WO2017197801A1 - 一种压力管理方法及系统 - Google Patents

一种压力管理方法及系统 Download PDF

Info

Publication number
WO2017197801A1
WO2017197801A1 PCT/CN2016/096216 CN2016096216W WO2017197801A1 WO 2017197801 A1 WO2017197801 A1 WO 2017197801A1 CN 2016096216 W CN2016096216 W CN 2016096216W WO 2017197801 A1 WO2017197801 A1 WO 2017197801A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
data
pressure
value
stress level
Prior art date
Application number
PCT/CN2016/096216
Other languages
English (en)
French (fr)
Inventor
包磊
Original Assignee
包磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 包磊 filed Critical 包磊
Publication of WO2017197801A1 publication Critical patent/WO2017197801A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state

Definitions

  • the present invention relates to the field of intelligent medical treatment, and in particular, to a pressure management method and system based on a cylinder theory model.
  • cardiovascular diseases as an example, most cardiovascular diseases, especially hypertension and coronary heart disease, have biological factors as well as psychological and social factors in the cause of the disease.
  • cardiovascular diseases both physical symptoms and psychological factors
  • Symptoms common emotions are anxiety and depression.
  • Mental imbalance can contribute to the occurrence of cardiovascular disease.
  • cardiovascular disease can further cause psychological tension, imbalance, and mutual influence.
  • the technical problem to be solved by the embodiments of the present invention is to provide a pressure management method and system, which overcomes the one-sided and discrete pressure evaluation results in the prior art, thereby failing to achieve a practical, continuous, and quantitative pressure management. defect.
  • an embodiment of the present invention provides a pressure management method, including:
  • Obtaining a user's stress assessment parameters including physiological psychometric measurement data, objective stress level measurement values, subjective stress level survey values, and stress level impact survey data; [0007] calculating a pressure value of the user according to the physiological psychometric data, the objective stress level measurement value, the subjective stress level survey value, and the stress level influence survey data;
  • the step of calculating the pressure value of the user includes:
  • physiological psychometric data includes blood flow state data
  • the physiological psychometric data includes body temperature data T(t)
  • the stress level impact survey data includes individual information weighted average R, trigger factor weighted average Ml, and trigger factor total score VI , the mitigation factor weighted average M2 and the mitigation factor total score V2;
  • the step of calculating the intensity of the induction factor comprises:
  • the objective stress level measurement value p is a cortisol indicator
  • the subjective stress level survey value L is a pressure gauge measurement value
  • the present invention also provides a pressure management system, including:
  • a data acquisition module configured to acquire a user's stress assessment parameter, wherein the stress assessment parameter includes physiological psychometric measurement data, objective stress level measurement value, subjective stress level survey value, and stress Level impact survey data;
  • a pressure evaluation module configured to calculate a pressure value of the user according to the physiological psychometric data, the objective stress level measurement value, the subjective stress level survey value, and the stress level impact survey data;
  • a feedback module configured to generate and output a pressure feedback exercise mechanism according to the calculated pressure value, so that the user self-adjusts according to the pressure feedback exercise mechanism, so that the pressure value of the user is maintained at a normal level.
  • the pressure assessment module comprises:
  • a stress intensity calculation module configured to calculate the stress intensity P(t)* of the user according to the physiological psychometric measurement data, the objective stress level measurement value, and the subjective stress level survey value. S(t);
  • an inductive factor strength calculation module configured to calculate an inducing factor intensity AF(t) according to the physiological psychometric data and the stress level impact survey data;
  • the stress intensity calculation module is specifically configured to:
  • the physiological psychometric data includes body temperature data T(t)
  • the stress level impact survey data includes individual information weighted average R, trigger factor weighted average Ml, and trigger factor total score VI , the mitigation factor weighted average M2 and the mitigation factor total score V2;
  • the induction factor strength calculation module includes:
  • the objective stress level measurement value p is a cortisol indicator
  • the subjective stress level survey value L is a pressure gauge measurement value
  • Embodiments of the present invention have the following beneficial effects: by performing fusion analysis on physiological psychometric data, objective stress level measurement values, subjective stress level survey values, and stress level influence survey data. Assessing the pressure value, taking into account the impact of physical, psychological, objective, subjective, personal information, external environment on the pressure value, improving the accuracy and comprehensiveness of the stress assessment results, establishing a solid, continuous, quantitative Pressure management mechanism.
  • 1 is a flow chart of a first embodiment of a pressure management method provided by the present invention
  • 2 is a flow chart of a second embodiment of a pressure management method provided by the present invention
  • FIG. 3 is a schematic view of a cylindrical theoretical model
  • FIG. 4 is a schematic diagram of a mathematical mode of a cylindrical theoretical model
  • FIG. 5 is a schematic structural view of a first embodiment of a pressure management system provided by the present invention.
  • FIG. 6 is a schematic structural view of a second embodiment of a pressure management system provided by the present invention.
  • FIG. 1 is a flow chart of a first embodiment of a pressure management method provided by the present invention, and the method includes
  • Step S1 l the user's stress assessment parameters are obtained, and the stress assessment parameters include physiological psychometric measurement data, objective stress level measurement values, subjective stress level survey values, and stress level effects. survey data.
  • physiological psychometric data is measured and extracted pressure-related physiological physical data and mental state data, such as heart rate, heart rate variability, respiratory rate, pulse rate variability, blood oxygen saturation, body temperature and the like.
  • Objective stress level measurements are measured biochemical indicators used to characterize stress levels, such as cortisol indicators.
  • the subjective stress level survey value is the stress level calculated from the subjective factor analysis obtained from the survey sample, for example, the stress scale value obtained from the questionnaire survey.
  • the stress level impact survey data is the degree of influence on the stress level according to the survey sample, such as the degree of influence of personal information, the degree of influence of environmental change, the degree of influence of emotional state, etc. These can also be investigated through questionnaires. get. Because the causes of stress are more complex, there are many factors affecting the change of stress level, including psychological, physical, social, environmental factors, etc., and the measurement of single parameters itself has errors (such as human error, systematic error, etc.). Therefore, the multi-parameter information fusion technology is used to evaluate the pressure level through multi-dimensional parameters, which can reduce the error and improve the accuracy, comprehensiveness, reliability and personalization of the pressure assessment.
  • Step S12 according to the physiological psychometric data, objective stress level measurement value, subjective stress
  • the horizontal survey value and the stress level affect the survey data to calculate the pressure value of the user. Specifically, it is necessary to establish a quantitative relationship between each measurement data and the degree of pressure.
  • the univariate analysis method is needed to clarify the original parameters that have significant influence on the change of pressure level.
  • multi-factor analysis method is used to remove the confounding factors and clarify the relative effects of each parameter.
  • Size determine the corresponding weight value; use nonlinear dynamic theory to establish a set of algorithms that can analyze the working state of the autonomic nervous system, can effectively analyze the dynamic characteristics of this complex system, and thus dynamically evaluate the physiological and psychological conditions of the human body, find The dynamic characteristics of the autonomic nervous system under the external and internal pressure sources of the human body are improved, and the quantitative evaluation ability of the pressure is improved. Then, it is necessary to combine personal information, stress questionnaires, etc., to learn and train large amounts of data, and to determine thresholds based on individual stress levels. According to the dynamic changes of human stress level and the threshold of individual stress level under the corresponding conditions, the individual's current stress level and pressure change trend are evaluated, and the multi-dimensional information fusion method is used to improve the personalized and refined demand for stress assessment.
  • Step S13 Generate and output a pressure feedback exercise mechanism according to the calculated pressure value, so that the user self-adjusts according to the pressure feedback exercise mechanism, so that the pressure value of the user is maintained at a normal level.
  • people tend to pay attention to the treatment and care after illness, while relatively neglecting the early warning and intervention of the cause of the disease, sub-health state and stress-induced related diseases often have a slow recessive development.
  • the flood season due to the lack of obvious symptoms, it is not taken seriously. If it is allowed to develop until it has obvious symptoms, it may have caused serious damage that cannot be recovered, which in turn leads to a vicious cycle of psychological and physiological, effective prevention of the disease.
  • the treatment has caused great difficulties.
  • the state advocates that medical care “focus on moving forward, shifting the focus”, and proposes to transfer medical facilities from hospitals to families, and shift the medical model from treatment to prevention.
  • China's society has entered the stage of old age, and the population of the old population has grown rapidly. It is particularly important to realize the physical and mental health monitoring of the elderly and sub-healthy people.
  • because of excessive stress, mental stress, the nervous system of the human body, and the sub-health and high-pressure population with disordered metabolism are increasing year by year. When it is under high pressure for a long time, it is easy to cause the main organs of the human body to lose balance and easily cause arteriosclerosis.
  • the pressure management method evaluates the fusion of the physiological psychological measurement data, the objective stress level measurement value, the subjective stress level survey value, and the stress level influence survey data.
  • the pressure value fully considers the influence of physiological, psychological, objective, subjective, personal information, external environment on the pressure value, improves the accuracy and comprehensiveness of the stress assessment results, and establishes a solid, continuous and quantitative pressure. Management mechanism.
  • step S12 the cylinder theoretical model can be used to evaluate the pressure level of the user. This embodiment will be described in detail below with reference to FIGS. 2-4.
  • FIG. 2 is a flow chart of a second embodiment of a pressure management method provided by the present invention, the method including
  • Step S21 Obtaining a user's stress assessment parameter, wherein the stress assessment parameter includes physiological psychometric measurement data, objective stress level measurement value, subjective stress level survey value, and stress level influence adjustment Check the data.
  • Step S22 Calculating the stress intensity P(t)*S(t) of the user according to the physiological psychometric measurement data, the objective stress level measurement value, and the subjective stress level survey value.
  • Step S23 Calculating the induced factor intensity AF(t) according to the physiological psychometric data and the stress level influence survey data.
  • Induction factor intensity AF(t) trigger factor intensity Fl(t) - mitigation factor intensity F2(t).
  • the trigger factor involves the influence of subjective and objective factors on the stress level of the individual, such as physical health, work and study stress, life burden, social and living environment changes, emotional and financial status, etc.
  • the mitigation factor is Including the improvement of physical health, the completion of work and study tasks, the reduction of living burden, the improvement of social and living environment, and the improvement of emotional financial status.
  • Step S25 Generate and output a pressure feedback exercise mechanism according to the calculated pressure value, so that the user self-adjusts according to the pressure feedback exercise mechanism, so that the pressure value of the user is maintained at a normal level.
  • the intermediate liquid represents the actual stress intensity P(t)*S(t) of the individual affected by internal and external environmental factors, and the height of the part of the cylinder is ' ⁇ '
  • the change in the daytime and the environment is a momentary variable;
  • the cross-sectional length "L" of the cylinder is a cumulative variable, which is the tolerance of the individual to withstand pressure. It is less affected by the external environment within a certain range.
  • the individual adaptively adjusts the physiological and psychological state through the linkage mechanism of the central nervous system and the autonomic nervous system to keep the individual's pressure in a reasonable range.
  • the trigger factor involves the influence of subjective and objective factors on the stress level of the individual, such as physical health, work and study stress, life burden, social and living environment changes, emotional and financial status, etc.
  • the mitigation factor is Including the improvement of physical health, the completion of work and study tasks, the reduction of living burden, the improvement of social and living environment, and the improvement of emotional financial status.
  • the dynamic change of the trigger factor and the mitigation factor keeps the H value in the normal threshold range. When the change of H exceeds the set threshold range, it indicates the imbalance of the autonomic regulation ability of the autonomic nervous system, and the intervention factor is needed to improve the remission factor. Intensity, reduce the trigger factor strength.
  • the cylinder model is divided into three parts from the structural point of view.
  • the trigger factor, the individual stress and the mitigation factor are in turn, and the three parts form a dynamic balance.
  • the cylinder model is realized. The dynamic balance of individual stress levels to achieve optimal conditions, as well as the release of stress.
  • the physiological psychometric data acquired in step S21 includes blood flow state data.
  • the cardiovascular status data is heart rate variability and blood oxygen saturation.
  • Heart rate variability and blood oxygen saturation data are one of the most characteristic data that reflects individual stress changes.
  • variability of heart rate variability such as Mean, SDNN, pNN50, rMSSD, etc.
  • frequency domain parameters LF, HF, LF/HF ratio, Total Power, Normalized LF/HF, etc.
  • geometric parameters HRV Index, TINN, etc.
  • DFA, ApEn, etc. the relationship between nonlinear parameters and changes in pressure levels allow for more accurate assessment of individual stress values.
  • the objective stress level measurement p is a cortisol indicator.
  • Cortisol is a hormone secreted by the adrenal gland and plays an important role in coping with stress. It is also called “stress hormone”. Cortisol increases blood pressure, blood sugar levels and immunosuppression. Studies have found that specific cortisol Level changes are associated with abnormal levels of corticotropin, depression, stress, and events that cause hypothermia, disease, fever, trauma, awe, pain, and extreme temperatures that can cause physiological reactions due to stress. In current scientific research and clinical practice, the use of changes in cortisol levels as a measure of stress levels has been validated.
  • the subjective stress level survey value L is a pressure gauge measurement.
  • self-questionnaires are one of the most commonly used means of measuring individual stress levels.
  • Many questionnaires have been applied to clinical practice and psychiatric research to assess stress levels, including sensory stress. Scale
  • the physiological psychometric data acquired in step S21 includes body temperature data T(t), and the stress level impact survey data includes weighted average value of individual information, weighted average value of trigger factor M1, and total score of trigger factor.
  • VI the weighted average M2 of the mitigating factor and the total score V2 of the mitigating factor, wherein the weighted average R of the individual information may be a weighted average of individual information such as height, weight, age, gender, etc.
  • the total score of the triggering factor VI is from the stress questionnaire.
  • the final score of the problem related to the trigger factor in the questionnaire is determined.
  • the total score of the mitigation factor, V2 is determined by the final score of the problem related to the mitigation factor in the stress questionnaire.
  • FIG. 5 is a schematic structural diagram of a first embodiment of a pressure management system provided by the present invention.
  • the system includes:
  • the data obtaining module 510 is configured to acquire the pressure assessment parameter of the user, where the stress assessment parameter includes physiological psychometric measurement data, objective stress level measurement value, subjective stress level survey value, and stress.
  • sexuality affects survey data.
  • the physiological psychometric data is measured and extracted from pressure-related physiological signs and mental state data, such as heart rate, heart rate variability, respiratory rate, pulse rate variability, blood oxygen saturation, body temperature, and the like.
  • Objective stress level measurements are measured biochemical indicators used to characterize stress levels, such as cortisol indicators.
  • the subjective stress level survey value is the stress level calculated based on the subjective factor analysis obtained from the survey sample, such as the stress scale value obtained from the questionnaire survey.
  • the stress level impact survey data is the degree of influence on the stress level according to the survey sample, such as the degree of influence of personal information, the degree of influence of environmental change, the degree of influence of emotional state, etc. These can also be investigated through questionnaires. get. Because the cause of stress is more complicated, affecting the pressure water There are many factors in the change, including psychological, physical, social, environmental factors, etc., and the measurement of a single parameter itself has errors (such as human error, systematic error, etc.), so multi-parameter information fusion technology is adopted. Multi-dimensional parameters to assess stress levels can reduce errors and improve the accuracy, comprehensiveness, reliability, and personalization of stress assessment.
  • the data acquisition module 510 can acquire the original physiological data collected by the sensor from the sensor for feature extraction and the like.
  • the pressure evaluation module 520 is configured to calculate the pressure value of the user according to the physiological psychometric data, the objective stress level measurement value, the subjective stress level survey value, and the stress level impact survey data. . Specifically, it is necessary to establish a quantitative relationship between each measurement data and the degree of pressure. For the original parameters extracted, the univariate analysis method is needed to clarify the original parameters that have significant influence on the change of pressure level. For these original parameters, multi-factor analysis method is used to remove the confounding factors and clarify the relative effects of each parameter.
  • Size determine the corresponding weight value; use nonlinear dynamic theory to establish a set of algorithms that can analyze the working state of the autonomic nervous system, can effectively analyze the dynamic characteristics of this complex system, and thus dynamically evaluate the physiological and psychological conditions of the human body, find The dynamic characteristics of the autonomic nervous system under the external and internal pressure sources of the human body are improved, and the quantitative evaluation ability of the pressure is improved. Then, it is necessary to combine personal information, stress questionnaires, etc., to learn and train large amounts of data, and to determine thresholds based on individual pressure levels. According to the dynamic changes of human stress level and the threshold of individual stress level under the corresponding conditions, the individual's current stress level and pressure change trend are evaluated, and the multi-dimensional information fusion method is used to improve the personalized and refined demand for stress assessment.
  • the feedback module 530 is configured to generate and output a pressure feedback exercise mechanism according to the calculated pressure value, so that the user self-adjusts according to the pressure feedback exercise mechanism, so that the pressure value of the user is maintained at a normal level.
  • the feedback module 530 can feed back the pressure value and the pressure feedback exercise mechanism to the user by means of acoustics, optics, display, and the like.
  • people tend to pay attention to the treatment and care after illness, while relatively neglecting the early warning and intervention of the cause of the disease, sub-health state and stress-induced related diseases often have a slow recessive development. In the flood season, due to the lack of obvious symptoms, it is not taken seriously.
  • the pressure management system evaluates the fusion of the physiological psychological measurement data, the objective stress level measurement value, the subjective stress level survey value, and the stress level influence survey data.
  • the pressure value fully considers the influence of physiological, psychological, objective, subjective, personal information, external environment on the pressure value, improves the accuracy and comprehensiveness of the stress assessment results, and establishes a solid, continuous and quantitative pressure. Management mechanism.
  • the pressure evaluation module 520 may use a cylindrical theoretical model to evaluate the pressure level of the user. This embodiment will be described in detail below with reference to FIGS. 3-4 and 6.
  • FIG. 6 is a schematic structural diagram of a second embodiment of a pressure management system provided by the present invention.
  • the pressure evaluation module 520 further includes:
  • the stress intensity calculation module 521 is configured to calculate the stress intensity P(t) of the user according to the physiological psychometric measurement data, the objective stress level measurement value, and the subjective stress level survey value. *S(t).
  • An inductive factor strength calculation module 522 is configured to calculate an induced factor intensity AF(t) based on the physiological psychometric data and the stress level impact survey data.
  • Induction factor intensity AF(t) trigger factor intensity Fl(t)-relieving factor intensity F2(t).
  • the trigger factor involves the influence of subjective and objective factors on the stress level of the individual, such as physical health, work and study stress, life burden, social and living environment changes, emotional and financial status, etc.
  • the mitigation factor is Including the improvement of physical health, the completion of work and study tasks, the reduction of living burden, the improvement of social and living environment, and the improvement of emotional financial status.
  • the intermediate liquid represents an individual's influence on internal and external environmental factors.
  • the intensity of the force P(t)*S(t), the height of the part of the cylinder ' ⁇ ' changes with the change of the daytime and the environment, which is an instantaneous variable; the length of the cross section of the cylinder is "L", which is a cumulative variable. It is the tolerance of the individual to withstand stress, and is less affected by the external environment within a certain period of time. Under normal circumstances, the individual adaptively adjusts the physiological and psychological state through the linkage mechanism of the central nervous system and the autonomic nervous system to maintain the individual. The pressure is in a reasonable range.
  • the trigger factor involves the influence of subjective and objective factors on the individual's stress level, such as physical health, work and study stress, life burden, social and living environment changes, emotional and financial status, etc.
  • the mitigation factors include the improvement of physical health, the completion of work and study tasks, the reduction of living burden, the improvement of social and living environment, and the improvement of emotional financial status.
  • the dynamic changes of triggering factors and mitigation factors make the devaluation Maintains dynamic balance within the normal threshold range. When the change of ⁇ exceeds the set threshold range, it indicates that The imbalance of the dynamic regulation ability of the main nervous system requires the intervention to improve the intensity of the mitigating factor and reduce the intensity of the triggering factor.
  • the cylinder model is divided into three parts from the structural point of view, starting from the top to the trigger factor, individual stress And the mitigation factor, the three parts form a dynamic balance, through the independent intervention of the trigger factor and the intensity of the mitigation factor, to achieve the dynamic balance of the individual stress level, in order to achieve the optimal state, and release stress.
  • the physiological psychometric data acquired by the data acquisition module 510 includes blood flow state data.
  • the cardio-blood state data is heart rate variability and blood oxygen saturation.
  • Heart rate variability and blood oxygen saturation data are one of the most characteristic data that reflects individual stress changes.
  • variability of heart rate variability such as Mean, SDNN, pNN50, rMSSD, etc.
  • frequency domain parameters LF, HF, LF/HF ratio, Total Power, Normalized LF/HF, etc.
  • geometric parameters HRV Index, TINN, etc.
  • DFA, ApEn, etc. the relationship between nonlinear parameters and changes in pressure levels allow for more accurate assessment of individual stress values.
  • the objective stress level measurement p is a cortisol indicator.
  • Cortisol is a hormone secreted by the adrenal gland and plays an important role in coping with stress. It is also called “stress hormone”. Cortisol will raise Hypertension, blood sugar levels, and immunosuppressive effects have been found to be associated with abnormal levels of corticotropin, depression, stress, and hypoglycemia, disease, fever, trauma, awe, pain. It is related to events such as extreme temperatures that cause physiological reactions due to stress. In current scientific research and clinical practice, changes in cortisol levels have been validated as stress level evaluation parameters.
  • the subjective stress level survey value L is a pressure gauge measurement.
  • self-questionnaires are one of the most commonly used means of measuring individual stress levels. Many questionnaires have been applied to clinical practice and psychiatric research to assess stress levels, including sensory stress. Scale
  • the physiological psychometric data acquired by the data acquisition module 510 includes body temperature data T(t), and the stress level impact survey data includes a weighted average of the individual information! ⁇ , trigger factor weighted average Ml, trigger factor total score VI, mitigation factor weighted average M2 and mitigation factor total score V2, wherein the individual information weighted average R can be individual information such as height, weight, age, gender, etc.
  • the weighted average, the triggering factor total score VI is determined by the final score of the problem related to the triggering factor in the stress questionnaire, and the total score of the mitigating factor V2 is determined by the final score of the problem related to the mitigating factor in the stress questionnaire.
  • stress assessment parameters such as heart rate variability characteristic value, blood oxygen saturation, pressure scale value (questionnaire), cortisol biochemical index, trigger factor, and relief factor are not only factors influencing the pressure value, And they also interact with each other.
  • long-term mental stress can cause continuous activation of the sympathetic nerve, affecting the dynamic regulation of the autonomic nervous system.
  • This change is directly reflected in the nonlinear changes in the psychological signals and their eigenvalues, such as heart rate variability eigenvalues, stress scale values. (Questionnaire) and biochemical indicators of cortisol.
  • the cylindrical theoretical model is not a simple linear mapping, but a non-linear mapping of changes in stress levels to intrinsic and extrinsic triggering and mitigating factors, which will be physiological, psychological, social, and environmental factors.
  • Comprehensive consideration through the technology of information fusion, quantify multiple physiological parameters, The intrinsic relationship between biochemical indicators, psychological factors, individual information and model factors established a personalized stress assessment system.
  • Embodiments of the present invention can be combined with a wearable fabric system to implement a personalized, practical pressure management framework.
  • the multi-modal physiological sign information is obtained.
  • a personalized cylinder pressure evaluation model based on multi-modal sign signals is constructed, which is practical, objective and quantitative. Evaluate the level of stress, and achieve the dynamic balance of individual stress levels through self-intervention of the triggering factor and the intensity of the mitigating factor, so as to achieve the purpose of releasing stress and preventing disease.
  • the storage medium may be a magnetic disk, an optical disk, or a read-only storage memory (Read-Only)
  • ROM Read Only Memory
  • RAM Random Access Memory

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Biomedical Technology (AREA)
  • Developmental Disabilities (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Physics & Mathematics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Educational Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种压力管理方法及系统,包括:实时地获取用户的压力评估参数,压力评估参数包括生理心理测量数据、客观应激性水平测量值、主观应激性水平调查值和应激性水平影响调查数据(S11);根据生理心理测量数据、客观应激性水平测量值、主观应激性水平调查值和应激性水平影响调查数据计算用户的压力值(S12);根据计算得到的压力值生成并输出压力反馈锻炼机制,使用户根据压力反馈锻炼机制自我调节,从而使用户的压力值保持在正常水平(S13)。

Description

一种压力管理方法及系统
技术领域
[0001] 本发明涉及智能化医疗领域, 尤其涉及一种基于圆筒理论模型的压力管理方法 及系统。
背景技术
[0002] 在过去的几十年里, 大量的研究聚焦于压力与健康的关系。 关于压力的相关研 究涉及到心理学, 精神病学, 护理学, 医学, 社会科学, 人类工程学, 药理学 , 生理学, 神经生物学等, 压力可以被定义为外部环境对个体造成的一种紧张 或压迫的感觉, 通常伴随着正面的或负面的情绪。 它会影响我们的身体状态, 比如, 增加的心率或血压, 或释放应激性荷尔蒙, 如肾上腺素等, 从而刺激自 主神经系统的活动。 如果压力出现得太过频繁或持续吋间太长, 或者出现在手 术创伤后, 其危害是极其巨大的, 很可能会引发忧郁症或术后压力综合症 (PTS D) 等。 更严重的是, 压力引起的身体心理机能的紊乱反过来又会加剧压力水平 , 从而形成一个恶性循环。 近年来随着生物医学模式 (Biomedical Model) 向生 物-心理-社会医学模式 (Bio-Psycho-Social Medical Model) 的转变, 疾病的心身 关系越来越受到人们的重视, 研究发现, 90%以上的疾病都是由压力所引发的。 以心血管疾病为例, 多数心血管疾病, 特别是高血压、 冠心病等, 在发病的诱 因中既有生物学因素, 也有心理、 社会因素, 在临床症状方面, 既有躯体症状 , 也有心理症状, 常见的情绪有焦虑和抑郁等。 心理不平衡可促成心血管疾病 的发生, 反过来, 心血管疾病又可进一步造成心理紧张、 失衡, 相互影响。 压 力对心血管疾病中的高血压、 冠心病、 心律失常以及血脂、 血液流变学影响较 大, 焦虑、 抑郁、 某种性格特征、 社会孤立以及生活精神的压力等心理社会因 素, 如再加上不良的生活方式或持久的高负荷工作, 通过激活神经内分泌和血 小板活性, 引起冠脉内皮的功能损伤, 形成粥样斑块, 促使冠脉狭窄, 心肌缺 血, 可引发冠脉痉挛和严重的心血管事件, 因此, 压力对心血管疾病的促发作 用, 绝不亚于高血压、 高血脂、 肥胖等传统的危险因素。 [0003] 虽然压力管理的重要性如此高, 但目前并没有能够有效协助用户进行压力管理 的系统。 当前压力水平高低都是采用基于自我评价、 或心理专家主观经验判断 来进行评价, 没有针对于不同个体特殊情况进行自动分类评分的系统存在。 另 夕卜, 现有的压力评价方式往往只考虑单一因素的影响, 导致评价结果较为片面 、 模糊, 而且评价结果往往是离散、 非量化的, 某一次的压力评价值并不能真 实地反映压力的实吋水平及变化趋势, 难以实现实吋的、 连续的、 定量的压力 管理。
技术问题
[0004] 本发明实施例所要解决的技术问题在于, 提供一种压力管理方法及系统, 克服 现有技术中压力评估结果片面、 离散因而导致无法实现实吋的、 连续的、 定量 的压力管理的缺陷。 问题的解决方案
技术解决方案
[0005] 为了解决上述技术问题, 本发明实施例提供了一种压力管理方法, 包括:
[0006] 实吋地获取用户的压力评估参数, 所述压力评估参数包括生理心理测量数据、 客观应激性水平测量值、 主观应激性水平调査值和应激性水平影响调査数据; [0007] 根据所述生理心理测量数据、 客观应激性水平测量值、 主观应激性水平调査值 和应激性水平影响调査数据计算所述用户的压力值;
[0008] 根据计算得到的压力值生成并输出压力反馈锻炼机制, 使所述用户根据所述压 力反馈锻炼机制自我调节, 从而使所述用户的压力值保持在正常水平。
[0009] 其中, 所述计算所述用户的压力值的步骤包括:
[0010] 根据所述生理心理测量数据、 客观应激性水平测量值和主观应激性水平调査值 计算所述用户的应激力强度 P(t)*S(t);
[0011] 根据所述生理心理测量数据和应激性水平影响调査数据计算诱导因子强度 AF(t
);
[0012] 根据第一公式 F(t)=P(t)*S(t)+AF(t)计算所述用户的压力值。
[0013] 其中, 所述生理心理测量数据包括心血状态数据;
[0014] 所述计算所述用户的应激力强度的步骤包括: [0015] 根据第二公式 P(t)*S(t)=p*L*H 2(t)/2计算用户应激力的强度, 其中 p表示客观应 激性水平测量值, L表示主观应激性水平调査值, H(t)表示心血状态数据。
[0016] 其中, 所述生理心理测量数据包括体温数据 T(t), 所述应激性水平影响调査数 据包括个体信息加权平均值 R、 触发因子加权平均值 Ml、 触发因子总分值 VI、 缓解因子加权平均值 M2和缓解因子总分值 V2;
[0017] 所述计算诱导因子强度的步骤包括:
[0018] 根据第三公式 Fl(t)=(Ml/Vl)*R*T(t)计算触发因子强度 Fl(t);
[0019] 根据第四公式 F2(t)=(M2/V2)*R*T(t)计算缓解因子强度 F2(t);
[0020] 根据第五公式 AF(t)=Fl(t)+F2(t)计算诱导因子强度。
[0021] 其中, 所述客观应激性水平测量值 p是皮质醇指标, 所述主观应激性水平调査 值 L是压力量表测量值。
[0022] 另外, 本发明还提供了一种压力管理系统, 包括:
[0023] 数据获取模块, 用于实吋地获取用户的压力评估参数, 所述压力评估参数包括 生理心理测量数据、 客观应激性水平测量值、 主观应激性水平调査值和应激性 水平影响调査数据;
[0024] 压力评估模块, 用于根据所述生理心理测量数据、 客观应激性水平测量值、 主 观应激性水平调査值和应激性水平影响调査数据计算所述用户的压力值;
[0025] 反馈模块, 用于根据计算得到的压力值生成并输出压力反馈锻炼机制, 使所述 用户根据所述压力反馈锻炼机制自我调节, 从而使所述用户的压力值保持在正 常水平。
[0026] 其中, 所述压力评估模块包括:
[0027] 应激力强度计算模块, 用于根据所述生理心理测量数据、 客观应激性水平测量 值和主观应激性水平调査值计算所述用户的应激力强度 P(t)*S(t);
[0028] 诱导因子强度计算模块, 用于根据所述生理心理测量数据和应激性水平影响调 査数据计算诱导因子强度 AF(t);
[0029] 压力值计算模块, 用于根据第一公式 F(t)=P(t)*S(t)+AF(t)计算所述用户的压力 值。
[0030] 其中, 所述生理心理测量数据包括心血状态数据; [0031 ] 所述应激力强度计算模块具体用于:
[0032] 根据第二公式 P(t)*S(t)=p*L*H 2(t)/2计算用户应激力的强度, 其中 p表示客观应 激性水平测量值, L表示主观应激性水平调査值, H(t)表示心血状态数据。
[0033] 其中, 所述生理心理测量数据包括体温数据 T(t), 所述应激性水平影响调査数 据包括个体信息加权平均值 R、 触发因子加权平均值 Ml、 触发因子总分值 VI、 缓解因子加权平均值 M2和缓解因子总分值 V2;
[0034] 所述诱导因子强度计算模块包括:
[0035] 触发因子强度计算模块, 用于根据第三公式 Fl(t)=(Ml/Vl)*R*T(t)计算触发因 子强度 Fl(t);
[0036] 缓解因子强度计算模块, 用于根据第四公式 F2(t)=(M2/V2)*R*T(t)计算缓解因 子强度 F2(t);
[0037] 差值模块, 用于根据第五公式 AF(t)=Fl(t)-F2(t)计算诱导因子强度。
[0038] 其中, 所述客观应激性水平测量值 p是皮质醇指标, 所述主观应激性水平调査 值 L是压力量表测量值。
发明的有益效果
有益效果
[0039] 实施本发明实施例, 具有如下有益效果: 通过对生理心理测量数据、 客观应激 性水平测量值、 主观应激性水平调査值和应激性水平影响调査数据进行融合分 析来评估压力值, 充分考虑了生理、 心理、 客观、 主观、 个人信息、 外部环境 等对压力值的影响, 提高了压力评估结果的准确性和全面性, 建立了实吋的、 连续的、 定量的压力管理机制。
对附图的简要说明
附图说明
[0040] 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动的前提下, 还可以根据这些附图获得其他的附图。
[0041] 图 1是本发明提供的压力管理方法的第一实施例流程图; [0042] 图 2是本发明提供的压力管理方法的第二实施例流程图;
[0043] 图 3是圆筒理论模型的示意图;
[0044] 图 4是圆筒理论模型的数学模式示意图;
[0045] 图 5是本发明提供的压力管理系统的第一实施例结构示意图;
[0046] 图 6是本发明提供的压力管理系统的第二实施例结构示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0047] 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部 的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳 动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
[0048] 请参见图 1, 是本发明提供的压力管理方法的第一实施例流程图, 该方法包括
[0049] 步骤 Sl l、 实吋地获取用户的压力评估参数, 所述压力评估参数包括生理心理 测量数据、 客观应激性水平测量值、 主观应激性水平调査值和应激性水平影响 调査数据。 其中, 生理心理测量数据是测量并提取得到的与压力相关的生理体 征数据和心理状态数据, 例如心率、 心率变异性、 呼吸率、 脉率变异性、 血氧 饱和度、 体温等。 客观应激性水平测量值是测量得到的用于表征应激性水平的 生化指标, 例如皮质醇指标。 主观应激性水平调査值是根据调査取样得到的主 观因子分析计算得到的应激性水平, 例如根据问卷调査得到的压力量表值。 应 激性水平影响调査数据是根据调査取样得到的对应激力水平的影响程度, 例如 个人信息的影响程度、 环境变化的影响程度、 情感状态的影响程度等, 这些也 可以通过问卷调査得到。 因为压力的成因比较复杂, 影响压力水平变化的因素 较多, 包括心理的、 身体的、 社会的、 环境的因素等, 而单一参数的测量本身 又存在误差 (例如人为误差、 系统误差等) , 所以采用多参数信息融合技术, 通过多维度参数来评估压力水平, 能够降低误差, 提高压力评估的精确性、 全 面性、 可靠性及个性化。
[0050] 步骤 S12、 根据所述生理心理测量数据、 客观应激性水平测量值、 主观应激性 水平调査值和应激性水平影响调査数据计算所述用户的压力值。 具体地, 需要 确立各测量数据与压力高低程度的定量关系。 对于提取到的原始参数, 需要运 用单因素分析法, 明确对压力水平的变化具有显著性影响的原始参数; 对于这 些原始参数, 再运用多因素分析法, 去除混杂因素, 明确各参数的相对作用大 小, 确定相应权重值; 采用非线性动力学理论建立一套能够分析自主神经系统 工作状态的算法, 可以有效地分析这一复杂系统的动态特性, 从而动态地评价 人体的生理及心理状况, 找出人体在某些外部及内部压力源下自主神经系统动 态特性的变化, 提高对压力的定量评价能力。 然后, 需要结合个人信息、 压力 问卷调査等, 进行大数据量的学习和训练, 确定基于个人压力水平的阈值。 根 据人体应激力水平的动态变化以及相应条件下个人压力水平的阈值来评估个人 当前压力水平及压力变化趋势, 以多维信息融合的方式, 提高对压力评估的个 性化、 精细化需求。
步骤 S13、 根据计算得到的压力值生成并输出压力反馈锻炼机制, 使所述用户 根据所述压力反馈锻炼机制自我调节, 从而使所述用户的压力值保持在正常水 平。 在当前以治疗为中心的医疗模式下, 人们往往重视生病后的治疗和护理, 而相对忽视对发病诱因的早期预警与干预, 亚健康状态及压力诱发的相关疾病 往往存在一个缓慢的隐性发展吋期, 由于缺乏明显症状而不被重视, 如果任由 其发展直至出现明显症状吋, 可能已经造成了无法恢复的严重损伤, 继而导致 了心理和生理双重的恶性循环, 为疾病的有效预防和救治造成极大困难。 为了 提高老年人和亚健康人群的生活质量, 降低社会医疗成本, 国家倡导医疗 "重点 前移, 重心下移", 提出把医疗场所由医院转移至家庭, 把医疗模式由治疗转向 预防。 当前, 我国社会已经进入老齢化阶段, 老齢化人口急剧增长, 实现老年 人和亚健康人群的身体及心理健康状况的实吋监测尤为重要。 另一方面, 因为 压力过大而导致精神紧张, 人体神经系统失调, 新陈代谢发生紊乱的亚健康高 压人群逐年递增; 长期处于高压状态下, 易促使人体主要器官功能失去平衡, 易造成动脉硬化, 从而引起冠心病和脑血栓等。 因而, 客观地、 实吋地、 定量 地监控和评价压力水平, 并进行早期的、 有效的预警干预, 有利于个体压力管 理, 情绪调节, 从而达到疏导压力, 缓解病情的目的。 [0052] 本发明实施例提供的压力管理方法, 通过对生理心理测量数据、 客观应激性水 平测量值、 主观应激性水平调査值和应激性水平影响调査数据进行融合分析来 评估压力值, 充分考虑了生理、 心理、 客观、 主观、 个人信息、 外部环境等对 压力值的影响, 提高了压力评估结果的准确性和全面性, 建立了实吋的、 连续 的、 定量的压力管理机制。
[0053] 具体地, 在步骤 S12中, 可以采用圆筒理论模型来评估用户的压力水平, 下面 将结合图 2-4对这个实施例进行详细说明。
[0054] 请参见图 2, 是本发明提供的压力管理方法的第二实施例流程图, 该方法包括
[0055] 步骤 S21、 实吋地获取用户的压力评估参数, 所述压力评估参数包括生理心理 测量数据、 客观应激性水平测量值、 主观应激性水平调査值和应激性水平影响 调査数据。
[0056] 步骤 S22、 根据所述生理心理测量数据、 客观应激性水平测量值和主观应激性 水平调査值计算所述用户的应激力强度 P(t)*S(t)。
[0057] 步骤 S23、 根据所述生理心理测量数据和应激性水平影响调査数据计算诱导因 子强度 AF(t)。 诱导因子强度 AF(t)=触发因子强度 Fl(t)-缓解因子强度 F2(t)。 触发 因子涉及主观及客观因素对个体应激性水平的影响, 主要正面因素如身体健康 程度、 工作学习压力、 生活负担、 社会及生存环境改变、 情感及财务状况等; 相对应地, 缓解因子则包括身体健康程度的提高、 工作及学习任务的完成、 生 活负担降低、 社会及生存环境的提高及情感财务状况的改善等。
[0058] 步骤 S24、 根据第一公式 F(t)=P(t)*S(t)+AF(t)计算所述用户的压力值 F(t)。 具体 地, 第一公式可以变形为 F(t)=P(t)*S(t)+(Fl(t)-F2(t))。
[0059] 步骤 S25、 根据计算得到的压力值生成并输出压力反馈锻炼机制, 使所述用户 根据所述压力反馈锻炼机制自我调节, 从而使所述用户的压力值保持在正常水 平。
[0060] 具体地, 如图 3所示, 中间液体代表个体受内部及外部环境因素影响的实吋应 激力强度 P(t)*S(t), 该部分圆柱体的高度 'Ή"随吋间及环境的变化而产生变化, 为瞬间变量; 圆柱体的横截面长度 "L"为累积变量, 是个体承受压力的容忍度, 在一定吋间范围内受外部环境的影响较小。 在正常情况下, 个体通过中央神经 及自主神经系统的联动机制, 自适应调整生理及心理状态, 以保持个体压力处 于合理区间。 触发因子涉及主观及客观因素对个体应激性水平的影响, 主要正 面因素如身体健康程度、 工作学习压力、 生活负担、 社会及生存环境改变、 情 感及财务状况等; 相对应地, 缓解因子则包括身体健康程度的提高、 工作及学 习任务的完成、 生活负担降低、 社会及生存环境的提高及情感财务状况的改善 等。 触发因子和缓解因子的动态变化, 使 H值在正常阈值范围内保持动态平衡, 当 H的变化超过设定的阈值范围, 则表明自主神经系统动态调控能力的失衡, 需 通过干预手段提高缓解因子强度, 降低触发因子强度。 该圆筒模型从结构上来 看分为了三个部分, 从上至下依次为触发因子、 个体应激性以及缓解因子, 三 部分形成一个动态平衡, 通过自主干预触发因子和缓解因子的强度, 实现个体 应激性水平的动态平衡, 以达到最优状态, 以及释放压力等目的。
[0061] 根据上述的圆筒理论模型, 将其映射到三维空间, 如图 4所示, 进行数学建模 , 可以采用微积分的方法计算空间模型和平面模型底部的压力 F(t)。
[0062] 优选地, 步骤 S21中获取的生理心理测量数据包括心血状态数据。 步骤 S22中, 可以根据第二公式 P(t)*S(t)=p*L*H 2(t)/2计算用户应激力的强度, 其中 p表示客观 应激性水平测量值, L表示主观应激性水平调査值, H(t)表示心血状态数据。
[0063] 优选地, 心血状态数据是心率变异性和血氧饱和度。 心率变异性和血氧饱和度 等心血状态数据是最能体现个体压力变化的特征数据之一。 通过量化心率变异 性的吋域参数 (如 Mean, SDNN,pNN50, rMSSD等) 、 频域参数 (LF, HF, LF/HF ratio, Total Power, Normalized LF/HF等) 、 几何参数 (HRV Index, TINN等) 以及 非线性参数 (DFA, ApEn等) 与压力水平变化之间关系, 可以更加精确地评估个 体压力值。
[0064] 优选地, 客观应激性水平测量值 p是皮质醇指标。 皮质醇是一种由肾上腺分泌 的荷尔蒙, 在应付压力中扮演重要角色, 故又被称为"压力荷尔蒙", 皮质醇会提 高血压、 血糖水平和产生免疫抑制作用, 研究发现, 特定的皮质醇水平变化与 失常的促肾上腺皮质素水平、 忧郁症、 压力有关, 也与血糖过低、 疾病、 发热 、 创伤、 敬畏、 痛楚和极端温度等会引起因压力而来之生理反应的事件有关, 在当前的科学研究及临床实践中, 采用皮质醇水平的变化作为压力水平的评价 参数已经得到了验证。
[0065] 优选地, 主观应激性水平调査值 L是压力量表测量值。 一般而言, 自我问卷调 査是最常被使用来测量个人的压力水平的手段之一, 许多问卷调査方案已经被 应用到临床的实践以及精神病学的研究用于评价压力水平, 包括知觉压力量表
(Perceived Stress Scale , PSS) ,生活事件应对问卷 (Life Events and Coping Inventory, LECl) , 应激反应调査表 (Stress Response Inventory, SRI) 等。
[0066] 优选地, 步骤 S21中获取的生理心理测量数据包括体温数据 T(t), 应激性水平影 响调査数据包括个体信息加权平均值 、 触发因子加权平均值 Ml、 触发因子总 分值 VI、 缓解因子加权平均值 M2和缓解因子总分值 V2, 其中个体信息加权平均 值 R可以是个体信息例如身高、 体重、 年齢、 性别等的加权平均值, 触发因子总 分值 VI由压力问卷调査表中跟触发因子相关的问题最终得分决定, 缓解因子总 分值 V2由压力问卷调査表中跟缓解因子相关的问题最终得分决定。 步骤 S23进一 步包括: 根据第三公式 Fl(t)=(Ml/Vl)*R*T(t)计算触发因子强度 Fl(t); 根据第四 公式 F2(t)=(M2/V2)*R*T(t)计算缓解因子强度 F2(t); 根据第五公式 AF(t)=Fl(t)+F2 (t)计算诱导因子强度。
[0067] 请参见图 5, 是本发明提供的压力管理系统的第一实施例结构示意图, 该系统 包括:
[0068] 数据获取模块 510, 用于实吋地获取用户的压力评估参数, 所述压力评估参数 包括生理心理测量数据、 客观应激性水平测量值、 主观应激性水平调査值和应 激性水平影响调査数据。 其中, 生理心理测量数据是测量并提取得到的与压力 相关的生理体征数据和心理状态数据, 例如心率、 心率变异性、 呼吸率、 脉率 变异性、 血氧饱和度、 体温等。 客观应激性水平测量值是测量得到的用于表征 应激性水平的生化指标, 例如皮质醇指标。 主观应激性水平调査值是根据调査 取样得到的主观因子分析计算得到的应激性水平, 例如根据问卷调査得到的压 力量表值。 应激性水平影响调査数据是根据调査取样得到的对应激力水平的影 响程度, 例如个人信息的影响程度、 环境变化的影响程度、 情感状态的影响程 度等, 这些也可以通过问卷调査得到。 因为压力的成因比较复杂, 影响压力水 平变化的因素较多, 包括心理的、 身体的、 社会的、 环境的因素等, 而单一参 数的测量本身又存在误差 (例如人为误差、 系统误差等) , 所以采用多参数信 息融合技术, 通过多维度参数来评估压力水平, 能够降低误差, 提高压力评估 的精确性、 全面性、 可靠性及个性化。 数据获取模块 510可以从传感器中获取传 感器采集的原始生理数据进行特征提取等处理。
[0069] 压力评估模块 520, 用于根据所述生理心理测量数据、 客观应激性水平测量值 、 主观应激性水平调査值和应激性水平影响调査数据计算所述用户的压力值。 具体地, 需要确立各测量数据与压力高低程度的定量关系。 对于提取到的原始 参数, 需要运用单因素分析法, 明确对压力水平的变化具有显著性影响的原始 参数; 对于这些原始参数, 再运用多因素分析法, 去除混杂因素, 明确各参数 的相对作用大小, 确定相应权重值; 采用非线性动力学理论建立一套能够分析 自主神经系统工作状态的算法, 可以有效地分析这一复杂系统的动态特性, 从 而动态地评价人体的生理及心理状况, 找出人体在某些外部及内部压力源下自 主神经系统动态特性的变化, 提高对压力的定量评价能力。 然后, 需要结合个 人信息、 压力问卷调査等, 进行大数据量的学习和训练, 确定基于个人压力水 平的阈值。 根据人体应激力水平的动态变化以及相应条件下个人压力水平的阈 值来评估个人当前压力水平及压力变化趋势, 以多维信息融合的方式, 提高对 压力评估的个性化、 精细化需求。
[0070] 反馈模块 530, 用于根据计算得到的压力值生成并输出压力反馈锻炼机制, 使 所述用户根据所述压力反馈锻炼机制自我调节, 从而使所述用户的压力值保持 在正常水平。 反馈模块 530可以通过声学、 光学、 显示等手段将压力值及压力反 馈锻炼机制反馈给用户。 在当前以治疗为中心的医疗模式下, 人们往往重视生 病后的治疗和护理, 而相对忽视对发病诱因的早期预警与干预, 亚健康状态及 压力诱发的相关疾病往往存在一个缓慢的隐性发展吋期, 由于缺乏明显症状而 不被重视, 如果任由其发展直至出现明显症状吋, 可能已经造成了无法恢复的 严重损伤, 继而导致了心理和生理双重的恶性循环, 为疾病的有效预防和救治 造成极大困难。 为了提高老年人和亚健康人群的生活质量, 降低社会医疗成本 , 国家倡导医疗 "重点前移, 重心下移", 提出把医疗场所由医院转移至家庭, 把 医疗模式由治疗转向预防。 当前, 我国社会已经进入老齢化阶段, 老齢化人口 急剧增长, 实现老年人和亚健康人群的身体及心理健康状况的实吋监测尤为重 要。 另一方面, 因为压力过大而导致精神紧张, 人体神经系统失调, 新陈代谢 发生紊乱的亚健康高压人群逐年递增; 长期处于高压状态下, 易促使人体主要 器官功能失去平衡, 易造成动脉硬化, 从而引起冠心病和脑血栓等。 因而, 客 观地、 实吋地、 定量地监控和评价压力水平, 并进行早期的、 有效的预警干预 , 有利于个体压力管理, 情绪调节, 从而达到疏导压力, 缓解病情的目的。
[0071] 本发明实施例提供的压力管理系统, 通过对生理心理测量数据、 客观应激性水 平测量值、 主观应激性水平调査值和应激性水平影响调査数据进行融合分析来 评估压力值, 充分考虑了生理、 心理、 客观、 主观、 个人信息、 外部环境等对 压力值的影响, 提高了压力评估结果的准确性和全面性, 建立了实吋的、 连续 的、 定量的压力管理机制。
[0072] 具体地, 压力评估模块 520可以采用圆筒理论模型来评估用户的压力水平, 下 面将结合图 3-4、 图 6对这个实施例进行详细说明。
[0073] 请参见图 6, 是本发明提供的压力管理系统的第二实施例结构示意图。
[0074] 其中, 压力评估模块 520进一步包括:
[0075] 应激力强度计算模块 521, 用于根据所述生理心理测量数据、 客观应激性水平 测量值和主观应激性水平调査值计算所述用户的应激力强度 P(t)*S(t)。
[0076] 诱导因子强度计算模块 522, 用于根据所述生理心理测量数据和应激性水平影 响调査数据计算诱导因子强度 AF(t)。 诱导因子强度 AF(t)=触发因子强度 Fl(t)-缓 解因子强度 F2(t)。 触发因子涉及主观及客观因素对个体应激性水平的影响, 主 要正面因素如身体健康程度、 工作学习压力、 生活负担、 社会及生存环境改变 、 情感及财务状况等; 相对应地, 缓解因子则包括身体健康程度的提高、 工作 及学习任务的完成、 生活负担降低、 社会及生存环境的提高及情感财务状况的 改善等。
[0077] 压力值计算模块 523, 用于根据第一公式 F(t)=P(t)*S(t)+AF(t)计算所述用户的压 力值 F(t)。 具体地, 第一公式可以变形为 F(t)=P(t)*S(t)+(Fl(t)-F2(t))。
[0078] 具体地, 如图 3所示, 中间液体代表个体受内部及外部环境因素影响的实吋应 激力强度 P(t)*S(t), 该部分圆柱体的高度 'Ή"随吋间及环境的变化而产生变化, 为瞬间变量; 圆柱体的横截面长度 "L"为累积变量, 是个体承受压力的容忍度, 在一定吋间范围内受外部环境的影响较小。 在正常情况下, 个体通过中央神经 及自主神经系统的联动机制, 自适应调整生理及心理状态, 以保持个体压力处 于合理区间。 触发因子涉及主观及客观因素对个体应激性水平的影响, 主要正 面因素如身体健康程度、 工作学习压力、 生活负担、 社会及生存环境改变、 情 感及财务状况等; 相对应地, 缓解因子则包括身体健康程度的提高、 工作及学 习任务的完成、 生活负担降低、 社会及生存环境的提高及情感财务状况的改善 等。 触发因子和缓解因子的动态变化, 使 Η值在正常阈值范围内保持动态平衡, 当 Η的变化超过设定的阈值范围, 则表明自主神经系统动态调控能力的失衡, 需 通过干预手段提高缓解因子强度, 降低触发因子强度。 该圆筒模型从结构上来 看分为了三个部分, 从上至下依次为触发因子、 个体应激性以及缓解因子, 三 部分形成一个动态平衡, 通过自主干预触发因子和缓解因子的强度, 实现个体 应激性水平的动态平衡, 以达到最优状态, 以及释放压力等目的。
[0079] 根据上述的圆筒理论模型, 将其映射到三维空间, 如图 4所示, 进行数学建模 , 可以采用微积分的方法计算空间模型和平面模型底部的压力 F(t)。
[0080] 优选地, 数据获取模块 510获取的生理心理测量数据包括心血状态数据。 应激 力强度计算模块 521可以根据第二公式 P(t)*S(t)=p*L*H 2(t)/2计算用户应激力的强 度, 其中 p表示客观应激性水平测量值, L表示主观应激性水平调査值, H(t)表示 心血状态数据。
[0081] 优选地, 心血状态数据是心率变异性和血氧饱和度。 心率变异性和血氧饱和度 等心血状态数据是最能体现个体压力变化的特征数据之一。 通过量化心率变异 性的吋域参数 (如 Mean, SDNN,pNN50, rMSSD等) 、 频域参数 (LF, HF, LF/HF ratio, Total Power, Normalized LF/HF等) 、 几何参数 (HRV Index, TINN等) 以及 非线性参数 (DFA, ApEn等) 与压力水平变化之间关系, 可以更加精确地评估个 体压力值。
[0082] 优选地, 客观应激性水平测量值 p是皮质醇指标。 皮质醇是一种由肾上腺分泌 的荷尔蒙, 在应付压力中扮演重要角色, 故又被称为"压力荷尔蒙", 皮质醇会提 高血压、 血糖水平和产生免疫抑制作用, 研究发现, 特定的皮质醇水平变化与 失常的促肾上腺皮质素水平、 忧郁症、 压力有关, 也与血糖过低、 疾病、 发热 、 创伤、 敬畏、 痛楚和极端温度等会引起因压力而来之生理反应的事件有关, 在当前的科学研究及临床实践中, 采用皮质醇水平的变化作为压力水平的评价 参数已经得到了验证。
[0083] 优选地, 主观应激性水平调査值 L是压力量表测量值。 一般而言, 自我问卷调 査是最常被使用来测量个人的压力水平的手段之一, 许多问卷调査方案已经被 应用到临床的实践以及精神病学的研究用于评价压力水平, 包括知觉压力量表
(Perceived Stress Scale , PSS) ,生活事件应对问卷 (Life Events and Coping Inventory, LECl) , 应激反应调査表 (Stress Response Inventory, SRI) 等。
[0084] 优选地, 数据获取模块 510获取的生理心理测量数据包括体温数据 T(t), 应激性 水平影响调査数据包括个体信息加权平均值!^、 触发因子加权平均值 Ml、 触发 因子总分值 VI、 缓解因子加权平均值 M2和缓解因子总分值 V2, 其中个体信息加 权平均值 R可以是个体信息例如身高、 体重、 年齢、 性别等的加权平均值, 触发 因子总分值 VI由压力问卷调査表中跟触发因子相关的问题最终得分决定, 缓解 因子总分值 V2由压力问卷调査表中跟缓解因子相关的问题最终得分决定。 诱导 因子强度计算模块 522进一步包括: 触发因子强度计算模块, 用于根据第三公式 Fl(t)=(Ml/Vl)*R*T(t)计算触发因子强度 Fl(t); 缓解因子强度计算模块, 用于根 据第四公式 F2(t)=(M2/V2)*R*T(t)计算缓解因子强度 F2(t); 差值模块, 用于根据 第五公式 AF(t)=Fl(t)+F2(t)计算诱导因子强度。
[0085] 实际上, 心率变异性特征值、 血氧饱和度、 压力量表值 (问卷调査) 、 皮质醇 生化指标、 触发因子、 缓解因子等压力评估参数不仅都是压力值的影响因素, 而且它们相互之间还互相影响。 例如长期精神压力会造成交感神经的持续活化 , 影响自主神经系统的动态调节能力, 这种变化会直接体现在心理信号及其特 征值的非线性变化, 如心率变异性特征值、 压力量表值 (问卷调査) 及皮质醇 生化指标等。 该圆筒理论模型不是简单地线性映射, 而是将应激性水平的变化 与内在的和外在的触发及缓解因子建立非线性映射关系, 将生理的、 心理的、 社会的以及环境的因素综合考虑, 通过信息融合的技术, 量化多元生理参数、 生化指标、 心理因素、 个体信息与模型因子的内在关系, 建立了个性化压力评 估系统。
[0086] 本发明实施例可以结合可穿戴织物系统, 实现个性化、 实吋的压力管理框架。
基于新型无扰可穿戴系统平台, 获取多模态生理体征信息, 基于经典压力模型 , 结合主客观因素构建基于多模体征信号的个性化圆筒压力评估模型, 实吋地 、 客观地及定量地评价压力水平高低, 通过自主干预触发因子和缓解因子的强 度, 实现个体应激性水平的动态平衡, 以达到释放压力、 预防疾病等目的。
[0087] 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可 以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算机可 读取存储介质中, 该程序在执行吋, 可包括如上述各方法的实施例的流程。 其 中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体 (Read-Only
Memory , ROM) 或随机存储记忆体 (Random Access Memory , RAM) 等。
[0088] 以上所揭露的仅为本发明一种较佳实施例而已, 当然不能以此来限定本发明之 权利范围, 本领域普通技术人员可以理解实现上述实施例的全部或部分流程, 并依本发明权利要求所作的等同变化, 仍属于发明所涵盖的范围。

Claims

权利要求书
[权利要求 1] 一种压力管理方法, 其特征在于, 包括:
实吋地获取用户的压力评估参数, 所述压力评估参数包括生理心理测 量数据、 客观应激性水平测量值、 主观应激性水平调査值和应激性水 平影响调査数据;
根据所述生理心理测量数据、 客观应激性水平测量值、 主观应激性水 平调査值和应激性水平影响调査数据计算所述用户的压力值; 根据计算得到的压力值生成并输出压力反馈锻炼机制, 使所述用户根 据所述压力反馈锻炼机制自我调节, 从而使所述用户的压力值保持在 正常水平。
[权利要求 2] 如权利要求 1所述的压力管理方法, 其特征在于, 所述计算所述用户 的压力值的步骤包括:
根据所述生理心理测量数据、 客观应激性水平测量值和主观应激性水 平调査值计算所述用户的应激力强度 P(t)*S(t);
根据所述生理心理测量数据和应激性水平影响调査数据计算诱导因子 强度 AF(t);
根据第一公式 F(t)=P(t)*S(t)+AF(t)计算所述用户的压力值。
[权利要求 3] 如权利要求 2所述的压力管理方法, 其特征在于, 所述生理心理测量 数据包括心血状态数据;
所述计算所述用户的应激力强度的步骤包括:
根据第二公式 P(t)*S(t)=p*L*H 2(t)/2计算用户应激力的强度, 其中 p表 示客观应激性水平测量值, L表示主观应激性水平调査值, H(t)表示 心血状态数据。
[权利要求 4] 如权利要求 2所述的压力管理方法, 其特征在于, 所述生理心理测量 数据包括体温数据 T(t), 所述应激性水平影响调査数据包括个体信息 加权平均值 R、 触发因子加权平均值 Ml、 触发因子总分值 VI、 缓解 因子加权平均值 M2和缓解因子总分值 V2;
所述计算诱导因子强度的步骤包括: 根据第三公式 Fl(t)=(Ml/Vl)*R*T(t)计算触发因子强度 Fl(t);
根据第四公式 F2(t)=(M2/V2)*R*T(t)计算缓解因子强度 F2(t);
根据第五公式 AF(t)=Fl(t)+F2(t)计算诱导因子强度。
[权利要求 5] 如权利要求 3所述的压力管理方法, 其特征在于, 所述客观应激性水 平测量值 p是皮质醇指标, 所述主观应激性水平调査值 L是压力量表
[权利要求 6] —种压力管理系统, 其特征在于, 包括:
数据获取模块, 用于实吋地获取用户的压力评估参数, 所述压力评估 参数包括生理心理测量数据、 客观应激性水平测量值、 主观应激性水 平调査值和应激性水平影响调査数据;
压力评估模块, 用于根据所述生理心理测量数据、 客观应激性水平测 量值、 主观应激性水平调査值和应激性水平影响调査数据计算所述用 户的压力值;
反馈模块, 用于根据计算得到的压力值生成并输出压力反馈锻炼机制 , 使所述用户根据所述压力反馈锻炼机制自我调节, 从而使所述用户 的压力值保持在正常水平。
[权利要求 7] 如权利要求 6所述的压力管理系统, 其特征在于, 所述压力评估模块 包括:
应激力强度计算模块, 用于根据所述生理心理测量数据、 客观应激性 水平测量值和主观应激性水平调査值计算所述用户的应激力强度 P(t)* S(t);
诱导因子强度计算模块, 用于根据所述生理心理测量数据和应激性水 平影响调査数据计算诱导因子强度 AF(t);
压力值计算模块, 用于根据第一公式 F(t)=P(t)*S(t)+AF(t)计算所述用 户的压力值。
[权利要求 8] 如权利要求 7所述的压力管理系统, 其特征在于, 所述生理心理测量 数据包括心血状态数据; 所述应激力强度计算模块具体用于:
根据第二公式 P(t)*S(t)=p*L*H 2(t)/2计算用户应激力的强度, 其中 p表 示客观应激性水平测量值, L表示主观应激性水平调査值, H(t)表示 心血状态数据。
[权利要求 9] 如权利要求 7所述的压力管理系统, 其特征在于, 所述生理心理测量 数据包括体温数据 T(t), 所述应激性水平影响调査数据包括个体信息 加权平均值 R、 触发因子加权平均值 Ml、 触发因子总分值 VI、 缓解 因子加权平均值 M2和缓解因子总分值 V2;
所述诱导因子强度计算模块包括:
触发因子强度计算模块, 用于根据第三公式 Fl(t)=(Ml/Vl)*R*T(t)计 算触发因子强度 Fl(t);
缓解因子强度计算模块, 用于根据第四公式 F2(t)=(M2/V2)*R*T(t)计 算缓解因子强度 F2(t);
差值模块, 用于根据第五公式 AF(t)=Fl(t)-F2(t)计算诱导因子强度。
[权利要求 10] 如权利要求 8所述的压力管理系统, 其特征在于, 所述客观应激性水 平测量值 p是皮质醇指标, 所述主观应激性水平调査值 L是压力量表
PCT/CN2016/096216 2016-05-20 2016-08-22 一种压力管理方法及系统 WO2017197801A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610343770.5 2016-05-20
CN201610343770.5A CN106037764B (zh) 2016-05-20 2016-05-20 一种压力管理方法及系统

Publications (1)

Publication Number Publication Date
WO2017197801A1 true WO2017197801A1 (zh) 2017-11-23

Family

ID=57176558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096216 WO2017197801A1 (zh) 2016-05-20 2016-08-22 一种压力管理方法及系统

Country Status (2)

Country Link
CN (1) CN106037764B (zh)
WO (1) WO2017197801A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900025435A1 (it) * 2019-12-23 2021-06-23 Njord Srl Sistema di valutazione di dati correlati alla gestione di un orto urbano e relativo metodo

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018090304A1 (zh) * 2016-11-17 2018-05-24 华为技术有限公司 一种精神压力评测方法和装置
RU2695888C2 (ru) * 2017-03-24 2019-07-29 Общество С Ограниченной Ответственностью "Многопрофильное Предприятие "Элсис" Способ оценки психофизиологического состояния человека
CN113974626B (zh) * 2017-08-24 2023-03-10 华为技术有限公司 一种心理压力评估方法及设备
CN107865665A (zh) * 2017-12-15 2018-04-03 安徽徽韵心理咨询有限公司 一种心理测试系统
CN109938756B (zh) * 2019-02-15 2022-04-12 深圳和而泰数据资源与云技术有限公司 一种监测精神压力的方法、脖套及系统
CN112331307A (zh) * 2020-11-04 2021-02-05 苏州中科先进技术研究院有限公司 一种基于ai的智能心理咨询方法、系统、终端以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102085098A (zh) * 2009-12-04 2011-06-08 深圳市中航健身时尚股份有限公司 一种压力调节方法
CN103584872A (zh) * 2013-10-29 2014-02-19 燕山大学 一种基于多生理参数融合的心理压力评估方法
CN103961113A (zh) * 2013-01-24 2014-08-06 三星电子株式会社 用于基于用户的行为测量压力的设备和方法
CN104490407A (zh) * 2014-12-08 2015-04-08 清华大学 一种可穿戴式心理压力评测装置及方法
CA2895954A1 (en) * 2014-07-07 2016-01-07 Azadeh Kushki Anxiety meter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105559803A (zh) * 2015-12-17 2016-05-11 国家电网公司 一种电网企业工作人员心理压力状况评估方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102085098A (zh) * 2009-12-04 2011-06-08 深圳市中航健身时尚股份有限公司 一种压力调节方法
CN103961113A (zh) * 2013-01-24 2014-08-06 三星电子株式会社 用于基于用户的行为测量压力的设备和方法
CN103584872A (zh) * 2013-10-29 2014-02-19 燕山大学 一种基于多生理参数融合的心理压力评估方法
CA2895954A1 (en) * 2014-07-07 2016-01-07 Azadeh Kushki Anxiety meter
CN104490407A (zh) * 2014-12-08 2015-04-08 清华大学 一种可穿戴式心理压力评测装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900025435A1 (it) * 2019-12-23 2021-06-23 Njord Srl Sistema di valutazione di dati correlati alla gestione di un orto urbano e relativo metodo
WO2021130650A1 (en) * 2019-12-23 2021-07-01 Njord Srl System and method for evaluating data related to the management of an urban garden

Also Published As

Publication number Publication date
CN106037764A (zh) 2016-10-26
CN106037764B (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
WO2017197801A1 (zh) 一种压力管理方法及系统
Uusitalo et al. Heart rate variability related to effort at work
DuBois et al. Stigma and diurnal cortisol among transitioning transgender men
Yang et al. Reduced physiologic complexity is associated with poor sleep in patients with major depression and primary insomnia
Boettger et al. Altered diurnal autonomic variation and reduced vagal information flow in acute schizophrenia
Rosado-Rivera et al. Comparison of 24-hour cardiovascular and autonomic function in paraplegia, tetraplegia, and control groups: implications for cardiovascular risk
Rigoldi et al. Measuring regularity of human postural sway using approximate entropy and sample entropy in patients with Ehlers–Danlos syndrome hypermobility type
CN105283120B (zh) 用于确定血管年龄的血流‑介导性扩张
May et al. School burnout: increased sympathetic vasomotor tone and attenuated ambulatory diurnal blood pressure variability in young adult women
Islam Ambulatory blood pressure monitoring in the diagnosis and treatment of hypertension
Dorogova et al. RETRACTED ARTICLE: Comparison of the BPLab® sphygmomanometer for ambulatory blood pressure monitoring with mercury sphygmomanometry in pregnant women: validation study according to the British Hypertension Society protocol
de Vries et al. Moderation of the stressor-strain process in interns by heart rate variability measured with a wearable and smartphone app: Within-subject design using continuous monitoring
Liu et al. Sleep moderates the association between arterial stiffness and 24-hour blood pressure variability
JP2014039586A (ja) 睡眠改善支援装置
Pelo et al. Autonomic dysfunction and exercise intolerance in concussion: a scoping review
JP6512720B2 (ja) 精神的ストレス指数計測及び血圧計測を兼備した測定装置及び方法
Zhou et al. Analysis of health changes and the association of health indicators in the elderly using TCM pulse diagnosis assisted with ICT devices: a time series study
WO2009084983A1 (fr) Procédé d'évaluation et de prévision des états émotionnels et comportementaux d'une personne pendant la journée et de son activité psychophysiologique sur la base des indicateurs du syndrome d'hypersympaticotonie nocturne
Goulart et al. Is cardiac autonomic modulation during upper limb isometric contraction and Valsalva maneuver impaired in COPD patients?
Chen et al. Long-term tracking of a patient’s health condition based on pulse rate dynamics during sleep
Goit et al. Cardiovascular autonomic function and vibration perception threshold in type 2 diabetes mellitus
Hedges et al. Comparison of sleep and mood in patients after on-pump and off-pump coronary artery bypass surgery
Sekizuka et al. Effect of oral appliance therapy on blood pressure in Japanese patients with obstructive sleep apnea
Solorzano et al. Pre-partum HRV as a predictor of postpartum depression: The potential use of a smartphone application for physiological recordings
Shahrbabaki et al. Nocturnal pulse wave amplitude attenuations are associated with long-term cardiovascular events

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902181

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.04.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16902181

Country of ref document: EP

Kind code of ref document: A1