WO2017195255A1 - Inverter device and method for calibrating voltage command - Google Patents

Inverter device and method for calibrating voltage command Download PDF

Info

Publication number
WO2017195255A1
WO2017195255A1 PCT/JP2016/063763 JP2016063763W WO2017195255A1 WO 2017195255 A1 WO2017195255 A1 WO 2017195255A1 JP 2016063763 W JP2016063763 W JP 2016063763W WO 2017195255 A1 WO2017195255 A1 WO 2017195255A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
command
terminal
inverter device
value
Prior art date
Application number
PCT/JP2016/063763
Other languages
French (fr)
Japanese (ja)
Inventor
槙也 日比野
順 野村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/063763 priority Critical patent/WO2017195255A1/en
Priority to JP2016565520A priority patent/JPWO2017195255A1/en
Publication of WO2017195255A1 publication Critical patent/WO2017195255A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an inverter device and a voltage command calibration method.
  • the inverter device generates a voltage command for controlling the frequency and phase of the switching control signal in accordance with a command voltage given from the outside, thereby controlling the rotation speed and torque of the induction motor as a load.
  • the voltage command may not be a value as set in the command voltage given from the outside due to variations in the components inside the inverter device.
  • Patent Document 1 takes in a frequency setting value that is a variable frequency setting value as an analog signal in order to improve the accuracy of the output frequency, converts the analog signal into a digital signal, and the converted signal is connected to the outside.
  • the frequency setting value is compensated by feeding back to the frequency setting device and comparing the digital signal of the frequency setting value with the value fed back from the frequency setting device.
  • Patent Document 1 has a problem that a frequency setting value that is a voltage command cannot be calibrated unless a frequency setting device that is an external device is used for the inverter device.
  • the present invention has been made in view of the above, and an object thereof is to obtain an inverter device capable of calibrating a voltage command without connecting an external device.
  • an inverter device is an inverter device that applies an AC voltage to a load, an inverter circuit that outputs an AC voltage, and a first that inputs a command voltage.
  • the inverter device according to the present invention has an effect that the voltage command can be calibrated without connecting an external device.
  • FIG. Schematic diagram of the terminal block for wiring provided in the casing of the inverter device shown in FIG.
  • the figure which shows typically the state of the control terminal provided in the inverter apparatus when analog input calibration is performed The figure which shows AD value calculated when a reference voltage is applied
  • the figure which shows the frequency setting value and AD value which are calculated in a voltage command calibration part The figure which shows typically the state of the control terminal provided in the inverter apparatus after analog input calibration was performed.
  • FIG. 1 is a configuration diagram of an inverter device according to an embodiment.
  • An inverter device 100 shown in FIG. 1 includes a rectifier circuit 1 that rectifies an AC voltage applied from an AC power supply 10, a smoothing capacitor 3 that smoothes the voltage rectified by the rectifier circuit 1, and a direct current that is smoothed by the smoothing capacitor 3.
  • an inverter circuit 2 for converting the voltage into an AC voltage and applying the voltage to the motor 30 as a load.
  • the rectifier circuit 1 and the inverter circuit 2 are connected to each other via a DC bus 20, one end of the smoothing capacitor 3 is connected to the positive bus of the DC bus 20, and the other end of the smoothing capacitor 3 is the negative bus of the DC bus 20. Connected to.
  • the rectifier circuit 1 is a full-wave rectifier circuit using a diode bridge.
  • the inverter circuit 2 includes a plurality of switching elements, and each of the plurality of switching elements includes an IPM (Intelligent Power Module), an IGBT (Insulated Gate Bipolar Transistor), and a MOSFET (Metal Oxide Semiconductor Inductor Transistor Transistor).
  • IPM Intelligent Power Module
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Inductor Transistor Transistor
  • a semiconductor switch such as a Thyristor
  • FET Field Effect Transistor
  • the motor 30 is a three-phase induction rotating electric machine.
  • the inverter device 100 includes a voltage detector 4 that detects a value of a voltage applied to the DC bus 20 and a wiring terminal block 50. Further, based on the voltage detection value detected by the voltage detector 4 and the command voltage 21, the inverter device 100 generates a voltage command for controlling at least one of the rotational speed and torque of the motor 30 and controls the inverter circuit.
  • the control part 6 and the voltage command calibration part 7 which calibrates the value of a voltage command are provided.
  • the voltage command calibration unit 7 may be provided inside the control unit 6, and the details of the function will be described later.
  • the inverter device 100 includes a reference voltage application unit 8 that applies a reference voltage for calibrating the command voltage 21 to the wiring terminal block 50.
  • FIG. 2 is a block diagram of the control unit shown in FIG.
  • the control unit 6 shown in FIG. 2 includes a voltage command setting unit 61 that sets a voltage command for controlling at least one of the rotational speed and torque of the motor 30 based on the command voltage 21.
  • the control unit 6 also has a pulse width for driving a plurality of switching elements constituting the inverter circuit 2 based on the voltage command set by the voltage command setting unit 61 and the voltage detection value detected by the voltage detector 4.
  • a PWM signal generation unit 62 that generates a modulation (Pulse Width Modulation: PWM) signal is provided.
  • PWM Pulse Width Modulation
  • control unit 6 includes a drive unit 63 that generates and outputs a drive signal for controlling on / off of the switching element of the inverter circuit 2 with reference to the PWM signal generated by the PWM signal generation unit 62.
  • the voltage command set by the voltage command setting unit 61 may be a set value for controlling at least one of the rotational speed and torque of the motor 30.
  • the frequency command value may be described for the sake of simplicity. is there.
  • the command voltage 21 is input to the voltage command setting unit 61 via the wiring terminal block 50, and the voltage command setting unit 61 outputs a voltage command to the PWM signal generation unit 62 during the normal operation, and has an automatic analog input calibration function.
  • a voltage command is output to the voltage command calibration unit 7.
  • the voltage command calibration unit 7 calibrates the voltage command, and the control unit 6 is driven by the voltage command after calibration. Details of the operation of the voltage command calibration unit 7 will be described later.
  • FIG. 3 is a schematic diagram of a wiring terminal block provided in the casing of the inverter device shown in FIG.
  • the wiring terminal block 50 provided in the casing 101 of the inverter device 100 has a plurality of wiring terminals.
  • a control terminal 5 surrounded by a dotted line among a plurality of wiring terminals is applied to a command voltage input terminal 53 which is a first terminal for inputting a command voltage 21 for adjusting an AC voltage, and a command voltage input terminal 53. And a common terminal 54 for supplying a reference potential of the command voltage 21 to be transmitted.
  • the command voltage input terminal 53 is a terminal for inputting at least one of a voltage command for setting the rotation speed of the motor and a voltage command for setting the torque of the motor.
  • the control terminal 5 includes an analog output terminal 51 that is a second terminal that outputs a reference voltage for calibrating the command voltage 21, and a common terminal 52 that provides a reference potential of a voltage applied to the analog output terminal 51. Including.
  • the analog output terminal 51 is a reference voltage for calibrating the voltage output from the reference voltage application unit 8 when the automatic analog input calibration function of the inverter device 100 is started, that is, the frequency set value. Is used as a terminal to be applied to the command voltage input terminal 53.
  • the command voltage input terminal 53 is connected to a wiring for inputting the command voltage 21 shown in FIG. 1 when the inverter device 100 is in operation, and is connected to a reference voltage for analog input calibration. Connected.
  • the common terminal 52 and the common terminal 54 are terminals that are each connected to the ground and provide a reference potential of a voltage applied to the analog output terminal 51 and the command voltage input terminal 53.
  • FIG. 4 is a diagram schematically showing the state of the control terminal provided in the inverter device before the analog input calibration is performed.
  • FIG. 5 is a diagram schematically showing the state of the control terminal provided in the inverter device when the analog input calibration is performed.
  • the analog output terminal 51 and the command voltage input terminal 53 are connected to each other by the wiring 11, and the common terminal 52 and the common terminal 54 are connected to each other by the wiring 12.
  • the reference voltage application unit 8 applies an arbitrary reference voltage 22. Thereby, automatic calibration of the frequency set value is performed.
  • a specific example of automatic calibration of frequency setting values will be described below.
  • the reference voltage 22 is a maximum voltage Vmax preset in the reference voltage application unit 8 by parameters and a voltage obtained by dividing the maximum voltage Vmax into N pieces (N is an integer of 1 or more). Is output.
  • the value of these voltages output from the reference voltage application unit 8 is a voltage corresponding to the value of the command voltage 21.
  • the maximum voltage Vmax corresponds to the maximum value of the command voltage 21.
  • the unit 7 calculating a voltage value obtained by dividing the maximum voltage Vmax into N based on the voltage point information.
  • Such a reference voltage 22 is applied to the voltage command setting unit 61 via the analog output terminal 51, the wiring 11 and the command voltage input terminal 53.
  • FIG. 6 is a diagram showing AD values calculated when a reference voltage is applied.
  • the horizontal axis represents the reference voltage applied to the voltage command setting unit 61, and FIG. 6 shows the maximum voltage Vmax and the voltage divided into N pieces.
  • the AD value on the vertical axis is the value of the voltage command calculated by the voltage command setting unit 61, and corresponds to the maximum voltage Vmax and the voltage divided into N pieces.
  • These AD values A0, A1, A2, A (N-1), and AN are input to the voltage command calibration unit 7.
  • the AD value A0 is detected before the N voltage values are applied, and the N AD values including A0 are stored in the voltage command calibration unit 7.
  • the characteristic between the voltage applied to the command voltage input terminal 53 and the AD value is non-linear due to variations in components constituting the inverter device 100, particularly, components constituting the voltage command setting unit 61.
  • Have The variation of the components can be exemplified by deterioration of a circuit element including a capacitor constituting the control unit 6.
  • FIG. 7 is a diagram showing frequency setting values and AD values calculated by the voltage command calibration unit.
  • the vertical axis represents N AD values including A0 stored in the voltage command calibration unit 7.
  • the horizontal axis represents a frequency setting value which is an example of a voltage command calculated by the voltage command calibration unit 7.
  • the AD value “A0” corresponds to a frequency setting value of 0%.
  • the AD value “A1” corresponds to the frequency setting value of 1 / N ⁇ 100%
  • the AD value “A2” corresponds to the frequency setting value of 2 / N ⁇ 100%
  • the AD value“ AN ” corresponds to a frequency setting value of N / N ⁇ 100%.
  • the frequency setting value of N / N ⁇ 100% is set in advance by parameters. A frequency setting value of less than 100% is calculated by complementing with a straight line connecting adjacent data. These frequency setting values are stored in the voltage command calibration unit 7.
  • FIG. 8 is a diagram schematically showing the state of the control terminal provided in the inverter device after the analog input calibration is performed.
  • FIG. 9 is a diagram for explaining an operation for configuring a voltage command using an AD value stored in the voltage command calibration unit and an AD value calculated when a command voltage is applied.
  • the vertical axis in FIG. 9 represents N AD values including A0 stored in the voltage command calibration unit 7 and ideal AD values obtained without considering the variation of components.
  • the horizontal axis of FIG. 9 represents the command voltage 21 applied to the voltage command setting unit 61 via the command voltage input terminal 53.
  • the characteristic of the solid line in FIG. 9 represents the characteristic of N AD values including A0 stored in the voltage command calibration unit 7 and the reference voltage 22.
  • the characteristic of the dotted line in FIG. 9 is an ideal characteristic obtained by linearly approximating the AD value corresponding to the two voltages applied to the command voltage input terminal 53.
  • the command voltage input terminal 53 is connected to the wiring 13 for applying the command voltage 21 as shown in FIG.
  • the voltage command setting unit 61 sets a voltage command based on the command voltage 21 applied to the command voltage input terminal 53 via the wiring 13.
  • the voltage command set by the voltage command setting unit 61 is input to the voltage command calibration unit 7.
  • the voltage command calibration unit 7 compares an AD value corresponding to the voltage command with an ideal AD value corresponding to the voltage command among the stored N AD values. Specifically, as shown in FIG. 9, when the command voltage 21 of V1 [V] is applied, the voltage command calibration unit 7 includes the AD value of AX2 corresponding to the voltage command set by the command voltage 21, and The ideal AX1 corresponding to the voltage command set by the command voltage 21 is compared.
  • the voltage command calibration unit 7 obtains a difference between the AD value of AX2 and the AD value of AX1, and calibrates the voltage command set by the voltage command setting unit 61, that is, the frequency setting value so as to compensate for this difference. As a result, the frequency assumed by the operator can be set even when there are variations in the components in the inverter device.
  • the characteristics of the dotted line shown in FIG. 9 can be obtained from the volume voltage at two points applied by a volume which is an example of an external device (not shown).
  • a volume which is an example of an external device (not shown).
  • the frequency setting value can be matched. There may be no frequency. That is, when the voltage of P0 and P1 is linearly approximated, even if the operator assumes the AD value of AX1 and applies the command voltage of V1 [V], it actually becomes the AD value of AX2, and does not become the assumed frequency. there is a possibility.
  • the frequency setting value can be calibrated so as to compensate for the difference between the AD value of AX1 and the AD value of AX2 by the automatic analog input calibration function of the inverter device 100 without using an external device. Accordingly, even when there are variations in the components in the inverter device 100, the frequency assumed by the operator can be set. Further, in the automatic analog input calibration function of the present embodiment, the circuit constants of the analog input unit are not used for calibration, so that the automatic analog input calibration function is not easily affected by variations in constants for each part. In addition, since the present embodiment does not require a volume during calibration, it is effective even when the frequency is set by an external device other than the volume. An external device other than the volume can be exemplified by a DC power source.
  • the voltage command calibration method includes a step of connecting a first terminal for inputting a command voltage and a second terminal for outputting a reference voltage for calibrating the command voltage; And calibrating the command voltage based on a reference voltage applied to the second terminal in a state where the first terminal and the second terminal are connected.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

An inverter device is provided with an inverter circuit for outputting an alternating-current voltage, a command voltage input terminal 53 for inputting of a command voltage, a control unit for generating a voltage command for controlling the rotation speed and/or torque of a load on the basis of a command voltage and controlling the inverter circuit, a common terminal 52 for assigning a reference potential for the command voltage applied to the command voltage input terminal 53, an analog output terminal 51 for outputting a reference voltage for calibrating the command voltage using the potential of the common terminal 52 as a reference, a reference voltage applying unit 8 for applying the reference voltage to the analog output terminal 51, and wiring 11 for connecting the analog output terminal 51 and the command voltage input terminal 53.

Description

インバータ装置および電圧指令の較正方法Inverter device and voltage command calibration method
 本発明はインバータ装置および電圧指令の較正方法に関する。 The present invention relates to an inverter device and a voltage command calibration method.
 インバータ装置は、外部から与えられる指令電圧に従って、スイッチング制御信号の周波数および位相を制御するための電圧指令を生成することにより、負荷である誘導電動機の回転速度およびトルクを制御する。しかしながら、電圧指令は、インバータ装置内部の部品のばらつきにより、外部から与えられる指令電圧の設定通りの値にならない場合がある。 The inverter device generates a voltage command for controlling the frequency and phase of the switching control signal in accordance with a command voltage given from the outside, thereby controlling the rotation speed and torque of the induction motor as a load. However, the voltage command may not be a value as set in the command voltage given from the outside due to variations in the components inside the inverter device.
 特許文献1に示す従来技術は、出力周波数の精度を向上するため可変周波数設定値である周波数設定値をアナログ信号で取り込み、アナログ信号をデジタル信号に変換し、変換された信号を外部に接続された周波数設定装置へフィードバックし、周波数設定値のデジタル信号と周波数設定装置からフィードバックされた値とを比較することで周波数設定値を補償する。 The prior art disclosed in Patent Document 1 takes in a frequency setting value that is a variable frequency setting value as an analog signal in order to improve the accuracy of the output frequency, converts the analog signal into a digital signal, and the converted signal is connected to the outside. The frequency setting value is compensated by feeding back to the frequency setting device and comparing the digital signal of the frequency setting value with the value fed back from the frequency setting device.
特開平04-46569号公報Japanese Patent Laid-Open No. 04-46569
 しかしながら特許文献1に開示される技術は、インバータ装置に外部機器である周波数設定装置を用いなければ電圧指令である周波数設定値を較正することができないという課題がある。 However, the technique disclosed in Patent Document 1 has a problem that a frequency setting value that is a voltage command cannot be calibrated unless a frequency setting device that is an external device is used for the inverter device.
 本発明は、上記に鑑みてなされたものであって、外部機器を接続することなく電圧指令を較正できるインバータ装置を得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain an inverter device capable of calibrating a voltage command without connecting an external device.
 上述した課題を解決し、目的を達成するために、本発明のインバータ装置は、交流電圧を負荷に印加するインバータ装置であって、交流電圧を出力するインバータ回路と、指令電圧を入力する第1の端子と、指令電圧に基づき負荷の回転速度およびトルクの少なくとも一方を制御する電圧指令を生成してインバータ回路を制御する制御部と、指令電圧を較正するための基準電圧を出力する第2の端子と、基準電圧を第2の端子へ印加する基準電圧印加部と、第1の端子と第2の端子とを接続する配線とを備えることを特徴とする。 In order to solve the above-described problems and achieve the object, an inverter device according to the present invention is an inverter device that applies an AC voltage to a load, an inverter circuit that outputs an AC voltage, and a first that inputs a command voltage. A control unit for generating a voltage command for controlling at least one of the rotational speed and torque of the load based on the command voltage and controlling the inverter circuit, and a second voltage for outputting a reference voltage for calibrating the command voltage It is characterized by comprising a terminal, a reference voltage application section for applying a reference voltage to the second terminal, and a wiring for connecting the first terminal and the second terminal.
 本発明にかかるインバータ装置は、外部機器を接続することなく電圧指令を較正できるという効果を奏する。 The inverter device according to the present invention has an effect that the voltage command can be calibrated without connecting an external device.
実施の形態にかかるインバータ装置の構成図The block diagram of the inverter apparatus concerning embodiment 図1に示す制御部の構成図Configuration diagram of the controller shown in FIG. 図1に示すインバータ装置の筐体に設けられた配線用端子台の模式図Schematic diagram of the terminal block for wiring provided in the casing of the inverter device shown in FIG. アナログ入力較正が行われる前のインバータ装置に設けられた制御端子の状態を模式的に示す図The figure which shows typically the state of the control terminal provided in the inverter apparatus before analog input calibration is performed. アナログ入力較正が行われるときのインバータ装置に設けられた制御端子の状態を模式的に示す図The figure which shows typically the state of the control terminal provided in the inverter apparatus when analog input calibration is performed 基準電圧が印加されたときに演算されるAD値を示す図The figure which shows AD value calculated when a reference voltage is applied 電圧指令較正部で演算される周波数設定値とAD値とを示す図The figure which shows the frequency setting value and AD value which are calculated in a voltage command calibration part アナログ入力較正が行われた後のインバータ装置に設けられた制御端子の状態を模式的に示す図The figure which shows typically the state of the control terminal provided in the inverter apparatus after analog input calibration was performed 電圧指令較正部に記憶されたAD値と指令電圧が印加されたときに演算されるAD値とを用いて電圧指令を構成する動作を説明するための図The figure for demonstrating the operation | movement which comprises a voltage command using the AD value memorize | stored in the voltage command calibration part, and the AD value calculated when a command voltage is applied.
 以下に、本発明の実施の形態に係るインバータ装置および電圧指令の較正方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an inverter device and a voltage command calibration method according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は実施の形態にかかるインバータ装置の構成図である。図1に示すインバータ装置100は、交流電源10から印加される交流電圧を整流する整流回路1と、整流回路1で整流された電圧を平滑する平滑コンデンサ3と、平滑コンデンサ3で平滑された直流電圧を交流電圧に変換し、負荷であるモータ30へ印加するインバータ回路2とを備える。整流回路1およびインバータ回路2は直流母線20を介して相互に接続され、平滑コンデンサ3の一端は直流母線20の正側母線に接続され、平滑コンデンサ3の他端は直流母線20の負側母線に接続される。
Embodiment.
FIG. 1 is a configuration diagram of an inverter device according to an embodiment. An inverter device 100 shown in FIG. 1 includes a rectifier circuit 1 that rectifies an AC voltage applied from an AC power supply 10, a smoothing capacitor 3 that smoothes the voltage rectified by the rectifier circuit 1, and a direct current that is smoothed by the smoothing capacitor 3. And an inverter circuit 2 for converting the voltage into an AC voltage and applying the voltage to the motor 30 as a load. The rectifier circuit 1 and the inverter circuit 2 are connected to each other via a DC bus 20, one end of the smoothing capacitor 3 is connected to the positive bus of the DC bus 20, and the other end of the smoothing capacitor 3 is the negative bus of the DC bus 20. Connected to.
 整流回路1はダイオードブリッジによる全波整流回路である。インバータ回路2は、複数のスイッチング素子を備え、複数のスイッチング素子の各々は、IPM(Inteligent Power Module)、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、IGCT(Insulated Gate Controlled Thyristor)、またはFET(Field Effect Transistor)といった半導体スイッチである。モータ30は三相誘導回転電機である。 The rectifier circuit 1 is a full-wave rectifier circuit using a diode bridge. The inverter circuit 2 includes a plurality of switching elements, and each of the plurality of switching elements includes an IPM (Intelligent Power Module), an IGBT (Insulated Gate Bipolar Transistor), and a MOSFET (Metal Oxide Semiconductor Inductor Transistor Transistor). A semiconductor switch such as a Thyristor) or an FET (Field Effect Transistor). The motor 30 is a three-phase induction rotating electric machine.
 またインバータ装置100は、直流母線20に印加される電圧の値を検出する電圧検出器4と、配線用端子台50とを備える。またインバータ装置100は、電圧検出器4で検出された電圧検出値と指令電圧21とに基づいて、モータ30の回転速度およびトルクの少なくとも一方を制御する電圧指令を生成してインバータ回路を制御する制御部6と、電圧指令の値を較正する電圧指令較正部7とを備える。電圧指令較正部7は制御部6の内部に設けてもよく、その機能の詳細は後述する。またインバータ装置100は、指令電圧21を較正するための基準電圧を配線用端子台50へ印加する基準電圧印加部8を備える。 Further, the inverter device 100 includes a voltage detector 4 that detects a value of a voltage applied to the DC bus 20 and a wiring terminal block 50. Further, based on the voltage detection value detected by the voltage detector 4 and the command voltage 21, the inverter device 100 generates a voltage command for controlling at least one of the rotational speed and torque of the motor 30 and controls the inverter circuit. The control part 6 and the voltage command calibration part 7 which calibrates the value of a voltage command are provided. The voltage command calibration unit 7 may be provided inside the control unit 6, and the details of the function will be described later. The inverter device 100 includes a reference voltage application unit 8 that applies a reference voltage for calibrating the command voltage 21 to the wiring terminal block 50.
 図2は図1に示す制御部の構成図である。図2に示す制御部6は、指令電圧21に基づきモータ30の回転速度およびトルクの少なくとも一方を制御する電圧指令を設定する電圧指令設定部61を備える。また制御部6は、電圧指令設定部61で設定された電圧指令と電圧検出器4で検出された電圧検出値とに基づいてインバータ回路2を構成する複数のスイッチング素子を駆動するためのパルス幅変調(Pulse Width Modulation:PWM)信号を生成するPWM信号生成部62を備える。また制御部6は、PWM信号生成部62で生成されたPWM信号を参照し、インバータ回路2のスイッチング素子をオンオフ制御する駆動信号を生成して出力する駆動部63を備える。電圧指令設定部61で設定された電圧指令は、モータ30の回転速度およびトルクの少なくとも一方を制御する設定値であればよく、以下では説明を簡単化するため、周波数設定値として説明する場合がある。 FIG. 2 is a block diagram of the control unit shown in FIG. The control unit 6 shown in FIG. 2 includes a voltage command setting unit 61 that sets a voltage command for controlling at least one of the rotational speed and torque of the motor 30 based on the command voltage 21. The control unit 6 also has a pulse width for driving a plurality of switching elements constituting the inverter circuit 2 based on the voltage command set by the voltage command setting unit 61 and the voltage detection value detected by the voltage detector 4. A PWM signal generation unit 62 that generates a modulation (Pulse Width Modulation: PWM) signal is provided. Further, the control unit 6 includes a drive unit 63 that generates and outputs a drive signal for controlling on / off of the switching element of the inverter circuit 2 with reference to the PWM signal generated by the PWM signal generation unit 62. The voltage command set by the voltage command setting unit 61 may be a set value for controlling at least one of the rotational speed and torque of the motor 30. In the following description, the frequency command value may be described for the sake of simplicity. is there.
 電圧指令設定部61には配線用端子台50を介して指令電圧21が入力され、電圧指令設定部61は、通常動作時にはPWM信号生成部62に電圧指令を出力し、自動アナログ入力較正機能の開始時には電圧指令較正部7に電圧指令を出力する。本実施の形態では電圧指令較正部7が電圧指令の較正を行い、較正後の電圧指令で制御部6が駆動される。電圧指令較正部7における動作の詳細は後述する。 The command voltage 21 is input to the voltage command setting unit 61 via the wiring terminal block 50, and the voltage command setting unit 61 outputs a voltage command to the PWM signal generation unit 62 during the normal operation, and has an automatic analog input calibration function. At the start, a voltage command is output to the voltage command calibration unit 7. In the present embodiment, the voltage command calibration unit 7 calibrates the voltage command, and the control unit 6 is driven by the voltage command after calibration. Details of the operation of the voltage command calibration unit 7 will be described later.
 図3は図1に示すインバータ装置の筐体に設けられた配線用端子台の模式図である。インバータ装置100の筐体101に設けられた配線用端子台50は複数の配線用端子を有する。 FIG. 3 is a schematic diagram of a wiring terminal block provided in the casing of the inverter device shown in FIG. The wiring terminal block 50 provided in the casing 101 of the inverter device 100 has a plurality of wiring terminals.
 複数の配線用端子の内、点線で囲まれる制御端子5は、交流電圧を調整するための指令電圧21を入力する第1の端子である指令電圧入力端子53と、指令電圧入力端子53に印加される指令電圧21の基準電位を与えるコモン端子54とを含む。指令電圧入力端子53は、モータの回転速度を設定するための電圧指令と、モータのトルクを設定するための電圧指令との少なくとも1つも入力する端子である。 A control terminal 5 surrounded by a dotted line among a plurality of wiring terminals is applied to a command voltage input terminal 53 which is a first terminal for inputting a command voltage 21 for adjusting an AC voltage, and a command voltage input terminal 53. And a common terminal 54 for supplying a reference potential of the command voltage 21 to be transmitted. The command voltage input terminal 53 is a terminal for inputting at least one of a voltage command for setting the rotation speed of the motor and a voltage command for setting the torque of the motor.
 また制御端子5は、指令電圧21を較正するための基準電圧を出力する第2の端子であるアナログ出力端子51と、アナログ出力端子51に印加される電圧の基準電位を与えるコモン端子52とを含む。 The control terminal 5 includes an analog output terminal 51 that is a second terminal that outputs a reference voltage for calibrating the command voltage 21, and a common terminal 52 that provides a reference potential of a voltage applied to the analog output terminal 51. Including.
 アナログ出力端子51の一般的な用途としては、インバータ装置100の動作中にモータ30に印加される出力電圧をユーザ側がモニタする場合を例示できる。本実施の形態では、アナログ出力端子51は、インバータ装置100が有する自動アナログ入力較正機能が開始されたとき、基準電圧印加部8から出力される電圧、すなわち周波数設定値を較正するための基準電圧を、指令電圧入力端子53へ印加する端子として利用される。 As a general application of the analog output terminal 51, a case where the user side monitors the output voltage applied to the motor 30 during the operation of the inverter device 100 can be exemplified. In the present embodiment, the analog output terminal 51 is a reference voltage for calibrating the voltage output from the reference voltage application unit 8 when the automatic analog input calibration function of the inverter device 100 is started, that is, the frequency set value. Is used as a terminal to be applied to the command voltage input terminal 53.
 指令電圧入力端子53には、インバータ装置100の動作時においては、図1に示す指令電圧21を入力するための配線が接続され、アナログ入力較正時においては、基準電圧を入力するための配線が接続される。 The command voltage input terminal 53 is connected to a wiring for inputting the command voltage 21 shown in FIG. 1 when the inverter device 100 is in operation, and is connected to a reference voltage for analog input calibration. Connected.
 コモン端子52およびコモン端子54は、各々がグランドに接続され、アナログ出力端子51および指令電圧入力端子53に印加される電圧の基準電位を与える端子である。 The common terminal 52 and the common terminal 54 are terminals that are each connected to the ground and provide a reference potential of a voltage applied to the analog output terminal 51 and the command voltage input terminal 53.
 以下、インバータ装置100におけるアナログ入力較正時の動作を説明する。 Hereinafter, the operation at the time of analog input calibration in the inverter device 100 will be described.
 図4はアナログ入力較正が行われる前のインバータ装置に設けられた制御端子の状態を模式的に示す図である。図5はアナログ入力較正が行われるときのインバータ装置に設けられた制御端子の状態を模式的に示す図である。 FIG. 4 is a diagram schematically showing the state of the control terminal provided in the inverter device before the analog input calibration is performed. FIG. 5 is a diagram schematically showing the state of the control terminal provided in the inverter device when the analog input calibration is performed.
 アナログ出力端子51および指令電圧入力端子53は配線11により相互に接続され、コモン端子52およびコモン端子54は配線12により相互に接続される。 The analog output terminal 51 and the command voltage input terminal 53 are connected to each other by the wiring 11, and the common terminal 52 and the common terminal 54 are connected to each other by the wiring 12.
 図5に示すように配線11および配線12が接続された状態で自動アナログ入力較正機能が開始されると、基準電圧印加部8は任意の基準電圧22を印加する。これにより周波数設定値の自動較正が行われる。以下に周波数設定値の自動較正の具体例を説明する。 As shown in FIG. 5, when the automatic analog input calibration function is started in a state where the wiring 11 and the wiring 12 are connected, the reference voltage application unit 8 applies an arbitrary reference voltage 22. Thereby, automatic calibration of the frequency set value is performed. A specific example of automatic calibration of frequency setting values will be described below.
 自動アナログ入力較正機能の開始後、パラメータにより基準電圧印加部8に予め設定された最大電圧Vmaxと、最大電圧VmaxをN個(Nは1以上の整数)に分割した電圧とが基準電圧22として出力される。基準電圧印加部8から出力されるこれらの電圧の値は、指令電圧21の値に対応した電圧である。最大電圧Vmaxは、指令電圧21の最大値に相当する。最大電圧VmaxをN個に分割する場合、最大電圧VmaxをN個に分割する電圧点数情報を予め電圧指令較正部7に設定しておき、自動アナログ入力較正機能が開始されたとき、電圧指令較正部7が電圧点数情報に基づき最大電圧VmaxをN個に分割した電圧値を演算することで実現される。N個の電圧値は、それぞれ(1/N)×Vmax[V]、(2/N)×Vmax[V]、((N-1)/N)×Vmax、(N/N)×Vmax(=Vmax)[V]として演算される。このような基準電圧22は、アナログ出力端子51、配線11および指令電圧入力端子53を介して、電圧指令設定部61に印加される。 After starting the automatic analog input calibration function, the reference voltage 22 is a maximum voltage Vmax preset in the reference voltage application unit 8 by parameters and a voltage obtained by dividing the maximum voltage Vmax into N pieces (N is an integer of 1 or more). Is output. The value of these voltages output from the reference voltage application unit 8 is a voltage corresponding to the value of the command voltage 21. The maximum voltage Vmax corresponds to the maximum value of the command voltage 21. When dividing the maximum voltage Vmax into N, voltage point information for dividing the maximum voltage Vmax into N pieces is set in the voltage command calibration unit 7 in advance, and when the automatic analog input calibration function is started, the voltage command calibration is started. This is realized by the unit 7 calculating a voltage value obtained by dividing the maximum voltage Vmax into N based on the voltage point information. The N voltage values are (1 / N) × Vmax [V], (2 / N) × Vmax [V], ((N−1) / N) × Vmax, (N / N) × Vmax ( = Vmax) [V]. Such a reference voltage 22 is applied to the voltage command setting unit 61 via the analog output terminal 51, the wiring 11 and the command voltage input terminal 53.
 図6は基準電圧が印加されたときに演算されるAD値を示す図である。横軸は電圧指令設定部61に印加される基準電圧であり、図6では最大電圧VmaxとN個に分割された電圧とが示される。縦軸のAD値は、電圧指令設定部61で演算された電圧指令の値であり、最大電圧VmaxとN個に分割された電圧とにそれぞれ対応する。これらのAD値A0,A1,A2,A(N-1),AN(Nは1以上の整数)は電圧指令較正部7に入力される。AD値A0はN個の電圧値を印加する前に検出しておき、A0を含むN個のAD値は電圧指令較正部7に記憶される。 FIG. 6 is a diagram showing AD values calculated when a reference voltage is applied. The horizontal axis represents the reference voltage applied to the voltage command setting unit 61, and FIG. 6 shows the maximum voltage Vmax and the voltage divided into N pieces. The AD value on the vertical axis is the value of the voltage command calculated by the voltage command setting unit 61, and corresponds to the maximum voltage Vmax and the voltage divided into N pieces. These AD values A0, A1, A2, A (N-1), and AN (N is an integer of 1 or more) are input to the voltage command calibration unit 7. The AD value A0 is detected before the N voltage values are applied, and the N AD values including A0 are stored in the voltage command calibration unit 7.
 図6に示すように、指令電圧入力端子53に印加される電圧とAD値との特性は、インバータ装置100を構成する部品、特に電圧指令設定部61を構成する部品のばらつきにより、非直線性を有する。部品のばらつきには、制御部6を構成するコンデンサを含む回路素子の劣化を例示できる。 As shown in FIG. 6, the characteristic between the voltage applied to the command voltage input terminal 53 and the AD value is non-linear due to variations in components constituting the inverter device 100, particularly, components constituting the voltage command setting unit 61. Have The variation of the components can be exemplified by deterioration of a circuit element including a capacitor constituting the control unit 6.
 図7は電圧指令較正部で演算される周波数設定値とAD値とを示す図である。縦軸は電圧指令較正部7に記憶されたA0を含むN個のAD値である。横軸は電圧指令較正部7で演算される電圧指令の一例である周波数設定値を表す。AD値「A0」は0%の周波数設定値に対応する。同様にAD値「A1」は1/N×100%の周波数設定値に対応し、AD値「A2」は2/N×100%の周波数設定値に対応し、AD値「A(N-1)」はN-1/N×100%の周波数設定値に対応し、AD値「AN」はN/N×100%の周波数設定値に対応する。なおN/N×100%の周波数設定値は、パラメータにより予め設定されるものである。100%未満の周波数設定値は、隣り合うデータをつないだ直線によって補完することで算出される。これらの周波数設定値は電圧指令較正部7に記憶される。 FIG. 7 is a diagram showing frequency setting values and AD values calculated by the voltage command calibration unit. The vertical axis represents N AD values including A0 stored in the voltage command calibration unit 7. The horizontal axis represents a frequency setting value which is an example of a voltage command calculated by the voltage command calibration unit 7. The AD value “A0” corresponds to a frequency setting value of 0%. Similarly, the AD value “A1” corresponds to the frequency setting value of 1 / N × 100%, the AD value “A2” corresponds to the frequency setting value of 2 / N × 100%, and the AD value “A (N−1) ) ”Corresponds to a frequency setting value of N−1 / N × 100%, and the AD value“ AN ”corresponds to a frequency setting value of N / N × 100%. The frequency setting value of N / N × 100% is set in advance by parameters. A frequency setting value of less than 100% is calculated by complementing with a straight line connecting adjacent data. These frequency setting values are stored in the voltage command calibration unit 7.
 図8はアナログ入力較正が行われた後のインバータ装置に設けられた制御端子の状態を模式的に示す図である。図9は電圧指令較正部に記憶されたAD値と指令電圧が印加されたときに演算されるAD値とを用いて電圧指令を構成する動作を説明するための図である。図9の縦軸は、電圧指令較正部7に記憶されたA0を含むN個のAD値と、部品のばらつきを考慮せずに得られる理想的なAD値とを表す。図9の横軸は、指令電圧入力端子53を介して電圧指令設定部61に印加される指令電圧21を表す。図9の実線の特性は、電圧指令較正部7に記憶されたA0を含むN個のAD値と基準電圧22とによる特性を表す。図9の点線の特性は、指令電圧入力端子53に印加された2点の電圧に対応するAD値を直線近似することで得られた理想的な特性である。 FIG. 8 is a diagram schematically showing the state of the control terminal provided in the inverter device after the analog input calibration is performed. FIG. 9 is a diagram for explaining an operation for configuring a voltage command using an AD value stored in the voltage command calibration unit and an AD value calculated when a command voltage is applied. The vertical axis in FIG. 9 represents N AD values including A0 stored in the voltage command calibration unit 7 and ideal AD values obtained without considering the variation of components. The horizontal axis of FIG. 9 represents the command voltage 21 applied to the voltage command setting unit 61 via the command voltage input terminal 53. The characteristic of the solid line in FIG. 9 represents the characteristic of N AD values including A0 stored in the voltage command calibration unit 7 and the reference voltage 22. The characteristic of the dotted line in FIG. 9 is an ideal characteristic obtained by linearly approximating the AD value corresponding to the two voltages applied to the command voltage input terminal 53.
 アナログ入力較正が行われた後、指令電圧入力端子53には図8に示すように、指令電圧21を印加するための配線13が接続される。電圧指令設定部61は、配線13を介して指令電圧入力端子53に印加された指令電圧21により、電圧指令を設定する。電圧指令設定部61で設定された電圧指令は電圧指令較正部7に入力される。電圧指令較正部7は、記憶されたN個のAD値の内、この電圧指令に対応するAD値と、電圧指令に対応する理想的なAD値とを比較する。具体的には、図9に示すようにV1[V]の指令電圧21が印加された場合、電圧指令較正部7は、指令電圧21によって設定された電圧指令に対応するAX2のAD値と、指令電圧21によって設定された電圧指令に対応する理想的なAX1とを比較する。電圧指令較正部7は、AX2のAD値とAX1のAD値との差分を求め、この差分を補償するように電圧指令設定部61で設定される電圧指令、すなわち周波数設定値を較正する。これによりインバータ装置内部の部品のばらつきが存在した場合にも、操作者が想定する周波数を設定することができる。 After the analog input calibration is performed, the command voltage input terminal 53 is connected to the wiring 13 for applying the command voltage 21 as shown in FIG. The voltage command setting unit 61 sets a voltage command based on the command voltage 21 applied to the command voltage input terminal 53 via the wiring 13. The voltage command set by the voltage command setting unit 61 is input to the voltage command calibration unit 7. The voltage command calibration unit 7 compares an AD value corresponding to the voltage command with an ideal AD value corresponding to the voltage command among the stored N AD values. Specifically, as shown in FIG. 9, when the command voltage 21 of V1 [V] is applied, the voltage command calibration unit 7 includes the AD value of AX2 corresponding to the voltage command set by the command voltage 21, and The ideal AX1 corresponding to the voltage command set by the command voltage 21 is compared. The voltage command calibration unit 7 obtains a difference between the AD value of AX2 and the AD value of AX1, and calibrates the voltage command set by the voltage command setting unit 61, that is, the frequency setting value so as to compensate for this difference. As a result, the frequency assumed by the operator can be set even when there are variations in the components in the inverter device.
 なお、図9に示す点線の特性は、図示しない外部機器の一例であるボリュームによって印加された2点のボリューム電圧より求めることができる。このようなボリュームを用いることにより、ボリュームの設定値と周波数設定値との関係に線形性を持たせることができるが、この方法では、インバータ装置100内の部品のばらつきにより、周波数設定値通りの周波数にならない可能性がある。すなわちP0およびP1の電圧を直線近似した場合、操作者がAX1のAD値を想定してV1[V]の指令電圧を印加しても、実際にはAX2のAD値となり、想定した周波数にならない可能性がある。 Note that the characteristics of the dotted line shown in FIG. 9 can be obtained from the volume voltage at two points applied by a volume which is an example of an external device (not shown). By using such a volume, the relationship between the volume setting value and the frequency setting value can be given linearity. However, in this method, due to variations in components in the inverter device 100, the frequency setting value can be matched. There may be no frequency. That is, when the voltage of P0 and P1 is linearly approximated, even if the operator assumes the AD value of AX1 and applies the command voltage of V1 [V], it actually becomes the AD value of AX2, and does not become the assumed frequency. there is a possibility.
 本実施の形態によれば、外部機器を用いることなくインバータ装置100の自動アナログ入力較正機能により、AX1のAD値とAX2のAD値との差分を補償するように周波数設定値を較正できる。従ってインバータ装置100内の部品にばらつきが存在する場合にも、操作者が想定する周波数を設定することができる。また本実施の形態の自動アナログ入力較正機能では、較正のためにアナログ入力部の回路定数を用いていないため、部品ごとの定数のばらつきの影響を受け難い。また本実施の形態は、較正時にボリュームを必要としないため、ボリューム以外の外部機器により周波数を設定する場合においても効果的である。ボリューム以外の外部機器は直流電源を例示できる。 According to the present embodiment, the frequency setting value can be calibrated so as to compensate for the difference between the AD value of AX1 and the AD value of AX2 by the automatic analog input calibration function of the inverter device 100 without using an external device. Accordingly, even when there are variations in the components in the inverter device 100, the frequency assumed by the operator can be set. Further, in the automatic analog input calibration function of the present embodiment, the circuit constants of the analog input unit are not used for calibration, so that the automatic analog input calibration function is not easily affected by variations in constants for each part. In addition, since the present embodiment does not require a volume during calibration, it is effective even when the frequency is set by an external device other than the volume. An external device other than the volume can be exemplified by a DC power source.
 また本実施の形態に係る電圧指令の較正方法は、指令電圧を入力する第1の端子と、指令電圧を較正するための基準電圧を出力する第2の端子とを接続するステップと、第1の端子および第2の端子が接続された状態で、第2の端子に印加された基準電圧に基づき、指令電圧を較正するステップとを含む。これにより、インバータ装置100内の部品のばらつきが存在する場合にも、第1の端子である指令電圧入力端子53および第2の端子であるアナログ出力端子51を接続するだけで自動的に電圧指令を較正できる。従って、ボリュームの調整操作が不要になり、操作者の負担を軽減しながら周波数またはトルクを所望の値に設定することができる。 The voltage command calibration method according to the present embodiment includes a step of connecting a first terminal for inputting a command voltage and a second terminal for outputting a reference voltage for calibrating the command voltage; And calibrating the command voltage based on a reference voltage applied to the second terminal in a state where the first terminal and the second terminal are connected. As a result, even when there is a variation in the components in the inverter device 100, the voltage command can be automatically made only by connecting the command voltage input terminal 53 that is the first terminal and the analog output terminal 51 that is the second terminal. Can be calibrated. Therefore, the volume adjustment operation becomes unnecessary, and the frequency or torque can be set to a desired value while reducing the burden on the operator.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 整流回路、2 インバータ回路、3 平滑コンデンサ、4 電圧検出器、5 制御端子、6 制御部、7 電圧指令較正部、8 基準電圧印加部、10 交流電源、11,12,13 配線、20 直流母線、21 指令電圧、22 基準電圧、30 モータ、50 配線用端子台、51 アナログ出力端子、52,54 コモン端子、53 指令電圧入力端子、61 電圧指令設定部、62 PWM信号生成部、63 駆動部、100 インバータ装置、101 筐体。 1 rectifier circuit, 2 inverter circuit, 3 smoothing capacitor, 4 voltage detector, 5 control terminal, 6 control unit, 7 voltage command calibration unit, 8 reference voltage application unit, 10 AC power supply, 11, 12, 13 wiring, 20 DC Bus, 21 command voltage, 22 reference voltage, 30 motor, 50 wiring terminal block, 51 analog output terminal, 52, 54 common terminal, 53 command voltage input terminal, 61 voltage command setting unit, 62 PWM signal generation unit, 63 drive Part, 100 inverter device, 101 housing.

Claims (5)

  1.  交流電圧を負荷に印加するインバータ装置であって、
     前記交流電圧を出力するインバータ回路と、
     指令電圧を入力する第1の端子と、
     前記指令電圧に基づき負荷の回転速度およびトルクの少なくとも一方を制御する電圧指令を生成して前記インバータ回路を制御する制御部と、
     前記指令電圧を較正するための基準電圧を出力する第2の端子と、
     前記基準電圧を前記第2の端子へ印加する基準電圧印加部と、
     前記第1の端子と前記第2の端子とを接続する配線と
     を備えることを特徴とするインバータ装置。
    An inverter device for applying an alternating voltage to a load,
    An inverter circuit for outputting the AC voltage;
    A first terminal for inputting a command voltage;
    A control unit for controlling the inverter circuit by generating a voltage command for controlling at least one of the rotational speed and torque of the load based on the command voltage;
    A second terminal for outputting a reference voltage for calibrating the command voltage;
    A reference voltage applying unit for applying the reference voltage to the second terminal;
    An inverter device comprising: a wiring connecting the first terminal and the second terminal.
  2.  前記第1の端子および前記第2の端子が接続された状態で、前記第2の端子に印加された前記基準電圧に基づき、前記指令電圧を較正する電圧指令較正部を備えることを特徴とする請求項1に記載のインバータ装置。 A voltage command calibration unit that calibrates the command voltage based on the reference voltage applied to the second terminal in a state where the first terminal and the second terminal are connected to each other. The inverter device according to claim 1.
  3.  前記第1の端子は、前記負荷であるモータの回転速度を設定する電圧指令を入力する端子であることを特徴とする請求項1に記載のインバータ装置。 2. The inverter device according to claim 1, wherein the first terminal is a terminal for inputting a voltage command for setting a rotation speed of a motor as the load.
  4.  前記第1の端子は、前記負荷であるモータのトルクを設定する電圧指令を入力する端子であることを特徴とする請求項1に記載のインバータ装置。 The inverter device according to claim 1, wherein the first terminal is a terminal for inputting a voltage command for setting a torque of a motor as the load.
  5.  負荷の回転速度およびトルクの少なくとも一方を制御する電圧指令を生成して前記負荷を駆動するインバータ装置の電圧指令の較正方法であって、
     指令電圧を入力する第1の端子と、前記指令電圧を較正するための基準電圧を出力する第2の端子とを接続するステップと、
     前記第1の端子および前記第2の端子が接続された状態で、前記第2の端子に印加された前記基準電圧に基づき、前記指令電圧を較正するステップと
     を含むことを特徴とする電圧指令の較正方法。
    A method for calibrating a voltage command of an inverter device for generating a voltage command for controlling at least one of a rotational speed and a torque of a load and driving the load,
    Connecting a first terminal for inputting a command voltage and a second terminal for outputting a reference voltage for calibrating the command voltage;
    Calibrating the command voltage based on the reference voltage applied to the second terminal in a state where the first terminal and the second terminal are connected to each other. Calibration method.
PCT/JP2016/063763 2016-05-09 2016-05-09 Inverter device and method for calibrating voltage command WO2017195255A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/063763 WO2017195255A1 (en) 2016-05-09 2016-05-09 Inverter device and method for calibrating voltage command
JP2016565520A JPWO2017195255A1 (en) 2016-05-09 2016-05-09 Inverter device and voltage command calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063763 WO2017195255A1 (en) 2016-05-09 2016-05-09 Inverter device and method for calibrating voltage command

Publications (1)

Publication Number Publication Date
WO2017195255A1 true WO2017195255A1 (en) 2017-11-16

Family

ID=60266373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063763 WO2017195255A1 (en) 2016-05-09 2016-05-09 Inverter device and method for calibrating voltage command

Country Status (2)

Country Link
JP (1) JPWO2017195255A1 (en)
WO (1) WO2017195255A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184157A (en) * 1991-07-25 1993-07-23 Mitsubishi Electric Corp Output voltage error correcting unit for invert
JPH1118436A (en) * 1997-06-30 1999-01-22 Matsushita Electric Ind Co Ltd Inverter device and inverter control system device
JP2002233187A (en) * 2001-02-05 2002-08-16 Sanken Electric Co Ltd Apparatus and method for driving ac motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446569A (en) * 1990-06-13 1992-02-17 Meidensha Corp Frequency setter for general-purpose inverter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184157A (en) * 1991-07-25 1993-07-23 Mitsubishi Electric Corp Output voltage error correcting unit for invert
JPH1118436A (en) * 1997-06-30 1999-01-22 Matsushita Electric Ind Co Ltd Inverter device and inverter control system device
JP2002233187A (en) * 2001-02-05 2002-08-16 Sanken Electric Co Ltd Apparatus and method for driving ac motor

Also Published As

Publication number Publication date
JPWO2017195255A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
US20120300519A1 (en) Multi-phase active rectifier
CN111591147B (en) Method for operating at least two pulse inverters connected to a DC power supply system, circuit arrangement and motor vehicle
AU2017336112B2 (en) Control device for power converter
JP5521914B2 (en) Power conversion device and electric power steering device using the same
JP6384316B2 (en) Power converter and control method of power converter
KR20200007249A (en) Power transforming apparatus, compressor including the same and method for controlling the same
JP2006288035A (en) Power conversion system
EP3021479B1 (en) Apparatus for controlling inverter
JP3475727B2 (en) Inverter device and inverter control system device
JP5527386B2 (en) Current source power converter
KR20220041098A (en) Inverter, assembly having inverter and electrical machine, method of operating inverter and computer program
WO2017195255A1 (en) Inverter device and method for calibrating voltage command
WO2016035434A1 (en) Motor drive device
JP2008259380A (en) Controller for ac-ac direct converter
JP2013059246A (en) Apparatus and method for driving motor with initial correction function
WO2019155844A1 (en) Motor control device
WO2003084047A1 (en) Controller for a brushless dc motor
US11218085B2 (en) Power conversion device having an inverter circuit including current limitation circuits and a control circuit controlling same
WO2017145242A1 (en) Converter circuit, inverter circuit, and power conversion device for air conditioner
CN111987974B (en) Rotary electric machine control device
JP3188097B2 (en) Inverter control device
JP2003274666A (en) Inverter device and method for controlling the same
US20240056015A1 (en) Inverter, electric drive, vehicle and method for controlling controllable switches of an inverter and corresponding computer program product
JPH03164071A (en) Control of pulse width modulation inverter
JP5925337B2 (en) Motor drive device, air conditioner, and converter device control method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016565520

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901604

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901604

Country of ref document: EP

Kind code of ref document: A1