WO2017197570A1 - 传输块的重传方法和基站 - Google Patents

传输块的重传方法和基站 Download PDF

Info

Publication number
WO2017197570A1
WO2017197570A1 PCT/CN2016/082297 CN2016082297W WO2017197570A1 WO 2017197570 A1 WO2017197570 A1 WO 2017197570A1 CN 2016082297 W CN2016082297 W CN 2016082297W WO 2017197570 A1 WO2017197570 A1 WO 2017197570A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission mode
loop
closed
division multiplexing
transmission
Prior art date
Application number
PCT/CN2016/082297
Other languages
English (en)
French (fr)
Inventor
何龙科
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES16901956T priority Critical patent/ES2870484T3/es
Priority to EP20192193.9A priority patent/EP3809617B1/en
Priority to PCT/CN2016/082297 priority patent/WO2017197570A1/zh
Priority to EP16901956.9A priority patent/EP3447945B1/en
Priority to JP2018560598A priority patent/JP6706691B2/ja
Priority to CN201680084110.8A priority patent/CN108886423B/zh
Priority to CN202010981893.8A priority patent/CN112187405B/zh
Publication of WO2017197570A1 publication Critical patent/WO2017197570A1/zh
Priority to US16/194,088 priority patent/US10374684B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present invention relate to a wireless technology, and in particular, to a retransmission method and a base station of a transport block.
  • MIMO Multiple-Input Multiple-Output
  • TMs MIMO transmission modes
  • the base station informs the terminal of the physical downlink shared channel (PDSCH) through RRC signaling.
  • the transmission mode and related configuration parameters are used, and the terminal performs corresponding signal processing and reception.
  • PDSCH physical downlink shared channel
  • MIMO technology is mainly divided into: spatial multiplexing technology and spatial diversity technology. Spatial multiplexing is divided into open-loop spatial multiplexing and closed-loop spatial multiplexing. The main difference between closed-loop spatial multiplexing and open-loop spatial multiplexing is closed-loop spatial multiplexing.
  • the terminal needs to feed back a precoding matrix indicator (PMI) information.
  • PMI precoding matrix indicator
  • TM4, TM6, TM8, TM9 and TM10 use closed-loop spatial multiplexing
  • TM3 uses open-loop spatial multiplexing.
  • the embodiment of the invention provides a retransmission method and a base station of a transport block, which reduces residual block error rate and packet loss rate, and ensures effective acquisition of closed loop gain.
  • a first aspect of the present invention provides a method for retransmitting a transport block, where the method includes: using a closed-loop space division multiplexing transmission when a base station transmits a transmission block (TB) to a user equipment (User Equipment, UE for short) Mode, when the TB initial transmission fails, the base station is in front
  • the TB is retransmitted m times
  • the TB is retransmitted by using the closed-loop space division multiplexing transmission mode
  • the base station uses the transmission mode TM to which the closed-loop space division multiplexing transmission mode belongs when the TB is retransmitted after Nm times.
  • the included open loop transmission mode retransmits the TB, where m is an integer greater than or equal to 0, N is the maximum number of retransmissions of the TB, and N is an integer greater than or equal to 1.
  • a second aspect of the present invention provides a base station, where the base station includes a processing module and a transceiver module.
  • the processing module is configured to control the transceiver module to transmit the transmission block TB to the UE by using a closed-loop space division multiplexing transmission manner; the processing module is further configured to: when the TB initial transmission fails, control the transceiver module to be in the first m times When the TB is retransmitted, the TB is retransmitted by using the closed-loop space division multiplexing transmission mode, and when the TB is retransmitted Nm times, the open loop included in the transmission mode TM to which the closed-loop space division multiplexing transmission mode belongs is used.
  • the transmission mode retransmits the TB, where m is an integer greater than or equal to 0, N is the maximum number of retransmissions of the TB, and N is an integer greater than or equal to 1.
  • the closed-loop space division multiplexing transmission mode and the open-loop transmission mode are the transmission modes supported by the DCI format 2.
  • the closed-loop spatial division multiplexing transmission mode is a transmission mode supported by the DCI format 1D
  • the open-loop transmission mode is a transmission mode supported by the DCI format 1A.
  • the closed-loop space division multiplexing transmission mode is a transmission mode supported by the DCI format 1B
  • the open-loop transmission mode is a transmission mode supported by the DCI format 1A.
  • the closed-loop space division multiplexing transmission mode and the open-loop transmission mode are transmission modes supported by the DCI format 2B.
  • the closed-loop space division multiplexing transmission mode and the open-loop transmission mode are transmission modes supported by the DCI format 2C.
  • the closed-loop space division multiplexing transmission mode and the open-loop transmission mode are transmission modes supported by the DCI format 2D.
  • the retransmission method and the base station of the transport block provided by the embodiment of the present invention maintain the closed-loop space division multiplexing transmission mode used for initial transmission of the TB when retransmitting the TB for the first time, and retransmit the TB after Nm times.
  • the transmission mode becomes the open-loop transmission mode.
  • Block rate and voice packet loss rate ensure efficient acquisition of closed-loop gain.
  • FIG. 1 is a method for retransmitting a data block according to Embodiment 1 of the present invention
  • 2 is a schematic diagram of transmission of TB at TM4;
  • Figure 3 is a schematic diagram of the transmission of TB at TM5;
  • Figure 4 is a schematic diagram of the transmission of TB at TM6;
  • Figure 5 is a schematic diagram of the transmission of TB at TM8/TM9/TM10;
  • FIG. 6 is a schematic structural diagram of a base station according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention.
  • the method of the embodiment of the present invention is applied to a MIMO system.
  • a transmitting end and a receiving end respectively use multiple transmitting antennas and receiving antennas, and the transmitting end maps the data signal to be transmitted to multiple antennas, and the receiving end sends each root.
  • the signal received by the receiving antenna is processed.
  • MIMO technology is roughly divided into two categories: spatial multiplexing technology and spatial diversity technology.
  • Spatial multiplexing technology utilizes spatial dimensions to transmit multiple different signals on the same time-frequency resource, and uses spatial features to distinguish different signals at the receiving end.
  • a "multi-stream" transmission is formed, thereby increasing the transmission rate per unit time and unit frequency.
  • the spatial diversity technique uses multiple different transmission paths provided by multiple antennas to transmit the same signal.
  • the spatial diversity technique is mainly used to improve the reliability of the wireless link.
  • Spatial multiplexing is divided into Open-loop spatial multiplexing and Closed-loop spatial multiplexing. Closed-loop spatial multiplexing is also called closed-loop space multiplexing. Open-loop spatial multiplexing is also known as open-loop space division multiplexing.
  • the spatial diversity technology uses an open-loop transmission method at the transmitting end, and the open-loop transmission methods include: a diversity diversity and a single-antenna port.
  • the base station selects different TMs according to the characteristics of the channel, and the channel characteristics include the quality of the received signals of the channel and the spatial correlation of the channels.
  • Each TM uses different Downlink Control Information (DCI) format. Different DCI formats support different transmission modes. The same DCI format may support only one transmission mode or multiple support. Way of launching.
  • DCI Downlink Control Information
  • FIG. 1 is a method for retransmitting a data block according to Embodiment 1 of the present invention. As shown in FIG. 1 , the method in this embodiment may include the following steps:
  • Step 101 The base station first transmits the TB to the UE by using a closed-loop space division multiplexing transmission mode.
  • Step 102 When the TB initial transmission fails, the base station retransmits the TB by using the closed-loop space division multiplexing transmission mode when the TB is retransmitted in the first m times, where m is an integer greater than or equal to 0.
  • Step 103 When the eNB retransmits the TB in the next Nm times, the TB is retransmitted by using the open loop transmission mode included in the TM to which the closed-loop space division multiplexing transmission mode belongs, where N is the maximum number of retransmissions of the TB, N Is an integer greater than or equal to 1.
  • the method of this embodiment can be applied to include, but is not limited to, the following TM: TM4, TM5, TM6, TM8, TM9, and TM10.
  • Table 1 shows the relevant configuration parameters of each TM.
  • the parameters of each TM include: supported DCI format and transmission mode.
  • the closed-loop space division multiplexing transmission mode includes: closed-loop space division multiplexing transmission mode supported by DCI format 2 of TM4, closed-loop space division multiplexing transmission mode supported by DCI format 1D of TM5, DCI format of TM6 1B supported closed-loop space division multiplexing transmission mode, TM8 DCI format 2B supported dual layer transmission (Dual layer transmission), TM9 DCI format 2C supports up to 8 layers of transmission and TM10 DCI format 2D supported closed loop space division Multiplexed transmission methods.
  • the purpose of the closed-loop space division multiplexing transmission mode is to improve the channel capacity.
  • the closed-loop space division multiplexing transmission mode is generally applicable to a scenario with good channel conditions.
  • the first m retransmissions of the TB fail, most likely PMI beam pointing error. If the TB is retransmitted after Nm times using the prior art method, the TB is still retransmitted using the closed-loop space division multiplexing transmission mode, and the possibility of the TB retransmission failure is still large. Failure to retransmit multiple times will result in deterioration of residual block error rate and packet loss rate.
  • the residual block error rate also referred to as the residual block error rate, is used to indicate the proportion of TB blocks that failed to retransmit downlink in the measurement period.
  • the TB when the eNB retransmits the TB after Nm times, the TB is retransmitted by using an open-loop transmission mode, where the open-loop transmission mode is a transmission to which the closed-loop space division multiplexing transmission mode used by the base station initially transmits the TB.
  • the mode of transmission included in ModeTM.
  • the base station uses the closed-loop space division multiplexing transmission mode to initially transmit the TB to the UE.
  • the base station still uses the closed-loop space division multiplexing transmission mode in the first m retransmissions.
  • the TB is transmitted.
  • the base station retransmits the TB by using an open loop transmission mode, and the open loop transmission mode may be a transmission mode supported by the DCI format 2 of the TM4, or may be a DCI format 1A of the TM4.
  • the supported transmission method When the open loop transmission mode is the diversity transmission mode supported by DCI format 2, the TM and DCI formats are not changed when the TB is retransmitted after N-m times.
  • the TM and DCI formats are not changed, the signaling overhead and delay caused by the TM switching are reduced, and the effective acquisition of the closed loop gain can be guaranteed.
  • the open loop transmission mode is the diversity transmission mode supported by DCI format 1A
  • the TM does not change when the TB is retransmitted N-m times, and the DCI format needs to be modified.
  • the DCI format is changed from DCI format 2 to DCI format 1A.
  • the second is a schematic diagram of the transmission of TB in the case of TM4.
  • the value of m is 2, that is, the closed loop space division multiplexing transmission mode is used when the first two retransmissions of TB, from the third retransmission to the last heavy
  • the diversity transmission mode supported by DCI format 2 is transmitted, and the DCI format does not change during the retransmission process.
  • the maximum retransmission number N can be 8 or less than 8.
  • the base station can configure the maximum number of retransmissions as required. Generally, the maximum number of retransmissions is 4, and when the maximum number of retransmissions is 4.
  • the value of m is preferably 2.
  • the cause of the TB retransmission may be a hybrid automatic repeat request (HARQ) mechanism or a discontinuous transmission (DTX) mechanism.
  • HARQ hybrid automatic repeat request
  • DTX discontinuous transmission
  • the UE fails to correctly receive the TB that was originally transmitted, and the UE feeds back a negative acknowledgement NACK to the base station. After receiving the NACK, the base station retransmits the TB. For the retransmitted TB, the UE may not receive the TB correctly. The UE continues to feed back the negative acknowledgement NACK to the base station, and the base station continues to retransmit the TB until the maximum is reached.
  • the number of retransmissions is N.
  • the UE when the UE uses the DTX, the UE cannot correctly receive the TB transmitted by the base station because the UE fails to wake up the energy-saving UE in time, so that the base station retransmits the TB.
  • the TB transmission failure is caused by HARQ or DTX
  • the base station when the base station retransmits the TB in the first m times, the TB may be retransmitted by using a closed-loop space division multiplexing transmission manner. That is, when the TB is retransmitted m times before, the same manner as that used for the initial transmission of the TB is maintained.
  • the base station may further determine the reason for the retransmission of the first mt times of the TB.
  • the base station determines that the TB is initially transmitted using DTX, and the reason of the first m retransmissions is DTX, the base station retransmits the TB after Nm times.
  • the TB is still retransmitted using the closed-loop space division multiplexing transmission mode, that is, when the TB is retransmitted Nm times, the transmission mode is the same as that used for the initial transmission of the TB.
  • the base station uses the closed-loop space division multiplexing transmission mode to initially transmit the TB to the UE.
  • the base station still uses the closed-loop space division multiplexing transmission mode to retransmit the TB in the first m retransmissions.
  • the base station retransmits the TB by using an open loop transmission manner, and the open loop transmission mode is a transmission mode supported by the DCI format 1A.
  • the open loop transmission mode is the diversity transmission mode supported by the DCI format 1A
  • the TM does not change when the TB is retransmitted N-m times, and the DCI format needs to be modified.
  • the DCI format is changed from the DCI format 1D to the DCI format 1A.
  • the DCI format By changing the DCI format to change the transmission mode in the same TM, the signaling overhead and delay caused by the TM handover are reduced as compared with the modification of the transmission mode by modifying the TM, and the effective acquisition of the closed-loop gain can be ensured.
  • FIG. 3 is a schematic diagram of TB transmission when TM5 is used.
  • the first two retransmission TBs use a closed-loop space division multiplexing transmission mode, and the DCI format is DCI format 1D, and the diversity transmission mode is used from the third retransmission to the last retransmission.
  • the DCI format also changed from DCI format 1A from the third retransmission.
  • the base station uses the closed-loop space division multiplexing transmission mode to initially transmit the TB to the UE.
  • the base station still uses the closed-loop space division multiplexing transmission mode to retransmit the TB in the first m retransmissions.
  • the base station retransmits the TB by using an open loop transmission mode, which is a diversity transmission mode supported by the DCI format 1A of the TM6.
  • the TM does not change, and the DCI format needs to be modified.
  • the DCI format is changed from DCI format 1B to DCI format 1A.
  • the signaling overhead and delay caused by the TM handover are reduced as compared with the modification of the transmission mode by modifying the TM, and the effective acquisition of the closed-loop gain can be ensured.
  • Figure 4 is a schematic diagram of the transmission of TB at TM6.
  • the first two retransmissions of TB use closed-loop space division.
  • the DCI format is DCI format 1B
  • the diversity transmission mode is used from the third retransmission to the last retransmission, and the DCI format is changed from the third retransmission to the DCI format 1A.
  • the base station uses the closed-loop space division multiplexing transmission mode to initially transmit the TB to the UE.
  • the base station still uses the closed-loop space division multiplexing transmission mode to retransmit the TB in the first m retransmissions.
  • the base station retransmits the TB by using an open loop transmission manner, and the open loop transmission mode may be a transmission mode supported by the DCI format 2B of the TM8, or may be supported by the DCI format 1A of the TM8. Launch mode.
  • the open loop transmission mode is the single port transmission mode supported by DCI format 2B
  • the TM and DCI formats are not changed when the TB is retransmitted after N-m times. Since the TM and DCI formats are not changed, the signaling overhead and delay caused by the TM switching are reduced, and the effective acquisition of the closed loop gain can be guaranteed.
  • the single port transmission mode supported by DCI format 2B is transmitted using port 7 or port 8.
  • the open loop transmission mode is the single port transmission mode or the diversity transmission mode supported by the DCI format 1A
  • the TM does not change, and the DCI format needs to be modified, and the DCI format is from the DCI. Format 2B becomes DCI format 1A.
  • the single-port transmission mode supported by the DCI format 1A is used, and the port 0 is used for transmission, and in other cases, the diversity transmission supported by the DCI format 1A is used. the way.
  • the DCI format By changing the DCI format to change the transmission mode in the same TM, the signaling overhead and delay caused by the TM handover are reduced as compared with the modification of the transmission mode by modifying the TM, and the effective acquisition of the closed-loop gain can be ensured.
  • the base station uses the closed-loop space division multiplexing transmission mode to initially transmit the TB to the UE.
  • the base station still uses the closed-loop space division multiplexing transmission mode to retransmit the TB in the first m retransmissions.
  • the base station retransmits the TB by using an open loop transmission mode, and the open loop transmission mode may be a transmission mode supported by the DCI format 2C, or may be a single port transmission mode supported by the DCI format 1A. Or diversity transmission method.
  • the open loop transmission mode is the single port transmission mode supported by the DCI format 2C
  • the TM and DCI formats are not changed when the TB is retransmitted after N-m times. Since the TM and DCI formats are not changed, the signaling overhead and delay caused by the TM switching are reduced, and the effective acquisition of the closed loop gain can be guaranteed.
  • the single-port transmission mode supported by DCI format 2C is transmitted using port 7 or port 8.
  • the open-loop transmission mode is the single-port transmission mode or the diversity transmission mode supported by the DCI format 1A
  • the TM does not change, and the DCI format needs to be modified, and the DCI format is changed from The DCI format 2B becomes the DCI format 1A.
  • the Non-MBSFN subframe if the number of PBCHs is 1, the single-port transmission mode supported by DCI format 1A is used, and port 0 is used for transmission, and in other cases, the diversity transmission mode supported by DCI format 1A is used. .
  • the single-port transmission mode supported by DCI format 1A is used, and port 7 or port 8 is used for transmission.
  • the base station uses the closed-loop space division multiplexing transmission mode to initially transmit the TB to the UE.
  • the base station still uses the closed-loop space division multiplexing transmission mode to retransmit the TB in the first m retransmissions.
  • the base station retransmits the TB by using an open loop transmission mode, and the open loop transmission mode may be a transmission mode supported by the DCI format 2D, or may be a single port transmission mode supported by the DCI format 1A. Or diversity transmission method.
  • the open-loop transmission mode is the single-port transmission mode supported by the DCI format 2D
  • the TM and DCI formats are not changed when the TB is retransmitted N-m times. Since the TM and DCI formats are not changed, the signaling overhead and delay caused by the TM switching are reduced, and the effective acquisition of the closed loop gain can be guaranteed.
  • the single-port transmission mode supported by DCI format 2D is transmitted using port 7 or port 8.
  • the open-loop transmission mode is the single-port transmission mode or the diversity transmission mode supported by the DCI format 1A
  • the TM does not change, and the DCI format needs to be modified, and the DCI format is changed from the DCI format 2D.
  • DCI format 1A when the TB is retransmitted after Nm times, the TM does not change, and the DCI format needs to be modified, and the DCI format is changed from the DCI format 2D.
  • the Non-MBSFN subframe if the number of PBCHs is 1, the single-port transmission mode supported by DCI format 1A is used, and port 0 is used for transmission, and in other cases, the diversity transmission mode supported by DCI format 1A is used. .
  • the single-port transmission mode supported by DCI format 1A is used, and port 7 or port 8 is used for transmission. Since the TM does not change, the effective acquisition of the closed loop gain can still be guaranteed.
  • Figure 5 is a schematic diagram of TB transmission in TM8/TM9/TM10.
  • TM8/TM9/TM10 the first two retransmissions of TB use closed-loop space division multiplexing transmission, starting from the third retransmission to the last retransmission.
  • the DCI format remains unchanged during the retransmission process.
  • the closed-loop space division multiplexing transmission mode used for initial transmission of the TB is maintained, and when the TB is retransmitted after Nm times, when the transmission mode does not change,
  • the transmission mode becomes an open-loop transmission mode, and the TB is retransmitted by using an open-loop transmission method.
  • the reliability of the data transmission can be improved, the number of retransmissions of the TB is reduced, and the residual block error rate and the packet loss rate are reduced. And the transmission mode is not changed, and the effective acquisition of the closed loop gain is guaranteed.
  • FIG. 6 is a schematic structural diagram of a base station according to Embodiment 2 of the present invention. As shown in FIG. 6, the base station provided in this embodiment includes a processing module 11 and a transceiver module 12.
  • the processing module 11 is configured to control the transceiver module 12 to transmit a TB to the UE by using a closed-loop space division multiplexing transmission manner;
  • the processing module 11 is further configured to: when the TB initial transmission fails, the control transceiver module 12 retransmits the TB by using the closed-loop space division multiplexing transmission mode when retransmitting the TB in the first m times, and retransmits the Nm times
  • the TB is retransmitted by using an open-loop transmission mode included in the transmission mode TM to which the closed-loop space division multiplexing transmission mode belongs, where N is the maximum number of retransmissions of the TB, and m is an integer greater than or equal to 0. , N is an integer greater than or equal to 1.
  • the value of m is 2.
  • the processing module 11 is further configured to: determine that the TB initial transmission uses DTX, and the reason of the first m retransmissions is DTX, and control the transceiver module 12 to use the closed loop airspace when retransmitting the TB after Nm times.
  • the multiplexed transmission mode retransmits the TB.
  • the closed-loop spatial division multiplexing transmission mode is a transmission mode supported by the DCI format 1D
  • the open-loop transmission mode is a transmission mode supported by the DCI format 1A.
  • the closed-loop space division multiplexing transmission mode is a transmission mode supported by the DCI format 1B
  • the open-loop transmission mode is a transmission mode supported by the DCI format 1A.
  • the closed-loop space division multiplexing transmission mode and the open-loop transmission mode are transmission modes supported by the DCI format 2B.
  • the closed-loop space division multiplexing transmission mode and the open-loop transmission mode are transmission modes supported by the DCI format 2C.
  • the closed-loop space division multiplexing transmission mode and the open-loop transmission mode are transmission modes supported by the DCI format 2D.
  • the function of the base station in this embodiment may be used to perform the method in the foregoing Embodiment 1, and the specific implementation and technical effects are similar, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention.
  • the base station provided in this embodiment includes a processor 21 and a transceiver 22, and the processor 21 and the transceiver 22 may be configured. Connect via the bus.
  • the processor 21 is configured to control the transceiver 22 to transmit a TB to the UE by using a closed-loop space division multiplexing transmission manner;
  • the processor 21 is further configured to: when the TB initial transmission fails, control the transceiver 22 to retransmit the TB by using the closed-loop space division multiplexing transmission mode when retransmitting the TB for the first time, and retransmit the Nm times.
  • the TB is retransmitted by using an open-loop transmission method included in the TM to which the closed-loop space division multiplexing transmission mode belongs, where N is the maximum number of retransmissions of the TB, and N is an integer greater than or equal to 1, m Is an integer greater than or equal to 0.
  • the value of m is 2.
  • the processor 21 is further configured to: determine that the TB transmission uses DTX, and the reason of the first m retransmissions is DTX, and control the transceiver 22 to use the closed loop space division when retransmitting the TB after Nm times.
  • the TB is retransmitted by transmission.
  • the closed-loop spatial division multiplexing transmission mode is a transmission mode supported by the DCI format 1D
  • the open-loop transmission mode is a transmission mode supported by the DCI format 1A.
  • the closed-loop space division multiplexing transmission mode is a transmission mode supported by the DCI format 1B
  • the open-loop transmission mode is a transmission mode supported by the DCI format 1A.
  • the closed-loop space division multiplexing transmission mode and the open-loop transmission mode are transmission modes supported by the DCI format 2B.
  • the closed-loop space division multiplexing transmission mode and the open-loop transmission mode are transmission modes supported by the DCI format 2C.
  • the closed-loop space division multiplexing transmission mode and the open-loop transmission mode are transmission modes supported by the DCI format 2D.
  • the base station in this embodiment may be used to perform the method in the foregoing Embodiment 1.
  • the specific implementation manner and the technical effects are similar, and details are not described herein again.
  • the foregoing embodiment is described by taking the downlink MIMO as an example.
  • the solution of the present invention may also be applied to the uplink MIMO, that is, when the UE sends the TB to the base station, the TB may be retransmitted by using the method in the foregoing embodiment. Similar to the technical effect, it will not be described here.
  • the user equipment involved in the embodiment of the present invention may be a wireless terminal.
  • a wireless terminal can be a device that provides voice and/or data connectivity to a user, with a wireless connection function Hold device, or other processing device connected to a wireless modem.
  • the wireless terminal can communicate with at least one core network via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or vehicle-mounted mobile device,
  • the wireless access network exchanges voice and/or data.
  • a wireless terminal may also be called a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile Station, a Remote Station, an Access Point, and a remote terminal.
  • a remote terminal, an access terminal, a user terminal, a user agent, or a user equipment are not limited herein.
  • the base station involved in the embodiment of the present invention may be a base station (Base Transceiver Station, BTS for short) in Global System of Mobile communication (GSM) or Code Division Multiple Access (CDMA). It may also be a base station (NodeB, NB for short) in the Wideband Code Division Multiple Access (WCDMA), or an evolved NodeB (eNB) or an access point in the LTE network.
  • BTS Base Transceiver Station
  • NB Wideband Code Division Multiple Access
  • eNB evolved NodeB
  • the access point, the AP, or the relay station may be a base station or the like in the next generation network (that is, the 5G network), and is not limited herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明实施例提供一种传输块的重传方法和基站,所述方法中在前m次重传TB时,保持初传该TB所使用的闭环空分复用发射方式,在后N-m次重传该TB时,在传输模式不改变的情况下,发射方式变成了开环发射方式,通过使用开环发射方式重传该TB,可以提高数据传输的可靠性,使得该TB重传次数减少,降低了残留误块率和语音丢包率,保障了闭环增益的有效获取。

Description

传输块的重传方法和基站 技术领域
本发明实施例涉及无线技术,尤其涉及一种传输块的重传方法和基站。
背景技术
多输入多输出技术(Multiple-Input Multiple-Output,简称MIMO)是指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,MIMO技术主要是为了提高信道的容量和可靠性。
在长期演进(Long Term Evolution,简称LTE)系统中,定义了不同的MIMO传输模式(transmission mode,简称TM),基站通过RRC信令告知终端当前物理下行共享信道(Physical Downlink Shared Channel,简称PDSCH)使用的传输模式和相关配置参数,终端则进行相应的信号处理和接收。目前LTE系统共定义了10种传输模式(Transmission Mode,简称TM):TM1至TM10。MIMO技术主要分为:空间复用技术和空间分集技术,空间复用又分为开环空间复用和闭环空间复用,闭环空间复用和开环空间复用的主要区别是闭环空间复用需要终端反馈预编码矩阵指示(precoding matrix indicator,简称PMI)信息。其中,TM4、TM6、TM8、TM9和TM10使用闭环空间复用,TM3使用开环空间复用。在使用闭环空间复用传输数据时,存在PMI误报的问题,从而引发了残留误块率和丢包率增大等一系列问题,使得网络性能降低。
发明内容
本发明实施例提供一种传输块的重传方法和基站,降低了残留误块率和丢包率,保障了闭环增益的有效获取。
本发明第一方面提供一种传输块的重传方法,该方法包括:基站在向用户设备(User Equipment,简称UE)初传传输块(transmission block,简称TB)时使用闭环空分复用发射方式,当该TB初传失败时,该基站在前 m次重传该TB时,使用该闭环空分复用发射方式重传该TB,且该基站在后N-m次重传该TB时,使用该闭环空分复用发射方式所属的传输模式TM所包含的开环发射方式重传该TB,其中,m为大于或等于0的整数,N为该TB的最大重传次数,N为大于或等于1的整数。
本发明第二方面提供一种基站,该基站包括处理模块和收发模块。其中,该处理模块用于控制该收发模块使用闭环空分复用发射方式向UE初传传输块TB;该处理模块还用于:当该TB初传失败时,控制该收发模块在前m次重传该TB时,使用该闭环空分复用发射方式重传该TB,且在后N-m次重传该TB时,使用该闭环空分复用发射方式所属的传输模式TM所包含的开环发射方式重传该TB,其中,m为大于或等于0的整数,N为该TB的最大重传次数,N为大于或等于1的整数。
可选的,当该TM为TM4时,该闭环空分复用发射方式和该开环发射方式为DCI格式2所支持的发射方式。
可选的,当该TM为TM5时,该闭环空分复用发射方式为DCI格式1D所支持的发射方式,该开环发射方式为DCI格式1A所支持的发射方式。
可选的,当该TM为TM6时,该闭环空分复用发射方式为DCI格式1B所支持的发射方式,该开环发射方式为DCI格式1A所支持的发射方式。
可选的,当该TM为TM8时,该闭环空分复用发射方式和该开环发射方式为DCI格式2B所支持的发射方式。
可选的,当该TM为TM9时,该闭环空分复用发射方式和该开环发射方式为DCI格式2C所支持的发射方式。
可选的,当该TM为TM10时,该闭环空分复用发射方式和该开环发射方式为DCI格式2D所支持的发射方式。
本发明实施例提供的传输块的重传方法和基站,在前m次重传TB时,保持初传该TB所使用的闭环空分复用发射方式,在后N-m次重传该TB时,在传输模式不改变的情况下,发射方式变成了开环发射方式,通过使用开环发射方式重传该TB,可以提高数据传输的可靠性,使得该TB重传次数减少,降低了残留误块率和语音丢包率,保障了闭环增益的有效获取。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的数据块的重传方法;
图2为TM4时TB的传输示意图;
图3为TM5时TB的传输示意图;
图4为TM6时TB的传输示意图;
图5为TM8/TM9/TM10时TB的传输示意图;
图6为本发明实施例二提供的基站的结构示意图;
图7为本发明实施例三提供的基站的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的方法应用在MIMO系统,MIMO系统中发射端和接收端分别使用多个发射天线和接收天线,发射端将要发送的数据信号映射到多根天线上发送出去,接收端将各根接收天线接收到的信号进行处理。MIMO技术大致分为两类:空间复用技术和空间分集技术,空间复用技术利用空间维度,在同一时频资源上传输多路不同的信号,利用空间特征在接收端将不同信号区分开,形成“多流”传输,从而提高单位时间和单位频率上的传输速率。空间分集技术使用多根天线所提供的多个不同传输途径发送相同的信号,空间分集技术主要是用于提高无线链路的可靠性。空间复用又分为开环空间复用(Open-loop spatial multiplexing)和闭环空间复用(Closed-loop spatial multiplexing),闭环空间复用也称为闭环空分复 用,开环空间复用也称为开环空分复用。空间分集技术在发送端使用开环发射方式,开环发射方式包括:分集发射(transmit diversity)和单端口发射(single-antenna port)。
为方便描述,以下行MIMO为例。基站根据信道的特性选择不同的TM,信道特性包括信道的接收信号的质量和信道空间相关性。每种TM使用不同的下行链路控制信息(Downlink Control Information,简称DCI)格式,不同的DCI格式(DCI format)支持不同的发射方式,同一个DCI格式可能只支持一种发射方式也可能支持多种发射方式。
图1为本发明实施例一提供的数据块的重传方法,如图1所示,本实施例的方法可以包括以下步骤:
步骤101、基站使用闭环空分复用发射方式向UE初传TB。
步骤102、当该TB初传失败时,基站在前m次重传该TB时,使用该闭环空分复用发射方式重传该TB,m为大于或等于0的整数。
步骤103、基站在后N-m次重传该TB时,使用该闭环空分复用发射方式所属的TM所包含的开环发射方式重传该TB,其中,N为TB的最大重传次数,N为大于或等于1的整数。
本实施例的方法可以应用在包括但不限于以下TM:TM4、TM5、TM6、TM8、TM9和TM10。表一为各TM的相关配置参数,每个TM的参数包括:支持的DCI格式和发射方式。
表一
Figure PCTCN2016082297-appb-000001
Figure PCTCN2016082297-appb-000002
通过表1可知,该闭环空分复用发射方式闭包括:TM4的DCI格式2支持的闭环空分复用发射方式、TM5的DCI格式1D支持的闭环空分复用发射方式、TM6的DCI格式1B支持的闭环空分复用发射方式、TM8的DCI格式2B支持的双层传输(Dual layer transmission)、TM9的DCI格式2C支持的最多支持8层传输以及TM10的DCI格式2D支持的闭环空分复用发射方式。
使用闭环空分复用发射方式的目的提高信道容量,闭环空分复用发射方式通常适用于信道条件较好的场景,本实施例中该TB的前m次重传都失败,很大可能是PMI波束指向错误,如果使用现有技术的方法,在后N-m次重传该TB时,仍然使用闭环空分复用发射方式重传该TB,该TB重传失败的可能性仍然很大,而多次重传失败会导致残留误块率和丢包率的恶化。残留误块率也称为残余误块率,用于表示在测量周期内下行重传失败的TB块的比例。具体计算公式为:残留误块率=下行TB块残留误包总包数/下行TB块总数。
本实施例中,基站在后N-m次重传该TB时,使用开环发射方式重传该TB,该开环发射方式为基站初传该TB时使用的闭环空分复用发射方式所属的传输模式TM所包含的发射方式。通过在后N-m次重传该TB时使用开环发射方式,可以提高该TB传输的可靠性,提高了传输成功的概率,从而减少了重传次数。
具体的,对于TM4,基站使用闭环空分复用发射方式向UE初传TB,当该TB初传失败时,在前m次重传中,该基站仍然使用该闭环空分复用发射方式重传该TB,在后N-m次重传中,该基站使用开环发射方式重传该TB,该开环发射方式可以为TM4的DCI格式2所支持的发射方式,也可以为TM4的DCI格式1A所支持的发射方式。当该开环发射方式为DCI格式2所支持的分集发射方式时,在后N-m次重传该TB时,TM和DCI格式都不改变。由于TM和DCI格式都不改变,减少了TM切换带来的信令开销和时延问题,并且可以保障闭环增益的有效获取。当该开环发射方式为DCI格式1A所支持的分集发射方式时,在后N-m次重传该TB时,TM不改变,需要修改DCI格式,DCI格式从DCI格式2变成了DCI格式1A。在同一TM内通过修改DCI格式改变发射方式,相对于通过修改TM改变发射方式,减少了TM切换带来的信令开销和时延问题,且可以保障闭环增益的有效获取。
图2为TM4时TB的传输示意图,图2所示例子中m取值为2,即前2次重传TB时使用闭环空分复用发射方式,从第3次重传开始至最后一次重传使用DCI格式2所支持的分集发射方式,DCI格式在重传过程中不改变。最大重传次数N取值可以为8,或者小于8的整数,基站可以根据需要配置最大重传次数的取值,通常情况下最大重传次数的值为4,当最大重传次数为4时,m取值优选为2。
对于TM4,引起TB重传的原因可能是混合自动重传请求(hybrid automatic repeat request,简称HARQ)机制,也可能是非连续传输(discontinuous transmission,简称DTX)机制。对于HARQ机制,UE未能正确接收初传的该TB,UE向基站反馈否定应答NACK,基站收到该NACK后重传该TB,对于重传的该TB,UE还有可能不能正确接收该TB,UE继续向基站反馈否定应答NACK,基站继续重传该TB,直到达到最大 重传次数N。对于DTX,在UE使用DTX时,由于未能及时唤醒节能的UE,也存在UE不能正确接收基站发送的TB,从而导致基站对该TB进行重传。本实施例中,不论该TB传输失败是由HARQ引起还是DTX引起,基站在前m次重传该TB时,都可以使用闭环空分复用发射方式重传该TB。即前m次重传该TB时,保持与初传该TB使用的发射方式相同。可选的,基站还可以进一步确定该TB前m次重传的原因,当基站确定该TB初传使用DTX,且前m次重传的原因为DTX时,基站在后N-m次重传该TB时,仍使用闭环空分复用发射方式重传该TB,即在后N-m次重传该TB时,保持与初传该TB使用的发射方式相同。
对于TM5,基站使用闭环空分复用发射方式向UE初传TB,当该TB初传失败时,在前m次重传中,该基站仍然使用该闭环空分复用发射方式重传该TB,在后N-m次重传中,该基站使用开环发射方式重传该TB,该开环发射方式为DCI格式1A所支持的发射方式。当该开环发射方式为DCI格式1A所支持的分集发射方式时,在后N-m次重传该TB时,TM不改变,需要修改DCI格式,DCI格式从DCI格式1D变成了DCI格式1A。在同一TM内通过修改DCI格式改变发射方式,相对于通过修改TM改变发射方式,减少了TM切换带来的信令开销和时延问题,且可以保障闭环增益的有效获取。
图3为TM5时TB的传输示意图,前2次重传TB时使用闭环空分复用发射方式,DCI格式为DCI格式1D,从第3次重传开始至最后一次重传使用分集发射方式,DCI格式也从第3次重传开始变成了DCI格式1A。
对于TM6,基站使用闭环空分复用发射方式向UE初传TB,当该TB初传失败时,在前m次重传中,该基站仍然使用该闭环空分复用发射方式重传该TB,在后N-m次重传中,该基站使用开环发射方式重传该TB,该开环发射方式为TM6的DCI格式1A所支持的分集发射方式。在后N-m次重传该TB时,TM不改变,需要修改DCI格式,DCI格式从DCI格式1B变成了DCI格式1A。在同一TM内通过修改DCI格式改变发射方式,相对于通过修改TM改变发射方式,减少了TM切换带来的信令开销和时延问题,且可以保障闭环增益的有效获取。
图4为TM6时TB的传输示意图,前2次重传TB时使用闭环空分复 用发射方式,DCI格式为DCI格式1B,从第3次重传开始至最后一次重传使用分集发射方式,DCI格式也从第3次重传开始变成了DCI格式1A。
对于TM8,基站使用闭环空分复用发射方式向UE初传TB,当该TB初传失败时,在前m次重传中,该基站仍然使用该闭环空分复用发射方式重传该TB,在后N-m次重传中,该基站使用开环发射方式重传该TB,该开环发射方式可以为TM8的DCI格式2B所支持的发射方式,也可以为TM8的DCI格式1A所支持的发射方式。当该开环发射方式为DCI格式2B所支持的单端口发射方式时,使用在后N-m次重传该TB时,TM和DCI格式都不改变。由于TM和DCI格式都不改变,减少了TM切换带来的信令开销和时延问题,并且可以保障闭环增益的有效获取。其中,DCI格式2B所支持的单端口发射方式使用端口7或端口8发射。可选的,当该开环发射方式为DCI格式1A所支持的单端口发射方式或分集发射方式时,在后N-m次重传该TB时,TM不改变,需要修改DCI格式,DCI格式从DCI格式2B变成了DCI格式1A。具体的,如果物理广播信道(Physical Broadcast Channel,简称PBCH)的个数为1,使用DCI格式1A支持的单端口发射方式,且使用端口0发射,其他情况下,使用DCI格式1A支持的分集发射方式。在同一TM内通过修改DCI格式改变发射方式,相对于通过修改TM改变发射方式,减少了TM切换带来的信令开销和时延问题,且可以保障闭环增益的有效获取。
对于TM9,基站使用闭环空分复用发射方式向UE初传TB,当该TB初传失败时,在前m次重传中,该基站仍然使用该闭环空分复用发射方式重传该TB,在后N-m次重传中,该基站使用开环发射方式重传该TB,该开环发射方式可以为DCI格式2C所支持的发射方式,也可以为DCI格式1A所支持的单端口发射方式或分集发射方式。当该开环发射方式为DCI格式2C所支持的单端口发射方式时,使用在后N-m次重传该TB时,TM和DCI格式都不改变。由于TM和DCI格式都不改变,减少了TM切换带来的信令开销和时延问题,并且可以保障闭环增益的有效获取。其中DCI格式2C所支持的单端口发射方式使用端口7或端口8发射。当该开环发射方式为DCI格式1A所支持的单端口发射方式或分集发射方式时,在后N-m次重传该TB时,TM不改变,需要修改DCI格式,DCI格式从 DCI格式2B变成了DCI格式1A。具体的,对于Non-MBSFN子帧,如果PBCH的个数为1,使用DCI格式1A所支持的单端口发射方式,且使用端口0发射,其他情况下,使用DCI格式1A所支持的分集发射方式。对于MBSFN子帧,使用DCI格式1A所支持的单端口发射方式,且使用端口7或端口8发射。在同一TM内通过修改DCI格式改变发射方式,相对于通过修改TM改变发射方式,减少了TM切换带来的信令开销和时延问题,且可以保障闭环增益的有效获取。
对于TM10,基站使用闭环空分复用发射方式向UE初传TB,当该TB初传失败时,在前m次重传中,该基站仍然使用该闭环空分复用发射方式重传该TB,在后N-m次重传中,该基站使用开环发射方式重传该TB,该开环发射方式可以为DCI格式2D所支持的发射方式,也可以为DCI格式1A所支持的单端口发射方式或分集发射方式。使用当该开环发射方式为DCI格式2D所支持的单端口发射方式时,在后N-m次重传该TB时,TM和DCI格式都不改变。由于TM和DCI格式都不改变,减少了TM切换带来的信令开销和时延问题,并且可以保障闭环增益的有效获取。其中DCI格式2D所支持的单端口发射方式使用端口7或端口8发射。当该开环发射方式为DCI格式1A所支持的单端口发射方式或分集发射方式时,在后N-m次重传该TB时,TM不改变,需要修改DCI格式,DCI格式从DCI格式2D变成了DCI格式1A。具体的,对于Non-MBSFN子帧,如果PBCH的个数为1,使用DCI格式1A所支持的单端口发射方式,且使用端口0发射,其他情况下,使用DCI格式1A所支持的分集发射方式。对于MBSFN子帧,使用DCI格式1A所支持的单端口发射方式,且使用端口7或端口8发射。由于TM不改变,仍然可以保障闭环增益的有效获取。
图5为TM8/TM9/TM10时TB的传输示意图,在TM8/TM9/TM10中,前2次重传TB时使用闭环空分复用发射方式,从第3次重传开始至最后一次重传使用单端口发射,DCI格式在重传过程中保持不变。
本实施例的方法,在前m次重传TB时,保持初传该TB所使用的闭环空分复用发射方式,在后N-m次重传该TB时,在传输模式不改变的情况下,发射方式变成了开环发射方式,通过使用开环发射方式重传该TB, 可以提高数据传输的可靠性,使得该TB重传次数减少,降低了残留误块率和丢包率。并且没有改变传输模式,保障了闭环增益的有效获取。
图6为本发明实施例二提供的基站的结构示意图,如图6所示,本实施例提供的基站包括处理模块11和收发模块12。
处理模块11用于控制收发模块12使用闭环空分复用发射方式向UE初传TB;
处理模块11还用于,当该TB初传失败时,控制收发模块12在前m次重传该TB时,使用该闭环空分复用发射方式重传该TB,且在后N-m次重传该TB时,使用该闭环空分复用发射方式所属的传输模式TM所包含的开环发射方式重传该TB,其中,N为该TB的最大重传次数,m为大于或等于0的整数,N为大于或等于1的整数。可选的,m的取值为2。
可选的,当该TM为TM4时,该闭环空分复用发射方式和该开环发射方式为DCI格式2所支持的发射方式。可选的,处理模块11还用于:确定该TB初传使用DTX,且前m次重传的原因为DTX,并控制收发模块12在后N-m次重传该TB时,使用该闭环空分复用发射方式重传该TB。
可选的,当该TM为TM5时,该闭环空分复用发射方式为DCI格式1D所支持的发射方式,该开环发射方式为DCI格式1A所支持的发射方式。
可选的,当该TM为TM6时,该闭环空分复用发射方式为DCI格式1B所支持的发射方式,该开环发射方式为DCI格式1A所支持的发射方式。
可选的,当该TM为TM8时,该闭环空分复用发射方式和该开环发射方式为DCI格式2B所支持的发射方式。
可选的,当该TM为TM9时,该闭环空分复用发射方式和该开环发射方式为DCI格式2C所支持的发射方式。
可选的,当该TM为TM10时,该闭环空分复用发射方式和该开环发射方式为DCI格式2D所支持的发射方式。
本实施例的基站,其各功能模块可用于执行上述实施例一的方法,具体实现方式和技术效果类似,这里不再赘述。
图7为本发明实施例三提供的基站的结构示意图,如图6所示,本实施例提供的基站包括处理器21和收发器22,处理器21和收发器22可以 通过总线进行连接。
处理器21用于控制收发器22使用闭环空分复用发射方式向UE初传TB;
处理器21还用于,当该TB初传失败时,控制收发器22在前m次重传该TB时,使用该闭环空分复用发射方式重传该TB,且在后N-m次重传该TB时,使用该闭环空分复用发射方式所属的TM所包含的开环发射方式重传该TB,其中,N为该TB的最大重传次数,N为大于或等于1的整数,m为大于或等于0的整数。可选的,m的取值为2。
可选的,当该TM为TM4时,该闭环空分复用发射方式和该开环发射方式为DCI格式2所支持的发射方式。可选的,处理器21还用于:确定该TB传输使用DTX,且前m次重传的原因为DTX,并控制收发器22在后N-m次重传该TB时,使用该闭环空分复用发射方式重传该TB。
可选的,当该TM为TM5时,该闭环空分复用发射方式为DCI格式1D所支持的发射方式,该开环发射方式为DCI格式1A所支持的发射方式。
可选的,当该TM为TM6时,该闭环空分复用发射方式为DCI格式1B所支持的发射方式,该开环发射方式为DCI格式1A所支持的发射方式。
可选的,当该TM为TM8时,该闭环空分复用发射方式和该开环发射方式为DCI格式2B所支持的发射方式。
可选的,当该TM为TM9时,该闭环空分复用发射方式和该开环发射方式为DCI格式2C所支持的发射方式。
可选的,当该TM为TM10时,该闭环空分复用发射方式和该开环发射方式为DCI格式2D所支持的发射方式。
本实施例的基站,可用于执行上述实施例一的方法,具体实现方式和技术效果类似,这里不再赘述。
上述实施例是以下行MIMO为例进行说明的,本发明的方案还可以应用于上行MIMO,即UE在向基站发送TB时,也可以采用上述实施例中的方法重传该TB,具体实现方式和技术效果类似,这里不再赘述。
另外,本发明实施例中涉及的用户设备,可以是无线终端。无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手 持式设备、或连接到无线调制解调器的其它处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与至少一个核心网进行通信。无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和带有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。无线终端也可以称为用户单元(Subscriber Unit)、用户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile Station)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)或用户设备(User Equipment),在此不作限定。
本发明实施例中涉及的基站可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS)中,也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE网络中的演进型基站(evolved NodeB,简称eNB)、接入点(access point,AP)或者中继站,也可以是下一代网络(即5G网络)中的基站等,在此不作限定。
本领域普通技术人员可知,随着网络架构的演变和新应用场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (19)

  1. 一种传输块的重传方法,其特征在于,包括:
    基站使用闭环空分复用发射方式向用户设备UE初传传输块TB;
    当所述TB初传失败时,所述基站在前m次重传所述TB时,使用所述闭环空分复用发射方式重传所述TB,m为大于或等于0的整数;
    且所述基站在后N-m次重传所述TB时,使用所述闭环空分复用发射方式所属的传输模式TM所包含的开环发射方式重传所述TB,其中,N为所述TB的最大重传次数,N为大于或等于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,当所述TM为TM4时,所述闭环空分复用发射方式和所述开环发射方式为下行控制信息DCI格式2所支持的发射方式。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述基站确定所述TB初传使用非连续性发射DTX,且所述前m次重传的原因为DTX;
    所述基站在所述后N-m次重传所述TB时,使用所述闭环空分复用发射方式重传所述TB。
  4. 根据权利要求1所述的方法,其特征在于,当所述TM为TM5时,所述闭环空分复用发射方式为下行控制信息DCI格式1D所支持的发射方式,所述开环发射方式为DCI格式1A所支持的发射方式。
  5. 根据权利要求1所述的方法,其特征在于,当所述TM为TM6时,所述闭环空分复用发射方式为下行控制信息DCI格式1B所支持的发射方式,所述开环发射方式为DCI格式1A所支持的发射方式。
  6. 根据权利要求1所述的方法,其特征在于,当所述TM为TM8时,所述闭环空分复用发射方式和所述开环发射方式为下行控制信息DCI格式2B所支持的发射方式。
  7. 根据权利要求1所述的方法,其特征在于,当所述TM为TM9时,所述闭环空分复用发射方式和所述开环发射方式为下行控制信息DCI格式2C所支持的发射方式。
  8. 根据权利要求1所述的方法,其特征在于,当所述TM为TM10时,所述闭环空分复用发射方式和所述开环发射方式为下行控制信息DCI 格式2D所支持的发射方式
  9. 根据权利要求1-8任一项所述的方法,其特征在于,m的取值为2。
  10. 一种基站,其特征在于,包括:
    处理模块和收发模块;
    所述处理模块,用于控制所述收发模块使用闭环空分复用发射方式向用户设备UE初传传输块TB;
    所述处理模块还用于,当所述TB初传失败时,控制所述收发模块在前m次重传所述TB时,使用所述闭环空分复用发射方式重传所述TB,m为大于或等于0的整数;
    且在后N-m次重传所述TB时,使用所述闭环空分复用发射方式所属的传输模式TM所包含的开环发射方式重传所述TB,其中,N为所述TB的最大重传次数,N为大于或等于1的整数。
  11. 根据权利要求10所述的基站,其特征在于,当所述TM为TM4时,所述闭环空分复用发射方式和所述开环发射方式为下行控制信息DCI格式2所支持的发射方式。
  12. 根据权利要求11所述的基站,其特征在于,所述处理模块还用于:
    确定所述TB初传使用非连续性发射DTX,且所述前m次重传的原因为DTX;
    控制所述收发模块在所述后N-m次重传所述TB时,使用所述闭环空分复用发射方式重传所述TB。
  13. 根据权利要求10所述的基站,其特征在于,当所述TM为TM5时,所述闭环空分复用发射方式为下行控制信息DCI格式1D所支持的发射方式,所述开环发射方式为DCI格式1A所支持的发射方式。
  14. 根据权利要求10所述的基站,其特征在于,当所述TM为TM6时,所述闭环空分复用发射方式为下行控制信息DCI格式1B所支持的发射方式,所述开环发射方式为DCI格式1A所支持的发射方式。
  15. 根据权利要求10所述的基站,其特征在于,当所述TM为TM8时,所述闭环空分复用发射方式和所述开环发射方式为下行控制信息DCI格式2B所支持的发射方式。
  16. 根据权利要求10所述的基站,其特征在于,当所述TM为TM9时,所述闭环空分复用发射方式和所述开环发射方式为下行控制信息DCI格式2C所支持的发射方式。
  17. 根据权利要求10所述的基站,其特征在于,当所述TM为TM10时,所述闭环空分复用发射方式和所述开环发射方式为下行控制信息DCI格式2D所支持的发射方式。
  18. 根据权利要求10-17任一项所述的基站,其特征在于,m的取值为2。
  19. 一种基站,其特征在于,包括:
    处理器和收发器;
    所述处理器,用于控制所述收发器使用闭环空分复用发射方式向用户设备UE初传传输块TB;
    所述处理器还用于,当所述TB初传失败时,控制所述收发器在前m次重传所述TB时,使用所述闭环空分复用发射方式重传所述TB,m为大于或等于0的整数;
    且在后N-m次重传所述TB时,使用所述闭环空分复用发射方式所属的传输模式TM所包含的开环发射方式重传所述TB,其中,N为所述TB的最大重传次数,N为大于或等于1的整数。
PCT/CN2016/082297 2016-05-17 2016-05-17 传输块的重传方法和基站 WO2017197570A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES16901956T ES2870484T3 (es) 2016-05-17 2016-05-17 Método de retransmisión de bloques de transporte y estación base
EP20192193.9A EP3809617B1 (en) 2016-05-17 2016-05-17 Transport block retransmission method and apparatus
PCT/CN2016/082297 WO2017197570A1 (zh) 2016-05-17 2016-05-17 传输块的重传方法和基站
EP16901956.9A EP3447945B1 (en) 2016-05-17 2016-05-17 Transport block retransmission method and base station
JP2018560598A JP6706691B2 (ja) 2016-05-17 2016-05-17 トランスポートブロック再送信方法及び基地局
CN201680084110.8A CN108886423B (zh) 2016-05-17 2016-05-17 传输块的重传方法和基站
CN202010981893.8A CN112187405B (zh) 2016-05-17 2016-05-17 传输块的重传方法和基站
US16/194,088 US10374684B2 (en) 2016-05-17 2018-11-16 Transport block retransmission method and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082297 WO2017197570A1 (zh) 2016-05-17 2016-05-17 传输块的重传方法和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/194,088 Continuation US10374684B2 (en) 2016-05-17 2018-11-16 Transport block retransmission method and base station

Publications (1)

Publication Number Publication Date
WO2017197570A1 true WO2017197570A1 (zh) 2017-11-23

Family

ID=60324590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082297 WO2017197570A1 (zh) 2016-05-17 2016-05-17 传输块的重传方法和基站

Country Status (6)

Country Link
US (1) US10374684B2 (zh)
EP (2) EP3809617B1 (zh)
JP (1) JP6706691B2 (zh)
CN (2) CN108886423B (zh)
ES (1) ES2870484T3 (zh)
WO (1) WO2017197570A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10778293B2 (en) * 2018-02-16 2020-09-15 Nokia Technologies Oy Methods and apparatuses for dynamic transmit diversity fallback

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631374A (zh) * 2009-08-05 2010-01-20 中兴通讯股份有限公司 一种下行传输方式的指示方法及装置
CN101938336A (zh) * 2010-08-13 2011-01-05 中兴通讯股份有限公司 一种上行传输方式的指示、确定方法和系统
CN102013948A (zh) * 2010-11-30 2011-04-13 华为技术有限公司 一种指示方法及用户设备
US8917796B1 (en) * 2009-10-19 2014-12-23 Marvell International Ltd. Transmission-mode-aware rate matching in MIMO signal generation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8526516B2 (en) * 2008-05-06 2013-09-03 Industrial Technology Research Institute Systems and methods for multiple-input multiple-output communications systems
CN101527623B (zh) * 2009-04-08 2014-06-11 中兴通讯股份有限公司 物理混合自动请求重传指示信道中信息的传输方法和系统
US8942147B2 (en) * 2011-01-11 2015-01-27 Yibo Jiang Closed loop transmit diversity in continuous packet connectivity
CN103024807B (zh) * 2011-09-23 2015-08-19 华为技术有限公司 传输控制信息的方法、用户设备和基站
CN102771062B (zh) * 2012-04-11 2014-12-03 华为技术有限公司 一种传输模式配置方法和装置
WO2013181825A1 (en) * 2012-06-07 2013-12-12 Qualcomm Incorporated Systems and methods for selection of wireless communication transmission modes
US9936518B2 (en) * 2013-01-18 2018-04-03 Mediatek Singapore Pte. Ltd. Method for transport block transmission and blind reception
US20140286255A1 (en) * 2013-03-25 2014-09-25 Samsung Electronics Co., Ltd. Uplink demodulation reference signals in advanced wireless communication systems
WO2015037885A1 (ko) * 2013-09-16 2015-03-19 엘지전자 주식회사 무선통신시스템에서 상향링크 데이터 수신을 위한 다중 포인트 협력 방법 및 이를 수행하는 장치
WO2015133784A1 (en) * 2014-03-06 2015-09-11 Lg Electronics Inc. Method and apparatus for transmitting data signal by using massive mimo in a wireless access system
CN105024781B (zh) * 2014-04-30 2019-06-21 中兴通讯股份有限公司 一种反馈信息的处理方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631374A (zh) * 2009-08-05 2010-01-20 中兴通讯股份有限公司 一种下行传输方式的指示方法及装置
US8917796B1 (en) * 2009-10-19 2014-12-23 Marvell International Ltd. Transmission-mode-aware rate matching in MIMO signal generation
CN101938336A (zh) * 2010-08-13 2011-01-05 中兴通讯股份有限公司 一种上行传输方式的指示、确定方法和系统
CN102013948A (zh) * 2010-11-30 2011-04-13 华为技术有限公司 一种指示方法及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3447945A4 *

Also Published As

Publication number Publication date
CN108886423B (zh) 2020-10-16
CN112187405B (zh) 2022-06-28
ES2870484T3 (es) 2021-10-27
EP3447945A4 (en) 2019-04-24
US20190089445A1 (en) 2019-03-21
EP3447945A1 (en) 2019-02-27
JP6706691B2 (ja) 2020-06-10
US10374684B2 (en) 2019-08-06
EP3809617B1 (en) 2023-07-26
CN112187405A (zh) 2021-01-05
EP3447945B1 (en) 2021-03-10
EP3809617A1 (en) 2021-04-21
CN108886423A (zh) 2018-11-23
JP2019524006A (ja) 2019-08-29

Similar Documents

Publication Publication Date Title
US10958409B2 (en) Half duplex WTRU
US11218428B2 (en) Method and device for communication in a communications network
JP7426479B2 (ja) Harqプロセスごとにフィードバックを有効化/無効化するharqコードブック構築
US11601969B2 (en) Radio-network node, wireless device and methods performed therein
WO2014175968A1 (en) Uplink enhancements for efficient operation in small cell environments
CN110392392B (zh) 通信方法、通信装置及可读存储介质
CN107231209A (zh) 无线网络中用于干扰协调传输和接收的方法和装置
US20210044388A1 (en) User equipment, electronic device, wireless communication method, and storage medium
WO2017197570A1 (zh) 传输块的重传方法和基站
WO2017075770A1 (zh) 一种传输上行数据的方法、装置和系统
WO2012130005A1 (zh) Tdd系统中回程链路上行反馈信息的处理方法与系统
US20200296735A1 (en) Retransmission of messages using a non-orthogonal multiple access (noma) communication system
WO2024041295A1 (zh) 一种通信方法及装置
WO2019157672A1 (zh) 控制信息的接收和发送方法、装置及通信系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018560598

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016901956

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016901956

Country of ref document: EP

Effective date: 20181122

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901956

Country of ref document: EP

Kind code of ref document: A1