WO2017197838A1 - 一种用于非共沸工质组分调节的撞击式t形管组分调节器 - Google Patents

一种用于非共沸工质组分调节的撞击式t形管组分调节器 Download PDF

Info

Publication number
WO2017197838A1
WO2017197838A1 PCT/CN2016/103522 CN2016103522W WO2017197838A1 WO 2017197838 A1 WO2017197838 A1 WO 2017197838A1 CN 2016103522 W CN2016103522 W CN 2016103522W WO 2017197838 A1 WO2017197838 A1 WO 2017197838A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet
tube
pipe
regulator
shaped
Prior art date
Application number
PCT/CN2016/103522
Other languages
English (en)
French (fr)
Inventor
赵力
苏文
郑楠
邓帅
卢培
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to US16/086,848 priority Critical patent/US10835841B2/en
Publication of WO2017197838A1 publication Critical patent/WO2017197838A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0063Regulation, control including valves and floats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0068General arrangements, e.g. flowsheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0073Degasification of liquids by a method not covered by groups B01D19/0005 - B01D19/0042
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/04Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases

Definitions

  • the present invention relates to the field of multiphase flow separation technology, and more particularly to an apparatus and method for component separation of non-azeotropic mixtures.
  • Thermal cycling such as organic Rankine cycle, refrigeration, heat pump, etc.
  • thermal power conversion is the main technical means to achieve thermal power conversion. Therefore, continuously improving the technical level of energy transfer and conversion in the circulatory system to reduce losses is the key to realizing energy saving and emission reduction in China.
  • the component adjustment technology is used to continuously change the group distribution ratio in the thermal cycle system, thereby realizing the variable load regulation of the thermal system.
  • the concentration of the higher boiling component in the gas phase is less than its concentration in the liquid phase, and the concentration of the lower boiling component in the gas phase is greater than in the liquid phase. concentration. Therefore, the conventional component regulating device gas-liquid separator, such as the separation tank, realizes the change of the circulating concentration of the components in the thermal system according to the difference in the concentration of the components of the gas phase and the liquid phase in the gas-liquid phase equilibrium.
  • the conventional component regulating device is not only bulky, but also has high investment and is inconvenient to install, update and maintain in the thermal system.
  • the technical problem to be solved by the present invention is that the present invention utilizes the uneven distribution of gas and liquid of the T-shaped tube and the unequal characteristics of the gas-liquid component of the non-azeotropic working medium, and provides a percussive T-shaped shape with a wide range of components continuously adjusted.
  • the pipe regulator and the adjusting method solve the technical problem that the existing component regulator can only obtain the proportion of the gas-liquid component of the mixed working fluid.
  • the present invention provides an impact type T-tube component regulator for non-azeotropic refrigerant component adjustment, which is provided by a horizontally disposed inlet pipe and an outlet pipe communicating with the inlet pipe.
  • the outlet pipe comprises an upper outlet pipe section above the inlet pipe and a lower outlet pipe section below the inlet pipe; one end of the inlet pipe is an inlet of a mixed working fluid, and the inlet pipe is another One end is connected to the outlet pipe, the upper port of the upper outlet pipe section is an upper outlet, and the lower port of the lower outlet pipe section is a lower outlet; the non-azeotropic working medium is divided into two paths from the inlet pipe.
  • the liquid phase of the non-azeotropic working fluid flows all the way out from the lower outlet of the lower outlet pipe section, and the other is the gas phase of the non-azeotropic working fluid discharged from the upper outlet of the upper outlet pipe section.
  • the above-mentioned inlet of the mixed working medium of the impact type T-shaped tube component regulator for adjusting the non-azeotropic working fluid component is connected to the conveying pipe of the gas-liquid mixed working medium, and the upper and lower outlets are respectively respectively It is connected with two outlet pipes, and each of the two outlet pipes is respectively provided with a regulating valve, and the proportion of the flow rate of the mixed working fluid outlet is adjusted by the regulating valve to realize component separation of the mixed working medium.
  • a component regulator may be constituted by a plurality of T-shaped tubes, including 2 or 2 An array of T-shaped tubes formed by the above connected T-shaped tubes, wherein the lower outlet of the T-shaped tube in the front of the T-shaped tube array is connected to the inlet of the mixed working medium of the T-shaped tube connected thereto, and each T The upper outlet of the tube is connected with an upper collecting pipe; the inlet of the mixed working medium of the inlet pipe of the front T-shaped pipe is the inlet of the mixed working medium of the regulator, and is located under the lower outlet pipe section of the last T-shaped pipe
  • the port is a liquid phase outlet of the regulator; one end of the manifold is connected to an upper outlet of the upper outlet tube section of the T-tube located at one end of the T-tube array, the other end of the manifold being a regulator a gas phase outlet; after the inlet of the mixed
  • the lower exit tube section of the front T-shaped tube and the rear T-shaped tube A cross-flow valve is provided at the junction of the inlet pipe, and the range of composition adjustment is achieved by adjusting a throttle valve between two adjacent T-shaped pipes.
  • the liquid phase outlet of the regulator is connected to a horizontal outlet pipe; the gas phase outlet of the regulator is connected to an upper outlet pipe having an opening upward.
  • the invention Compared with the prior art, the invention has the advantages of simple structure, small volume, low cost, and continuous adjustment of components. At the same time, since it is a tubular device, the invention can be used for online component separation tasks, and maintenance and replacement are more convenient.
  • Figure 1 is a schematic view of a component regulator composed of a single T-shaped tube
  • Figure 2 is a schematic view of a component regulator of a composite T-tube
  • Figure 3 is a schematic view of a component regulator of a composite T-shaped tube
  • Figure 4 is a schematic view of a component regulator of a composite T-shaped tube
  • Figure 5 is a schematic view of a component regulator of a composite T-shaped tube
  • Figure 6 is an experimental flow chart for testing the separation effect of the mixing medium component of the apparatus of the present invention.
  • Figure 7 is the separation and effect of the mixed working medium R134a/R245fa in the T-tube regulator
  • Figure 8 is a gas-liquid equilibrium diagram of a non-azeotropic refrigerant R134a/R245fa.
  • the impact type T-tube component regulator for non-azeotropic refrigerant component adjustment is connected by single or multiple
  • the T-shaped tube is mainly composed of an inlet pipe and an outlet pipe.
  • it When it is composed of a plurality of connected T-shaped pipes, it also includes an upper collecting pipe 3 communicating with an outlet pipe of each T-shaped pipe and two adjacent T pipes.
  • a throttle valve is formed between the tubes, and the diameters of the tubes may be equal or unequal, and the cross-sectional shape of each tube may be a circular tube, a square tube or a tube of other cross-sectional shape.
  • the component regulator comprises a mixed working fluid inlet and two mixed working fluid outlets, and the non-azeotropic working gas-liquid two-phase flows through the horizontal inlet pipe, and the liquid component with more heavy components flows out from the lower outlet pipe, and the light component More gas phase flows out of the upper outlet pipe.
  • the non-azeotropic working fluid flowing from the horizontal inlet pipe 2 and the component will occur in the vertical direction after striking the T-shaped pipe. Separation, the liquid phase containing more heavy components flows out to the lower outlet 7, and the gas phase containing more light components is discharged to the upper outlet 8.
  • the ratio of the upper and lower outlet mixed working fluid flows can be controlled by valves respectively connected to the two outlet pipes.
  • the present invention relates to an impact type T-tube component regulator for non-azeotropic refrigerant component adjustment, which is provided by a horizontally disposed inlet pipe 2 and an outlet pipe communicating with the inlet pipe 2
  • the outlet pipe comprises an upper outlet pipe section 9 above the inlet pipe 2 and a lower outlet pipe section 6 below the inlet pipe 2; one end of the inlet pipe 2 is an inlet 1 of a mixed working medium, The other end of the inlet pipe 2 is connected to the outlet pipe, the upper port of the upper outlet pipe section 9 is an upper outlet 8, and the lower port of the lower outlet pipe section 6 is a lower outlet 7; the non-azeotropic working medium
  • the inlet pipe 2 is divided into two paths, one is a liquid phase of a non-azeotropic working medium (usually also with a small amount of gas phase) flowing out from the lower outlet 7 of the lower outlet pipe section 6, and the other is a non-azeotropic worker
  • the gaseous gas phase (usually also with respect to a small amount of liquid phase
  • FIG 2 shows an embodiment 1 of a percussive T-tube component regulator for non-azeotropic refrigerant composition adjustment consisting of a plurality of T-tubes as shown in Figure 1, the structure of which is: An array of T-tubes consisting of two or more connected T-tubes, a mixture of the lower outlet 7 of the T-shaped tube in the front of the T-tube array and the T-tube connected thereto The quality inlets 1 are connected, and the upper outlets 8 of each T-shaped tube are connected with an upper collecting tube 3; the inlet 1 of the mixed working medium of the inlet tube 2 of the frontmost T-shaped tube is the inlet of the mixing medium of the regulator.
  • the lower port of the lower outlet pipe section 6 of the last T-shaped pipe is the liquid phase outlet of the regulator, and the liquid phase outlet of the regulator is connected with a horizontal outlet pipe; in the adjacent two T-shaped pipes, A throttle valve 5 is provided at the junction of the lower outlet pipe section 6 of the front T-shaped pipe and the inlet pipe 2 of the rear T-shaped pipe.
  • One end of the collecting pipe 3 is connected to the upper outlet 8 of the upper outlet pipe section of the T-shaped pipe at one end of the T-shaped pipe array, and the other end of the collecting pipe 3 is a gas phase outlet of the regulator;
  • the azeotrope is divided into two paths after entering the inlet tube of a T-shaped tube, and the liquid phase of the non-azeotropic working medium passes through each T-shaped tube in turn.
  • the lower outlet 7 flows out from the liquid phase outlet of the regulator, the other is the gas phase of the non-azeotropic working medium discharged from the upper outlet 8 and collected through the upper collecting tube 3 It is then discharged from the gas phase outlet of the regulator.
  • each T-tube will be throttled down by the throttle valve, thereby changing the proportion of gas-liquid components, and further adjusting the composition ratio in the next T-tube.
  • Each of the upper outlet working fluids flows out through the collecting pipe.
  • the composite T-shaped tube expands the range of component adjustment by continuously changing the ratio of gas-liquid components and continuously separating components, thereby concentrating the concentration of a certain component.
  • the horizontal inlet of the single T-tube regulator or the composite T-tube regulator is connected to the conveying pipe of the non-azeotropic refrigerant gas-liquid two-phase mixture in the thermal system, and the two outlets of the T-shaped pipe are respectively connected to the two outlet pipes And the valve is adjusted on the pipeline to adjust the flow.
  • the distribution ratio of the mixed working fluid outlet can be adjusted through the valves on the two outlet pipes, and the components of the working medium are separated at an appropriate distribution ratio.
  • the composite T-tube it is also possible to change the ratio of the gas-liquid component by adjusting the throttle valve on the throttle tube to achieve multiple separation of the components. Under certain controlled conditions, the non-azeotropic working medium can be efficiently separated in the apparatus of the present invention.
  • Figure 3 shows an embodiment 2 of an impact type T-tube component regulator for non-azeotropic refrigerant composition adjustment consisting of a plurality of T-tubes as shown in Figure 1, which is the above embodiment.
  • the derivation structure of the 1-component regulator has the same structure as that of Embodiment 1, except that the liquid phase outlet of the component regulator is the lower outlet of the last T-tube vertically downward, which is convenient for the thermal system.
  • the vertical pipes are connected, and the separation principle of Embodiment 2 is the same as that of Embodiment 1.
  • Figure 4 shows an embodiment 3 of an impact type T-tube component regulator for non-azeotropic refrigerant composition adjustment consisting of a plurality of T-shaped tubes as shown in Figure 1, which is the above embodiment.
  • the structure of the one-component regulator has the same structure as that of the first embodiment, except that the upper collecting pipe port of the component regulator is closed, and a collecting pipe upper outlet pipe 9 is added to the upper collecting pipe.
  • the position can be installed at any position on the upper collecting pipe, and the separation principle of Embodiment 3 is the same as that of Embodiment 1.
  • Figure 5 shows an embodiment 4 of an impact type T-tube component regulator for non-azeotropic refrigerant composition adjustment consisting of a plurality of T-tubes as shown in Figure 1, which is the above embodiment.
  • the derivative structure of the 3-component regulator has the same structure as that of Embodiment 3, except that the liquid phase outlet of the component regulator is the lower outlet of the last T-shaped tube vertically downward, which is convenient for the thermal system.
  • the vertical pipes are connected, and the separation principle of Embodiment 4 is the same as that of Embodiment 3.
  • Figure 6 is a flow chart of the experiment for testing the separation effect of the mixed working fluid components of the apparatus of the present invention.
  • the mixed working fluid in the liquid storage tank 21 is pressurized by the working fluid pump 11, it flows through the mass flow meter 12 and the heating pipe 13 to form a gas-liquid mixture, enters the horizontal inlet pipe of the T-shaped pipe, and adjusts the T-shaped pipe up and down.
  • Export valves 16, 19, control two
  • the flow distribution ratio of the outlet optimizes the component separation efficiency of the T-shaped tube, and the gas-liquid mixture of the upper and lower outlets is condensed into a saturated liquid through the condensers 14, 17 and then flows through the mass flow meter 15, 18, and then the two fluids are mixed.
  • the condenser 20 reaches the liquid storage tank.
  • the flow meter used in the experimental system can not only test the mass flow rate of the mixed working medium per unit time, but also test its density, so as to calculate the proportion of the components according to the physical property rule of the mixed working medium.
  • the experimental data of the system can be studied by Professor Zhao Li in 2016, Zheng N, Hwang Y b, Zhao L, Deng S. Experimental study on the distribution of constituents of binary zeotropic mixtures in vertical impacting T-junction [J]. International Journal of Heat The component separation efficiency index proposed by and Mass Transfer, 97(1), 242-252 was evaluated.
  • Component separation was performed using a single T-tube regulator as shown in FIG.
  • the R134a/R245fa two working fluids are used to form a non-azeotropic mixing system.
  • the single T-shaped tube is used to realize the continuous adjustment of the working fluid components under the ratio of gas-liquid components.
  • the importer The mass flow rate is 200Kgm-2s-1, and the mass fraction of the imported working fluid component R134a is 0.3215.
  • the mass fraction of the R134a at the outlet of the T-shaped tube and the separation efficiency of the R134a and R245fa components are different with the dryness of the imported mixed working fluid.
  • Figure 7 shows.
  • the abscissa indicates the dryness of the mixed working fluid at the inlet of the T-tube in the experiment.
  • the left ordinate indicates the mass fraction of R134a
  • the right ordinate indicates the difference between the separation efficiencies of R134a and R245fa components.
  • the separation effect of the components The diagonal line is the mass fraction of the gas-liquid component R134a under different dryness
  • the broken line indicates the mass fraction of the imported working fluid component R134a
  • the triangle is the mass fraction of the outlet T134 under the corresponding dryness of the T-shaped tube
  • the square indicates the corresponding dry
  • the difference in component separation efficiency It can be seen from Fig.
  • the ratio of gas-liquid component of non-azeotropic refrigerant R134a/R245fa will be significantly different under certain pressure and temperature, as shown in Fig. 8.
  • the abscissa indicates the mass fraction of the working medium R134a in the mixed working medium R134a/R245fa
  • the ordinate indicates the temperature at which the mixed working medium is in phase equilibrium
  • the broken line indicates the dew point temperature under the corresponding component
  • the solid line indicates the bubble point temperature
  • the point The intersection of the chemical line and the two corresponds to the gas-liquid component ratio XG, XL at the same pressure temperature. It can be seen from the figure that the proportions of the components corresponding to different pressure temperatures are also different. Therefore, the composite T-shaped tube changes the pressure temperature of the intermediate lower outlet mixed working medium through the throttling process, thereby continuously changing the gas-liquid component of the mixed working fluid.
  • the ratio and the separation of multiple components enable a wide range of adjustment of the components.
  • the component regulator of the present invention utilizes the characteristics of non-azeotropic working gas and liquid components and the vertical impinging T-shaped tee to distribute the two-phase flow unevenly, mainly by the impact type T-tube and gas.
  • the liquid two-phase throttle valve is configured to flow a plurality of T-shaped tubes and a throttle valve at a time during the fluid flow, thereby achieving the purpose of component separation.
  • the proportion of the gas-liquid component of the mixture is constantly changed by the throttling and anti-pressure action of the throttle valve, so that the composition thereof changes.
  • the range is larger and the adjustment efficiency is significantly improved.
  • the regulator has the advantages of simple structure, intensive, low cost, safety, high efficiency of component adjustment, and convenient installation, replacement and maintenance on the pipeline.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pipeline Systems (AREA)

Abstract

一种用于非共沸工质组分调节的撞击式T形管组分调节器,由单个T形管或多个T形管连接而成,单个T形管由进口管(2)、上出口管(9)和下出口管(6)组成。调节器由多个相连的T形管构成时,调节器还包括与每个T形管的上出口管(9)连通的上汇集管(3)和位于相邻两个T形管之间的节流阀(5)。该调节器利用非共沸工质气液组分不等及竖直撞击式T形管对两相流动分配不均的特性,使流体一次流过多个T形管及节流阀(5),从而达到组分分离的目的。对于单个T形管,可以使上下出口(7,8)的组分在气液组分之间连续调节。对于复合T形管,通过节流阀(5)的节流降压作用不断改变混合物气液组分的比例,从而扩大组分调节的范围。该调节器具有结构简单、调节效率高以及维护方便等优点。

Description

一种用于非共沸工质组分调节的撞击式T形管组分调节器 技术领域
本发明涉及多相流分离技术领域,特别涉及一种用于非共沸混合物组分分离的装置和方法。
背景技术
热力循环,如有机朗肯循环、制冷、热泵等,是实现热功转换的主要技术手段。因此,不断提高循环系统中能量传递和转换的技术水平以减少损失,是实现我国节能减排的关键所在。为了提高变负荷下实际热力系统的运行效率,基于非共沸混合工质的循环特性,采用组分调节技术,不断改变热力循环系统中组分配比,从而实现热力系统的变负荷调节。
在非共沸混合工质相平衡理论中,沸点较高的组分在气相中的浓度小于其在液相中的浓度,沸点较低的组分在气相中的浓度大于其在液相中的浓度。因此,传统的组分调节装置气液分离器,如分离罐,依据处于气液相平衡的混合工质气相与液相的组分浓度差异实现热力系统中组分循环浓度的改变。然而此类装置只能得到气相或液相的组分浓度,不能得到两者之间的浓度,更不能将组分调节扩大到气液组分浓度之外。同时,传统组分调节装置不仅体积庞大,投资高而且在热力系统中的安装、更新以及维护保养都不方便。
T形三通管作为流体分配的一个常用管件,早在1960年代就有文献报道了当气液两相流流经T形管时,出现相分离的现象。中国专利CN200910029249.4《一种多相流分离的复合T形管分离器及其分离方法》、CN201210015904.2《一种两相流或多相流分离的多层复合T形管分离器》利用复合及多层顺流型T形管提高了气液两相流分离的效率。2016年天津大学赵力教授(Zheng N,Hwang Y b,Zhao L,Deng S.Experimental study on the distribution of constituents of binary zeotropic mixtures in vertical impacting T-junction[J].International Journal of Heat and Mass Transfer,97(1),242-252)基于T形管的气液分布不均及非共沸工质的气液组分不等特性,报道了利用撞击式T形管实现组分连续调节的基本原理。对于单个T形管,可以实现工质组分配比在气液组分浓度间的连续调节,同时为了扩大组分调节的范围,本发明亦采用复合T形管组分调节技术,从 而使撞击式T形管组分分离技术具有大规模工业应用的可能。
发明内容
本发明要解决的技术问题是:本发明利用T形管的气液分布不均及非共沸工质的气液组分不等特性,提供一种组分大范围连续调节的撞击式T形管调节器及调节方法,解决现有组分调节器只能得到混合工质气液组分比例的技术问题。
为了解决上述技术问题,本发明提出的一种用于非共沸工质组分调节的撞击式T形管组分调节器,由水平设置的进口管和与所述进口管相交连通的出口管构成,所述出口管包括位于所述进口管之上的上出口管段和位于所述进口管之下的下出口管段;所述进口管的一端是混合工质的进口,所述进口管的另一端与所述出口管贯通,所述上出口管段的上端口为上出口,所述下出口管段的下端口为下出口;所述非共沸工质自所述进口管后分为两路,一路是非共沸工质的液相从所述下出口管段的下出口流出,另一路是非共沸工质的气相从所述上出口管段的上出口排出。
将上述用于非共沸工质组分调节的撞击式T形管组分调节器的水平方向的混合工质的进口与气液混合工质的输送管道相连,所述上出口和下出口分别与两条出口管道相连,两条出口管道上均分别装有调节阀,通过所述调节阀调节混合工质出口的流量比例,实现混合工质的组分分离。
本发明中,在上述用于非共沸工质组分调节的撞击式T形管组分调节器的基础上,可以由多个T形管构成组分调节器,包括由2个或2个以上相连的T形管构成的T形管阵列,所述T形管阵列中、位置在前的T形管的下出口和与之相连的T形管的混合工质的进口相连,每个T形管的上出口均与一上汇集管连通;位于最前的T形管的进口管的混合工质的进口为调节器的混合工质的进口,位于最后的T形管的下出口管段的下端口为调节器的液相出口;所述汇集管的一端与位于所述T形管阵列中一端部的T形管的上出口管段的上出口连接,所述汇集管的另一端为调节器的气相出口;所述非共沸工质自所述调节器的混合工质的进口后,每进入一个T形管的进口管后均分为两路,一路是非共沸工质的液相依次通过每个T形管的下出口后从调节器的液相出口流出,另一路是非共沸工质的气相自所述上出口排放并通过上汇集管汇集后从所述调节器的气相出口排出。
进一步讲,相邻的两个T形管中,在前的T形管的下出口管段与在后的T形管的 进口管的连接处设有一节流阀,通过调节相邻两个T形管之间的节流阀实现组分调节的范围。
所述调节器的液相出口连接有一水平方向的下出口管;所述调节器的气相出口连接有一开口向上的上出口管。
本发明与现有技术相比,具有结构简单,体积小、成本低、能实现组分连续调节等优点。同时由于是管式的设备,本发明可用于在线安装完成组分分离任务,其维护,更换也更方便。
附图说明
图1是单个T形管构成的组分调节器示意图;
图2是复合T形管构成的组分调节器实施例1示意图;
图3是复合T形管构成的组分调节器实施例2示意图;
图4是复合T形管构成的组分调节器实施例3示意图;
图5是复合T形管构成的组分调节器实施例4示意图;
图6是用于测试本发明装置对混合工质组分分离效果而进行的实验流程图;
图7是混合工质R134a/R245fa在T形管调节器中的分离情况及效果;
图8是非共沸工质R134a/R245fa气液相平衡图。
图中:
1-进口           2-进口管            3-上汇集管           4-中间连接管
5-节流管         6-下出口管          7-下出口             8-上出口
9-上出口管       10-过滤器           11-工质泵            12-主质量流量计
13-电加热蒸发器  14-上出口冷凝器     15-上出口质量流量计  16-上出口阀
17-下出口冷凝器  18-下出口质量流量计 19-下出口阀          20-主冷凝器
21-储液罐
具体实施方式
下面结合附图和具体实施例对本发明技术方案作进一步详细描述,所描述的具体实施例仅对本发明进行解释说明,并不用以限制本发明。
本发明用于非共沸工质组分调节的撞击式T形管组分调节器是由单个或多个相连的 T形管构成,主要由进口管及出口管组成,由多个相连的T形管构成时,则还包括与每个T形管的出口管连通的上汇集管3和位于相邻两个T形管之间的节流阀组成,各管道的直径既可以相等也可以不相等,各管道的截面形状可以是圆形管、方形管或其它截面形状的管道。组分调节器包括一个混合工质入口和两个混合工质出口,非共沸工质气液两相经水平进口管流入,重组分较多的液相从下出口管道流出,而轻组分较多的气相从上出口管道流出。对于单个T形管,其可以实现组分配比在气液组分比例间的连续调节,从水平进口管2流入的非共沸工质,撞击T形管后将在竖直方向上发生组分分离,含重组分较多的液相往下出口7流出,含轻组分较多的气相往上出口8排出。上、下出口混合工质流量比例可以通过分别连接在两个出口管道上的阀门加以控制。
如图1所示,本发明一种用于非共沸工质组分调节的撞击式T形管组分调节器,由水平设置的进口管2和与所述进口管2相交连通的出口管构成,所述出口管包括位于所述进口管2之上的上出口管段9和位于所述进口管2之下的下出口管段6;所述进口管2的一端是混合工质的进口1,所述进口管2的另一端与所述出口管贯通,所述上出口管段9的上端口为上出口8,所述下出口管段6的下端口为下出口7;所述非共沸工质自所述进口管2后分为两路,一路是非共沸工质的液相(通常还有相对于少量的气相)从所述下出口管段6的下出口7流出,另一路是非共沸工质的气相(通常还有相对于少量的液相)从所述上出口管段9的上出口8排出。
图2示出的是由多个如图1中所示的T形管构成的用于非共沸工质组分调节的撞击式T形管组分调节器的实施例1,其结构是:包括由2个或2个以上相连的T形管构成的T形管阵列,所述T形管阵列中、位置在前的T形管的下出口7和与之相连的T形管的混合工质的进口1相连,每个T形管的上出口8均与一上汇集管3连通;位于最前的T形管的进口管2的混合工质的进口1为调节器的混合工质的进口,位于最后的T形管的下出口管段6的下端口为调节器的液相出口,所述调节器的液相出口连接有一水平方向的下出口管;相邻的两个T形管中,在前的T形管的下出口管段6与在后的T形管的进口管2的连接处设有一节流阀5。所述汇集管3的一端与位于所述T形管阵列中一端部的T形管的上出口管段的上出口8连接,所述汇集管3的另一端为调节器的气相出口;所述非共沸工质自所述调节器的混合工质的进口后,每进入一个T形管的进口管后均分为两路,一路是非共沸工质的液相依次通过每个T形管的下出口7后从调节器的液相出口流出,另一路是非共沸工质的气相自所述上出口8排放并通过上汇集管3汇集 后从所述调节器的气相出口排出。每个T形管的下出口工质都将经节流阀节流降压,从而改变气液组分比例,在下一个T形管中进一步调节组分比例。每个上出口工质经汇集管流出。与单个T形管相比,该复合T形管通过不断改变气液组分比例及不断进行组分分离,使其组分调节的范围扩大,从而使某一组分的浓度得到浓缩。
将单个T形管调节器或复合T形管调节器的水平入口与热力系统中非共沸工质气液两相混合物的输送管道相连,T形管的两个出口分别与两条出口管道相连,并在管道上分别装有调节流量的阀门。对于单个T形管,可以通过两个出口管道上的阀门调节混合工质出口的分配比例,在适当的分配比例下,使工质发生组分分离。对于复合T形管,还可以通过调节节流管上的节流阀,改变气液组分的比例,实现组分的多次分离。在一定的控制条件下,可以使非共沸工质在本发明装置内获得高效的分离。
图3示出的是由多个如图1中所示的T形管构成的用于非共沸工质组分调节的撞击式T形管组分调节器的实施例2,是上述实施例1组分调节器的衍生结构,其结构与实施例1基本相同,不同仅在于:该组分调节器的液相出口就是最后一个T形管的下出口竖直向下,便于与热力系统的竖直管道相连,实施例2与实施例1的分离原理相同。
图4示出的是由多个如图1中所示的T形管构成的用于非共沸工质组分调节的撞击式T形管组分调节器的实施例3,是上述实施例1组分调节器的衍生结构,其结构与实施例1基本相同,不同仅在于:该组分调节器的上汇集管端口封闭,而在上汇集管上加装一个汇集管上出口管9,以便与热力系统的竖直管道相连,其位置可以安装在上汇集管上的任何位置,实施例3与实施例1的分离原理相同。
图5示出的是由多个如图1中所示的T形管构成的用于非共沸工质组分调节的撞击式T形管组分调节器的实施例4,是上述实施例3组分调节器的衍生结构,其结构与实施例3基本相同,不同仅在于:该组分调节器的液相出口就是最后一个T形管的下出口竖直向下,便于与热力系统的竖直管道相连,实施例4与实施例3的分离原理相同。
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。下面描述用来进行组分分离的实验设备和实验方法。
图6为用于测试本发明装置对混合工质组分分离效果而进行的实验流程图。在储液罐21中的混合工质经过工质泵11加压后,流经质量流量计12和加热管道13,形成气液混合物,进入T形管的水平入口管,同时调节T形管上下出口的阀门16,19,控制两 出口的流量分配比例,使T形管的组分分离效率优化,上下出口的气液混合物分别经冷凝器14,17冷凝成饱合液后流经质量流量计15,18,然后两流体混合经过冷凝器20,到达储液罐。实验系统中所用流量计不仅能测试混合工质单位时间内的质量流量,还能测试其密度,从而根据混合工质的物性法则推算出其组分比例。该系统的实验数据可由赵力教授于2016年Zheng N,Hwang Y b,Zhao L,Deng S.Experimental study on the distribution of constituents of binary zeotropic mixtures in vertical impacting T-junction[J].International Journal of Heat and Mass Transfer,97(1),242-252提出的组分分离效率指标进行评价。
采用图1所示的单个T形管调节器进行组分分离。以R134a/R245fa两种工质组成非共沸混合体系,采用单个T形管实现工质组分在气液组分比例下的连续调节,当T形管进出口管道直径比为0.457,进口工质质量流量为200Kgm-2s-1,进口工质组分R134a质量分数为0.3215,此时T形管下出口R134a质量分数及R134a与R245fa组分分离效率差随进口混合工质干度的变化如图7所示。图7中,横坐标表示实验中T形管进口处混合工质的干度,左边纵坐标表示R134a的质量分数,右边纵坐标表示R134a与R245fa组分分离效率之差,用以评价T形管的组分分离效果。斜线为不同干度下气液相组分R134a的质量分数,虚线表示进口工质组分R134a的质量分数,三角形为相应干度的T形管下出口R134a的质量分数,方框表示相应干度的组分分离效率差值。由图7可见,随着进口干度的增加,下出口R134a的质量分数逐渐减小,效率差值也从正的变为负,表示进口干度的增加会使下出口中R245fa的质量分数逐渐增大。
对于复合T形管,在一定压力、温度下,非共沸工质R134a/R245fa气液相组分比例将产生显著性差异,如图8所示。图8中,横坐标表示混合工质R134a/R245fa中工质R134a质量分数,纵坐标表示混合工质处于相平衡时温度,虚线表示相应组分下的露点温度,实线表示泡点温度,点化线与两者的交点分别对应相同压力温度下的气液相组分比例XG,XL。从图中可以看出,不同压力温度所对应的组分比例也不一样,因此复合T形管通过节流过程改变中间下出口混合工质的压力温度,从而不断改变混合工质气液组分比例,并经过多重组分分离,实现组分的大范围调节。
综上,本发明组分调节器利用了非共沸工质气液组分不等及竖直撞击式T形三通管对两相流动分配不均的特性,主要由撞击式T形管和气液两相节流阀构成,使流体流动过程中一次流过多个T形管及节流阀,从而达到组分分离的目的。对于单个T形管,可 以使上下出口的组分在气液组分之间连续调节,而对于复合T形管,通过节流阀的节流降压作用,不断改变混合物气液组分的比例,使得其组分变化的范围更大,调节效率显著提高。该调节器具有结构简单、集约、成本低、安全、组分调节效率高以及在管路上安装、更换、维护方便等优点。
尽管上面结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变形,这些均属于本发明的保护之内。

Claims (5)

  1. 一种用于非共沸工质组分调节的撞击式T形管组分调节器,由水平设置的进口管(2)和与所述进口管(2)相交连通的出口管构成,所述出口管包括位于所述进口管(2)之上的上出口管段(9)和位于所述进口管(2)之下的下出口管段(6);其特征在于,所述进口管(2)的一端是混合工质的进口(1),所述进口管(2)的另一端与所述出口管贯通,所述上出口管段(9)的上端口为上出口(8),所述下出口管段(6)的下端口为下出口(7);所述非共沸工质自所述进口管(2)后分为两路,一路是非共沸工质的液相从所述下出口管段(6)的下出口(7)流出,另一路是非共沸工质的气相从所述上出口管段(9)的上出口(8)排出。
  2. 根据权利要求1所述用于非共沸工质组分调节的撞击式T形管组分调节器,其特征在于,包括由2个或2个以上相连的T形管构成的T形管阵列,所述T形管阵列中、位置在前的T形管的下出口(7)和与之相连的T形管的混合工质的进口(1)相连,每个T形管的上出口(8)均与一上汇集管(3)连通;位于最前的T形管的进口管(2)的混合工质的进口(1)为调节器的混合工质的进口,位于最后的T形管的下出口管段(6)的下端口为调节器的液相出口;所述汇集管(3)的一端与位于所述T形管阵列中一端部的T形管的上出口管段的上出口(8)连接,所述汇集管(3)的另一端为调节器的气相出口;所述非共沸工质自所述调节器的混合工质的进口后,每进入一个T形管的进口管后均分为两路,一路是非共沸工质的液相依次通过每个T形管的下出口(7)后从调节器的液相出口流出,另一路是非共沸工质的气相自所述上出口(8)排放并通过上汇集管(3)汇集后从所述调节器的气相出口排出。
  3. 根据权利要求2所述用于非共沸工质组分调节的撞击式T形管组分调节器,其特征在于,相邻的两个T形管中,在前的T形管的下出口管段(6)与在后的T形管的进口管(2)的连接处设有一节流阀(5)。
  4. 根据权利要求2所述用于非共沸工质组分调节的撞击式T形管组分调节器,其特征在于,所述调节器的液相出口连接有一水平方向的下出口管。
  5. 根据权利要求2至4的任一所述用于非共沸工质组分调节的撞击式T形管组分调节器,其特征在于,所述调节器的气相出口连接有一开口向上的上出口管(9)。
PCT/CN2016/103522 2016-05-18 2016-10-27 一种用于非共沸工质组分调节的撞击式t形管组分调节器 WO2017197838A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/086,848 US10835841B2 (en) 2016-05-18 2016-10-27 Impacting T-junction component regulator for regulating components of non-azeotropic working medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610330695.9 2016-05-18
CN201610330695.9A CN105972880A (zh) 2016-05-18 2016-05-18 一种用于非共沸工质组分调节的撞击式t形管组分调节器

Publications (1)

Publication Number Publication Date
WO2017197838A1 true WO2017197838A1 (zh) 2017-11-23

Family

ID=56957012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103522 WO2017197838A1 (zh) 2016-05-18 2016-10-27 一种用于非共沸工质组分调节的撞击式t形管组分调节器

Country Status (3)

Country Link
US (1) US10835841B2 (zh)
CN (1) CN105972880A (zh)
WO (1) WO2017197838A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105972880A (zh) 2016-05-18 2016-09-28 天津大学 一种用于非共沸工质组分调节的撞击式t形管组分调节器
CN112728815A (zh) * 2021-01-26 2021-04-30 江苏中关村科技产业园节能环保研究有限公司 一种测定制冷循环工质流体组分流量的装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551469A (en) * 1995-02-24 1996-09-03 Texaco Inc. Method and apparatus to maintain index steam quality in both outlet legs of a horizontal impact T junction
US6149825A (en) * 1999-07-12 2000-11-21 Gargas; Joseph Tubular vortex separator
US6250131B1 (en) * 1999-09-10 2001-06-26 Texaco Inc. Apparatus and method for controlling and measuring steam quality
CN102580354A (zh) * 2012-01-18 2012-07-18 常州大学 两相流或多相流分离的多层复合t形管分离器及分离方法
CN103845960A (zh) * 2014-01-10 2014-06-11 洛阳瑞泽石化工程有限公司 一种管道在线式气液分离器
CN105972880A (zh) * 2016-05-18 2016-09-28 天津大学 一种用于非共沸工质组分调节的撞击式t形管组分调节器
CN205784060U (zh) * 2016-05-18 2016-12-07 天津大学 一种用于非共沸工质组分调节的撞击式t形管组分调节器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005032266A1 (de) * 2005-07-11 2007-02-15 Technische Universität Berlin Verfahren zum Abführen eines Gases aus einer Wärmepumpe und Wärmepumpe
CN101402004B (zh) * 2008-10-30 2010-08-11 西安交通大学 一种气液两相流体分配器
JP5197444B2 (ja) * 2009-03-10 2013-05-15 三菱電機株式会社 気液分離器とそれを搭載した冷凍サイクル装置
CN101554541B (zh) * 2009-04-03 2012-11-28 江苏工业学院 一种多相流分离的复合t形管分离器及其分离方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551469A (en) * 1995-02-24 1996-09-03 Texaco Inc. Method and apparatus to maintain index steam quality in both outlet legs of a horizontal impact T junction
US6149825A (en) * 1999-07-12 2000-11-21 Gargas; Joseph Tubular vortex separator
US6250131B1 (en) * 1999-09-10 2001-06-26 Texaco Inc. Apparatus and method for controlling and measuring steam quality
CN102580354A (zh) * 2012-01-18 2012-07-18 常州大学 两相流或多相流分离的多层复合t形管分离器及分离方法
CN103845960A (zh) * 2014-01-10 2014-06-11 洛阳瑞泽石化工程有限公司 一种管道在线式气液分离器
CN105972880A (zh) * 2016-05-18 2016-09-28 天津大学 一种用于非共沸工质组分调节的撞击式t形管组分调节器
CN205784060U (zh) * 2016-05-18 2016-12-07 天津大学 一种用于非共沸工质组分调节的撞击式t形管组分调节器

Also Published As

Publication number Publication date
CN105972880A (zh) 2016-09-28
US20190099698A1 (en) 2019-04-04
US10835841B2 (en) 2020-11-17

Similar Documents

Publication Publication Date Title
Chen et al. Heat exchange and water recovery experiments of flue gas with using nanoporous ceramic membranes
US11701599B2 (en) Control method for rectification and purification system of electronic-grade chlorine trifluoride
CN203303695U (zh) 一种油气混输分离分流器
Zheng et al. Experimental study on two-phase separation performance of impacting T-junction
CN201331214Y (zh) 热泵型空调系统
Zhang et al. Numerical study on recovering moisture and heat from flue gas by means of a macroporous ceramic membrane module
WO2017197838A1 (zh) 一种用于非共沸工质组分调节的撞击式t形管组分调节器
CN110529872B (zh) 基于入口烟气温度通信控制的电站锅炉余热利用系统
Zhang et al. Experimental study of condensation heat transfer in a condenser with a liquid-vapor separator
Jia et al. Performance analysis of ceramic membrane tube modules for water and heat recovery in coal-fired power plants
CN109959025B (zh) 一种智能通信控制的电站锅炉余热利用系统
Mo et al. Passive control of gas–liquid flow in a separator unit using an apertured baffle in a parallel-flow condenser
CN205784060U (zh) 一种用于非共沸工质组分调节的撞击式t形管组分调节器
Xiao et al. Performance study of transport membrane condenser using condensate water to recover water and heat from flue gas
Zhang et al. Experimental studies on absorption-compression hybrid refrigeration system using 1, 1, 1, 2-tetrafluoroethane/tetraethylene glycol dimethyl ether as working pair
CN203404014U (zh) 一种低水头液气能转换装置
CN110566300B (zh) 一种基于水合物分离特性的组分可调型有机朗肯循环系统
CN105080177A (zh) 不凝性气体高效分离真空冷凝系统
Mo et al. Effect of geometric parameters of liquid-gas separator units on phase separation performance
CN106237645B (zh) 一种水蒸汽蒸馏设备及其实现方法
CN104913902B (zh) 一种小通道阻力测量装置
Ranjitha et al. Theoretical modelling and optimization of bubble column dehumidifier for a solar driven humidification-dehumidification system
Zhang et al. Entransy of water vapor and its balance equation for heat and mass transfer process in the absorber
Noor et al. Experimental investigation of phase-separation effectiveness of combined impacting tee junctions
Qiao et al. Numerical analysis of membrane–absorption separation for supercritical carbon dioxide and water mixture of plume geothermal power generation systems

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902217

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902217

Country of ref document: EP

Kind code of ref document: A1