达到自适应调整采集到的媒体数据(如视频或图 像)在不同光强度区域中采样点的光信号的转换曲线,有效地保持了光电转换前后媒体数据的细节信息,以实现提高媒体数据转化处理的准确性的效果,进而克服相关技术中光电转换仅依据显示设备的亮度及环境光亮度所导致的媒体数据处理准确性较低的问题。

Claims (39)

  1. 一种媒体数据处理方法,包括:
    获取信源端采集设备采集媒体数据得到的采样点的光信号;
    根据光电转换控制参数对所述采样点的所述光信号进行光电转换,得到转换后的电信号,其中,所述光电转换控制参数根据所述采样点的所述光信号的光信号强度确定;
    对所述电信号及所述光电转换控制参数进行编码得到码流。
  2. 根据权利要求1所述的方法,其中,所述根据光电转换控制参数对所述采样点的所述光信号进行光电转换,得到转换后的电信号包括:
    判断所述采样点的所述光信号的所述光信号强度是否大于预定阈值;
    在所述采样点的所述光信号的所述光信号强度大于所述预定阈值时,利用所述光电转换控制参数对所述采样点的所述光信号的所述光信号强度进行光电转换,得到与所述采样点的所述光信号的所述光信号强度对应的所述电信号的电信号强度。
  3. 根据权利要求2所述的方法,其中,所述利用所述光电转换控制参数对所述采样点的所述光信号的所述光信号强度进行光电转换,得到与所述采样点的所述光信号的所述光信号强度对应的所述电信号的电信号强度包括:
    Figure PCTCN2017076335-appb-100001
    其中,所述E'用于表示与所述采样点的所述光信号的所述光信号强度对应的所述电信号的电信号强度,所述E用于表示所述采样点的所述光信号的所述光信号强度,所述p用于表示所述光电转换控制 参数,所述Emax用于表示参考点的最大亮度值;所述a、b表示预设控制参数。
  4. 根据权利要求2所述的方法,其中,在所述根据光电转换控制参数对所述采样点的所述光信号进行光电转换之前,还包括:
    获取所述采样点的所述光信号的所述光信号强度及信宿端显示设备的设备显示亮度;
    根据所述采样点的所述光信号的所述光信号强度和所述设备显示亮度确定所述光电转换控制参数。
  5. 根据权利要求4所述的方法,其中,所述获取所述采样点的所述光信号的所述光信号强度及信宿端显示设备的设备显示亮度包括:
    获取在采集到的所述采样点的光信号的光信号强度中的最大光信号强度及最小光信号强度;
    获取所述信宿端显示设备的最高亮度值及最低亮度值。
  6. 根据权利要求5所述的方法,其中,所述根据所述采样点的所述光信号强度和所述设备显示亮度确定所述光电转换控制参数包括:
    Figure PCTCN2017076335-appb-100002
    其中,所述p用于表示所述光电转换控制参数,所述M用于表示所述信宿端显示设备的所述最高亮度值,所述N用于表示所述信宿端显示设备的所述最低亮度值,所述H用于表示所述最大光信号强度,所述L用于表示所述最小光信号强度。
  7. 根据权利要求5所述的方法,其中,所述获取在采集到的所 述采样点的光信号的光信号强度中的最大光信号强度及最小光信号强度包括以下至少之一:
    在采集到的所述采样点的光信号的光信号强度中,获取在一个图像中的最大光信号强度及最小光信号强度;
    在采集到的所述采样点的光信号的光信号强度中,获取在多个图像中的最大光信号强度及最小光信号强度。
  8. 根据权利要求5所述的方法,其中,所述获取所述信宿端显示设备的最高亮度值及最低亮度值包括以下至少之一:
    获取所述信宿端显示设备预设的最高亮度值及最低亮度值;
    通过与所述信宿端进行交互,以获取所述信宿端显示设备所达到的最高亮度值及最低亮度值。
  9. 根据权利要求2所述的方法,其中,对所述电信号及所述光电转换控制参数进行编码得到码流包括:
    对所述电信号的所述电信号强度进行量化处理后得到的量化结果进行编码;
    对所述光电转换控制参数进行编码;
    将所述量化结果及所述光电转换控制参数编码后的编码比特写入所述码流。
  10. 根据权利要求9所述的方法,其中,将所述光电转换控制参数编码后的编码比特写入所述码流包括以下至少之一:
    将所述光电转换控制参数编码后的编码比特写入所述码流的参数集数据单元;
    将所述光电转换控制参数编码后的编码比特写入所述码流的补充增强信息数据单元;
    将所述光电转换控制参数编码后的编码比特写入所述码流的系统层数据单元。
  11. 根据权利要求10所述的方法,其中,所述将所述光电转换控制参数编码后的编码比特写入所述码流的系统层数据单元包括:
    将所述光电转换控制参数编码后的编码比特写入所述系统层数据单元中的文件格式数据单元中和/或描述子数据单元中。
  12. 根据权利要求10所述的方法,其中,在将所述光电转换控制参数编码后的编码比特写入所述码流之后,还包括:
    建立在所述码流中写入所述光电转换控制参数编码后的编码比特的数据单元与所述码流中接入单元之间的关联关系。
  13. 根据权利要求12所述的方法,其中,所述建立在所述码流中写入所述光电转换控制参数编码后的编码比特的数据单元与所述码流中接入单元之间的关联关系包括以下至少之一:
    在所述接入单元中引用所述参数集数据单元;
    将所述补充增强信息数据单元写入所述接入单元;
    将所述系统层数据单元与所述接入单元进行关联。
  14. 根据权利要求13所述方法,其中,所述将所述系统层数据单元与所述接入单元进行关联包括:
    使用指针参数指示与所述系统层数据单元关联的所述接入单元;或者,
    将所述系统层数据单元写入所述接入单元所在系统层数据单元的头信息中。
  15. 一种媒体数据处理方法,包括:
    解析码流,获取待处理的电信号及电光转换控制参数;
    根据所述电光转换控制参数对所述电信号进行电光转换,得到转 换后的光信号的光信号强度;
    根据所述光信号的所述光信号强度控制信宿端显示设备的显示。
  16. 根据权利要求15所述的方法,其中,所述根据所述电光转换控制参数对所述电信号进行电光转换,得到转换后的光信号的光信号强度包括:
    判断所述电信号的电信号强度是否大于预定阈值;
    在所述电信号的所述电信号强度大于所述预定阈值时,利用所述电光转换控制参数对所述电信号的所述电信号强度进行电光转换,得到与所述电信号的所述电信号强度对应的所述光信号的所述光信号强度。
  17. 根据权利要求16所述的方法,其中,所述利用所述电光转换控制参数对所述电信号的所述电信号强度进行电光转换,得到与所述电信号的所述电信号强度对应的所述光信号的所述光信号强度包括:
    Figure PCTCN2017076335-appb-100003
    其中,所述E用于表示与所述电信号的所述电信号强度对应的所述光信号的所述光信号强度,所述E'用于表示所述电信号的所述电信号强度,所述p用于表示所述电光转换控制参数,所述Emax用于表示参考点的最大亮度值;所述a、b表示预设控制参数。
  18. 根据权利要求15所述的方法,其中,获取所述电光转换控制参数包括以下至少之一:
    获取所述码流中携带的所述电光转换控制参数;
    获取所述电信号中携带的光信号的光信号强度及所述信宿端显示设备的设备显示亮度;根据所述电信号中携带的所述光信号的所述光信号强度及所述信宿端显示设备的设备显示亮度确定所述电光转换控制参数。
  19. 根据权利要求18所述的方法,其中,所述获取所述码流中携带的所述电光转换控制参数包括以下至少之一:
    获取所述码流中参数集数据单元中携带的所述电光转换控制参数;
    获取所述码流中补充增强信息数据单元中携带的所述电光转换控制参数;
    获取所述码流中系统层数据单元中携带的所述电光转换控制参数。
  20. 根据权利要求19所述的方法,其中,所述补充增强信息数据单元中携带的所述电光转换控制参数覆盖所述参数集数据单元中携带的所述电光转换控制参数和/或所述系统层数据单元中携带的所述电光转换控制参数,所述参数集数据单元中携带的所述电光转换控制参数覆盖所述系统层数据单元中携带的所述电光转换控制参数。
  21. 根据权利要求18所述的方法,其中,
    所述获取所述电信号中携带的光信号的光信号强度及所述信宿端显示设备的设备显示亮度包括:获取所述电信号中携带的最大光信号强度及最小光信号强度;获取所述信宿端显示设备的最高亮度值及最低亮度值;
    所述根据所述电信号中携带的所述光信号的所述光信号强度及所述信宿端显示设备的设备显示亮度确定所述电光转换控制参数包括:
    Figure PCTCN2017076335-appb-100004
    其中,所述p用于表示所述电光转换控制参数,所述M用于表示所述信宿端显示设备的所述最高亮度值,所述N用于表示所述信宿端显示设备的所述最低亮度值,所述H用于表示所述最大光信号强度, 所述L用于表示所述最小光信号强度。
  22. 根据权利要求15所述的方法,其中,在所述根据所述光信号的所述光信号强度控制信宿端显示设备的显示之前,还包括:
    对所述光信号的所述光信号强度进行伽马校正。
  23. 一种媒体数据处理装置,包括:
    第一获取单元,设置为获取信源端采集设备采集媒体数据得到的采样点的光信号;
    转换单元,设置为根据光电转换控制参数对所述采样点的所述光信号进行光电转换,得到转换后的电信号,其中,所述光电转换控制参数根据所述采样点的所述光信号的光信号强度确定;
    编码单元,设置为对所述电信号及所述光电转换控制参数进行编码得到码流。
  24. 根据权利要求13所述的装置,其中,所述转换单元包括:
    判断模块,设置为判断所述采样点的所述光信号的所述光信号强度是否大于预定阈值;
    转换模块,设置为在所述采样点的所述光信号的所述光信号强度大于所述预定阈值时,利用所述光电转换控制参数对所述采样点的所述光信号的所述光信号强度进行光电转换,得到与所述采样点的所述光信号的所述光信号强度对应的所述电信号的电信号强度。
  25. 根据权利要求24所述的装置,其中,所述转换模块通过以下方式实现对所述采样点的所述光信号的所述光信号强度进行光电转换:
    Figure PCTCN2017076335-appb-100005
    其中,所述E'用于表示与所述采样点的所述光信号的所述光信号强度对应的所述电信号的电信号强度,所述E用于表示所述采样点的所述光信号的所述光信号强度,所述p用于表示所述光电转换控制参数,所述Emax用于表示参考点的最大亮度值;所述a、b表示预设控制参数。
  26. 根据权利要求24所述的装置,其中,还包括:
    第二获取单元,设置为在所述根据光电转换控制参数对所述采样点的所述光信号进行光电转换之前,获取所述采样点的所述光信号的所述光信号强度及信宿端显示设备的设备显示亮度;
    确定单元,设置为根据所述采样点的所述光信号的所述光信号强度和所述设备显示亮度确定所述光电转换控制参数。
  27. 根据权利要求26所述的装置,其中,所述第二获取单元包括:
    第一获取模块,设置为获取在采集到的所述采样点的光信号的光信号强度中的最大光信号强度及最小光信号强度;
    第二获取模块,设置为获取所述信宿端显示设备的最高亮度值及最低亮度值。
  28. 根据权利要求27所述的装置,其中,所述确定单元通过以下方式实现根据所述采样点的所述光信号强度和所述设备显示亮度确定所述光电转换控制参数:
    Figure PCTCN2017076335-appb-100006
    其中,所述p用于表示所述光电转换控制参数,所述M用于表示所述信宿端显示设备的所述最高亮度值,所述N用于表示所述信宿端 显示设备的所述最低亮度值,所述H用于表示所述最大光信号强度,所述L用于表示所述最小光信号强度。
  29. 根据权利要求24所述的方法,其中,所述编码单元包括:
    第一编码模块,设置为对所述电信号的所述电信号强度进行量化处理后得到的量化结果进行编码;
    第二编码模块,设置为对所述光电转换控制参数进行编码;
    写入模块,设置为将所述量化结果及所述光电转换控制参数编码后的编码比特写入所述码流。
  30. 根据权利要求29所述的方法,其中,所述写入模块通过以下至少一种方式实现将所述光电转换控制参数编码后的编码比特写入所述码流:
    将所述光电转换控制参数编码后的编码比特写入所述码流的参数集数据单元;
    将所述光电转换控制参数编码后的编码比特写入所述码流的补充增强信息数据单元;
    将所述光电转换控制参数编码后的编码比特写入所述码流的系统层数据单元。
  31. 根据权利要求30所述的方法,其中,所述写入模块通过以下方式实现将所述光电转换控制参数编码后的编码比特写入所述码流的所述系统层数据单元:
    将所述光电转换控制参数编码后的编码比特写入所述系统层数据单元中的文件格式数据单元中和/或描述子数据单元中。
  32. 一种媒体数据处理装置,包括:
    获取单元,设置为解析码流,获取待处理的电信号及电光转换控制参数;
    转换单元,设置为根据所述电光转换控制参数对所述电信号进行电光转换,得到转换后的光信号的光信号强度;
    显示单元,设置为根据所述光信号的所述光信号强度控制信宿端显示设备的显示。
  33. 根据权利要求32所述的方法,其中,所述转换单元包括:
    判断模块,设置为判断所述电信号的电信号强度是否大于预定阈值;
    转换模块,设置为在所述电信号的所述电信号强度大于所述预定阈值时,利用所述电光转换控制参数对所述电信号的所述电信号强度进行电光转换,得到与所述电信号的所述电信号强度对应的所述光信号的所述光信号强度。
  34. 根据权利要求33所述的方法,其中,所述转换模块通过以下方式实现利用所述电光转换控制参数对所述电信号的所述电信号强度进行电光转换,得到与所述电信号的所述电信号强度对应的所述光信号的所述光信号强度:
    Figure PCTCN2017076335-appb-100007
    其中,所述E用于表示与所述电信号的所述电信号强度对应的所述光信号的所述光信号强度,所述E'用于表示所述电信号的所述电信号强度,所述p用于表示所述电光转换控制参数,所述Emax用于表示参考点的最大亮度值;所述a、b表示预设控制参数。
  35. 根据权利要求32所述的方法,其中,所述获取单元包括以下至少之一:
    第一获取模块,设置为获取所述码流中携带的所述电光转换控制参数;
    第二获取模块,设置为获取所述电信号中携带的光信号的光信号强度及所述信宿端显示设备的设备显示亮度;确定模块,设置为根据 所述电信号中携带的所述光信号的所述光信号强度及所述信宿端显示设备的设备显示亮度确定所述电光转换控制参数。
  36. 根据权利要求35所述的方法,其中,所述第一获取模块包括以下至少之一:
    第一获取子模块,设置为获取所述码流中参数集数据单元中携带的所述电光转换控制参数;
    第二获取子模块,设置为获取所述码流中补充增强信息数据单元中携带的所述电光转换控制参数;
    第三获取子模块,设置为获取所述码流中系统层数据单元中携带的所述电光转换控制参数。
  37. 根据权利要求36所述的方法,其中,所述补充增强信息数据单元中携带的所述电光转换控制参数覆盖所述参数集数据单元中携带的所述电光转换控制参数和/或所述系统层数据单元中携带的所述电光转换控制参数,所述参数集数据单元中携带的所述电光转换控制参数覆盖所述系统层数据单元中携带的所述电光转换控制参数。
  38. 根据权利要求35所述的方法,其中,
    所述第二获取模块包括:第一获取子模块,设置为获取所述电信号中携带的最大光信号强度及最小光信号强度;第二获取子模块,设置为获取所述信宿端显示设备的最高亮度值及最低亮度值;
    所述确定模块通过以下方式实现根据所述电信号中携带的所述光信号的所述光信号强度及所述信宿端显示设备的设备显示亮度确定所述电光转换控制参数包括:
    Figure PCTCN2017076335-appb-100008
    其中,所述p用于表示所述电光转换控制参数,所述M用于表示所述信宿端显示设备的所述最高亮度值,所述N用于表示所述信宿端 显示设备的所述最低亮度值,所述H用于表示所述最大光信号强度,所述L用于表示所述最小光信号强度。
  39. 一种媒体数据处理系统,包括:
    信源端采集设备,设置为获取信源端采集设备采集媒体数据得到的采样点的光信号;根据光电转换控制参数对所述采样点的所述光信号进行光电转换,得到转换后的电信号,其中,所述光电转换控制参数根据所述采样点的所述光信号的光信号强度确定;对所述电信号及所述光电转换控制参数进行编码得到码流;
    信宿端显示设备,设置为解析码流,获取待处理的电信号及电光转换控制参数;根据所述电光转换控制参数对所述电信号进行电光转换,得到转换后的光信号的光信号强度;根据所述光信号的所述光信号强度控制信宿端显示设备的显示。
PCT/CN2017/076335 2016-05-16 2017-03-10 媒体数据处理方法和装置及系统 WO2017197964A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/301,929 US11165944B2 (en) 2016-05-16 2017-03-10 Media data processing method, apparatus and system
EP17798530.6A EP3461118B1 (en) 2016-05-16 2017-03-10 Media data processing method and apparatus
US17/493,759 US20220030283A1 (en) 2016-05-16 2021-10-04 Media data processing method, apparatus and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610325310.XA CN107395950B (zh) 2016-05-16 2016-05-16 媒体数据处理方法和装置及系统
CN201610325310.X 2016-05-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/301,929 A-371-Of-International US11165944B2 (en) 2016-05-16 2017-03-10 Media data processing method, apparatus and system
US17/493,759 Continuation-In-Part US20220030283A1 (en) 2016-05-16 2021-10-04 Media data processing method, apparatus and system

Publications (1)

Publication Number Publication Date
WO2017197964A1 true WO2017197964A1 (zh) 2017-11-23

Family

ID=60324715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076335 WO2017197964A1 (zh) 2016-05-16 2017-03-10 媒体数据处理方法和装置及系统

Country Status (4)

Country Link
US (1) US11165944B2 (zh)
EP (1) EP3461118B1 (zh)
CN (1) CN107395950B (zh)
WO (1) WO2017197964A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102564447B1 (ko) * 2021-11-30 2023-08-08 엘지전자 주식회사 디스플레이 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103136929A (zh) * 2013-02-02 2013-06-05 深圳市格劳瑞电子有限公司 使带有感光组件的网络终端初始化的方法
US20150170340A1 (en) * 2013-05-29 2015-06-18 Panasonic Intellectual Property Management Co., Ltd. Imaging device, reconstruction device, imaging system, and imaging method
CN104813666A (zh) * 2013-10-15 2015-07-29 索尼公司 解码装置和解码方法、以及编码装置和编码方法
CN105474624A (zh) * 2014-07-28 2016-04-06 索尼公司 图像处理装置和图像处理方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008085150A1 (en) * 2006-12-21 2008-07-17 Thomson Licensing Method, apparatus and system for providing color grading for displays
US8213521B2 (en) * 2007-08-15 2012-07-03 The Nielsen Company (Us), Llc Methods and apparatus for audience measurement using global signature representation and matching
EP2684294A4 (en) * 2011-03-10 2014-08-20 Vidyo Inc RENDERING ORIENTATION DATA IN A VIDEO DATA BIT TRAIN
US9161039B2 (en) * 2012-09-24 2015-10-13 Qualcomm Incorporated Bitstream properties in video coding
RU2670782C9 (ru) * 2013-07-18 2018-11-23 Конинклейке Филипс Н.В. Способы и устройства для создания функций отображения кода для кодирования изображения hdr и способы и устройства для использования таких кодированных изображений
WO2015130797A1 (en) * 2014-02-25 2015-09-03 Apple Inc. Adaptive transfer function for video encoding and decoding
CN106134172B (zh) * 2014-06-10 2019-10-01 松下知识产权经营株式会社 显示系统、显示方法及显示装置
WO2015190246A1 (ja) * 2014-06-13 2015-12-17 ソニー株式会社 送信装置、送信方法、受信装置および受信方法
CN204168311U (zh) * 2014-08-28 2015-02-18 四川九洲电器集团有限责任公司 一种智能终端、网络终端以及网络参数配置系统
GB2549521A (en) * 2016-04-21 2017-10-25 British Broadcasting Corp Method and apparatus for conversion of dynamic range of video signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103136929A (zh) * 2013-02-02 2013-06-05 深圳市格劳瑞电子有限公司 使带有感光组件的网络终端初始化的方法
US20150170340A1 (en) * 2013-05-29 2015-06-18 Panasonic Intellectual Property Management Co., Ltd. Imaging device, reconstruction device, imaging system, and imaging method
CN104813666A (zh) * 2013-10-15 2015-07-29 索尼公司 解码装置和解码方法、以及编码装置和编码方法
CN105474624A (zh) * 2014-07-28 2016-04-06 索尼公司 图像处理装置和图像处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3461118A4 *

Also Published As

Publication number Publication date
CN107395950B (zh) 2021-11-09
EP3461118A1 (en) 2019-03-27
US11165944B2 (en) 2021-11-02
CN107395950A (zh) 2017-11-24
EP3461118A4 (en) 2019-08-14
EP3461118B1 (en) 2024-01-17
US20200322645A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
US10616497B2 (en) Method and apparatus for processing image signal conversion, and terminal device
RU2640717C1 (ru) Кодирование, декодирование и представление изображений с расширенным динамическим диапазоном
EP3220349A1 (en) Methods, apparatus, and systems for extended high dynamic range ("hdr") hdr to hdr tone mapping
RU2013152737A (ru) Устройства и способы для кодирования и декодирования hdr-изображений
EP2526695A1 (en) Image encoder and image decoder
JP2018530031A (ja) パラメトリック・トーン調整関数を使用してピクチャをトーン・マッピングする方法およびデバイス
US20230140259A1 (en) Image dynamic range processing method and apparatus
US20220256157A1 (en) Method and apparatus for processing image signal conversion, and terminal device
CN113676773B (zh) 一种视频播放方法、系统、装置、计算机设备和存储介质
WO2017197964A1 (zh) 媒体数据处理方法和装置及系统
KR20180015248A (ko) 비디오 인코딩 방법, 비디오 디코딩 방법, 비디오 인코더 및 비디오 디코더
US11146826B2 (en) Image filtering method and apparatus
US20220030283A1 (en) Media data processing method, apparatus and system
US20180268529A1 (en) Method and Apparatus for Processing High Dynamic Range Image, and Terminal Device
WO2021223540A1 (zh) 一种高动态范围hdr视频的处理方法、编码设备和解码设备
CN110999300B (zh) 用于图像/视频处理的单通道逆映射
KR20240055819A (ko) 비디오 인코딩 방법과 장치, 및 비디오 디코딩 방법과 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017798530

Country of ref document: EP

Effective date: 20181217