WO2017197565A1 - 切换过程中的通信方法和装置 - Google Patents

切换过程中的通信方法和装置 Download PDF

Info

Publication number
WO2017197565A1
WO2017197565A1 PCT/CN2016/082222 CN2016082222W WO2017197565A1 WO 2017197565 A1 WO2017197565 A1 WO 2017197565A1 CN 2016082222 W CN2016082222 W CN 2016082222W WO 2017197565 A1 WO2017197565 A1 WO 2017197565A1
Authority
WO
WIPO (PCT)
Prior art keywords
access network
address information
network device
network element
mec
Prior art date
Application number
PCT/CN2016/082222
Other languages
English (en)
French (fr)
Inventor
陆伟
靳维生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16901951.0A priority Critical patent/EP3457748B1/en
Priority to CN201680085770.8A priority patent/CN109155946B/zh
Priority to PCT/CN2016/082222 priority patent/WO2017197565A1/zh
Publication of WO2017197565A1 publication Critical patent/WO2017197565A1/zh
Priority to US16/192,037 priority patent/US20190090169A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communication method and apparatus in a handover process.
  • a Mobile Edge Computing (MEC) network element may be deployed in the vicinity of the access network.
  • the MEC network element may also be referred to as an MEC platform.
  • the MEC network element has the ability of computing and storing, and can obtain data packets of the terminal, and process the data packets after routing.
  • the MEC network element can be connected to an Evolved Node B (eNB or eNodeB for short) (also referred to as an eNB or an eNodeB), or an S1 user plane interface (S1-U interface) connected between the eNB and the gateway device. on.
  • eNB Evolved Node B
  • S1-U interface S1 user plane interface
  • the embodiment of the invention provides a communication method and device in a handover process, so as to timely adjust the routing of the data flow between the MEC network element and the terminal when the terminal switches between the access network devices, so as to prevent the data flow from being interrupted. .
  • an embodiment of the present invention provides a communication method in a handover process, where the method includes: when a terminal switches from a source access network device to a target access network device, the mobile edge computing MEC network element receives the target. The address information of the target access network device sent by the access network device; the MEC network element modifies the stored address information of the source access network device to the address information of the target access network device.
  • the address information of the target access network device may be carried in a message sent by the target access network device to the MEC network element.
  • the MEC network element receives a modify session request message sent by the target access network device, where the modify session request message includes address information of the target access network device.
  • the modify session request message may be used to request the MEC network element to modify the stored address information of the source access network device to address information of the target access network device.
  • the MEC network element may further receive the target access network device.
  • the MEC network element when the terminal switches from the source access network device to the target access network device, the MEC network element receives the address information of the target access network device that is sent by the target access network device, and accesses the stored source.
  • the address information of the network device is modified to the address information of the target access network device, and the routing of the data flow between the MEC network element and the terminal can be adjusted in time, thereby preventing the data flow from being interrupted.
  • the method further includes: receiving, by the MEC network element, address information of a gateway device corresponding to the target access network device that is sent by the target access network device; the MEC network element is to be stored.
  • the address information of the gateway device corresponding to the source access network device is modified to the address information of the gateway device corresponding to the target access network device.
  • the address information of the gateway device corresponding to the target access network device may be carried in a message sent by the target access network device to the MEC network element.
  • the MEC network element receives a modify session request message sent by the target access network device, where the modify session request message includes address information of the target gateway device.
  • the modify session request message may be used to request the MEC network element to modify the stored address information of the source gateway device to address information of the target gateway device.
  • the MEC network element receives the address information of the target access network device that is sent by the target access network device, and includes: the MEC network element receives the information sent by the target access network device. a message, the message carrying address information of the target access network device, where the message further carries address information of a gateway device corresponding to the target access network device; the communication method further includes: the MEC network The element modifies the address information of the gateway device corresponding to the source access network device to the address information of the gateway device corresponding to the target access network device.
  • an embodiment of the present invention provides a communication method in a handover process, where the method includes: when a terminal switches from a source access network device to a target access network device, the target access network device acquires a mobile Calculating the address information of the MEC network element by the edge; the target access network device sends the address information of the target access network device to the MEC network element according to the address information of the MEC network element, so that the MEC network element The stored address information of the source access network device is modified to address information of the target access network device.
  • the address information of the target access network device may be carried in a message sent by the target access network device to the MEC network element.
  • the target access network device sends a modify session request message to the MEC network element, where the modify session request message includes address information of the target access network device.
  • the modify session request message can be used to request the The MEC network element modifies the stored address information of the source base station to address information of the target base station.
  • the target access network device when the terminal switches from the source access network device to the target access network device, the target access network device sends the address information of the target access network device to the MEC network element, so that the MEC network element stores the source.
  • the address information of the access network device is modified to the address information of the target access network device, and the routing of the data flow between the MEC network element and the terminal can be adjusted in time, thereby preventing the data flow from being interrupted.
  • the method further includes: the target access network device sending, to the MEC network element, address information of a gateway device corresponding to the target access network device, so that the MEC network element The stored address information of the gateway device corresponding to the source access network device is modified to the address information of the gateway device corresponding to the target access network device.
  • the address information of the gateway device corresponding to the target access network device may be carried in a message sent by the mobility management network element to the target access network device.
  • the method further includes: the target access network device notifying, by the mobility management network element, the address information of the MEC network element to the gateway device corresponding to the target access network device.
  • the target access network device acquiring the address information of the MEC network element includes: the target access network device receiving the address information of the MEC network element sent by the source access network device; or The target access network device receives the address information of the MEC network element sent by the mobility management network element.
  • an embodiment of the present invention provides a mobile edge computing MEC network element, where the MEC network element has a function of implementing MEC network element behavior in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the MEC network element includes a processing unit and a communication unit, the processing unit being configured to support the MEC network element to perform a corresponding function in the above method.
  • the communication unit is configured to support communication between the MEC network element and other devices.
  • the MEC network element may further include a storage unit for coupling with the processing unit, which stores necessary program instructions and data of the MEC network element.
  • the processing unit can be a processor
  • the communication unit can be a communication interface
  • the storage unit can be a memory.
  • an embodiment of the present invention provides an access network device, where the access network device has a function of implementing MEC network element behavior in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more of the above The function corresponds to the module.
  • the access network device comprises a processing unit and a communication unit, the processing unit being configured to support the MEC network element to perform a corresponding function in the above method.
  • the communication unit is configured to support communication between the MEC network element and other devices.
  • the access network device may further comprise a storage unit for coupling with the processing unit, which stores program instructions and data necessary for accessing the network device.
  • the processing unit can be a processor
  • the communication unit can be a communication interface
  • the storage unit can be a memory.
  • an embodiment of the present invention provides a communication system, where the communication system includes the MEC network element and the access network device in the foregoing aspect.
  • an embodiment of the present invention provides a computer readable storage medium for storing computer software instructions for use in the MEC network element, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer readable storage medium for storing computer software instructions for use in the access network device, including a program designed to perform the above aspects.
  • the target access network device when the terminal switches from the source access network device to the target access network device, the target access network device obtains the address information of the MEC network element, and sends the address information of the target access network device to the MEC network element.
  • the MEC network element can modify the address information of the source access network device to be the address information of the target access network device, and can timely adjust the routing of the data flow between the MEC network element and the terminal, thereby preventing the data flow from being interrupted.
  • FIG. 1 is a schematic diagram of a possible system architecture provided by an embodiment of the present invention.
  • FIG. 2A is a schematic diagram of a possible application scenario provided by an embodiment of the present invention.
  • FIG. 2B is a schematic diagram of another possible application scenario provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of data stream transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of communication of a communication method in a handover process according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of communication of another communication method in a handover process according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of communication of another communication method in a handover process according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of communication of another communication method in a handover process according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of communication of another communication method in a handover process according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of communication of another communication method in a handover process according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of communication of another communication method in a handover process according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of an MEC network element according to an embodiment of the present invention.
  • FIG. 12 is a schematic block diagram of another MEC network element according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic block diagram of an access network device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic block diagram of another access network device according to an embodiment of the present invention.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • the terminal involved in the embodiments of the present invention may include various handheld devices, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of user equipment (User Equipment). , UE), mobile station (MS), terminal device, and the like. For convenience of description, the devices mentioned above are collectively referred to as terminals.
  • the access network device in the embodiment of the present invention may be a base station (BS), and the base station is deployed in the radio access network as a terminal.
  • BS base station
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the name of a device with a base station function may be different, for example, in a Long Term Evolution (LTE) system, called an evolved Node B (eNB). Or eNodeB), in a 3G communication system, called a Node B or the like.
  • LTE Long Term Evolution
  • eNB evolved Node B
  • eNodeB in a 3G communication system
  • the foregoing apparatus for providing a wireless communication function to a terminal is collectively referred to as a base station or a BS.
  • the mobility management network element may be a Mobility Management Entity (MME) or a General Packet Radio System (GPRS) Servicing GPRS Support Node (SGSN), but the present invention Not limited.
  • MME Mobility Management Entity
  • GPRS General Packet Radio System
  • SGSN GPRS Support Node
  • the scheme of the embodiment of the present invention will be described below by taking an eNB, an MME, and an SGW as an example.
  • the eNB is used as an example to describe the access network device
  • the MME is used as an example to describe the mobility management network element
  • the SGW is used to describe the gateway device
  • the embodiments of the present invention are not limited to the system represented by these terms.
  • the embodiments of the present invention are also applicable to other systems, and these variations are all within the scope of the embodiments of the present invention.
  • Embodiments of the present invention can be applied to the system architecture shown in FIG. 1.
  • the following describes the main network entities in the system architecture.
  • Evolved Universal Terrestrial Radio Access Network A network of multiple eNBs that implements wireless physical layer functions, resource scheduling and radio resource management, radio access control, and mobility management. Features.
  • the eNB is connected to the SGW through the S1-U interface, and is used to transmit user data.
  • the S1 control plane interface (S1-MME interface) is connected to the MME, and the S1 application protocol (S1-AP) is used to implement the radio access bearer. Control and other functions.
  • MME Mainly responsible for all control plane functions of user and session management, including Non-Access Stratum (NAS) signaling and security, Tracking Area List (TAL) management, PGW and SGW The choices and so on.
  • NAS Non-Access Stratum
  • TAL Tracking Area List
  • SGW It is mainly responsible for data transmission, forwarding, and route switching of the terminal, and serves as a local mobility anchor point when the terminal switches between eNBs.
  • Packet Data Network Gateway an external network that sends data to the terminal, which is responsible for the allocation of the Internet Protocol (IP) address of the terminal, and the data packet filtering and rate of the terminal. Control, generation Fee information, etc.
  • IP Internet Protocol
  • the PGW allocates an IP address to the terminal, and the terminal uses the IP address to connect to the external network for data transmission; all uplink data packets of the terminal. It will be sent to the external network through the PGW, and all downlink data packets of the external network will be sent to the terminal through the PGW.
  • EPS Evolved Packet System
  • the data packets sent or received by the terminal are transmitted through the EPS bearer (abbreviated as bearer) in the EPS network.
  • bearer Each terminal can have multiple bearers. Different bearers can meet the quality of service (QoS) requirements of different services.
  • the eNB and the SGW store the information of each bearer, that is, the bearer context, which includes the SGW tunnel end identifier (TEID) and the eNB TEID information of the bearer, where the SGW TEID is used as the uplink data packet sent by the eNB to the SGW.
  • the destination address, the eNB TEID is used as the destination address of the downlink data packet sent by the SGW to the eNB.
  • the eNB implements the synchronization of the bearer context with the MME through the S1-AP message, and the SGW synchronizes the bearer context with the MME through the GPRS Tunneling Protocol-Control Plane (GTP-C) message; thereby implementing the inter-eNB and the SGW.
  • GTP-C GPRS Tunneling Protocol-Control Plane
  • the eNB When receiving the uplink data packet of the terminal, the eNB encapsulates the uplink data packet of the terminal into an GPRS Tunneling Protocol-User Plane (GTP-U) packet according to the bearer context, where The uplink GTP-U packet includes a GTP-U header, and the GTP-U header contains the SGW TEID information of the bearer.
  • the SGW can determine the bearer to which the packet belongs according to the GTP-U header when the SGW receives the GTP-U packet from the eNodeB. The SGW receives the bearer addressed to the terminal.
  • GTP-U GPRS Tunneling Protocol-User Plane
  • the downlink data packet When the downlink data packet is sent, the downlink data packet is encapsulated into a downlink GTP-U packet, where the downlink GTP-U packet includes a GTP-U header, and the GTP-U header includes the eNodeB TEID information of the bearer.
  • the MEC network element is mainly composed of a data bus and an application, wherein the data bus is responsible for acquiring the data message of the terminal and forwarding it to the corresponding application, and the application sends the message to the data bus for routing after processing the data message.
  • a variety of applications can be installed on the MEC network element to enhance the user experience.
  • the application on the MEC network element can intercept the data sent by the terminal for modification, detection, forwarding, etc., and can directly respond to the data sent by the terminal.
  • the MEC network element can be installed with a video cache application. When the terminal requests the video service, the terminal request is processed by the video cache application. If there is no video requested by the terminal in the video cache application, the video cache application will continue to forward the user request to the SGW.
  • the video caching application stores the video requested by the terminal, the video caching application will be straight
  • the video data message is sent to the terminal. Therefore, deploying the MEC network element in the vicinity of the access network directly responds to the data sent by the terminal, which effectively improves the user's service experience.
  • FIG. 2A is a schematic diagram of an application scenario of an embodiment of the present invention.
  • the MEC network element is externally connected to the eNB, and one MEC network element serves one or more eNBs, and the MEC network element is not connected to the gateway device.
  • FIG. 2B is a schematic structural diagram of another application scenario of an embodiment of the present invention.
  • the MEC network element is serially connected to the S1-U interface.
  • the MEC network element can provide a new interface with the eNB to establish a connection between the MEC network element and the eNB.
  • FIG. 3 is a schematic diagram of data stream transmission of the application scenario shown in FIG. 2A.
  • the upstream data stream the data stream sent from the terminal to the MEC network element:
  • Pre-mobile data flow routing terminal -> source eNB -> MEC network element
  • the target eNB needs to obtain the address information of the MEC network element, so that the data flow can be correctly routed.
  • the MEC network element when receiving the data packet sent from the target eNB, the MEC network element needs to be able to identify the terminal to which the data packet belongs.
  • Pre-mobile data flow routing MEC network element -> source eNB -> terminal;
  • the MEC network element is required to perceive the data flow of the terminal from the source eNB to the target eNB, so that the subsequent data stream is sent by the MEC network element to the target eNB instead of the source eNB.
  • connection between the MEC network element and the eNB may be an IP connection or a tunnel connection based on the GTP protocol.
  • the MEC network element and the eNB can acquire the address information of the other party and establish a data transmission channel between the MEC network element and the eNB.
  • the eNB may notify the SGW of the address information of the obtained MEC network element as the address information of the eNB through the MME. That is, in the prior art, the eNB notifies the SGW of the address information of the eNB.
  • the eNB uses the address information of the MEC network element as the address information of the eNB, and the eNB notifies the SGW through the MME. At this time, from the perspective of the SGW, the MEC network element is taken as an eNB.
  • the communication method 400 includes the following.
  • the uplink and downlink data streams are transmitted between the source eNB and the MEC network element where the terminal is located.
  • the data stream of the slave terminal passes through the source eNB to the MEC network element, and after the data packet arrives at the source eNB, the source eNB optionally adds the identifier information of the terminal to the data packet, where the identifier information is used to identify the terminal.
  • the gateway device allocates an IP address to the terminal.
  • the IP address assigned by the gateway device to the terminal is a private network address
  • different gateways may have the same private network address assigned by the terminal.
  • the eNBs with the same private network address are in the same eNB and the eNB sends the data packets containing the same source address to the MEC network element, the MEC network element will not recognize that the data flows belong to different terminals. Therefore, in order for the MEC network element to identify the terminal, the eNB includes the identification information of the terminal in the uplink data packet.
  • the MEC network element may also include the identification information of the terminal in the downlink data packet.
  • the embodiment of the present invention does not limit the identification information of the terminal.
  • the identifier information of the terminal may be identifier information allocated by the eNB for the terminal.
  • the target eNB acquires address information of the MEC network element.
  • the address information of the MEC network element may be pre-configured in the target eNB, and the target eNB may obtain the address information of the MEC network element configured in advance; or the target eNB may also obtain the MEC from the message sent by the source eNB or the MME.
  • the address information of the network element is as shown in Figure 5 or Figure 6 below.
  • the target eNB may also obtain the address information of the MEC network element according to the corresponding relationship, where the correspondence relationship may be between the identifier information of the terminal and the identifier information of the target eNB and the address information of the MEC network element.
  • the MEC network element query system stores the corresponding relationship, and the MEC network element query system is queried according to the identification information of the terminal and/or the identification information of the target eNB to obtain the address information of the MEC network element.
  • the MEC network element and the target eNB may be IP connections, and the address information of the MEC network element includes the IP address of the MEC network element; or the MEC network element and the target eNB may be a GTP-based tunnel connection.
  • the address information of the MEC network element includes the IP address and TEID of the MEC network element.
  • the target eNB sends the address information of the target eNB to the MEC network element according to the address information of the MEC network element.
  • the target eNB may also send the identifier information of the terminal to the MEC network element, where the identifier information of the terminal is used to identify the terminal that has the handover.
  • the identification information of the terminal in the embodiment of the present invention The content is not limited, as long as the terminal can be identified.
  • the identifier information of the terminal may be sent by the eNB to the MEC network element when the eNB establishes a connection with the MEC network element, or may be allocated by the MEC network element to the terminal (at this time, the identifier information of the terminal is sent by the MEC at the initial stage of establishing the connection).
  • the terminal may be identified by a pair of identifiers, such as the eNB assigning an identifier to the terminal (such as eNB S1-AP Id), and the MEC assigning an identifier (MEC S1-AP Id) to the terminal, then the eNB and the MEC network.
  • the terminal can be identified by a pair of identifiers (such as eNB S1-AP Id/MEC S1-AP Id).
  • the MEC network element After the MEC network element receives the address information of the target eNB sent by the target eNB, the MEC network element modifies the stored address information of the source eNB to the address information of the target eNB.
  • the MEC network element deletes the address information of the source eNB stored in the specified location in the memory, and stores the address information of the target eNB at the specified location.
  • the MEC network element replaces the address information of the source eNB stored in the specified location in the memory with the address information of the target eNB.
  • a user plane data transmission channel between the MEC network element and the target eNB may be established, and the MEC network element sends the downlink data packet of the received terminal to the target eNB.
  • the MEC network element may further receive the downlink data packet of the terminal, and send the downlink data packet to the target eNB according to the address information of the target eNB.
  • the target eNB when the terminal switches from the source eNB to the target eNB, acquires the address information of the MEC network element, and sends the address information of the target eNB to the MEC network element, so that the MEC network element stores the address of the source eNB.
  • the information is modified to the address information of the target eNB, and the routing of the data flow between the MEC network element and the terminal can be adjusted in time, thereby preventing the data flow from being interrupted.
  • the communication method 400 may further include: the MEC network element modifies the stored address information of the SGW corresponding to the source eNB to the address information of the SGW corresponding to the target eNB. In this way, when the SGW changes during the handover process, the connection between the MEC network element and the SGW can be established in time, thereby preventing the data flow from being interrupted.
  • the MEC network element may obtain the address information of the SGW corresponding to the target eNB in multiple manners before the MEC network element modifies the address information of the SGW corresponding to the source eNB to the address information of the SGW corresponding to the target eNB. For example, the MEC network element receives the address information of the SGW corresponding to the target eNB sent by the target eNB.
  • the MEC network element in the 403 part receives the address information of the target eNB that is sent by the target eNB, and the MEC network element receives the message sent by the target eNB, where the message carries the address information of the target eNB, where the message further carries the gateway corresponding to the target eNB.
  • the address information of the device may obtain the address information of the SGW corresponding to the target eNB from the message.
  • the source eNB and the target eNB may have an X2 interface or no X2 interface.
  • the handover preparation process can be performed through the X2 interface, and the source eNB can directly request the target eNB to perform resource reservation. In this way, the MME is not involved in the handover process, and the interaction between the wireless side and the MME is reduced.
  • the handover in the LTE system needs to be performed through the S1 interface.
  • the MME undertakes signaling relay between the two eNBs, and the signaling handover process is more complicated than the handover based on the X2 interface. For details, see the embodiment shown in FIGS. 5 to 10.
  • FIG. 5 is a schematic diagram of communication of a communication method 500 in another handover process according to an embodiment of the present invention.
  • the communication method 500 can be applied to a system architecture in which an X2 interface exists between a source eNB and a target eNB.
  • the data stream is transmitted between the source eNB where the terminal is located and the MEC network element.
  • the source eNB sends a notification switching message to the target eNB, where the notification switching message includes the identifier information of the terminal, and the notification switching message is used to notify the terminal to switch to the target eNB.
  • the notification switching message may further include address information of the MEC network element.
  • the address information of the MEC network element may also be pre-configured on the eNB.
  • multiple eNBs covered by one MEC network element may be configured with address information of the same MEC network element.
  • the target eNB receives the notification switching message, and sends a handover confirmation message to the source eNB.
  • the terminal successfully switches to the target eNB.
  • the target eNB obtains the address information of the MEC network element, and sends a modify session request message to the MEC network element according to the address information of the MEC network element, where the modify session request message includes the address information of the target eNB.
  • the target eNB may obtain the address information of the MEC network element from the notification switching message.
  • the target eNB may also obtain the address information of the MEC network element by using other methods, and details are not described herein again.
  • the modification session request message may further include identifier information of the terminal.
  • the MEC network element can identify the terminal that has the handover, and the MEC network element sends the downlink data packet of the terminal to the target eNB.
  • the MEC network element receives the message after modifying the session request, and the address information of the source eNB is modified to the address information of the target eNB, and the modify session response message is sent to the target eNB.
  • a user plane data transmission channel between the MEC network element and the target base station may be established, and the data stream is transmitted between the MEC network element and the target eNB.
  • FIG. 6 is a schematic diagram of communication of a communication method 600 in another handover process according to an embodiment of the present invention.
  • the communication method 600 can be applied to a system architecture in which there is no X2 interface between the source eNB and the target eNB.
  • the data stream is transmitted between the source eNB where the terminal is located and the MEC network element.
  • the source eNB sends a handover request message to the MME, where the handover request message includes the identifier information of the terminal.
  • the handover request message may be used to request the terminal to handover from the source eNB to another eNB.
  • the handover request message includes address information of the MEC network element.
  • the MME sends a handover request message to the target eNB, where the handover request message includes identifier information of the terminal.
  • the handover request message can be used to inform the terminal to handover to the target eNB.
  • the handover request message may further include address information of the MEC network element.
  • the cells in the handover request message in step 601 and step 602 may be placed in the source to target transparent container of the two messages, so that the MME may not parse the specific cell in the message. Information about this transparent container is forwarded from the source eNB to the target eNB.
  • the target eNB After receiving the handover request message, acquires the address information of the MEC network element, and sends a modify session request message to the MEC network element according to the address information of the MEC network element, where the modified session request message includes the address information of the target eNB. .
  • the modify session request message may further include identifier information of the terminal.
  • the MEC network element can identify the terminal that has the handover according to the identification information of the terminal, and the MEC network element can send the downlink data packet of the terminal to the target eNB.
  • the target eNB may obtain the address information of the MEC network element from the handover request message.
  • the target eNB may also obtain the address information of the MEC network element by using other methods, and details are not described herein again.
  • the MEC network element modifies the stored address information of the source eNB to the address information of the target eNB, and sends a modify session response message to the target eNB.
  • the target eNB sends a handover request acknowledgement message to the MME.
  • the target eNB sends a handover command message to the source eNB.
  • the terminal successfully switches to the target eNB, and a data transmission channel is established between the target eNB and the MEC network element.
  • the data stream will be transmitted between the MEC network element and the target eNB.
  • the SGW may not change or may change, and similarly, the MME may also change or may change. That is, the SGWs corresponding to the target eNBs may be the same or different.
  • the MMEs corresponding to the source eNB and the MMEs corresponding to the target eNB may be the same or different.
  • FIG. 7 is a schematic diagram of communication of a communication method 700 in another handover process according to an embodiment of the present invention.
  • the communication method 700 can be applied to the system architecture in which the X2 interface exists between the source eNB and the target eNB, and the SGW does not change during the handover of the cell, that is, the source eNB and the target eNB correspond to the same SGW.
  • the target eNB sends a path switch request message to the MME, where the path switch request message includes address information of the MEC network element.
  • the address information of the MEC network element is the destination address when the SGW sends the data stream to the MEC network element, including the IP address of the MEC network element.
  • the TEID of the MEC network element may be included.
  • the address information of the MEC network element may be the same as the address information of the MEC network element when the connection is initially established.
  • the MME sends a modify bearer request message to the SGW, where the modify bearer request message includes address information of the MEC network element.
  • the MME sends the address information including the access network eNB in the modify bearer request message to the SGW.
  • the MME sends the address information of the MEC network element as the address information of the access network eNB to the SGW. Therefore, for the SGW, the received address information of the access network eNB is actually the address information of the MEC network element. Accordingly, the SGW sends the data to the access network eNB, which is actually sent to the MEC network element.
  • the SGW sends a modify bearer response message to the MME.
  • a user plane downlink data transmission channel between the SGW and the MEC network element can be established, and the SGW sends the downlink data stream of the terminal to the MEC network element.
  • the MME sends a path switch request acknowledgement message to the target eNB.
  • the target eNB sends a release resource request message to the source eNB.
  • Steps 705-709 correspond to the handover process of the prior art, except that the message of the step corresponding to steps 705 and 706 in the prior art includes the address information of the target eNB, and in the present invention, in order to ensure the data of the SGW
  • the packet is sent to the MEC network element, and steps 705 and 706 include the address information of the MEC network element.
  • FIG. 8 is a schematic flowchart of still another communication method 800 in a handover process according to an embodiment of the present invention.
  • the communication method 800 can be applied to a system architecture in which an X2 interface exists between a source eNB and a target eNB, and the SGW changes during the handover of the cell, that is, the source eNB corresponds to a different SGW corresponding to the target eNB.
  • the 801 to 804 part reference may be made to the 501 to 504 part of the communication method 500, and the 805 part may refer to the 705 part of the communication method 700. To avoid repetition, details are not described herein again.
  • the MME sends a create session request message to the target SGW, where the create session request message includes address information of the MEC network element.
  • the received address information is address information of the access network eNB.
  • the access network eNB address information received by the MME is the address information of the MEC network element. Therefore, in this step, the address information of the eNB sent by the MME to the SGW is actually the address information of the MEC network element.
  • the MME and the SGW in the embodiment of the present invention may be the same as the prior art.
  • the address information of the MEC network element is considered to be the address information of the eNB.
  • the target SGW sends a create session response message to the MME, where the session response message includes the address information of the target SGW.
  • the create session response message is used by the MME to notify the MEC network element to send the uplink data stream to the address identified by the address information of the target SGW.
  • a user plane downlink data transmission channel between the target SGW and the MEC network element may be established, and the target SGW sends the downlink data stream of the terminal to the MEC network element.
  • the target SGW uses the address identified by the address information of the MEC network element as the destination address of the downlink data packet.
  • the address information of the target SGW includes the IP address of the SGW; when the target SGW and the MEC network element are GTP-based tunnel connections, the address information of the target SGW includes the SGW. IP address and TEID. The address information is used to notify the MEC network element to send the upstream data stream to the address.
  • the MME sends a path switch request acknowledgement message to the target eNB, where the switch request acknowledgement message includes address information of the target SGW.
  • the target eNB sends a release resource message to the source eNB.
  • the target eNB sends a modify session request message to the MEC network element, where the modify session request message includes address information of the target SGW.
  • the modify session request message is used to notify the MEC network element to update the address information of the SGW, and send the data packet to the correct SGW.
  • the MEC network element modifies the stored address information of the source SGW to the address information of the target SGW, so as to send the data packet to the correct SGW, and send a modify session confirmation message to the target eNB.
  • a user data transmission channel between the MEC network element and the target SGW may be established, and the MEC network element sends the uplink data flow of the terminal to the target SGW.
  • the message names in the 801 to 804 parts and the 810 to 811 parts are not limited.
  • the 803-804 part and the 810-811 part can be simultaneously executed, that is, after the 809 part, the target eNB is connected with the MEC network element, and the address of the target eNB and the target SGW after the MEC network element is switched is notified. information.
  • FIG. 9 is a schematic diagram of communication of a communication method 900 in another handover process according to an embodiment of the present invention.
  • the communication method 900 can be applied to a system architecture in which the X2 interface does not exist between the source eNB and the target eNB, and the MME and the SGW do not change during the cell handover process.
  • the source eNB determines to initiate a handover.
  • the source eNB sends a handover requirement message to the MME.
  • the MME sends a handover request message to the target eNB.
  • the handover request message may include address information of the MEC network element.
  • the handover request message may include identifier information of the terminal.
  • the target eNB sends a handover request acknowledgement message to the MME, where the handover request acknowledgement message includes address information of the MEC network element.
  • the message includes the address information of the target eNB.
  • the address information of the eNB in the handover request acknowledgement message sent by the target eNB to the MME is actually the address information of the MEC network element. That is, the MME in the embodiment of the present invention may be the same as the prior art, and the MME considers the address information of the MEC network element as the address information of the eNB.
  • the target eNB sends a modify session request message to the MEC network element, where the modify session request message includes address information of the target eNB.
  • the modify session request message may be used to request the MEC network element to modify the stored address information of the source eNB to address information of the target eNB.
  • the modify session request message may further include identifier information of the terminal.
  • the MEC network element modifies the stored address information of the source eNB to the address information of the target eNB, and sends a modify session response message to the target eNB.
  • a user plane data transmission channel between the MEC network element and the target base station may be established, and the data stream of the terminal is transmitted between the MEC network element and the target eNB.
  • Steps 907-909 are the same as the prior art, and are not described herein again.
  • FIG. 10 is a schematic diagram of communication of a communication method 1000 in another handover process according to an embodiment of the present invention.
  • the communication method 1000 can be applied to a system architecture in which there is no X2 interface between the source eNB and the target eNB, and the MME and the SGW change in the process of the terminal switching the cell.
  • the source eNB decides to initiate a handover.
  • the source eNB sends a handover requirement message to the source MME.
  • the source MME sends a forwarding relocation request message to the target MME, where the forwarding relocation request message includes address information of the MEC network element.
  • the forwarding relocation request message includes the address information of the source eNB where the terminal is located, including the IP address and TEID of the source eNB.
  • the address information of the eNB when the terminal accesses the network, in order to connect the MEC network element string to the S1 interface, the address information of the eNB The information is actually the address information of the MEC network element.
  • the forwarding relocation request message may further include identifier information of the terminal.
  • the target MME sends a create session request message to the target SGW.
  • the create session request message may include address information of the MEC network element.
  • the target MME sends the address information of the source eNB to the target SGW.
  • the address information of the MEC network element is actually sent to the target SGW as the address information of the source eNB.
  • the target SGW sends a create session response message to the target MME, where the session response message includes the address information of the target SGW.
  • the create session request message in step 1004 includes the address information of the MEC network element
  • the user plane downlink data transmission channel between the target SGW and the MEC network element may be established, and the target SGW may use the downlink data flow of the terminal. Send to the MEC network element.
  • the address information of the target SGW includes the IP address and TEID of the SGW.
  • the target MME sends a handover request message to the target eNB, where the handover request message includes address information of the target SGW.
  • the handover request message may further include address information of the MEC network element.
  • the target eNB sends a handover request acknowledgement message to the target MME, where the handover request acknowledgement message includes address information of the MEC network element.
  • the message includes the address information of the target eNB, but in order to ensure that the SGW sends the data packet to the MEC network element, the message includes the address information of the MEC network element.
  • the target eNB sends a modify session request message to the MEC network element, where the modify session request message includes the address information of the target eNB and the address information of the target SGW.
  • the modification session request message may further include identification information of the terminal.
  • the MEC network element After receiving the modify session request message, the MEC network element modifies the stored address information of the source eNB to the address information of the target eNB, and modifies the address information of the source SGW to the address information of the target SGW, and sends the modification to the target eNB. Session response message.
  • a user plane data transmission channel between the MEC network element and the target base station can be established, and a user data transmission channel between the MEC network element and the target SGW can be established, and the MEC network element sends the uplink data stream of the terminal to the Target SGW.
  • the parts 1010 to 1016 are the same as the prior art, and are not described herein again.
  • the target MME sends a modify bearer request message to the target SGW.
  • the modify bearer request message may include address information of the MEC network element.
  • the target MME sends the address information of the target eNB to the target SGW.
  • the address information of the MEC network element is actually sent to the target SGW as the address information of the target eNB.
  • the target MME may send the address information of the MEC network element to the target SGW by using the create session request message in step 1004 or the modify bearer request message in step 1017.
  • the target SGW sends a modify bearer response message to the target MME.
  • the MME and the SGW in the embodiment of the present invention may be the same as the prior art.
  • the MME and the SGW consider the address information of the MEC network element as the address information of the eNB.
  • FIG. 10 includes the processing procedure when both the MME and the SGW are changed. If the MME is unchanged and the SGW is changed, the part related to the target MME may be deleted in the process shown in FIG. , will not repeat them here.
  • each network element such as an access network device, an MEC network element, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiments of the present invention may perform functional unit division on an access network device, an MEC network element, and the like according to the foregoing method.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one.
  • Processing unit The above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 11 shows the MEC involved in the above embodiment.
  • the MEC network element 1100 includes a processing unit 1110 and a communication unit 1120.
  • the processing unit 1110 is configured to perform control management on the action of the MEC network element.
  • the processing unit 1110 is configured to support the MEC network element to perform the process 330 in FIG. 3, the process 403 in FIG. 4, and the process 504 in FIG. Process 604 in, process 704 in FIG. 7, process 804 and process 811 in FIG. 8, process 906 in FIG. 9, process 1009 in FIG. 10, and/or other processes for the techniques described herein.
  • the communication unit 1120 is configured to support communication between the MEC network element and other network entities, such as communication with the eNB, SGW, etc., shown in FIG. 2A or FIG. 2B.
  • the MEC network element may further include a storage unit 1130 for storing program codes and data of the MEC network element.
  • the processing unit 1110 may be a processor or a controller, for example, may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application specific integrated circuit (Application-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1120 can be a communication interface, a transceiver, a transceiver circuit, etc., wherein the communication interface is a collective name and can include one or more interfaces.
  • the storage unit 1130 may be a memory.
  • the MEC network element involved in the embodiment of the present invention may be the MEC network element shown in FIG.
  • the MEC network element 1200 includes a processor 1210, a communication interface 1220, and a memory 1230.
  • the MEC network element 1200 may further include a bus 1240.
  • the communication interface 1220, the processor 1210, and the memory 1230 may be connected to each other through a bus 1240.
  • the bus 1240 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (abbreviated). EISA) bus and so on.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 1240 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one line is shown in Figure 12, but it does not mean that there is only one bus or one type of bus.
  • FIG. 13 is a schematic diagram showing a possible structure of an access network device involved in the foregoing embodiment.
  • Access network device 1300 includes a processing unit 1310 and a communication unit 1320.
  • Processing unit 1310 For controlling the operation of the access network device, for example, the processing unit 1310 is configured to support the access network device to perform the process 401 and the process 402 in FIG. 4, the process 503 in FIG. 5, and the process 603 in FIG. Process 703 in FIG. 7, processes 803 and 810 in FIG. 8, process 905 in FIG. 9, process 1008 in FIG. 10, and/or other processes for the techniques described herein.
  • the communication unit 1320 is configured to support communication between the access network device and other network entities, such as communication with the MEC, MME, SGW shown in FIG. 2A or FIG. 2B.
  • the access network device may also include a storage unit 1330 for storing program codes and data of the communication device.
  • the processing unit 1310 may be a processor or a controller, such as a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1320 may be a communication interface, a transceiver, a transceiver circuit, etc., wherein the communication interface is a collective name and may include one or more interfaces.
  • the storage unit 1330 may be a memory.
  • the access network device may be the access network device shown in FIG.
  • the access network device 1400 includes a processor 1414, a communication interface 1420, and a memory 1430.
  • the communication device 1400 can also include a bus 1440.
  • the communication interface 1420, the processor 1414, and the memory 1430 may be connected to each other through a bus 1440; the bus 1440 may be a PCI bus or an EISA bus or the like.
  • the bus 1440 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one line is shown in Figure 14, but it does not mean that there is only one bus or one type of bus.
  • the steps of the method or algorithm described in connection with the disclosure of the embodiments of the present invention may be implemented in a hardware manner, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be a component of the processor. section.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in a gateway device or mobility management network element.
  • the processor and the storage medium may also exist as discrete components in the gateway device or the mobility management network element.
  • the functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种切换过程中的通信方法和装置。所述方法包括:当终端从源接入网设备切换至目标接入网设备时,移动边缘计算MEC网元接收所述目标接入网设备发送的所述目标接入网设备的地址信息;所述MEC网元将存储的所述源接入网设备的地址信息修改为所述目标接入网设备的地址信息。本发明实施例中,当终端从源接入网设备切换至目标接入网设备时,MEC网元接收目标接入网设备发送的目标接入网设备的地址信息,并将存储的源接入网设备的地址信息修改为目标接入网设备的地址信息,能够及时调整MEC网元与终端之间的数据流的路由,从而能够防止数据流中断。

Description

切换过程中的通信方法和装置 技术领域
本发明涉及通信技术领域,尤其涉及切换过程中的通信方法和装置。
背景技术
为了增强用户的业务体验,可以在接入网附近部署移动边缘计算(Mobile Edge Computing,简称MEC)网元,MEC网元也可以称为MEC平台。MEC网元具有计算和存储的能力,能够获取终端的数据报文,并将数据报文处理完后进行路由。
MEC网元可以单独连接演进型基站(Evolved Node B,简称eNB或eNodeB)(也可以称为外挂在eNB上),或者连接在eNB与网关设备之间的S1用户面接口(S1-U接口)上。当终端在eNB之间切换时,MEC网元如何应对终端的切换,目前还没有相关的解决方案。
发明内容
本发明实施例提供了一种切换过程中的通信方法和装置,以期当终端在接入网设备之间切换时,及时调整MEC网元与终端之间的数据流的路由,以防止数据流中断。
一方面,本发明实施例提供了一种切换过程中的通信方法,所述方法包括:当终端从源接入网设备切换至目标接入网设备时,移动边缘计算MEC网元接收所述目标接入网设备发送的所述目标接入网设备的地址信息;所述MEC网元将存储的所述源接入网设备的地址信息修改为所述目标接入网设备的地址信息。
在一个可能的设计中,所述目标接入网设备的地址信息可以携带在目标接入网设备向所述MEC网元发送的消息中。例如,所述MEC网元接收目标接入网设备发送的修改会话请求消息,所述修改会话请求消息包括所述目标接入网设备的地址信息。所述修改会话请求消息可以用于请求所述MEC网元将存储的所述源接入网设备的地址信息修改为所述目标接入网设备的地址信息。
在一个可能的设计中,所述MEC网元还可以接收所述目标接入网设备 发送的所述终端的标识信息。
本发明实施例中,当终端从源接入网设备切换至目标接入网设备时,MEC网元接收目标接入网设备发送的目标接入网设备的地址信息,并将存储的源接入网设备的地址信息修改为目标接入网设备的地址信息,能够及时调整MEC网元与终端之间的数据流的路由,从而能够防止数据流中断。
在一个可能的设计中,所述方法还包括:所述MEC网元接收所述目标接入网设备发送的所述目标接入网设备对应的网关设备的地址信息;所述MEC网元将存储的所述源接入网设备对应的网关设备的地址信息修改为所述目标接入网设备对应的网关设备的地址信息。
在一个可能的设计中,所述目标接入网设备对应的网关设备的地址信息可以携带在目标接入网设备向所述MEC网元发送的消息中。例如,MEC网元接收目标接入网设备发送的修改会话请求消息,所述修改会话请求消息包括所述目标网关设备的地址信息。所述修改会话请求消息可以用于请求所述MEC网元将存储的所述源网关设备的地址信息修改为所述目标网关设备的地址信息。
在一个可能的设计中,所述MEC网元接收所述目标接入网设备发送的所述目标接入网设备的地址信息,包括:所述MEC网元接收所述目标接入网设备发送的消息,所述消息携带所述目标接入网设备的地址信息,其中,所述消息还携带所述目标接入网设备对应的网关设备的地址信息;所述通信方法还包括:所述MEC网元将存储的所述源接入网设备对应的网关设备的地址信息修改为所述目标接入网设备对应的网关设备的地址信息。
另一方面,本发明实施例提供了一种切换过程中的通信方法,所述方法包括:当终端从源接入网设备切换至目标接入网设备时,所述目标接入网设备获取移动边缘计算MEC网元的地址信息;所述目标接入网设备根据所述MEC网元的地址信息向所述MEC网元发送所述目标接入网设备的地址信息,以使得所述MEC网元将存储的所述源接入网设备的地址信息修改为所述目标接入网设备的地址信息。
在一个可能的设计中,所述目标接入网设备的地址信息可以携带在所述目标接入网设备向所述MEC网元发送的消息中。例如,所述目标接入网设备向所述MEC网元发送修改会话请求消息,所述修改会话请求消息包括所述目标接入网设备的地址信息。所述修改会话请求消息可以用于请求所述 MEC网元将存储的所述源基站的地址信息修改为所述目标基站的地址信息。
本发明实施例中,当终端从源接入网设备切换至目标接入网设备时,目标接入网设备向MEC网元发送目标接入网设备的地址信息,使MEC网元将存储的源接入网设备的地址信息修改为目标接入网设备的地址信息,能够及时调整MEC网元与终端之间的数据流的路由,从而能够防止数据流中断。
在一个可能的设计中,所述方法还包括:所述目标接入网设备向所述MEC网元发送所述目标接入网设备对应的网关设备的地址信息,以使得所述MEC网元将存储的所述源接入网设备对应的网关设备的地址信息修改为所述目标接入网设备对应的网关设备的地址信息。
所述目标接入网设备对应的网关设备的地址信息可以携带在所述移动性管理网元向所述目标接入网设备发送的消息中。
在一个可能的设计中,所述方法还包括:所述目标接入网设备通过移动性管理网元向所述目标接入网设备对应的网关设备通知所述MEC网元的地址信息。
在一个可能的设计中,所述目标接入网设备获取MEC网元的地址信息包括:所述目标接入网设备接收所述源接入网设备发送的所述MEC网元的地址信息;或者,所述目标接入网设备接收移动性管理网元发送的所述MEC网元的地址信息。
又一方面,本发明实施例提供了一种移动边缘计算MEC网元,该MEC网元具有实现上述方法设计中MEC网元行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述MEC网元包括处理单元和通信单元,所述处理单元被配置为支持MEC网元执行上述方法中相应的功能。所述通信单元用于支持MEC网元与其他设备之间的通信。所述MEC网元还可以包括存储单元,所述存储单元用于与处理单元耦合,其保存MEC网元必要的程序指令和数据。作为示例,处理单元可以为处理器,通信单元可以为通信接口,存储单元可以为存储器。
又一方面,本发明实施例提供了一种接入网设备,该接入网设备具有实现上述方法设计中MEC网元行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述 功能相对应的模块。
在一个可能的设计中,所述接入网设备包括处理单元和通信单元,所述处理单元被配置为支持MEC网元执行上述方法中相应的功能。所述通信单元用于支持MEC网元与其他设备之间的通信。所述接入网设备还可以包括存储单元,所述存储单元用于与处理单元耦合,其保存接入网设备必要的程序指令和数据。作为示例,处理单元可以为处理器,通信单元可以为通信接口,存储单元可以为存储器。
又一方面,本发明实施例提供一种通信系统,该通信系统包括上述方面所述的MEC网元和接入网设备。
再一方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述MEC网元所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述接入网设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例中,当终端从源接入网设备切换至目标接入网设备时,目标接入网设备获取MEC网元的地址信息,并向MEC网元发送目标接入网设备的地址信息,使MEC网元将存储的源接入网设备的地址信息修改为目标接入网设备的地址信息,能够及时调整MEC网元与终端之间的数据流的路由,从而能够防止数据流中断。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种可能的系统架构的示意图;
图2A是本发明实施例提供的一种可能的应用场景的示意图;
图2B是本发明实施例提供的的另一种可能的应用场景的示意图;
图3是本发明实施例提供的一种数据流传输的示意图;
图4是本发明实施例提供的一种切换过程中的通信方法的通信示意图;
图5是本发明实施例提供的另一种切换过程中的通信方法的通信示意图;
图6是本发明实施例提供的又一种切换过程中的通信方法的通信示意图;
图7是本发明实施例提供的又一种切换过程中的通信方法的通信示意图;
图8是本发明实施例提供的又一种切换过程中的通信方法的通信示意图;
图9是本发明实施例提供的又一种切换过程中的通信方法的通信示意图;
图10是本发明实施例提供的又一种切换过程中的通信方法的通信示意图图;
图11是本发明实施例提供的一种MEC网元的示意性框图;
图12是本发明实施例提供的另一种MEC网元的示意性框图;
图13是本发明实施例提供的一种接入网设备的示意性框图;
图14是本发明实施例提供的另一种接入网设备的示意性框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本发明实施例中,名词“网络”和“系统”经常交替使用,但本领域技术人员可以理解其含义。本发明实施例所涉及到的终端可以包括各种具有无限通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为终端。本发明实施例所涉及到接入网设备可以是基站(Base Station,BS),所述基站是一种部署在无线接入网中用以为终端 提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在长期演进(Long Term Evolution,LTE)系统中,称为演进的节点B(evolved NodeB,eNB或eNodeB),在3G通信系统中,称为节点B(Node B)等等。为方便描述,本发明实施例中,上述为终端提供无线通信功能的装置统称为基站或BS。
移动性管理网元可以是移动性管理实体(Mobility Management Entity,简称MME)或通用分组无线系统(General Packet Radio System,简称GPRS)业务支撑节点(Serving GPRS Support Node,简称SGSN),但本发明并不限定。
但为描述方便,下面将以eNB、MME、SGW为例对本发明实施例的方案进行说明。应理解,下文中虽然使用eNB为例描述接入网设备,使用MME为例描述移动性管理网元,使用SGW描述网关设备,但本发明实施例不限于这些术语所代表的制式。本发明实施例也可应用于其他制式,这些变化均落入本发明实施例的范围内。
本发明实施例可以应用于图1所示的系统架构。下面首先介绍该系统架构中的主要网络实体。
演进型通用陆地无线接入网(Evolved UniversalTerrestrial Radio Access Network,简称E-UTRAN):由多个eNB组成的网络,实现无线物理层功能、资源调度和无线资源管理、无线接入控制以及移动性管理功能。eNB通过S1-U接口和SGW相连,用于传送用户数据;通过S1控制面接口(S1-MME接口)和MME相连,采用S1应用协议(S1 Application Protocol,简称S1-AP)实现无线接入承载控制等功能。
MME:主要负责用户及会话管理的所有控制平面功能,包括非接入层(Non-Access Stratum,简称NAS)信令及安全、跟踪区列表(Tracking Area List,简称TAL)的管理、PGW与SGW的选择等。
SGW:主要负责终端的数据传输、转发以及路由切换等,并作为终端在eNB之间切换时的本地移动性锚定点。
分组数据网络网关(Packet Data Network Gateway,简称PDN GW或PGW):外部网络向终端发送数据的入口,负责终端的互联网协议(Internet Protocol,简称IP)地址的分配,终端的数据报文过滤、速率控制、生成计 费信息等。
终端接入演进分组系统(Evolved Packet System,简称EPS)后,PGW为终端分配IP地址(IP address),终端通过该IP地址实现与外部网络的连接以进行数据传输;终端的所有上行数据报文会通过PGW发送至外部网络,外部网络所有的下行数据报文会通过PGW发送至终端。
终端发送或接收的数据报文在EPS网络内通过EPS承载(简称承载)进行传输,每个终端可以有多个承载,不同的承载可以满足不同业务的服务质量(Quality of Service,简称QoS)需求。eNB与SGW会存储每个承载的信息,即承载上下文,其中包含该承载的SGW隧道端点标识(Tunnel Endpoint Identifier,简称TEID)与eNB TEID信息,其中SGW TEID作为eNB发往SGW的上行数据报文的目的地址,eNB TEID作为SGW发往eNB的下行数据报文的目的地址。eNB通过S1-AP消息与MME实现承载上下文的同步,SGW通过GPRS隧道协议控制面(GPRS Tunneling Protocol-Control Plane,简称GTP-C)消息与MME实现承载上下文的同步;进而实现了eNB与SGW间的承载上下文同步。
eNB在收到终端的上行数据报文时,会根据承载上下文将终端的上行数据报文封装为上行的GPRS隧道协议用户面(GPRS Tunneling Protocol-User Plane,简称GTP-U)报文,其中,上行的GTP-U报文包含GTP-U头,GTP-U头包含该承载的SGW TEID信息。由于不同的承载会使用不同的SGW TEID,因此SGW收到eNodeB发来的上行的GTP-U报文时,根据GTP-U头即可判断该报文所属的承载;SGW收到发往终端的下行数据报文时,会将该下行数据报文封装为下行的GTP-U报文,其中,下行的GTP-U报文包含GTP-U头,GTP-U头包含该承载的eNodeB TEID信息。
MEC网元主要由数据总线与应用组成,其中数据总线负责获取终端的数据报文并转发给相应的应用,应用处理完数据报文后会将报文送还数据总线进行路由。MEC网元上可以安装多种应用,用于增强用户的业务体验。MEC网元上的应用可以截获终端发送的数据进行修改、检测、转发等,也可以对终端发送来的数据直接给出应答。例如MEC网元可以安装视频缓存应用,当终端请求视频业务时,终端的请求会被视频缓存应用处理,如果视频缓存应用中没有终端所请求的视频,视频缓存应用会继续转发该用户请求给SGW;如果视频缓存应用存储有终端所请求的视频,视频缓存应用会直 接发送视频数据报文给终端。因此,将MEC网元部署在接入网附近对终端发送来的数据直接给出应答,将有效提升用户的业务体验。
图2A是本发明实施例的应用场景的示意图。如图2A所示,MEC网元外挂在eNB上,一个MEC网元服务于一个或多个eNB,MEC网元与网关设备无连接。
图2B是本发明实施例的另一应用场景的示意性架构图。如图2B所示,MEC网元串接在S1-U接口上。在图2B所示的系统架构中,MEC网元可以与eNB之间出一个新的接口,使MEC网元与eNB建立连接。
图3所示为图2A所示应用场景的数据流传输的示意图。如图3所示,对于上行数据流(从终端向MEC网元发送的数据流):
终端移动前数据流路由:终端—>源eNB—>MEC网元;
终端移动后数据流路由:终端—>目标eNB—>MEC网元;
所以要使目标eNB获取到MEC网元的地址信息,以便于数据流能够正确路由。
另一方面,MEC网元在收到从目标eNB发来的数据包时,要能识别该数据包所属的终端。
对于下行数据流(从MEC网元到终端的数据流):
终端移动前数据流路由:MEC网元—>源eNB—>终端;
终端移动后数据流路由:MEC网元—>目标eNB—>终端;
所以要使MEC网元感知该终端的数据流从源eNB切换到目标eNB,以便于后续的数据流由MEC网元发送到目标eNB而不是源eNB。
MEC网元与eNB之间的连接可以是IP连接,也可以是基于GTP协议的隧道连接。
MEC网元和eNB可以互相获取对方的地址信息,建立MEC网元与eNB之间的数据传输通道。eNB获取MEC网元的地址信息之后,可以将获取的MEC网元的地址信息作为eNB的地址信息通过MME通知SGW。也就是说,在现有技术中eNB将eNB的地址信息通知SGW,而本发明实施例的应用场景中eNB将MEC网元的地址信息作为eNB的地址信息,由eNB通过MME通知SGW。此时,从SGW的角度看,会将MEC网元作为eNB。
图4是根据本发明实施例的切换过程中的通信方法400的示意性流程图。如图4所示,通信方法400包括如下内容。
在终端切换小区之前,上下行数据流在终端所在的源eNB与MEC网元之间传输。对于上行数据流,从终端的数据流经过源eNB到MEC网元,数据包到达源eNB之后,可选地,源eNB在数据包中增加终端的标识信息,该标识信息用于标识该终端。
需要说明的是,在终端初始接入网络时,网关设备会为终端分配IP地址,当网关设备为终端分配的IP地址为私网地址时,不同的网关可能为终端的分配的私网地址相同。如果具有相同的私网地址的终端处于同一个eNB下,该eNB将包含相同的源地址的数据包发到MEC网元,则MEC网元将无法识别这些数据流是属于不同的终端。所以,为了使MEC网元能够识别终端,eNB在上行数据包中包含终端的标识信息。同样地,MEC网元在下行数据包中也可以包含终端的标识信息。本发明实施例对终端的标识信息不做限制,例如,终端的标识信息可以是eNB为终端分配的标识信息等。
401、当终端从源eNB切换至目标eNB时,目标eNB获取MEC网元的地址信息。
在一个示例中,MEC网元的地址信息可以预先配置在目标eNB中,目标eNB可以获取预先配置的MEC网元的地址信息;或者,目标eNB还可以从源eNB或MME发送的消息中获取MEC网元的地址信息,如下面图5或图6所示的方案。
在另一个示例中,目标eNB还可以根据对应关系获取MEC网元的地址信息,该对应关系可以为终端的标识信息和目标eNB的标识信息之一或全部与MEC网元的地址信息之间的对应关系。例如,MEC网元查询系统中存储该对应关系,根据终端的标识信息和/或目标eNB的标识信息查询MEC网元查询系统即可获取MEC网元的地址信息。
在又一个实例中,MEC网元与目标eNB之间可以为IP连接,MEC网元的地址信息包括MEC网元的IP地址;或者,MEC网元与目标eNB之间可以为基于GTP的隧道连接,MEC网元的地址信息包括MEC网元的IP地址和TEID。
402、目标eNB根据MEC网元的地址信息向MEC网元发送目标eNB的地址信息。
在一个示例中,目标eNB还可以向MEC网元发送终端的标识信息,终端的标识信息用于标识发生切换的终端。本发明实施例对终端的标识信息的 内容不做限定,只要能够标识终端即可。
例如,终端的标识信息可以是eNB与MEC网元建立连接时,eNB发送给MEC网元的,也可以是MEC网元针对终端分配的(此时该终端的标识信息在建立连接初期由MEC发送给eNB)。或者,也可以是用一对标识来标识终端,比如eNB为终端分配一个标识(如eNB S1-AP Id),MEC再为终端分配一个标识(MEC S1-AP Id),那么在eNB与MEC网元上可以通过一对标识(如eNB S1-AP Id/MEC S1-AP Id)标识终端。
403、MEC网元接收目标eNB发送的目标eNB的地址信息后,MEC网元将存储的源eNB的地址信息修改为目标eNB的地址信息。
例如,MEC网元将存储器中指定位置存储的源eNB的地址信息删除,并在该指定位置存储目标eNB的地址信息。或者,MEC网元将存储器中指定位置存储的源eNB的地址信息替换为目标eNB的地址信息。
此时可建立MEC网元与目标eNB之间的用户面数据传输通道,MEC网元会将接收到的终端的下行数据包发送至目标eNB。
在一个示例中,MEC网元还可以接收终端的下行数据包;并根据目标eNB的地址信息向该目标eNB发送该下行数据包。
本发明实施例中,当终端从源eNB切换至目标eNB时,目标eNB获取MEC网元的地址信息,并向MEC网元发送目标eNB的地址信息,使MEC网元将存储的源eNB的地址信息修改为目标eNB的地址信息,能够及时调整MEC网元与终端之间的数据流的路由,从而能够防止数据流中断。
如果源eNB与目标eNB对应不同的SGW,通信方法400还可以包括:MEC网元将存储的源eNB对应的SGW的地址信息修改为目标eNB对应的SGW的地址信息。这样,当切换过程中SGW也发生改变时,能够及时建立MEC网元与SGW之间的连接,进而能够防止数据流中断。
其中,在MEC网元将存储的源eNB对应的SGW的地址信息修改为目标eNB对应的SGW的地址信息之前,MEC网元可以采用多种方式获取目标eNB对应的SGW的地址信息。例如,MEC网元接收目标eNB发送的目标eNB对应的SGW的地址信息。
或者,403部分中MEC网元接收目标eNB发送的目标eNB的地址信息包括:MEC网元接收目标eNB发送的消息,该消息携带目标eNB的地址信息,其中,该消息还携带目标eNB对应的网关设备的地址信息。相应地, MEC网元可以从该消息中获取目标eNB对应的SGW的地址信息。
源eNB与目标eNB之间可以具有X2接口,也可以没有X2接口。当源eNB与目标eNB之间具有X2接口时,可以通过X2接口进行切换准备过程,源eNB可以直接要求目标eNB进行资源预留。这样切换过程中不涉及MME,减少了无线侧和MME的交互。当源eNB与目标eNB之间没有X2接口时,需要通过S1接口执行LTE系统内的切换。由于源eNB和目标eNB之间不能直接通信,MME承担了两个eNB之间的信令中继,信令切换过程比基于X2接口的切换复杂。具体详见图5至图10所示实施例。
下面结合图5和图6详细描述根据本发明实施例的切换过程中的通信方法在图2A所示场景中的应用。
图5是本发明实施例提供的另一种切换过程中的通信方法500的通信示意图。通信方法500可以应用于源eNB和目标eNB之间存在X2接口的系统架构。
在终端切换小区之前,数据流在终端所在的源eNB与MEC网元之间传输。
501、当终端从源eNB切换至目标eNB时,源eNB向目标eNB发送通知切换消息,通知切换消息包括终端的标识信息,通知切换消息用于通知终端切换至目标eNB。
可选地,通知切换消息还可以包括MEC网元的地址信息。
可选地,MEC网元的地址信息也可以预配置在eNB上。例如一个MEC网元覆盖下的多个eNB可以均配置相同的MEC网元的地址信息。
502、目标eNB接收到该通知切换消息,向源eNB发送切换确认消息。
此时终端成功切换至目标eNB。
503、目标eNB获取MEC网元的地址信息,根据该MEC网元的地址信息向MEC网元发送修改会话请求消息,修改会话请求消息包括目标eNB的地址信息。
可选地,当步骤501中的通知切换消息中还包括MEC网元的地址信息时,目标eNB可以从通知切换消息中获取MEC网元的地址信息。
可选地,目标eNB还可以采用其他方法获取MEC网元的地址信息,在此不再赘述。
可选地,修改会话请求消息中还可以包括终端的标识信息。当MEC网 元收到该消息后,根据终端的标识信息,MEC网元能够识别出发生切换的终端,MEC网元将该终端的下行数据包发送到目标eNB。
504、MEC网元接收到修改会话请求后消息,将存储的源eNB的地址信息修改为目标eNB的地址信息,向目标eNB发送修改会话响应消息。
此时可建立MEC网元与目标基站之间的用户面数据传输通道,数据流在MEC网元与目标eNB之间传输。
需要说明的是,本发明实施例对步骤501~504中的消息名称不做限定,还可以采用其他消息名称。
图6是根据本发明实施例提供的又一种切换过程中的通信方法600的通信示意图。通信方法600可以应用于源eNB和目标eNB之间不存在X2接口的系统架构。
在终端切换小区之前,数据流在终端所在的源eNB与MEC网元之间传输。
601、当终端切换小区时,源eNB向MME发送切换请求消息,切换请求消息包括终端的标识信息。
切换请求消息可以用于请求终端从源eNB切换至另一eNB。
可选地,切换请求消息包括MEC网元的地址信息。
602、MME向目标eNB发送切换请求消息,该切换请求消息中包括终端的标识信息。
切换请求消息可以用于通知终端切换至目标eNB。
可选地,切换请求消息还可以包括MEC网元的地址信息。
步骤601和步骤602中的切换请求消息中的信元可以放置在该两条消息的源到目标透明容器(Source to Target Transparent Container)信元中,这样MME可以不解析消息中的具体信元,通过这个透明容器的信元将有关信息从源eNB转发到目标eNB。
603、目标eNB接收到该切换请求消息后,目标eNB获取MEC网元的地址信息,根据该MEC网元的地址信息向MEC网元发送修改会话请求消息,修改会话请求消息包括目标eNB的地址信息。
可选地,修改会话请求消息还可以包括终端的标识信息。MEC网元根据终端的标识信息能够识别发生切换的终端,MEC网元可以将该终端的下行数据包发送至目标eNB。
可选地,当步骤602中的切换请求消息中还包括MEC网元的地址信息时,目标eNB可以从切换请求消息中获取MEC网元的地址信息。
可选地,目标eNB还可以采用其他方法获取MEC网元的地址信息,在此不再赘述。
604、MEC网元接收到修改会话请求消息后,将存储的源eNB的地址信息修改为目标eNB的地址信息,向目标eNB发送修改会话响应消息。
605、目标eNB向MME发送切换请求确认消息。
606,目标eNB向源eNB发送切换命令消息。
此时终端成功切换至目标eNB,同时目标eNB与MEC网元之间建立了数据传输通道。数据流将在MEC网元与目标eNB之间传输。
需要说明的是,本发明实施例对步骤601~604中的消息名称不做限定,还可以采用其他消息名称。
下面结合图7至图10详细描述本发明实施例提供的切换过程中的通信方法在图2B所示场景中的应用。
在图2B所示的场景中,当终端从源eNB切换至目标eNB时,相应地,SGW可能不改变也可能改变,同样,MME也可能不改变也可能改变。也就是说,源eNB对应的SGW与目标eNB对应的SGW可能相同也可能不同,源eNB对应的MME与目标eNB对应的MME可能相同也可能不同。
图7是根据本发明实施例提供的又一种切换过程中的通信方法700的通信示意图。通信方法700可以应用于源eNB和目标eNB之间存在X2接口的系统架构,且切换小区过程中SGW不改变,即源eNB和目标eNB对应同一SGW。
701~704部分可以参考通信方法500中的501~504部分的内容,为避免重复,在此不再赘述。
705、目标eNB向MME发送路径切换请求消息,路径切换请求消息中包括MEC网元的地址信息。
MEC网元的地址信息是指SGW向MEC网元发送数据流时的目的地址,包括MEC网元的IP地址,可选地,当SGW与MEC网元之间为基于GTP的隧道连接时,还可以包括MEC网元的TEID。
该MEC网元的地址信息与连接初始建立时的MEC网元的地址信息可以相同。
706、MME向SGW发送修改承载请求消息,修改承载请求消息中包括MEC网元的地址信息。
在现有技术中,MME向SGW发送修改承载请求消息中包括接入网eNB的地址信息。在本发明实施例中,MME是将MEC网元的地址信息作为接入网eNB的地址信息发送给SGW。因此,对于SGW来说,收到的接入网eNB的地址信息实际上是MEC网元的地址信息,相应地,SGW将数据发送到接入网eNB,实际上是发送给MEC网元。
707、SGW向MME发送修改承载响应消息。
此时可建立SGW与MEC网元之间的用户面下行数据传输通道,SGW会将终端的下行数据流发送至MEC网元。
708、MME向目标eNB发送路径切换请求确认消息。
709、目标eNB向源eNB发送释放资源请求消息。
需要说明的是,本发明实施例对步骤701~704中的消息名称不做限定,还可以采用其他消息名称。步骤705~709对应于现有技术的切换过程,不同的是,现有技术中与步骤705和706对应的步骤的消息中包括目标eNB的地址信息,而在本发明中,为了保证SGW将数据包发送至MEC网元,步骤705和706包括MEC网元的地址信息。
图8是根据本发明实施例提供的又一种切换过程中的通信方法800的示意性流程图。通信方法800可以应用于源eNB和目标eNB之间存在X2接口的系统架构,且切换小区过程中SGW发生改变,即源eNB对应和目标eNB对应不同的SGW。
801~804部分可以参考通信方法500中的501~504部分,805部分可以参考通信方法700中的705部分,为避免重复,在此不再赘述。
806、MME向目标SGW发送创建会话请求消息,创建会话请求消息中包括MEC网元的地址信息。
现有技术中,对于SGW来说,收到的地址信息是接入网eNB的地址信息。在本发明实施例中,MME收到的接入网eNB地址信息是MEC网元的地址信息,所以在此步骤中,MME向SGW发送的eNB的地址信息实际上是MEC网元的地址信息。换句话说,本发明实施例中的MME和SGW可以与现有技术相同,对于MEC网元无感知,认为MEC网元的地址信息就是eNB的地址信息。
807、目标SGW向MME发送创建会话响应消息,创建会话响应消息中包括目标SGW的地址信息。
创建会话响应消息用于通过MME通知MEC网元将上行数据流发往目标SGW的地址信息标识的地址。
此时可建立目标SGW与MEC网元之间的用户面下行数据传输通道,目标SGW会将终端的下行数据流发送至MEC网元。换句话说,目标SGW将MEC网元的地址信息标识的地址作为下行数据包的目的地址。
当目标SGW与MEC网元之间为IP连接时,目标SGW的地址信息包括SGW的IP地址;当目标SGW与MEC网元之间为基于GTP的隧道连接时,目标SGW的地址信息包括SGW的IP地址和TEID。该地址信息用于通知MEC网元将上行数据流发往该地址。
808、MME向目标eNB发送路径切换请求确认消息,切换请求确认消息中包括目标SGW的地址信息。
809、目标eNB向源eNB发送释放资源消息。
810、目标eNB向MEC网元发送修改会话请求消息,修改会话请求消息中包括目标SGW的地址信息。
修改会话请求消息用于通知MEC网元将SGW的地址信息更新,将数据包发送到正确的SGW。
811、MEC网元接收到修改会话请求消息后,将存储的源SGW的地址信息修改为目标SGW的地址信息,以便于将数据包发送到正确的SGW,并向目标eNB发送修改会话确认消息。
此时可建立MEC网元与目标SGW之间的用户面上行数据传输通道,MEC网元会将终端的上行数据流发送至目标SGW。
需要说明的是,本发明实施例对801~804部分,以及810~811部分中的消息名称不做限定。
本发明实施例中,803~804部分与810~811部分可以同时执行,也就是在809部分之后,使目标eNB与MEC网元建立连接,通知MEC网元切换后的目标eNB和目标SGW的地址信息。
图9是根据本发明实施例提供的又一种切换过程中的通信方法900的通信示意图。通信方法900可以应用于源eNB和目标eNB之间不存在X2接口的系统架构,且终端切换小区过程中MME和SGW均不改变。
901、源eNB决定发起切换。
902、源eNB向MME发送切换需求消息。
903、MME向目标eNB发送切换请求消息。
可选地,切换请求消息中可以包括MEC网元的地址信息。
可选地,切换请求消息中可以包括终端的标识信息。
904、目标eNB向MME发送切换请求确认消息,切换请求确认消息中包括MEC网元的地址信息。
在现有技术中,消息中包括目标eNB的地址信息。本发明实施例中,目标eNB向MME发送的切换请求确认消息中的eNB的地址信息实际上是MEC网元的地址信息。也就是说,本发明实施例中的MME可以与现有技术相同,MME会将MEC网元的地址信息认为是eNB的地址信息。
905、目标eNB向MEC网元发送修改会话请求消息,修改会话请求消息中包括目标eNB的地址信息。
修改会话请求消息可以用于请求MEC网元将存储的源eNB的地址信息修改为目标eNB的地址信息。
可选地,修改会话请求消息还可以包括终端的标识信息。
906、MEC网元接收到修改会话请求消息后,将存储的源eNB的地址信息修改为目标eNB的地址信息,并向目标eNB发送修改会话响应消息。
此时可建立MEC网元与目标基站之间的用户面数据传输通道,终端的数据流在MEC网元与目标eNB之间传输。
步骤907~909与现有技术相同,在此不再赘述。
图10是根据本发明实施例提供的又一种切换过程中的通信方法1000的通信示意图。通信方法1000可以应用于源eNB和目标eNB之间不存在X2接口的系统架构,且在终端切换小区的过程中MME和SGW都发生改变。
1001、源eNB决定发起切换。
1002、源eNB向源MME发送切换需求消息。
1003、源MME向目标MME发送转发重定位请求消息,转发重定位请求消息中包括MEC网元的地址信息。
需要说明的是,按照现有技术,转发重定位请求消息中包括终端所在的源eNB的地址信息,包括源eNB的IP地址和TEID。但是在本发明实施例中,在终端接入网络时,为了将MEC网元串接入S1接口,eNB的地址信 息实际上是MEC网元的地址信息。
可选地,转发重定位请求消息中还可以包括终端的标识信息。
1004、目标MME向目标SGW发送创建会话请求消息。
可选地,创建会话请求消息可以包括MEC网元的地址信息。现有技术中,目标MME将源eNB的地址信息发送至目标SGW,在本发明实施例中,实际上是将MEC网元的地址信息作为源eNB的地址信息发送至目标SGW。
1005、目标SGW向目标MME发送创建会话响应消息,创建会话响应消息中包括目标SGW的地址信息。
可选地,如果步骤1004中的创建会话请求消息包括MEC网元的地址信息,此时可建立目标SGW与MEC网元之间的用户面下行数据传输通道,目标SGW会将终端的下行数据流发送至MEC网元。
目标SGW的地址信息包括SGW的IP地址和TEID。
1006、目标MME向目标eNB发送切换请求消息,切换请求消息中包括目标SGW的地址信息。
可选地,切换请求消息中还可以包括MEC网元的地址信息。
1007、目标eNB向目标MME发送切换请求确认消息,切换请求确认消息中包括MEC网元的地址信息。
在现有技术中,该消息中包括目标eNB的地址信息,但是为了保证SGW将数据包发送到MEC网元,所以该消息中要包括MEC网元的地址信息。
1008、目标eNB向MEC网元发送修改会话请求消息,修改会话请求消息中包括目标eNB的地址信息和目标SGW的地址信息。
修改会话请求消息中还可以包括终端的标识信息。
1009、MEC网元接收到修改会话请求消息后,将存储的源eNB的地址信息修改为目标eNB的地址信息,并将源SGW的地址信息修改为目标SGW的地址信息,并向目标eNB发送修改会话响应消息。
此时可建立MEC网元与目标基站之间的用户面数据传输通道,还可建立MEC网元与目标SGW之间的用户面上行数据传输通道,MEC网元会将终端的上行数据流发送至目标SGW。
1010~1016部分与现有技术相同,在此不再赘述。
1017、目标MME向目标SGW发送修改承载请求消息。
可选地,修改承载请求消息中可以包括MEC网元的地址信息。现有技 术中,目标MME将目标eNB的地址信息发送至目标SGW,在本发明实施例中,实际上是将MEC网元的地址信息作为目标eNB的地址信息发送至目标SGW。
也就是说,目标MME可以通过步骤1004中的创建会话请求消息或者步骤1017中的修改承载请求消息将MEC网元的地址信息发送至目标SGW。
1018、目标SGW向目标MME发送修改承载响应消息。
应理解,本发明实施例中的MME和SGW可以与现有技术相同,此时MME和SGW会将MEC网元的地址信息认为是eNB的地址信息。
需要注意的是,图10所示实施例包括了MME和SGW均发生改变时的处理过程,如果MME不变,SGW改变,则只要将图10所示流程中删除去目标MME相关的部分即可,在此不再赘述。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文结合图4至图10详细描述了根据本发明实施例的切换过程中的通信方法,下面将结合图11至图14详细描述根据本发明实施例的通信装置。
上述主要从各个网元之间交互的角度对本发明实施例的方案进行了介绍。可以理解的是,各个网元,例如接入网设备、MEC网元等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对接入网设备、MEC网元等进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图11示出了上述实施例中所涉及的MEC 网元的一种可能的结构示意图。MEC网元1100包括处理单元1110和通信单元1120。处理单元1110用于对MEC网元的动作进行控制管理,例如,处理单元1110用于支持MEC网元执行图3中的过程330,图4中的过程403,图5中的过程504,图6中的过程604,图7中的过程704,图8中的过程804和过程811,图9中的过程906,图10中的过程1009和/或用于本文所描述的技术的其它过程。通信单元1120用于支持MEC网元与其他网络实体的通信,例如与图2A或图2B中示出的eNB、SGW等之间的通信。MEC网元还可以包括存储单元1130,用于存储MEC网元的程序代码和数据。
其中,处理单元1110可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1120可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口。存储单元1130可以是存储器。
当处理单元1110为处理器,通信单元1120为通信接口,存储单元1130为存储器时,本发明实施例所涉及的MEC网元可以为图12所示的MEC网元。
参阅图12所示,该MEC网元1200包括:处理器1210、通信接口1220、存储器1230。可选的,MEC网元1200还可以包括总线1240。其中,通信接口1220、处理器1210以及存储器1230可以通过总线1240相互连接;总线1240可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。所述总线1240可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。
图13示出了上述实施例中所涉及的接入网设备的一种可能的结构示意图。接入网设备1300包括处理单元1310和通信单元1320。处理单元1310 用于对接入网设备的动作进行控制管理,例如,处理单元1310用于支持接入网设备执行图4中的过程401和过程402,图5中的过程503,图6中的过程603,图7中的过程703,图8中的过程803和810,图9中的过程905,图10中的过程1008和/或用于本文所描述的技术的其它过程。通信单元1320用于支持接入网设备与其他网络实体的通信,例如与图2A或图2B中示出的MEC、MME、SGW之间的通信。接入网设备还可以包括存储单元1330,用于存储通信设备的程序代码和数据。
其中,处理单元1310可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1320可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口。存储单元1330可以是存储器。
当处理单元1310为处理器,通信单元1320为通信接口,存储单元1330为存储器时,本发明实施例所涉及的接入网设备可以为图14所示的接入网设备。
参阅图14所示,该接入网设备1400包括:处理器1414、通信接口1420、存储器1430。可选的,通信设备1400还可以包括总线1440。其中,通信接口1420、处理器1414以及存储器1430可以通过总线1440相互连接;总线1440可以是PCI总线或EISA总线等。所述总线1440可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。
结合本发明实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成 部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网关设备或移动性管理网元中。当然,处理器和存储介质也可以作为分立组件存在于网关设备或移动性管理网元中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (14)

  1. 一种切换过程中的通信方法,其特征在于,包括:
    当终端从源接入网设备切换至目标接入网设备时,移动边缘计算MEC网元接收所述目标接入网设备发送的所述目标接入网设备的地址信息;
    所述MEC网元将存储的所述源接入网设备的地址信息修改为所述目标接入网设备的地址信息。
  2. 根据权利要求1所述的通信方法,其特征在于,还包括:
    所述MEC网元接收所述目标接入网设备发送的所述目标接入网设备对应的网关设备的地址信息;
    所述MEC网元将存储的所述源接入网设备对应的网关设备的地址信息修改为所述目标接入网设备对应的网关设备的地址信息。
  3. 根据权利要求1所述的通信方法,其特征在于,所述MEC网元接收所述目标接入网设备发送的所述目标接入网设备的地址信息,包括:
    所述MEC网元接收所述目标接入网设备发送的消息,所述消息携带所述目标接入网设备的地址信息,其中,所述消息还携带所述目标接入网设备对应的网关设备的地址信息;
    所述通信方法还包括:
    所述MEC网元将存储的所述源接入网设备对应的网关设备的地址信息修改为所述目标接入网设备对应的网关设备的地址信息。
  4. 一种切换过程中的通信方法,其特征在于,包括:
    当终端从源接入网设备切换至目标接入网设备时,所述目标接入网设备获取移动边缘计算MEC网元的地址信息;
    所述目标接入网设备根据所述MEC网元的地址信息向所述MEC网元发送所述目标接入网设备的地址信息,以使得所述MEC网元将存储的所述源接入网设备的地址信息修改为所述目标接入网设备的地址信息。
  5. 根据权利要求4所述的通信方法,其特征在于,还包括:
    所述目标接入网设备向所述MEC网元发送所述目标接入网设备对应的网关设备的地址信息,以使得所述MEC网元将存储的所述源接入网设备对应的网关设备的地址信息修改为所述目标接入网设备对应的网关设备的地址信息。
  6. 根据权利要求4所述的通信方法,其特征在于,还包括:
    所述目标接入网设备通过移动性管理网元向所述目标接入网设备对应的网关设备通知所述MEC网元的地址信息。
  7. 根据权利要求4或5所述的通信方法,其特征在于,所述目标接入网设备获取MEC网元的地址信息,包括:
    所述目标接入网设备接收所述源接入网设备发送的所述MEC网元的地址信息;或者,
    所述目标接入网设备接收移动性管理网元发送的所述MEC网元的地址信息。
  8. 一种移动边缘计算MEC网元,其特征在于,包括:处理单元和通信单元,
    所述处理单元用于通过所述通信单元当终端从源接入网设备切换至目标接入网设备时,接收所述目标接入网设备发送的所述目标接入网设备的地址信息;以及用于将存储的所述源接入网设备的地址信息修改为所述目标接入网设备的地址信息。
  9. 根据权利要求8所述的MEC网元,其特征在于,所述处理单元还用于通过所述通信单元接收所述目标接入网设备发送的所述目标接入网设备对应的网关设备的地址信息;以及用于将存储的所述源接入网设备对应的网关设备的地址信息修改为所述目标接入网设备对应的网关设备的地址信息。
  10. 根据权利要求8所述的MEC网元,其特征在于,
    所述处理单元具体用于通过所述通信单元接收所述目标接入网设备发送的消息,所述消息携带所述目标接入网设备的地址信息,其中,所述消息还携带所述目标接入网设备对应的网关设备的地址信息;以及用于将存储的所述源接入网设备对应的网关设备的地址信息修改为所述目标接入网设备对应的网关设备的地址信息。
  11. 一种接入网设备,其特征在于,包括:处理单元和通信单元,
    所述处理单元用于通过所述通信单元当终端从源接入网设备切换至所述接入网设备时,获取移动边缘计算MEC网元的地址信息;以及用于根据所述MEC网元的地址信息通过所述通信单元向所述MEC网元发送所述接入网设备的地址信息,以使得所述MEC网元将存储的所述源接入网设备的地址信息修改为所述目标接入网设备的地址信息。
  12. 根据权利要求11所述的接入网设备,其特征在于,所述处理单元还用于通过所述通信单元向所述MEC网元发送所述目标接入网设备对应的网关设备的地址信息,以使得所述MEC网元将存储的所述源接入网设备对应的网关设备的地址信息修改为所述目标接入网设备对应的网关设备的地址信息。
  13. 根据权利要求11所述的接入网设备,其特征在于,所述处理单元还用于通过移动性管理网元向所述目标接入网设备对应的网关设备通知所述MEC网元的地址信息。
  14. 根据权利要求11或12所述的接入网设备,其特征在于,所述处理单元具体用于通过所述通信单元接收所述源接入网设备发送的所述MEC网元的地址信息;或者,所述处理单元具体用于通过所述通信单元接收移动性管理网元发送的所述MEC网元的地址信息。
PCT/CN2016/082222 2016-05-16 2016-05-16 切换过程中的通信方法和装置 WO2017197565A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16901951.0A EP3457748B1 (en) 2016-05-16 2016-05-16 Communication method and apparatus during switching
CN201680085770.8A CN109155946B (zh) 2016-05-16 2016-05-16 切换过程中的通信方法和装置
PCT/CN2016/082222 WO2017197565A1 (zh) 2016-05-16 2016-05-16 切换过程中的通信方法和装置
US16/192,037 US20190090169A1 (en) 2016-05-16 2018-11-15 Communication method in handover process and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082222 WO2017197565A1 (zh) 2016-05-16 2016-05-16 切换过程中的通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/192,037 Continuation US20190090169A1 (en) 2016-05-16 2018-11-15 Communication method in handover process and apparatus

Publications (1)

Publication Number Publication Date
WO2017197565A1 true WO2017197565A1 (zh) 2017-11-23

Family

ID=60324604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082222 WO2017197565A1 (zh) 2016-05-16 2016-05-16 切换过程中的通信方法和装置

Country Status (4)

Country Link
US (1) US20190090169A1 (zh)
EP (1) EP3457748B1 (zh)
CN (1) CN109155946B (zh)
WO (1) WO2017197565A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108174421A (zh) * 2018-03-05 2018-06-15 重庆邮电大学 一种5g网络中基于mec辅助的数据分流方法
CN110475299A (zh) * 2018-05-10 2019-11-19 维沃移动通信有限公司 一种切换小区的方法及装置
US11159997B2 (en) 2017-02-27 2021-10-26 Huawei Technologies Co., Ltd. Communication method and apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6802498B2 (ja) * 2016-08-31 2020-12-16 富士通株式会社 無線通信システム、基地局装置、及び制御情報送信方法
US10972950B2 (en) * 2018-07-20 2021-04-06 Qualcomm Incorporated Methods and apparatus for handover enhancements
CN112333108A (zh) * 2019-08-05 2021-02-05 南京中兴新软件有限责任公司 业务调度的方法及装置
TWI727496B (zh) * 2019-11-11 2021-05-11 財團法人工業技術研究院 多邊緣雲之網路通訊控制方法及邊緣運算系統
KR20210095457A (ko) 2020-01-23 2021-08-02 삼성전자주식회사 엣지 컴퓨팅 서비스를 위한 방법 및 장치
CN114374978A (zh) * 2020-10-15 2022-04-19 中国移动通信有限公司研究院 一种发现mec服务器的方法、装置和计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011153889A1 (zh) * 2010-06-10 2011-12-15 中兴通讯股份有限公司 一种实现本地切换的方法和装置
CN103747494A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种无线局域网中的切换方法及装置
CN103796262A (zh) * 2012-10-31 2014-05-14 华为技术有限公司 直接切换的方法和装置
CN105491625A (zh) * 2014-10-10 2016-04-13 华为技术有限公司 无线通信中切换接入点的方法、网络控制节点和用户设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9167493B2 (en) * 2012-06-15 2015-10-20 At&T Intellectual Property I, L.P. Method and apparatus for providing a cloud-based mobility in a wireless network
EP2953400B1 (en) * 2013-02-21 2019-05-15 Huawei Technologies Co., Ltd. Service providing system, method, mobile edge application server and support node

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011153889A1 (zh) * 2010-06-10 2011-12-15 中兴通讯股份有限公司 一种实现本地切换的方法和装置
CN103796262A (zh) * 2012-10-31 2014-05-14 华为技术有限公司 直接切换的方法和装置
CN103747494A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种无线局域网中的切换方法及装置
CN105491625A (zh) * 2014-10-10 2016-04-13 华为技术有限公司 无线通信中切换接入点的方法、网络控制节点和用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3457748A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11159997B2 (en) 2017-02-27 2021-10-26 Huawei Technologies Co., Ltd. Communication method and apparatus
CN108174421A (zh) * 2018-03-05 2018-06-15 重庆邮电大学 一种5g网络中基于mec辅助的数据分流方法
CN110475299A (zh) * 2018-05-10 2019-11-19 维沃移动通信有限公司 一种切换小区的方法及装置
CN110475299B (zh) * 2018-05-10 2021-06-29 维沃移动通信有限公司 一种切换小区的方法及装置

Also Published As

Publication number Publication date
EP3457748B1 (en) 2020-08-26
EP3457748A1 (en) 2019-03-20
CN109155946B (zh) 2020-08-14
CN109155946A (zh) 2019-01-04
EP3457748A4 (en) 2019-03-27
US20190090169A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
WO2017197565A1 (zh) 切换过程中的通信方法和装置
US10798620B2 (en) Communication method in handover process and apparatus
US20180288671A1 (en) Method, apparatus, and system for routing user plane data in mobile network
JP5637138B2 (ja) 通信システムと通信制御方法
US10827348B2 (en) Data transmission method and apparatus
KR20150000781A (ko) SDN 기반 LTE Network 구조 및 동작 방안
CN112911726A (zh) 一种用户平面承载建立的方法及装置
US10045230B2 (en) Data exchange method and apparatus
KR20170133793A (ko) 이동통신 코어 망에서의 시그널링 방법 및 그 시스템
US20160127959A1 (en) Pdn gateway device and mobile communication method
WO2015188357A1 (zh) 一种控制承载切换的设备和控制方法
US10616110B2 (en) Packet transmission method, apparatus, and system
US20190082482A1 (en) Resource access method, apparatus, and system
WO2009152757A1 (zh) 一种数据报文发送方法、装置及通信系统
JP6732993B2 (ja) データ交換方法および装置
JP6509950B2 (ja) データ交換方法および装置
WO2016074468A1 (zh) 支持多pdn连接的优化切换的方法、网络节点及系统
WO2017193346A1 (zh) 访问资源的方法、装置和系统
WO2014110789A1 (zh) 一种承载建立方法、装置及系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016901951

Country of ref document: EP

Effective date: 20181212