WO2017195067A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2017195067A1
WO2017195067A1 PCT/IB2017/052517 IB2017052517W WO2017195067A1 WO 2017195067 A1 WO2017195067 A1 WO 2017195067A1 IB 2017052517 W IB2017052517 W IB 2017052517W WO 2017195067 A1 WO2017195067 A1 WO 2017195067A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transistor
light
insulating layer
display device
Prior art date
Application number
PCT/IB2017/052517
Other languages
French (fr)
Japanese (ja)
Inventor
山崎舜平
久保田大介
高橋圭
岩城裕司
池田寿雄
横山浩平
千田章裕
中野賢
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2017195067A1 publication Critical patent/WO2017195067A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/46Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character is selected from a number of characters arranged one behind the other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Definitions

  • One embodiment of the present invention relates to a display device.
  • one embodiment of the present invention is not limited to the above technical field.
  • Technical fields of one embodiment of the present invention disclosed in this specification and the like include semiconductor devices, display devices, light-emitting devices, power storage devices, memory devices, electronic devices, lighting devices, input devices, input / output devices, and driving methods thereof , Or a method for producing them, can be mentioned as an example.
  • a semiconductor device refers to all devices that can function by utilizing semiconductor characteristics.
  • a transistor, a semiconductor circuit, an arithmetic device, a memory device, or the like is one embodiment of a semiconductor device.
  • an imaging device, an electro-optical device, a power generation device (including a thin film solar cell, an organic thin film solar cell, and the like) and an electronic device may include a semiconductor device.
  • liquid crystal display device including a liquid crystal element as one of display devices.
  • a liquid crystal element for example, an active matrix liquid crystal display device in which pixel electrodes are arranged in a matrix and a transistor is used as a switching element connected to each pixel electrode has attracted attention.
  • Patent Document 1 an active matrix liquid crystal display device using a transistor having a metal oxide as a channel formation region as a switching element connected to each pixel electrode is known.
  • Patent Document 2 an active matrix liquid crystal display device using a transistor having a metal oxide as a channel formation region as a switching element connected to each pixel electrode is known.
  • the transmissive liquid crystal display device uses a backlight such as a cold cathode fluorescent lamp or an LED (Light Emitting Diode), and the light from the backlight transmits the liquid crystal using the optical modulation action of the liquid crystal.
  • a backlight such as a cold cathode fluorescent lamp or an LED (Light Emitting Diode)
  • the light from the backlight transmits the liquid crystal using the optical modulation action of the liquid crystal.
  • a state that is output to the outside and a state that is not output are selected, bright and dark display is performed, and further, they are combined to perform image display.
  • the reflective liquid crystal display device utilizes the optical modulation action of the liquid crystal, and the external light, that is, the incident light is reflected by the pixel electrode and output to the outside of the device, and the incident light is not output to the outside of the device.
  • An image is displayed by selecting a state, displaying bright and dark, and combining them.
  • the reflective liquid crystal display device has an advantage of low power consumption because it does not use a backlight as compared with the transmissive liquid crystal display device.
  • a display device In an electronic device to which a display device is applied, it is required to reduce its power consumption.
  • a device using a battery as a power source such as a mobile phone, a smartphone, a tablet terminal, a smart watch, and a notebook personal computer, the power consumption of the display device occupies a large proportion. It has been.
  • portable electronic devices are required to have high visibility both in an environment with strong external light and in an environment with low external light.
  • the display device when a portable electronic device is dropped or put in a pocket of a pants, the display device may break. Therefore, the display device provided in the electronic device is required to be light and difficult to break.
  • An object of one embodiment of the present invention is to reduce power consumption of a display device. Another object is to improve display quality of a display device. Another object is to display an image with high display quality regardless of the use environment. Another object is to provide a display device that is light and difficult to break. Another object is to provide a display device that can be bent.
  • Another object is to provide a method for manufacturing a display device with high productivity.
  • One embodiment of the present invention includes a reflective liquid crystal element, a light-emitting element, a first transistor, a second transistor, a first insulating layer, a second insulating layer, and a first adhesive layer.
  • a display device The first insulating layer is located between the liquid crystal element and the first transistor. The first transistor is located between the first insulating layer and the first adhesive layer. The second transistor, the light emitting element, and the second insulating layer are located on the opposite side of the first transistor with the first adhesive layer interposed therebetween. The first transistor is electrically connected to the liquid crystal element. The second transistor is electrically connected to the light emitting element. The first transistor is provided on a surface of the first insulating layer on the first adhesive layer side.
  • the liquid crystal element has a function of reflecting light to the side opposite to the first insulating layer side, and the light-emitting element has a function of emitting light to the first adhesive layer side.
  • Another embodiment of the present invention is a reflective liquid crystal element, a light-emitting element, a first transistor, a second transistor, a first insulating layer, a second insulating layer, And an adhesive layer.
  • the first insulating layer is located between the liquid crystal element and the first transistor.
  • the first transistor is located between the first insulating layer and the first adhesive layer.
  • the second transistor and the light emitting element are located between the second insulating layer and the first adhesive layer.
  • the first transistor is electrically connected to the liquid crystal element.
  • the second transistor is electrically connected to the light emitting element.
  • the first transistor is provided on a surface of the first insulating layer on the first adhesive layer side.
  • the second transistor is provided on a surface of the second insulating layer on the first adhesive layer side.
  • the liquid crystal element has a function of reflecting light to the side opposite to the first insulating layer side, and the light-emitting element has a function of emitting light to the first adhesive layer side.
  • the second resin layer on the opposite side of the second insulating layer from the first adhesive layer. Furthermore, it is preferable to have a third resin layer on the opposite side of the liquid crystal element from the first adhesive layer. At this time, it is preferable that the second resin layer and the third resin layer have a region having a thickness of 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the third resin layer preferably has an opening.
  • the light-emitting element preferably has a function of emitting light through the opening.
  • the opening portion preferably has a portion overlapping with the liquid crystal element, and the liquid crystal element preferably has a function of reflecting light through the opening portion.
  • the first substrate, the second substrate, the second adhesive layer, and the third adhesive layer are preferably located between the first substrate and the second insulating layer, and the third adhesive layer is preferably located between the liquid crystal element and the second substrate.
  • the first substrate and the second substrate each contain a resin.
  • Another embodiment of the present invention is a reflective liquid crystal element, a light-emitting element, a first transistor, a second transistor, a first insulating layer, a second insulating layer, And an adhesive layer.
  • the first insulating layer is located between the liquid crystal element and the first transistor.
  • the second insulating layer is located between the first adhesive layer and the second transistor.
  • the first transistor is located between the first insulating layer and the first adhesive layer.
  • the second transistor and the light-emitting element are located on the opposite side of the first transistor with the first adhesive layer interposed therebetween.
  • the first transistor is electrically connected to the liquid crystal element, and the second transistor is electrically connected to the light emitting element.
  • the first transistor is provided on a surface of the first insulating layer on the first adhesive layer side.
  • the second transistor is provided on a surface of the second insulating layer opposite to the first adhesive layer side.
  • the liquid crystal element has a function of reflecting light to the side opposite to the first insulating layer side, and the light-emitting element has a function of emitting light to the first adhesive layer side.
  • the second resin layer and the third resin layer have a region having a thickness of 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the second resin layer preferably has a first opening
  • the third resin layer preferably has a second opening.
  • the light-emitting element preferably has a function of emitting light through the first opening and the second opening.
  • the second opening portion preferably has a portion overlapping with the liquid crystal element, and the liquid crystal element preferably has a function of reflecting light through the second opening portion.
  • the first substrate, the second substrate, the second adhesive layer, and the third adhesive layer it is preferable to include the first substrate, the second substrate, the second adhesive layer, and the third adhesive layer.
  • the second adhesive layer is located between the first substrate and the light emitting element
  • the third adhesive layer is located between the liquid crystal element and the second substrate.
  • the first substrate and the second substrate each contain a resin.
  • a channel is preferably formed in an oxide semiconductor.
  • the liquid crystal element preferably includes a first conductive layer, a second conductive layer, and a liquid crystal.
  • the first conductive layer is electrically connected to one of the source and the drain of the first transistor through an opening provided in the first insulating layer and has a function of reflecting visible light. Is preferred.
  • the liquid crystal is preferably positioned between the first conductive layer and the second conductive layer, and the second conductive layer preferably has a function of transmitting visible light.
  • the liquid crystal element preferably has a third conductive layer.
  • the third conductive layer preferably has a portion in contact with the first conductive layer between the first conductive layer and the liquid crystal and has a function of transmitting visible light.
  • the second conductive layer and the third conductive layer have a portion overlapping with the light-emitting element, and the light-emitting element has a function of emitting light through the third conductive layer and the second conductive layer. It is preferable.
  • the first resin layer located between the first conductive layer and the liquid crystal. At this time, it is preferable that the first resin layer has a region having a thickness of 5 nm to 1 ⁇ m. At this time, the first resin layer preferably has a function as an alignment film.
  • the first transistor preferably includes a first source electrode, a first drain electrode, and a first semiconductor layer.
  • the second transistor preferably includes a second source electrode, a second drain electrode, and a second semiconductor layer.
  • the first source electrode and the first drain electrode are provided in contact with the top surface and the side end portion of the first semiconductor layer, and the second source electrode and the second drain electrode are provided in the second semiconductor layer. It is preferable to be provided in contact with the upper surface and the side edge of the layer.
  • the first semiconductor layer includes a first insulating layer that covers a part of the top surface and the side edge of the first semiconductor layer, and a second insulating layer that covers a part of the top surface and the side edge of the second semiconductor layer. It is preferable. Further, the first source electrode and the first drain electrode are provided on the first insulating layer and electrically connected to the first semiconductor layer through an opening provided in the first insulating layer. The second source electrode and the second drain electrode are provided on the second insulating layer and electrically connected to the second semiconductor layer through an opening provided in the second insulating layer. Preferably it is.
  • the first source electrode and the first drain electrode are provided in contact with the upper surface and the side end portion of the first semiconductor layer, and the second source layer covers the part of the upper surface and the side end portion of the second semiconductor layer.
  • the second source electrode and the second drain electrode are provided on the second insulating layer and are connected to the second semiconductor layer through an opening provided in the second insulating layer. It is preferable that they are electrically connected.
  • the first insulating layer covering a part of the upper surface and the side end portion of the first semiconductor layer is provided, and the first source electrode and the first drain electrode are provided over the first insulating layer,
  • the second source electrode and the second drain electrode are electrically connected to the first semiconductor layer through an opening provided in the first insulating layer, and the second source electrode and the second drain electrode are connected to the upper surface and the side end portion of the second semiconductor layer. It is preferable to be provided in contact with.
  • the first transistor includes a first gate electrode and a second gate electrode, and the first gate electrode and the second gate electrode are provided to face each other with the first semiconductor layer interposed therebetween. It is preferable.
  • the second transistor includes a third gate electrode and a fourth gate electrode, and the third gate electrode and the fourth gate electrode are provided to face each other with the second semiconductor layer interposed therebetween. It is preferable.
  • power consumption of a display device can be reduced.
  • the display quality of the display device can be improved.
  • a display device that is light and difficult to break can be provided.
  • a display device that can be bent can be provided.
  • a method for manufacturing a display device with high productivity can be provided.
  • FIG. 3 shows a configuration example of a display device according to an embodiment.
  • 8A to 8D illustrate a method for manufacturing a display device according to Embodiment.
  • 8A to 8D illustrate a method for manufacturing a display device according to Embodiment.
  • 8A to 8D illustrate a method for manufacturing a display device according to Embodiment.
  • 8A to 8D illustrate a method for manufacturing a display device according to Embodiment.
  • 8A to 8D illustrate a method for manufacturing a display device according to Embodiment.
  • 8A to 8D illustrate a method for manufacturing a display device according to Embodiment.
  • 8A to 8D illustrate a method for manufacturing a display device according to Embodiment.
  • 8A to 8D illustrate a method for manufacturing a display device according to Embodiment.
  • 8A to 8D illustrate a method for manufacturing a display device according to Embodiment.
  • 8A to 8D illustrate a method for manufacturing a display device according to Embodiment.
  • 8A to 8D illustrate a method for manufacturing a display device according to Embodiment.
  • 3 shows a configuration example of a display device according to an embodiment. 3 shows a configuration example of a display device according to an embodiment. 3 shows a configuration example of a display device according to an embodiment.
  • 8A to 8D illustrate a method for manufacturing a display device according to Embodiment.
  • 8A to 8D illustrate a method for manufacturing a display device according to Embodiment.
  • 8A to 8D illustrate a method for manufacturing a display device according to Embodiment.
  • 8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 8A to 8D illustrate a method for manufacturing a display device according to Embodiment.
  • FIG. 8A to 8D illustrate a method for manufacturing a display device according to Embodiment.
  • 3 shows a configuration example of a display device according to an embodiment.
  • 3 shows a configuration example of a display device according to an embodiment.
  • 3 shows a configuration example of a display device according to an embodiment.
  • 3 shows a configuration example of a display device according to an embodiment.
  • 3 shows a configuration example of a display device according to an embodiment.
  • FIG. 10 is a circuit diagram of a display device according to an embodiment.
  • FIG. 6 is a circuit diagram of a display device and a top view of a pixel according to an embodiment. 3 shows a configuration example of a display device according to an embodiment.
  • FIG. 3 shows a configuration example of a display device according to an embodiment.
  • 3 shows a configuration example of a display device according to an embodiment.
  • 3 shows a configuration example of a display device according to an embodiment.
  • 3 shows a configuration example of a display device according to an embodiment.
  • 3 shows a configuration example of a display device according to an embodiment.
  • 3 shows a configuration example of a display device according to an embodiment.
  • 3 shows a configuration example of a display device according to an embodiment.
  • the structural example of the display module which concerns on embodiment.
  • FIG. 8A and 8B illustrate a manufacturing process of a display device according to Example 2.
  • a transistor is a kind of semiconductor element, and can realize amplification of current and voltage, switching operation for controlling conduction or non-conduction, and the like.
  • the transistors in this specification include an IGFET (Insulated Gate Field Effect Transistor) and a thin film transistor (TFT: Thin Film Transistor).
  • the display device of one embodiment of the present invention has a structure in which a reflective liquid crystal element and a light-emitting element are stacked.
  • the reflective liquid crystal element can express gradation by controlling the amount of reflected light.
  • the light emitting element can express gradation by controlling the amount of light emitted.
  • the display device performs display using only reflected light, performs display using only light from the light emitting element, and displays using both reflected light and light from the light emitting element. It can be carried out.
  • the reflective liquid crystal element is provided on the viewing side (display surface side), and the light emitting element is provided on the side opposite to the viewing side.
  • the light-emitting element can emit light from the region where the reflective electrode included in the liquid crystal element is not provided to the viewing side.
  • the display device can be an active matrix display device in which a reflective liquid crystal element and a light-emitting element are electrically connected to transistors.
  • the display device includes a first element layer including a first transistor electrically connected to the light-emitting element, a second element layer including the light-emitting element, and a second transistor electrically connected to the liquid crystal element.
  • the display device can be made extremely light, and the display device can be made difficult to break.
  • the first resin layer and the second resin layer are extremely thin. More specifically, the thickness is preferably 0.1 ⁇ m or more and 3 ⁇ m or less. Therefore, even if it is the structure which laminated
  • the resin layer can be formed as follows, for example. That is, a low-viscosity thermosetting resin material is applied on a support substrate and cured by heat treatment to form a resin layer. Then, a structure is formed on the resin layer. Then, one surface of the resin layer is exposed by peeling between the resin layer and the support substrate.
  • a method for reducing the adhesion is to irradiate a laser beam.
  • a linear laser as the laser beam and scanning it.
  • the process time at the time of enlarging the area of a support substrate can be shortened.
  • the laser light an excimer laser having a wavelength of 308 nm can be suitably used.
  • thermosetting polyimide A typical example of a material that can be used for the resin layer is thermosetting polyimide. It is particularly preferable to use photosensitive polyimide. Since photosensitive polyimide is a material that is suitably used for a planarization film or the like of a display panel, a forming apparatus and a material can be shared. Therefore, no new device or material is required to realize the structure of one embodiment of the present invention.
  • the resin layer can be processed by performing exposure and development processing. For example, an opening can be formed or an unnecessary portion can be removed. Further, by optimizing the exposure method and the exposure conditions, it is possible to form an uneven shape on the surface. For example, a multiple exposure technique or an exposure technique using a halftone mask or a gray tone mask may be used.
  • a non-photosensitive resin material may be used.
  • a method of forming a resist mask or a hard mask on the resin layer to form an opening or an uneven shape can also be used.
  • the resin layer located on the light path from the light emitting element it is preferable to partially remove the resin layer located on the light path from the light emitting element. That is, an opening that overlaps with the light-emitting element is provided in the first resin layer. Thereby, the fall of the color reproducibility accompanying a part of light from a light emitting element being absorbed by the resin layer, and the fall of light extraction efficiency can be suppressed.
  • a recess may be formed in the resin layer so that a portion of the resin layer positioned on the light path from the light emitting element is thinner than other portions. That is, the resin layer may have two portions with different thicknesses, and the thin portion may overlap the light emitting element. Even with this configuration, absorption of light from the light emitting element by the resin layer can be reduced.
  • the resin layer positioned on the viewing side with respect to the fourth element layer.
  • color reproducibility and light extraction efficiency can be further improved.
  • the reflectance of the reflective liquid crystal element can be improved.
  • the following method can be used. That is, the portion that becomes the opening of the resin layer is partially formed thin, and the support substrate and the resin layer are peeled off by the method described above.
  • the resin layer is thinned by performing plasma treatment or the like on the surface from which the resin layer is peeled, an opening can be formed in a thin portion of the resin layer.
  • a light absorption layer is formed over a supporting substrate, a resin layer having an opening is formed over the light absorption layer, and a light-transmitting layer covering the opening is further formed.
  • the light absorption layer is a layer that emits a gas such as hydrogen or oxygen when heated by absorbing light. Therefore, by irradiating light from the support substrate side and releasing the gas from the light absorption layer, the adhesion between the light absorption layer and the support substrate or between the light absorption layer and the light transmitting layer is reduced. , Peeling can occur. Alternatively, the light absorption layer itself can be broken and peeled off.
  • an oxide semiconductor is preferably used as a semiconductor for forming a channel.
  • An oxide semiconductor can achieve a high on-state current and ensure high reliability even when the maximum temperature in the manufacturing process of the transistor is reduced (for example, 400 ° C. or lower, preferably 350 ° C. or lower).
  • high heat resistance is not required as a material used for the resin layer located on the formation surface of the transistor, so that the range of selection of materials can be widened. For example, it can also serve as a resin material used as a planarizing film.
  • LTPS Low Temperature Poly-Silicon
  • the highest temperature required for the manufacturing process of the transistor is higher than that in the case where the oxide semiconductor is used (for example, 500 ° C. or higher, 550 ° C. or higher, or 600 ° C. or higher). Therefore, high heat resistance is required for the resin layer located on the formation surface side of the transistor.
  • the resin layer is also irradiated with laser, and thus the resin layer needs to be formed relatively thick (for example, 10 ⁇ m or more, or 20 ⁇ m or more).
  • an oxide semiconductor has a wide band gap (for example, 2.5 eV or more, or 3.0 eV or more) and has a property of transmitting light. Therefore, in the step of separating the support substrate and the resin layer, even if laser light is irradiated to the oxide semiconductor, it is difficult to absorb, and thus the influence on the electrical characteristics can be suppressed. Therefore, the resin layer can be thinly formed as described above.
  • One embodiment of the present invention is a resin layer that is thinly formed using a low-viscosity photosensitive resin material typified by photosensitive polyimide, and an oxide semiconductor that can realize a transistor with excellent electrical characteristics even at low temperatures. By combining these, a display device with extremely high productivity can be realized.
  • the display device can include a first pixel including a light-emitting element and a first transistor, and a second pixel including a liquid crystal element and a second transistor.
  • a plurality of first pixels and second pixels are arranged in a matrix, respectively, and constitute a display unit.
  • the display device preferably includes a first driving unit that drives the first pixel and a second driving unit that drives the second pixel.
  • the first pixel and the second pixel are arranged in the display area at the same cycle. Furthermore, it is preferable that the first pixel and the second pixel are arranged in a mixed manner in the display region of the display device. Thereby, as will be described later, both the image displayed only with the plurality of first pixels, the image displayed only with the plurality of second pixels, and the plurality of first pixels and the plurality of second pixels. Each of the images displayed in can be displayed in the same display area.
  • the first pixel is composed of, for example, one pixel exhibiting white (W).
  • the second pixel preferably includes sub-pixels that exhibit light of three colors, for example, red (R), green (G), and blue (B).
  • R red
  • G green
  • B blue
  • a subpixel which exhibits white (W) or yellow (Y) light may be included.
  • the first pixel may include, for example, subpixels that emit light of three colors of red (R), green (G), and blue (B), and in addition to this, white (W) or You may have the subpixel which exhibits yellow (Y) light.
  • R red
  • G green
  • B blue
  • W white
  • Y yellow
  • a first mode in which an image is displayed with a first pixel a second mode in which an image is displayed with a second pixel, and an image is displayed with the first pixel and the second pixel.
  • the third mode can be switched.
  • the first mode since the display can be performed using only the reflected light, no light source is required. Therefore, this is a driving mode with extremely low power consumption. For example, it is effective when the illuminance of outside light is sufficiently high and the outside light is white light or light in the vicinity thereof.
  • the first mode is a display mode suitable for displaying character information such as books and documents.
  • the second mode since display can be performed using light from the light source, a vivid display with extremely high color reproducibility can be performed regardless of the illuminance and chromaticity of external light. For example, it is effective when the illuminance of outside light is extremely small, such as at night or in a dark room. Further, when the outside light is dark, the user may feel dazzled when performing bright display. In order to prevent this, it is preferable to perform display with reduced luminance in the second mode. Thereby, in addition to suppressing glare, power consumption can also be reduced.
  • the second mode is a mode suitable for displaying a vivid image or a smooth moving image.
  • display can be performed using both light from the light source and reflected light. Specifically, driving is performed so as to express one color by mixing light emitted by the first pixel and light emitted by the second pixel adjacent to the first pixel. It is possible to suppress power consumption more than in the second mode while displaying a brighter color reproducibility than in the first mode. For example, it is effective when the illuminance of outside light is relatively low, such as under room lighting or in the morning or evening hours, or when the chromaticity of outside light is not white.
  • the first transistor and the second transistor may be transistors having the same configuration, or may be different transistors.
  • a bottom-gate transistor has a gate electrode on the lower side (formation surface side) than the semiconductor layer.
  • a source electrode and a drain electrode are provided in contact with the upper surface and side end portions of the semiconductor layer.
  • a top gate transistor has a gate electrode above the semiconductor layer (on the side opposite to the formation surface).
  • the first source electrode and the first drain electrode are provided over the insulating layer that covers a part of the upper surface and the side end of the semiconductor layer, and the semiconductor layer is provided through the opening provided in the insulating layer. It is electrically connected to.
  • the transistor preferably includes a first gate electrode and a second gate electrode which are provided to face each other with a semiconductor layer interposed therebetween.
  • the reflective electrode of the reflective liquid crystal element also functions as a pixel electrode and is electrically connected to the second transistor.
  • the reflective electrode is characterized in that the surface located on the viewing side is uniformly flat. Further, one of the source and the drain of the second transistor is electrically connected to the back side (the side opposite to the viewing side) of the flat portion of the reflective electrode.
  • an insulating layer is provided so as to cover the reflective electrode, and the second transistor is provided on the surface of the insulating layer opposite to the reflective electrode.
  • the second transistor has a structure in which the reflective electrode is provided on the back surface side (formation surface side) with the insulating layer interposed therebetween.
  • One of the source and the drain of the second transistor is electrically connected to the reflective electrode through an opening provided in the insulating layer.
  • a third resin layer on the viewing side of the reflective electrode.
  • Such a structure can be manufactured by forming the counter electrode and the second transistor on the third resin layer formed on the supporting substrate and peeling at the interface between the supporting substrate and the third resin layer. .
  • the third resin layer is located between the reflective electrode and the liquid crystal, it is preferably used as an alignment film.
  • a top emission type light emitting element that emits light to the side opposite to the surface to be formed can be suitably applied.
  • the first transistor and the light emitting element are stacked in order from the side opposite to the viewing side.
  • the display device of one embodiment of the present invention has a structure in which the first transistor and the second transistor are provided to face each other in the vertical direction. That is, it can be expressed that the direction in which the plurality of films constituting the first transistor are stacked and the direction in which the plurality of films forming the second transistor are stacked are opposite to each other.
  • the display device 10 has a configuration in which an element layer 100a, an element layer 200a, an element layer 100b, and an element layer 200b are stacked in this order.
  • the display device 10 includes a substrate 11 on the back side (the side opposite to the viewing side) and a substrate 12 on the front side (viewing side). Further, the resin layer 101 is provided between the substrate 11 and the element layer 100a, and the resin layer 202 is provided between the substrate 12 and the element layer 200b.
  • the resin layer 101 and the substrate 11 are bonded together by an adhesive layer 51. Further, the resin layer 202 and the substrate 12 are bonded together by the adhesive layer 52.
  • the element layer 100 a includes the transistor 110 on the resin layer 101.
  • the element layer 200 a includes the light-emitting element 120 that is electrically connected to the transistor 110.
  • the element layer 100 b includes the transistor 210.
  • the element layer 200 b includes a liquid crystal element 220 that is electrically connected to the transistor 210.
  • the resin layer 202 is provided with an opening.
  • a region 31 illustrated in FIG. 1 is a region overlapping with the light emitting element 120 and overlapping with an opening of the resin layer 202.
  • the transistor 110 includes a conductive layer 111 functioning as a gate electrode, a part of the insulating layer 132 functioning as a gate insulating layer, a semiconductor layer 112, a conductive layer 113a functioning as one of a source electrode and a drain electrode, and a source electrode Or a conductive layer 113b functioning as the other of the drain electrodes.
  • the semiconductor layer 112 preferably contains an oxide semiconductor.
  • the insulating layer 133 and the insulating layer 134 are provided so as to cover the transistor 110.
  • the insulating layer 134 functions as a planarization layer.
  • the light emitting element 120 has a structure in which a conductive layer 121, an EL layer 122, and a conductive layer 123 are stacked.
  • the conductive layer 121 has a function of reflecting visible light
  • the conductive layer 123 has a function of transmitting visible light. Therefore, the light-emitting element 120 is a top-emission type (also referred to as top-emission type) light-emitting element that emits light to the side opposite to a formation surface.
  • the conductive layer 121 is electrically connected to the conductive layer 113b through an opening provided in the insulating layer 134 and the insulating layer 133.
  • the insulating layer 135 covers an end portion of the conductive layer 121 and has an opening so that a part of the surface of the conductive layer 121 is exposed.
  • the EL layer 122 and the conductive layer 123 are sequentially provided so as to cover the exposed portions of the insulating layer 135 and the conductive layer 121.
  • the light emitting element 120 is sealed with an adhesive layer 151.
  • the element layer 200a and the element layer 100b are bonded to each other with an adhesive layer 151.
  • a stacked structure including the insulating layer 131, the insulating layer 132, the insulating layer 133, the insulating layer 134, and the transistor 110 is referred to as an element layer 100a.
  • a stacked structure including the insulating layer 135 and the light-emitting element 120 is referred to as an element layer 200a.
  • the element layer 200a may include a coloring layer 152 and a light shielding layer 153 which will be described later.
  • an insulating layer 204 On the side opposite to the viewing side of the resin layer 202, an insulating layer 204, a liquid crystal element 220, a resin layer 201, a transistor 210, an insulating layer 231, an insulating layer 232, an insulating layer 233, an insulating layer 234, and the like are provided.
  • the liquid crystal element 220 includes a conductive layer 221a, a conductive layer 221b, a liquid crystal 222, and a conductive layer 223.
  • the liquid crystal 222 is sandwiched between the conductive layer 221b and the conductive layer 223.
  • the conductive layer 221a and the conductive layer 221b are provided in contact with each other and function as pixel electrodes.
  • the conductive layer 221a has a function of reflecting visible light and functions as a reflective electrode.
  • the conductive layer 221b has a function of transmitting visible light. Accordingly, the liquid crystal element 220 is a reflective liquid crystal element.
  • the periphery of the liquid crystal 222 is sealed with an adhesive layer in a region not shown.
  • An alignment film 224 is provided between the conductive layer 223 and the liquid crystal 222.
  • a resin layer 201 is provided between the conductive layer 221 b and the liquid crystal 222. The resin layer 201 functions as an alignment film.
  • An insulating layer 231 is provided to cover the conductive layer 221a.
  • the transistor 210 is formed with a surface of the insulating layer 231 opposite to the conductive layer 221a side as a formation surface.
  • the transistor 210 includes a conductive layer 211 functioning as a gate electrode, a part of the insulating layer 232 functioning as a gate insulating layer, a semiconductor layer 212, a conductive layer 213a functioning as one of a source electrode and a drain electrode, and a source electrode Or a conductive layer 213b functioning as the other of the drain electrodes.
  • the semiconductor layer 212 preferably contains an oxide semiconductor.
  • the insulating layer 233 and the insulating layer 234 are provided so as to cover the transistor 210.
  • the insulating layer 234 functions as a planarization layer.
  • the conductive layer 213b is electrically connected to the conductive layer 221a through an opening provided in the insulating layer 232 and the insulating layer 231.
  • the surface on the viewing side of the conductive layer 221a is flat, so that the portion can also function as part of the liquid crystal element 220, and the aperture ratio can be increased. it can.
  • the resin layer 201 functioning as an alignment film is provided so as to cover the conductive layer 221b.
  • the resin layer 201 has a function of supporting the conductive layer 221b and the like.
  • a conductive layer 223 and an alignment film 224 are stacked on the resin layer 201 side of the resin layer 202.
  • an insulating layer 204 is provided between the resin layer 202 and the conductive layer 223.
  • a coloring layer for coloring the reflected light of the liquid crystal element 220 may be provided between the conductive layer 223 and the substrate 12.
  • a light shielding layer that suppresses color mixture between adjacent pixels may be provided.
  • the insulating layer 204 is provided so as to cover the opening of the resin layer 202. A portion of the insulating layer 204 that overlaps with the opening of the resin layer 202 is provided in contact with the adhesive layer 52.
  • a colored layer 152 and a light shielding layer 153 are provided on the surface of the insulating layer 234 on the substrate 11 side.
  • the colored layer 152 is provided at a position overlapping the light emitting element 120.
  • the light shielding layer 153 has an opening in a portion overlapping with the light emitting element 120.
  • a stacked structure including the insulating layer 231, the insulating layer 232, the insulating layer 233, the insulating layer 234, and the transistor 210 is referred to as an element layer 100b.
  • a stacked structure including the conductive layer 221a, the conductive layer 221b, the resin layer 201, the liquid crystal 222, the alignment film 224, the conductive layer 223, and the insulating layer 204 is referred to as an element layer 200b.
  • the display device 10 includes a portion where the light emitting element 120 does not overlap with the conductive layer 221a functioning as a reflective electrode of the liquid crystal element 220 when viewed from above. Thereby, as shown in FIG. 1, the light emission 21 colored by the colored layer 152 is emitted from the light emitting element 120 to the viewing side. Further, in the liquid crystal element 220, the reflected light 22 in which the external light is reflected by the conductive layer 221a is emitted through the liquid crystal 222.
  • the light emission 21 emitted from the light emitting element 120 is emitted to the viewing side through the opening of the resin layer 202. Therefore, even when the resin layer 202 absorbs a part of visible light, the resin layer 202 does not exist on the optical path of the light emission 21, so that light extraction efficiency and color reproducibility can be improved. .
  • the conductive layer 221b is also disposed in a portion overlapping the light emitting element 120. Since the conductive layer 221b transmits visible light, even if the conductive layer 221b is located on the optical path of the light emission 21, it can be transmitted. By providing the conductive layer 221b in a wider range than the conductive layer 221a, the liquid crystal 222 in a region outside the region where the conductive layer 221a is provided can be aligned by applying an electric field. Therefore, the area of the region where the alignment defect of the liquid crystal 222 occurs can be reduced, and the aperture ratio can be increased.
  • the conductive layer 221b preferably has a transmittance of 60% or more, preferably 70% or more, and more preferably 80% or more over the entire range in the visible light region (for example, a wavelength range of 400 nm to 750 nm).
  • the conductive layer 221b is provided across both ends of the figure, but actually, it is provided in an island shape for each pixel and is electrically insulated between adjacent pixels.
  • the conductive layer 221b may be omitted when the influence of the alignment defects on the aperture ratio is small, such as when the distance between adjacent pixels is sufficiently large or when the area of the conductive layer 221a is sufficiently large. .
  • the conductive layer 121 functioning as a reflective electrode of the light-emitting element 120 is located on the viewer side with respect to the transistor 110. Therefore, the transistor 110 can be placed over the light-emitting element 120, and the degree of integration and the aperture ratio of the pixels can be increased.
  • the conductive layer 221a that functions as a reflective electrode of the liquid crystal element 220 is located on the viewing side with respect to the transistor 210. Therefore, the transistor 210 can be placed over the liquid crystal element 220, so that the degree of integration and the aperture ratio of the pixels can be increased.
  • the display device 10 has a configuration in which a transistor 210 and a transistor 110 are stacked so as to face each other.
  • the transistor 210 and the transistor 110 have a configuration in which the top and bottom are inverted.
  • the substrate 12 preferably functions as a polarizing plate or a circular polarizing plate.
  • a polarizing plate or a circular polarizing plate may be provided outside the substrate 12.
  • a color layer may be provided on the resin layer 202 side to enable color display.
  • the glass substrate etc. may be used for the board
  • the material containing resin it is preferable to use the material containing resin.
  • the display device 10 can be reduced in weight as compared with the case where glass or the like is used even if the thickness is the same.
  • the impact resistance of the display device can be improved, and a display device that is difficult to break can be realized.
  • the substrate 11 is a substrate located on the side opposite to the viewing side, the substrate 11 may not have translucency with respect to visible light. Therefore, a metal material can also be used. Since the metal material has high thermal conductivity and can easily conduct heat to the entire substrate, local temperature rise of the display device 10 can be suppressed.
  • a thin film (an insulating film, a semiconductor film, a conductive film, or the like) included in the display device is formed by a sputtering method, a chemical vapor deposition (CVD) method, a vacuum evaporation method, or a pulse laser deposition (PLD: Pulse Laser Deposition).
  • CVD chemical vapor deposition
  • PLD Pulse Laser Deposition
  • ALD Atomic Layer Deposition
  • the CVD method may be a plasma enhanced chemical vapor deposition (PECVD) method or a thermal CVD method.
  • PECVD plasma enhanced chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • Thin films (insulating films, semiconductor films, conductive films, etc.) that constitute display devices are spin coat, dip, spray coating, ink jet, dispense, screen printing, offset printing, doctor knife, slit coat, roll coat, curtain coat. It can be formed by a method such as knife coating.
  • the thin film constituting the display device when processing the thin film constituting the display device, it can be processed using a photolithography method or the like.
  • an island-shaped thin film may be formed by a film formation method using a shielding mask.
  • the thin film may be processed by a nanoimprint method, a sand blast method, a lift-off method, or the like.
  • the photolithography method there are the following two methods, for example. First, a photosensitive resist material is applied onto a thin film to be processed, exposed through a photomask, developed to form a resist mask, the thin film is processed by etching or the like, and the resist mask is formed. It is a method of removing. The other is a method in which a thin film having photosensitivity is formed and then exposed and developed to process the thin film into a desired shape.
  • light used for exposure can be, for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or light obtained by mixing these.
  • ultraviolet light, KrF laser light, ArF laser light, or the like can be used.
  • exposure may be performed by an immersion exposure technique.
  • extreme ultraviolet light (EUV: Extreme-violet) or X-rays may be used as light used for exposure.
  • an electron beam can be used instead of the light used for exposure. It is preferable to use extreme ultraviolet light, X-rays, or an electron beam because extremely fine processing is possible. Note that a photomask is not required when exposure is performed by scanning a beam such as light or an electron beam.
  • etching the thin film For etching the thin film, a dry etching method, a wet etching method, a sand blasting method, or the like can be used.
  • the support substrate 61 is prepared.
  • a material that is rigid to such an extent that it can be easily transported and that is heat resistant to the temperature required for the manufacturing process can be used.
  • materials such as glass, quartz, ceramic, sapphire, organic resin, semiconductor, metal, or alloy can be used.
  • the glass for example, alkali-free glass, barium borosilicate glass, alumino borosilicate glass, or the like can be used.
  • a material to be the resin layer 101 is applied on the support substrate 61.
  • the application is preferably performed by spin coating because a thin resin layer 101 can be uniformly formed on a large substrate.
  • coating methods such as dip, spray coating, ink jet, dispensing, screen printing, offset printing, doctor knife, slit coating, roll coating, curtain coating, knife coating, etc. may be used.
  • the material has a polymerizable monomer that exhibits thermosetting (also referred to as thermopolymerization) in which polymerization proceeds by heat. Furthermore, the material preferably has photosensitivity. Moreover, it is preferable that the said material contains the solvent for adjusting a viscosity.
  • the material preferably contains a polymerizable monomer that becomes a polyimide resin, an acrylic resin, an epoxy resin, a polyamide resin, a polyimide amide resin, a siloxane resin, a benzocyclobutene resin, or a phenol resin after polymerization. That is, the formed resin layer 101 includes these resin materials.
  • a polymerizable monomer having an imide bond it is preferable to use a resin typified by a polyimide resin for the resin layer 101 because heat resistance and weather resistance can be improved.
  • the viscosity of the material used for coating is 5 cP or more and less than 500 cP, preferably the viscosity is 5 cP or more and less than 100 cP, more preferably 10 cP or more and 50 cP or less.
  • the lower the viscosity of the material the easier it is to apply.
  • the lower the viscosity of the material the more air bubbles can be prevented and the better the film can be formed.
  • the lower the viscosity of the material the thinner and more uniformly it can be applied, so that a thinner resin layer 101 can be formed.
  • a part can be removed by a photolithography method. For example, after applying the material, heat treatment for removing the solvent (also referred to as pre-bake treatment) is performed, and then exposure is performed. Subsequently, unnecessary portions can be removed by performing development processing.
  • pre-bake treatment heat treatment for removing the solvent
  • a method for forming the resin layer 101 having the opening will be described.
  • a photosensitive material is applied to form a thin film, and a heat treatment (pre-bake treatment) for removing the solvent and the like is performed.
  • a heat treatment pre-bake treatment
  • the material is exposed using a photomask and developed, whereby the resin layer 101 having an opening or a recess can be formed.
  • the resin layer 101 is formed by performing a heat treatment (post-bake treatment) for polymerizing the applied material.
  • the heating is preferably performed at a temperature higher than the maximum temperature required for a manufacturing process of the transistor 110 later.
  • the resin layer 101 by heating at such a temperature with the surface exposed, the gas that can be desorbed from the resin layer 101 can be removed, so that the gas is desorbed during the manufacturing process of the transistor 110. Can be suppressed.
  • the thickness of the resin layer 101 is preferably 0.01 ⁇ m or more and less than 10 ⁇ m, more preferably 0.1 ⁇ m or more and 3 ⁇ m or less, and further preferably 0.5 ⁇ m or more and 1 ⁇ m or less.
  • the thermal expansion coefficient of the resin layer 101 is preferably 0.1 ppm / ° C. or more and 20 ppm / ° C. or less, and more preferably 0.1 ppm / ° C. or more and 10 ppm / ° C. or less. As the thermal expansion coefficient of the resin layer 101 is lower, the transistor or the like can be prevented from being damaged by the stress accompanying expansion or contraction due to heating.
  • the resin layer 101 is not required to have high heat resistance because it can be formed at a low temperature. Therefore, the cost of the material can be reduced.
  • the heat resistance of the resin layer 101 and the like can be evaluated by, for example, a weight reduction rate by heating, specifically, a 5% weight reduction temperature.
  • the 5% weight reduction temperature of the resin layer 101 or the like can be set to 450 ° C. or lower, preferably 400 ° C. or lower, more preferably lower than 400 ° C., and still more preferably lower than 350 ° C.
  • the maximum temperature in the formation process of the transistor 110 and the like be 350 ° C. or lower.
  • an opening in the resin layer 101 By providing an opening in the resin layer 101 by the above method, the following configuration can be realized. For example, by disposing the conductive layer so as to cover the opening, an electrode partially exposed on the back surface side (also referred to as a back electrode or a through electrode) can be formed after the peeling step described later.
  • the electrode can also be used as an external connection terminal. Further, for example, by removing the resin layer 101 at a position overlapping the marker portion for bonding two support substrates and the like, the alignment accuracy can be increased.
  • the insulating layer 131 can be used as a barrier layer that prevents impurities contained in the resin layer 101 from diffusing into transistors and light-emitting elements to be formed later. Therefore, it is preferable to use a material having a high barrier property.
  • an inorganic insulating material such as a silicon nitride film, a silicon oxynitride film, a silicon oxide film, a silicon nitride oxide film, an aluminum oxide film, or an aluminum nitride film can be used.
  • an inorganic insulating material such as a silicon nitride film, a silicon oxynitride film, a silicon oxide film, a silicon nitride oxide film, an aluminum oxide film, or an aluminum nitride film can be used.
  • two or more of the above insulating films may be stacked.
  • a stacked film of a silicon nitride film and a silicon oxide film is preferably used from the resin layer 101 side.
  • the insulating layer 131 preferably covers the unevenness.
  • the insulating layer 131 may function as a planarization layer that planarizes the unevenness.
  • the insulating layer 131 is preferably formed using a stack of an organic insulating material and an inorganic insulating material.
  • Organic resins such as epoxy resin, acrylic resin, silicone resin, phenol resin, polyimide resin, imide resin, PVC (polyvinyl chloride) resin, PVB (polyvinyl butyral) resin, EVA (ethylene vinyl acetate) resin, etc. Can be used.
  • the insulating layer 131 is preferably formed at a temperature of, for example, room temperature to 400 ° C., preferably 100 ° C. to 350 ° C., more preferably 150 ° C. to 300 ° C.
  • the transistor 110 is formed over the insulating layer 131.
  • the transistor 110 an example in the case of manufacturing a bottom-gate transistor is shown.
  • a conductive layer 111 is formed over the insulating layer 131.
  • the conductive layer 111 can be formed by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask.
  • an insulating layer 132 is formed.
  • an inorganic insulating film that can be used for the insulating layer 131 can be used.
  • the semiconductor layer 112 is formed.
  • the semiconductor layer 112 can be formed by forming a semiconductor film, forming a resist mask, etching the semiconductor film, and then removing the resist mask.
  • the semiconductor film is formed at a substrate temperature during film formation of room temperature to 300 ° C., preferably room temperature to 220 ° C., more preferably room temperature to 200 ° C., more preferably room temperature to 170 ° C.
  • room temperature indicates that the substrate is not intentionally heated.
  • the room temperature refers to a temperature range of 10 ° C. to 30 ° C., for example, and is typically 25 ° C.
  • an oxide semiconductor is preferably used.
  • an oxide semiconductor having a larger band gap than silicon is preferably used. It is preferable to use a semiconductor material with a wider band gap and lower carrier density than silicon because current in an off state of the transistor can be reduced.
  • the oxide semiconductor a material having a band gap of 2.5 eV or more, preferably 2.8 eV or more, more preferably 3.0 eV or more is preferably used.
  • the light is transmitted through the semiconductor film in irradiation with light such as laser light in a peeling step which will be described later, so that adverse effects on the electrical characteristics of the transistor are less likely to occur.
  • the semiconductor film used for one embodiment of the present invention is preferably formed by a sputtering method in an atmosphere containing one or both of an inert gas (eg, Ar) and an oxygen gas.
  • an inert gas eg, Ar
  • the substrate temperature during film formation is preferably from room temperature to 200 ° C., preferably from room temperature to 170 ° C.
  • the substrate temperature during film formation is preferably from room temperature to 200 ° C., preferably from room temperature to 170 ° C.
  • By increasing the temperature of the substrate more crystal parts having orientation are formed, and a semiconductor film having excellent electrical stability can be formed.
  • a transistor with excellent electrical stability can be realized.
  • by forming the film at a low substrate temperature or without intentional heating a semiconductor film with a low carrier ratio and a high carrier mobility can be formed. By using such a semiconductor film, a transistor exhibiting high field effect mobility can be realized.
  • the flow rate ratio of oxygen during film formation is 0% to less than 100%, preferably 0% to 50%, more preferably 0% to 33%, and still more preferably 0% to 15%. % Or less is preferable.
  • oxygen partial pressure oxygen partial pressure
  • a semiconductor film with high carrier mobility can be formed, and a transistor exhibiting higher field-effect mobility can be realized.
  • increasing the flow ratio of oxygen a semiconductor film with high crystallinity can be formed, and a semiconductor film with excellent electrical stability can be obtained.
  • An oxide target that can be used for forming a semiconductor film is not limited to an In—Ga—Zn-based oxide.
  • an In—M—Zn-based oxide M is Al, Y, or Sn). Can be applied.
  • a semiconductor film including a crystal part which is a semiconductor film
  • a sputtering target including a polycrystalline oxide having a plurality of crystal grains the sputtering target not including a polycrystalline oxide is used.
  • the sputtering target not including a polycrystalline oxide is used.
  • the crystal part having orientation in the thickness direction of the film also referred to as the film surface direction, the film formation surface, or the direction perpendicular to the film surface
  • a transistor using a semiconductor film in which oriented crystal parts are mixed has characteristics such as high stability of electric characteristics and easy miniaturization of a channel length.
  • a transistor to which a semiconductor film including only crystal parts having no orientation is applied can increase field effect mobility. Note that as described later, by reducing oxygen vacancies in the oxide semiconductor, a transistor having both high field-effect mobility and high stability of electric characteristics can be realized.
  • the heat treatment at a high temperature and the laser crystallization treatment that are necessary for LTPS are unnecessary, and the semiconductor layer 112 can be formed at an extremely low temperature. Therefore, the resin layer 101 can be formed thin.
  • a conductive layer 113a and a conductive layer 113b are formed.
  • the conductive layers 113a and 113b can be formed by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask.
  • part of the semiconductor layer 112 that is not covered with the resist mask may be thinned by etching. It is preferable to use an oxide semiconductor film including a crystal part having orientation as the semiconductor layer 112 because this thinning can be suppressed.
  • the transistor 110 can be manufactured.
  • the transistor 110 is a transistor including an oxide semiconductor in the semiconductor layer 112 in which a channel is formed.
  • part of the conductive layer 111 functions as a gate
  • part of the insulating layer 132 functions as a gate insulating layer
  • the conductive layers 113a and 113b each function as either a source or a drain. To do.
  • the insulating layer 133 can be formed by a method similar to that of the insulating layer 132.
  • the insulating layer 133 is preferably formed at a temperature of, for example, room temperature to 400 ° C., preferably 100 ° C. to 350 ° C., more preferably 150 ° C. to 300 ° C. The higher the temperature, the denser the barrier film can be.
  • an oxide insulating film such as a silicon oxide film or a silicon oxynitride film formed at a low temperature as described above in an atmosphere containing oxygen is preferably used.
  • an insulating film that hardly diffuses and transmits oxygen such as a silicon nitride film is preferably stacked over the silicon oxide or silicon oxynitride film.
  • An oxide insulating film formed at a low temperature in an atmosphere containing oxygen can be an insulating film from which a large amount of oxygen is easily released by heating.
  • Oxygen can be supplied to the semiconductor layer 112 by performing heat treatment in a state where such an oxide insulating film that emits oxygen and an insulating film that hardly diffuses and transmits oxygen are stacked. As a result, oxygen vacancies in the semiconductor layer 112 and defects at the interface between the semiconductor layer 112 and the insulating layer 133 can be repaired, and the defect level can be reduced. Thereby, a highly reliable semiconductor device can be realized.
  • the transistor 110 and the insulating layer 133 covering the transistor 110 can be formed over the flexible resin layer 101.
  • a flexible device having no display element can be manufactured by separating the resin layer 101 and the support substrate 61 using a method described later.
  • a flexible device including a semiconductor circuit can be manufactured by forming a transistor 110, a capacitor, a resistor, a wiring, and the like in addition to the transistor 110.
  • the insulating layer 134 is a layer having a formation surface of a display element to be formed later, and thus is preferably a layer that functions as a planarization layer.
  • an organic insulating film or an inorganic insulating film that can be used for the insulating layer 131 can be used.
  • the insulating layer 134 is preferably made of a resin material having photosensitivity and thermosetting. In particular, it is preferable to use the same material for the insulating layer 134 and the resin layer 101. Thereby, it is possible to share the materials for the insulating layer 134 and the resin layer 101 and the apparatus for forming them.
  • the insulating layer 134 is preferably 0.01 ⁇ m or more and less than 10 ⁇ m, more preferably 0.1 ⁇ m or more and 3 ⁇ m or less, and further preferably 0.5 ⁇ m or more and 1 ⁇ m or less. preferable. By using a low-viscosity solution, it becomes easy to form the insulating layer 134 thinly and uniformly.
  • the conductive layer 121 is formed. Part of the conductive layer 121 functions as a pixel electrode.
  • the conductive layer 121 can be formed by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask.
  • an insulating layer 135 covering the end portion of the conductive layer 121 is formed.
  • an organic insulating film or an inorganic insulating film that can be used for the insulating layer 131 can be used.
  • the insulating layer 135 is preferably made of a resin material having photosensitivity and thermosetting properties.
  • the same material is preferably used for the insulating layer 135 and the resin layer 101. Thereby, it is possible to share the materials for the insulating layer 135 and the resin layer 101 and the apparatus for forming them.
  • the insulating layer 135 is preferably 0.01 ⁇ m or more and less than 10 ⁇ m, more preferably 0.1 ⁇ m or more and 3 ⁇ m or less, and further preferably 0.5 ⁇ m or more and 1 ⁇ m or less. preferable. By using a low-viscosity solution, it becomes easy to form the insulating layer 135 thinly and uniformly.
  • an EL layer 122 and a conductive layer 123 are formed.
  • the EL layer 122 can be formed by a method such as a vapor deposition method, a coating method, a printing method, or a discharge method. In the case where the EL layer 122 is separately formed for each pixel, the EL layer 122 can be formed by an evaporation method using a shadow mask such as a metal mask or an inkjet method. In the case where the EL layer 122 is not formed for each pixel, an evaporation method that does not use a metal mask can be used. Here, an example in which a metal mask is not used for vapor deposition is shown.
  • the conductive layer 123 can be formed using a vapor deposition method, a sputtering method, or the like.
  • the light emitting element 120 can be formed as described above.
  • the light-emitting element 120 has a structure in which a conductive layer 121 partly functioning as a pixel electrode, an EL layer 122, and a conductive layer 123 partly functioning as a common electrode are stacked.
  • an insulating layer functioning as a barrier layer against impurities such as water may be formed so as to cover the conductive layer 123.
  • an inorganic insulating film for the insulating layer, for example, a film forming method such as a sputtering method, a plasma CVD method, an ALD method, or an evaporation method can be suitably used. Further, in order to prevent the light emitting element 120 from being damaged when the inorganic insulating film is formed, between the inorganic insulating film and the light emitting element 120, specifically, between the inorganic insulating film and the conductive layer 123, It is preferable to form an organic insulating film. At this time, the organic insulating film may be thin (for example, 100 nm or less), and may be formed using, for example, an evaporation method.
  • the element layer 100a and the element layer 200a can be formed.
  • the element layer 100a and the element layer 200a are supported by the support substrate 61.
  • a support substrate 63 is prepared, and a resin layer 201 is formed over the support substrate 63 (FIG. 3A).
  • the description of the support substrate 61 can be used for the support substrate 63.
  • the same method as that for the resin layer 101 can be used.
  • an insulating layer functioning as a barrier film may be formed over the resin layer 201.
  • the description of the insulating layer 131 can be referred to for a method and a material for forming the insulating layer.
  • a resist mask is formed, and after the conductive film is etched, the resist mask is removed to form the conductive layer 221b. Subsequently, after forming a conductive film to be the conductive layer 221a, a resist mask is formed. After the conductive film is etched, the resist mask is removed to form the conductive layer 221a.
  • a conductive film to be the conductive layer 221b and a conductive film to be the conductive layer 221a are successively formed, and then the conductive film to be the conductive layer 221a is processed, and then the conductive layer to be the conductive layer 221b.
  • the film may be processed.
  • the resist mask may be individually formed and processed, but an exposure technique using a multi-tone mask such as a halftone mask or a gray-tone mask, or multiple exposure using two or more photomasks. The use of technology is preferable because the number of steps can be reduced.
  • an insulating layer 231 is formed so as to cover the conductive layer 221a, the conductive layer 221b, and the resin layer 201 (FIG. 3C).
  • the description of the insulating layer 131 can be used for a method and a material for forming the insulating layer 231.
  • Transistor 210 is formed over the insulating layer 231.
  • the conductive layer 211 is formed over the insulating layer 232, the insulating layer 232 is formed so as to cover the conductive layer 211 and the insulating layer 231, and the semiconductor layer 212 is formed over the insulating layer 232.
  • the conductive layer 211, the insulating layer 232, and the semiconductor layer 212 can be formed by a method similar to that of the conductive layer 111, the insulating layer 132, or the semiconductor layer 112, respectively.
  • a conductive layer 213a and a conductive layer 213b are formed.
  • the conductive layers 213a and 213b can be formed by a method similar to that of the conductive layers 113a and 113b.
  • the conductive layer 113b is formed so as to fill the openings of the insulating layer 231 and the insulating layer 232, whereby the conductive layer 113b and the conductive layer 221a are electrically connected.
  • the transistor 210 can be formed.
  • the transistor 210 is a transistor including an oxide semiconductor in the semiconductor layer 212 in which a channel is formed.
  • part of the conductive layer 211 functions as a gate
  • part of the insulating layer 232 functions as a gate insulating layer
  • the conductive layers 213a and 213b each function as either a source or a drain. To do.
  • an insulating layer 233 and an insulating layer 234 are formed in this order so as to cover the transistor 210 (FIG. 3E).
  • the insulating layer 233 and the insulating layer 234 can be formed by a method similar to that of the insulating layer 133 or the insulating layer 134, respectively.
  • the element layer 100b can be formed.
  • the element layer 100b is supported by the support substrate 63.
  • a metal material or a resin material can be used for the light shielding layer 153.
  • a metal material after forming a conductive film, it can be formed by removing unnecessary portions using a photolithography method or the like.
  • a photosensitive resin material containing a metal material, a pigment or a dye when used, it can be formed by a photolithography method or the like.
  • the colored layer 152 can be processed into an island shape by a photolithography method or the like by using a photosensitive material.
  • the light shielding layer 153 has an opening that overlaps with the colored layer 152.
  • the light-blocking layer 153 is preferably provided so as to cover the transistor 210.
  • the light-blocking layer 153 can suppress external light and light from the light-emitting element 120 from reaching the semiconductor layer 212, which can improve reliability. it can.
  • the support substrate 61 and the support substrate 63 are bonded using the adhesive layer 151 so that the element layer 100a and the element layer 100b face each other. Then, the adhesive layer 151 is cured. Thereby, the light emitting element 120 can be sealed with the adhesive layer 151.
  • the adhesive layer 151 is preferably made of a curable material.
  • a resin that exhibits photocurability, a resin that exhibits reaction curability, a resin that exhibits thermosetting, or the like can be used.
  • the light from the light emitting element 120 may be blocked by the light shielding member such as the element layer 100b or the light shielding layer 153. Therefore, it is preferable that alignment markers are formed on the support substrate 63 and the support substrate 61, respectively.
  • laser light can be preferably used.
  • a flash lamp or the like may be used as long as the same energy as that of the laser beam can be irradiated.
  • the light 70 is preferably light having a wavelength that is at least partially transmitted through the support substrate 61 and absorbed by the resin layer 101.
  • the wavelength of the light 70 it is preferable to use light in a wavelength region from visible light to ultraviolet light.
  • light having a wavelength of 200 nm to 400 nm preferably light having a wavelength of 250 nm to 350 nm is preferably used.
  • an excimer laser having a wavelength of 308 nm because the productivity is excellent. Since the excimer laser is also used for laser crystallization in LTPS, an existing LTPS production line device can be used, and new equipment investment is not required, which is preferable.
  • a solid-state UV laser such as a UV laser having a wavelength of 355 nm, which is the third harmonic of the Nd: YAG laser
  • a CW (continuous wave) laser or a pulse laser may be used as the laser.
  • a short-time pulse laser such as nanosecond, picosecond, or femtosecond, or a pulse laser longer than that (for example, several hundred Hz or less) can be used.
  • the light 70 is scanned by moving the support substrate 61 and the light source relatively, and the light 70 is irradiated over a region to be peeled off.
  • the entire resin layer 101 can be peeled off, and there is no need to divide the outer peripheral portion of the support substrate 61 by scribe or the like in a subsequent separation step.
  • the region remains highly adhesive. Therefore, the resin layer 101 and the support substrate 61 are Is preferable because it can be prevented from separating.
  • the vicinity of the surface of the resin layer 101 on the side of the support substrate 61 or a part of the inside of the resin layer 101 is modified, the adhesion between the support substrate 61 and the resin layer 101 is lowered, and peeling easily It can be in a possible state.
  • Separation can be performed by applying a pulling force to the support substrate 61 in the vertical direction while the support substrate 63 is fixed to the stage.
  • a part of the upper surface of the support substrate 61 can be adsorbed and pulled upward to be peeled off.
  • the stage may have any configuration as long as the support substrate 63 can be fixed.
  • the stage may have an adsorption mechanism that can perform vacuum adsorption, electrostatic adsorption, or the like, or a mechanism that physically holds the support substrate 63. You may do it.
  • the support substrate 61 may be separated by applying a pulling force to the support substrate 63 in a vertical direction while the support substrate 61 is fixed to the stage.
  • the separation may be performed by pressing a drum-like member having adhesiveness on the surface against the upper surface of the support substrate 61 or the support substrate 63 and rotating the member. At this time, the stage may be moved in the peeling direction.
  • a notch portion may be formed in a part of the portion irradiated with the light to the resin layer 101 to trigger peeling.
  • the notch can be formed, for example, by using a sharp blade or a needle-like member, or by simultaneously cutting the support substrate 61 and the resin layer 101 by scribing.
  • FIG. 4C shows a case where the resin layer 101 is broken inside the resin layer 101 and the resin layer 101a which is a part of the resin layer 101 remains on the support substrate 61 side.
  • a part of the resin layer 101 may remain on the support substrate 61 side in the same manner. Note that in the case of peeling at the interface between the support substrate 61 and the resin layer 101, a part of the resin layer 101 may not remain on the support substrate 61 side.
  • the thickness of the resin layer 101 remaining on the support substrate 61 side can be, for example, about 100 nm or less, specifically about 40 nm or more and 70 nm or less.
  • the support substrate 61 can be reused by removing the remaining resin layer 101a.
  • the remaining resin layer 101a can be removed by ashing, fuming nitric acid, or the like.
  • the description of the adhesive layer 151 can be used for the adhesive layer 51.
  • the display device can be reduced in weight as compared with the case where glass or the like is used even if the thickness is the same.
  • the impact resistance of the display device can be improved, and a display device that is difficult to break can be realized.
  • the substrate 11 is a substrate located on the side opposite to the viewing side, the substrate 11 may not have translucency with respect to visible light. Therefore, a metal material can also be used. Since the metal material has high thermal conductivity and can easily conduct heat to the entire substrate, local temperature rise of the display device can be suppressed.
  • FIG. 5C shows an example in which the resin layer 201 is broken inside the resin layer 201 and the resin layer 201a which is a part of the resin layer 201 remains on the support substrate 63 side.
  • the thickness of the resin layer 201 after thinning can be made thinner than the resin layer 101, for example. More specifically, for example, it is preferably 1 nm or more and less than 3 ⁇ m, preferably 5 nm or more and 1 ⁇ m or less, more preferably 10 nm or more and 200 nm or less.
  • the thinning may be performed by any method that can etch the resin layer 201, and plasma treatment, dry etching, wet etching, or the like can be used.
  • the dry etching method is particularly preferable because of high uniformity.
  • the resin layer 201 contains an organic substance, it is particularly preferable to use plasma treatment (also referred to as ashing treatment) in an atmosphere containing oxygen.
  • plasma treatment also referred to as ashing treatment
  • a method may be used in which the material used for forming the thin film to be the resin layer 201 is sufficiently diluted with a solvent to reduce the viscosity, and the thinning of the resin layer 201 is not performed to reduce the thickness.
  • FIG. 6A shows a state in which a part of the upper portion of the resin layer 201 is etched and thinned by irradiating the upper surface of the resin layer 201 with plasma 80.
  • FIG. 6B shows a state during the rubbing process. As shown in FIG. 6B, in a state where the rotating rubbing roll 85 is pressed against the resin layer 201, the substrate 11 is slid as shown by the one-dot chain arrow in the figure to Uniaxial orientation processing can be performed.
  • the flatness of the surface may be lowered when the resin layer 201 is thinned.
  • a resin or the like that becomes an alignment film may be formed. Then, a rubbing treatment can be performed on the resin or the like to form an alignment film.
  • the substrate 11 side is fix the substrate 11 side to another support substrate in order to facilitate conveyance in the steps after the substrate 11 is bonded.
  • the substrate 11 and the supporting substrate can be fixed with an adhesive material, a double-sided tape, a silicone sheet, or a water-soluble adhesive.
  • the substrate 11 side is also fixed to another support substrate after the bonding step of the support substrate 64 described later.
  • the support substrate 64 is prepared.
  • the description of the support substrate 61 can be used for the support substrate 64.
  • the light absorption layer 103 is a layer that releases hydrogen, oxygen, or the like by absorbing the light 70 and generating heat in a subsequent irradiation process of the light 70.
  • a hydrogenated amorphous silicon (a-Si: H) film from which hydrogen is released by heating can be used as the light absorption layer 103.
  • the hydrogenated amorphous silicon film can be formed by, for example, a plasma CVD method including SiH 4 in a film forming gas. Further, in order to further include hydrogen, heat treatment may be performed in an atmosphere containing hydrogen after film formation.
  • an oxide film from which oxygen is released by heating can be used as the light absorption layer 103.
  • an oxide semiconductor film or an oxide conductor film is preferable because it has a narrower band gap and easily absorbs light than an insulating film such as a silicon oxide film.
  • the oxide conductor film can be formed by increasing the defect level or the impurity level of the oxide semiconductor film.
  • the above-described method for forming the semiconductor layer 112 and materials that can be used for a semiconductor layer described later can be used.
  • the oxide film can be formed by a plasma CVD method, a sputtering method, or the like in an atmosphere containing oxygen, for example.
  • an oxide semiconductor film is used, it is preferably formed by a sputtering method in an atmosphere containing oxygen.
  • heat treatment may be performed in an atmosphere containing oxygen after film formation.
  • an oxide insulating film may be used as the oxide film that can be used for the light absorption layer 103.
  • a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, a silicon oxynitride film, or the like can be used.
  • such an oxide insulating film is formed at a low temperature (for example, 250 ° C. or lower, preferably 220 ° C. or lower) in an oxygen-containing atmosphere, whereby an oxide insulating film containing excess oxygen is obtained.
  • a low temperature for example, 250 ° C. or lower, preferably 220 ° C. or lower
  • an oxygen-containing atmosphere for example, a sputtering method or a plasma CVD method can be used.
  • the resin layer 202 is formed by first applying a photosensitive material on the light absorption layer 103 to form a thin film, and performing a pre-bake treatment. Subsequently, the material is exposed using a photomask, and development processing is performed, whereby the resin layer 202 having an opening can be formed. Thereafter, a post-bake treatment is performed to sufficiently polymerize the material, and the gas in the film is removed.
  • an insulating layer 204 is formed so as to cover the resin layer 202 and the opening of the resin layer 202 (FIG. 7C). Part of the insulating layer 204 is provided in contact with the light absorption layer 103.
  • the insulating layer 204 can be used as a barrier layer that prevents impurities contained in the resin layer 202 from diffusing into a transistor, a liquid crystal element, or the like to be formed later. Therefore, it is preferable to use a material having a high barrier property.
  • the description of the insulating layer 131 can be used.
  • a conductive layer 223 is formed over the insulating layer 204.
  • the conductive layer 223 can be formed using a material that transmits visible light.
  • the conductive layer 223 can be formed by forming a conductive film. Note that the conductive layer 223 may be formed by a method such as a sputtering method using a shadow mask such as a metal mask so that the conductive layer 223 is not provided on the outer peripheral portion of the resin layer 202. Alternatively, unnecessary portions may be removed by etching by a photolithography method or the like after the conductive film is formed.
  • an alignment film 224 is formed over the conductive layer 223 (FIG. 7D).
  • the alignment film 224 can be formed by performing a rubbing process after forming a thin film of resin or the like.
  • the resin layer 201 and the resin layer 202 are bonded to each other at an outer peripheral portion with an adhesive layer (not shown).
  • an adhesive layer (not shown) for bonding them is formed on one or both of the resin layer 201 and the resin layer 202.
  • the adhesive layer is formed so as to surround a region where the pixels are arranged.
  • the adhesive layer can be formed by, for example, a screen printing method or a dispensing method.
  • a thermosetting resin, an ultraviolet curable resin, or the like can be used as the adhesive layer.
  • a resin that is cured by applying heat after being temporarily cured by ultraviolet rays may be used.
  • a resin having both ultraviolet curable properties and thermosetting properties may be used.
  • the liquid crystal 222 is dropped onto a region surrounded by the adhesive layer by a dispensing method or the like. Subsequently, the substrate 11 and the support substrate 64 are bonded so as to sandwich the liquid crystal 222, and the adhesive layer is cured. Bonding is preferably performed in a reduced-pressure atmosphere because air bubbles and the like can be prevented from being mixed between the substrate 11 and the support substrate 64.
  • the liquid crystal 222 may be dropped, granular gap spacers may be scattered on the area where the pixels are arranged or outside the area, or the liquid crystal 222 including the gap spacer may be dropped.
  • the liquid crystal 222 may be injected from a gap provided in the adhesive layer in a reduced pressure atmosphere after the substrate 11 and the support substrate 64 are bonded to each other.
  • the liquid crystal element 220 can be formed, and at the same time, the element layer 200b can be formed.
  • the support substrate 64 and the light absorption layer 103 are provided on the display surface side.
  • the light absorption layer 103 is irradiated with light 70 from the support substrate 64 side through the support substrate 64.
  • the irradiation method of the light 70 said description can be used.
  • the light 70 light having a wavelength that is at least partially transmitted through the support substrate 61 and absorbed by the light absorption layer 103 is selected and used.
  • the light absorption layer 103 is heated by the irradiation of the light 70, and hydrogen, oxygen, or the like is released from the light absorption layer 103.
  • the hydrogen or oxygen released at this time is released as a gas.
  • the released gas stays in the vicinity of the interface between the light absorption layer 103 and the resin layer 202 or in the vicinity of the interface between the light absorption layer 103 and the support substrate 64, and a force for peeling them off is generated.
  • the adhesiveness between the light absorption layer 103 and the resin layer 202 or the adhesiveness between the light absorption layer 103 and the support substrate 64 is lowered, so that it can be easily peeled off.
  • part of the gas released from the light absorption layer 103 may remain in the light absorption layer 103. Therefore, the light absorption layer 103 may become brittle and may be easily separated inside the light absorption layer 103.
  • a part of the resin layer 202 may be oxidized and embrittled by oxygen released from the light absorption layer 103. Thereby, it can be set in the state which is easy to peel in the interface of the resin layer 202 and the light absorption layer 103.
  • the adhesion between the interface between the light absorption layer 103 and the insulating layer 204 and the interface between the light absorption layer 103 and the support substrate 64 is reduced for the same reason as described above. Easy to peel. Alternatively, the light absorption layer 103 may become brittle and be easily separated.
  • the conductive layer 211 that functions as a gate electrode between the conductive layer 221a and the semiconductor layer 212 is used. Can be reflected or absorbed by the conductive layer 211. As a result, the electrical characteristics of the transistor 210 hardly change.
  • FIG. 9A illustrates an example in which separation occurs at the interface between the light absorption layer 103 and the resin layer 202 and at the interface between the light absorption layer 103 and the insulating layer 204.
  • a part of the light absorption layer 103 may remain in contact with the surfaces of the resin layer 202 and the insulating layer 204.
  • separation break
  • the entire light absorption layer 103 may remain in contact with the resin layer 202 and the insulating layer 204.
  • a dry etching method, a wet etching method, a sand blasting method, or the like can be used, but it is particularly preferable to use a dry etching method.
  • part of the resin layer 202 and part of the insulating layer 204 may be thinned by etching.
  • a light-transmitting material is used for the light-absorbing layer 103 or when the remaining light-absorbing layer is thin enough to have a light-transmitting property, the remaining light-absorbing layer is left as it is. Also good.
  • the resin layer 202 and the substrate 12 are bonded using the adhesive layer 52 (FIG. 9B).
  • the adhesive layer 52 the description of the adhesive layer 151 can be used.
  • the substrate 12 is a substrate located on the viewing side, a material having translucency with respect to visible light can be used.
  • the display device 10 shown in FIG. 1 can be manufactured.
  • a material to be the resin layer 202 is applied on the support substrate 64, and a pre-bake treatment is performed. Subsequently, exposure is performed using a photomask. At this time, a concave portion can be formed in the resin layer 202 by reducing the exposure amount below the condition for opening the resin layer 202. For example, there are methods such as exposing with shorter exposure time than exposure conditions for opening the resin layer 202, reducing the intensity of exposure light, shifting the focus, and forming the resin layer 202 thick.
  • an exposure technique using a halftone mask or a gray tone mask or a multiple exposure technique using two or more photomasks may be used.
  • the resin layer 202 having the recesses can be formed by performing a development process. After that, post bake processing is performed.
  • an insulating layer 204, a conductive layer 223, and an alignment film 224 are formed so as to cover the upper surface and the concave portion of the resin layer 202.
  • FIG. 10C is a cross-sectional view when the support substrate 64 and the substrate 11 are bonded together.
  • light 70 (not shown) is irradiated onto the resin layer 202 from the support substrate 64 side through the support substrate 64 to separate the support substrate 64 and the resin layer 202.
  • the above can be used for the light irradiation method and the separation method.
  • the resin layer 202 is thinned.
  • the above-described thinning method of the resin layer 201 can be used. By etching a part of the surface side of the resin layer 202 so that a part of the surface of the insulating layer 204 is exposed, a resin layer 202 having an opening is formed as shown in FIG. Can do.
  • FIG. 10D shows a state where a part of the upper part of the resin layer 202 is etched and thinned by irradiating with plasma 80.
  • the resin layer 202 may be left as it is without being etched, as shown in FIG. 10C or the like. Even in this configuration, since the resin layer 202 located on the light path from the light emitting element 120 is thinner than the other portions, light absorption is suppressed and light extraction efficiency can be increased. However, it is preferable to remove the resin layer 202 located on the light path from the light emitting element 120 to reduce the number of interfaces located on the path, thereby reducing reflection and scattering by the interface.
  • the resin layer 202 may remain in contact with the insulating layer 204 after the thinning process of the resin layer 202. Depending on the conditions, the resin layer 202 may be completely removed by etching or the like.
  • a resin layer 202a and a resin layer 202b having an opening are stacked and formed on a support substrate 64.
  • the resin layer 202a can be formed using a method in which the exposure and development processes are omitted in the step of forming the resin layer 202. At this time, pre-bake processing is not required.
  • the resin layer 202b having an opening can be formed in the same manner as the resin layer 202.
  • the previously formed resin layer 202a is sufficiently heated and polymerized. As a result, even when the same material is used for the resin layer 202a and the resin layer 202b, the resin layer 202a is dissolved in the solvent contained therein when a material to be the resin layer 202b to be formed later is applied. Can be suppressed.
  • an insulating layer 204, a conductive layer 223, and an alignment film 224 are formed over the resin layer 202a and the resin layer 202b (FIG. 11B).
  • FIG. 11C is a cross-sectional view after the support substrate 64 and the substrate 11 are bonded together.
  • the support layer 64 and the resin layer 202a are separated from each other by irradiating the resin layer 202a with light 70 (not shown) from the support substrate 64 side.
  • the above can be used for the light irradiation method and the separation method.
  • the resin layer 202a having an opening can be formed as shown in FIG. 11D by etching the resin layer 202a so that the surface of the insulating layer 204 is exposed.
  • the method for thinning the resin layer 201 described above can be used.
  • use of plasma treatment (ashing treatment) in an atmosphere containing oxygen is preferable because controllability can be improved and etching can be performed uniformly.
  • FIG. 11D shows a state where the resin layer 202a is etched and thinned by irradiating with plasma 80.
  • the material and the apparatus can be made common, so that productivity can be improved. Further, when different materials are used for these, the selectivity of the etching rate can be increased, so that the degree of freedom of processing conditions can be expanded.
  • the resin layer 202a may be left in the state shown in FIG. Even in this configuration, since the thickness of the resin layer 202 (specifically, the resin layer 202b) positioned on the light path from the light emitting element 120 is thinner than other portions, light absorption is suppressed, and light extraction efficiency is reduced. Can be increased.
  • the description of the support substrate 61 can be used.
  • a sheet-like resin or paper that functions as a carrier sheet for the substrate 12 may be used for the support substrate 65.
  • the adhesive layer 90 can be made of a material that prevents the support substrate 65 and the substrate 12 from being separated during the subsequent steps and can easily separate the support substrate 65 and the substrate 12. Typically, OCA (Optical Clear Adhesive), silicone, or the like can be used. Moreover, the adhesion layer 90 may not have translucency.
  • a conductive layer 223 and an alignment film 224 are stacked over the substrate 12 (FIG. 12B).
  • the conductive layer 223 and the alignment film 224 are formed by using a flexible film or the like for the substrate 12 because a high temperature is not required and high-precision patterning is unnecessary. It is also possible to form the layer 223 and the alignment film 224 directly on the substrate 12.
  • the support substrate 65 and the adhesive layer 90 may be left as they are. At this time, the support substrate 65 can be used as a protective substrate for protecting the display device.
  • the opening is provided in the resin layer positioned on the light path from the light emitting element 120, but the opening is also formed in the resin layer positioned on the light path in the reflective liquid crystal element 220. It may be provided.
  • FIG. 13A shows an example having a region 32 in addition to the region 31.
  • the region 32 is a region overlapping the opening of the resin layer 202 and the liquid crystal element 220.
  • FIG. 13A illustrates an example in which the resin layer 202 has one opening including both the light-emitting element 120 and the liquid crystal element 220; however, the opening overlapping the light-emitting element 120 and the liquid crystal A configuration may be employed in which an opening overlapping with the element 220 is provided separately.
  • FIG. 13B shows an example in which the resin layer is not provided on the substrate 12 side. Further, the structure illustrated in FIG. 13B is different from the structure illustrated in FIG. 12D in that the adhesive layer 52 and the insulating layer 204 are provided.
  • the insulating layer 204 which functions as a barrier layer is provided, even when a resin material or the like is used for the substrate 12, impurities are diffused into the liquid crystal 222 or the like. Can be prevented.
  • a resin layer 202, an insulating layer 204, a conductive layer 223, an alignment film 224, and the like are formed over a supporting substrate and bonded to the substrate 11. This can be realized by removing them.
  • a flat resin layer can be formed by a method in which exposure and development processing are omitted.
  • FIG. 14A illustrates an example in which the transistor 210 is not covered and the insulating layer 234 functioning as a planarization film is not provided as compared with FIG.
  • a coloring layer 152 and a light shielding layer 153 are provided over the insulating layer 233 (downward in the drawing).
  • the manufacturing cost can be reduced as compared with FIG. Further, since the insulating layer 234 is not provided, the thickness of the display device 10 can be further reduced. In addition, the light emitting element 120 can be brought closer to the viewer side, and viewing angle characteristics can be improved.
  • the light-blocking layer 153 can prevent light emission 21 emitted from the light-emitting element 120 from entering the semiconductor layer 212 of the transistor 210 and suppress variation in electrical characteristics of the transistor 210. can do.
  • FIG. 14B shows that the substrate 11, the adhesive layer 51, the resin layer 101, and the insulating layer 131 are replaced with the substrate 11 a as compared with the structure shown in FIG. The difference is mainly in that a substrate 12a is provided instead of the adhesive layer 52, the resin layer 202, and the insulating layer 204.
  • substrates in which impurities such as water, hydrogen, and oxygen are difficult to diffuse can be used. Accordingly, it is not necessary to provide an insulating layer having a high barrier property between the substrate 11a and the transistor 110 and between the substrate 12a and the liquid crystal element 220, so that the production cost can be reduced.
  • a substrate having poor flexibility may be used as one or both of the substrate 12a and the substrate 11a.
  • a light-transmitting substrate such as a glass substrate is used as the substrate 12a.
  • a substrate that does not have translucency, such as a metal substrate, may be used as the substrate 11a.
  • the substrate 12a and the substrate 11a can be used as a support substrate, so that the conveyance during the manufacturing process can be facilitated.
  • the substrate 12a or the substrate 11a it is preferable to use a substrate having a thickness of 0.3 mm or more, preferably 0.5 mm or more because conveyance becomes easy.
  • substrate 11a you may make it thin to less than 0.3 mm by grind
  • the alignment of the substrate 12a and the substrate 11a can be performed more easily than in the case where the substrates having flexibility are bonded to each other.
  • the accuracy can be increased, and the display device can have higher definition. For example, a display device having a definition exceeding 500 ppi can be realized.
  • the manufacturing process can be greatly simplified, so that the manufacturing cost can be reduced.
  • the light-emitting element 120 illustrated in FIG. 14B illustrates an example in which the EL layer 122 is formed by a so-called separate coloring method so that pixels of different colors are divided. Note that although the entire EL layer 122 is divided between pixels here, at least one of the stacked films constituting the EL layer 122 is divided between the pixels and the others are connected. Good.
  • 14B illustrates an example of a structure in which the colored layer 152 is not provided because the light-emitting element 120 can emit different colors of light for each pixel. By not providing the colored layer 152, the extraction efficiency can be increased.
  • an insulating layer 124 is provided so as to cover the conductive layer 123.
  • the insulating layer 124 functions as a barrier layer that suppresses diffusion of impurities such as water into the light-emitting element 120.
  • the display device includes a first element layer including a first transistor electrically connected to the light emitting element, a second element layer including the light emitting element, and a second transistor electrically connected to the liquid crystal element.
  • a third element layer and a fourth element layer including a liquid crystal element are included. Then, the second element layer, the first element layer, the third element layer, and the fourth element layer are laminated in this order from the side opposite to the visual recognition. Further, an adhesive layer is provided between the first element layer and the third element layer to bond them.
  • a resin layer closer to the viewing side than the fourth element layer.
  • the display device can be made extremely light, and the display device can be made difficult to break.
  • a resin layer may be provided between the first element layer and the third element layer and between the third element layer and the fourth element layer.
  • the light emitting element a bottom emission type light emitting element that emits light toward the surface to be formed can be suitably applied.
  • the first transistor and the light emitting element are stacked in order from the viewing side.
  • the first element layer including the first transistor is bonded to the third element layer including the second transistor with an adhesive layer. Accordingly, the light emitting surface of the light emitting element can be disposed at a position close to the display surface side, and a display device having excellent viewing angle characteristics can be realized.
  • the display device of one embodiment of the present invention has a structure in which the first transistor and the second transistor are provided in the same direction with respect to the vertical direction. That is, it can also be expressed that the direction in which the plurality of films constituting the first transistor are stacked and the direction in which the plurality of films forming the second transistor are stacked are the same.
  • FIG. 15 is a schematic sectional view of the display device 10.
  • the display device 10 has a configuration in which an element layer 200a, an element layer 100a, an element layer 100b, and an element layer 200b are stacked in this order.
  • An adhesive layer 50 is provided between the element layer 100a and the element layer 100b.
  • the display device 10 includes a substrate 11 on the back side (the side opposite to the viewing side) and a substrate 12 on the front side (viewing side). Further, the resin layer 101 is provided between the element layer 100a and the adhesive layer 50, and the resin layer 202 is provided between the substrate 12 and the element layer 200b.
  • the substrate 11 is bonded with an adhesive layer 151 that covers the light emitting element 120.
  • the resin layer 101 and the element layer 100b (specifically, the insulating layer 234) are bonded together by the adhesive layer 50. Further, the resin layer 202 and the substrate 12 are bonded together by the adhesive layer 52.
  • the element layer 100 a includes a transistor 110 on the substrate 11 side of the resin layer 101.
  • the element layer 200 a includes the light-emitting element 120 that is electrically connected to the transistor 110.
  • the element layer 100 b includes the transistor 210.
  • the element layer 200 b includes a liquid crystal element 220 that is electrically connected to the transistor 210.
  • a region 31 illustrated in FIG. 1 is a region that overlaps with the light-emitting element 120 and a region that overlaps the opening of the resin layer 101 and the opening of the resin layer 202.
  • a transistor 110, a light emitting element 120, an insulating layer 131, an insulating layer 132, an insulating layer 133, an insulating layer 134, an insulating layer 135, and the like are provided on the substrate 11 side of the resin layer 101.
  • the light emitting element 120 has a structure in which a conductive layer 121, an EL layer 122, and a conductive layer 123 are stacked.
  • the conductive layer 121 has a function of transmitting visible light
  • the conductive layer 123 has a function of reflecting visible light. Therefore, the light-emitting element 120 is a bottom emission type (also referred to as a bottom emission type) light-emitting element that emits light toward a surface to be formed.
  • an insulating layer 124 is provided so as to cover the conductive layer 123.
  • the insulating layer 124 functions as a barrier layer that suppresses diffusion of impurities such as moisture into the light-emitting element 120.
  • the insulating layer 124 preferably includes an inorganic insulating film.
  • the inorganic insulating film may be a single layer or a plurality of inorganic insulating films may be stacked. Alternatively, a stacked structure of an inorganic insulating film and an organic insulating film may be used.
  • the insulating layer 124 is provided, it is not necessary to use a material having a high barrier property for the adhesive layer 151 or the substrate 11, so that the degree of freedom in selecting the material can be increased.
  • the adhesive layer 151 and the substrate 11 can be thinned.
  • An opening is provided in the resin layer 101 located on the viewing side with respect to the light emitting element 120.
  • the light emitting element 120 is disposed so as to overlap with the opening.
  • the insulating layer 131 is provided so as to cover the opening of the resin layer 101. A portion of the insulating layer 131 that overlaps with the opening of the resin layer 101 is in contact with the adhesive layer 50.
  • a colored layer 152 that overlaps with the light-emitting element 120 is provided between the insulating layer 133 and the insulating layer 134.
  • the colored layer 152 has a region overlapping with the opening of the resin layer 101.
  • a light-blocking layer having an opening in a portion overlapping with the light-emitting element 120 may be provided between the insulating layer 133 and the insulating layer 134.
  • Element layer 100b, Element layer 200b The structure example 1 can be used for the structure of the element layer 100b and the element layer 200b.
  • the display device 10 has a configuration in which a transistor 210 and a transistor 110 are stacked so as to face each other in the same vertical direction.
  • the support substrate 61 is prepared.
  • a light absorption layer 103a is formed over the supporting substrate 61 (FIG. 16A).
  • the light absorption layer 103a can be used for the light absorption layer 103a.
  • the transistor 110 is formed over the insulating layer 131.
  • the transistor 110 an example in the case of manufacturing a bottom-gate transistor is shown.
  • a colored layer 152 is formed over the insulating layer 132.
  • the coloring layer 152 can be processed into an island shape by a photolithography method or the like by using a photosensitive material.
  • a light shielding layer may be formed on the insulating layer 132.
  • the light-blocking layer has an opening that overlaps with the colored layer 152 and the light-emitting element 120.
  • the light-blocking layer may be provided so as to cover the transistor 110.
  • a metal material or a resin material can be used for the light shielding layer.
  • a metal material after forming a conductive film, it can be formed by removing unnecessary portions using a photolithography method or the like.
  • a photosensitive resin material containing a metal material, a pigment or a dye when used, it can be formed by a photolithography method or the like.
  • the insulating layer 134 is a layer that has a formation surface of the light-emitting element 120 to be formed later, and thus is preferably a layer that functions as a planarization layer.
  • the conductive layer 121 is formed. Part of the conductive layer 121 functions as a pixel electrode. Next, as illustrated in FIG. 16E, an insulating layer 135 that covers an end portion of the conductive layer 121 is formed. Subsequently, an EL layer 122 and a conductive layer 123 are formed.
  • the light-emitting element 120 can be formed (FIG. 16F).
  • the light-emitting element 120 has a structure in which a conductive layer 121 partly functioning as a pixel electrode, an EL layer 122, and a conductive layer 123 partly functioning as a common electrode are stacked.
  • an insulating layer 124 is formed so as to cover the conductive layer 123.
  • an inorganic insulating film is used for the insulating layer 124, for example, a film forming method such as a sputtering method, a plasma CVD method, an ALD method, or an evaporation method can be suitably used.
  • a film forming method such as a sputtering method, a plasma CVD method, an ALD method, or an evaporation method can be suitably used.
  • an organic insulating film may be thin (for example, 100 nm or less), and may be formed using, for example, an evaporation method.
  • the element layer 100a and the element layer 200a can be manufactured.
  • the element layer 100a and the element layer 200a are supported by the support substrate 61.
  • the adhesiveness between the light absorption layer 103a and the resin layer 101 or the adhesiveness between the light absorption layer 103a and the support substrate 61 is lowered, and can be easily peeled.
  • FIG. 17D shows an example in which peeling occurs at the interface between the light absorption layer 103a and the resin layer 101 and at the interface between the light absorption layer 103a and the insulating layer 131.
  • the support substrate 61 and the resin layer 101 can be separated.
  • the element layer 100a and the element layer 200a are provided on one surface side of the resin layer 101, and the other surface is exposed.
  • a support substrate 63 is prepared, and a resin layer 201 is formed over the support substrate 63 (FIG. 18A).
  • an insulating layer 231 is formed so as to cover the conductive layer 221a, the conductive layer 221b, and the resin layer 201 (FIG. 18C).
  • Transistor 210 is formed over the insulating layer 231.
  • Insulating Layer 233 and Insulating Layer 234 are formed in this order so as to cover the transistor 210 (FIG. 18E).
  • the element layer 100b can be formed.
  • the element layer 100b is supported by the support substrate 63.
  • the substrate 11 and the support substrate 63 are bonded using the adhesive layer 50.
  • the adhesive layer 50 the description of the adhesive layer 151 can be used.
  • FIG. 19C shows an example in which the resin layer 201 is broken inside the resin layer 201 and the resin layer 201a which is a part of the resin layer 201 remains on the support substrate 63 side.
  • the thickness of the resin layer 201 after thinning can be made thinner than the resin layer 101, for example. More specifically, for example, it is preferably 1 nm or more and less than 3 ⁇ m, preferably 5 nm or more and 1 ⁇ m or less, more preferably 10 nm or more and 200 nm or less.
  • FIG. 20A shows a state in which a part of the upper portion of the resin layer 201 is etched and thinned by irradiating the upper surface of the resin layer 201 with plasma 80.
  • FIG. 20B shows a state during the rubbing process. As shown in FIG. 20B, in a state where the rotating rubbing roll 85 is pressed against the resin layer 201, the substrate 11 is slid as shown by the one-dot chain line arrow in FIG. Uniaxial orientation processing can be performed.
  • the support substrate 64 is prepared.
  • a light absorption layer 103b is formed over the supporting substrate 64 (FIG. 21A).
  • the description of the light absorption layer 103a can be used for the light absorption layer 103b.
  • an insulating layer 204 is formed so as to cover the resin layer 202 and the opening of the resin layer 202 (FIG. 21C). Part of the insulating layer 204 is provided in contact with the light absorption layer 103b.
  • an alignment film 224 is formed over the conductive layer 223 (FIG. 21D).
  • the alignment film 224 can be formed by performing a rubbing process after forming a thin film of resin or the like.
  • FIG. 23A illustrates an example in which separation occurs at the interface between the light absorption layer 103 b and the resin layer 202 and at the interface between the light absorption layer 103 b and the insulating layer 204.
  • the resin layer 202 and the substrate 12 are bonded using the adhesive layer 52 (FIG. 23B).
  • the adhesive layer 52 the description of the adhesive layer 151 can be used.
  • the substrate 12 is a substrate located on the viewing side, a material having translucency with respect to visible light can be used.
  • the display device 10 shown in FIG. 15 can be manufactured.
  • a material to be the resin layer 101 is applied on the support substrate 61, and a pre-bake treatment is performed. Subsequently, exposure is performed using a photomask. At this time, a concave portion can be formed in the resin layer 101 by reducing the exposure amount below the condition for opening the resin layer 101. For example, exposure may be performed with a shorter exposure time than the conditions for opening the resin layer 101, the intensity of exposure light may be reduced, the focus may be shifted, and the resin layer 101 may be formed thicker.
  • an exposure technique using a halftone mask or a gray tone mask or a multiple exposure technique using two or more photomasks may be used.
  • the resin layer 101 in which the concave portions are formed can be formed by performing a development process. After that, post bake processing is performed.
  • the insulating layer 131, the transistor 110, the light emitting element 120, and the like are formed over the resin layer 101 by the same method as described above.
  • the insulating layer 131 is provided to cover the concave portion of the resin layer 101.
  • the support substrate 61 and the substrate 11 are bonded together by the adhesive layer 151.
  • the resin layer 101 is irradiated with light 70 from the support substrate 61 side through the support substrate 61.
  • the support substrate 61 and the resin layer 101 are separated.
  • the above can be used for the irradiation method and separation method of the light 70.
  • the resin layer 101 is not provided with an opening, there is no portion where the support substrate 61 and the insulating layer 131 are in contact with each other, and the resin layer 101 and the support substrate 61 are in contact with each other over the entire region to be separated. Is provided. Therefore, there is no region with different adhesion in the region to be separated, so that separation can be performed with high yield without being caught during separation. Such a method is particularly effective when a large substrate is used, and can increase productivity.
  • the resin layer 101 is thinned.
  • the above-described thinning method of the resin layer 201 can be used. By etching a part of the surface of the resin layer 101 so that a part of the surface of the insulating layer 131 is exposed, the resin layer 101 having an opening can be formed as shown in FIG. it can.
  • FIG. 24D shows a state where a part of the upper portion of the resin layer 101 is etched and thinned by irradiating with plasma 80.
  • the resin layer 101 may be left as it is without etching the resin layer 101 as shown in FIG. Even in this configuration, since the thickness of the resin layer 101 located on the optical path of light from the light emitting element 120 is thinner than other portions, light absorption is suppressed and light extraction efficiency can be increased. However, it is preferable to remove the resin layer 101 located on the light path from the light emitting element 120 to reduce the number of interfaces located on the path, thereby reducing reflection and scattering by the interface.
  • part of the resin layer 101 may remain in contact with the insulating layer 131 after the thinning process of the resin layer 101.
  • the resin layer 101 may be completely removed by etching or the like.
  • a resin layer 101a and a resin layer 101b having an opening are stacked and formed over a supporting substrate 61.
  • the resin layer 101a can be formed using a method in which exposure and development processing are omitted in the resin layer 101 forming step. At this time, pre-bake processing is not required.
  • the resin layer 101b having an opening can be formed in the same manner as the resin layer 101.
  • the previously formed resin layer 101a is sufficiently heated and polymerized. As a result, even when the same material is used for the resin layer 101a and the resin layer 101b, the resin layer 101a is dissolved in the solvent contained therein when a material to be the resin layer 101b to be formed later is applied. Can be suppressed.
  • the insulating layer 131, the transistor 110, the light emitting element 120, and the like are formed over the resin layer 101 by the same method as described above.
  • the insulating layer 131 is provided to cover the concave portion of the resin layer 101.
  • the support substrate 61 and the substrate 11 are bonded together by the adhesive layer 151.
  • the resin layer 101 a is irradiated with light 70 from the support substrate 61 side through the support substrate 61.
  • the support substrate 61 and the resin layer 101a are separated.
  • the above can be used for the irradiation method and separation method of the light 70.
  • the resin layer 101a is etched so that the surface of the insulating layer 131 is exposed, whereby the resin layer 101 having an opening can be formed as shown in FIG.
  • the etching method the method for thinning the resin layer 101 can be used.
  • FIG. 25D shows a state in which the resin layer 101a is etched by irradiating with plasma 80.
  • the material and the apparatus can be shared, and thus productivity can be improved. Further, when different materials are used for these, the selectivity of the etching rate can be increased, so that the degree of freedom of processing conditions can be expanded.
  • the state shown in FIG. 25C or the like may be left without etching the resin layer 101a.
  • the thickness of the resin layer 101 (specifically, the resin layer 101a) positioned on the light path from the light emitting element 120 is thinner than the other portions, so that light absorption is suppressed and light extraction efficiency is reduced. Can be increased.
  • a resin layer 101d is formed on a support substrate 61.
  • the resin layer 101d is a resin layer having no recess.
  • the description of the resin layer 101a can be used for the method of forming the resin layer 101d.
  • the insulating layer 131, the transistor 110, the light emitting element 120, and the like are formed over the resin layer 101 by the same method as described above. Then, the support substrate 61 and the substrate 11 are bonded together by the adhesive layer 151.
  • the resin layer 101d is irradiated with light 70 from the support substrate 61 side through the support substrate 61.
  • the support substrate 61 and the resin layer 101d are separated.
  • the above can be used for the irradiation method and separation method of the light 70.
  • FIG. 26D shows a state where the resin layer 101d is etched by irradiation with plasma 80.
  • the resin layer 101d By etching the resin layer 101d so that the surface of the insulating layer 131 is exposed, as shown in FIG. 26E, the resin layer 101d is not provided and the surface of the insulating layer 131 is exposed. Can do. Since the resin layer 101d is not provided, in addition to improving light extraction efficiency, the display device itself can be made thin and lightweight.
  • the method shown here has a secondary effect that the insulating layer 131 and the like can be formed on the flat resin layer 101d. Therefore, the insulating layer 131 and the laminated structure on the insulating layer 131 can be formed on a relatively flat surface, and the step coverage can be improved. In addition, since the light emitting element 120 and the colored layer 152 can be formed on a flat surface, in-plane variations in luminance and chromaticity due to variations in thickness are reduced, and a display device with excellent display quality is realized. it can.
  • the description of the support substrate 61 can be used.
  • a sheet-like resin or paper that functions as a carrier sheet for the substrate 12 may be used for the support substrate 65.
  • the adhesive layer 90 can be made of a material that prevents the support substrate 65 and the substrate 12 from being separated during the subsequent steps and can easily separate the support substrate 65 and the substrate 12. Typically, OCA (Optical Clear Adhesive), silicone, or the like can be used. Moreover, the adhesion layer 90 may not have translucency.
  • a conductive layer 223 and an alignment film 224 are stacked over the substrate 12 (FIG. 27B).
  • the conductive layer 223 and the alignment film 224 are formed by using a flexible film or the like for the substrate 12 because a high temperature is not required and high-precision patterning is unnecessary. It is also possible to form the layer 223 and the alignment film 224 directly on the substrate 12.
  • the support substrate 65 and the adhesive layer 90 may be left as they are. At this time, the support substrate 65 can be used as a protective substrate for protecting the display device.
  • the opening is formed in the resin layer located on the light path from the light emitting element 120, but the opening is also formed in the resin layer located on the light path in the reflective liquid crystal element 220. It may be provided.
  • FIG. 28A shows an example having a region 32 in addition to the region 31.
  • the region 32 is a region overlapping the opening of the resin layer 202 and the liquid crystal element 220.
  • FIG. 28A illustrates an example in which the resin layer 202 has one opening including both the light-emitting element 120 and the liquid crystal element 220; however, the opening overlapping the light-emitting element 120 and the liquid crystal A configuration may be employed in which an opening overlapping with the element 220 is provided separately.
  • FIG. 28B shows an example in which no resin layer is provided on the substrate 12 side.
  • the structure illustrated in FIG. 28B is different from the structure illustrated in FIG. 27D in that the adhesive layer 52 and the insulating layer 204 are provided and the resin layer 101 is not provided. ing.
  • the insulating layer 204 which functions as a barrier layer is provided, even when a resin material or the like is used for the substrate 12, impurities are diffused into the liquid crystal 222 or the like. Can be prevented.
  • a resin layer 202, an insulating layer 204, a conductive layer 223, an alignment film 224, and the like are formed over a supporting substrate and bonded to the substrate 11, and then the resin layer 202 is completely formed. This can be realized by removing them.
  • a flat resin layer can be formed by a method in which exposure and development processing are omitted.
  • FIG. 29A is mainly different from FIG. 15 and the like in that the position of the colored layer 152 is different and that the light shielding layer 153 is provided.
  • a coloring layer 152 and a light shielding layer 153 are provided over the insulating layer 233 (downward in the drawing).
  • the light shielding layer 153 By having the light shielding layer 153, color mixture between adjacent pixels can be prevented.
  • the light-blocking layer 153 is provided between the transistor 210 and the light-emitting element 120, light emission 21 emitted from the light-emitting element 120 can be prevented from entering the semiconductor layer 212 of the transistor 210. The fluctuation of the electrical characteristics can be suppressed.
  • FIG. 29B is different from the structure illustrated in FIG. 15 and the like in that a substrate 11a is provided instead of the substrate 11, and the substrate 12, the adhesive layer 52, the resin layer 202, and the insulating layer 204 are included. Instead, the difference is mainly in that a substrate 12a is provided.
  • FIG. 29B illustrates an example in which the insulating layer 124 that covers the light-emitting element 120 is not provided.
  • substrates in which impurities such as water, hydrogen, and oxygen are difficult to diffuse can be used. Accordingly, it is not necessary to provide an insulating layer having a high barrier property between the substrate 11a and the light emitting element 120 and between the substrate 12a and the liquid crystal element 220, and the production cost can be reduced.
  • a substrate having poor flexibility may be used as one or both of the substrate 12a and the substrate 11a.
  • a light-transmitting substrate such as a glass substrate is used as the substrate 12a.
  • a substrate that does not have translucency, such as a metal substrate, may be used as the substrate 11a.
  • the substrate 12a and the substrate 11a can be used as a support substrate, so that the conveyance during the manufacturing process can be facilitated.
  • the substrate 12a or the substrate 11a it is preferable to use a substrate having a thickness of 0.3 mm or more, preferably 0.5 mm or more because conveyance becomes easy.
  • substrate 11a you may make it thin to less than 0.3 mm by grind
  • the alignment of the substrate 12a and the substrate 11a can be performed more easily than in the case where the substrates having flexibility are bonded to each other.
  • the accuracy can be increased, and the display device can have higher definition. For example, a display device having a definition exceeding 500 ppi can be realized.
  • the manufacturing process can be greatly simplified, so that the manufacturing cost can be reduced.
  • the EL layer 122 is provided in common between pixels of different colors, and light from the light-emitting element 120 is colored by the coloring layer 152 to emit different colors. It shows the method to do.
  • the light emitting element 120 may be formed by a so-called coloring method so that the EL layer 122 is divided between pixels of different colors. At this time, the entire EL layer 122 may be divided between the pixels, or at least one of the stacked films constituting the EL layer 122 may be divided between the pixels, and the other may be connected. At this time, since the light-emitting element 120 can emit different colors of light for each pixel, a structure without the colored layer 152 can be provided. By not providing the colored layer 152, the extraction efficiency can be increased.
  • the display device 10 illustrated in FIG. 1 is an example in which a bottom-gate transistor is applied to both the transistor 110 and the transistor 210.
  • the conductive layer 111 functioning as a gate electrode is located closer to the formation surface (resin layer 101 side) than the semiconductor layer 112.
  • An insulating layer 132 is provided to cover the conductive layer 111.
  • the semiconductor layer 112 is provided so as to cover the conductive layer 111.
  • a region of the semiconductor layer 112 that overlaps with the conductive layer 111 corresponds to a channel formation region.
  • the conductive layer 113a and the conductive layer 113b are provided in contact with the upper surface and the side end portion of the semiconductor layer 112, respectively.
  • the transistor 110 is an example in which the width of the semiconductor layer 112 is larger than that of the conductive layer 111.
  • the semiconductor layer 112 is disposed between the conductive layer 111 and the conductive layer 113a or the conductive layer 113b, so that the parasitic capacitance between the conductive layer 111 and the conductive layer 113a or the conductive layer 113b is reduced. Can do.
  • the transistor 110 is a channel etch type transistor, and can easily be used for a high-definition display device because it is relatively easy to reduce the area occupied by the transistor.
  • the transistor 210 has the same characteristics as the transistor 110.
  • the transistor 30A is different from the transistor 110 in that it includes a conductive layer 114 and an insulating layer 136.
  • the conductive layer 114 is provided over the insulating layer 133 and has a region overlapping with the semiconductor layer 112.
  • the insulating layer 136 is provided so as to cover the conductive layer 114 and the insulating layer 133.
  • the conductive layer 114 is located on the opposite side of the conductive layer 111 with the semiconductor layer 112 interposed therebetween.
  • the conductive layer 111 is a first gate electrode
  • the conductive layer 114 can function as a second gate electrode.
  • the threshold voltage of the transistor 110a can be controlled by applying a potential for controlling the threshold voltage to one of the conductive layers 111 and 114 and a potential for driving the other.
  • a conductive material including an oxide is preferably used for the conductive layer 114.
  • oxygen can be supplied to the insulating layer 133 by forming the conductive film that forms the conductive layer 114 in an atmosphere containing oxygen.
  • the proportion of oxygen gas in the film forming gas is in the range of 90% to 100%.
  • Oxygen supplied to the insulating layer 133 is supplied to the semiconductor layer 112 by a subsequent heat treatment, so that oxygen vacancies in the semiconductor layer 112 can be reduced.
  • the conductive layer 114 is preferably formed using a low-resistance oxide semiconductor.
  • an insulating film that releases hydrogen for example, a silicon nitride film or the like is preferably used for the insulating layer 136. Hydrogen is supplied into the conductive layer 114 during the formation of the insulating layer 136 or by heat treatment thereafter, so that the electrical resistance of the conductive layer 114 can be effectively reduced.
  • a transistor 110b illustrated in FIG. 30B is a top-gate transistor.
  • the conductive layer 111 functioning as a gate electrode is provided above the semiconductor layer 112 (on the side opposite to the formation surface side).
  • the semiconductor layer 112 is formed over the insulating layer 131.
  • an insulating layer 132 and a conductive layer 111 are stacked over the semiconductor layer 112.
  • the insulating layer 133 is provided so as to cover the upper surface and side edges of the semiconductor layer 112, the side surface of the insulating layer 133, and the conductive layer 111.
  • the conductive layer 113 a and the conductive layer 113 b are provided over the insulating layer 133.
  • the conductive layer 113a and the conductive layer 113b are electrically connected to the upper surface of the semiconductor layer 112 through an opening provided in the insulating layer 133.
  • the insulating layer 132 may be provided so as to cover the upper surface and the side end portion of the semiconductor layer 112. .
  • the transistor 110b can easily separate a physical distance between the conductive layer 111 and the conductive layer 113a or the conductive layer 113b, parasitic capacitance between them can be reduced.
  • a transistor 110c illustrated in FIG. 30C is different from the transistor 110b in that the transistor 110c includes a conductive layer 115 and an insulating layer 137.
  • the conductive layer 115 is provided over the insulating layer 131 and has a region overlapping with the semiconductor layer 112.
  • the insulating layer 137 is provided so as to cover the conductive layer 115 and the insulating layer 131.
  • the conductive layer 115 functions as a second gate electrode similarly to the conductive layer 114. Therefore, it is possible to increase the on-current, control the threshold voltage, and the like.
  • FIG. 30D illustrates a structure in which the transistor 110 and the transistor 110d are stacked.
  • the transistor 110d is a transistor having a pair of gate electrodes.
  • the transistor 110d includes a part of the conductive layer 113b functioning as the first gate electrode, a part of the insulating layer 133 functioning as the first gate insulating layer, the semiconductor layer 112a, and one of the source electrode and the drain electrode.
  • the transistor 110 is used as a transistor (also referred to as a switching transistor or a selection transistor) that controls the selection / non-selection state of a pixel
  • the transistor 110d is used as a transistor (also referred to as a drive transistor) that controls a current flowing through the light-emitting element 120. It is preferable to use it.
  • the conductive layer 114a is electrically connected to the conductive layer 113c through an opening provided in the insulating layer 136.
  • the conductive layer 121 is electrically connected to the conductive layer 114 a through an opening provided in the insulating layer 134.
  • a capacitor component also referred to as a gate capacitor
  • the conductive layer 114a and the semiconductor layer 112a can be used as a storage capacitor of the pixel.
  • a conductive layer 114b functioning as an electrode for connecting the conductive layer 113c and the conductive layer 121 and a conductive layer 114a functioning as the second gate electrode of the transistor 110d are formed. It is good also as a structure provided separately. At this time, since the conductive layer 114a is not connected to the conductive layer 113c, for example, a potential for controlling the threshold voltage of the transistor 110d may be applied, or the conductive layer 114a may be electrically connected to the conductive layer 113b functioning as the first gate electrode. May be connected to each other and given the same potential.
  • a transistor 110a, a transistor 110b, a transistor 110c, a transistor 110d, or the like can be used.
  • the transistor 110a, the transistor 110b, the transistor 110c, the transistor 110d, or the like can be used.
  • the transistor included in the element layer 100a and the transistor included in the element layer 100b may be formed of different transistors.
  • a transistor electrically connected to the light-emitting element 120 needs to pass a relatively large current. Therefore, a transistor having two gate electrodes, such as the transistor 110a, the transistor 110c, and the transistor 110d, is applied.
  • the transistor 110 and the like can be preferably applied to other transistors in order to reduce the area occupied by the transistors.
  • FIG. 31A illustrates an example in which the transistor 110a is applied instead of the transistor 210 in FIG. 1 and the transistor 110c is applied instead of the transistor 110.
  • FIG. 31A illustrates an example in which an insulating layer 124 that covers the light-emitting element 120 is provided, and a coloring layer 152 and a light-blocking layer 153 are provided over the insulating layer 124.
  • FIG. 31B illustrates an example in which the transistor 110b is applied instead of the transistor 210 in FIG. 1 and the transistor 110c is applied instead of the transistor 110.
  • 31A and 31B show an example in which an insulating layer 230 is provided between the resin layer 201 and the conductive layer 221b.
  • the insulating layer 230 can be formed using an inorganic insulating material that does not easily diffuse water, hydrogen, or the like.
  • the insulating layer 230 can prevent impurities such as water and hydrogen from diffusing into the transistor included in the element layer 100b, and can improve reliability.
  • 32A shows an example in which the transistor 110a is applied instead of the transistor 210 in FIG. 15 and the transistor 110c is applied instead of the transistor 110.
  • FIG. 32B shows an example in which the transistor 110b is applied instead of the transistor 210 in FIG. 15 and the transistor 110c is applied instead of the transistor 110.
  • FIG. 32B shows an example in which an insulating layer 230 is provided between the resin layer 201 and the conductive layer 221b.
  • the insulating layer 230 can be formed using an inorganic insulating material that does not easily diffuse water, hydrogen, or the like.
  • the insulating layer 230 can prevent impurities such as water and hydrogen from diffusing into the transistor included in the element layer 100b, and can improve reliability.
  • the insulating layer 131 which is a formation surface of the transistor 110c is provided in contact with the adhesive layer 50 without the resin layer 101 between the element layer 100a and the element layer 100b.
  • An example is shown. Accordingly, the light emitting element 120 and the like can be formed on a flat surface, and a display device with high display quality can be realized.
  • the adhesive layer 52, the resin layer 202, and the insulating layer 204 are not provided on the substrate 12 side, and the substrate 12 and the conductive layer 223 are provided in contact with each other.
  • An example is shown. Thereby, the structure of a display apparatus can be simplified and thickness can be reduced.
  • 32B illustrates an example in which a coloring layer 152 and a light-blocking layer 153 are provided between the transistor 110b and the light-emitting element 120, as in FIG. 29A. Specifically, a coloring layer 152 and a light-blocking layer 153 are provided in contact with the insulating layer covering the transistor 110b.
  • FIG. 32B illustrates an example in which the insulating layer 234 that covers the transistor 110b and functions as a planarization film is not provided, and the coloring layer 152 and the light-blocking layer 153 are provided in contact with the adhesive layer 50.
  • manufacturing cost can be reduced as compared with FIG.
  • the insulating layer 234 is not provided, the thickness of the display device 10 can be further reduced.
  • the light emitting element 120 can be brought closer to the viewer side, and viewing angle characteristics can be improved.
  • the display device exemplified below is a display device that includes both a reflective liquid crystal element and a light-emitting element and can perform both transmission mode and reflection mode display.
  • FIG. 33A is a block diagram illustrating an example of a structure of the display device 400.
  • the display device 400 includes a plurality of pixels 410 arranged in a matrix on the display portion 362.
  • the display device 400 includes a circuit GD and a circuit SD.
  • a plurality of pixels 410 arranged in the direction R, a plurality of wirings G1, a plurality of wirings G2, a plurality of wirings ANO, and a plurality of wirings CSCOM electrically connected to the circuit GD are provided.
  • a plurality of pixels 410 arranged in the direction C, and a plurality of wirings S1 and a plurality of wirings S2 electrically connected to the circuit SD are provided.
  • the circuit GD and the circuit SD that drive the liquid crystal element and the circuit GD and the circuit SD that drive the light emitting element are separately provided. May be provided. More specifically, the element layer 100a and the element layer 100b exemplified in Embodiment 1 may have the circuit GD and the circuit SD, respectively.
  • the pixel 410 includes a reflective liquid crystal element and a light emitting element.
  • the liquid crystal element and the light-emitting element have portions that overlap each other.
  • FIG. 33B1 illustrates a configuration example of the conductive layer 311b included in the pixel 410.
  • the conductive layer 311b functions as a reflective electrode of the liquid crystal element in the pixel 410.
  • an opening 451 is provided in the conductive layer 311b.
  • the light-emitting element 360 located in a region overlapping with the conductive layer 311b is indicated by a broken line.
  • the light-emitting element 360 is disposed so as to overlap with the opening 451 included in the conductive layer 311b. Thereby, the light emitted from the light emitting element 360 is emitted to the display surface side through the opening 451.
  • the pixel 410 adjacent in the direction R is a pixel corresponding to a different color.
  • the plurality of openings 451 may be provided at different positions on the conductive layer 311b so as not to be arranged in a straight line. preferable. Accordingly, the two adjacent light emitting elements 360 can be separated, and a phenomenon (also referred to as crosstalk) in which light emitted from the light emitting element 360 enters the colored layer of the adjacent pixel 410 can be suppressed. .
  • the two adjacent light emitting elements 360 can be arranged apart from each other, a display device with high definition can be realized even when the EL layer of the light emitting element 360 is separately formed using a shadow mask or the like.
  • FIG. 33 (B2) an arrangement as shown in FIG. 33 (B2) may be used.
  • the display using the liquid crystal element becomes dark. If the ratio of the total area of the openings 451 to the total area of the non-openings is too small, the display using the light emitting element 360 is darkened.
  • the area of the opening 451 provided in the conductive layer 311b functioning as the reflective electrode is too small, the efficiency of light that can be extracted from the light emitted from the light emitting element 360 is reduced.
  • the shape of the opening 451 can be, for example, a polygon, a rectangle, an ellipse, a circle, a cross, or the like. Moreover, it is good also as an elongated streak shape, a slit shape, and a checkered shape. Further, the opening 451 may be arranged close to adjacent pixels. Preferably, the opening 451 is arranged close to other pixels displaying the same color. Thereby, crosstalk can be suppressed.
  • FIG. 34 is a circuit diagram illustrating a configuration example of the pixel 410. In FIG. 34, two adjacent pixels 410 are shown.
  • the pixel 410 includes a switch SW1, a capacitor element C1, a liquid crystal element 340, a switch SW2, a transistor M, a capacitor element C2, a light emitting element 360, and the like.
  • a wiring G1, a wiring G2, a wiring ANO, a wiring CSCOM, a wiring S1, and a wiring S2 are electrically connected to the pixel 410.
  • a wiring VCOM1 electrically connected to the liquid crystal element 340 and a wiring VCOM2 electrically connected to the light emitting element 360 are shown.
  • FIG. 34 shows an example in which transistors are used for the switch SW1 and the switch SW2.
  • the switch SW1 has a gate connected to the wiring G1, a source or drain connected to the wiring S1, and the other source or drain connected to one electrode of the capacitor C1 and one electrode of the liquid crystal element 340. Yes.
  • the other electrode of the capacitor C1 is connected to the wiring CSCOM.
  • the other electrode of the liquid crystal element 340 is connected to the wiring VCOM1.
  • the switch SW2 has a gate connected to the wiring G2, one of the source and the drain connected to the wiring S2, and the other of the source and the drain connected to one electrode of the capacitor C2 and the gate of the transistor M.
  • the other electrode of the capacitor C2 is connected to one of the source and the drain of the transistor M and the wiring ANO.
  • the other of the source and the drain is connected to one electrode of the light emitting element 360.
  • the other electrode of the light emitting element 360 is connected to the wiring VCOM2.
  • FIG. 34 shows an example in which the transistor M has two gates sandwiching a semiconductor and these are connected. As a result, the current that can be passed by the transistor M can be increased.
  • electrical_connection state or a non-conduction state can be given to wiring G1.
  • a predetermined potential can be applied to the wiring VCOM1.
  • a signal for controlling the alignment state of the liquid crystal included in the liquid crystal element 340 can be supplied to the wiring S1.
  • a predetermined potential can be applied to the wiring CSCOM.
  • electrical_connection state or a non-conduction state can be given to wiring G2.
  • the wiring VCOM2 and the wiring ANO can each be supplied with a potential at which a potential difference generated by the light emitting element 360 emits light.
  • a signal for controlling the conduction state of the transistor M can be supplied to the wiring S2.
  • the pixel 410 shown in FIG. 34 can be driven by a signal applied to the wiring G1 and the wiring S1 and display using optical modulation by the liquid crystal element 340, for example, when performing reflection mode display.
  • display can be performed by driving the light-emitting element 360 by driving with signals supplied to the wiring G2 and the wiring S2.
  • the driving can be performed by signals given to the wiring G1, the wiring G2, the wiring S1, and the wiring S2.
  • FIG. 34 illustrates an example in which one pixel 410 includes one liquid crystal element 340 and one light emitting element 360
  • the present invention is not limited thereto.
  • FIG. 35A illustrates an example in which one pixel 410 includes one liquid crystal element 340 and four light-emitting elements 360 (light-emitting elements 360r, 360g, 360b, and 360w).
  • a pixel 410 illustrated in FIG. 35A is a pixel capable of full color display with one pixel, unlike FIG.
  • a wiring G3 and a wiring S3 are connected to the pixel 410.
  • four light-emitting elements 360 can be light-emitting elements exhibiting red (R), green (G), blue (B), and white (W), respectively.
  • the liquid crystal element 340 a reflective liquid crystal element exhibiting white can be used. Thereby, when displaying in reflection mode, white display with high reflectance can be performed. In addition, when display is performed in the transmissive mode, display with high color rendering properties can be performed with low power.
  • FIG. 35B shows a configuration example of the pixel 410.
  • the pixel 410 includes a light-emitting element 360 w that overlaps with an opening of the conductive layer 311, and a light-emitting element 360 r, a light-emitting element 360 g, and a light-emitting element 360 b that are arranged around the conductive layer 311.
  • the light emitting element 360r, the light emitting element 360g, and the light emitting element 360b preferably have substantially the same light emitting area.
  • FIG. 36 is a schematic perspective view of a display device 300 of one embodiment of the present invention.
  • the display device 300 has a structure in which a substrate 351 and a substrate 361 are attached to each other.
  • the substrate 361 is indicated by a broken line.
  • the display device 300 includes a display unit 362, a circuit unit 364, a wiring 365, a circuit unit 366, a wiring 367, and the like.
  • the substrate 351 is provided with, for example, a circuit portion 364, a wiring 365, a circuit portion 366, a wiring 367, a conductive layer 311b functioning as a pixel electrode, and the like.
  • FIG. 36 shows an example in which an IC 373, an FPC 372, an IC 375, and an FPC 374 are mounted on a substrate 351. Therefore, the structure illustrated in FIG. 36 can also be referred to as a display module including the display device 300 and the IC 373, the FPC 372, the IC 375, and the FPC 374.
  • circuit unit 364 for example, a circuit that functions as a scanning line driver circuit can be used.
  • the wiring 365 has a function of supplying signals and power to the display unit and the circuit unit 364.
  • the signal and power are input to the wiring 365 from the outside or the IC 373 via the FPC 372.
  • FIG. 36 shows an example in which the IC 373 is provided on the substrate 351 by a COG (Chip On Glass) method or the like.
  • the IC 373 for example, an IC having a function as a scan line driver circuit, a signal line driver circuit, or the like can be used.
  • the display device 300 includes a circuit that functions as a scan line driver circuit and a signal line driver circuit, or a circuit that functions as a scan line driver circuit or a signal line driver circuit is provided outside, and the display device 300 is driven through the FPC 372.
  • the IC 373 may not be provided in the case of inputting a signal to do so.
  • the IC 373 may be mounted on the FPC 372 by a COF (Chip On Film) method or the like.
  • FIG. 36 shows an enlarged view of a part of the display unit 362.
  • conductive layers 311b included in the plurality of display elements are arranged in a matrix.
  • the conductive layer 311b has a function of reflecting visible light, and functions as a reflective electrode of a liquid crystal element 340 described later.
  • the conductive layer 311b has an opening. Further, the light-emitting element 360 is provided on the substrate 351 side of the conductive layer 311b. Light from the light-emitting element 360 is emitted to the substrate 361 side through the opening of the conductive layer 311b.
  • FIG. 37 shows part of the region including the FPC 372, part of the region including the circuit portion 364, part of the region including the display portion 362, and part of the region including the circuit portion 366 of the display device illustrated in FIG. , And an example of a cross section when part of a region including the FPC 374 is cut.
  • the display device shown in FIG. 37 has a structure in which an element layer 100a, an element layer 200a, an element layer 100b, and an element layer 200b are sequentially stacked from the substrate 351 side.
  • a resin layer 101 is provided between the element layer 100 a and the substrate 351.
  • a resin layer 202 is provided between the element layer 200 b and the substrate 361.
  • the resin layer 101 and the substrate 351 are bonded by an adhesive layer 51.
  • the resin layer 202 and the substrate 361 are bonded by an adhesive layer 52.
  • the element layer 100a includes an insulating layer 478, a plurality of transistors, a capacitor 405, a wiring 365, an insulating layer 411, an insulating layer 412, an insulating layer 413, an insulating layer 414, and the like over the resin layer 101.
  • the element layer 200a includes an insulating layer 415, a light emitting element 360, a spacer 416, a colored layer 425, a light shielding layer 426, and the like.
  • the coloring layer 425 and the light shielding layer 426 are provided on the insulating layer 514 side described later, and the insulating layer 514 is bonded to the resin layer 101 side by an adhesive layer 417.
  • the circuit unit 364 includes a transistor 401.
  • the display portion 362 includes a transistor 402, a transistor 403, and a capacitor 405.
  • Each transistor has a gate, an insulating layer 411, a semiconductor layer, a source, and a drain.
  • the gate and the semiconductor layer overlap with each other with the insulating layer 411 interposed therebetween.
  • Part of the insulating layer 411 functions as a gate insulating layer, and the other part functions as a dielectric of the capacitor 405.
  • a conductive layer functioning as a source or a drain of the transistor 402 also serves as one electrode of the capacitor 405.
  • FIG. 37 shows a bottom-gate transistor.
  • the circuit portion 364 and the display portion 362 may have different transistor structures.
  • Each of the circuit portion 364 and the display portion 362 may include a plurality of types of transistors.
  • the capacitor element 405 includes a pair of electrodes and a dielectric between them.
  • the capacitor 405 includes the same material as the gate of the transistor and a conductive layer formed in the same process, and the same material as the source and drain of the transistor and a conductive layer formed in the same process.
  • the insulating layer 412, the insulating layer 413, and the insulating layer 414 are each provided so as to cover a transistor or the like.
  • the number of insulating layers covering the transistors and the like is not particularly limited.
  • the insulating layer 414 functions as a planarization layer. It is preferable that at least one layer of the insulating layer 412, the insulating layer 413, and the insulating layer 414 be formed using a material that does not easily diffuse impurities such as water or hydrogen. It becomes possible to effectively suppress the diffusion of impurities from the outside into the transistor, and the reliability of the display device can be improved.
  • the insulating layer 414 When an organic material is used for the insulating layer 414, impurities such as moisture may enter the light emitting element 360 or the like from the outside of the display device through the insulating layer 414 exposed at the end of the display device. When the light emitting element 360 is deteriorated due to the entry of impurities, the display device is deteriorated. Therefore, as illustrated in FIG. 37, the insulating layer 414 is preferably not positioned at the end portion of the display device. In the structure in FIG. 37, since the insulating layer using an organic material is not located at the end portion of the display device, entry of impurities into the light-emitting element 360 can be suppressed.
  • the light-emitting element 360 includes a conductive layer 421, an EL layer 422, and a conductive layer 423.
  • the light emitting element 360 may have an optical adjustment layer 424.
  • the light-emitting element 360 has a top emission structure that emits light toward the conductive layer 423.
  • the aperture ratio of the display portion 362 can be increased by arranging a transistor, a capacitor, a wiring, and the like so as to overlap with a light-emitting region of the light-emitting element 360.
  • One of the conductive layer 421 and the conductive layer 423 functions as an anode, and the other functions as a cathode.
  • a voltage higher than the threshold voltage of the light-emitting element 360 is applied between the conductive layer 421 and the conductive layer 423, holes are injected from the anode side into the EL layer 422 and electrons are injected from the cathode side.
  • the injected electrons and holes are recombined in the EL layer 422, and the light-emitting substance contained in the EL layer 422 emits light.
  • the conductive layer 421 is electrically connected to the source or drain of the transistor 403. These may be directly connected or may be connected via another conductive layer.
  • the conductive layer 421 functions as a pixel electrode and is provided for each light-emitting element 360. Two adjacent conductive layers 421 are electrically insulated by an insulating layer 415.
  • the EL layer 422 is a layer containing a light-emitting substance.
  • the conductive layer 423 functions as a common electrode and is provided over the plurality of light emitting elements 360. A constant potential is supplied to the conductive layer 423.
  • the light emitting element 360 overlaps the colored layer 425 with the adhesive layer 417 interposed therebetween.
  • the spacer 416 overlaps the light shielding layer 426 with the adhesive layer 417 interposed therebetween.
  • FIG. 37 shows a case where there is a gap between the conductive layer 423 and the light shielding layer 426, they may be in contact with each other.
  • the structure in which the spacer 416 is provided on the substrate 351 side is shown;
  • the combination of the color filter (colored layer 425) and the microcavity structure (optical adjustment layer 424) makes it possible to extract light with high color purity from the display device.
  • the film thickness of the optical adjustment layer 424 is changed according to the color of each pixel.
  • the colored layer 425 is a colored layer that transmits light in a specific wavelength range.
  • a color filter that transmits light in a red, green, blue, or yellow wavelength range can be used.
  • one embodiment of the present invention is not limited to the color filter method, and a color separation method, a color conversion method, a quantum dot method, or the like may be applied.
  • the light shielding layer 426 is provided between the adjacent colored layers 425.
  • the light blocking layer 426 blocks light from the adjacent light emitting elements 360 and suppresses color mixing between the adjacent light emitting elements 360.
  • light leakage can be suppressed by providing the end portion of the colored layer 425 so as to overlap the light shielding layer 426.
  • As the light-blocking layer 426 a material that blocks light emitted from the light-emitting element 360 can be used.
  • the light-blocking layer 426 is preferably provided in a region other than the display portion 362 such as the circuit portion 364 because unintended light leakage due to guided light or the like can be suppressed.
  • An insulating layer 478 is formed on one surface of the resin layer 101. Further, an insulating layer 513 or the like is provided on the substrate 361 side of the light-emitting element 360. It is preferable to use a highly moisture-proof film for the insulating layers 478 and 513.
  • the light-emitting element 360, a transistor, and the like are preferably provided between the pair of highly moisture-proof insulating layers, so that impurities such as water can be prevented from entering these elements and the reliability of the display device is improved. Note that an insulating film with high moisture resistance may be provided so as to cover the colored layer 425 and the light-blocking layer 426.
  • the highly moisture-proof insulating film examples include a film containing nitrogen and silicon such as a silicon nitride film and a silicon nitride oxide film, and a film containing nitrogen and aluminum such as an aluminum nitride film.
  • a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, or the like may be used.
  • the moisture permeation amount of the highly moisture-proof insulating film is 1 ⁇ 10 ⁇ 5 [g / (m 2 ⁇ day)] or less, preferably 1 ⁇ 10 ⁇ 6 [g / (m 2 ⁇ day)] or less, More preferably, it is 1 ⁇ 10 ⁇ 7 [g / (m 2 ⁇ day)] or less, and further preferably 1 ⁇ 10 ⁇ 8 [g / (m 2 ⁇ day)] or less.
  • the connection unit 406 includes a wiring 365.
  • the wiring 365 can be formed using the same material and the same process as the source and drain of a transistor, for example.
  • the connection unit 406 is electrically connected to an external input terminal that transmits an external signal or potential to the circuit unit 364.
  • an FPC 372 is provided as an external input terminal is shown.
  • the FPC 372 and the connection portion 406 are electrically connected through the connection layer 419.
  • connection layer 419 various anisotropic conductive films (ACF: Anisotropic Conductive Film), anisotropic conductive pastes (ACP: Anisotropic Conductive Paste), and the like can be used.
  • ACF Anisotropic Conductive Film
  • ACP Anisotropic Conductive Paste
  • Element layer 100b, Element layer 200b The element layer 100b and the element layer 200b are stacked with an insulating layer 510 interposed therebetween. It can be said that the element layer 100a and the element layer 200b are reflective liquid crystal display devices to which a vertical electric field method is applied.
  • the element layer 100b includes a plurality of transistors, a capacitor element (not shown), a wiring 367, an insulating layer 511, an insulating layer 512, an insulating layer 513, an insulating layer 514, and the like on the substrate 351 side of the insulating layer 510.
  • the element layer 200b includes a liquid crystal element 340, a resin layer 201, an alignment film 564, an adhesive layer 517, an insulating layer 576, and the like on the substrate 361 side of the insulating layer 510.
  • a resin layer 202 is provided between the element layer 200 b and the adhesive layer 52.
  • the resin layer 201 and the resin layer 202 are bonded together by an adhesive layer 517.
  • a liquid crystal 563 is sealed in a region surrounded by the resin layer 201, the resin layer 202, and the adhesive layer 517.
  • a polarizing plate 599 is located on the outer surface of the substrate 361.
  • the resin layer 202 is provided with openings that overlap with the liquid crystal element 340 and the light emitting element 360.
  • the liquid crystal element 340 includes a conductive layer 311b, a conductive layer 561, a conductive layer 562, and a liquid crystal 563.
  • the conductive layer 311b and the conductive layer 561 are electrically connected and function as a pixel electrode.
  • the conductive layer 562 functions as a common electrode.
  • the alignment of the liquid crystal 563 can be controlled by an electric field generated between the conductive layers 561 and 562.
  • a resin layer 201 that functions as an alignment film is provided between the liquid crystal 563 and the conductive layer 561.
  • An alignment film 564 is provided between the liquid crystal 563 and the conductive layer 562.
  • the conductive layer 561 and the conductive layer 311b are stacked, and the insulating layer 510 is provided to cover the conductive layer 561 and the conductive layer 311b.
  • the surfaces of the insulating layer 510 and the conductive layer 561 on the substrate 361 side have substantially the same height.
  • a resin layer 201 is provided on the surfaces of the insulating layer 510 and the conductive layer 561 on the substrate 361 side.
  • the conductive layer 561 is provided so as to extend outside the conductive layer 311b. Part of the conductive layer 561 is provided so as to overlap with the light-emitting element 360.
  • An insulating layer 576, a conductive layer 562, an alignment film 564, and the like are provided so as to cover the resin layer 202.
  • a transistor 501 On the substrate 351 side of the insulating layer 510, a transistor 501, a transistor 503, a capacitor element (not shown) wiring 367, and the like are provided. Further, insulating layers such as an insulating layer 511, an insulating layer 512, an insulating layer 513, and an insulating layer 514 are provided on the substrate 351 side of the insulating layer 510. A colored layer 425 and a light shielding layer 426 are provided on the substrate 351 side of the insulating layer 514.
  • FIG. 37 illustrates an example in which one of the source and the drain of the transistor 503 and the conductive layer 311b are electrically connected to each other through a conductive layer formed by processing the same conductive film as the gate electrode of the transistor 503. ing.
  • the conductive layer 311b can have a flat surface on the viewing side even in a contact portion with one of the source and the drain of the transistor 503. Therefore, since the contact portion can also contribute to display, the aperture ratio can be improved.
  • the conductive layer that is not electrically connected to the conductive layer 311b may function as part of the signal line.
  • the conductive layer functioning as the gate of the transistor 503 may function as part of the scan line.
  • FIG. 37 shows a configuration in which a colored layer is not provided as an example of the display portion 362. Therefore, the liquid crystal element 340 is an element that performs monochrome gradation display.
  • FIG. 37 shows an example in which a transistor 501 is provided as an example of the circuit portion 366.
  • At least one of the insulating layer 512 and the insulating layer 513 that covers each transistor is preferably made of a material in which impurities such as water and hydrogen hardly diffuse.
  • a conductive material that reflects visible light is used for the conductive layer 311b, and a conductive material that transmits visible light is used for the conductive layer 562.
  • a linearly polarizing plate may be used as the polarizing plate 599, but a circularly polarizing plate may also be used.
  • a circularly-polarizing plate what laminated
  • a desired contrast may be realized by adjusting a cell gap, an alignment, a driving voltage, or the like of the liquid crystal element used for the liquid crystal element 340 in accordance with the type of the polarizing plate 599.
  • connection portion 506 is provided in a region near the end of the resin layer 201.
  • the connection portion 506 is provided with a conductive layer 581 functioning as a terminal.
  • the conductive layer 581 is electrically connected to the wiring 367 through an opening provided in the insulating layer 510.
  • the conductive layer 581 is provided with the upper surface exposed, and is electrically connected to the FPC 374 through the connection layer 519.
  • the connection portion 506 is formed by stacking a layer and a conductive layer 581 obtained by processing the same conductive film as the conductive layer 561.
  • the upper surface of the conductive layer 581 is provided so as to protrude from the height of the upper surface of the resin layer 201.
  • An opening is formed in the resin layer 201, a conductive layer 581 is formed so as to fill the opening, the resin layer 201 and the supporting substrate are separated, and then the resin layer 201 is thinned, whereby such a shape is obtained.
  • a conductive layer 581 can be formed.
  • the conductive layer 562 is electrically connected to the conductive layer provided on the resin layer 201 side by a connection body 543 in a portion near the end of the resin layer 202. Accordingly, a potential or a signal can be supplied to the conductive layer 562 from the FPC 374, IC, or the like disposed on the resin layer 201 side.
  • connection body 543 for example, conductive particles can be used.
  • conductive particles those obtained by coating the surface of particles such as organic resin or silica with a metal material can be used. It is preferable to use nickel or gold as the metal material because the contact resistance can be reduced. In addition, it is preferable to use particles in which two or more kinds of metal materials are coated in layers, such as further coating nickel with gold.
  • a material that is elastically deformed or plastically deformed is preferably used as the connection body 543 which is a conductive particle may have a shape crushed in the vertical direction as shown in FIG. By doing so, the contact area between the connection body 543 and the conductive layer electrically connected to the connection body 543 can be increased, the contact resistance can be reduced, and the occurrence of problems such as poor connection can be suppressed.
  • connection body 543 is preferably arranged so as to be covered with the adhesive layer 517.
  • the connection body 543 may be dispersed in the adhesive layer 517 before curing.
  • the conductive layer 581, the conductive layer 311 b, the conductive layer 561, and the like are located on a formation surface side of the transistor 503 and the like. Therefore, these conductive layers can also be called back electrodes.
  • a substrate having a flat surface can be used for the substrate included in the display panel.
  • a material that transmits the light is used for the substrate from which light from the display element is extracted.
  • materials such as glass, quartz, ceramic, sapphire, and organic resin can be used.
  • the display panel can be reduced in weight and thickness. Furthermore, a flexible display panel can be realized by using a flexible substrate.
  • the substrate on the side from which light emission is not extracted does not have to be translucent, a metal substrate or the like can be used in addition to the above-described substrates.
  • a metal substrate is preferable because it has high thermal conductivity and can easily conduct heat to the entire substrate, which can suppress a local temperature increase of the display panel.
  • the thickness of the metal substrate is preferably 10 ⁇ m or more and 400 ⁇ m or less, and more preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • the material constituting the metal substrate is not particularly limited, and for example, a metal such as aluminum, copper, or nickel, an aluminum alloy, an alloy such as stainless steel, or the like can be preferably used.
  • a substrate that has been subjected to insulation treatment by oxidizing the surface of the metal substrate or forming an insulating film on the surface may be used.
  • the insulating film may be formed by using a coating method such as a spin coating method or a dip method, an electrodeposition method, a vapor deposition method, or a sputtering method, or it is left in an oxygen atmosphere or heated, or an anodic oxidation method.
  • a coating method such as a spin coating method or a dip method, an electrodeposition method, a vapor deposition method, or a sputtering method, or it is left in an oxygen atmosphere or heated, or an anodic oxidation method.
  • an oxide film may be formed on the surface of the substrate.
  • Examples of the material having flexibility and transparency to visible light include, for example, glass having a thickness having flexibility, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and polyacrylonitrile resin. , Polyimide resin, polymethyl methacrylate resin, polycarbonate (PC) resin, polyethersulfone (PES) resin, polyamide resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyvinyl chloride resin, polytetrafluoroethylene (PTFE) resin Etc.
  • a material having a low thermal expansion coefficient is preferably used.
  • a polyamideimide resin, a polyimide resin, PET, or the like having a thermal expansion coefficient of 30 ⁇ 10 ⁇ 6 / K or less can be suitably used.
  • a substrate in which glass fiber is impregnated with an organic resin, or a substrate in which an inorganic filler is mixed with an organic resin to reduce the thermal expansion coefficient can be used. Since a substrate using such a material is light in weight, a display panel using the substrate can be lightweight.
  • the fibrous body uses high strength fibers of an organic compound or an inorganic compound.
  • the high-strength fiber specifically refers to a fiber having a high tensile modulus or Young's modulus, and representative examples include polyvinyl alcohol fiber, polyester fiber, polyamide fiber, polyethylene fiber, aramid fiber, Examples include polyparaphenylene benzobisoxazole fibers, glass fibers, and carbon fibers.
  • the glass fiber include glass fibers using E glass, S glass, D glass, Q glass, and the like.
  • a structure obtained by impregnating the fiber body with a resin and curing the resin may be used as a flexible substrate.
  • a structure made of a fibrous body and a resin is used as the flexible substrate, it is preferable because reliability against breakage due to bending or local pressing is improved.
  • glass or metal that is thin enough to be flexible can be used for the substrate.
  • a composite material in which glass and a resin material are bonded to each other with an adhesive layer may be used.
  • the barrier property against water and oxygen can be improved and a highly reliable display panel can be obtained.
  • a hard coat layer for example, silicon nitride, aluminum oxide
  • a layer of a material that can disperse the pressure for example, aramid resin
  • an insulating film with low water permeability may be stacked over a flexible substrate.
  • an inorganic insulating material such as silicon nitride, silicon oxynitride, silicon nitride oxide, aluminum oxide, or aluminum nitride can be used.
  • the transistor includes a conductive layer that functions as a gate electrode, a semiconductor layer, a conductive layer that functions as a source electrode, a conductive layer that functions as a drain electrode, and an insulating layer that functions as a gate insulating layer.
  • the above shows the case where a bottom-gate transistor is applied.
  • the structure of the transistor included in the display device of one embodiment of the present invention there is no particular limitation on the structure of the transistor included in the display device of one embodiment of the present invention.
  • a planar transistor, a staggered transistor, or an inverted staggered transistor may be used.
  • a top-gate or bottom-gate transistor structure may be employed.
  • gate electrodes may be provided above and below the channel.
  • crystallinity of a semiconductor material used for the transistor there is no particular limitation on the crystallinity of a semiconductor material used for the transistor, and any of an amorphous semiconductor and a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partially including a crystal region) is used. May be used. It is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
  • An oxide semiconductor can be used as a semiconductor material used for the transistor.
  • an oxide semiconductor containing indium can be used.
  • a transistor including an oxide semiconductor having a band gap larger than that of silicon can hold charge accumulated in a capacitor connected in series with the transistor for a long time because of the low off-state current. .
  • the driving circuit can be stopped while maintaining the gradation of each pixel. As a result, a display device with extremely reduced power consumption can be realized.
  • the semiconductor layer is represented by an In-M-Zn-based oxide containing at least indium, zinc, and M (metal such as aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, tin, neodymium, or hafnium). It is preferable to include a film. In addition, in order to reduce variation in electrical characteristics of the transistor including the oxide semiconductor, a stabilizer is preferably included together with the transistor.
  • stabilizers include the metals described in M above, and examples thereof include lanthanoids such as praseodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • lanthanoids such as praseodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • an oxide semiconductor included in the semiconductor layer for example, an In—Ga—Zn-based oxide, an In—Al—Zn-based oxide, an In—Sn—Zn-based oxide, an In—Hf—Zn-based oxide, an In— La-Zn oxide, In-Ce-Zn oxide, In-Pr-Zn oxide, In-Nd-Zn oxide, In-Sm-Zn oxide, In-Eu-Zn oxide In-Gd-Zn-based oxide, In-Tb-Zn-based oxide, In-Dy-Zn-based oxide, In-Ho-Zn-based oxide, In-Er-Zn-based oxide, In-Tm -Zn oxide, In-Yb-Zn oxide, In-Lu-Zn oxide, In-Sn-Ga-Zn oxide, In-Hf-Ga-Zn oxide, In-Al- Ga-Zn-based oxide, In-Sn-Al-Zn-based oxide, In-Sn-Hf-Zn
  • the In—Ga—Zn-based oxide means an oxide containing In, Ga, and Zn as main components, and the ratio of In, Ga, and Zn is not limited. Moreover, metal elements other than In, Ga, and Zn may be contained.
  • the semiconductor layer and the conductive layer may have the same metal element among the above oxides.
  • Manufacturing costs can be reduced by using the same metal element for the semiconductor layer and the conductive layer.
  • the manufacturing cost can be reduced by using metal oxide targets having the same metal composition.
  • an etching gas or an etching solution for processing the semiconductor layer and the conductive layer can be used in common.
  • the semiconductor layer and the conductive layer may have different compositions even if they have the same metal element. For example, a metal element in a film may be detached during a manufacturing process of a transistor and a capacitor to have a different metal composition.
  • the oxide semiconductor constituting the semiconductor layer preferably has an energy gap of 2 eV or more, preferably 2.5 eV or more, more preferably 3 eV or more. In this manner, off-state current of a transistor can be reduced by using an oxide semiconductor with a wide energy gap.
  • the atomic ratio of the metal elements of the sputtering target used for forming the In-M-Zn oxide is In ⁇ M, Zn It is preferable to satisfy ⁇ M.
  • the atomic ratio of the semiconductor layer to be formed includes a variation of plus or minus 40% of the atomic ratio of the metal element contained in the sputtering target.
  • the bottom-gate transistor exemplified in this embodiment is preferable because the number of manufacturing steps can be reduced.
  • a material having low heat resistance can be used as a material for a wiring, an electrode, or a substrate below the semiconductor layer, which can be formed at a lower temperature than polycrystalline silicon.
  • a glass substrate having an extremely large area can be suitably used.
  • Conductive layer In addition to the gate, source, and drain of a transistor, materials that can be used for conductive layers such as various wirings and electrodes that constitute a display device include aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, A metal such as tantalum or tungsten, or an alloy containing the same as a main component can be given. A film containing any of these materials can be used as a single layer or a stacked structure.
  • Two-layer structure to stack, two-layer structure to stack copper film on titanium film, two-layer structure to stack copper film on tungsten film, titanium film or titanium nitride film, and aluminum film or copper film on top of it A three-layer structure for forming a titanium film or a titanium nitride film thereon, a molybdenum film or a molybdenum nitride film, and an aluminum film or a copper film stacked thereon, and a molybdenum film or a There is a three-layer structure for forming a molybdenum nitride film.
  • an oxide such as indium oxide, tin oxide, or zinc oxide may be used. Further, it is
  • a conductive layer (a conductive layer functioning as a pixel electrode or a common electrode) included in a display element (a liquid crystal element, a light-emitting element, or another display element) reflects a conductive material that transmits visible light or reflects visible light.
  • a conductive material can be used.
  • a material containing one kind selected from indium, zinc, and tin may be used.
  • a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, or titanium, an alloy including these metal materials, or a nitride of these metal materials (for example, Titanium nitride) can also be used by forming it thin enough to have translucency.
  • a stacked film of the above materials can be used as a conductive layer.
  • a film containing graphene can also be used. The film containing graphene can be formed, for example, by reducing a film containing graphene oxide formed in a film shape.
  • Examples of the conductive material that reflects visible light include aluminum, silver, and alloys containing these metal materials.
  • a metal material such as gold, platinum, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, or palladium, or an alloy containing these metal materials can be used.
  • lanthanum, neodymium, germanium, or the like may be added to the metal material or alloy.
  • Alloys containing aluminum such as aluminum and titanium alloys, aluminum and nickel alloys, aluminum and neodymium alloys, aluminum, nickel, and lanthanum alloys (Al-Ni-La), silver and copper alloys,
  • An alloy containing silver such as an alloy of silver, palladium, and copper (also referred to as Ag-Pd-Cu, APC), an alloy of silver and magnesium, or the like may be used.
  • An alloy containing silver and copper is preferable because of its high heat resistance. Furthermore, oxidation can be suppressed by stacking a metal film or a metal oxide film in contact with the aluminum film or the aluminum alloy film. Examples of materials for such metal films and metal oxide films include titanium and titanium oxide.
  • the conductive film that transmits visible light and a film made of a metal material may be stacked.
  • a laminated film of silver and indium tin oxide, a laminated film of an alloy of silver and magnesium and indium tin oxide, or the like can be used.
  • the conductive layers may be formed using a vapor deposition method or a sputtering method, respectively. In addition, it can be formed using a discharge method such as an inkjet method, a printing method such as a screen printing method, or a plating method.
  • Insulating layer As an insulating material that can be used for each insulating layer, for example, polyimide, acrylic, epoxy, silicone resin, and the like, and inorganic insulating materials such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, and aluminum oxide are used. You can also
  • the light-emitting element is preferably provided between a pair of insulating films with low water permeability. Thereby, impurities such as water can be prevented from entering the light emitting element, and a decrease in reliability of the apparatus can be suppressed.
  • the low water-permeable insulating film examples include a film containing nitrogen and silicon such as a silicon nitride film and a silicon nitride oxide film, and a film containing nitrogen and aluminum such as an aluminum nitride film.
  • a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, or the like may be used.
  • the water vapor transmission rate of an insulating film with low water permeability is 1 ⁇ 10 ⁇ 5 [g / (m 2 ⁇ day)] or less, preferably 1 ⁇ 10 ⁇ 6 [g / (m 2 ⁇ day)] or less, More preferably, it is 1 ⁇ 10 ⁇ 7 [g / (m 2 ⁇ day)] or less, and further preferably 1 ⁇ 10 ⁇ 8 [g / (m 2 ⁇ day)] or less.
  • Display elements As a display element included in the first pixel located on the display surface side, an element that reflects and displays external light can be used. Since such an element does not have a light source, power consumption during display can be extremely reduced. As the display element included in the first pixel, a reflective liquid crystal element can be typically used. Alternatively, as a display element included in the first pixel, a shutter type MEMS (Micro Electro Mechanical Systems) element, an optical interference type MEMS element, a microcapsule type, an electrophoretic type, an electrowetting type, an electronic powder fluid ( A device to which a registered trademark method or the like is applied can be used.
  • a shutter type MEMS Micro Electro Mechanical Systems
  • the display element included in the second pixel located on the side opposite to the display surface side has a light source, and an element that displays using light from the light source can be used.
  • the light emitted from such a pixel is not affected by the brightness or chromaticity of the light, and therefore has high color reproducibility (wide color gamut) and high contrast, that is, vivid display. be able to.
  • a display element included in the second pixel for example, a self-luminous light emitting element such as an OLED (Organic Light Emitting Diode), an LED (Light Emitting Diode), or a QLED (Quantum-dot Light Emitting Diode) can be used.
  • a combination of a backlight that is a light source and a transmissive liquid crystal element that controls the amount of light transmitted through the backlight may be used.
  • liquid crystal element for example, a liquid crystal element to which a vertical alignment (VA: Vertical Alignment) mode is applied can be used.
  • VA Vertical Alignment
  • MVA Multi-Domain Vertical Alignment
  • PVA Power Planed Vertical Alignment
  • ASV Advanced Super View
  • liquid crystal elements to which various modes are applied can be used as the liquid crystal elements.
  • VA mode Transmission Nematic
  • IPS In-Plane-Switching
  • FFS Ringe Field Switching
  • ASM Analy Symmetrical Aligned Micro-cell
  • FLC Ferroelectric Liquid Crystal
  • AFLC Antiferroelectric Liquid Crystal
  • the liquid crystal element is an element that controls transmission or non-transmission of light by an optical modulation action of liquid crystal.
  • the optical modulation action of the liquid crystal is controlled by an electric field applied to the liquid crystal (including a horizontal electric field, a vertical electric field, or an oblique electric field).
  • a thermotropic liquid crystal a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal (PDLC), a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like is used.
  • PDLC polymer dispersed liquid crystal
  • ferroelectric liquid crystal an antiferroelectric liquid crystal, or the like
  • These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, and the like depending on conditions.
  • liquid crystal material either a positive type liquid crystal or a negative type liquid crystal may be used, and an optimal liquid crystal material may be used according to the mode and design to be applied.
  • an alignment film can be provided to control the alignment of the liquid crystal.
  • liquid crystal exhibiting a blue phase for which an alignment film is unnecessary may be used.
  • the blue phase is one of the liquid crystal phases.
  • a liquid crystal composition mixed with several percent by weight or more of a chiral agent is used for the liquid crystal layer in order to improve the temperature range.
  • a liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral agent has a short response speed and is optically isotropic.
  • a liquid crystal composition including a liquid crystal exhibiting a blue phase and a chiral agent does not require alignment treatment and has a small viewing angle dependency. Further, since it is not necessary to provide an alignment film, a rubbing process is not required, so that electrostatic breakdown caused by the rubbing process can be prevented, and defects or breakage of the liquid crystal display device during the manufacturing process can be reduced. .
  • a reflective liquid crystal element can be used.
  • a conductive material that transmits visible light can be used for the electrode positioned on the viewing side, and a conductive material that reflects visible light can be used for the electrode positioned on the side opposite to the viewing side.
  • a polarizing plate is provided on the display surface side. Separately from this, it is preferable to arrange a light diffusing plate on the display surface side because the visibility can be improved.
  • the light-emitting element an element capable of self-emission can be used, and an element whose luminance is controlled by current or voltage is included in its category.
  • an LED, a QLED, an organic EL element, an inorganic EL element, or the like can be used.
  • a top emission type light emitting element as the light emitting element.
  • the conductive material that transmits visible light is used for the electrode from which light is extracted.
  • the said electroconductive material which reflects the said visible light for the electrode of the side which does not take out light is preferable to use.
  • the EL layer has at least a light emitting layer.
  • the EL layer is a layer other than the light-emitting layer, such as a substance having a high hole injection property, a substance having a high hole transport property, a hole blocking material, a substance having a high electron transport property, a substance having a high electron injection property, or a bipolar property.
  • a layer including a substance (a substance having a high electron transporting property and a high hole transporting property) and the like may be further included.
  • the EL layer can use either a low molecular compound or a high molecular compound, and may contain an inorganic compound.
  • the layers constituting the EL layer can be formed by a method such as a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an ink jet method, or a coating method.
  • the EL layer includes two or more kinds of light emitting substances.
  • white light emission can be obtained by selecting the light emitting material so that the light emission of each of the two or more light emitting materials has a complementary color relationship.
  • a light emitting material that emits light such as R (red), G (green), B (blue), Y (yellow), and O (orange), or spectral components of two or more colors of R, G, and B It is preferable that 2 or more are included among the luminescent substances which show light emission containing.
  • a light-emitting element whose emission spectrum from the light-emitting element has two or more peaks in a wavelength range of visible light (for example, 350 nm to 750 nm).
  • the emission spectrum of the material having a peak in the yellow wavelength region is preferably a material having spectral components in the green and red wavelength regions.
  • the EL layer preferably has a structure in which a light-emitting layer including a light-emitting material that emits one color and a light-emitting layer including a light-emitting material that emits another color are stacked.
  • the plurality of light emitting layers in the EL layer may be stacked in contact with each other, or may be stacked through a region not including any light emitting material.
  • a region including the same material (for example, a host material or an assist material) as the fluorescent light emitting layer or the phosphorescent light emitting layer and not including any light emitting material is provided between the fluorescent light emitting layer and the phosphorescent light emitting layer. Also good. This facilitates the production of the light emitting element and reduces the driving voltage.
  • the light-emitting element may be a single element having one EL layer or a tandem element in which a plurality of EL layers are stacked with a charge generation layer interposed therebetween.
  • the above-described light-emitting layer and a layer containing a substance having a high hole-injecting property, a substance having a high hole-transporting property, a substance having a high electron-transporting property, a substance having a high electron-injecting property, a bipolar substance may have an inorganic compound such as a quantum dot or a polymer compound (oligomer, dendrimer, polymer, etc.).
  • a quantum dot can be used for a light emitting layer to function as a light emitting material.
  • a colloidal quantum dot material an alloy type quantum dot material, a core / shell type quantum dot material, a core type quantum dot material, or the like can be used.
  • a material including an element group of Group 12 and Group 16, Group 13 and Group 15, or Group 14 and Group 16 may be used.
  • a quantum dot material containing an element such as cadmium, selenium, zinc, sulfur, phosphorus, indium, tellurium, lead, gallium, arsenic, or aluminum may be used.
  • the above can be used for a conductive material that transmits visible light and a conductive material that reflects visible light, which can be used for an electrode of a light-emitting element.
  • Adhesive layer As the adhesive layer, various curable adhesives such as an ultraviolet curable photocurable adhesive, a reactive curable adhesive, a thermosetting adhesive, and an anaerobic adhesive can be used.
  • these adhesives include epoxy resins, acrylic resins, silicone resins, phenol resins, polyimide resins, imide resins, PVC (polyvinyl chloride) resins, PVB (polyvinyl butyral) resins, EVA (ethylene vinyl acetate) resins, and the like.
  • a material with low moisture permeability such as an epoxy resin is preferable.
  • a two-component mixed resin may be used.
  • an adhesive sheet or the like may be used.
  • the resin may contain a desiccant.
  • a substance that adsorbs moisture by chemical adsorption such as an alkaline earth metal oxide (such as calcium oxide or barium oxide)
  • an alkaline earth metal oxide such as calcium oxide or barium oxide
  • a substance that adsorbs moisture by physical adsorption such as zeolite or silica gel
  • the inclusion of a desiccant is preferable because impurities such as moisture can be prevented from entering the element and the reliability of the display panel is improved.
  • the light extraction efficiency can be improved by mixing a filler having a high refractive index or a light scattering member with the resin.
  • a filler having a high refractive index or a light scattering member for example, titanium oxide, barium oxide, zeolite, zirconium, or the like can be used.
  • connection layer As the connection layer, an anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Conductive Paste), or the like can be used.
  • ACF Anisotropic Conductive Film
  • ACP Anisotropic Conductive Paste
  • Examples of materials that can be used for the colored layer include metal materials, resin materials, resin materials containing pigments or dyes, and the like.
  • the material that can be used for the light-shielding layer include carbon black, titanium black, metal, metal oxide, and composite oxide containing a solid solution of a plurality of metal oxides.
  • the light shielding layer may be a film containing a resin material or a thin film of an inorganic material such as a metal.
  • a stacked film of a film containing a material for the colored layer can be used for the light shielding layer.
  • a stacked structure of a film including a material used for a colored layer that transmits light of a certain color and a film including a material used for a colored layer that transmits light of another color can be used. It is preferable to use a common material for the coloring layer and the light-shielding layer because the apparatus can be shared and the process can be simplified.
  • FIG. 38 is different from FIG. 37 in that the structure of the transistor and the structure of the resin layer 202 are different, and that a colored layer 565, a light shielding layer 566, and an insulating layer 567 are provided.
  • the transistor 401, the transistor 403, and the transistor 501 each have a second gate electrode.
  • a transistor having a pair of gates is preferably used as the transistor provided in the circuit portion 364 or the circuit portion 366, the transistor that controls current flowing in the light-emitting element 360, and the like.
  • the resin layer 202 is provided with an opening overlapping the liquid crystal element 340 and an opening overlapping the light emitting element 360 separately. Thereby, the reflectance of the liquid crystal element 340 can be improved.
  • a light shielding layer 566 and a coloring layer 565 are provided on the surface of the insulating layer 576 on the liquid crystal element 340 side.
  • the colored layer 565 is provided so as to overlap with the liquid crystal element 340.
  • the element layer 200b can perform color display.
  • the light-blocking layer 566 has an opening that overlaps with the liquid crystal element 340 and an opening that overlaps with the light-emitting element 360. Thereby, color mixing between adjacent pixels can be suppressed, and a display device with high color reproducibility can be realized.
  • FIG. 39 shows an example in which a top-gate transistor is applied to each transistor.
  • parasitic capacitance can be reduced, so that a display frame frequency can be increased.
  • it can be suitably used for a large display panel of 8 inches or more.
  • FIG. 39 shows an example in which a top-gate transistor having a second gate electrode is applied to the transistor 401, the transistor 402, the transistor 403, and the transistor 501.
  • the transistor on the element layer 100a side includes a conductive layer 491 over the insulating layer 478.
  • An insulating layer 418 is provided to cover the conductive layer 491.
  • the transistor on the element layer 100 b side includes a conductive layer 591 over the insulating layer 510.
  • An insulating layer 578 is provided so as to cover the conductive layer 591.
  • FIG. 40 is a schematic perspective view of a display device 300 according to one embodiment of the present invention.
  • the display device 300 has a structure in which a substrate 351 and a substrate 361 are attached to each other.
  • the substrate 361 is indicated by a broken line.
  • the display device 300 includes a display unit 362, a circuit unit 364, a wiring 365, a circuit unit 366, a wiring 367, and the like. Between the substrate 351 and the substrate 361, for example, a circuit portion 364, a wiring 365, a circuit portion 366, a wiring 367, a conductive layer 311b functioning as a pixel electrode, and the like are provided.
  • 40 shows an example in which an IC 373 and an FPC 372 are mounted on the substrate 361, and an IC 375 and an FPC 374 are mounted on the substrate 351, respectively. Therefore, the structure illustrated in FIG. 40 can also be referred to as a display module including the display device 300, the IC 373, the FPC 372, the IC 375, and the FPC 374.
  • Cross-section configuration example 2 41, part of the region including the FPC 372, part of the region including the circuit portion 364, part of the region including the display portion 362, and part of the region including the circuit portion 366 of the display device illustrated in FIG. , And an example of a cross section when part of a region including the FPC 374 is cut.
  • a resin layer 101 is provided between the element layer 100a and the element layer 100b.
  • a resin layer 202 is provided between the element layer 200 b and the substrate 361.
  • the element layer 200 a and the substrate 351 are bonded by an adhesive layer 417.
  • the resin layer 202 and the substrate 361 are bonded by an adhesive layer 52.
  • the element layer 100a includes an insulating layer 478, a plurality of transistors, a capacitor 405, a wiring 365, an insulating layer 411, an insulating layer 412, an insulating layer 413, an insulating layer 414, and the like on the substrate 351 side of the resin layer 101.
  • the element layer 200a includes an insulating layer 415, a light-emitting element 360, a spacer 416, a coloring layer 425, and the like.
  • the light-emitting element 360 includes a conductive layer 421, an EL layer 422, and a conductive layer 423.
  • the light emitting element 360 may have an optical adjustment layer 424.
  • the light-emitting element 360 has a bottom emission structure that emits light toward the conductive layer 421.
  • the light emitting element 360 is covered with an insulating layer 418.
  • an adhesive layer 417 that covers the insulating layer 418 and the like and adheres the substrate 351 is provided.
  • the colored layer 425 overlaps with the light emitting element 360.
  • the coloring layer 425 is provided between the insulating layer 413 and the insulating layer 414.
  • the spacer 416 is provided in a portion that does not overlap with the light emitting element 360.
  • FIG. 41 shows the case where there is a slight gap between the insulating layer 418 over the spacer 416 and the substrate 351, but these may be in contact with each other.
  • the spacer 416 is provided on the resin layer 101 side, but may be provided on the substrate 351 side.
  • a light shielding layer may be provided closer to the resin layer 101 than the insulating layer 415.
  • it can be provided over the same surface as the colored layer 425.
  • light leakage can be suppressed by providing the end portion of the colored layer 425 so as to overlap the light shielding layer.
  • the light-blocking layer is preferably provided in a region other than the display portion 362 such as the circuit portion 364 because unintended light leakage due to guided light or the like can be suppressed.
  • An insulating layer 478 is formed on one surface of the resin layer 101. Further, an insulating layer 418 and the like are provided so as to cover the light-emitting element 360. A highly moisture-proof film is preferably used for the insulating layers 478 and 418.
  • Element layer 100b, Element layer 200b The element layer 100b and the element layer 200b are stacked with an insulating layer 510 interposed therebetween. It can be said that the element layer 100a and the element layer 200b are reflective liquid crystal display devices to which a vertical electric field method is applied.
  • the element layer 100b includes a plurality of transistors, a capacitor element (not shown), a wiring 367, an insulating layer 511, an insulating layer 512, an insulating layer 513, an insulating layer 514, and the like on the substrate 351 side of the insulating layer 510.
  • the element layer 200b includes a liquid crystal element 340, a resin layer 201, an alignment film 564, an adhesive layer 517, an insulating layer 576, and the like on the substrate 361 side of the insulating layer 510.
  • a resin layer 202 is provided between the element layer 200 b and the adhesive layer 52.
  • an adhesive layer 518 that overlaps with the connection portion 406 included in the element layer 100a is provided outside the adhesive layer 517.
  • FIG. 42 is mainly different from FIG. 41 in that the structure of the transistor is different, the resin layer 101 and the resin layer 202 are not provided, and the colored layer 565 and the light shielding layer 566 are provided.
  • the transistor 401, the transistor 403, and the transistor 501 each have a second gate electrode.
  • a transistor having a pair of gates is preferably used as the transistor provided in the circuit portion 364 or the circuit portion 366, the transistor that controls current flowing in the light-emitting element 360, and the like.
  • a light shielding layer 566 and a colored layer 565 are provided between the insulating layer 576 and the substrate 361.
  • the colored layer 565 is provided so as to overlap with the liquid crystal element 340.
  • the element layer 200b can perform color display.
  • the light-blocking layer 566 has an opening that overlaps with the liquid crystal element 340 and an opening that overlaps with the light-emitting element 360. Thereby, color mixing between adjacent pixels can be suppressed, and a display device with high color reproducibility can be realized.
  • the thickness of the display device can be reduced.
  • the thickness of the colored layer 425, the colored layer 565, and the like can be made uniform, and display quality can be improved.
  • FIG. 43 shows an example in which a top-gate transistor is applied to each transistor.
  • parasitic capacitance can be reduced, so that a display frame frequency can be increased.
  • it can be suitably used for a large display panel of 8 inches or more.
  • FIG. 43 shows an example in which a top-gate transistor having a second gate electrode is applied to the transistor 401, the transistor 403, and the transistor 501.
  • the element layer 100 a includes an insulating layer 479 between the adhesive layer 50 and the insulating layer 478.
  • a conductive layer 491 functioning as a second gate of the transistor is provided between the insulating layers 479 and 478.
  • An insulating layer 478 is provided to cover the conductive layer 491.
  • the element layer 100b includes a conductive layer 591 functioning as a second gate of the transistor between the insulating layer 510 and the insulating layer 578.
  • An insulating layer 578 is provided so as to cover the conductive layer 591.
  • a display module 8000 illustrated in FIG. 44 includes a touch panel 8004 connected to the FPC 8003, a display panel 8006 connected to the FPC 8005, a frame 8009, a printed circuit board 8010, and a battery 8011 between an upper cover 8001 and a lower cover 8002. .
  • the display device manufactured using one embodiment of the present invention can be used for the display panel 8006, for example.
  • the shape and dimensions of the upper cover 8001 and the lower cover 8002 can be changed as appropriate in accordance with the sizes of the touch panel 8004 and the display panel 8006.
  • a resistive film type or capacitive type touch panel can be used by being superimposed on the display panel 8006.
  • the touch panel 8004 may be omitted, and the display panel 8006 may have a touch panel function.
  • the frame 8009 has a function as an electromagnetic shield for blocking electromagnetic waves generated by the operation of the printed board 8010 in addition to the protective function of the touch panel 8004.
  • the frame 8009 may have a function as a heat sink.
  • the printed circuit board 8010 has a power supply circuit, a signal processing circuit for outputting a video signal and a clock signal.
  • a power supply for supplying power to the power supply circuit an external commercial power supply may be used, or a power supply using a battery 8011 provided separately may be used.
  • the battery 8011 can be omitted when a commercial power source is used.
  • the display module 8000 may be additionally provided with a member such as a polarizing plate, a retardation plate, and a prism sheet.
  • the display device of one embodiment of the present invention can achieve high visibility regardless of the intensity of external light. Therefore, it can be suitably used for a portable electronic device, a wearable electronic device (wearable device), an electronic book terminal, and the like.
  • the portable information terminal 800 includes a housing 801, a housing 802, a display portion 803, a display portion 804, a hinge portion 805, and the like.
  • the housing 801 and the housing 802 are connected by a hinge portion 805.
  • the portable information terminal 800 can open the housing 801 and the housing 802 as illustrated in FIG. 45B from the folded state as illustrated in FIG.
  • document information can be displayed on the display portion 803 and the display portion 804, and can also be used as an electronic book terminal.
  • still images and moving images can be displayed on the display portion 803 and the display portion 804.
  • the portable information terminal 800 can be folded when being carried, it has excellent versatility.
  • housing 801 and the housing 802 may include a power button, an operation button, an external connection port, a speaker, a microphone, and the like.
  • FIG. 45C shows an example of a portable information terminal.
  • a portable information terminal 810 illustrated in FIG. 45C includes a housing 811, a display portion 812, operation buttons 813, an external connection port 814, a speaker 815, a microphone 816, a camera 817, and the like.
  • the display portion 812 includes the display device of one embodiment of the present invention.
  • the portable information terminal 810 includes a touch sensor in the display unit 812. Any operation such as making a call or inputting characters can be performed by touching the display portion 812 with a finger or a stylus.
  • the operation button 813 by operating the operation button 813, the power ON / OFF operation and the type of image displayed on the display unit 812 can be switched.
  • the mail creation screen can be switched to the main menu screen.
  • the orientation (portrait or landscape) of the portable information terminal 810 is determined, and the screen display orientation of the display unit 812 is changed. It can be switched automatically.
  • the screen display orientation can be switched by touching the display portion 812, operating the operation button 813, or inputting voice using the microphone 816.
  • the portable information terminal 810 has one or a plurality of functions selected from, for example, a telephone, a notebook, an information browsing device, or the like. Specifically, it can be used as a smartphone.
  • the portable information terminal 810 can execute various applications such as mobile phone, electronic mail, text browsing and creation, music playback, video playback, Internet communication, and games.
  • FIG. 45D shows an example of a camera.
  • the camera 820 includes a housing 821, a display portion 822, operation buttons 823, a shutter button 824, and the like.
  • a removable lens 826 is attached to the camera 820.
  • the display portion 822 includes the display device of one embodiment of the present invention.
  • the camera 820 is configured such that the lens 826 can be removed from the housing 821 and replaced, but the lens 826 and the housing may be integrated.
  • the camera 820 can capture a still image or a moving image by pressing the shutter button 824.
  • the display portion 822 has a function as a touch panel and can capture an image by touching the display portion 822.
  • the camera 820 can be separately equipped with a strobe device, a viewfinder, and the like. Alternatively, these may be incorporated in the housing 821.
  • 46A and 46B show the structural models of the two types of display devices used for the calculation.
  • Model 1 and Model 2 shown in FIGS. 46A and 46B are the same in that a reflective liquid crystal element (LC) and an organic EL element (OLED) are stacked between a pair of glass substrates. I'm doing it.
  • Model 1 has a configuration in which a control circuit (Control Circuit) for driving LC and OLED is arranged in the same layer.
  • a control circuit for driving the LC and a control circuit for driving the OLED are arranged in different layers, and the OLED is provided therebetween.
  • the OLED has a bottom emission type in Model 1 and a top emission type in Model 2.
  • Model 2 since a control circuit can be separately provided in addition to using a top emission type element for the OLED, the design flexibility of the control circuit is high and miniaturization is easy.
  • the degree of freedom in designing the control circuit is Model 2 and that, for each of LC and OLED, it is necessary to arrange a control circuit, and it is necessary to provide a region that transmits the light of OLED. Compared to lower.
  • FIG. 47A shows an example of a control circuit for OLED in Model1.
  • the OLED current control transistor M2 is provided with two gates, the two gates cannot be connected. It is configured to connect with the source.
  • FIG. 47B shows an example of a control circuit for OLED in Model2. Even with the same definition as Model 1, since the available area is large in Model 2, a dual gate structure in which the two gates of the OLED driving transistor M2 are connected can be realized. Since the driving transistor has a dual gate structure, the saturation voltage is reduced, so that power consumption can be reduced. Further, FIG. 47B shows an example in which an initialization transistor M3 is provided.
  • an oxidation current that can reduce leakage current in an off state (also referred to as off-current) to about 10 ⁇ 24 A per channel width of 1 ⁇ m. It is preferable to use a transistor including a physical semiconductor. Accordingly, it is possible to drive at a low frame frequency (for example, 1 Hz or less) without degrading display quality, and power consumption can be reduced.
  • Model 1 and Model 2 the results of simulation of the current flowing through the OLED when the OLED and LC data are rewritten will be described.
  • the simulation estimated the value of the current flowing through the OLED when the potential of the scanning line of the OLED and the potential of the scanning line of the LC were changed from a low potential to a high potential.
  • FIG. 48 (A) shows the simulation results for Model1.
  • Model 1 it can be confirmed that current is instantaneously flowing in the OLED due to noise from the scanning line of the LC. Since this is an extremely short time, it is not visually recognized at a normal frame frequency (for example, 60 Hz), but may be visually recognized as flicker at a low frame frequency.
  • a normal frame frequency for example, 60 Hz
  • Model 2 since the sealing resin (thickness of about 3 ⁇ m) is provided between the control circuits of the LC and the OLED, these distances can be separated. Furthermore, the cathode of the OLED present between the two control circuits functions as a shield against noise. As a result, the configuration of Model 2 can suppress the influence of noise as compared with Model 1.
  • FIG. 48B shows the simulation result for Model2. It can be confirmed that Model 2 is hardly affected by noise as compared to Model 1.
  • a display device of one embodiment of the present invention was manufactured.
  • a control circuit for OLED and a top emission type light emitting element (OLED) were formed on a glass substrate.
  • OLED top emission type light emitting element
  • an oxide semiconductor was applied to the semiconductor layer.
  • FIG. 47B was applied to the control circuit.
  • a release layer, an insulating layer, a control circuit for LC, and a colored layer for OLED were sequentially formed on another glass substrate.
  • an oxide semiconductor was applied to the semiconductor layer in the transistor included in the LC control circuit.
  • a stacked film of a tungsten film and a tungsten oxide film is used as the separation layer, and silicon oxide is used as the insulating layer.
  • the two substrates were bonded with a sealing resin.
  • the glass substrate was removed by peeling between the peeling layer and the insulating layer.
  • FIG. 49D another glass substrate on which a colored layer for LC is formed is prepared, and this glass substrate and a glass substrate provided with an OLED or the like are attached with a liquid crystal sandwiched therebetween.
  • the display device was manufactured through the above steps.
  • Table 1 shows the specifications of the manufactured display device.
  • the manufactured display device has a higher definition of OLED than LC. This is intended to increase the aperture ratio of the reflective LC and to further improve the visibility in a bright place.
  • the OLED uses a yellow (Y) sub-pixel in addition to the three RGB colors to reduce power consumption.
  • FIGS. 50 (A) and 50 (B) show display states in a bright place and a dark place, respectively. Thus, it was confirmed that high visibility was obtained in either state.
  • by displaying the OLED and the LC at the same time for example, when used indoors, it is possible to display with the OLED supplementing in an environment where the illuminance is insufficient.
  • both the OLED and the LC are driven simultaneously, a good display with low power consumption and no flickering can be performed.

Abstract

In order to reduce the power consumption of a display device, to display video with high display quality irrespective of the usage environment, and to provide a lightweight display device that is not susceptible to breakage, the present invention provides a display device comprising a first transistor connected to a reflective liquid crystal element, a second transistor connect to a light-emitting element, a first insulation layer, a second insulation layer, and a first adhesive layer. The first insulation layer is positioned between the liquid crystal element and the first transistor, the first transistor is positioned between the first insulation layer and the first adhesive layer, and the second transistor and the light-emitting element are positioned between the second insulation layer and the first adhesive layer. The first transistor is provided to the first adhesive layer-side surface of the first insulation layer. The second transistor is provided to the first adhesive layer-side surface of the second insulation layer. The liquid crystal element reflects light to the side opposite to the first insulation layer, and the light-emitting element emits light towards the first adhesive layer.

Description

表示装置Display device
 本発明の一態様は、表示装置に関する。 One embodiment of the present invention relates to a display device.
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、又はそれらの製造方法、を一例として挙げることができる。 Note that one embodiment of the present invention is not limited to the above technical field. Technical fields of one embodiment of the present invention disclosed in this specification and the like include semiconductor devices, display devices, light-emitting devices, power storage devices, memory devices, electronic devices, lighting devices, input devices, input / output devices, and driving methods thereof , Or a method for producing them, can be mentioned as an example.
 なお、本明細書等において、半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタ、半導体回路、演算装置、記憶装置等は半導体装置の一態様である。また、撮像装置、電気光学装置、発電装置(薄膜太陽電池、有機薄膜太陽電池等を含む)、及び電子機器は半導体装置を有している場合がある。 Note that in this specification and the like, a semiconductor device refers to all devices that can function by utilizing semiconductor characteristics. A transistor, a semiconductor circuit, an arithmetic device, a memory device, or the like is one embodiment of a semiconductor device. In addition, an imaging device, an electro-optical device, a power generation device (including a thin film solar cell, an organic thin film solar cell, and the like) and an electronic device may include a semiconductor device.
 表示装置の一つとして、液晶素子を備える液晶表示装置がある。例えば、画素電極をマトリクス状に配置し、画素電極の各々に接続するスイッチング素子としてトランジスタを用いたアクティブマトリクス型液晶表示装置が注目を集めている。 There is a liquid crystal display device including a liquid crystal element as one of display devices. For example, an active matrix liquid crystal display device in which pixel electrodes are arranged in a matrix and a transistor is used as a switching element connected to each pixel electrode has attracted attention.
 例えば、画素電極の各々に接続するスイッチング素子として、金属酸化物をチャネル形成領域とするトランジスタを用いるアクティブマトリクス型液晶表示装置が知られている。(特許文献1及び特許文献2) For example, an active matrix liquid crystal display device using a transistor having a metal oxide as a channel formation region as a switching element connected to each pixel electrode is known. (Patent Document 1 and Patent Document 2)
 アクティブマトリクス型液晶表示装置には大きく分けて透過型と反射型の二種類のタイプが知られている。 There are two types of active matrix liquid crystal display devices: a transmission type and a reflection type.
 透過型の液晶表示装置は、冷陰極蛍光ランプやLED(Light Emitting Diode)などのバックライトを用い、液晶の光学変調作用を利用して、バックライトからの光が液晶を透過して液晶表示装置外部に出力される状態と、出力されない状態とを選択し、明と暗の表示を行わせ、さらにそれらを組み合わせることで、画像表示を行うものである。 The transmissive liquid crystal display device uses a backlight such as a cold cathode fluorescent lamp or an LED (Light Emitting Diode), and the light from the backlight transmits the liquid crystal using the optical modulation action of the liquid crystal. A state that is output to the outside and a state that is not output are selected, bright and dark display is performed, and further, they are combined to perform image display.
 また、反射型の液晶表示装置は、液晶の光学変調作用を利用して、外光、即ち入射光が画素電極で反射して装置外部に出力される状態と、入射光が装置外部に出力されない状態とを選択し、明と暗の表示を行わせ、さらにそれらを組み合わせることで、画像表示を行うものである。反射型の液晶表示装置は、透過型の液晶表示装置と比較して、バックライトを使用しないため、消費電力が少ないといった長所を有する。 In addition, the reflective liquid crystal display device utilizes the optical modulation action of the liquid crystal, and the external light, that is, the incident light is reflected by the pixel electrode and output to the outside of the device, and the incident light is not output to the outside of the device. An image is displayed by selecting a state, displaying bright and dark, and combining them. The reflective liquid crystal display device has an advantage of low power consumption because it does not use a backlight as compared with the transmissive liquid crystal display device.
特開2007−123861号公報JP 2007-123861 A 特開2007−96055号公報JP 2007-96055 A
 表示装置が適用される電子機器において、その消費電力を低減することが求められている。特に、携帯電話、スマートフォン、タブレット端末、スマートウォッチ、ノート型パーソナルコンピュータ等の、バッテリを電源に用いる機器においては、表示装置の消費電力が大きな割合を占めるため、表示装置の低消費電力化が求められている。 In an electronic device to which a display device is applied, it is required to reduce its power consumption. In particular, in a device using a battery as a power source, such as a mobile phone, a smartphone, a tablet terminal, a smart watch, and a notebook personal computer, the power consumption of the display device occupies a large proportion. It has been.
 また、携帯型の電子機器は、外光の強い環境下と、外光の少ない環境下の両方において、高い視認性が求められている。 Also, portable electronic devices are required to have high visibility both in an environment with strong external light and in an environment with low external light.
 また、携帯型の電子機器は、落下させてしまったときや、ズボンのポケット等に入れたときに、表示装置が割れてしまう場合がある。そのため電子機器に設けられる表示装置として、軽くて割れにくいことが求められている。 In addition, when a portable electronic device is dropped or put in a pocket of a pants, the display device may break. Therefore, the display device provided in the electronic device is required to be light and difficult to break.
 本発明の一態様は、表示装置の消費電力を低減することを課題の一とする。または、表示装置の表示品位を高めることを課題の一とする。または、使用環境によらず、高い表示品位で映像を表示することを課題の一とする。または、軽くて割れにくい表示装置を提供することを課題の一とする。または、曲げられる表示装置を提供することを課題の一とする。 An object of one embodiment of the present invention is to reduce power consumption of a display device. Another object is to improve display quality of a display device. Another object is to display an image with high display quality regardless of the use environment. Another object is to provide a display device that is light and difficult to break. Another object is to provide a display device that can be bent.
 または、生産性の高い表示装置の作製方法を提供することを課題の一とする。 Another object is to provide a method for manufacturing a display device with high productivity.
 本発明の一態様は、反射型の液晶素子と、発光素子と、第1のトランジスタと、第2のトランジスタと、第1の絶縁層と、第2の絶縁層と、第1の接着層と、を有する表示装置である。第1の絶縁層は、液晶素子と第1のトランジスタとの間に位置する。第1のトランジスタは、第1の絶縁層と第1の接着層との間に位置する。第2のトランジスタ、発光素子、及び第2の絶縁層は、第1の接着層を挟んで第1のトランジスタとは反対側に位置する。第1のトランジスタは、液晶素子と電気的に接続される。第2のトランジスタは、発光素子と電気的に接続される。第1のトランジスタは、第1の絶縁層の第1の接着層側の面に設けられる。液晶素子は、第1の絶縁層側とは反対側に光を反射する機能を有し、発光素子は、第1の接着層側に光を発する機能を有する。 One embodiment of the present invention includes a reflective liquid crystal element, a light-emitting element, a first transistor, a second transistor, a first insulating layer, a second insulating layer, and a first adhesive layer. , A display device. The first insulating layer is located between the liquid crystal element and the first transistor. The first transistor is located between the first insulating layer and the first adhesive layer. The second transistor, the light emitting element, and the second insulating layer are located on the opposite side of the first transistor with the first adhesive layer interposed therebetween. The first transistor is electrically connected to the liquid crystal element. The second transistor is electrically connected to the light emitting element. The first transistor is provided on a surface of the first insulating layer on the first adhesive layer side. The liquid crystal element has a function of reflecting light to the side opposite to the first insulating layer side, and the light-emitting element has a function of emitting light to the first adhesive layer side.
 また、本発明の他の一態様は、反射型の液晶素子と、発光素子と、第1のトランジスタと、第2のトランジスタと、第1の絶縁層と、第2の絶縁層と、第1の接着層と、を有する表示装置である。第1の絶縁層は、液晶素子と第1のトランジスタとの間に位置する。第1のトランジスタは、第1の絶縁層と第1の接着層との間に位置する。第2のトランジスタ及び発光素子は、第2の絶縁層と第1の接着層との間に位置する。第1のトランジスタは、液晶素子と電気的に接続される。第2のトランジスタは、発光素子と電気的に接続される。第1のトランジスタは、第1の絶縁層の第1の接着層側の面に設けられる。第2のトランジスタは、第2の絶縁層の第1の接着層側の面に設けられる。液晶素子は、第1の絶縁層側とは反対側に光を反射する機能を有し、発光素子は、第1の接着層側に光を発する機能を有する。 Another embodiment of the present invention is a reflective liquid crystal element, a light-emitting element, a first transistor, a second transistor, a first insulating layer, a second insulating layer, And an adhesive layer. The first insulating layer is located between the liquid crystal element and the first transistor. The first transistor is located between the first insulating layer and the first adhesive layer. The second transistor and the light emitting element are located between the second insulating layer and the first adhesive layer. The first transistor is electrically connected to the liquid crystal element. The second transistor is electrically connected to the light emitting element. The first transistor is provided on a surface of the first insulating layer on the first adhesive layer side. The second transistor is provided on a surface of the second insulating layer on the first adhesive layer side. The liquid crystal element has a function of reflecting light to the side opposite to the first insulating layer side, and the light-emitting element has a function of emitting light to the first adhesive layer side.
 また、上記において、第2の絶縁層の第1の接着層とは反対側に第2の樹脂層を有することが好ましい。さらに、液晶素子の第1の接着層とは反対側に第3の樹脂層を有することが好ましい。このとき、第2の樹脂層と、第3の樹脂層とは、厚さが0.1μm以上3μm以下である領域を有することが好ましい。 In addition, in the above, it is preferable to have the second resin layer on the opposite side of the second insulating layer from the first adhesive layer. Furthermore, it is preferable to have a third resin layer on the opposite side of the liquid crystal element from the first adhesive layer. At this time, it is preferable that the second resin layer and the third resin layer have a region having a thickness of 0.1 μm or more and 3 μm or less.
 また、上記第3の樹脂層は、開口部を有することが好ましい。このとき、発光素子は、当該開口部を介して、光を射出する機能を有することが好ましい。また、当該開口部は、液晶素子と重なる部分を有し、液晶素子は、開口部を介して、光を反射する機能を有することが好ましい。 The third resin layer preferably has an opening. At this time, the light-emitting element preferably has a function of emitting light through the opening. The opening portion preferably has a portion overlapping with the liquid crystal element, and the liquid crystal element preferably has a function of reflecting light through the opening portion.
 また、上記において、第1の基板と、第2の基板と、第2の接着層と、第3の接着層と、を有することが好ましい。このとき、第2の接着層は、第1の基板と第2の絶縁層との間に位置し、第3の接着層は、液晶素子と第2の基板との間に位置することが好ましい。またこのとき、第1の基板及び第2の基板は、それぞれ樹脂を含むことが好ましい。 In addition, in the above, it is preferable to include the first substrate, the second substrate, the second adhesive layer, and the third adhesive layer. At this time, the second adhesive layer is preferably located between the first substrate and the second insulating layer, and the third adhesive layer is preferably located between the liquid crystal element and the second substrate. . At this time, it is preferable that the first substrate and the second substrate each contain a resin.
 また、本発明の他の一態様は、反射型の液晶素子と、発光素子と、第1のトランジスタと、第2のトランジスタと、第1の絶縁層と、第2の絶縁層と、第1の接着層と、を有する表示装置である。第1の絶縁層は、液晶素子と第1のトランジスタとの間に位置する。第2の絶縁層は、第1の接着層と第2のトランジスタとの間に位置する。第1のトランジスタは、第1の絶縁層と第1の接着層との間に位置する。第2のトランジスタ及び発光素子は、第1の接着層を挟んで第1のトランジスタとは反対側に位置する。第1のトランジスタは、液晶素子と電気的に接続され、第2のトランジスタは、発光素子と電気的に接続される。第1のトランジスタは、第1の絶縁層の第1の接着層側の面に設けられる。第2のトランジスタは、第2の絶縁層の第1の接着層側とは反対側の面に設けられる。液晶素子は、第1の絶縁層側とは反対側に光を反射する機能を有し、発光素子は、第1の接着層側に光を発する機能を有する。 Another embodiment of the present invention is a reflective liquid crystal element, a light-emitting element, a first transistor, a second transistor, a first insulating layer, a second insulating layer, And an adhesive layer. The first insulating layer is located between the liquid crystal element and the first transistor. The second insulating layer is located between the first adhesive layer and the second transistor. The first transistor is located between the first insulating layer and the first adhesive layer. The second transistor and the light-emitting element are located on the opposite side of the first transistor with the first adhesive layer interposed therebetween. The first transistor is electrically connected to the liquid crystal element, and the second transistor is electrically connected to the light emitting element. The first transistor is provided on a surface of the first insulating layer on the first adhesive layer side. The second transistor is provided on a surface of the second insulating layer opposite to the first adhesive layer side. The liquid crystal element has a function of reflecting light to the side opposite to the first insulating layer side, and the light-emitting element has a function of emitting light to the first adhesive layer side.
 また、上記において、第1の接着層と第2の絶縁層との間に第2の樹脂層を有することが好ましい。さらに、液晶素子の第1の接着層とは反対側に第3の樹脂層を有することが好ましい。このとき、第2の樹脂層と、第3の樹脂層とは、厚さが0.1μm以上3μm以下である領域を有することが好ましい。 Further, in the above, it is preferable to have a second resin layer between the first adhesive layer and the second insulating layer. Furthermore, it is preferable to have a third resin layer on the opposite side of the liquid crystal element from the first adhesive layer. At this time, it is preferable that the second resin layer and the third resin layer have a region having a thickness of 0.1 μm or more and 3 μm or less.
 また、上記第2の樹脂層は、第1の開口部を有し、上記第3の樹脂層は、第2の開口部を有することが好ましい。このとき、発光素子は、当該第1の開口部及び第2の開口部を介して、光を射出する機能を有することが好ましい。また、第2の開口部は、液晶素子と重なる部分を有し、液晶素子は、第2の開口部を介して、光を反射する機能を有することが好ましい。 The second resin layer preferably has a first opening, and the third resin layer preferably has a second opening. At this time, the light-emitting element preferably has a function of emitting light through the first opening and the second opening. The second opening portion preferably has a portion overlapping with the liquid crystal element, and the liquid crystal element preferably has a function of reflecting light through the second opening portion.
 また、上記において、第1の基板と、第2の基板と、第2の接着層と、第3の接着層と、を有することが好ましい。このとき、第2の接着層は、第1の基板と発光素子との間に位置し、第3の接着層は、液晶素子と第2の基板との間に位置することが好ましい。またこのとき、第1の基板及び第2の基板は、それぞれ樹脂を含むことが好ましい。 In addition, in the above, it is preferable to include the first substrate, the second substrate, the second adhesive layer, and the third adhesive layer. At this time, it is preferable that the second adhesive layer is located between the first substrate and the light emitting element, and the third adhesive layer is located between the liquid crystal element and the second substrate. At this time, it is preferable that the first substrate and the second substrate each contain a resin.
 ここで、上記第1のトランジスタ及び第2のトランジスタは、酸化物半導体にチャネルが形成されることが好ましい。 Here, in the first transistor and the second transistor, a channel is preferably formed in an oxide semiconductor.
 また、上記において、液晶素子は、第1の導電層、第2の導電層、及び液晶を有することが好ましい。ここで第1の導電層は、第1の絶縁層に設けられた開口を介して第1のトランジスタのソース又はドレインの一方と電気的に接続され、且つ、可視光を反射する機能を有することが好ましい。また液晶は、第1の導電層と第2の導電層との間に位置し、第2の導電層は、可視光を透過する機能を有することが好ましい。 In the above, the liquid crystal element preferably includes a first conductive layer, a second conductive layer, and a liquid crystal. Here, the first conductive layer is electrically connected to one of the source and the drain of the first transistor through an opening provided in the first insulating layer and has a function of reflecting visible light. Is preferred. The liquid crystal is preferably positioned between the first conductive layer and the second conductive layer, and the second conductive layer preferably has a function of transmitting visible light.
 また、上記において、液晶素子は第3の導電層を有することが好ましい。第3の導電層は、第1の導電層と液晶との間で第1の導電層と接する部分を有し、且つ可視光を透過する機能を有することが好ましい。このとき、第2の導電層及び第3の導電層は、発光素子と重なる部分を有し、発光素子は、第3の導電層及び第2の導電層を介して光を射出する機能を有することが好ましい。 Further, in the above, the liquid crystal element preferably has a third conductive layer. The third conductive layer preferably has a portion in contact with the first conductive layer between the first conductive layer and the liquid crystal and has a function of transmitting visible light. At this time, the second conductive layer and the third conductive layer have a portion overlapping with the light-emitting element, and the light-emitting element has a function of emitting light through the third conductive layer and the second conductive layer. It is preferable.
 また、上記において、第1の導電層と液晶との間に位置する、第1の樹脂層を有することが好ましい。このとき、第1の樹脂層は、厚さが5nm以上1μm以下である領域を有することが好ましい。またこのとき、第1の樹脂層は、配向膜としての機能を有することが好ましい。 In the above, it is preferable to have a first resin layer located between the first conductive layer and the liquid crystal. At this time, it is preferable that the first resin layer has a region having a thickness of 5 nm to 1 μm. At this time, the first resin layer preferably has a function as an alignment film.
 また、上記において、第1のトランジスタは、第1のソース電極、第1のドレイン電極、及び第1の半導体層を有することが好ましい。また第2のトランジスタは、第2のソース電極、第2のドレイン電極、及び第2の半導体層を有することが好ましい。 In the above, the first transistor preferably includes a first source electrode, a first drain electrode, and a first semiconductor layer. The second transistor preferably includes a second source electrode, a second drain electrode, and a second semiconductor layer.
 このとき、第1のソース電極及び第1のドレイン電極は、第1の半導体層の上面及び側端部に接して設けられ、第2のソース電極及び第2のドレイン電極は、第2の半導体層の上面及び側端部に接して設けられていることが好ましい。 At this time, the first source electrode and the first drain electrode are provided in contact with the top surface and the side end portion of the first semiconductor layer, and the second source electrode and the second drain electrode are provided in the second semiconductor layer. It is preferable to be provided in contact with the upper surface and the side edge of the layer.
 または、第1の半導体層の上面の一部及び側端部を覆う第1の絶縁層を有し、第2の半導体層の上面の一部及び側端部を覆う第2の絶縁層を有していることが好ましい。さらに、第1のソース電極及び第1のドレイン電極は、第1の絶縁層上に設けられ、且つ第1の絶縁層に設けられた開口を介して第1の半導体層と電気的に接続され、第2のソース電極及び第2のドレイン電極は、第2の絶縁層上に設けられ、且つ第2の絶縁層に設けられた開口を介して第2の半導体層と電気的に接続されていることが好ましい。 Alternatively, the first semiconductor layer includes a first insulating layer that covers a part of the top surface and the side edge of the first semiconductor layer, and a second insulating layer that covers a part of the top surface and the side edge of the second semiconductor layer. It is preferable. Further, the first source electrode and the first drain electrode are provided on the first insulating layer and electrically connected to the first semiconductor layer through an opening provided in the first insulating layer. The second source electrode and the second drain electrode are provided on the second insulating layer and electrically connected to the second semiconductor layer through an opening provided in the second insulating layer. Preferably it is.
 または、第1のソース電極及び第1のドレイン電極は、第1の半導体層の上面及び側端部に接して設けられ、第2の半導体層の上面の一部及び側端部を覆う第2の絶縁層を有し、第2のソース電極及び第2のドレイン電極は、第2の絶縁層上に設けられ、且つ第2の絶縁層に設けられた開口を介して第2の半導体層と電気的に接続されていることが好ましい。 Alternatively, the first source electrode and the first drain electrode are provided in contact with the upper surface and the side end portion of the first semiconductor layer, and the second source layer covers the part of the upper surface and the side end portion of the second semiconductor layer. The second source electrode and the second drain electrode are provided on the second insulating layer and are connected to the second semiconductor layer through an opening provided in the second insulating layer. It is preferable that they are electrically connected.
 または、第1の半導体層の上面の一部及び側端部を覆う第1の絶縁層を有し、第1のソース電極及び第1のドレイン電極は、第1の絶縁層上に設けられ、且つ第1の絶縁層に設けられた開口を介して第1の半導体層と電気的に接続され、第2のソース電極及び第2のドレイン電極は、第2の半導体層の上面及び側端部に接して設けられていることが好ましい。 Alternatively, the first insulating layer covering a part of the upper surface and the side end portion of the first semiconductor layer is provided, and the first source electrode and the first drain electrode are provided over the first insulating layer, In addition, the second source electrode and the second drain electrode are electrically connected to the first semiconductor layer through an opening provided in the first insulating layer, and the second source electrode and the second drain electrode are connected to the upper surface and the side end portion of the second semiconductor layer. It is preferable to be provided in contact with.
 また、第1のトランジスタは、第1のゲート電極及び第2のゲート電極を有し、第1のゲート電極と、第2のゲート電極は、第1の半導体層を挟んで対向して設けられていることが好ましい。また、第2のトランジスタは、第3のゲート電極及び第4のゲート電極を有し、第3のゲート電極と、第4のゲート電極は、第2の半導体層を挟んで対向して設けられていることが好ましい。 The first transistor includes a first gate electrode and a second gate electrode, and the first gate electrode and the second gate electrode are provided to face each other with the first semiconductor layer interposed therebetween. It is preferable. The second transistor includes a third gate electrode and a fourth gate electrode, and the third gate electrode and the fourth gate electrode are provided to face each other with the second semiconductor layer interposed therebetween. It is preferable.
 本発明の一態様によれば、表示装置の消費電力を低減できる。または、表示装置の表示品位を高めることができる。または、使用環境によらず、高い表示品位で映像を表示する表示装置を提供できる。または、軽くて割れにくい表示装置を提供できる。または、曲げられる表示装置を提供できる。または、生産性の高い表示装置の作製方法を提供できる。 According to one embodiment of the present invention, power consumption of a display device can be reduced. Alternatively, the display quality of the display device can be improved. Alternatively, it is possible to provide a display device that displays video with high display quality regardless of the use environment. Alternatively, a display device that is light and difficult to break can be provided. Alternatively, a display device that can be bent can be provided. Alternatively, a method for manufacturing a display device with high productivity can be provided.
実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の作製方法を説明する図。8A to 8D illustrate a method for manufacturing a display device according to Embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の回路図。FIG. 10 is a circuit diagram of a display device according to an embodiment. 実施の形態に係る、表示装置の回路図及び画素の上面図。FIG. 6 is a circuit diagram of a display device and a top view of a pixel according to an embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示装置の構成例。3 shows a configuration example of a display device according to an embodiment. 実施の形態に係る、表示モジュールの構成例。The structural example of the display module which concerns on embodiment. 実施の形態に係る、電子機器。An electronic device according to an embodiment. 実施例1に係る、表示装置の構成を説明する図。FIG. 6 illustrates a configuration of a display device according to Embodiment 1; 実施例1に係る、回路構成を説明する図。1 is a diagram illustrating a circuit configuration according to Embodiment 1. FIG. 実施例1に係る、ノイズの影響に関するシミュレーション結果。The simulation result regarding the influence of noise based on Example 1. FIG. 実施例2に係る、表示装置の作製工程を説明する図。8A and 8B illustrate a manufacturing process of a display device according to Example 2. 実施例2に係る、表示装置の写真。The photograph of the display apparatus based on Example 2. FIG.
 実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。 Embodiments will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
 なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。 Note that in the structures of the invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and description thereof is not repeated. In addition, in the case where the same function is indicated, the hatch pattern is the same, and there is a case where no reference numeral is given.
 なお、本明細書で説明する各図において、各構成の大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。 Note that in each drawing described in this specification, the size, the layer thickness, or the region of each component is exaggerated for clarity in some cases. Therefore, it is not necessarily limited to the scale.
 なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、数的に限定するものではない。 In addition, ordinal numbers such as “first” and “second” in this specification and the like are attached to avoid confusion between components and are not limited numerically.
 トランジスタは半導体素子の一種であり、電流や電圧の増幅や、導通または非導通を制御するスイッチング動作などを実現することができる。本明細書におけるトランジスタは、IGFET(Insulated Gate Field Effect Transistor)や薄膜トランジスタ(TFT:Thin Film Transistor)を含む。 A transistor is a kind of semiconductor element, and can realize amplification of current and voltage, switching operation for controlling conduction or non-conduction, and the like. The transistors in this specification include an IGFET (Insulated Gate Field Effect Transistor) and a thin film transistor (TFT: Thin Film Transistor).
(実施の形態1)
 本実施の形態では、本発明の一態様の表示装置、及びその作製方法について説明する。
(Embodiment 1)
In this embodiment, a display device of one embodiment of the present invention and a manufacturing method thereof will be described.
 本発明の一態様の表示装置は、反射型の液晶素子と発光素子とが、積層して設けられた構成を有する。反射型の液晶素子は、反射光の光量を制御することにより階調を表現することができる。発光素子は、発する光の光量を制御することにより階調を表現することができる。 The display device of one embodiment of the present invention has a structure in which a reflective liquid crystal element and a light-emitting element are stacked. The reflective liquid crystal element can express gradation by controlling the amount of reflected light. The light emitting element can express gradation by controlling the amount of light emitted.
 表示装置は、例えば反射光のみを利用して表示を行うこと、発光素子からの光のみを利用して表示を行うこと、及び、反射光と発光素子からの光の両方を利用して表示を行うことができる。 For example, the display device performs display using only reflected light, performs display using only light from the light emitting element, and displays using both reflected light and light from the light emitting element. It can be carried out.
 反射型の液晶素子は視認側(表示面側)に設けられ、発光素子は視認側とは反対側に設けられる。発光素子は、液晶素子が有する反射電極が設けられていない領域から、視認側に光を射出することができる。 The reflective liquid crystal element is provided on the viewing side (display surface side), and the light emitting element is provided on the side opposite to the viewing side. The light-emitting element can emit light from the region where the reflective electrode included in the liquid crystal element is not provided to the viewing side.
 また表示装置は、反射型の液晶素子及び発光素子が、それぞれトランジスタと電気的に接続されるアクティブマトリクス型の表示装置とすることができる。 The display device can be an active matrix display device in which a reflective liquid crystal element and a light-emitting element are electrically connected to transistors.
 このとき、表示装置は、発光素子と電気的に接続する第1のトランジスタを含む第1の素子層、発光素子を含む第2の素子層、液晶素子と電気的に接続する第2のトランジスタを含む第3の素子層、及び液晶素子を含む第4の素子層を有する。そして、視認とは反対側から、第1の素子層、第2の素子層、第3の素子層、第4の素子層の順で積層されている。 At this time, the display device includes a first element layer including a first transistor electrically connected to the light-emitting element, a second element layer including the light-emitting element, and a second transistor electrically connected to the liquid crystal element. A third element layer including the liquid crystal element and a fourth element layer including the liquid crystal element. Then, the first element layer, the second element layer, the third element layer, and the fourth element layer are laminated in this order from the side opposite to the visual recognition.
 ここで、第4の素子層よりも視認側と、第1の素子層の視認側とは反対側に、それぞれ樹脂層(第1の樹脂層、第2の樹脂層)を設けることが好ましい。これにより、表示装置を極めて軽くすることが可能で、また表示装置を割れにくくすることが可能となる。 Here, it is preferable to provide resin layers (a first resin layer and a second resin layer) on the viewing side with respect to the fourth element layer and on the side opposite to the viewing side of the first element layer, respectively. As a result, the display device can be made extremely light, and the display device can be made difficult to break.
 第1の樹脂層及び第2の樹脂層(以下、まとめて樹脂層とも表記する)は、極めて薄いことを特徴とする。より具体的には、それぞれ厚さが0.1μm以上3μm以下とすることが好ましい。そのため、2つの表示パネルを積層した構成であっても、厚さを薄くすることができる。また、発光素子が発する光の経路上に樹脂層が配置される場合であっても、当該樹脂層が薄いため光の吸収が抑制され、より高い効率で光を取り出すことができ、消費電力を小さくすることができる。 The first resin layer and the second resin layer (hereinafter collectively referred to as a resin layer) are extremely thin. More specifically, the thickness is preferably 0.1 μm or more and 3 μm or less. Therefore, even if it is the structure which laminated | stacked two display panels, thickness can be made thin. In addition, even when a resin layer is disposed on the path of light emitted from the light emitting element, light absorption is suppressed because the resin layer is thin, light can be extracted with higher efficiency, and power consumption can be reduced. Can be small.
 樹脂層は、例えば以下のように形成することができる。すなわち、支持基板上に低粘度の熱硬化性の樹脂材料を塗布し、熱処理により硬化させて樹脂層を形成する。そして樹脂層上に、構造物を形成する。その後、樹脂層と、支持基板との間で剥離を行うことにより、樹脂層の一方の面を露出させる。 The resin layer can be formed as follows, for example. That is, a low-viscosity thermosetting resin material is applied on a support substrate and cured by heat treatment to form a resin layer. Then, a structure is formed on the resin layer. Then, one surface of the resin layer is exposed by peeling between the resin layer and the support substrate.
 支持基板と樹脂層とを剥離する際、これらの密着性を低下させる方法として、レーザ光を照射することが挙げられる。例えば、レーザ光に線状のレーザを用い、これを走査することにより、レーザ光を照射することが好ましい。これにより、支持基板の面積を大きくした際の工程時間を短縮することができる。レーザ光としては、波長308nmのエキシマレーザを好適に用いることができる。 When the support substrate and the resin layer are peeled off, a method for reducing the adhesion is to irradiate a laser beam. For example, it is preferable to irradiate the laser beam by using a linear laser as the laser beam and scanning it. Thereby, the process time at the time of enlarging the area of a support substrate can be shortened. As the laser light, an excimer laser having a wavelength of 308 nm can be suitably used.
 樹脂層に用いることのできる材料としては、代表的には熱硬化性のポリイミドが挙げられる。特に感光性のポリイミドを用いることが好ましい。感光性のポリイミドは、表示パネルの平坦化膜等に好適に用いられる材料であるため、形成装置や材料を共有することができる。そのため本発明の一態様の構成を実現するために新たな装置や材料を必要としない。 A typical example of a material that can be used for the resin layer is thermosetting polyimide. It is particularly preferable to use photosensitive polyimide. Since photosensitive polyimide is a material that is suitably used for a planarization film or the like of a display panel, a forming apparatus and a material can be shared. Therefore, no new device or material is required to realize the structure of one embodiment of the present invention.
 また、樹脂層に感光性の樹脂材料を用いることにより、露光及び現像処理を施すことで、樹脂層を加工することが可能となる。例えば、開口部を形成することや、不要な部分を除去することができる。さらに露光方法や露光条件を最適化することで、表面に凹凸形状を形成することも可能となる。例えば多重露光技術や、ハーフトーンマスクやグレートーンマスクを用いた露光技術などを用いればよい。 Further, by using a photosensitive resin material for the resin layer, the resin layer can be processed by performing exposure and development processing. For example, an opening can be formed or an unnecessary portion can be removed. Further, by optimizing the exposure method and the exposure conditions, it is possible to form an uneven shape on the surface. For example, a multiple exposure technique or an exposure technique using a halftone mask or a gray tone mask may be used.
 なお、非感光性の樹脂材料を用いてもよい。このとき、樹脂層上にレジストマスクやハードマスクを形成して開口部や凹凸形状を形成する方法を用いることもできる。 A non-photosensitive resin material may be used. At this time, a method of forming a resist mask or a hard mask on the resin layer to form an opening or an uneven shape can also be used.
 また、発光素子からの光の経路上に位置する樹脂層を、部分的に除去することが好ましい。すなわち、第1の樹脂層に、発光素子と重なる開口部を設ける。これにより、発光素子からの光の一部が樹脂層に吸収されることに伴う色再現性の低下や、光取り出し効率の低下を抑制することができる。 Also, it is preferable to partially remove the resin layer located on the light path from the light emitting element. That is, an opening that overlaps with the light-emitting element is provided in the first resin layer. Thereby, the fall of the color reproducibility accompanying a part of light from a light emitting element being absorbed by the resin layer, and the fall of light extraction efficiency can be suppressed.
 または、樹脂層の発光素子からの光の経路上に位置する部分が、他の部分よりも薄くなるように、樹脂層に凹部が形成された構成としてもよい。すなわち、樹脂層は厚さの異なる2つの部分を有し、厚さの薄い部分が発光素子と重なる構成とすることもできる。この構成としても、樹脂層による発光素子からの光の吸収を低減できる。 Alternatively, a recess may be formed in the resin layer so that a portion of the resin layer positioned on the light path from the light emitting element is thinner than other portions. That is, the resin layer may have two portions with different thicknesses, and the thin portion may overlap the light emitting element. Even with this configuration, absorption of light from the light emitting element by the resin layer can be reduced.
 特に、第4の素子層よりも視認側に位置する樹脂層には、発光素子と重なる開口部を設けることが好ましい。これにより、さらに色再現性や光取り出し効率を向上させることができる。さらに、反射型の液晶素子における光の経路上に位置する樹脂層の一部を除去し、反射型の液晶素子と重なる開口部を設けることが好ましい。これにより、反射型の液晶素子の反射率を向上させることができる。また、反射型の液晶素子から反射される光が樹脂層を透過することにより着色されることを抑制できる。 In particular, it is preferable to provide an opening overlapping the light emitting element in the resin layer positioned on the viewing side with respect to the fourth element layer. Thereby, color reproducibility and light extraction efficiency can be further improved. Further, it is preferable to remove a part of the resin layer located on the light path in the reflective liquid crystal element and provide an opening overlapping the reflective liquid crystal element. Thereby, the reflectance of the reflective liquid crystal element can be improved. Moreover, it can suppress that the light reflected from a reflective liquid crystal element is colored by permeate | transmitting a resin layer.
 樹脂層に開口部を形成する方法としては、例えば以下の方法を用いることができる。すなわち、樹脂層の開口部となる部分を、部分的に薄く形成し、上述した方法により支持基板と樹脂層とを剥離する。そして樹脂層の剥離した表面にプラズマ処理等を行うことで、樹脂層を薄膜化すると、樹脂層の薄い部分に開口を形成することができる。 As a method for forming the opening in the resin layer, for example, the following method can be used. That is, the portion that becomes the opening of the resin layer is partially formed thin, and the support substrate and the resin layer are peeled off by the method described above. When the resin layer is thinned by performing plasma treatment or the like on the surface from which the resin layer is peeled, an opening can be formed in a thin portion of the resin layer.
 または、以下の方法を用いることもできる。すなわち、支持基板上に光吸収層を形成し、当該光吸収層上に開口部を有する樹脂層を形成し、さらに開口部を覆う透光性の層を形成する。光吸収層は、光を吸収して加熱されることで、水素または酸素などのガスを放出する層である。したがって、支持基板側から光を照射し、光吸収層からガスを放出させることで、光吸収層と支持基板の界面、または光吸収層と透光性の層との間の密着性が低下し、剥離を生じさせることができる。または、光吸収層自体が破断して、剥離させることができる。 Alternatively, the following method can be used. That is, a light absorption layer is formed over a supporting substrate, a resin layer having an opening is formed over the light absorption layer, and a light-transmitting layer covering the opening is further formed. The light absorption layer is a layer that emits a gas such as hydrogen or oxygen when heated by absorbing light. Therefore, by irradiating light from the support substrate side and releasing the gas from the light absorption layer, the adhesion between the light absorption layer and the support substrate or between the light absorption layer and the light transmitting layer is reduced. , Peeling can occur. Alternatively, the light absorption layer itself can be broken and peeled off.
 また、第1のトランジスタ及び第2のトランジスタには、チャネルを形成する半導体として、酸化物半導体を用いることが好ましい。酸化物半導体はトランジスタの作製工程にかかる最高温度を低温化(例えば400℃以下、好ましくは350℃以下)しても、高いオン電流を実現でき、また高い信頼性を確保することができる。また、酸化物半導体を用いることで、トランジスタの被形成面側に位置する樹脂層に用いる材料として、高い耐熱性が要求されないため、材料の選択の幅を広げることができる。例えば、平坦化膜として用いる樹脂材料と兼ねることもできる。 In the first transistor and the second transistor, an oxide semiconductor is preferably used as a semiconductor for forming a channel. An oxide semiconductor can achieve a high on-state current and ensure high reliability even when the maximum temperature in the manufacturing process of the transistor is reduced (for example, 400 ° C. or lower, preferably 350 ° C. or lower). In addition, when an oxide semiconductor is used, high heat resistance is not required as a material used for the resin layer located on the formation surface of the transistor, so that the range of selection of materials can be widened. For example, it can also serve as a resin material used as a planarizing film.
 ここで、例えば低温ポリシリコン(LTPS(Low Temperature Poly−Silicon))を用いた場合では、高い電界効果移動度が得られるものの、レーザ結晶化工程、結晶化の前処理のベーク工程、不純物の活性化のためのベーク工程などが必要であり、トランジスタの作製工程にかかる最高温度が上記酸化物半導体を用いた場合よりも高い(例えば500℃以上、または550℃以上、または600℃以上)。そのため、トランジスタの被形成面側に位置する樹脂層には高い耐熱性が必要となる。さらに、レーザ結晶化工程において、当該樹脂層にもレーザが照射されるため、当該樹脂層は比較的厚く形成する必要がある(例えば10μm以上、または20μm以上)。 Here, for example, when using low-temperature polysilicon (LTPS (Low Temperature Poly-Silicon)), high field-effect mobility can be obtained, but laser crystallization process, crystallization pretreatment baking process, impurity activity And the like, and the highest temperature required for the manufacturing process of the transistor is higher than that in the case where the oxide semiconductor is used (for example, 500 ° C. or higher, 550 ° C. or higher, or 600 ° C. or higher). Therefore, high heat resistance is required for the resin layer located on the formation surface side of the transistor. Furthermore, in the laser crystallization process, the resin layer is also irradiated with laser, and thus the resin layer needs to be formed relatively thick (for example, 10 μm or more, or 20 μm or more).
 一方、酸化物半導体を用いた場合では、耐熱性の高い特殊な材料が不要で、且つ厚く形成する必要があるため、表示パネル全体に対する当該樹脂層にかかるコストの割合を小さくできる。 On the other hand, when an oxide semiconductor is used, a special material having high heat resistance is unnecessary and it is necessary to form a thick film, so that the cost ratio of the resin layer to the entire display panel can be reduced.
 また、酸化物半導体は、バンドギャップが広く(例えば2.5eV以上、または3.0eV以上)、光を透過する性質を有する。そのため、支持基板と樹脂層の剥離工程において、レーザ光が酸化物半導体に照射されても吸収しにくいため、その電気的特性への影響を抑制できる。したがって、上述のように樹脂層を薄く形成することが可能となる。 In addition, an oxide semiconductor has a wide band gap (for example, 2.5 eV or more, or 3.0 eV or more) and has a property of transmitting light. Therefore, in the step of separating the support substrate and the resin layer, even if laser light is irradiated to the oxide semiconductor, it is difficult to absorb, and thus the influence on the electrical characteristics can be suppressed. Therefore, the resin layer can be thinly formed as described above.
 本発明の一態様は、感光性のポリイミドに代表される低粘度な感光性樹脂材料を用いて薄く形成した樹脂層と、低温であっても電気特性に優れたトランジスタを実現できる酸化物半導体と、を組み合わせることにより、極めて生産性に優れた表示装置を実現できる。 One embodiment of the present invention is a resin layer that is thinly formed using a low-viscosity photosensitive resin material typified by photosensitive polyimide, and an oxide semiconductor that can realize a transistor with excellent electrical characteristics even at low temperatures. By combining these, a display device with extremely high productivity can be realized.
 続いて、画素の構成について説明する。表示装置は、発光素子と第1のトランジスタを有する第1の画素と、液晶素子と第2のトランジスタを有する第2の画素と、を有する構成とすることができる。第1の画素及び第2の画素は、それぞれマトリクス状に複数配置され、表示部を構成する。また、表示装置は、第1の画素を駆動する第1の駆動部と、第2の画素を駆動する第2の駆動部を有することが好ましい。 Subsequently, the pixel configuration will be described. The display device can include a first pixel including a light-emitting element and a first transistor, and a second pixel including a liquid crystal element and a second transistor. A plurality of first pixels and second pixels are arranged in a matrix, respectively, and constitute a display unit. In addition, the display device preferably includes a first driving unit that drives the first pixel and a second driving unit that drives the second pixel.
 また、第1の画素と第2の画素は、同じ周期で表示領域内に配置されていることが好ましい。さらに、第1の画素及び第2の画素は表示装置の表示領域に混在して配置されていることが好ましい。これにより、後述するように複数の第1の画素のみで表示された画像と、複数の第2の画素のみで表示された画像、及び複数の第1の画素及び複数の第2の画素の両方で表示された画像のそれぞれは、同じ表示領域に表示することができる。 Further, it is preferable that the first pixel and the second pixel are arranged in the display area at the same cycle. Furthermore, it is preferable that the first pixel and the second pixel are arranged in a mixed manner in the display region of the display device. Thereby, as will be described later, both the image displayed only with the plurality of first pixels, the image displayed only with the plurality of second pixels, and the plurality of first pixels and the plurality of second pixels. Each of the images displayed in can be displayed in the same display area.
 ここで、第1の画素は、例えば白色(W)を呈する1つの画素により構成されていることが好ましい。また第2の画素は、例えば赤色(R)、緑色(G)、青色(B)の3色の光をそれぞれ呈する副画素を有することが好ましい。またはこれに加えて白色(W)または黄色(Y)の光を呈する副画素を有していてもよい。このような第1の画素と第2の画素が同じ周期で配列することで、第1の画素の面積を大きくし、第1の画素の開口率を高めることができる。 Here, it is preferable that the first pixel is composed of, for example, one pixel exhibiting white (W). In addition, the second pixel preferably includes sub-pixels that exhibit light of three colors, for example, red (R), green (G), and blue (B). Alternatively, in addition to this, a subpixel which exhibits white (W) or yellow (Y) light may be included. By arranging the first pixel and the second pixel in the same cycle, the area of the first pixel can be increased and the aperture ratio of the first pixel can be increased.
 なお、第1の画素として、例えば赤色(R)、緑色(G)、青色(B)の3色の光をそれぞれ呈する副画素を有していてもよく、これに加えて白色(W)または黄色(Y)の光を呈する副画素を有していてもよい。 Note that the first pixel may include, for example, subpixels that emit light of three colors of red (R), green (G), and blue (B), and in addition to this, white (W) or You may have the subpixel which exhibits yellow (Y) light.
 本発明の一態様は、第1の画素で画像を表示する第1のモード、第2の画素で画像を表示する第2のモード、及び第1の画素及び第2の画素で画像を表示する第3のモードを切り替えることができる。 According to one embodiment of the present invention, a first mode in which an image is displayed with a first pixel, a second mode in which an image is displayed with a second pixel, and an image is displayed with the first pixel and the second pixel. The third mode can be switched.
 第1のモードでは、反射光のみを利用して表示を行うことができるため、光源が不要である。そのため極めて低消費電力な駆動モードである。例えば、外光の照度が十分高く、且つ外光が白色光またはその近傍の光である場合に有効である。第1のモードは、例えば本や書類などの文字情報を表示することに適した表示モードである。 In the first mode, since the display can be performed using only the reflected light, no light source is required. Therefore, this is a driving mode with extremely low power consumption. For example, it is effective when the illuminance of outside light is sufficiently high and the outside light is white light or light in the vicinity thereof. The first mode is a display mode suitable for displaying character information such as books and documents.
 第2のモードでは、光源の光を利用して表示を行うことができるため、外光の照度や色度によらず、極めて色再現性が高く鮮やかな表示を行うことができる。例えば、夜間や暗い室内など、外光の照度が極めて小さい場合などに有効である。また外光が暗い場合、明るい表示を行うと使用者が眩しく感じてしまう場合がある。これを防ぐために、第2のモードでは輝度を抑えた表示を行うことが好ましい。またこれにより、眩しさを抑えることに加え、消費電力も低減することができる。第2のモードは、鮮やかな画像や滑らかな動画などを表示することに適したモードである。 In the second mode, since display can be performed using light from the light source, a vivid display with extremely high color reproducibility can be performed regardless of the illuminance and chromaticity of external light. For example, it is effective when the illuminance of outside light is extremely small, such as at night or in a dark room. Further, when the outside light is dark, the user may feel dazzled when performing bright display. In order to prevent this, it is preferable to perform display with reduced luminance in the second mode. Thereby, in addition to suppressing glare, power consumption can also be reduced. The second mode is a mode suitable for displaying a vivid image or a smooth moving image.
 第3のモードでは、光源の光と、反射光の両方を利用して表示を行うことができる。具体的には、第1の画素が呈する光と、第1の画素と隣接する第2の画素が呈する光を混色させることにより、1つの色を表現するように駆動する。第1のモードよりも色再現性が高く鮮やかな表示をしつつ、第2のモードよりも消費電力を抑えることができる。例えば、室内照明下や、朝方や夕方の時間帯など、外光の照度が比較的低い場合や、外光の色度が白色ではない場合などに有効である。 In the third mode, display can be performed using both light from the light source and reflected light. Specifically, driving is performed so as to express one color by mixing light emitted by the first pixel and light emitted by the second pixel adjacent to the first pixel. It is possible to suppress power consumption more than in the second mode while displaying a brighter color reproducibility than in the first mode. For example, it is effective when the illuminance of outside light is relatively low, such as under room lighting or in the morning or evening hours, or when the chromaticity of outside light is not white.
 続いて、表示装置に用いることのできるトランジスタについて説明する。第1のトランジスタと、第2のトランジスタとは、同じ構成のトランジスタであってもよいし、それぞれ異なるトランジスタであってもよい。 Subsequently, a transistor that can be used for a display device will be described. The first transistor and the second transistor may be transistors having the same configuration, or may be different transistors.
 トランジスタの構成としては、例えばボトムゲート構造のトランジスタが挙げられる。ボトムゲート構造のトランジスタは、半導体層よりも下側(被形成面側)にゲート電極を有する。また、例えばソース電極及びドレイン電極が、半導体層の上面及び側端部に接して設けられていることを特徴とする。 As the configuration of the transistor, for example, a bottom-gate transistor can be given. A bottom-gate transistor has a gate electrode on the lower side (formation surface side) than the semiconductor layer. In addition, for example, a source electrode and a drain electrode are provided in contact with the upper surface and side end portions of the semiconductor layer.
 また、トランジスタの他の構成としては、例えばトップゲート構造のトランジスタが挙げられる。トップゲート構造のトランジスタは、半導体層よりも上側(被形成面側とは反対側)にゲート電極を有する。また、例えば第1のソース電極及び第1のドレイン電極が、半導体層の上面の一部及び側端部を覆う絶縁層上に設けられ、且つ当該絶縁層に設けられた開口を介して半導体層と電気的に接続されることを特徴とする。 Further, as another configuration of the transistor, for example, a top gate transistor can be cited. A top-gate transistor has a gate electrode above the semiconductor layer (on the side opposite to the formation surface). In addition, for example, the first source electrode and the first drain electrode are provided over the insulating layer that covers a part of the upper surface and the side end of the semiconductor layer, and the semiconductor layer is provided through the opening provided in the insulating layer. It is electrically connected to.
 また、トランジスタとして、半導体層を挟んで対向して設けられる第1のゲート電極及び第2のゲート電極を有していることが好ましい。 In addition, the transistor preferably includes a first gate electrode and a second gate electrode which are provided to face each other with a semiconductor layer interposed therebetween.
 ここで、反射型の液晶素子の反射電極は画素電極としても機能し、第2のトランジスタと電気的に接続されている。そして、反射電極は、視認側に位置する面が一様に平坦であることを特徴とする。さらに、当該反射電極の平坦な部分の裏面側(視認側とは反対側)において、第2のトランジスタのソース又はドレインの一方が電気的に接続される構成を有する。これにより、反射電極の視認側の面に凹部が形成されないため、開口率を高めることが可能となる。 Here, the reflective electrode of the reflective liquid crystal element also functions as a pixel electrode and is electrically connected to the second transistor. The reflective electrode is characterized in that the surface located on the viewing side is uniformly flat. Further, one of the source and the drain of the second transistor is electrically connected to the back side (the side opposite to the viewing side) of the flat portion of the reflective electrode. Thereby, since a recessed part is not formed in the surface at the side of visual recognition of a reflective electrode, it becomes possible to raise an aperture ratio.
 また、反射電極を覆って絶縁層が設けられ、第2のトランジスタは当該絶縁層の反射電極とは反対側の面に設けられている。すなわち、第2のトランジスタの裏面側(被形成面側)に、絶縁層を介して反射電極が設けられた構成を有する。第2のトランジスタのソース又はドレインの一方は、絶縁層に設けられた開口を介して反射電極と電気的に接続される。 Further, an insulating layer is provided so as to cover the reflective electrode, and the second transistor is provided on the surface of the insulating layer opposite to the reflective electrode. In other words, the second transistor has a structure in which the reflective electrode is provided on the back surface side (formation surface side) with the insulating layer interposed therebetween. One of the source and the drain of the second transistor is electrically connected to the reflective electrode through an opening provided in the insulating layer.
 また、反射電極よりも視認側に、第3の樹脂層を有することが好ましい。反電極及び第2のトランジスタを、支持基板上に形成された第3の樹脂層上に形成し、支持基板と第3の樹脂層との界面で剥離することにより、このような構成を作製できる。このとき、当該第3の樹脂層は、反射電極と液晶との間に位置するため、配向膜として用いることが好ましい。 Moreover, it is preferable to have a third resin layer on the viewing side of the reflective electrode. Such a structure can be manufactured by forming the counter electrode and the second transistor on the third resin layer formed on the supporting substrate and peeling at the interface between the supporting substrate and the third resin layer. . At this time, since the third resin layer is located between the reflective electrode and the liquid crystal, it is preferably used as an alignment film.
 また、発光素子は被形成面側とは反対側に光を射出するトップエミッション型の発光素子を好適に適用することができる。第1のトランジスタと発光素子とは、視認側とは反対側から順に積層されて形成されている。 Further, as the light emitting element, a top emission type light emitting element that emits light to the side opposite to the surface to be formed can be suitably applied. The first transistor and the light emitting element are stacked in order from the side opposite to the viewing side.
 また、本発明の一態様の表示装置は、第1のトランジスタと第2のトランジスタとが、上下方向に向かい合って設けられた構成を有する。つまり、第1のトランジスタを構成する複数の膜が積層される向きと、第2のトランジスタを構成する複数の膜が積層される向きとが、正反対であると表現することもできる。 The display device of one embodiment of the present invention has a structure in which the first transistor and the second transistor are provided to face each other in the vertical direction. That is, it can be expressed that the direction in which the plurality of films constituting the first transistor are stacked and the direction in which the plurality of films forming the second transistor are stacked are opposite to each other.
 以下では、本発明の一態様の表示装置のより具体的な例について、図面を参照して説明する。 Hereinafter, a more specific example of the display device of one embodiment of the present invention will be described with reference to the drawings.
 なお、以下では「上」、「下」などの向きを示す表現は、基本的には図面の向きと合わせて用いるものとする。しかしながら、説明を容易にするためなどの目的で、明細書中の「上」または「下」が意味する向きが、図面とは一致しない場合がある。一例としては、積層体等の積層順(または形成順)などを説明する場合に、図面において当該積層体が設けられる側の面(被形成面、支持面、接着面、平坦面など)が当該積層体よりも上側に位置していても、その向きを下、これとは反対の向きを上、などと表現する場合がある。 In the following, expressions indicating the direction such as “up” and “down” are basically used in combination with the direction of the drawing. However, for the purpose of facilitating the description and the like, the direction indicated by “upper” or “lower” in the specification may not match the drawing. As an example, when explaining the stacking order (or forming order) of a laminated body or the like, the surface (formation surface, support surface, adhesive surface, flat surface, etc.) on the side where the laminated body is provided in the drawing Even if it is positioned above the laminated body, the direction may be expressed as “down”, the opposite direction may be expressed as “up”, and the like.
[構成例1]
 図1に、表示装置10の断面概略図を示す。表示装置10は、素子層100a、素子層200a、素子層100b、及び素子層200bが、この順で積層された構成を有する。また、表示装置10は、裏側(視認側とは反対側)に基板11と、表側(視認側)に基板12と、を有する。また、基板11と素子層100aとの間に樹脂層101と、基板12と素子層200bとの間に樹脂層202とを有する。樹脂層101と基板11とは接着層51により貼り合わされている。また樹脂層202と基板12とは接着層52により貼り合わされている。
[Configuration example 1]
In FIG. 1, the cross-sectional schematic of the display apparatus 10 is shown. The display device 10 has a configuration in which an element layer 100a, an element layer 200a, an element layer 100b, and an element layer 200b are stacked in this order. The display device 10 includes a substrate 11 on the back side (the side opposite to the viewing side) and a substrate 12 on the front side (viewing side). Further, the resin layer 101 is provided between the substrate 11 and the element layer 100a, and the resin layer 202 is provided between the substrate 12 and the element layer 200b. The resin layer 101 and the substrate 11 are bonded together by an adhesive layer 51. Further, the resin layer 202 and the substrate 12 are bonded together by the adhesive layer 52.
 素子層100aは、樹脂層101上にトランジスタ110を有する。素子層200aは、トランジスタ110と電気的に接続された発光素子120を有する。素子層100bは、トランジスタ210を有する。素子層200bは、トランジスタ210と電気的に接続された液晶素子220を有する。 The element layer 100 a includes the transistor 110 on the resin layer 101. The element layer 200 a includes the light-emitting element 120 that is electrically connected to the transistor 110. The element layer 100 b includes the transistor 210. The element layer 200 b includes a liquid crystal element 220 that is electrically connected to the transistor 210.
 また、樹脂層202は、開口部が設けられている。図1に示す領域31は、発光素子120と重なる領域であって、且つ樹脂層202の開口部と重なる領域である。 Also, the resin layer 202 is provided with an opening. A region 31 illustrated in FIG. 1 is a region overlapping with the light emitting element 120 and overlapping with an opening of the resin layer 202.
〔素子層100a、素子層200a〕
 樹脂層101上には、トランジスタ110、発光素子120、絶縁層131、絶縁層132、絶縁層133、絶縁層134、絶縁層135等が設けられている。
[Element layer 100a, Element layer 200a]
Over the resin layer 101, a transistor 110, a light-emitting element 120, an insulating layer 131, an insulating layer 132, an insulating layer 133, an insulating layer 134, an insulating layer 135, and the like are provided.
 トランジスタ110は、ゲート電極として機能する導電層111と、ゲート絶縁層として機能する絶縁層132の一部と、半導体層112と、ソース電極またはドレイン電極の一方として機能する導電層113aと、ソース電極またはドレイン電極の他方として機能する導電層113bと、を有する。 The transistor 110 includes a conductive layer 111 functioning as a gate electrode, a part of the insulating layer 132 functioning as a gate insulating layer, a semiconductor layer 112, a conductive layer 113a functioning as one of a source electrode and a drain electrode, and a source electrode Or a conductive layer 113b functioning as the other of the drain electrodes.
 半導体層112は、酸化物半導体を含むことが好ましい。 The semiconductor layer 112 preferably contains an oxide semiconductor.
 絶縁層133及び絶縁層134は、トランジスタ110を覆って設けられている。絶縁層134は、平坦化層として機能する。 The insulating layer 133 and the insulating layer 134 are provided so as to cover the transistor 110. The insulating layer 134 functions as a planarization layer.
 発光素子120は、導電層121と、EL層122と、導電層123と、が積層された構成を有する。導電層121は可視光を反射する機能を有し、導電層123は可視光を透過する機能を有する。したがって、発光素子120は、被形成面とは反対側に光を射出する上面射出型(トップエミッション型ともいう)の発光素子である。 The light emitting element 120 has a structure in which a conductive layer 121, an EL layer 122, and a conductive layer 123 are stacked. The conductive layer 121 has a function of reflecting visible light, and the conductive layer 123 has a function of transmitting visible light. Therefore, the light-emitting element 120 is a top-emission type (also referred to as top-emission type) light-emitting element that emits light to the side opposite to a formation surface.
 導電層121は、絶縁層134及び絶縁層133に設けられた開口を介して導電層113bと電気的に接続されている。絶縁層135は、導電層121の端部を覆い、且つ導電層121の表面の一部が露出するように開口が設けられている。EL層122及び導電層123は、絶縁層135及び導電層121の露出した部分を覆って、順に設けられている。 The conductive layer 121 is electrically connected to the conductive layer 113b through an opening provided in the insulating layer 134 and the insulating layer 133. The insulating layer 135 covers an end portion of the conductive layer 121 and has an opening so that a part of the surface of the conductive layer 121 is exposed. The EL layer 122 and the conductive layer 123 are sequentially provided so as to cover the exposed portions of the insulating layer 135 and the conductive layer 121.
 発光素子120は、接着層151によって封止されている。また、素子層200aと素子層100bとは、接着層151により貼り合わされている。 The light emitting element 120 is sealed with an adhesive layer 151. In addition, the element layer 200a and the element layer 100b are bonded to each other with an adhesive layer 151.
 ここで、絶縁層131、絶縁層132、絶縁層133、絶縁層134、トランジスタ110を含む積層構造を、素子層100aと呼ぶこととする。また、絶縁層135及び発光素子120を含む積層構造を、素子層200aと呼ぶこととする。なお、素子層200aは、後述する着色層152、及び遮光層153を含んでいてもよい。 Here, a stacked structure including the insulating layer 131, the insulating layer 132, the insulating layer 133, the insulating layer 134, and the transistor 110 is referred to as an element layer 100a. A stacked structure including the insulating layer 135 and the light-emitting element 120 is referred to as an element layer 200a. Note that the element layer 200a may include a coloring layer 152 and a light shielding layer 153 which will be described later.
〔素子層100b、素子層200b〕
 樹脂層202の視認側とは反対側に、絶縁層204、液晶素子220、樹脂層201、トランジスタ210、絶縁層231、絶縁層232、絶縁層233、絶縁層234等が設けられている。
[Element layer 100b, Element layer 200b]
On the side opposite to the viewing side of the resin layer 202, an insulating layer 204, a liquid crystal element 220, a resin layer 201, a transistor 210, an insulating layer 231, an insulating layer 232, an insulating layer 233, an insulating layer 234, and the like are provided.
 液晶素子220は、導電層221a、導電層221b、液晶222、及び導電層223を有する。液晶222は、導電層221bと導電層223との間に挟持されている。導電層221aと導電層221bは接して設けられ、画素電極として機能する。導電層221aは、可視光を反射する機能を有し、反射電極として機能する。導電層221bは、可視光を透過する機能を有する。したがって、液晶素子220は反射型の液晶素子である。 The liquid crystal element 220 includes a conductive layer 221a, a conductive layer 221b, a liquid crystal 222, and a conductive layer 223. The liquid crystal 222 is sandwiched between the conductive layer 221b and the conductive layer 223. The conductive layer 221a and the conductive layer 221b are provided in contact with each other and function as pixel electrodes. The conductive layer 221a has a function of reflecting visible light and functions as a reflective electrode. The conductive layer 221b has a function of transmitting visible light. Accordingly, the liquid crystal element 220 is a reflective liquid crystal element.
 また液晶222は、その周囲を図示しない領域で接着層により封止されている。また導電層223と液晶222との間に、配向膜224が設けられている。また、導電層221bと液晶222との間に、樹脂層201が設けられている。樹脂層201は配向膜として機能する。 Further, the periphery of the liquid crystal 222 is sealed with an adhesive layer in a region not shown. An alignment film 224 is provided between the conductive layer 223 and the liquid crystal 222. In addition, a resin layer 201 is provided between the conductive layer 221 b and the liquid crystal 222. The resin layer 201 functions as an alignment film.
 導電層221aを覆って絶縁層231が設けられている。トランジスタ210は、絶縁層231の導電層221a側とは反対側の面を被形成面として形成されている。 An insulating layer 231 is provided to cover the conductive layer 221a. The transistor 210 is formed with a surface of the insulating layer 231 opposite to the conductive layer 221a side as a formation surface.
 トランジスタ210は、ゲート電極として機能する導電層211と、ゲート絶縁層として機能する絶縁層232の一部と、半導体層212と、ソース電極またはドレイン電極の一方として機能する導電層213aと、ソース電極またはドレイン電極の他方として機能する導電層213bと、を有する。 The transistor 210 includes a conductive layer 211 functioning as a gate electrode, a part of the insulating layer 232 functioning as a gate insulating layer, a semiconductor layer 212, a conductive layer 213a functioning as one of a source electrode and a drain electrode, and a source electrode Or a conductive layer 213b functioning as the other of the drain electrodes.
 半導体層212は、酸化物半導体を含むことが好ましい。 The semiconductor layer 212 preferably contains an oxide semiconductor.
 絶縁層233及び絶縁層234は、トランジスタ210を覆って設けられている。絶縁層234は、平坦化層として機能する。 The insulating layer 233 and the insulating layer 234 are provided so as to cover the transistor 210. The insulating layer 234 functions as a planarization layer.
 導電層213bは、絶縁層232及び絶縁層231に設けられた開口を介して導電層221aと電気的に接続されている。導電層221aと導電層213bとが接続する部分において、導電層221aの視認側の面が平坦であるため、当該部分も液晶素子220の一部として機能させることができ、開口率を高めることができる。 The conductive layer 213b is electrically connected to the conductive layer 221a through an opening provided in the insulating layer 232 and the insulating layer 231. In the portion where the conductive layer 221a and the conductive layer 213b are connected, the surface on the viewing side of the conductive layer 221a is flat, so that the portion can also function as part of the liquid crystal element 220, and the aperture ratio can be increased. it can.
 配向膜として機能する樹脂層201は、導電層221bを覆って設けられている。樹脂層201は、導電層221b等を支持する機能を有している。 The resin layer 201 functioning as an alignment film is provided so as to cover the conductive layer 221b. The resin layer 201 has a function of supporting the conductive layer 221b and the like.
 樹脂層202の樹脂層201側には、導電層223と配向膜224とが積層されて設けられている。また、樹脂層202と導電層223との間に絶縁層204が設けられている。なお、導電層223と基板12との間に、液晶素子220の反射光を着色するための着色層を設けてもよい。また、隣接画素間の混色を抑制する遮光層を設けてもよい。 A conductive layer 223 and an alignment film 224 are stacked on the resin layer 201 side of the resin layer 202. In addition, an insulating layer 204 is provided between the resin layer 202 and the conductive layer 223. Note that a coloring layer for coloring the reflected light of the liquid crystal element 220 may be provided between the conductive layer 223 and the substrate 12. Further, a light shielding layer that suppresses color mixture between adjacent pixels may be provided.
 絶縁層204は、樹脂層202の開口部を覆って設けられている。また、絶縁層204の樹脂層202の開口部と重なる部分は、接着層52と接して設けられている。 The insulating layer 204 is provided so as to cover the opening of the resin layer 202. A portion of the insulating layer 204 that overlaps with the opening of the resin layer 202 is provided in contact with the adhesive layer 52.
 絶縁層234の基板11側の面には、着色層152と遮光層153が設けられている。着色層152は、発光素子120と重なる位置に設けられている。また遮光層153は、発光素子120と重なる部分に開口を有する。 A colored layer 152 and a light shielding layer 153 are provided on the surface of the insulating layer 234 on the substrate 11 side. The colored layer 152 is provided at a position overlapping the light emitting element 120. In addition, the light shielding layer 153 has an opening in a portion overlapping with the light emitting element 120.
 ここで、絶縁層231、絶縁層232、絶縁層233、絶縁層234、トランジスタ210を含む積層構造を、素子層100bと呼ぶこととする。また、導電層221a、導電層221b、樹脂層201、液晶222、配向膜224、導電層223、絶縁層204を含む積層構造を、素子層200bと呼ぶこととする。 Here, a stacked structure including the insulating layer 231, the insulating layer 232, the insulating layer 233, the insulating layer 234, and the transistor 210 is referred to as an element layer 100b. A stacked structure including the conductive layer 221a, the conductive layer 221b, the resin layer 201, the liquid crystal 222, the alignment film 224, the conductive layer 223, and the insulating layer 204 is referred to as an element layer 200b.
〔表示装置10〕
 表示装置10は、上面から見たときに、発光素子120が、液晶素子220の反射電極として機能する導電層221aと重ならない部分を有する。これにより、図1に示すように、発光素子120からは、着色層152によって着色された発光21が、視認側に射出される。また、液晶素子220では、導電層221aにより外光が反射された反射光22が液晶222を介して射出される。
[Display device 10]
The display device 10 includes a portion where the light emitting element 120 does not overlap with the conductive layer 221a functioning as a reflective electrode of the liquid crystal element 220 when viewed from above. Thereby, as shown in FIG. 1, the light emission 21 colored by the colored layer 152 is emitted from the light emitting element 120 to the viewing side. Further, in the liquid crystal element 220, the reflected light 22 in which the external light is reflected by the conductive layer 221a is emitted through the liquid crystal 222.
 発光素子120から射出された発光21は、樹脂層202の開口部を通って視認側に射出される。したがって、樹脂層202が可視光の一部を吸収する場合であっても、発光21の光路上に樹脂層202が存在しないため、光取り出し効率や、色再現性を高いものとすることができる。 The light emission 21 emitted from the light emitting element 120 is emitted to the viewing side through the opening of the resin layer 202. Therefore, even when the resin layer 202 absorbs a part of visible light, the resin layer 202 does not exist on the optical path of the light emission 21, so that light extraction efficiency and color reproducibility can be improved. .
 また、導電層221bは、発光素子120と重なる部分にも配置されている。導電層221bは可視光を透過するため、発光21の光路上に導電層221bが位置していても、これを透過することができる。導電層221bが導電層221aよりも広い範囲に設けられることにより、導電層221aが設けられる領域よりも外側の領域の液晶222にも電界をかけて配向させることが可能となる。そのため、液晶222の配向欠陥が生じる領域の面積を縮小でき、開口率を高めることができる。導電層221bは、例えば可視光領域(例えば波長が400nm以上750nm以下の範囲)における全範囲で、透過率が60%以上、好ましくは70%以上、より好ましくは80%以上であることが好ましい。 In addition, the conductive layer 221b is also disposed in a portion overlapping the light emitting element 120. Since the conductive layer 221b transmits visible light, even if the conductive layer 221b is located on the optical path of the light emission 21, it can be transmitted. By providing the conductive layer 221b in a wider range than the conductive layer 221a, the liquid crystal 222 in a region outside the region where the conductive layer 221a is provided can be aligned by applying an electric field. Therefore, the area of the region where the alignment defect of the liquid crystal 222 occurs can be reduced, and the aperture ratio can be increased. The conductive layer 221b preferably has a transmittance of 60% or more, preferably 70% or more, and more preferably 80% or more over the entire range in the visible light region (for example, a wavelength range of 400 nm to 750 nm).
 なお、図1等において、導電層221bは図の両端に亘って設けられているが、実際には画素毎に島状に設けられ、隣接する画素間で電気的に絶縁されている。 Note that in FIG. 1 and the like, the conductive layer 221b is provided across both ends of the figure, but actually, it is provided in an island shape for each pixel and is electrically insulated between adjacent pixels.
 なお、隣接画素間の距離が十分に大きい場合や、導電層221aの面積が十分大きい場合など、配向欠陥の開口率への影響が少ない場合には、導電層221bを有さない構成としてもよい。 Note that the conductive layer 221b may be omitted when the influence of the alignment defects on the aperture ratio is small, such as when the distance between adjacent pixels is sufficiently large or when the area of the conductive layer 221a is sufficiently large. .
 図1に示すように、素子層100a及び素子層200aにおいて、発光素子120の反射電極として機能する導電層121は、トランジスタ110よりも視認側に位置している。そのため、トランジスタ110を発光素子120と重ねて配置することが可能で、画素の集積度や開口率を高めることが可能となる。 As shown in FIG. 1, in the element layer 100a and the element layer 200a, the conductive layer 121 functioning as a reflective electrode of the light-emitting element 120 is located on the viewer side with respect to the transistor 110. Therefore, the transistor 110 can be placed over the light-emitting element 120, and the degree of integration and the aperture ratio of the pixels can be increased.
 同様に、素子層100b及び素子層200bにおいて、液晶素子220の反射電極として機能する導電層221aは、トランジスタ210よりも視認側に位置している。そのため、トランジスタ210を液晶素子220と重ねて配置することが可能で、画素の集積度や開口率を高めることができる。 Similarly, in the element layer 100b and the element layer 200b, the conductive layer 221a that functions as a reflective electrode of the liquid crystal element 220 is located on the viewing side with respect to the transistor 210. Therefore, the transistor 210 can be placed over the liquid crystal element 220, so that the degree of integration and the aperture ratio of the pixels can be increased.
 表示装置10は、トランジスタ210とトランジスタ110とが、互いに向き合うように積層された構成を有する。言い換えると、トランジスタ210とトランジスタ110とが、互いに上下が反転した構成を有する。 The display device 10 has a configuration in which a transistor 210 and a transistor 110 are stacked so as to face each other. In other words, the transistor 210 and the transistor 110 have a configuration in which the top and bottom are inverted.
 また、基板12は偏光板、または円偏光板として機能することが好ましい。または、基板12よりも外側に、偏光板または円偏光板を設けてもよい。 The substrate 12 preferably functions as a polarizing plate or a circular polarizing plate. Alternatively, a polarizing plate or a circular polarizing plate may be provided outside the substrate 12.
 ここでは、液晶素子220と重ねて着色層を配置せず、カラー表示を行わない構成としているが、樹脂層202側に着色層を設け、カラー表示可能な構成としてもよい。 Here, although the color layer is not disposed so as to overlap with the liquid crystal element 220 and color display is not performed, a color layer may be provided on the resin layer 202 side to enable color display.
 また、基板11及び基板12は、ガラス基板等を用いてもよいが、樹脂を含む材料を用いることが好ましい。樹脂材料を用いると、同じ厚さであってもガラス等を用いた場合に比べて、表示装置10を軽量化できる。また、可撓性を有する程度に薄い材料(ガラス基板等を含む)を用いると、より軽量化できるため好ましい。また、樹脂材料を用いることで、表示装置の耐衝撃性を向上させることができ、割れにくい表示装置を実現できる。 Moreover, although the glass substrate etc. may be used for the board | substrate 11 and the board | substrate 12, it is preferable to use the material containing resin. When the resin material is used, the display device 10 can be reduced in weight as compared with the case where glass or the like is used even if the thickness is the same. In addition, it is preferable to use a material that is thin enough to have flexibility (including a glass substrate or the like) because the weight can be further reduced. Further, by using a resin material, the impact resistance of the display device can be improved, and a display device that is difficult to break can be realized.
 また、基板11は視認側とは反対側に位置する基板であるため、可視光に対して透光性を有していなくてもよい。そのため、金属材料を用いることもできる。金属材料は熱伝導性が高く、基板全体に熱を容易に伝導できるため、表示装置10の局所的な温度上昇を抑制することができる。 Further, since the substrate 11 is a substrate located on the side opposite to the viewing side, the substrate 11 may not have translucency with respect to visible light. Therefore, a metal material can also be used. Since the metal material has high thermal conductivity and can easily conduct heat to the entire substrate, local temperature rise of the display device 10 can be suppressed.
 以上が構成例1についての説明である。 The above is the description of the configuration example 1.
[作製方法例1]
 以下では、図1で例示した表示装置10の作製方法の例について、図面を参照して説明する。
[Production Method Example 1]
Hereinafter, an example of a method for manufacturing the display device 10 illustrated in FIG. 1 will be described with reference to the drawings.
 なお、表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulse Laser Deposition)法、原子層堆積(ALD:Atomic Layer Deposition)法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD)法や、熱CVD法でもよい。熱CVD法の例として、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法を使ってもよい。 Note that a thin film (an insulating film, a semiconductor film, a conductive film, or the like) included in the display device is formed by a sputtering method, a chemical vapor deposition (CVD) method, a vacuum evaporation method, or a pulse laser deposition (PLD: Pulse Laser Deposition). ) Method, atomic layer deposition (ALD: Atomic Layer Deposition) method, or the like. The CVD method may be a plasma enhanced chemical vapor deposition (PECVD) method or a thermal CVD method. As an example of the thermal CVD method, a metal organic chemical vapor deposition (MOCVD) method may be used.
 また、表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。 Thin films (insulating films, semiconductor films, conductive films, etc.) that constitute display devices are spin coat, dip, spray coating, ink jet, dispense, screen printing, offset printing, doctor knife, slit coat, roll coat, curtain coat. It can be formed by a method such as knife coating.
 また、表示装置を構成する薄膜を加工する際には、フォトリソグラフィ法等を用いて加工することができる。または、遮蔽マスクを用いた成膜方法により、島状の薄膜を形成してもよい。または、ナノインプリント法、サンドブラスト法、リフトオフ法などにより薄膜を加工してもよい。フォトリソグラフィ法としては、例えば以下の2つの方法がある。1つは、加工したい薄膜上に感光性のレジスト材料を塗布し、フォトマスクを介して露光した後、現像することによりレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法である。もう1つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。 Further, when processing the thin film constituting the display device, it can be processed using a photolithography method or the like. Alternatively, an island-shaped thin film may be formed by a film formation method using a shielding mask. Alternatively, the thin film may be processed by a nanoimprint method, a sand blast method, a lift-off method, or the like. As the photolithography method, there are the following two methods, for example. First, a photosensitive resist material is applied onto a thin film to be processed, exposed through a photomask, developed to form a resist mask, the thin film is processed by etching or the like, and the resist mask is formed. It is a method of removing. The other is a method in which a thin film having photosensitivity is formed and then exposed and developed to process the thin film into a desired shape.
 フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線やKrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外光(EUV:Extreme Ultra−violet)やX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、光や電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。 In the photolithography method, light used for exposure can be, for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or light obtained by mixing these. In addition, ultraviolet light, KrF laser light, ArF laser light, or the like can be used. Further, exposure may be performed by an immersion exposure technique. Further, extreme ultraviolet light (EUV: Extreme-violet) or X-rays may be used as light used for exposure. Further, an electron beam can be used instead of the light used for exposure. It is preferable to use extreme ultraviolet light, X-rays, or an electron beam because extremely fine processing is possible. Note that a photomask is not required when exposure is performed by scanning a beam such as light or an electron beam.
 薄膜のエッチングには、ドライエッチング法、ウエットエッチング法、サンドブラスト法などを用いることができる。 For etching the thin film, a dry etching method, a wet etching method, a sand blasting method, or the like can be used.
 まず、素子層100a及び素子層200aの形成方法を説明する。 First, a method for forming the element layer 100a and the element layer 200a will be described.
〔支持基板の準備〕
 まず、支持基板61を準備する。支持基板61としては、搬送が容易となる程度に剛性を有する材料であり、且つ作製工程にかかる温度に対して耐熱性を有する材料を用いることができる。例えば、ガラス、石英、セラミック、サファイヤ、有機樹脂、半導体、金属または合金などの材料を用いることができる。ガラスとしては、例えば、無アルカリガラス、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス等を用いることができる。
[Preparation of support substrate]
First, the support substrate 61 is prepared. As the support substrate 61, a material that is rigid to such an extent that it can be easily transported and that is heat resistant to the temperature required for the manufacturing process can be used. For example, materials such as glass, quartz, ceramic, sapphire, organic resin, semiconductor, metal, or alloy can be used. As the glass, for example, alkali-free glass, barium borosilicate glass, alumino borosilicate glass, or the like can be used.
〔樹脂層の形成〕
 続いて、支持基板61上に、樹脂層101を形成する(図2(A))。
[Formation of resin layer]
Subsequently, the resin layer 101 is formed over the support substrate 61 (FIG. 2A).
 まず、樹脂層101となる材料を支持基板61上に塗布する。塗布は、スピンコート法を用いると大型の基板に均一に薄い樹脂層101を形成できるため好ましい。 First, a material to be the resin layer 101 is applied on the support substrate 61. The application is preferably performed by spin coating because a thin resin layer 101 can be uniformly formed on a large substrate.
 他の塗布方法として、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法を用いてもよい。 Other coating methods such as dip, spray coating, ink jet, dispensing, screen printing, offset printing, doctor knife, slit coating, roll coating, curtain coating, knife coating, etc. may be used.
 当該材料は、熱により重合が進行する熱硬化性(熱重合性ともいう)を発現する重合性モノマーを有する。さらに、当該材料は、感光性を有することが好ましい。また当該材料は、粘度を調整するための溶媒が含まれていることが好ましい。 The material has a polymerizable monomer that exhibits thermosetting (also referred to as thermopolymerization) in which polymerization proceeds by heat. Furthermore, the material preferably has photosensitivity. Moreover, it is preferable that the said material contains the solvent for adjusting a viscosity.
 当該材料には、重合後にポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂となる、重合性モノマーを含むことが好ましい。すなわち、形成された樹脂層101は、これら樹脂材料を含む。特に当該材料に、イミド結合を有する重合性モノマーを用いることで、ポリイミド樹脂に代表される樹脂を樹脂層101に用いると、耐熱性や耐候性を向上させることができるため好ましい。 The material preferably contains a polymerizable monomer that becomes a polyimide resin, an acrylic resin, an epoxy resin, a polyamide resin, a polyimide amide resin, a siloxane resin, a benzocyclobutene resin, or a phenol resin after polymerization. That is, the formed resin layer 101 includes these resin materials. In particular, by using a polymerizable monomer having an imide bond as the material, it is preferable to use a resin typified by a polyimide resin for the resin layer 101 because heat resistance and weather resistance can be improved.
 塗布に用いる当該材料の粘度は、5cP以上500cP未満、好ましくは粘度が5cP以上100cP未満、より好ましくは粘度が10cP以上50cP以下であることが好ましい。材料の粘度が低いほど、塗布が容易となる。また、材料の粘度が低いほど、気泡の混入を抑制でき、良質な膜を形成できる。また材料の粘度が低いほど、薄く均一に塗布することが可能なため、より薄い樹脂層101を形成することができる。 The viscosity of the material used for coating is 5 cP or more and less than 500 cP, preferably the viscosity is 5 cP or more and less than 100 cP, more preferably 10 cP or more and 50 cP or less. The lower the viscosity of the material, the easier it is to apply. In addition, the lower the viscosity of the material, the more air bubbles can be prevented and the better the film can be formed. Further, the lower the viscosity of the material, the thinner and more uniformly it can be applied, so that a thinner resin layer 101 can be formed.
 ここで、樹脂層101に感光性の材料を用いた場合、フォトリソグラフィ法により、一部を除去することが可能となる。例えば、材料を塗布した後に溶媒を除去するための熱処理(プリベーク処理ともいう)を行い、その後露光を行う。続いて、現像処理を施すことで、不要な部分を除去することができる。 Here, when a photosensitive material is used for the resin layer 101, a part can be removed by a photolithography method. For example, after applying the material, heat treatment for removing the solvent (also referred to as pre-bake treatment) is performed, and then exposure is performed. Subsequently, unnecessary portions can be removed by performing development processing.
 より具体的に、開口部を有する樹脂層101の形成方法について説明する。まず感光性の材料を塗布して薄膜を形成し、溶媒等を除去するための加熱処理(プリベーク処理)を行う。続いて、フォトマスクを用いて当該材料を露光し、現像処理を行うことで、開口部または凹部を有する樹脂層101を形成することができる。 More specifically, a method for forming the resin layer 101 having the opening will be described. First, a photosensitive material is applied to form a thin film, and a heat treatment (pre-bake treatment) for removing the solvent and the like is performed. Subsequently, the material is exposed using a photomask and developed, whereby the resin layer 101 having an opening or a recess can be formed.
 続いて、塗布した材料を重合させるための加熱処理(ポストベーク処理)を行うことで樹脂層101を形成する。加熱は、後のトランジスタ110の作製工程にかかる最高温度よりも高い温度で加熱することが好ましい。例えば300℃以上600℃以下、好ましくは350℃以上550℃以下、より好ましくは400℃以上500℃以下、代表的には450℃で加熱することが好ましい。樹脂層101の形成時に、表面が露出した状態でこのような温度で加熱することにより、樹脂層101から脱離しうるガスを除去することができるため、トランジスタ110の作製工程中にガスが脱離することを抑制できる。 Subsequently, the resin layer 101 is formed by performing a heat treatment (post-bake treatment) for polymerizing the applied material. The heating is preferably performed at a temperature higher than the maximum temperature required for a manufacturing process of the transistor 110 later. For example, it is preferable to heat at 300 ° C. to 600 ° C., preferably 350 ° C. to 550 ° C., more preferably 400 ° C. to 500 ° C., typically 450 ° C. When the resin layer 101 is formed, by heating at such a temperature with the surface exposed, the gas that can be desorbed from the resin layer 101 can be removed, so that the gas is desorbed during the manufacturing process of the transistor 110. Can be suppressed.
 樹脂層101の厚さは、0.01μm以上10μm未満であることが好ましく、0.1μm以上3μm以下であることがより好ましく、0.5μm以上1μm以下であることがさらに好ましい。低粘度の溶液を用いることで、樹脂層101を薄く均一に形成することが容易となる。 The thickness of the resin layer 101 is preferably 0.01 μm or more and less than 10 μm, more preferably 0.1 μm or more and 3 μm or less, and further preferably 0.5 μm or more and 1 μm or less. By using a low-viscosity solution, it becomes easy to form the resin layer 101 thinly and uniformly.
 また、樹脂層101の熱膨張係数は、0.1ppm/℃以上20ppm/℃以下であることが好ましく、0.1ppm/℃以上10ppm/℃以下であることがより好ましい。樹脂層101の熱膨張係数が低いほど、加熱による膨張または収縮に伴う応力により、トランジスタ等が破損することを抑制できる。 The thermal expansion coefficient of the resin layer 101 is preferably 0.1 ppm / ° C. or more and 20 ppm / ° C. or less, and more preferably 0.1 ppm / ° C. or more and 10 ppm / ° C. or less. As the thermal expansion coefficient of the resin layer 101 is lower, the transistor or the like can be prevented from being damaged by the stress accompanying expansion or contraction due to heating.
 また、トランジスタ110の半導体層112に酸化物半導体膜を用いる場合には、低温で形成できるため、樹脂層101に高い耐熱性が要求されない。そのため、材料のコストを低減することができる。樹脂層101等の耐熱性は、例えば加熱による重量減少率、具体的には5%重量減少温度等により評価できる。樹脂層101等の5%重量減少温度は、450℃以下、好ましくは400℃以下、より好ましくは400℃未満、さらに好ましくは350℃未満とすることができる。また、トランジスタ110等の形成工程にかかる最高温度を、350℃以下とすることが好ましい。 In addition, in the case where an oxide semiconductor film is used for the semiconductor layer 112 of the transistor 110, the resin layer 101 is not required to have high heat resistance because it can be formed at a low temperature. Therefore, the cost of the material can be reduced. The heat resistance of the resin layer 101 and the like can be evaluated by, for example, a weight reduction rate by heating, specifically, a 5% weight reduction temperature. The 5% weight reduction temperature of the resin layer 101 or the like can be set to 450 ° C. or lower, preferably 400 ° C. or lower, more preferably lower than 400 ° C., and still more preferably lower than 350 ° C. In addition, it is preferable that the maximum temperature in the formation process of the transistor 110 and the like be 350 ° C. or lower.
 上記方法で樹脂層101に開口部を設けることにより、以下のような構成を実現できる。例えば、開口部を覆うように導電層を配置することで、後述する剥離工程後に、裏面側に一部が露出した電極(裏面電極、貫通電極とも言う)を形成することができる。当該電極は、外部接続端子として用いることもできる。また、例えば2つの支持基板等を貼り合せるためのマーカー部と重なる位置の樹脂層101を除去することで、位置合わせ精度を高めることができる。 By providing an opening in the resin layer 101 by the above method, the following configuration can be realized. For example, by disposing the conductive layer so as to cover the opening, an electrode partially exposed on the back surface side (also referred to as a back electrode or a through electrode) can be formed after the peeling step described later. The electrode can also be used as an external connection terminal. Further, for example, by removing the resin layer 101 at a position overlapping the marker portion for bonding two support substrates and the like, the alignment accuracy can be increased.
〔絶縁層131の形成〕
 続いて、樹脂層101上に絶縁層131を形成する(図2(B))。
[Formation of Insulating Layer 131]
Subsequently, an insulating layer 131 is formed over the resin layer 101 (FIG. 2B).
 絶縁層131は、樹脂層101に含まれる不純物が、後に形成するトランジスタや発光素子に拡散することを防ぐバリア層として用いることができる。そのためバリア性の高い材料を用いることが好ましい。 The insulating layer 131 can be used as a barrier layer that prevents impurities contained in the resin layer 101 from diffusing into transistors and light-emitting elements to be formed later. Therefore, it is preferable to use a material having a high barrier property.
 バリア性の高い材料としては、例えば窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などの無機絶縁材料を用いることができる。また、上述の2以上の絶縁膜を積層して用いてもよい。特に、樹脂層101側から窒化シリコン膜と酸化シリコン膜の積層膜を用いることが好ましい。 As the material having a high barrier property, for example, an inorganic insulating material such as a silicon nitride film, a silicon oxynitride film, a silicon oxide film, a silicon nitride oxide film, an aluminum oxide film, or an aluminum nitride film can be used. Alternatively, two or more of the above insulating films may be stacked. In particular, a stacked film of a silicon nitride film and a silicon oxide film is preferably used from the resin layer 101 side.
 また、樹脂層101の表面に凹凸がある場合、絶縁層131は当該凹凸を被覆することが好ましい。また、絶縁層131が当該凹凸を平坦化する平坦化層としての機能を有していてもよい。例えば、絶縁層131として、有機絶縁材料と無機絶縁材料を積層して用いることが好ましい。有機絶縁材料としては、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等の有機樹脂を用いることができる。 In addition, when the surface of the resin layer 101 is uneven, the insulating layer 131 preferably covers the unevenness. The insulating layer 131 may function as a planarization layer that planarizes the unevenness. For example, the insulating layer 131 is preferably formed using a stack of an organic insulating material and an inorganic insulating material. Organic resins such as epoxy resin, acrylic resin, silicone resin, phenol resin, polyimide resin, imide resin, PVC (polyvinyl chloride) resin, PVB (polyvinyl butyral) resin, EVA (ethylene vinyl acetate) resin, etc. Can be used.
 絶縁層131は、例えば室温以上400度以下、好ましくは100℃以上350℃以下、より好ましくは150℃以上300℃以下の温度で形成することが好ましい。 The insulating layer 131 is preferably formed at a temperature of, for example, room temperature to 400 ° C., preferably 100 ° C. to 350 ° C., more preferably 150 ° C. to 300 ° C.
〔トランジスタの形成〕
 続いて、図2(C)に示すように、絶縁層131上にトランジスタ110を形成する。ここではトランジスタ110の一例として、ボトムゲート構造のトランジスタを作製する場合の例を示している。
[Formation of transistors]
Next, as illustrated in FIG. 2C, the transistor 110 is formed over the insulating layer 131. Here, as an example of the transistor 110, an example in the case of manufacturing a bottom-gate transistor is shown.
 絶縁層131上に導電層111を形成する。導電層111は、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。 A conductive layer 111 is formed over the insulating layer 131. The conductive layer 111 can be formed by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask.
 続いて、絶縁層132を形成する。絶縁層132は、絶縁層131に用いることのできる無機絶縁膜を援用できる。 Subsequently, an insulating layer 132 is formed. As the insulating layer 132, an inorganic insulating film that can be used for the insulating layer 131 can be used.
 続いて、半導体層112を形成する。半導体層112は、半導体膜を成膜した後、レジストマスクを形成し、当該半導体膜をエッチングした後にレジストマスクを除去することにより形成できる。 Subsequently, the semiconductor layer 112 is formed. The semiconductor layer 112 can be formed by forming a semiconductor film, forming a resist mask, etching the semiconductor film, and then removing the resist mask.
 半導体膜は、成膜時の基板温度を室温以上300℃以下、好ましくは室温以上220℃以下、より好ましくは、室温以上200℃以下、さらに好ましくは室温以上170℃以下の温度で形成する。ここで成膜時の基板温度が室温であるとは、基板を意図的に加熱しないことを指す。このとき、成膜時に基板が受けるエネルギーにより、室温よりも高い温度になる場合も含む。また、室温とは例えば10℃以上30℃以下の温度範囲を指し、代表的には25℃とする。 The semiconductor film is formed at a substrate temperature during film formation of room temperature to 300 ° C., preferably room temperature to 220 ° C., more preferably room temperature to 200 ° C., more preferably room temperature to 170 ° C. Here, that the substrate temperature during film formation is room temperature indicates that the substrate is not intentionally heated. At this time, a case where the temperature is higher than room temperature due to energy received by the substrate during film formation is included. The room temperature refers to a temperature range of 10 ° C. to 30 ° C., for example, and is typically 25 ° C.
 半導体膜としては、酸化物半導体を用いることが好ましい。特にシリコンよりもバンドギャップの大きな酸化物半導体を適用することが好ましい。シリコンよりもバンドギャップが広く、且つキャリア密度の小さい半導体材料を用いると、トランジスタのオフ状態における電流を低減できるため好ましい。 As the semiconductor film, an oxide semiconductor is preferably used. In particular, an oxide semiconductor having a larger band gap than silicon is preferably used. It is preferable to use a semiconductor material with a wider band gap and lower carrier density than silicon because current in an off state of the transistor can be reduced.
 また、酸化物半導体として、バンドギャップが2.5eV以上、好ましくは2.8eV以上、より好ましくはバンドギャップが3.0eV以上の材料を用いることが好ましい。このような酸化物半導体を用いることにより、後述する剥離工程におけるレーザ光等の光の照射において、当該光が半導体膜を透過するため、トランジスタの電気特性への悪影響が生じにくくなる。 Further, as the oxide semiconductor, a material having a band gap of 2.5 eV or more, preferably 2.8 eV or more, more preferably 3.0 eV or more is preferably used. With the use of such an oxide semiconductor, the light is transmitted through the semiconductor film in irradiation with light such as laser light in a peeling step which will be described later, so that adverse effects on the electrical characteristics of the transistor are less likely to occur.
 特に、本発明の一態様に用いる半導体膜は、不活性ガス(例えばAr)及び酸素ガスのいずれか一方または両方を含む雰囲気下にて、スパッタリング法によって成膜することが好ましい。 In particular, the semiconductor film used for one embodiment of the present invention is preferably formed by a sputtering method in an atmosphere containing one or both of an inert gas (eg, Ar) and an oxygen gas.
 成膜時の基板温度は室温以上200℃以下、好ましくは室温以上170℃以下の温度とすることが好ましい。基板の温度を高めることにより、配向性を有する結晶部がより多く形成され、電気的な安定性に優れた半導体膜を形成できる。このような半導体膜を用いることで、電気的な安定性に優れたトランジスタを実現できる。また、基板温度を低くする、または意図的に加熱しない状態で成膜することで、配向性を有する結晶部の割合が小さく、キャリア移動度の高い半導体膜を形成できる。このような半導体膜を用いることで、高い電界効果移動度を示すトランジスタを実現できる。 The substrate temperature during film formation is preferably from room temperature to 200 ° C., preferably from room temperature to 170 ° C. By increasing the temperature of the substrate, more crystal parts having orientation are formed, and a semiconductor film having excellent electrical stability can be formed. By using such a semiconductor film, a transistor with excellent electrical stability can be realized. In addition, by forming the film at a low substrate temperature or without intentional heating, a semiconductor film with a low carrier ratio and a high carrier mobility can be formed. By using such a semiconductor film, a transistor exhibiting high field effect mobility can be realized.
 また、成膜時の酸素の流量比(酸素分圧)を、0%以上100%未満、好ましくは0%以上50%以下、より好ましくは0%以上33%以下、さらに好ましくは0%以上15%以下とすることが好ましい。酸素流量を低減することにより、キャリア移動度の高い半導体膜を形成でき、より高い電界効果移動度を示すトランジスタを実現できる。一方、酸素の流量比を高めることにより、結晶性の高い半導体膜を形成でき、電気的な安定性に優れた半導体膜とすることができる。 In addition, the flow rate ratio of oxygen during film formation (oxygen partial pressure) is 0% to less than 100%, preferably 0% to 50%, more preferably 0% to 33%, and still more preferably 0% to 15%. % Or less is preferable. By reducing the oxygen flow rate, a semiconductor film with high carrier mobility can be formed, and a transistor exhibiting higher field-effect mobility can be realized. On the other hand, by increasing the flow ratio of oxygen, a semiconductor film with high crystallinity can be formed, and a semiconductor film with excellent electrical stability can be obtained.
 成膜時の基板温度と、成膜時の酸素流量を上述の範囲とすることで、配向性を有する結晶部と、配向性を有さない結晶部とが混在した半導体膜を得ることができる。また、基板温度と酸素流量を上述の範囲内で最適化することにより、配向性を有する結晶部と配向性を有さない結晶部の存在割合を制御することが可能となる。 By setting the substrate temperature during film formation and the oxygen flow rate during film formation within the above ranges, a semiconductor film in which crystal parts having orientation and crystal parts having no orientation are mixed can be obtained. . Further, by optimizing the substrate temperature and the oxygen flow rate within the above-described ranges, it is possible to control the existence ratio of the crystal part having orientation and the crystal part not having orientation.
 半導体膜の成膜に用いることの可能な酸化物ターゲットとしては、In−Ga−Zn系酸化物に限られず、例えば、In−M−Zn系酸化物(Mは、Al、Y、またはSn)を適用することができる。 An oxide target that can be used for forming a semiconductor film is not limited to an In—Ga—Zn-based oxide. For example, an In—M—Zn-based oxide (M is Al, Y, or Sn). Can be applied.
 また、複数の結晶粒を有する多結晶酸化物を含むスパッタリングターゲットを用いて、半導体膜である結晶部を含む半導体膜を成膜すると、多結晶酸化物を含まないスパッタリングターゲットを用いた場合に比べて、結晶性を有する半導体膜が得られやすい。 Further, when a semiconductor film including a crystal part, which is a semiconductor film, is formed using a sputtering target including a polycrystalline oxide having a plurality of crystal grains, the sputtering target not including a polycrystalline oxide is used. Thus, it is easy to obtain a crystalline semiconductor film.
 特に、膜の厚さ方向(膜面方向、膜の被形成面、または膜の表面に垂直な方向ともいう)に配向性を有する結晶部と、このような配向性を有さずに無秩序に配向する結晶部が混在した半導体膜を適用したトランジスタは、電気特性の安定性を高くできる、チャネル長を微細にすることが容易となる、などの特徴がある。一方、配向性を有さない結晶部のみで構成される半導体膜を適用したトランジスタは、電界効果移動度を高めることができる。なお、後述するように、酸化物半導体中の酸素欠損を低減することにより、高い電界効果移動度と高い電気特性の安定性を両立したトランジスタを実現することができる。 In particular, the crystal part having orientation in the thickness direction of the film (also referred to as the film surface direction, the film formation surface, or the direction perpendicular to the film surface), and disorderly without such orientation A transistor using a semiconductor film in which oriented crystal parts are mixed has characteristics such as high stability of electric characteristics and easy miniaturization of a channel length. On the other hand, a transistor to which a semiconductor film including only crystal parts having no orientation is applied can increase field effect mobility. Note that as described later, by reducing oxygen vacancies in the oxide semiconductor, a transistor having both high field-effect mobility and high stability of electric characteristics can be realized.
 このように、酸化物半導体膜を用いることで、LTPSで必要であった高い温度での加熱処理や、レーザ結晶化処理が不要であり、極めて低温で半導体層112を形成できる。そのため、樹脂層101を薄く形成することが可能となる。 As described above, by using the oxide semiconductor film, the heat treatment at a high temperature and the laser crystallization treatment that are necessary for LTPS are unnecessary, and the semiconductor layer 112 can be formed at an extremely low temperature. Therefore, the resin layer 101 can be formed thin.
 続いて、導電層113a及び導電層113bを形成する。導電層113a及び導電層113bは、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。 Subsequently, a conductive layer 113a and a conductive layer 113b are formed. The conductive layers 113a and 113b can be formed by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask.
 なお、導電層113a及び導電層113bの加工の際に、レジストマスクに覆われていない半導体層112の一部がエッチングにより薄膜化する場合がある。半導体層112として配向性を有する結晶部を含む酸化物半導体膜を用いると、この薄膜化を抑制できるため好ましい。 Note that when the conductive layer 113a and the conductive layer 113b are processed, part of the semiconductor layer 112 that is not covered with the resist mask may be thinned by etching. It is preferable to use an oxide semiconductor film including a crystal part having orientation as the semiconductor layer 112 because this thinning can be suppressed.
 以上のようにして、トランジスタ110を作製できる。トランジスタ110は、チャネルが形成される半導体層112に、酸化物半導体を含むトランジスタである。またトランジスタ110において、導電層111の一部はゲートとして機能し、絶縁層132の一部はゲート絶縁層として機能し、導電層113a及び導電層113bは、それぞれソース又はドレインのいずれか一方として機能する。 As described above, the transistor 110 can be manufactured. The transistor 110 is a transistor including an oxide semiconductor in the semiconductor layer 112 in which a channel is formed. In the transistor 110, part of the conductive layer 111 functions as a gate, part of the insulating layer 132 functions as a gate insulating layer, and the conductive layers 113a and 113b each function as either a source or a drain. To do.
〔絶縁層133の形成〕
 続いて、トランジスタ110を覆う絶縁層133を形成する。絶縁層133は、絶縁層132と同様の方法により形成することができる。
[Formation of Insulating Layer 133]
Subsequently, an insulating layer 133 that covers the transistor 110 is formed. The insulating layer 133 can be formed by a method similar to that of the insulating layer 132.
 絶縁層133は例えば室温以上400度以下、好ましくは100℃以上350℃以下、より好ましくは150℃以上300℃以下の温度で形成することが好ましい。温度が高いほど緻密でバリア性の高い絶縁膜とすることができる。 The insulating layer 133 is preferably formed at a temperature of, for example, room temperature to 400 ° C., preferably 100 ° C. to 350 ° C., more preferably 150 ° C. to 300 ° C. The higher the temperature, the denser the barrier film can be.
 また、絶縁層133として、酸素を含む雰囲気下で上述のような低温で成膜した酸化シリコン膜や酸化窒化シリコン膜等の酸化物絶縁膜を用いることが好ましい。また当該酸化シリコンや酸化窒化シリコン膜上に窒化シリコン膜などの酸素を拡散、透過しにくい絶縁膜を積層して形成することが好ましい。酸素を含む雰囲気下で低温で形成した酸化物絶縁膜は、加熱により多くの酸素を放出しやすい絶縁膜とすることができる。このような酸素をする酸化絶縁膜と、酸素を拡散、透過しにくい絶縁膜を積層した状態で、加熱処理を行うことにより、半導体層112に酸素を供給することができる。その結果、半導体層112中の酸素欠損、及び半導体層112と絶縁層133の界面の欠陥を修復し、欠陥準位を低減することができる。これにより、極めて信頼性の高い半導体装置を実現できる。 As the insulating layer 133, an oxide insulating film such as a silicon oxide film or a silicon oxynitride film formed at a low temperature as described above in an atmosphere containing oxygen is preferably used. In addition, an insulating film that hardly diffuses and transmits oxygen such as a silicon nitride film is preferably stacked over the silicon oxide or silicon oxynitride film. An oxide insulating film formed at a low temperature in an atmosphere containing oxygen can be an insulating film from which a large amount of oxygen is easily released by heating. Oxygen can be supplied to the semiconductor layer 112 by performing heat treatment in a state where such an oxide insulating film that emits oxygen and an insulating film that hardly diffuses and transmits oxygen are stacked. As a result, oxygen vacancies in the semiconductor layer 112 and defects at the interface between the semiconductor layer 112 and the insulating layer 133 can be repaired, and the defect level can be reduced. Thereby, a highly reliable semiconductor device can be realized.
 以上の工程により、可撓性を有する樹脂層101上にトランジスタ110と、これを覆う絶縁層133を形成することができる。なお、この段階において、後述する方法を用いて樹脂層101と支持基板61とを分離することで、表示素子を有さないフレキシブルデバイスを作製することもできる。例えば、トランジスタ110や、トランジスタ110に加えて容量素子、抵抗素子、及び配線などを形成することで、半導体回路を有するフレキシブルデバイスを作製することができる。 Through the above steps, the transistor 110 and the insulating layer 133 covering the transistor 110 can be formed over the flexible resin layer 101. Note that at this stage, a flexible device having no display element can be manufactured by separating the resin layer 101 and the support substrate 61 using a method described later. For example, a flexible device including a semiconductor circuit can be manufactured by forming a transistor 110, a capacitor, a resistor, a wiring, and the like in addition to the transistor 110.
〔絶縁層134の形成〕
 続いて、絶縁層133上に絶縁層134を形成する。絶縁層134は、後に形成する表示素子の被形成面を有する層であるため、平坦化層として機能する層であることが好ましい。絶縁層134は、絶縁層131に用いることのできる有機絶縁膜または無機絶縁膜を援用できる。
[Formation of Insulating Layer 134]
Subsequently, the insulating layer 134 is formed over the insulating layer 133. The insulating layer 134 is a layer having a formation surface of a display element to be formed later, and thus is preferably a layer that functions as a planarization layer. As the insulating layer 134, an organic insulating film or an inorganic insulating film that can be used for the insulating layer 131 can be used.
 絶縁層134は、樹脂層101と同様に、感光性及び熱硬化性を有する樹脂材料を用いることが好ましい。特に、絶縁層134と樹脂層101とに、同じ材料を用いることが好ましい。これにより、絶縁層134と樹脂層101の材料や、これらを形成するための装置を共通化することが可能となる。 As with the resin layer 101, the insulating layer 134 is preferably made of a resin material having photosensitivity and thermosetting. In particular, it is preferable to use the same material for the insulating layer 134 and the resin layer 101. Thereby, it is possible to share the materials for the insulating layer 134 and the resin layer 101 and the apparatus for forming them.
 また、絶縁層134は、樹脂層101と同様に、0.01μm以上10μm未満であることが好ましく、0.1μm以上3μm以下であることがより好ましく、0.5μm以上1μm以下であることがさらに好ましい。低粘度の溶液を用いることで、絶縁層134を薄く均一に形成することが容易となる。 Further, like the resin layer 101, the insulating layer 134 is preferably 0.01 μm or more and less than 10 μm, more preferably 0.1 μm or more and 3 μm or less, and further preferably 0.5 μm or more and 1 μm or less. preferable. By using a low-viscosity solution, it becomes easy to form the insulating layer 134 thinly and uniformly.
〔発光素子120の形成〕
 続いて、絶縁層134及び絶縁層133に、導電層113b等に達する開口を形成する。
[Formation of Light Emitting Element 120]
Subsequently, an opening reaching the conductive layer 113b and the like is formed in the insulating layer 134 and the insulating layer 133.
 その後、導電層121を形成する。導電層121は、その一部が画素電極として機能する。導電層121は、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。 Thereafter, the conductive layer 121 is formed. Part of the conductive layer 121 functions as a pixel electrode. The conductive layer 121 can be formed by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask.
 続いて、図2(D)に示すように、導電層121の端部を覆う絶縁層135を形成する。絶縁層135は、絶縁層131に用いることのできる有機絶縁膜または無機絶縁膜を援用できる。 Subsequently, as shown in FIG. 2D, an insulating layer 135 covering the end portion of the conductive layer 121 is formed. As the insulating layer 135, an organic insulating film or an inorganic insulating film that can be used for the insulating layer 131 can be used.
 絶縁層135は、樹脂層101と同様に、感光性及び熱硬化性を有する樹脂材料を用いることが好ましい。特に、絶縁層135と樹脂層101とに、同じ材料を用いることが好ましい。これにより、絶縁層135と樹脂層101の材料や、これらを形成するための装置を共通化することが可能となる。 As with the resin layer 101, the insulating layer 135 is preferably made of a resin material having photosensitivity and thermosetting properties. In particular, the same material is preferably used for the insulating layer 135 and the resin layer 101. Thereby, it is possible to share the materials for the insulating layer 135 and the resin layer 101 and the apparatus for forming them.
 また、絶縁層135は、樹脂層101と同様に、0.01μm以上10μm未満であることが好ましく、0.1μm以上3μm以下であることがより好ましく、0.5μm以上1μm以下であることがさらに好ましい。低粘度の溶液を用いることで、絶縁層135を薄く均一に形成することが容易となる。 Further, like the resin layer 101, the insulating layer 135 is preferably 0.01 μm or more and less than 10 μm, more preferably 0.1 μm or more and 3 μm or less, and further preferably 0.5 μm or more and 1 μm or less. preferable. By using a low-viscosity solution, it becomes easy to form the insulating layer 135 thinly and uniformly.
 続いて、図2(E)に示すように、EL層122及び導電層123を形成する。 Subsequently, as shown in FIG. 2E, an EL layer 122 and a conductive layer 123 are formed.
 EL層122は、蒸着法、塗布法、印刷法、吐出法などの方法で形成することができる。EL層122を画素毎に作り分ける場合、メタルマスクなどのシャドウマスクを用いた蒸着法、またはインクジェット法等により形成することができる。EL層122を画素毎に作り分けない場合には、メタルマスクを用いない蒸着法を用いることができる。ここでは、メタルマスクを用いない蒸着法により形成した例を示している。 The EL layer 122 can be formed by a method such as a vapor deposition method, a coating method, a printing method, or a discharge method. In the case where the EL layer 122 is separately formed for each pixel, the EL layer 122 can be formed by an evaporation method using a shadow mask such as a metal mask or an inkjet method. In the case where the EL layer 122 is not formed for each pixel, an evaporation method that does not use a metal mask can be used. Here, an example in which a metal mask is not used for vapor deposition is shown.
 導電層123は、蒸着法やスパッタリング法等を用いて形成することができる。 The conductive layer 123 can be formed using a vapor deposition method, a sputtering method, or the like.
 以上のようにして、発光素子120を形成することができる。発光素子120は、一部が画素電極として機能する導電層121、EL層122、及び一部が共通電極として機能する導電層123が積層された構成を有する。 The light emitting element 120 can be formed as described above. The light-emitting element 120 has a structure in which a conductive layer 121 partly functioning as a pixel electrode, an EL layer 122, and a conductive layer 123 partly functioning as a common electrode are stacked.
 なお、導電層123を覆って、水等の不純物に対するバリア層として機能する絶縁層を形成してもよい。 Note that an insulating layer functioning as a barrier layer against impurities such as water may be formed so as to cover the conductive layer 123.
 絶縁層に無機絶縁膜を用いる場合、例えばスパッタリング法、プラズマCVD法、ALD法、蒸着法などの成膜方法を好適に用いることができる。また、無機絶縁膜を成膜する際に発光素子120がダメージを受けることを防ぐため、無機絶縁膜と発光素子120との間、具体的には無機絶縁膜と導電層123との間に、有機絶縁膜を形成することが好ましい。このとき、有機絶縁膜は薄くてもよく(例えば100nm以下)、例えば蒸着法などを用いて形成することもできる。 When an inorganic insulating film is used for the insulating layer, for example, a film forming method such as a sputtering method, a plasma CVD method, an ALD method, or an evaporation method can be suitably used. Further, in order to prevent the light emitting element 120 from being damaged when the inorganic insulating film is formed, between the inorganic insulating film and the light emitting element 120, specifically, between the inorganic insulating film and the conductive layer 123, It is preferable to form an organic insulating film. At this time, the organic insulating film may be thin (for example, 100 nm or less), and may be formed using, for example, an evaporation method.
 以上により、素子層100aと素子層200aを形成することができる。図2(E)に示す時点では、素子層100aと素子層200aとが、支持基板61に支持された状態である。 Thus, the element layer 100a and the element layer 200a can be formed. At the time shown in FIG. 2E, the element layer 100a and the element layer 200a are supported by the support substrate 61.
 続いて、素子層100bの形成方法について説明する。 Subsequently, a method for forming the element layer 100b will be described.
〔樹脂層201の形成〕
 支持基板63を準備し、支持基板63上に樹脂層201を形成する(図3(A))。支持基板63は、支持基板61の記載を援用できる。樹脂層201の形成方法及び材料については、樹脂層101と同様の方法を用いることができる。
[Formation of resin layer 201]
A support substrate 63 is prepared, and a resin layer 201 is formed over the support substrate 63 (FIG. 3A). The description of the support substrate 61 can be used for the support substrate 63. For the formation method and material of the resin layer 201, the same method as that for the resin layer 101 can be used.
 なお、樹脂層201上に、バリア膜として機能する絶縁層を形成してもよい。当該絶縁層の形成方法及び材料については、絶縁層131の記載を援用できる。 Note that an insulating layer functioning as a barrier film may be formed over the resin layer 201. The description of the insulating layer 131 can be referred to for a method and a material for forming the insulating layer.
〔導電層221b、導電層221aの形成〕
 続いて、導電層221bと導電層221aとを積層して形成する(図3(B))。
[Formation of Conductive Layer 221b and Conductive Layer 221a]
Next, the conductive layer 221b and the conductive layer 221a are stacked (FIG. 3B).
 まず、導電層221bとなる導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより導電層221bを形成する。続いて、導電層221aとなる導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより導電層221aを形成する。 First, after forming a conductive film to be the conductive layer 221b, a resist mask is formed, and after the conductive film is etched, the resist mask is removed to form the conductive layer 221b. Subsequently, after forming a conductive film to be the conductive layer 221a, a resist mask is formed. After the conductive film is etched, the resist mask is removed to form the conductive layer 221a.
 または、まず導電層221bとなる導電膜と、導電層221aとなる導電膜とを、それぞれ連続して成膜した後、導電層221aとなる導電膜を加工し、続いて導電層221bとなる導電膜を加工してもよい。このとき、それぞれ個別にレジストマスクを形成して加工を行ってもよいが、ハーフトーンマスク、またはグレートーンマスク等の多階調マスク用いた露光技術、または2以上のフォトマスクを用いた多重露光技術を用いると、工程数を削減できるため好ましい。 Alternatively, first, a conductive film to be the conductive layer 221b and a conductive film to be the conductive layer 221a are successively formed, and then the conductive film to be the conductive layer 221a is processed, and then the conductive layer to be the conductive layer 221b. The film may be processed. At this time, the resist mask may be individually formed and processed, but an exposure technique using a multi-tone mask such as a halftone mask or a gray-tone mask, or multiple exposure using two or more photomasks. The use of technology is preferable because the number of steps can be reduced.
〔絶縁層231の形成〕
 続いて、導電層221a、導電層221b及び樹脂層201を覆って絶縁層231を形成する(図3(C))。絶縁層231の形成方法及び材料については、絶縁層131の記載を援用できる。
[Formation of Insulating Layer 231]
Subsequently, an insulating layer 231 is formed so as to cover the conductive layer 221a, the conductive layer 221b, and the resin layer 201 (FIG. 3C). The description of the insulating layer 131 can be used for a method and a material for forming the insulating layer 231.
〔トランジスタ210の形成〕
 続いて、図3(D)に示すように、絶縁層231上に、トランジスタ210を形成する。
[Formation of Transistor 210]
Subsequently, as illustrated in FIG. 3D, the transistor 210 is formed over the insulating layer 231.
 まず、絶縁層232上に導電層211を形成し、導電層211及び絶縁層231を覆って絶縁層232を形成し、絶縁層232上に半導体層212を形成する。導電層211、絶縁層232、及び半導体層212は、それぞれ上記導電層111、絶縁層132、または半導体層112と同様の方法により形成できる。 First, the conductive layer 211 is formed over the insulating layer 232, the insulating layer 232 is formed so as to cover the conductive layer 211 and the insulating layer 231, and the semiconductor layer 212 is formed over the insulating layer 232. The conductive layer 211, the insulating layer 232, and the semiconductor layer 212 can be formed by a method similar to that of the conductive layer 111, the insulating layer 132, or the semiconductor layer 112, respectively.
 続いて、絶縁層232及び絶縁層231に、導電層221aに達する開口を形成する。 Subsequently, an opening reaching the conductive layer 221 a is formed in the insulating layer 232 and the insulating layer 231.
 その後、導電層213a及び導電層213bを形成する。導電層213a及び導電層213bは、導電層113a及び導電層113bと同様の方法により形成できる。 Thereafter, a conductive layer 213a and a conductive layer 213b are formed. The conductive layers 213a and 213b can be formed by a method similar to that of the conductive layers 113a and 113b.
 ここで、導電層113bを、絶縁層231及び絶縁層232の開口を埋めるように形成することで、導電層113bと導電層221aとが電気的に接続される。 Here, the conductive layer 113b is formed so as to fill the openings of the insulating layer 231 and the insulating layer 232, whereby the conductive layer 113b and the conductive layer 221a are electrically connected.
 以上の工程により、トランジスタ210を形成することができる。 Through the above steps, the transistor 210 can be formed.
 トランジスタ210は、チャネルが形成される半導体層212に、酸化物半導体を含むトランジスタである。またトランジスタ210において、導電層211の一部はゲートとして機能し、絶縁層232の一部はゲート絶縁層として機能し、導電層213a及び導電層213bは、それぞれソース又はドレインのいずれか一方として機能する。 The transistor 210 is a transistor including an oxide semiconductor in the semiconductor layer 212 in which a channel is formed. In the transistor 210, part of the conductive layer 211 functions as a gate, part of the insulating layer 232 functions as a gate insulating layer, and the conductive layers 213a and 213b each function as either a source or a drain. To do.
〔絶縁層233、絶縁層234の形成〕
 続いて、トランジスタ210を覆って絶縁層233及び絶縁層234を順に形成する(図3(E))。絶縁層233及び絶縁層234は、それぞれ上記絶縁層133または絶縁層134と同様の方法により形成できる。
[Formation of Insulating Layer 233 and Insulating Layer 234]
Next, an insulating layer 233 and an insulating layer 234 are formed in this order so as to cover the transistor 210 (FIG. 3E). The insulating layer 233 and the insulating layer 234 can be formed by a method similar to that of the insulating layer 133 or the insulating layer 134, respectively.
 以上により、素子層100bを形成することができる。図3(E)に示す時点では、素子層100bが、支持基板63に支持された状態である。 Thus, the element layer 100b can be formed. At the time shown in FIG. 3E, the element layer 100b is supported by the support substrate 63.
〔着色層152、遮光層153の形成〕
 続いて、絶縁層234上に遮光層153及び着色層152を形成する(図3(F))。
[Formation of colored layer 152 and light shielding layer 153]
Next, a light-blocking layer 153 and a colored layer 152 are formed over the insulating layer 234 (FIG. 3F).
 遮光層153は、例えば金属材料または樹脂材料を用いることができる。金属材料を用いる場合には、導電膜を成膜した後に、フォトリソグラフィ法等を用いて不要な部分を除去することにより形成できる。また金属材料、顔料または染料を含む感光性の樹脂材料を用いた場合は、フォトリソグラフィ法等により形成することができる。 For the light shielding layer 153, for example, a metal material or a resin material can be used. In the case of using a metal material, after forming a conductive film, it can be formed by removing unnecessary portions using a photolithography method or the like. Further, when a photosensitive resin material containing a metal material, a pigment or a dye is used, it can be formed by a photolithography method or the like.
 着色層152は、感光性の材料を用いることで、フォトリソグラフィ法等により島状に加工することができる。 The colored layer 152 can be processed into an island shape by a photolithography method or the like by using a photosensitive material.
 このとき、遮光層153は、着色層152と重なる開口部を有する構成とする。 At this time, the light shielding layer 153 has an opening that overlaps with the colored layer 152.
 また遮光層153は、トランジスタ210を覆って設けることが好ましい。特に、トランジスタ210としてボトムゲート型のトランジスタを用いた場合には、遮光層153によって外光や、発光素子120からの光が半導体層212に到達することを抑制でき、信頼性を向上させることができる。 Further, the light-blocking layer 153 is preferably provided so as to cover the transistor 210. In particular, when a bottom-gate transistor is used as the transistor 210, the light-blocking layer 153 can suppress external light and light from the light-emitting element 120 from reaching the semiconductor layer 212, which can improve reliability. it can.
〔貼り合せ〕
 続いて、図4(A)に示すように、支持基板61と支持基板63とを、素子層100aと素子層100bとが向かい合うように、接着層151を用いて貼り合せる。そして、接着層151を硬化させる。これにより、発光素子120を接着層151で封止することができる。
〔Lamination〕
Subsequently, as illustrated in FIG. 4A, the support substrate 61 and the support substrate 63 are bonded using the adhesive layer 151 so that the element layer 100a and the element layer 100b face each other. Then, the adhesive layer 151 is cured. Thereby, the light emitting element 120 can be sealed with the adhesive layer 151.
 接着層151は、硬化型の材料を用いることが好ましい。例えば光硬化性を示す樹脂、反応硬化性を示す樹脂、熱硬化性を示す樹脂等を用いることができる。特に、溶媒を含まない樹脂材料を用いることが好ましい。 The adhesive layer 151 is preferably made of a curable material. For example, a resin that exhibits photocurability, a resin that exhibits reaction curability, a resin that exhibits thermosetting, or the like can be used. In particular, it is preferable to use a resin material that does not contain a solvent.
 このとき、支持基板61と支持基板63の位置ずれが生じてしまうと、発光素子120からの光が、素子層100b等の遮光性の部材や、遮光層153等に遮られてしまう場合がある。そのため、支持基板63上、及び支持基板61上には、それぞれ位置合わせ用のマーカーが形成されていることが好ましい。 At this time, if the position difference between the support substrate 61 and the support substrate 63 occurs, the light from the light emitting element 120 may be blocked by the light shielding member such as the element layer 100b or the light shielding layer 153. . Therefore, it is preferable that alignment markers are formed on the support substrate 63 and the support substrate 61, respectively.
〔支持基板61の分離〕
 続いて、図4(B)に示すように、支持基板61側から、支持基板61を介して樹脂層101に光70を照射する。
[Separation of support substrate 61]
4B, the resin layer 101 is irradiated with light 70 from the support substrate 61 side through the support substrate 61. As shown in FIG.
 光70としては、好適にはレーザ光を用いることができる。特に、線状のレーザを用いることが好ましい。 As the light 70, laser light can be preferably used. In particular, it is preferable to use a linear laser.
 なお、レーザ光と同等のエネルギーを照射可能であれば、フラッシュランプ等を用いてもよい。 Note that a flash lamp or the like may be used as long as the same energy as that of the laser beam can be irradiated.
 光70は、少なくともその一部が支持基板61を透過し、且つ樹脂層101に吸収される波長の光を用いることが好ましい。特に、光70の波長としては、可視光線から紫外線の波長領域の光を用いることが好ましい。例えば波長が200nm以上400nm以下の光、好ましくは波長が250nm以上350nm以上の光を用いることが好ましい。特に、波長308nmのエキシマレーザを用いると、生産性に優れるため好ましい。エキシマレーザは、LTPSにおけるレーザ結晶化にも用いるため、既存のLTPS製造ラインの装置を流用することができ、新たな設備投資を必要としないため好ましい。また、Nd:YAGレーザの第三高調波である波長355nmのUVレーザなどの固体UVレーザ(半導体UVレーザともいう)を用いてもよい。また、レーザとして、CW(Continuous wave)レーザを用いてもよいし、パルスレーザを用いてもよい。パルスレーザとしては、ナノ秒、ピコ秒、フェムト秒等の短時間のパルスレーザ、またはそれよりも長時間(例えば数100Hz以下)のパルスレーザを用いることができる。 The light 70 is preferably light having a wavelength that is at least partially transmitted through the support substrate 61 and absorbed by the resin layer 101. In particular, as the wavelength of the light 70, it is preferable to use light in a wavelength region from visible light to ultraviolet light. For example, light having a wavelength of 200 nm to 400 nm, preferably light having a wavelength of 250 nm to 350 nm is preferably used. In particular, it is preferable to use an excimer laser having a wavelength of 308 nm because the productivity is excellent. Since the excimer laser is also used for laser crystallization in LTPS, an existing LTPS production line device can be used, and new equipment investment is not required, which is preferable. Alternatively, a solid-state UV laser (also referred to as a semiconductor UV laser) such as a UV laser having a wavelength of 355 nm, which is the third harmonic of the Nd: YAG laser, may be used. Further, as the laser, a CW (continuous wave) laser or a pulse laser may be used. As the pulse laser, a short-time pulse laser such as nanosecond, picosecond, or femtosecond, or a pulse laser longer than that (for example, several hundred Hz or less) can be used.
 光70として、線状のレーザ光を用いる場合には、支持基板61と光源とを相対的に移動させることで光70を走査し、剥離したい領域に亘って光70を照射する。この段階では、樹脂層101が配置される全面に亘って照射すると、樹脂層101全体が剥離可能となり、後の分離の工程で支持基板61の外周部をスクライブ等により分断する必要がない。または、樹脂層101が配置される領域の外周部に光70を照射しない領域を設けると、当該領域は、密着性は高いままであるため、光70の照射時に樹脂層101と支持基板61とが分離してしまうことを抑制できるため好ましい。 When a linear laser beam is used as the light 70, the light 70 is scanned by moving the support substrate 61 and the light source relatively, and the light 70 is irradiated over a region to be peeled off. At this stage, when the entire surface where the resin layer 101 is disposed is irradiated, the entire resin layer 101 can be peeled off, and there is no need to divide the outer peripheral portion of the support substrate 61 by scribe or the like in a subsequent separation step. Alternatively, when a region where the light 70 is not irradiated is provided on the outer periphery of the region where the resin layer 101 is disposed, the region remains highly adhesive. Therefore, the resin layer 101 and the support substrate 61 are Is preferable because it can be prevented from separating.
 光70の照射により、樹脂層101の支持基板61側の表面近傍、または樹脂層101の内部の一部が改質され、支持基板61と樹脂層101との密着性が低下し、容易に剥離可能な状態とすることができる。 By irradiation with light 70, the vicinity of the surface of the resin layer 101 on the side of the support substrate 61 or a part of the inside of the resin layer 101 is modified, the adhesion between the support substrate 61 and the resin layer 101 is lowered, and peeling easily It can be in a possible state.
 続いて、支持基板61と樹脂層101とを分離する(図4(C))。 Subsequently, the support substrate 61 and the resin layer 101 are separated (FIG. 4C).
 分離は、支持基板63をステージに固定した状態で、支持基板61に垂直方向に引っ張る力をかけることにより行うことができる。例えば支持基板61の上面の一部を吸着し、上方に引っ張ることにより、引き剥がすことができる。ステージは、支持基板63を固定できればどのような構成でもよいが、例えば真空吸着、静電吸着などが可能な吸着機構を有していてもよいし、支持基板63を物理的に留める機構を有していてもよい。または、支持基板61をステージに固定した状態で、支持基板63に垂直方向に引っ張る力をかけることで分離してもよい。 Separation can be performed by applying a pulling force to the support substrate 61 in the vertical direction while the support substrate 63 is fixed to the stage. For example, a part of the upper surface of the support substrate 61 can be adsorbed and pulled upward to be peeled off. The stage may have any configuration as long as the support substrate 63 can be fixed. For example, the stage may have an adsorption mechanism that can perform vacuum adsorption, electrostatic adsorption, or the like, or a mechanism that physically holds the support substrate 63. You may do it. Alternatively, the support substrate 61 may be separated by applying a pulling force to the support substrate 63 in a vertical direction while the support substrate 61 is fixed to the stage.
 また、分離は表面に粘着性を有するドラム状の部材を支持基板61または支持基板63の上面に押し当て、これを回転させることにより行ってもよい。このとき、剥離方向にステージを動かしてもよい。 Further, the separation may be performed by pressing a drum-like member having adhesiveness on the surface against the upper surface of the support substrate 61 or the support substrate 63 and rotating the member. At this time, the stage may be moved in the peeling direction.
 また、樹脂層101の外周部に光70を照射しない領域を設けた場合、樹脂層101に光を照射した部分の一部に切欠き部を形成し、剥離のきっかけとしてもよい。切欠き部は、例えば鋭利な刃物または針状の部材を用いることや、支持基板61と樹脂層101を同時にスクライブにより切断すること等により形成することができる。 Further, when a region where the light 70 is not irradiated is provided on the outer peripheral portion of the resin layer 101, a notch portion may be formed in a part of the portion irradiated with the light to the resin layer 101 to trigger peeling. The notch can be formed, for example, by using a sharp blade or a needle-like member, or by simultaneously cutting the support substrate 61 and the resin layer 101 by scribing.
 なお、光70の照射条件によっては、樹脂層101の内部で分離(破断)が生じることにより、樹脂層101の一部が支持基板61側に残存する場合がある。図4(C)では、樹脂層101内部で破断し、支持基板61側に樹脂層101の一部である樹脂層101aが残存している場合を示している。 Note that depending on the irradiation conditions of the light 70, separation (break) may occur inside the resin layer 101, so that a part of the resin layer 101 may remain on the support substrate 61 side. FIG. 4C shows a case where the resin layer 101 is broken inside the resin layer 101 and the resin layer 101a which is a part of the resin layer 101 remains on the support substrate 61 side.
 または、樹脂層101の表面の一部が融解する場合にも、同様に支持基板61側に樹脂層101の一部が残存することがある。なお、支持基板61と樹脂層101の界面で剥離する場合、支持基板61側に樹脂層101の一部が残存しないことがある。 Alternatively, even when a part of the surface of the resin layer 101 is melted, a part of the resin layer 101 may remain on the support substrate 61 side in the same manner. Note that in the case of peeling at the interface between the support substrate 61 and the resin layer 101, a part of the resin layer 101 may not remain on the support substrate 61 side.
 支持基板61側に残存する樹脂層101の厚さは、例えば、100nm以下、具体的は40nm以上70nm以下程度とすることができる。残存した樹脂層101aを除去することで、支持基板61は再利用が可能である。例えば、支持基板61にガラスを用い、樹脂層101にポリイミド樹脂を用いた場合は、アッシング処理や、発煙硝酸等により残存した樹脂層101aを除去することができる。 The thickness of the resin layer 101 remaining on the support substrate 61 side can be, for example, about 100 nm or less, specifically about 40 nm or more and 70 nm or less. The support substrate 61 can be reused by removing the remaining resin layer 101a. For example, when glass is used for the support substrate 61 and polyimide resin is used for the resin layer 101, the remaining resin layer 101a can be removed by ashing, fuming nitric acid, or the like.
〔基板11の貼り合せ〕
 続いて、図5(A)に示すように、接着層51を用いて樹脂層101と基板11とを貼り合せる。
[Lamination of substrate 11]
Subsequently, as illustrated in FIG. 5A, the resin layer 101 and the substrate 11 are bonded using the adhesive layer 51.
 接着層51は、上記接着層151の記載を援用できる。 The description of the adhesive layer 151 can be used for the adhesive layer 51.
 基板11及び後述する基板12としては、樹脂材料を用いると、同じ厚さであってもガラス等を用いた場合に比べて、表示装置を軽量化できる。また、可撓性を有する程度に薄い材料を用いると、より軽量化できるため好ましい。また、樹脂材料を用いることで、表示装置の耐衝撃性を向上させることができ、割れにくい表示装置を実現できる。 When the resin material is used as the substrate 11 and the substrate 12 described later, the display device can be reduced in weight as compared with the case where glass or the like is used even if the thickness is the same. In addition, it is preferable to use a material that is thin enough to have flexibility, because the weight can be further reduced. Further, by using a resin material, the impact resistance of the display device can be improved, and a display device that is difficult to break can be realized.
 また、基板11は視認側とは反対側に位置する基板であるため、可視光に対して透光性を有していなくてもよい。そのため、金属材料を用いることもできる。金属材料は熱伝導性が高く、基板全体に熱を容易に伝導できるため、表示装置の局所的な温度上昇を抑制することができる。 Further, since the substrate 11 is a substrate located on the side opposite to the viewing side, the substrate 11 may not have translucency with respect to visible light. Therefore, a metal material can also be used. Since the metal material has high thermal conductivity and can easily conduct heat to the entire substrate, local temperature rise of the display device can be suppressed.
 続いて、素子層200bの形成方法について説明する。 Subsequently, a method for forming the element layer 200b will be described.
〔支持基板63の分離〕
 続いて、支持基板63側から、支持基板63を介して樹脂層201に光70を照射する(図5(B))。光70の照射方法については、上記の記載を援用できる。
[Separation of support substrate 63]
Subsequently, light 70 is irradiated from the support substrate 63 side to the resin layer 201 through the support substrate 63 (FIG. 5B). About the irradiation method of the light 70, said description can be used.
 その後、図5(C)に示すように支持基板63と樹脂層201とを分離する。図5(C)では、樹脂層201の内部で破断し、支持基板63側に樹脂層201の一部である樹脂層201aが残存している例を示している。 Thereafter, as shown in FIG. 5C, the support substrate 63 and the resin layer 201 are separated. FIG. 5C shows an example in which the resin layer 201 is broken inside the resin layer 201 and the resin layer 201a which is a part of the resin layer 201 remains on the support substrate 63 side.
〔樹脂層201の薄膜化〕
 続いて、樹脂層201の一部を除去し、樹脂層201を薄膜化する。薄膜化後の樹脂層201の厚さは、例えば樹脂層101よりも薄くすることができる。より具体的には例えば1nm以上3μm未満、好ましくは5nm以上1μm以下、より好ましくは10nm以上200nm以下とすることが好ましい。
[Thinning of resin layer 201]
Subsequently, a part of the resin layer 201 is removed, and the resin layer 201 is thinned. The thickness of the resin layer 201 after thinning can be made thinner than the resin layer 101, for example. More specifically, for example, it is preferably 1 nm or more and less than 3 μm, preferably 5 nm or more and 1 μm or less, more preferably 10 nm or more and 200 nm or less.
 薄膜化は、樹脂層201をエッチング可能な方法であればよく、プラズマ処理、ドライエッチング法またはウエットエッチング法などを用いることができる。特にドライエッチング法を用いると、均一性が高いため好ましい。また、樹脂層201は有機物を含むため、酸素を含む雰囲気下でのプラズマ処理(アッシング処理ともいう)を用いることが特に好ましい。また、ウエットエッチング法を用いる場合には、樹脂層201が完全に除去されることを防ぐため、希釈したエッチング液等を用いてエッチングすることが好ましい。または、樹脂層201となる薄膜の形成時に用いる材料を、溶媒で十分に希釈して粘度を低くするなどし、樹脂層201を薄く形成することにより薄膜化を行わない方法を用いてもよい。 The thinning may be performed by any method that can etch the resin layer 201, and plasma treatment, dry etching, wet etching, or the like can be used. The dry etching method is particularly preferable because of high uniformity. In addition, since the resin layer 201 contains an organic substance, it is particularly preferable to use plasma treatment (also referred to as ashing treatment) in an atmosphere containing oxygen. In the case of using a wet etching method, it is preferable to perform etching using a diluted etching solution or the like in order to prevent the resin layer 201 from being completely removed. Alternatively, a method may be used in which the material used for forming the thin film to be the resin layer 201 is sufficiently diluted with a solvent to reduce the viscosity, and the thinning of the resin layer 201 is not performed to reduce the thickness.
 図6(A)では、樹脂層201の上面に、プラズマ80を照射することで、樹脂層201の上部の一部をエッチングし、薄膜化している様子を示している。 FIG. 6A shows a state in which a part of the upper portion of the resin layer 201 is etched and thinned by irradiating the upper surface of the resin layer 201 with plasma 80.
〔ラビング処理〕
 続いて、樹脂層201の上面に対してラビング処理を行う。これにより、樹脂層201を配向膜として用いることができる。
[Rubbing treatment]
Subsequently, a rubbing process is performed on the upper surface of the resin layer 201. Thereby, the resin layer 201 can be used as an alignment film.
 図6(B)は、ラビング処理時の様子を示している。図6(B)に示すように、回転するラビングロール85を樹脂層201に押し当てた状態で、図中の一点鎖線の矢印で示すように、基板11をスライドさせることにより、樹脂層201に一軸配向処理を施すことができる。 FIG. 6B shows a state during the rubbing process. As shown in FIG. 6B, in a state where the rotating rubbing roll 85 is pressed against the resin layer 201, the substrate 11 is slid as shown by the one-dot chain arrow in the figure to Uniaxial orientation processing can be performed.
 なお、ここでは樹脂層201を薄膜化し、これを配向膜として用いる場合の例を示したが、樹脂層201の薄膜化において、表面の平坦性が低下してしまう場合がある。その場合には、上記樹脂層201の薄膜化の工程において、樹脂層201を完全に除去した後、配向膜となる樹脂等を形成してもよい。そして、当該樹脂等に対してラビング処理を行い、配向膜を形成することができる。 Although an example in which the resin layer 201 is thinned and used as an alignment film is shown here, the flatness of the surface may be lowered when the resin layer 201 is thinned. In that case, in the step of thinning the resin layer 201, after the resin layer 201 is completely removed, a resin or the like that becomes an alignment film may be formed. Then, a rubbing treatment can be performed on the resin or the like to form an alignment film.
 なお、ここでは図示しないが、基板11の貼り合せ以降の工程において、搬送を容易にするため、基板11側を他の支持基板に固定することが好ましい。例えば、基板11と当該支持基板とを粘着性の材料、両面テープ、シリコーンシート、または水溶性の接着剤などにより固定することができる。また、後述の支持基板64の貼り合せ工程以降においても、同様に基板11側を他の支持基板に固定した状態とすることが好ましい。 Although not shown here, it is preferable to fix the substrate 11 side to another support substrate in order to facilitate conveyance in the steps after the substrate 11 is bonded. For example, the substrate 11 and the supporting substrate can be fixed with an adhesive material, a double-sided tape, a silicone sheet, or a water-soluble adhesive. Further, it is preferable that the substrate 11 side is also fixed to another support substrate after the bonding step of the support substrate 64 described later.
〔光吸収層103の形成〕
 続いて、支持基板64を準備する。支持基板64は、支持基板61の記載を援用することができる。
[Formation of Light Absorbing Layer 103]
Subsequently, the support substrate 64 is prepared. The description of the support substrate 61 can be used for the support substrate 64.
 続いて、支持基板64上に、光吸収層103を形成する(図7(A))。光吸収層103は、後の光70の照射工程において、当該光70を吸収し、発熱することにより、水素または酸素等を放出する層である。 Subsequently, the light absorption layer 103 is formed over the support substrate 64 (FIG. 7A). The light absorption layer 103 is a layer that releases hydrogen, oxygen, or the like by absorbing the light 70 and generating heat in a subsequent irradiation process of the light 70.
 光吸収層103としては、例えば加熱により水素が放出される、水素化アモルファスシリコン(a−Si:H)膜を用いることができる。水素化アモルファスシリコン膜は、例えばSiHを成膜ガスに含むプラズマCVD法により成膜することができる。また、さらに水素を多く含有させるため、成膜後に水素を含む雰囲気下で加熱処理をしてもよい。 As the light absorption layer 103, for example, a hydrogenated amorphous silicon (a-Si: H) film from which hydrogen is released by heating can be used. The hydrogenated amorphous silicon film can be formed by, for example, a plasma CVD method including SiH 4 in a film forming gas. Further, in order to further include hydrogen, heat treatment may be performed in an atmosphere containing hydrogen after film formation.
 または、光吸収層103として、加熱により酸素が放出される酸化物膜を用いることもできる。特に、酸化物半導体膜または酸化物導電体膜は、酸化シリコン膜等の絶縁膜に比べてバンドギャップが狭く、光を吸収しやすいため好ましい。なお、酸化物導電体膜は、酸化物半導体膜の欠陥準位または不純物準位を高めることで形成することができる。酸化物半導体を用いる場合、上述した半導体層112の形成方法、及び後述する半導体層に用いることのできる材料を援用できる。酸化物膜は、例えば酸素を含む雰囲気下でプラズマCVD法やスパッタリング法等により成膜することができる。特に酸化物半導体膜を用いる場合には、酸素を含む雰囲気下でスパッタリング法により成膜することが好ましい。また、さらに酸素を含有させるため、成膜後に酸素を含む雰囲気下で加熱処理をしてもよい。 Alternatively, as the light absorption layer 103, an oxide film from which oxygen is released by heating can be used. In particular, an oxide semiconductor film or an oxide conductor film is preferable because it has a narrower band gap and easily absorbs light than an insulating film such as a silicon oxide film. Note that the oxide conductor film can be formed by increasing the defect level or the impurity level of the oxide semiconductor film. In the case of using an oxide semiconductor, the above-described method for forming the semiconductor layer 112 and materials that can be used for a semiconductor layer described later can be used. The oxide film can be formed by a plasma CVD method, a sputtering method, or the like in an atmosphere containing oxygen, for example. In particular, when an oxide semiconductor film is used, it is preferably formed by a sputtering method in an atmosphere containing oxygen. Further, in order to further include oxygen, heat treatment may be performed in an atmosphere containing oxygen after film formation.
 または、光吸収層103に用いることのできる酸化物膜として、酸化物絶縁膜を用いてもよい。例えば、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜、酸化窒化シリコン膜等を用いることもできる。例えば、このような酸化物絶縁膜を、酸素を含む雰囲気下にて、低温(例えば250℃以下、好ましくは220℃以下)で成膜することで、酸素を過剰に含有した酸化物絶縁膜を形成することができる。成膜は、例えばスパッタリング法またはプラズマCVD法等を用いることができる。 Alternatively, an oxide insulating film may be used as the oxide film that can be used for the light absorption layer 103. For example, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, a silicon oxynitride film, or the like can be used. For example, such an oxide insulating film is formed at a low temperature (for example, 250 ° C. or lower, preferably 220 ° C. or lower) in an oxygen-containing atmosphere, whereby an oxide insulating film containing excess oxygen is obtained. Can be formed. For film formation, for example, a sputtering method or a plasma CVD method can be used.
〔樹脂層202の形成〕
 続いて、光吸収層103上に、開口部を有する樹脂層202を形成する(図7(B))。樹脂層202の形成方法及び材料については、開口部を形成する部分以外は樹脂層101と同様の方法を用いることができる。
[Formation of resin layer 202]
Subsequently, a resin layer 202 having an opening is formed over the light absorption layer 103 (FIG. 7B). About the formation method and material of the resin layer 202, the method similar to the resin layer 101 can be used except the part which forms an opening part.
 樹脂層202の形成は、まず感光性の材料を光吸収層103上に塗布して薄膜を形成し、プリベーク処理を行う。続いて、フォトマスクを用いて当該材料を露光し、現像処理を行うことで、開口部を有する樹脂層202を形成することができる。その後、ポストベーク処理を行い、材料を十分に重合させるとともに、膜中のガスを除去する。 The resin layer 202 is formed by first applying a photosensitive material on the light absorption layer 103 to form a thin film, and performing a pre-bake treatment. Subsequently, the material is exposed using a photomask, and development processing is performed, whereby the resin layer 202 having an opening can be formed. Thereafter, a post-bake treatment is performed to sufficiently polymerize the material, and the gas in the film is removed.
〔絶縁層204の形成〕
 続いて、樹脂層202、及び樹脂層202の開口部を覆って絶縁層204を形成する(図7(C))。絶縁層204の一部は、光吸収層103と接して設けられる。絶縁層204は、樹脂層202に含まれる不純物が、後に形成するトランジスタや液晶素子等に拡散することを防ぐバリア層として用いることができる。そのためバリア性の高い材料を用いることが好ましい。
[Formation of Insulating Layer 204]
Subsequently, an insulating layer 204 is formed so as to cover the resin layer 202 and the opening of the resin layer 202 (FIG. 7C). Part of the insulating layer 204 is provided in contact with the light absorption layer 103. The insulating layer 204 can be used as a barrier layer that prevents impurities contained in the resin layer 202 from diffusing into a transistor, a liquid crystal element, or the like to be formed later. Therefore, it is preferable to use a material having a high barrier property.
 絶縁層204の形成方法及び材料については、絶縁層131の記載を援用できる。 For the formation method and material of the insulating layer 204, the description of the insulating layer 131 can be used.
〔導電層223の形成〕
 続いて、絶縁層204上に導電層223を形成する。導電層223は可視光を透過する材料を用いることができる。導電層223は、導電膜を成膜することにより形成することができる。なお、導電層223は、メタルマスクなどのシャドウマスクを用いたスパッタリング法等の方法により、樹脂層202の外周部に導電層223が設けられないように形成してもよい。または、導電膜を成膜した後にフォトリソグラフィ法等により不要な部分をエッチングにより除去してもよい。
[Formation of Conductive Layer 223]
Subsequently, a conductive layer 223 is formed over the insulating layer 204. The conductive layer 223 can be formed using a material that transmits visible light. The conductive layer 223 can be formed by forming a conductive film. Note that the conductive layer 223 may be formed by a method such as a sputtering method using a shadow mask such as a metal mask so that the conductive layer 223 is not provided on the outer peripheral portion of the resin layer 202. Alternatively, unnecessary portions may be removed by etching by a photolithography method or the like after the conductive film is formed.
〔配向膜224の形成〕
 続いて、導電層223上に配向膜224を形成する(図7(D))。配向膜224は、樹脂等の薄膜を成膜した後に、ラビング処理を行うことにより形成できる。
[Formation of Alignment Film 224]
Subsequently, an alignment film 224 is formed over the conductive layer 223 (FIG. 7D). The alignment film 224 can be formed by performing a rubbing process after forming a thin film of resin or the like.
〔基板11と支持基板64との貼り合せ〕
 続いて、図8(A)に示すように、基板11と支持基板64とを、液晶222を挟んで貼り合せる。このとき、樹脂層202の開口部と発光素子120とが重なるように、貼り合せを行う。また、樹脂層202の開口部と、遮光層153の開口部及び着色層152とが重なるように、貼り合せを行う。
[Lamination of substrate 11 and support substrate 64]
Subsequently, as shown in FIG. 8A, the substrate 11 and the support substrate 64 are bonded to each other with the liquid crystal 222 interposed therebetween. At this time, bonding is performed so that the opening of the resin layer 202 and the light emitting element 120 overlap each other. Further, bonding is performed so that the opening of the resin layer 202 overlaps the opening of the light shielding layer 153 and the colored layer 152.
 またこのとき、樹脂層201と樹脂層202とを、外周部において図示しない接着層により接着する。 At this time, the resin layer 201 and the resin layer 202 are bonded to each other at an outer peripheral portion with an adhesive layer (not shown).
 例えば、樹脂層201と樹脂層202のいずれか一方、または両方に、これらを接着する接着層(図示しない)を形成する。接着層は、画素が配置されている領域を囲むように形成する。接着層は、例えばスクリーン印刷法や、ディスペンス法等により形成することができる。接着層としては、熱硬化性樹脂や紫外線硬化樹脂等を用いることができる。また、紫外線により仮硬化した後に、熱を加えることにより硬化する樹脂などを用いてもよい。または、接着層として、紫外線硬化性と熱硬化性の両方を有する樹脂などを用いてもよい。 For example, an adhesive layer (not shown) for bonding them is formed on one or both of the resin layer 201 and the resin layer 202. The adhesive layer is formed so as to surround a region where the pixels are arranged. The adhesive layer can be formed by, for example, a screen printing method or a dispensing method. As the adhesive layer, a thermosetting resin, an ultraviolet curable resin, or the like can be used. Alternatively, a resin that is cured by applying heat after being temporarily cured by ultraviolet rays may be used. Alternatively, as the adhesive layer, a resin having both ultraviolet curable properties and thermosetting properties may be used.
 続いて、液晶222をディスペンス法等により接着層に囲まれた領域に滴下する。続いて、液晶222を挟むように基板11と支持基板64とを貼り合せ、接着層を硬化する。貼り合せは、減圧雰囲気下で行うと基板11と支持基板64との間に気泡等が混入することを防ぐことができるため好ましい。 Subsequently, the liquid crystal 222 is dropped onto a region surrounded by the adhesive layer by a dispensing method or the like. Subsequently, the substrate 11 and the support substrate 64 are bonded so as to sandwich the liquid crystal 222, and the adhesive layer is cured. Bonding is preferably performed in a reduced-pressure atmosphere because air bubbles and the like can be prevented from being mixed between the substrate 11 and the support substrate 64.
 なお、液晶222の滴下後に、画素が配置されている領域や、当該領域の外側に粒状のギャップスペーサを散布してもよいし、当該ギャップスペーサを含む液晶222を滴下してもよい。また、液晶222は、基板11と支持基板64を貼り合せた後に、減圧雰囲気下において、接着層に設けた隙間から注入する方法を用いてもよい。 Note that after the liquid crystal 222 is dropped, granular gap spacers may be scattered on the area where the pixels are arranged or outside the area, or the liquid crystal 222 including the gap spacer may be dropped. Alternatively, the liquid crystal 222 may be injected from a gap provided in the adhesive layer in a reduced pressure atmosphere after the substrate 11 and the support substrate 64 are bonded to each other.
 以上により、液晶素子220を形成することができる、また同時に、素子層200bを形成することができる。なお、この時点では、表示面側に支持基板64と光吸収層103が設けられた状態である。 Thus, the liquid crystal element 220 can be formed, and at the same time, the element layer 200b can be formed. At this time, the support substrate 64 and the light absorption layer 103 are provided on the display surface side.
〔支持基板64の分離〕
 続いて、図8(B)に示すように、支持基板64側から、支持基板64を介して光吸収層103に光70を照射する。光70の照射方法については、上記の記載を援用できる。
[Separation of support substrate 64]
Subsequently, as illustrated in FIG. 8B, the light absorption layer 103 is irradiated with light 70 from the support substrate 64 side through the support substrate 64. About the irradiation method of the light 70, said description can be used.
 ここでは、光70は、少なくともその一部が支持基板61を透過し、且つ光吸収層103に吸収される波長の光を選択して用いる。 Here, as the light 70, light having a wavelength that is at least partially transmitted through the support substrate 61 and absorbed by the light absorption layer 103 is selected and used.
 光70の照射により、光吸収層103が加熱され、光吸収層103から水素または酸素等が放出される。このとき放出される水素または酸素等は、ガス状となって放出される。放出されたガスは光吸収層103と樹脂層202の界面近傍、または光吸収層103と支持基板64の界面近傍に留まり、これらを引き剥がす力が生じる。その結果、光吸収層103と樹脂層202の密着性、または光吸収層103と支持基板64の密着性が低下し、容易に剥離可能な状態とすることができる。 The light absorption layer 103 is heated by the irradiation of the light 70, and hydrogen, oxygen, or the like is released from the light absorption layer 103. The hydrogen or oxygen released at this time is released as a gas. The released gas stays in the vicinity of the interface between the light absorption layer 103 and the resin layer 202 or in the vicinity of the interface between the light absorption layer 103 and the support substrate 64, and a force for peeling them off is generated. As a result, the adhesiveness between the light absorption layer 103 and the resin layer 202 or the adhesiveness between the light absorption layer 103 and the support substrate 64 is lowered, so that it can be easily peeled off.
 また、光吸収層103から放出されるガスの一部が、光吸収層103中に留まる場合もある。そのため、光吸収層103が脆化し、光吸収層103の内部で分離しやすい状態となる場合がある。 In addition, part of the gas released from the light absorption layer 103 may remain in the light absorption layer 103. Therefore, the light absorption layer 103 may become brittle and may be easily separated inside the light absorption layer 103.
 また、光吸収層103として、酸素を放出する膜を用いた場合、光吸収層103から放出された酸素により、樹脂層202の一部が酸化され、脆化する場合がある。これにより、樹脂層202と光吸収層103との界面で剥離しやすい状態とすることができる。 Further, in the case where a film that releases oxygen is used as the light absorption layer 103, a part of the resin layer 202 may be oxidized and embrittled by oxygen released from the light absorption layer 103. Thereby, it can be set in the state which is easy to peel in the interface of the resin layer 202 and the light absorption layer 103. FIG.
 また、樹脂層202の開口部と重なる領域においても、上記と同じ理由により、光吸収層103と絶縁層204との界面や、光吸収層103と支持基板64の界面の密着性が低下し、剥離しやすい状態となる。または、光吸収層103が脆化し、分離しやすい状態となる場合もある。 Further, also in the region overlapping the opening of the resin layer 202, the adhesion between the interface between the light absorption layer 103 and the insulating layer 204 and the interface between the light absorption layer 103 and the support substrate 64 is reduced for the same reason as described above. Easy to peel. Alternatively, the light absorption layer 103 may become brittle and be easily separated.
 一方、光70を照射していない領域は、密着性は高いままである。 On the other hand, the adhesion of the region not irradiated with the light 70 remains high.
 ここで、光吸収層103と、トランジスタ210の半導体層212にそれぞれ酸化物半導体膜を用いた場合、光70としては、当該酸化物半導体膜が吸収しうる波長の光を用いる。しかしながら、光吸収層103と半導体層212との間には、反射電極として機能する導電層221aが設けられている。したがって、光70のうち光吸収層103で吸収しきれずに透過する光が存在しても、導電層221aによって吸収または反射されるため、これが半導体層112に到達することが抑制される。また、万が一、導電層221aをも透過した光70が存在したとしても、トランジスタ210としてボトムゲート構造とした場合には、導電層221aと半導体層212との間にゲート電極として機能する導電層211が設けられるため、導電層211により反射または吸収することができる。その結果、トランジスタ210の電気特性の変動はほとんど生じない。 Here, in the case where an oxide semiconductor film is used for each of the light absorption layer 103 and the semiconductor layer 212 of the transistor 210, light 70 having a wavelength that can be absorbed by the oxide semiconductor film is used. However, a conductive layer 221 a that functions as a reflective electrode is provided between the light absorption layer 103 and the semiconductor layer 212. Therefore, even if there is light in the light 70 that is transmitted without being absorbed by the light absorption layer 103, the light is absorbed or reflected by the conductive layer 221 a, so that it does not reach the semiconductor layer 112. Even if the light 70 that has also passed through the conductive layer 221a exists, when the transistor 210 has a bottom gate structure, the conductive layer 211 that functions as a gate electrode between the conductive layer 221a and the semiconductor layer 212 is used. Can be reflected or absorbed by the conductive layer 211. As a result, the electrical characteristics of the transistor 210 hardly change.
 続いて、支持基板64と樹脂層202とを分離する(図9(A))。上記の記載を援用することができる。図9(A)では、光吸収層103と樹脂層202との界面、及び光吸収層103と絶縁層204の界面で分離が生じている例を示している。 Subsequently, the support substrate 64 and the resin layer 202 are separated (FIG. 9A). The above description can be incorporated. FIG. 9A illustrates an example in which separation occurs at the interface between the light absorption layer 103 and the resin layer 202 and at the interface between the light absorption layer 103 and the insulating layer 204.
 なお、光吸収層103の一部が、樹脂層202及び絶縁層204の表面に接して残存する場合がある。例えば、光吸収層103の内部で分離(破断)が生じている場合などがある。なお、光吸収層103と支持基板64との界面で剥離が生じる場合には、光吸収層103の全部が樹脂層202及び絶縁層204に接して残存する場合がある。 Note that a part of the light absorption layer 103 may remain in contact with the surfaces of the resin layer 202 and the insulating layer 204. For example, there is a case where separation (break) occurs in the light absorption layer 103. Note that in the case where peeling occurs at the interface between the light absorption layer 103 and the support substrate 64, the entire light absorption layer 103 may remain in contact with the resin layer 202 and the insulating layer 204.
 このように、光吸収層の一部が残存した場合、これを除去することが好ましい。残存した光吸収層の除去は、ドライエッチング法、ウエットエッチング法、サンドブラスト法などを用いることができるが、特にドライエッチング法を用いることが好ましい。なお、残存した光吸収層を除去する際に、樹脂層202の一部、及び絶縁層204の一部がエッチングにより薄くなる場合がある。なお、光吸収層103に透光性を有する材料を用いた場合や、残存した光吸収層が、透光性を有する程度に薄い場合には、残存した光吸収層を残したままの状態としてもよい。 Thus, when a part of the light absorption layer remains, it is preferable to remove it. For removal of the remaining light absorption layer, a dry etching method, a wet etching method, a sand blasting method, or the like can be used, but it is particularly preferable to use a dry etching method. Note that when the remaining light absorption layer is removed, part of the resin layer 202 and part of the insulating layer 204 may be thinned by etching. When a light-transmitting material is used for the light-absorbing layer 103 or when the remaining light-absorbing layer is thin enough to have a light-transmitting property, the remaining light-absorbing layer is left as it is. Also good.
〔基板12の貼り合せ〕
 続いて、接着層52を用いて樹脂層202と基板12とを貼り合せる(図9(B))。接着層52は、上記接着層151の記載を援用できる。
[Lamination of substrate 12]
Subsequently, the resin layer 202 and the substrate 12 are bonded using the adhesive layer 52 (FIG. 9B). For the adhesive layer 52, the description of the adhesive layer 151 can be used.
 基板12は、視認側に位置する基板であるため、可視光に対して透光性を有する材料を用いることができる。 Since the substrate 12 is a substrate located on the viewing side, a material having translucency with respect to visible light can be used.
 以上の工程により、図1に示す表示装置10を作製することができる。 Through the above steps, the display device 10 shown in FIG. 1 can be manufactured.
[作製方法例1の変形例1]
 以下では、光吸収層を用いずに、開口部を有する樹脂層を形成する方法について説明する。
[Variation 1 of Manufacturing Method Example 1]
Below, the method to form the resin layer which has an opening part, without using a light absorption layer is demonstrated.
 なお、ここでは、樹脂層202を例に挙げて説明するが、同様の方法を樹脂層201にも適用できる。 Note that although the resin layer 202 is described as an example here, the same method can be applied to the resin layer 201 as well.
〔変形例1〕
 まず、図10(A)に示すように凹部を有する樹脂層202を形成する。
[Modification 1]
First, as shown in FIG. 10A, a resin layer 202 having a recess is formed.
 樹脂層202は、まず樹脂層202となる材料を支持基板64上に塗布し、プリベーク処理を行う。続いて、フォトマスクを用いて露光を行う。このとき、樹脂層202を開口する条件よりも露光量を減らすことで、樹脂層202に凹部を形成することができる。例えば、樹脂層202を開口する露光条件よりも、短い露光時間で露光する、露光光の強度を弱める、焦点をずらす、樹脂層202を厚く形成するなどの方法が挙げられる。 For the resin layer 202, first, a material to be the resin layer 202 is applied on the support substrate 64, and a pre-bake treatment is performed. Subsequently, exposure is performed using a photomask. At this time, a concave portion can be formed in the resin layer 202 by reducing the exposure amount below the condition for opening the resin layer 202. For example, there are methods such as exposing with shorter exposure time than exposure conditions for opening the resin layer 202, reducing the intensity of exposure light, shifting the focus, and forming the resin layer 202 thick.
 また、樹脂層202に開口部と凹部の両方を形成したい場合には、ハーフトーンマスク、またはグレートーンマスクを用いた露光技術、または2以上のフォトマスクを用いた多重露光技術を用いればよい。 Further, when it is desired to form both the opening and the recess in the resin layer 202, an exposure technique using a halftone mask or a gray tone mask or a multiple exposure technique using two or more photomasks may be used.
 このようにして露光を行った後、現像処理を施すことで凹部が形成された樹脂層202を形成することができる。またその後にポストベーク処理を行う。 After the exposure as described above, the resin layer 202 having the recesses can be formed by performing a development process. After that, post bake processing is performed.
 続いて、図10(B)に示すように、樹脂層202の上面及び凹部を覆って絶縁層204、導電層223、及び配向膜224を形成する。 Subsequently, as shown in FIG. 10B, an insulating layer 204, a conductive layer 223, and an alignment film 224 are formed so as to cover the upper surface and the concave portion of the resin layer 202.
 図10(C)は、支持基板64と基板11とを貼り合せた時点での断面図である。 FIG. 10C is a cross-sectional view when the support substrate 64 and the substrate 11 are bonded together.
 その後、支持基板64側から、支持基板64を介して樹脂層202に光70(図示しない)を照射し、支持基板64と樹脂層202とを分離する。光の照射方法や分離方法については、上記を援用できる。 Thereafter, light 70 (not shown) is irradiated onto the resin layer 202 from the support substrate 64 side through the support substrate 64 to separate the support substrate 64 and the resin layer 202. The above can be used for the light irradiation method and the separation method.
 ここで、樹脂層202には開口が設けられていないため、支持基板64と絶縁層204とが接触する部分が存在せず、分離する領域全体に亘って樹脂層202と支持基板64とが接して設けられている。したがって、分離する領域に密着性の異なる領域が存在しないため、分離の際に引っ掛かりが生じることなく、歩留り良く分離を行うことができる。このような方法は、特に大型の基板を用いたときに効果的であり、生産性を高めることができる。 Here, since no opening is provided in the resin layer 202, there is no portion where the support substrate 64 and the insulating layer 204 are in contact with each other, and the resin layer 202 and the support substrate 64 are in contact with each other over the entire region to be separated. Is provided. Therefore, there is no region with different adhesion in the region to be separated, so that separation can be performed with high yield without being caught during separation. Such a method is particularly effective when a large substrate is used, and can increase productivity.
 続いて、樹脂層202の表面側の一部を除去し、樹脂層202を薄膜化する。薄膜化の方法については、上記における樹脂層201の薄膜化の方法を援用できる。樹脂層202の表面側の一部を、絶縁層204の表面の一部が露出するようにエッチングすることで、図10(D)に示すように、開口部を有する樹脂層202を形成することができる。 Subsequently, a part of the surface side of the resin layer 202 is removed, and the resin layer 202 is thinned. Regarding the thinning method, the above-described thinning method of the resin layer 201 can be used. By etching a part of the surface side of the resin layer 202 so that a part of the surface of the insulating layer 204 is exposed, a resin layer 202 having an opening is formed as shown in FIG. Can do.
 図10(D)では、プラズマ80を照射することで樹脂層202の上部の一部をエッチングし、薄膜化している様子を示している。 FIG. 10D shows a state where a part of the upper part of the resin layer 202 is etched and thinned by irradiating with plasma 80.
 なお、樹脂層202をエッチングせずに、図10(C)等に示したように、凹部を有する樹脂層202のままとしてもよい。この構成でも、発光素子120からの光の経路上に位置する樹脂層202の厚さが他の部分よりも薄いため、光の吸収が抑制され、光取り出し効率を高めることができる。しかしながら、発光素子120からの光の経路上に位置する樹脂層202を除去することで、当該経路上に位置する界面の数を減らせるため、界面による反射や散乱を低減できるため好ましい。 Note that the resin layer 202 may be left as it is without being etched, as shown in FIG. 10C or the like. Even in this configuration, since the resin layer 202 located on the light path from the light emitting element 120 is thinner than the other portions, light absorption is suppressed and light extraction efficiency can be increased. However, it is preferable to remove the resin layer 202 located on the light path from the light emitting element 120 to reduce the number of interfaces located on the path, thereby reducing reflection and scattering by the interface.
 また、条件によっては、樹脂層202の薄膜化工程後に、絶縁層204と接して樹脂層202が残存する場合がある。また、条件によっては、樹脂層202がエッチング等により完全に除去されてしまう場合もある。 Depending on the conditions, the resin layer 202 may remain in contact with the insulating layer 204 after the thinning process of the resin layer 202. Depending on the conditions, the resin layer 202 may be completely removed by etching or the like.
〔変形例2〕
 以下では、上記変形例1とは異なる方法について説明する。
[Modification 2]
Below, the method different from the said modification 1 is demonstrated.
 まず、図11(A)に示すように、支持基板64に樹脂層202aと、開口を有する樹脂層202bとを、積層して形成する。 First, as shown in FIG. 11A, a resin layer 202a and a resin layer 202b having an opening are stacked and formed on a support substrate 64.
 樹脂層202aは、上記樹脂層202の形成工程において、露光及び現像処理を省略した方法を用いて形成することができる。またこの時、プリベーク処理も不要となる。 The resin layer 202a can be formed using a method in which the exposure and development processes are omitted in the step of forming the resin layer 202. At this time, pre-bake processing is not required.
 また開口を有する樹脂層202bは、上記樹脂層202と同様に形成することができる。 The resin layer 202b having an opening can be formed in the same manner as the resin layer 202.
 ここで、先に形成する樹脂層202aに対して十分に加熱処理を施し、重合させておくことが好ましい。これにより、樹脂層202aと樹脂層202bに同じ材料を用いた場合であっても、後に形成する樹脂層202bとなる材料を塗布した時に、これに含まれる溶媒に樹脂層202aが溶けてしまうことを抑制できる。 Here, it is preferable that the previously formed resin layer 202a is sufficiently heated and polymerized. As a result, even when the same material is used for the resin layer 202a and the resin layer 202b, the resin layer 202a is dissolved in the solvent contained therein when a material to be the resin layer 202b to be formed later is applied. Can be suppressed.
 続いて、樹脂層202a及び樹脂層202b上に、絶縁層204、導電層223、及び配向膜224を形成する(図11(B))。 Subsequently, an insulating layer 204, a conductive layer 223, and an alignment film 224 are formed over the resin layer 202a and the resin layer 202b (FIG. 11B).
 図11(C)は支持基板64と基板11とを貼り合せた後時点での断面図である。 FIG. 11C is a cross-sectional view after the support substrate 64 and the substrate 11 are bonded together.
 その後、支持基板64側から、支持基板64を介して樹脂層202aに光70(図示しない)を照射し、支持基板64と樹脂層202aとを分離する。光の照射方法や分離方法については、上記を援用できる。 Thereafter, the support layer 64 and the resin layer 202a are separated from each other by irradiating the resin layer 202a with light 70 (not shown) from the support substrate 64 side. The above can be used for the light irradiation method and the separation method.
 その後、樹脂層202aを、絶縁層204の表面が露出するようにエッチングすることで、図11(D)に示すように、開口部を有する樹脂層202を形成することができる。エッチングは、上記における樹脂層201の薄膜化の方法を援用できる。特に、酸素を含む雰囲気下でのプラズマ処理(アッシング処理)を用いると、制御性が高まり、均一にエッチングできるため好ましい。 Then, the resin layer 202a having an opening can be formed as shown in FIG. 11D by etching the resin layer 202a so that the surface of the insulating layer 204 is exposed. For the etching, the method for thinning the resin layer 201 described above can be used. In particular, use of plasma treatment (ashing treatment) in an atmosphere containing oxygen is preferable because controllability can be improved and etching can be performed uniformly.
 図11(D)では、プラズマ80を照射することで樹脂層202aをエッチングし、薄膜化している様子を示している。 FIG. 11D shows a state where the resin layer 202a is etched and thinned by irradiating with plasma 80. FIG.
 なお、樹脂層202aと樹脂層202bとに同じ材料を用いると、材料や装置を共通化できるため生産性を向上させることができる。また、これらに異なる材料を用いると、エッチング速度の選択比を大きくできるため、加工条件の自由度を広げることができる。 Note that when the same material is used for the resin layer 202a and the resin layer 202b, the material and the apparatus can be made common, so that productivity can be improved. Further, when different materials are used for these, the selectivity of the etching rate can be increased, so that the degree of freedom of processing conditions can be expanded.
 なお、樹脂層202aをエッチングせずに、図11(C)等に示した状態のままとしてもよい。この構成でも、発光素子120からの光の経路上に位置する樹脂層202(具体的には樹脂層202b)の厚さが他の部分よりも薄いため、光の吸収が抑制され、光取り出し効率を高めることができる。 Note that the resin layer 202a may be left in the state shown in FIG. Even in this configuration, since the thickness of the resin layer 202 (specifically, the resin layer 202b) positioned on the light path from the light emitting element 120 is thinner than other portions, light absorption is suppressed, and light extraction efficiency is reduced. Can be increased.
 以上が作製方法例の変形例1についての説明である。 The above is the description of Modification Example 1 of the manufacturing method example.
[作製方法例1の変形例2]
 以下では、表示装置10の視認側に樹脂層を用いない作製方法を適用することにより、発光素子120の光路上に樹脂層が残存しない構成とする方法の一例について説明する。
[Variation 2 of Manufacturing Method Example 1]
Hereinafter, an example of a method in which a resin layer is not left on the optical path of the light-emitting element 120 by applying a manufacturing method that does not use a resin layer on the viewing side of the display device 10 will be described.
 まず、支持基板65に、粘着層90を用いて基板12が貼り付けられた積層体を準備する(図12(A))。 First, a laminate in which the substrate 12 is attached to the support substrate 65 using the adhesive layer 90 is prepared (FIG. 12A).
 支持基板65としては、上記支持基板61の記載を援用することができる。そのほか、支持基板65には、基板12のキャリアシートとして機能するシート状の樹脂または紙などを用いてもよい。 As the support substrate 65, the description of the support substrate 61 can be used. In addition, a sheet-like resin or paper that functions as a carrier sheet for the substrate 12 may be used for the support substrate 65.
 粘着層90は、以降の工程中に支持基板65と基板12とが分離することを防ぎ、且つ容易に支持基板65と基板12を分離可能な材料を用いることができる。代表的にはOCA(Optical Clear Adhesive)や、シリコーン等を用いることができる。また、粘着層90は透光性を有していなくてもよい。 The adhesive layer 90 can be made of a material that prevents the support substrate 65 and the substrate 12 from being separated during the subsequent steps and can easily separate the support substrate 65 and the substrate 12. Typically, OCA (Optical Clear Adhesive), silicone, or the like can be used. Moreover, the adhesion layer 90 may not have translucency.
 続いて、基板12上に導電層223及び配向膜224を積層して形成する(図12(B))。 Subsequently, a conductive layer 223 and an alignment film 224 are stacked over the substrate 12 (FIG. 12B).
 ここで、導電層223や配向膜224の形成は、高い温度が要求されないこと、また高い精度のパターニングが不要であることなどの理由から、基板12に可撓性を有するフィルム等を用い、導電層223及び配向膜224を基板12上に直接形成することも可能である。 Here, the conductive layer 223 and the alignment film 224 are formed by using a flexible film or the like for the substrate 12 because a high temperature is not required and high-precision patterning is unnecessary. It is also possible to form the layer 223 and the alignment film 224 directly on the substrate 12.
 続いて、支持基板65と基板11とを貼り合せる(図12(C))。 Subsequently, the support substrate 65 and the substrate 11 are bonded together (FIG. 12C).
 その後、粘着層90と基板12との間で剥離し、支持基板65と粘着層90を除去する(図12(D))。これにより、視認側に樹脂層を有さない表示装置を作製することができる。 Thereafter, peeling is performed between the adhesive layer 90 and the substrate 12, and the support substrate 65 and the adhesive layer 90 are removed (FIG. 12D). Accordingly, a display device that does not have a resin layer on the viewing side can be manufactured.
 なお、図12(C)に示すように、支持基板65及び粘着層90を残したままの状態としてもよい。このとき、支持基板65を表示装置を保護するための保護基板として用いることができる。 Note that, as shown in FIG. 12C, the support substrate 65 and the adhesive layer 90 may be left as they are. At this time, the support substrate 65 can be used as a protective substrate for protecting the display device.
 以上が作製方法例1の変形例2についての説明である。 The above is the description of Modification Example 2 of Manufacturing Method Example 1.
[構成例1の変形例]
 以下では、図1等で示した構成例と比較して、一部の構成の異なる構成例について説明する。
[Modification of Configuration Example 1]
Hereinafter, a configuration example having a part of the configuration different from the configuration example illustrated in FIG. 1 and the like will be described.
〔変形例1〕
 図1では、発光素子120からの光の経路上に位置する樹脂層に、開口部を設ける構成としたが、反射型の液晶素子220における光の経路上に位置する樹脂層にも開口部を設けてもよい。
[Modification 1]
In FIG. 1, the opening is provided in the resin layer positioned on the light path from the light emitting element 120, but the opening is also formed in the resin layer positioned on the light path in the reflective liquid crystal element 220. It may be provided.
 図13(A)には、領域31に加えて領域32を有する例を示している。領域32は、樹脂層202の開口部、及び液晶素子220と重なる領域である。 FIG. 13A shows an example having a region 32 in addition to the region 31. The region 32 is a region overlapping the opening of the resin layer 202 and the liquid crystal element 220.
 なお、図13(A)では樹脂層202に、発光素子120及び液晶素子220の両方を包含する1つの開口部が設けられている例を示したが、発光素子120と重なる開口部と、液晶素子220と重なる開口部とが別々に設けられた構成としてもよい。 Note that FIG. 13A illustrates an example in which the resin layer 202 has one opening including both the light-emitting element 120 and the liquid crystal element 220; however, the opening overlapping the light-emitting element 120 and the liquid crystal A configuration may be employed in which an opening overlapping with the element 220 is provided separately.
〔変形例2〕
 図13(B)は、基板12側に樹脂層を有さない場合の例である。また、図13(B)に示す構成は、図12(D)に示す構成と比較し、接着層52と絶縁層204を有している点で相違している。
[Modification 2]
FIG. 13B shows an example in which the resin layer is not provided on the substrate 12 side. Further, the structure illustrated in FIG. 13B is different from the structure illustrated in FIG. 12D in that the adhesive layer 52 and the insulating layer 204 are provided.
 図13(B)に示す構成では、バリア層として機能する絶縁層204が設けられているため、基板12に樹脂材料などを用いた場合であっても、液晶222等に不純物が拡散することを防ぐことができる。 In the structure illustrated in FIG. 13B, since the insulating layer 204 which functions as a barrier layer is provided, even when a resin material or the like is used for the substrate 12, impurities are diffused into the liquid crystal 222 or the like. Can be prevented.
 図13(B)に示す構成は、例えば支持基板上に樹脂層202、絶縁層204、導電層223、配向膜224等を形成し、これを基板11と貼り合せた後に、樹脂層202を完全に除去することにより実現することができる。樹脂層の形成時に、露光及び現像処理を省略した方法により、平坦な樹脂層を形成することができる。 In the structure illustrated in FIG. 13B, for example, a resin layer 202, an insulating layer 204, a conductive layer 223, an alignment film 224, and the like are formed over a supporting substrate and bonded to the substrate 11. This can be realized by removing them. When the resin layer is formed, a flat resin layer can be formed by a method in which exposure and development processing are omitted.
 このような構成とすることで、絶縁層204、導電層223、及び配向膜224等の表面を平坦にすることができるため、液晶222の配向欠陥が生じにくく、開口率の高い表示装置を実現できる。 With such a structure, since the surfaces of the insulating layer 204, the conductive layer 223, the alignment film 224, and the like can be flattened, an alignment defect of the liquid crystal 222 hardly occurs and a display device with a high aperture ratio is realized. it can.
〔変形例3〕
 図14(A)は、図1等と比較して、トランジスタ210を覆い、平坦化膜として機能する絶縁層234を設けない場合の例を示している。
[Modification 3]
FIG. 14A illustrates an example in which the transistor 210 is not covered and the insulating layer 234 functioning as a planarization film is not provided as compared with FIG.
 図14(A)において、絶縁層233上(図面では下方)に着色層152及び遮光層153が設けられている。 14A, a coloring layer 152 and a light shielding layer 153 are provided over the insulating layer 233 (downward in the drawing).
 このような構成とすることで、図1等と比較して作製コストを低減することができる。また絶縁層234を有さないため、表示装置10の厚さをより薄くすることができる。また、発光素子120を視認側に近づけることが可能となり、視野角特性を向上させることができる。 With such a configuration, the manufacturing cost can be reduced as compared with FIG. Further, since the insulating layer 234 is not provided, the thickness of the display device 10 can be further reduced. In addition, the light emitting element 120 can be brought closer to the viewer side, and viewing angle characteristics can be improved.
 ここで、遮光層153を有していることで、発光素子120から射出された発光21がトランジスタ210の半導体層212に入射されることを防ぐことができ、トランジスタ210の電気特性の変動を抑制することができる。 Here, the light-blocking layer 153 can prevent light emission 21 emitted from the light-emitting element 120 from entering the semiconductor layer 212 of the transistor 210 and suppress variation in electrical characteristics of the transistor 210. can do.
〔変形例4〕
 図14(B)は、図1等で示した構成と比較して、基板11、接着層51、樹脂層101、絶縁層131に代えて、基板11aを有している点、及び基板12、接着層52、樹脂層202、及び絶縁層204に代えて、基板12aを有している点で主に相違している。
[Modification 4]
FIG. 14B shows that the substrate 11, the adhesive layer 51, the resin layer 101, and the insulating layer 131 are replaced with the substrate 11 a as compared with the structure shown in FIG. The difference is mainly in that a substrate 12a is provided instead of the adhesive layer 52, the resin layer 202, and the insulating layer 204.
 基板11a及び基板12aには、水や水素、酸素などの不純物が拡散しにくい基板を用いることができる。これにより、基板11aとトランジスタ110の間、及び基板12aと液晶素子220の間に、バリア性の高い絶縁層を設ける必要がなくなり、生産コストを低減することができる。 As the substrate 11a and the substrate 12a, substrates in which impurities such as water, hydrogen, and oxygen are difficult to diffuse can be used. Accordingly, it is not necessary to provide an insulating layer having a high barrier property between the substrate 11a and the transistor 110 and between the substrate 12a and the liquid crystal element 220, so that the production cost can be reduced.
 ここで、基板12a、基板11aのいずれか一方、または両方に、例えば可撓性に乏しい基板を用いてもよい。このとき、基板12aにはガラス基板等の透光性の基板を用いる。基板11aには、金属基板等の透光性を有さない基板を用いてもよい。こうすることで、基板12aと基板11aとを支持基板として用いることができるため、作製工程中の搬送を容易なものとすることができる。基板12aまたは基板11aとして、厚さが0.3mm以上、好ましくは0.5mm以上の基板を用いると、搬送が容易となるため好ましい。なお、基板12aと基板11aとを貼り合せた後に、基板12aと基板11aを研磨することで、0.3mm未満に薄くしてもよい。 Here, for example, a substrate having poor flexibility may be used as one or both of the substrate 12a and the substrate 11a. At this time, a light-transmitting substrate such as a glass substrate is used as the substrate 12a. A substrate that does not have translucency, such as a metal substrate, may be used as the substrate 11a. By doing so, the substrate 12a and the substrate 11a can be used as a support substrate, so that the conveyance during the manufacturing process can be facilitated. As the substrate 12a or the substrate 11a, it is preferable to use a substrate having a thickness of 0.3 mm or more, preferably 0.5 mm or more because conveyance becomes easy. In addition, after bonding the board | substrate 12a and the board | substrate 11a, you may make it thin to less than 0.3 mm by grind | polishing the board | substrate 12a and the board | substrate 11a.
 また、基板12aと基板11aに可撓性の乏しい基板を用いることで、基板12aと基板11aの貼り合せの段階において、可撓性を有する基板同士を貼り合せる場合と比較して、位置合わせの精度を高めることが可能であり、表示装置の高精細化が可能となる。例えば500ppiを超える精細度の表示装置を実現することができる。 Further, by using a substrate having poor flexibility for the substrate 12a and the substrate 11a, the alignment of the substrate 12a and the substrate 11a can be performed more easily than in the case where the substrates having flexibility are bonded to each other. The accuracy can be increased, and the display device can have higher definition. For example, a display device having a definition exceeding 500 ppi can be realized.
 また、このような構成とすることで、作製工程を大幅に簡略化できるため、作製コストを低減できる。 Also, with such a configuration, the manufacturing process can be greatly simplified, so that the manufacturing cost can be reduced.
 また、図14(B)で示す発光素子120は、EL層122が異なる色の画素間で分断されるように、いわゆる塗り分け方式で形成した場合の例を示している。なおここではEL層122の全部が画素間で分断されている様子を示しているが、EL層122を構成する積層膜の内、少なくとも1以上が画素間に分断され、他はつながっていてもよい。 In addition, the light-emitting element 120 illustrated in FIG. 14B illustrates an example in which the EL layer 122 is formed by a so-called separate coloring method so that pixels of different colors are divided. Note that although the entire EL layer 122 is divided between pixels here, at least one of the stacked films constituting the EL layer 122 is divided between the pixels and the others are connected. Good.
 また図14(B)では、発光素子120が画素毎に異なる色の光を射出することができるため、着色層152を設けない構成の例を示している。着色層152を設けないことで、取り出し効率を高めることができる。 14B illustrates an example of a structure in which the colored layer 152 is not provided because the light-emitting element 120 can emit different colors of light for each pixel. By not providing the colored layer 152, the extraction efficiency can be increased.
 また、図14(B)では、導電層123を覆って絶縁層124が設けられている。絶縁層124は、発光素子120に水などの不純物が拡散することを抑制するバリア層として機能する。 In FIG. 14B, an insulating layer 124 is provided so as to cover the conductive layer 123. The insulating layer 124 functions as a barrier layer that suppresses diffusion of impurities such as water into the light-emitting element 120.
 以上が、構成例1の変形例についての説明である。 This completes the description of the modified example of Configuration Example 1.
[構成例2]
 上記構成例1では、発光素子としてトップエミッション型の発光素子を用いたのに対し、本構成例2では、発光素子にボトムエミッション型の発光素子を用いた場合の例について説明する。
[Configuration example 2]
In the above configuration example 1, a top emission type light emitting element is used as the light emitting element. In this configuration example 2, an example in which a bottom emission type light emitting element is used as the light emitting element will be described.
 すなわち、表示装置は、発光素子と電気的に接続する第1のトランジスタを含む第1の素子層、発光素子を含む第2の素子層、液晶素子と電気的に接続する第2のトランジスタを含む第3の素子層、及び液晶素子を含む第4の素子層を有する。そして、視認とは反対側から、第2の素子層、第1の素子層、第3の素子層、第4の素子層の順で積層されている。また、第1の素子層と、第3の素子層との間に、これらを接着する接着層を有する。 In other words, the display device includes a first element layer including a first transistor electrically connected to the light emitting element, a second element layer including the light emitting element, and a second transistor electrically connected to the liquid crystal element. A third element layer and a fourth element layer including a liquid crystal element are included. Then, the second element layer, the first element layer, the third element layer, and the fourth element layer are laminated in this order from the side opposite to the visual recognition. Further, an adhesive layer is provided between the first element layer and the third element layer to bond them.
 ここで、第4の素子層よりも視認側に、樹脂層を設けることが好ましい。これにより、表示装置を極めて軽くすることが可能で、また表示装置を割れにくくすることが可能となる。また、第1の素子層と第3の素子層の間、第3の素子層と第4の素子層の間にも、それぞれ樹脂層を有していてもよい。 Here, it is preferable to provide a resin layer closer to the viewing side than the fourth element layer. As a result, the display device can be made extremely light, and the display device can be made difficult to break. In addition, a resin layer may be provided between the first element layer and the third element layer and between the third element layer and the fourth element layer.
 また、発光素子は被形成面側に光を射出するボトムエミッション型の発光素子を好適に適用することができる。第1のトランジスタと発光素子とは、視認側から順に積層されて形成されている。また第1のトランジスタを含む第1の素子層は、接着層により第2のトランジスタを含む第3の素子層と接着されている。これにより、発光素子の発光面を表示面側に近い位置に配置することが可能となり、視野角特性の優れた表示装置を実現できる。 Further, as the light emitting element, a bottom emission type light emitting element that emits light toward the surface to be formed can be suitably applied. The first transistor and the light emitting element are stacked in order from the viewing side. The first element layer including the first transistor is bonded to the third element layer including the second transistor with an adhesive layer. Accordingly, the light emitting surface of the light emitting element can be disposed at a position close to the display surface side, and a display device having excellent viewing angle characteristics can be realized.
 また、本発明の一態様の表示装置は、第1のトランジスタと第2のトランジスタとが、上下方向に対していずれも同じ向きを向いて設けられた構成を有する。つまり、第1のトランジスタを構成する複数の膜が積層される向きと、第2のトランジスタを構成する複数の膜が積層される向きとが、一致していると表現することもできる。 Further, the display device of one embodiment of the present invention has a structure in which the first transistor and the second transistor are provided in the same direction with respect to the vertical direction. That is, it can also be expressed that the direction in which the plurality of films constituting the first transistor are stacked and the direction in which the plurality of films forming the second transistor are stacked are the same.
 より具体的には、例えば以下のような構成とすることができる。なお、上記と共通する構成要素については同一の符号を付し、説明を省略する場合がある。 More specifically, for example, the following configuration can be adopted. In addition, the same code | symbol is attached | subjected about the same component as the above, and description may be abbreviate | omitted.
 図15に、表示装置10の断面概略図を示す。表示装置10は、素子層200a、素子層100a、素子層100b、及び素子層200bが、この順で積層された構成を有する。また素子層100aと素子層100bとの間に、接着層50を有する。また、表示装置10は、裏側(視認側とは反対側)に基板11と、表側(視認側)に基板12と、を有する。また、素子層100aと接着層50の間に樹脂層101と、基板12と素子層200bとの間に樹脂層202とを有する。基板11は、発光素子120を覆う接着層151で接着されている。樹脂層101と素子層100b(具体的には絶縁層234)とは接着層50により貼り合わされている。また樹脂層202と基板12とは接着層52により貼り合わされている。 FIG. 15 is a schematic sectional view of the display device 10. The display device 10 has a configuration in which an element layer 200a, an element layer 100a, an element layer 100b, and an element layer 200b are stacked in this order. An adhesive layer 50 is provided between the element layer 100a and the element layer 100b. The display device 10 includes a substrate 11 on the back side (the side opposite to the viewing side) and a substrate 12 on the front side (viewing side). Further, the resin layer 101 is provided between the element layer 100a and the adhesive layer 50, and the resin layer 202 is provided between the substrate 12 and the element layer 200b. The substrate 11 is bonded with an adhesive layer 151 that covers the light emitting element 120. The resin layer 101 and the element layer 100b (specifically, the insulating layer 234) are bonded together by the adhesive layer 50. Further, the resin layer 202 and the substrate 12 are bonded together by the adhesive layer 52.
 素子層100aは、樹脂層101の基板11側にトランジスタ110を有する。素子層200aは、トランジスタ110と電気的に接続された発光素子120を有する。素子層100bは、トランジスタ210を有する。素子層200bは、トランジスタ210と電気的に接続された液晶素子220を有する。 The element layer 100 a includes a transistor 110 on the substrate 11 side of the resin layer 101. The element layer 200 a includes the light-emitting element 120 that is electrically connected to the transistor 110. The element layer 100 b includes the transistor 210. The element layer 200 b includes a liquid crystal element 220 that is electrically connected to the transistor 210.
 また、樹脂層101及び樹脂層202は、それぞれ開口部が設けられている。図1に示す領域31は、発光素子120と重なる領域であって、且つ樹脂層101の開口部、及び樹脂層202の開口部と重なる領域である。 Further, the resin layer 101 and the resin layer 202 are each provided with an opening. A region 31 illustrated in FIG. 1 is a region that overlaps with the light-emitting element 120 and a region that overlaps the opening of the resin layer 101 and the opening of the resin layer 202.
〔素子層100a、素子層200a〕
 樹脂層101の基板11側には、トランジスタ110、発光素子120、絶縁層131、絶縁層132、絶縁層133、絶縁層134、絶縁層135等が設けられている。
[Element layer 100a, Element layer 200a]
A transistor 110, a light emitting element 120, an insulating layer 131, an insulating layer 132, an insulating layer 133, an insulating layer 134, an insulating layer 135, and the like are provided on the substrate 11 side of the resin layer 101.
 発光素子120は、導電層121と、EL層122と、導電層123と、が積層された構成を有する。導電層121は可視光を透過する機能を有し、導電層123は可視光を反射する機能を有する。したがって、発光素子120は、被形成面側に光を射出する下面射出型(ボトムエミッション型ともいう)の発光素子である。 The light emitting element 120 has a structure in which a conductive layer 121, an EL layer 122, and a conductive layer 123 are stacked. The conductive layer 121 has a function of transmitting visible light, and the conductive layer 123 has a function of reflecting visible light. Therefore, the light-emitting element 120 is a bottom emission type (also referred to as a bottom emission type) light-emitting element that emits light toward a surface to be formed.
 また、導電層123を覆って絶縁層124が設けられている。絶縁層124は、発光素子120に水分等の不純物が拡散することを抑制するバリア層として機能する。絶縁層124は、無機絶縁膜を有することが好ましい。例えば、無機絶縁膜を単層で、または複数の無機絶縁膜を積層して用いてもよい。また、無機絶縁膜と有機絶縁膜の積層構造としてもよい。 Further, an insulating layer 124 is provided so as to cover the conductive layer 123. The insulating layer 124 functions as a barrier layer that suppresses diffusion of impurities such as moisture into the light-emitting element 120. The insulating layer 124 preferably includes an inorganic insulating film. For example, the inorganic insulating film may be a single layer or a plurality of inorganic insulating films may be stacked. Alternatively, a stacked structure of an inorganic insulating film and an organic insulating film may be used.
 絶縁層124が設けられていることにより、接着層151や基板11に、バリア性の高い材料を用いる必要がないため、材料の選択の自由度を高めることができる。また接着層151及び基板11を薄くすることも可能となる。 Since the insulating layer 124 is provided, it is not necessary to use a material having a high barrier property for the adhesive layer 151 or the substrate 11, so that the degree of freedom in selecting the material can be increased. In addition, the adhesive layer 151 and the substrate 11 can be thinned.
 発光素子120よりも視認側に位置する樹脂層101には、開口部が設けられている。発光素子120は、当該開口部と重ねて配置されている。また絶縁層131は、樹脂層101の開口部を覆って設けられている。また絶縁層131の樹脂層101の開口部と重なる部分は、接着層50と接している。 An opening is provided in the resin layer 101 located on the viewing side with respect to the light emitting element 120. The light emitting element 120 is disposed so as to overlap with the opening. The insulating layer 131 is provided so as to cover the opening of the resin layer 101. A portion of the insulating layer 131 that overlaps with the opening of the resin layer 101 is in contact with the adhesive layer 50.
 絶縁層133と絶縁層134との間に、発光素子120と重なる着色層152が設けられている。着色層152は、樹脂層101の開口と重なる領域を有する。なお、絶縁層133と絶縁層134との間に、発光素子120と重なる部分に開口を有する遮光層を設けてもよい。 A colored layer 152 that overlaps with the light-emitting element 120 is provided between the insulating layer 133 and the insulating layer 134. The colored layer 152 has a region overlapping with the opening of the resin layer 101. Note that a light-blocking layer having an opening in a portion overlapping with the light-emitting element 120 may be provided between the insulating layer 133 and the insulating layer 134.
〔素子層100b、素子層200b〕
 素子層100bと素子層200bの構成は、構成例1を援用できる。
[Element layer 100b, Element layer 200b]
The structure example 1 can be used for the structure of the element layer 100b and the element layer 200b.
〔表示装置10〕
 表示装置10は、トランジスタ210とトランジスタ110とが、互いに上下方向に同じ向きを向くように積層された構成を有する。
[Display device 10]
The display device 10 has a configuration in which a transistor 210 and a transistor 110 are stacked so as to face each other in the same vertical direction.
 以上が構成例2についての説明である。 The above is the description of the configuration example 2.
[作製方法例2]
 以下では、図15で例示した表示装置10の作製方法の例について、図面を参照して説明する。
[Production Method Example 2]
Hereinafter, an example of a method for manufacturing the display device 10 illustrated in FIG. 15 will be described with reference to the drawings.
 なお以下では、上記作製方法例1と重複する部分については説明を省略し、相違点のみ説明する場合がある。 In addition, below, description is abbreviate | omitted about the part which overlaps with the said manufacturing method example 1, and only a difference may be demonstrated.
 まず、素子層100a及び素子層200aの形成方法を説明する。 First, a method for forming the element layer 100a and the element layer 200a will be described.
〔支持基板の準備〕
 まず、支持基板61を準備する。
[Preparation of support substrate]
First, the support substrate 61 is prepared.
〔光吸収層103aの形成〕
 続いて、支持基板61上に、光吸収層103aを形成する(図16(A))。光吸収層103aは、上記光吸収層103を援用できる。
[Formation of Light Absorbing Layer 103a]
Subsequently, a light absorption layer 103a is formed over the supporting substrate 61 (FIG. 16A). The light absorption layer 103a can be used for the light absorption layer 103a.
〔樹脂層の形成〕
 続いて、光吸収層103a上に、樹脂層101を形成する(図16(B))。
[Formation of resin layer]
Subsequently, the resin layer 101 is formed over the light absorption layer 103a (FIG. 16B).
〔絶縁層131の形成〕
 続いて、樹脂層101上に絶縁層131を形成する(図16(C))。
[Formation of Insulating Layer 131]
Subsequently, an insulating layer 131 is formed over the resin layer 101 (FIG. 16C).
〔トランジスタの形成〕
 続いて、図16(D)に示すように、絶縁層131上にトランジスタ110を形成する。ここではトランジスタ110の一例として、ボトムゲート構造のトランジスタを作製する場合の例を示している。
[Formation of transistors]
Next, as illustrated in FIG. 16D, the transistor 110 is formed over the insulating layer 131. Here, as an example of the transistor 110, an example in the case of manufacturing a bottom-gate transistor is shown.
〔絶縁層133の形成〕
 続いて、トランジスタ110を覆う絶縁層133を形成する。
[Formation of Insulating Layer 133]
Subsequently, an insulating layer 133 that covers the transistor 110 is formed.
〔着色層152の形成〕
 続いて、絶縁層132上に着色層152を形成する。着色層152は、感光性の材料を用いることで、フォトリソグラフィ法等により島状に加工することができる。
[Formation of colored layer 152]
Subsequently, a colored layer 152 is formed over the insulating layer 132. The coloring layer 152 can be processed into an island shape by a photolithography method or the like by using a photosensitive material.
 このとき、絶縁層132上に、遮光層を形成してもよい。当該遮光層は、着色層152及び発光素子120と重なる開口部を有する構成とする。また遮光層は、トランジスタ110を覆って設けてもよい。 At this time, a light shielding layer may be formed on the insulating layer 132. The light-blocking layer has an opening that overlaps with the colored layer 152 and the light-emitting element 120. The light-blocking layer may be provided so as to cover the transistor 110.
 遮光層は、例えば金属材料または樹脂材料を用いることができる。金属材料を用いる場合には、導電膜を成膜した後に、フォトリソグラフィ法等を用いて不要な部分を除去することにより形成できる。また金属材料、顔料または染料を含む感光性の樹脂材料を用いた場合は、フォトリソグラフィ法等により形成することができる。 For the light shielding layer, for example, a metal material or a resin material can be used. In the case of using a metal material, after forming a conductive film, it can be formed by removing unnecessary portions using a photolithography method or the like. Further, when a photosensitive resin material containing a metal material, a pigment or a dye is used, it can be formed by a photolithography method or the like.
〔絶縁層134の形成〕
 続いて、絶縁層133及び着色層152上に絶縁層134を形成する。絶縁層134は、後に形成する発光素子120の被形成面を有する層であるため、平坦化層として機能する層であることが好ましい。
[Formation of Insulating Layer 134]
Subsequently, the insulating layer 134 is formed over the insulating layer 133 and the coloring layer 152. The insulating layer 134 is a layer that has a formation surface of the light-emitting element 120 to be formed later, and thus is preferably a layer that functions as a planarization layer.
〔発光素子120の形成〕
 続いて、絶縁層134及び絶縁層133に、導電層113b等に達する開口を形成する。
[Formation of Light Emitting Element 120]
Subsequently, an opening reaching the conductive layer 113b and the like is formed in the insulating layer 134 and the insulating layer 133.
 その後、導電層121を形成する。導電層121は、その一部が画素電極として機能する。続いて、図16(E)に示すように、導電層121の端部を覆う絶縁層135を形成する。続いて、EL層122及び導電層123を形成する。 Thereafter, the conductive layer 121 is formed. Part of the conductive layer 121 functions as a pixel electrode. Next, as illustrated in FIG. 16E, an insulating layer 135 that covers an end portion of the conductive layer 121 is formed. Subsequently, an EL layer 122 and a conductive layer 123 are formed.
 以上のようにして、発光素子120を形成することができる(図16(F))。発光素子120は、一部が画素電極として機能する導電層121、EL層122、及び一部が共通電極として機能する導電層123が積層された構成を有する。 As described above, the light-emitting element 120 can be formed (FIG. 16F). The light-emitting element 120 has a structure in which a conductive layer 121 partly functioning as a pixel electrode, an EL layer 122, and a conductive layer 123 partly functioning as a common electrode are stacked.
〔絶縁層124の形成〕
 続いて、図17(A)に示すように、導電層123を覆って絶縁層124を形成する。
[Formation of Insulating Layer 124]
Subsequently, as illustrated in FIG. 17A, an insulating layer 124 is formed so as to cover the conductive layer 123.
 絶縁層124に無機絶縁膜を用いる場合、例えばスパッタリング法、プラズマCVD法、ALD法、蒸着法などの成膜方法を好適に用いることができる。また、無機絶縁膜を成膜する際に発光素子120がダメージを受けることを防ぐため、無機絶縁膜と発光素子120との間、具体的には無機絶縁膜と導電層123との間に、有機絶縁膜を形成することが好ましい。このとき、有機絶縁膜は薄くてもよく(例えば100nm以下)、例えば蒸着法などを用いて形成することもできる。 When an inorganic insulating film is used for the insulating layer 124, for example, a film forming method such as a sputtering method, a plasma CVD method, an ALD method, or an evaporation method can be suitably used. Further, in order to prevent the light emitting element 120 from being damaged when the inorganic insulating film is formed, between the inorganic insulating film and the light emitting element 120, specifically, between the inorganic insulating film and the conductive layer 123, It is preferable to form an organic insulating film. At this time, the organic insulating film may be thin (for example, 100 nm or less), and may be formed using, for example, an evaporation method.
〔貼り合せ〕
 続いて、図17(B)に示すように、支持基板61と基板11とを、接着層151を用いて貼り合せる。そして、接着層151を硬化させる。これにより、発光素子120を接着層151で封止することができる。
〔Lamination〕
Subsequently, as illustrated in FIG. 17B, the support substrate 61 and the substrate 11 are bonded to each other using the adhesive layer 151. Then, the adhesive layer 151 is cured. Thereby, the light emitting element 120 can be sealed with the adhesive layer 151.
 以上の工程により、素子層100a及び素子層200aを作製することができる。図17(B)に示す時点では、素子層100a及び素子層200aは、支持基板61に支持された状態である。 Through the above steps, the element layer 100a and the element layer 200a can be manufactured. At the time shown in FIG. 17B, the element layer 100a and the element layer 200a are supported by the support substrate 61.
〔支持基板61の分離〕
 続いて、図17(C)に示すように、支持基板61側から、支持基板61を介して光吸収層103aに光70を照射する。
[Separation of support substrate 61]
Subsequently, as illustrated in FIG. 17C, the light absorption layer 103 a is irradiated with light 70 from the support substrate 61 side through the support substrate 61.
 光70の照射により、光吸収層103aと樹脂層101の密着性、または光吸収層103aと支持基板61の密着性が低下し、容易に剥離可能な状態とすることができる。 By irradiation with light 70, the adhesiveness between the light absorption layer 103a and the resin layer 101 or the adhesiveness between the light absorption layer 103a and the support substrate 61 is lowered, and can be easily peeled.
 続いて、支持基板61と樹脂層101とを分離する(図17(D))。 Subsequently, the support substrate 61 and the resin layer 101 are separated (FIG. 17D).
 図17(D)では、光吸収層103aと樹脂層101の界面、及び光吸収層103aと絶縁層131の界面で剥離が生じている例を示している。 FIG. 17D shows an example in which peeling occurs at the interface between the light absorption layer 103a and the resin layer 101 and at the interface between the light absorption layer 103a and the insulating layer 131.
 以上の工程で、支持基板61と樹脂層101とを分離することができる。図17(D)に示す時点では、樹脂層101の一方の面側に素子層100aと素子層200aが設けられ、他方の面が露出した状態である。 Through the above steps, the support substrate 61 and the resin layer 101 can be separated. At the time shown in FIG. 17D, the element layer 100a and the element layer 200a are provided on one surface side of the resin layer 101, and the other surface is exposed.
 続いて、素子層100bの形成方法について説明する。 Subsequently, a method for forming the element layer 100b will be described.
〔樹脂層201の形成〕
 支持基板63を準備し、支持基板63上に樹脂層201を形成する(図18(A))。
[Formation of resin layer 201]
A support substrate 63 is prepared, and a resin layer 201 is formed over the support substrate 63 (FIG. 18A).
〔導電層221b、導電層221aの形成〕
 続いて、導電層221bと導電層221aとを積層して形成する(図18(B))。
[Formation of Conductive Layer 221b and Conductive Layer 221a]
Next, the conductive layer 221b and the conductive layer 221a are stacked and formed (FIG. 18B).
〔絶縁層231の形成〕
 続いて、導電層221a、導電層221b及び樹脂層201を覆って絶縁層231を形成する(図18(C))。
[Formation of Insulating Layer 231]
Subsequently, an insulating layer 231 is formed so as to cover the conductive layer 221a, the conductive layer 221b, and the resin layer 201 (FIG. 18C).
〔トランジスタ210の形成〕
 続いて、図18(D)に示すように、絶縁層231上に、トランジスタ210を形成する。
[Formation of Transistor 210]
Subsequently, as illustrated in FIG. 18D, the transistor 210 is formed over the insulating layer 231.
〔絶縁層233、絶縁層234の形成〕
 続いて、トランジスタ210を覆って絶縁層233及び絶縁層234を順に形成する(図18(E))。
[Formation of Insulating Layer 233 and Insulating Layer 234]
Next, an insulating layer 233 and an insulating layer 234 are formed in this order so as to cover the transistor 210 (FIG. 18E).
 以上により、素子層100bを形成することができる。図18(E)に示す時点では、素子層100bが、支持基板63に支持された状態である。 Thus, the element layer 100b can be formed. At the time shown in FIG. 18E, the element layer 100b is supported by the support substrate 63.
〔貼り合せ〕
 続いて、図19(A)に示すように、基板11と支持基板63とを、接着層50を用いて貼り合せる。接着層50としては、上記接着層151の記載を援用できる。
〔Lamination〕
Subsequently, as illustrated in FIG. 19A, the substrate 11 and the support substrate 63 are bonded using the adhesive layer 50. As the adhesive layer 50, the description of the adhesive layer 151 can be used.
〔支持基板63の分離〕
 続いて、支持基板63側から、支持基板63を介して樹脂層201に光70を照射する(図19(B))。光70の照射により、樹脂層201の支持基板63側の表面近傍、または樹脂層201の内部の一部が改質され、支持基板63と樹脂層201との密着性が低下する。
[Separation of support substrate 63]
Subsequently, light 70 is applied to the resin layer 201 from the support substrate 63 side through the support substrate 63 (FIG. 19B). By irradiation with light 70, the vicinity of the surface of the resin layer 201 on the support substrate 63 side or a part of the inside of the resin layer 201 is modified, and the adhesion between the support substrate 63 and the resin layer 201 is lowered.
 その後、図19(C)に示すように支持基板63と樹脂層201とを分離する。 Thereafter, as shown in FIG. 19C, the support substrate 63 and the resin layer 201 are separated.
 図19(C)では、樹脂層201の内部で破断し、支持基板63側に樹脂層201の一部である樹脂層201aが残存している例を示している。 FIG. 19C shows an example in which the resin layer 201 is broken inside the resin layer 201 and the resin layer 201a which is a part of the resin layer 201 remains on the support substrate 63 side.
〔樹脂層201の薄膜化〕
 続いて、樹脂層201の一部を除去し、樹脂層201を薄膜化する。薄膜化後の樹脂層201の厚さは、例えば樹脂層101よりも薄くすることができる。より具体的には例えば1nm以上3μm未満、好ましくは5nm以上1μm以下、より好ましくは10nm以上200nm以下とすることが好ましい。
[Thinning of resin layer 201]
Subsequently, a part of the resin layer 201 is removed, and the resin layer 201 is thinned. The thickness of the resin layer 201 after thinning can be made thinner than the resin layer 101, for example. More specifically, for example, it is preferably 1 nm or more and less than 3 μm, preferably 5 nm or more and 1 μm or less, more preferably 10 nm or more and 200 nm or less.
 図20(A)では、樹脂層201の上面に、プラズマ80を照射することで、樹脂層201の上部の一部をエッチングし、薄膜化している様子を示している。 FIG. 20A shows a state in which a part of the upper portion of the resin layer 201 is etched and thinned by irradiating the upper surface of the resin layer 201 with plasma 80.
〔ラビング処理〕
 続いて、樹脂層201の上面に対してラビング処理を行う。これにより、樹脂層201を配向膜として用いることができる。
[Rubbing treatment]
Subsequently, a rubbing process is performed on the upper surface of the resin layer 201. Thereby, the resin layer 201 can be used as an alignment film.
 図20(B)は、ラビング処理時の様子を示している。図20(B)に示すように、回転するラビングロール85を樹脂層201に押し当てた状態で、図中の一点鎖線の矢印で示すように、基板11をスライドさせることにより、樹脂層201に一軸配向処理を施すことができる。 FIG. 20B shows a state during the rubbing process. As shown in FIG. 20B, in a state where the rotating rubbing roll 85 is pressed against the resin layer 201, the substrate 11 is slid as shown by the one-dot chain line arrow in FIG. Uniaxial orientation processing can be performed.
〔光吸収層103bの形成〕
 続いて、支持基板64を準備する。支持基板64上に、光吸収層103bを形成する(図21(A))。光吸収層103bは、上記光吸収層103aの記載を援用できる。
[Formation of Light Absorbing Layer 103b]
Subsequently, the support substrate 64 is prepared. A light absorption layer 103b is formed over the supporting substrate 64 (FIG. 21A). The description of the light absorption layer 103a can be used for the light absorption layer 103b.
〔樹脂層202の形成〕
 続いて、光吸収層103b上に、開口部を有する樹脂層202を形成する(図21(B))。
[Formation of resin layer 202]
Subsequently, a resin layer 202 having an opening is formed over the light absorption layer 103b (FIG. 21B).
〔絶縁層204の形成〕
 続いて、樹脂層202、及び樹脂層202の開口部を覆って絶縁層204を形成する(図21(C))。絶縁層204の一部は、光吸収層103bと接して設けられる。
[Formation of Insulating Layer 204]
Subsequently, an insulating layer 204 is formed so as to cover the resin layer 202 and the opening of the resin layer 202 (FIG. 21C). Part of the insulating layer 204 is provided in contact with the light absorption layer 103b.
〔導電層223の形成〕
 続いて、絶縁層204上に導電層223を形成する。
[Formation of Conductive Layer 223]
Subsequently, a conductive layer 223 is formed over the insulating layer 204.
〔配向膜224の形成〕
 続いて、導電層223上に配向膜224を形成する(図21(D))。配向膜224は、樹脂等の薄膜を成膜した後に、ラビング処理を行うことにより形成できる。
[Formation of Alignment Film 224]
Subsequently, an alignment film 224 is formed over the conductive layer 223 (FIG. 21D). The alignment film 224 can be formed by performing a rubbing process after forming a thin film of resin or the like.
〔基板11と支持基板64との貼り合せ〕
 続いて、図22(A)に示すように、基板11と支持基板64とを、液晶222を挟んで貼り合せる。このとき、樹脂層202の開口部と発光素子120とが重なるように、貼り合せを行う。また、樹脂層202の開口部、樹脂層101の開口部、及び着色層152がそれぞれ重なるように、貼り合せを行う。
[Lamination of substrate 11 and support substrate 64]
Subsequently, as shown in FIG. 22A, the substrate 11 and the support substrate 64 are bonded to each other with the liquid crystal 222 interposed therebetween. At this time, bonding is performed so that the opening of the resin layer 202 and the light emitting element 120 overlap each other. Further, the bonding is performed so that the opening of the resin layer 202, the opening of the resin layer 101, and the coloring layer 152 overlap each other.
〔支持基板64の分離〕
 続いて、図22(B)に示すように、支持基板64側から、支持基板64を介して光吸収層103bに光70を照射する。
[Separation of support substrate 64]
Subsequently, as illustrated in FIG. 22B, the light absorption layer 103 b is irradiated with light 70 from the support substrate 64 side through the support substrate 64.
 続いて、支持基板64と樹脂層202とを分離する(図23(A))。図23(A)では、光吸収層103bと樹脂層202との界面、及び光吸収層103bと絶縁層204の界面で分離が生じている例を示している。 Subsequently, the support substrate 64 and the resin layer 202 are separated (FIG. 23A). FIG. 23A illustrates an example in which separation occurs at the interface between the light absorption layer 103 b and the resin layer 202 and at the interface between the light absorption layer 103 b and the insulating layer 204.
〔基板12の貼り合せ〕
 続いて、接着層52を用いて樹脂層202と基板12とを貼り合せる(図23(B))。接着層52は、上記接着層151の記載を援用できる。
[Lamination of substrate 12]
Subsequently, the resin layer 202 and the substrate 12 are bonded using the adhesive layer 52 (FIG. 23B). For the adhesive layer 52, the description of the adhesive layer 151 can be used.
 基板12は、視認側に位置する基板であるため、可視光に対して透光性を有する材料を用いることができる。 Since the substrate 12 is a substrate located on the viewing side, a material having translucency with respect to visible light can be used.
 以上の工程により、図15に示す表示装置10を作製することができる。 Through the above steps, the display device 10 shown in FIG. 15 can be manufactured.
[作製方法例2の変形例1]
 以下では、光吸収層を用いずに、開口部を有する樹脂層を形成する方法について説明する。
[Variation 1 of Manufacturing Method Example 2]
Below, the method to form the resin layer which has an opening part, without using a light absorption layer is demonstrated.
 なお、ここでは樹脂層101の例を挙げて説明するが、同様の方法を樹脂層202等にも適用できる。 Note that although an example of the resin layer 101 is described here, a similar method can be applied to the resin layer 202 and the like.
〔変形例1〕
 まず、図24(A)に示すように、凹部を有する樹脂層101を形成する。
[Modification 1]
First, as shown in FIG. 24A, a resin layer 101 having a recess is formed.
 樹脂層101は、まず樹脂層101となる材料を支持基板61上に塗布し、プリベーク処理を行う。続いて、フォトマスクを用いて露光を行う。このとき、樹脂層101を開口する条件よりも露光量を減らすことで、樹脂層101に凹部を形成することができる。例えば、樹脂層101を開口する条件よりも、短い露光時間で露光する、露光光の強度を弱める、焦点をずらす、樹脂層101を厚く形成するなどの方法が挙げられる。 For the resin layer 101, first, a material to be the resin layer 101 is applied on the support substrate 61, and a pre-bake treatment is performed. Subsequently, exposure is performed using a photomask. At this time, a concave portion can be formed in the resin layer 101 by reducing the exposure amount below the condition for opening the resin layer 101. For example, exposure may be performed with a shorter exposure time than the conditions for opening the resin layer 101, the intensity of exposure light may be reduced, the focus may be shifted, and the resin layer 101 may be formed thicker.
 また、樹脂層101に開口部と凹部の両方を形成したい場合には、ハーフトーンマスク、またはグレートーンマスクを用いた露光技術、または2以上のフォトマスクを用いた多重露光技術を用いればよい。 Further, when it is desired to form both the opening and the concave portion in the resin layer 101, an exposure technique using a halftone mask or a gray tone mask or a multiple exposure technique using two or more photomasks may be used.
 このようにして露光を行った後、現像処理を施すことで凹部が形成された樹脂層101を形成することができる。またそのあとにポストベーク処理を行う。 After the exposure as described above, the resin layer 101 in which the concave portions are formed can be formed by performing a development process. After that, post bake processing is performed.
 続いて、上記と同様の方法により、樹脂層101上に絶縁層131、トランジスタ110、及び発光素子120等を形成する。このとき、絶縁層131は、樹脂層101の凹部を覆って設ける。そして、支持基板61と基板11とを接着層151により貼り合せる。 Subsequently, the insulating layer 131, the transistor 110, the light emitting element 120, and the like are formed over the resin layer 101 by the same method as described above. At this time, the insulating layer 131 is provided to cover the concave portion of the resin layer 101. Then, the support substrate 61 and the substrate 11 are bonded together by the adhesive layer 151.
 その後、図24(B)に示すように、支持基板61側から、支持基板61を介して樹脂層101に光70を照射する。その後、図24(C)に示すように、支持基板61と樹脂層101とを分離する。光70の照射方法や分離方法については、上記を援用できる。 Thereafter, as shown in FIG. 24B, the resin layer 101 is irradiated with light 70 from the support substrate 61 side through the support substrate 61. Thereafter, as shown in FIG. 24C, the support substrate 61 and the resin layer 101 are separated. The above can be used for the irradiation method and separation method of the light 70.
 ここで、樹脂層101には開口が設けられていないため、支持基板61と絶縁層131とが接触する部分が存在せず、分離する領域全体に亘って樹脂層101と支持基板61とが接して設けられている。したがって、分離する領域に密着性の異なる領域が存在しないため、分離の際に引っ掛かりが生じることなく、歩留り良く分離を行うことができる。このような方法は、特に大型の基板を用いたときに効果的であり、生産性を高めることができる。 Here, since the resin layer 101 is not provided with an opening, there is no portion where the support substrate 61 and the insulating layer 131 are in contact with each other, and the resin layer 101 and the support substrate 61 are in contact with each other over the entire region to be separated. Is provided. Therefore, there is no region with different adhesion in the region to be separated, so that separation can be performed with high yield without being caught during separation. Such a method is particularly effective when a large substrate is used, and can increase productivity.
 続いて、樹脂層101の表面側の一部を除去し、樹脂層101を薄膜化する。薄膜化の方法については、上記における樹脂層201の薄膜化の方法を援用できる。樹脂層101の表面の一部を、絶縁層131の表面の一部が露出するようにエッチングすることで、図24(D)に示すように、開口部を有する樹脂層101を形成することができる。 Subsequently, a part of the surface side of the resin layer 101 is removed, and the resin layer 101 is thinned. Regarding the thinning method, the above-described thinning method of the resin layer 201 can be used. By etching a part of the surface of the resin layer 101 so that a part of the surface of the insulating layer 131 is exposed, the resin layer 101 having an opening can be formed as shown in FIG. it can.
 図24(D)では、プラズマ80を照射することで樹脂層101の上部の一部をエッチングし、薄膜化している様子を示している。 FIG. 24D shows a state where a part of the upper portion of the resin layer 101 is etched and thinned by irradiating with plasma 80.
 なお、樹脂層101をエッチングせずに、図24(C)等に示したように、凹部を有する樹脂層101のままとしてもよい。この構成でも、発光素子120からの光の光路上に位置する樹脂層101の厚さが他の部分よりも薄いため、光の吸収が抑制され、光取り出し効率を高めることができる。しかしながら、発光素子120からの光の経路上に位置する樹脂層101を除去することで、当該経路上に位置する界面の数を減らせるため、界面による反射や散乱を低減できるため好ましい。 The resin layer 101 may be left as it is without etching the resin layer 101 as shown in FIG. Even in this configuration, since the thickness of the resin layer 101 located on the optical path of light from the light emitting element 120 is thinner than other portions, light absorption is suppressed and light extraction efficiency can be increased. However, it is preferable to remove the resin layer 101 located on the light path from the light emitting element 120 to reduce the number of interfaces located on the path, thereby reducing reflection and scattering by the interface.
 また、条件によっては、樹脂層101の薄膜化工程後に、絶縁層131と接して樹脂層101の一部が残存する場合がある。また、条件によっては、樹脂層101がエッチング等により完全に除去されてしまう場合もある。 Depending on the conditions, part of the resin layer 101 may remain in contact with the insulating layer 131 after the thinning process of the resin layer 101. Depending on the conditions, the resin layer 101 may be completely removed by etching or the like.
〔変形例2〕
 以下では、上記変形例1とは異なる方法について説明する。
[Modification 2]
Below, the method different from the said modification 1 is demonstrated.
 まず、図25(A)に示すように、支持基板61上に樹脂層101aと、開口を有する樹脂層101bとを、積層して形成する。 First, as shown in FIG. 25A, a resin layer 101a and a resin layer 101b having an opening are stacked and formed over a supporting substrate 61.
 樹脂層101aは、上記樹脂層101の形成工程において、露光及び現像処理を省略した方法を用いて形成することができる。またこの時、プリベーク処理も不要となる。 The resin layer 101a can be formed using a method in which exposure and development processing are omitted in the resin layer 101 forming step. At this time, pre-bake processing is not required.
 また開口を有する樹脂層101bは、上記樹脂層101と同様に形成することができる。 The resin layer 101b having an opening can be formed in the same manner as the resin layer 101.
 ここで、先に形成する樹脂層101aに対して十分に加熱処理を施し、重合させておくことが好ましい。これにより、樹脂層101aと樹脂層101bに同じ材料を用いた場合であっても、後に形成する樹脂層101bとなる材料を塗布した時に、これに含まれる溶媒に樹脂層101aが溶けてしまうことを抑制できる。 Here, it is preferable that the previously formed resin layer 101a is sufficiently heated and polymerized. As a result, even when the same material is used for the resin layer 101a and the resin layer 101b, the resin layer 101a is dissolved in the solvent contained therein when a material to be the resin layer 101b to be formed later is applied. Can be suppressed.
 続いて、上記と同様の方法により、樹脂層101上に絶縁層131、トランジスタ110、及び発光素子120等を形成する。このとき、絶縁層131は、樹脂層101の凹部を覆って設ける。そして、支持基板61と基板11とを接着層151により貼り合せる。 Subsequently, the insulating layer 131, the transistor 110, the light emitting element 120, and the like are formed over the resin layer 101 by the same method as described above. At this time, the insulating layer 131 is provided to cover the concave portion of the resin layer 101. Then, the support substrate 61 and the substrate 11 are bonded together by the adhesive layer 151.
 その後、図25(B)に示すように、支持基板61側から、支持基板61を介して樹脂層101aに光70を照射する。その後、図25(C)に示すように、支持基板61と樹脂層101aとを分離する。光70の照射方法や分離方法については、上記を援用できる。 Thereafter, as shown in FIG. 25B, the resin layer 101 a is irradiated with light 70 from the support substrate 61 side through the support substrate 61. Thereafter, as shown in FIG. 25C, the support substrate 61 and the resin layer 101a are separated. The above can be used for the irradiation method and separation method of the light 70.
 その後、樹脂層101aを、絶縁層131の表面が露出するようにエッチングすることで、図25(D)に示すように、開口部を有する樹脂層101を形成することができる。エッチングの方法については、上記樹脂層101の薄膜化の方法を援用できる。 Thereafter, the resin layer 101a is etched so that the surface of the insulating layer 131 is exposed, whereby the resin layer 101 having an opening can be formed as shown in FIG. As the etching method, the method for thinning the resin layer 101 can be used.
 図25(D)では、プラズマ80を照射することで樹脂層101aをエッチングしている様子を示している。 FIG. 25D shows a state in which the resin layer 101a is etched by irradiating with plasma 80. FIG.
 なお、樹脂層101aと樹脂層101bとに同じ材料を用いると、材料や装置を共有化できるため生産性を向上させることができる。また、これらに異なる材料を用いると、エッチング速度の選択比を大きくできるため、加工条件の自由度を広げることができる。 Note that when the same material is used for the resin layer 101a and the resin layer 101b, the material and the apparatus can be shared, and thus productivity can be improved. Further, when different materials are used for these, the selectivity of the etching rate can be increased, so that the degree of freedom of processing conditions can be expanded.
 なお、樹脂層101aをエッチングせずに、図25(C)等に示した状態のままとしてもよい。この構成でも、発光素子120からの光の経路上に位置する樹脂層101(具体的には樹脂層101a)の厚さが他の部分よりも薄いため、光の吸収が抑制され、光取り出し効率を高めることができる。 Note that the state shown in FIG. 25C or the like may be left without etching the resin layer 101a. Even in this configuration, the thickness of the resin layer 101 (specifically, the resin layer 101a) positioned on the light path from the light emitting element 120 is thinner than the other portions, so that light absorption is suppressed and light extraction efficiency is reduced. Can be increased.
 以上が、作製方法例の変形例1についての説明である。 The above is the description of Modification Example 1 of the manufacturing method example.
[作製方法例2の変形例2]
 以下では、発光素子120の光路上だけでなく、他の部分にも樹脂層が残存しない構成とする方法の一例について説明する。
[Modification 2 of Manufacturing Method Example 2]
Hereinafter, an example of a method in which the resin layer is not left not only on the optical path of the light emitting element 120 but also in other portions will be described.
 なお、ここでは樹脂層101の例を挙げて説明するが、同様の方法を樹脂層202等にも適用できる。 Note that although an example of the resin layer 101 is described here, a similar method can be applied to the resin layer 202 and the like.
 まず、図26(A)に示すように、支持基板61上に樹脂層101dを形成する。樹脂層101dは、凹部を有さない樹脂層である。樹脂層101dの形成方法等については、上記樹脂層101aの記載を援用できる。 First, as shown in FIG. 26A, a resin layer 101d is formed on a support substrate 61. The resin layer 101d is a resin layer having no recess. The description of the resin layer 101a can be used for the method of forming the resin layer 101d.
 続いて、上記と同様の方法により、樹脂層101上に絶縁層131、トランジスタ110、及び発光素子120等を形成する。そして、支持基板61と基板11とを接着層151により貼り合せる。 Subsequently, the insulating layer 131, the transistor 110, the light emitting element 120, and the like are formed over the resin layer 101 by the same method as described above. Then, the support substrate 61 and the substrate 11 are bonded together by the adhesive layer 151.
 その後、図26(B)に示すように、支持基板61側から、支持基板61を介して樹脂層101dに光70を照射する。その後、図26(C)に示すように、支持基板61と樹脂層101dとを分離する。光70の照射方法や分離方法については、上記を援用できる。 Thereafter, as shown in FIG. 26B, the resin layer 101d is irradiated with light 70 from the support substrate 61 side through the support substrate 61. Thereafter, as shown in FIG. 26C, the support substrate 61 and the resin layer 101d are separated. The above can be used for the irradiation method and separation method of the light 70.
 続いて、樹脂層101d全部をエッチングにより除去する。エッチングの方法については、上記における樹脂層201の薄膜化の方法等を援用できる。図26(D)では、プラズマ80を照射することで樹脂層101dをエッチングしている様子を示している。 Subsequently, the entire resin layer 101d is removed by etching. As the etching method, the method for thinning the resin layer 201 in the above can be used. FIG. 26D shows a state where the resin layer 101d is etched by irradiation with plasma 80. FIG.
 樹脂層101dを、絶縁層131の表面が露出するようにエッチングすることで、図26(E)に示すように、樹脂層101dを有さず、絶縁層131の表面が露出した構成とすることができる。樹脂層101dを有さないため、光取り出し効率を向上させることに加え、表示装置自体を薄く軽量にすることが可能となる。 By etching the resin layer 101d so that the surface of the insulating layer 131 is exposed, as shown in FIG. 26E, the resin layer 101d is not provided and the surface of the insulating layer 131 is exposed. Can do. Since the resin layer 101d is not provided, in addition to improving light extraction efficiency, the display device itself can be made thin and lightweight.
 またここで示した方法では、平坦な樹脂層101d上に絶縁層131等を形成できるという副次的効果もある。そのため、絶縁層131やその上部の積層構造を比較的平坦な面上に形成でき、これらの段差被覆性を高めることができる。また、発光素子120や着色層152も平坦な面上に形成できるため、これらの厚さのばらつきに伴う、輝度や色度の面内のばらつきが低減され、表示品位に優れた表示装置を実現できる。 Also, the method shown here has a secondary effect that the insulating layer 131 and the like can be formed on the flat resin layer 101d. Therefore, the insulating layer 131 and the laminated structure on the insulating layer 131 can be formed on a relatively flat surface, and the step coverage can be improved. In addition, since the light emitting element 120 and the colored layer 152 can be formed on a flat surface, in-plane variations in luminance and chromaticity due to variations in thickness are reduced, and a display device with excellent display quality is realized. it can.
 以上が、作製方法例の変形例2についての説明である。 The above is the description of Modification Example 2 of the manufacturing method example.
[作製方法例2の変形例3]
 以下では、表示装置10の視認側に樹脂層を用いない作製方法を適用することにより、発光素子120の光路上に樹脂層が残存しない構成とする方法の一例について説明する。
[Modification 3 of Manufacturing Method Example 2]
Hereinafter, an example of a method in which a resin layer is not left on the optical path of the light-emitting element 120 by applying a manufacturing method that does not use a resin layer on the viewing side of the display device 10 will be described.
 まず、支持基板65に、粘着層90を用いて基板12が貼り付けられた積層体を準備する(図27(A))。 First, a laminated body in which the substrate 12 is attached to the support substrate 65 using the adhesive layer 90 is prepared (FIG. 27A).
 支持基板65としては、上記支持基板61の記載を援用することができる。そのほか、支持基板65には、基板12のキャリアシートとして機能するシート状の樹脂または紙などを用いてもよい。 As the support substrate 65, the description of the support substrate 61 can be used. In addition, a sheet-like resin or paper that functions as a carrier sheet for the substrate 12 may be used for the support substrate 65.
 粘着層90は、以降の工程中に支持基板65と基板12とが分離することを防ぎ、且つ容易に支持基板65と基板12を分離可能な材料を用いることができる。代表的にはOCA(Optical Clear Adhesive)や、シリコーン等を用いることができる。また、粘着層90は透光性を有していなくてもよい。 The adhesive layer 90 can be made of a material that prevents the support substrate 65 and the substrate 12 from being separated during the subsequent steps and can easily separate the support substrate 65 and the substrate 12. Typically, OCA (Optical Clear Adhesive), silicone, or the like can be used. Moreover, the adhesion layer 90 may not have translucency.
 続いて、基板12上に導電層223及び配向膜224を積層して形成する(図27(B))。 Subsequently, a conductive layer 223 and an alignment film 224 are stacked over the substrate 12 (FIG. 27B).
 ここで、導電層223や配向膜224の形成は、高い温度が要求されないこと、また高い精度のパターニングが不要であることなどの理由から、基板12に可撓性を有するフィルム等を用い、導電層223及び配向膜224を基板12上に直接形成することも可能である。 Here, the conductive layer 223 and the alignment film 224 are formed by using a flexible film or the like for the substrate 12 because a high temperature is not required and high-precision patterning is unnecessary. It is also possible to form the layer 223 and the alignment film 224 directly on the substrate 12.
 続いて、支持基板65と基板11とを貼り合せる(図27(C))。 Subsequently, the support substrate 65 and the substrate 11 are bonded together (FIG. 27C).
 その後、粘着層90と基板12との間で剥離し、支持基板65と粘着層90を除去する(図27(D))。これにより、視認側に樹脂層を有さない表示装置を作製することができる。 Thereafter, peeling is performed between the adhesive layer 90 and the substrate 12, and the support substrate 65 and the adhesive layer 90 are removed (FIG. 27D). Accordingly, a display device that does not have a resin layer on the viewing side can be manufactured.
 なお、図27(C)に示すように、支持基板65及び粘着層90を残したままの状態としてもよい。このとき、支持基板65を表示装置を保護するための保護基板として用いることができる。 As shown in FIG. 27C, the support substrate 65 and the adhesive layer 90 may be left as they are. At this time, the support substrate 65 can be used as a protective substrate for protecting the display device.
[構成例2の変形例]
 以下では、図15等で示した構成例と比較して、一部の構成の異なる構成例について説明する。
[Modification of Configuration Example 2]
Hereinafter, a configuration example in which some of the configurations are different from the configuration example illustrated in FIG. 15 and the like will be described.
〔変形例1〕
 図15では、発光素子120からの光の経路上に位置する樹脂層に、開口部を設ける構成としたが、反射型の液晶素子220における光の経路上に位置する樹脂層にも開口部を設けてもよい。
[Modification 1]
In FIG. 15, the opening is formed in the resin layer located on the light path from the light emitting element 120, but the opening is also formed in the resin layer located on the light path in the reflective liquid crystal element 220. It may be provided.
 図28(A)には、領域31に加えて領域32を有する例を示している。領域32は、樹脂層202の開口部、及び液晶素子220と重なる領域である。 FIG. 28A shows an example having a region 32 in addition to the region 31. The region 32 is a region overlapping the opening of the resin layer 202 and the liquid crystal element 220.
 なお、図28(A)では樹脂層202に、発光素子120及び液晶素子220の両方を包含する1つの開口部が設けられている例を示したが、発光素子120と重なる開口部と、液晶素子220と重なる開口部とが別々に設けられた構成としてもよい。 Note that FIG. 28A illustrates an example in which the resin layer 202 has one opening including both the light-emitting element 120 and the liquid crystal element 220; however, the opening overlapping the light-emitting element 120 and the liquid crystal A configuration may be employed in which an opening overlapping with the element 220 is provided separately.
〔変形例2〕
 図28(B)は、基板12側に樹脂層を有さない場合の例である。また、図28(B)に示す構成は、図27(D)に示す構成と比較し、接着層52と絶縁層204を有している点、樹脂層101を有さない点などで相違している。
[Modification 2]
FIG. 28B shows an example in which no resin layer is provided on the substrate 12 side. In addition, the structure illustrated in FIG. 28B is different from the structure illustrated in FIG. 27D in that the adhesive layer 52 and the insulating layer 204 are provided and the resin layer 101 is not provided. ing.
 図28(B)に示す構成では、バリア層として機能する絶縁層204が設けられているため、基板12に樹脂材料などを用いた場合であっても、液晶222等に不純物が拡散することを防ぐことができる。 In the structure illustrated in FIG. 28B, since the insulating layer 204 which functions as a barrier layer is provided, even when a resin material or the like is used for the substrate 12, impurities are diffused into the liquid crystal 222 or the like. Can be prevented.
 図28(B)に示す構成は、例えば支持基板上に樹脂層202、絶縁層204、導電層223、配向膜224等を形成し、これを基板11と貼り合せた後に、樹脂層202を完全に除去することにより実現することができる。樹脂層の形成時に、露光及び現像処理を省略した方法により、平坦な樹脂層を形成することができる。 In the structure shown in FIG. 28B, for example, a resin layer 202, an insulating layer 204, a conductive layer 223, an alignment film 224, and the like are formed over a supporting substrate and bonded to the substrate 11, and then the resin layer 202 is completely formed. This can be realized by removing them. When the resin layer is formed, a flat resin layer can be formed by a method in which exposure and development processing are omitted.
 このような構成とすることで、絶縁層204、導電層223、及び配向膜224等の表面を平坦にすることができるため、液晶222の配向欠陥が生じにくく、開口率の高い表示装置を実現できる。 With such a structure, since the surfaces of the insulating layer 204, the conductive layer 223, the alignment film 224, and the like can be flattened, an alignment defect of the liquid crystal 222 hardly occurs and a display device with a high aperture ratio is realized. it can.
〔変形例3〕
 図29(A)は、図15等と比較して、着色層152の位置が異なる点、及び遮光層153を有する点で主に相違している。
[Modification 3]
FIG. 29A is mainly different from FIG. 15 and the like in that the position of the colored layer 152 is different and that the light shielding layer 153 is provided.
 図29(A)において、絶縁層233上(図面では下方)に着色層152及び遮光層153が設けられている。 29A, a coloring layer 152 and a light shielding layer 153 are provided over the insulating layer 233 (downward in the drawing).
 遮光層153を有していることで、隣接画素間での混色を防ぐことができる。また、遮光層153をトランジスタ210と発光素子120との間に配置することで、発光素子120から射出された発光21がトランジスタ210の半導体層212に入射されることを防ぐことができ、トランジスタ210の電気特性の変動を抑制することができる。 By having the light shielding layer 153, color mixture between adjacent pixels can be prevented. In addition, when the light-blocking layer 153 is provided between the transistor 210 and the light-emitting element 120, light emission 21 emitted from the light-emitting element 120 can be prevented from entering the semiconductor layer 212 of the transistor 210. The fluctuation of the electrical characteristics can be suppressed.
〔変形例4〕
 図29(B)は、図15等で示した構成と比較して、基板11に代えて、基板11aを有している点、及び基板12、接着層52、樹脂層202、及び絶縁層204に代えて、基板12aを有している点で主に相違している。また、図29(B)では、発光素子120を覆う絶縁層124を設けない場合の例を示している。
[Modification 4]
FIG. 29B is different from the structure illustrated in FIG. 15 and the like in that a substrate 11a is provided instead of the substrate 11, and the substrate 12, the adhesive layer 52, the resin layer 202, and the insulating layer 204 are included. Instead, the difference is mainly in that a substrate 12a is provided. FIG. 29B illustrates an example in which the insulating layer 124 that covers the light-emitting element 120 is not provided.
 基板11a及び基板12aには、水や水素、酸素などの不純物が拡散しにくい基板を用いることができる。これにより、基板11aと発光素子120の間、及び基板12aと液晶素子220の間に、バリア性の高い絶縁層を設ける必要がなくなり、生産コストを低減することができる。 As the substrate 11a and the substrate 12a, substrates in which impurities such as water, hydrogen, and oxygen are difficult to diffuse can be used. Accordingly, it is not necessary to provide an insulating layer having a high barrier property between the substrate 11a and the light emitting element 120 and between the substrate 12a and the liquid crystal element 220, and the production cost can be reduced.
 ここで、基板12a、基板11aのいずれか一方、または両方に、例えば可撓性に乏しい基板を用いてもよい。このとき、基板12aにはガラス基板等の透光性の基板を用いる。基板11aには、金属基板等の透光性を有さない基板を用いてもよい。こうすることで、基板12aと基板11aとを支持基板として用いることができるため、作製工程中の搬送を容易なものとすることができる。基板12aまたは基板11aとして、厚さが0.3mm以上、好ましくは0.5mm以上の基板を用いると、搬送が容易となるため好ましい。なお、基板12aと基板11aとを貼り合せた後に、基板12aと基板11aを研磨することで、0.3mm未満に薄くしてもよい。 Here, for example, a substrate having poor flexibility may be used as one or both of the substrate 12a and the substrate 11a. At this time, a light-transmitting substrate such as a glass substrate is used as the substrate 12a. A substrate that does not have translucency, such as a metal substrate, may be used as the substrate 11a. By doing so, the substrate 12a and the substrate 11a can be used as a support substrate, so that the conveyance during the manufacturing process can be facilitated. As the substrate 12a or the substrate 11a, it is preferable to use a substrate having a thickness of 0.3 mm or more, preferably 0.5 mm or more because conveyance becomes easy. In addition, after bonding the board | substrate 12a and the board | substrate 11a, you may make it thin to less than 0.3 mm by grind | polishing the board | substrate 12a and the board | substrate 11a.
 また、基板12aと基板11aに可撓性の乏しい基板を用いることで、基板12aと基板11aの貼り合せの段階において、可撓性を有する基板同士を貼り合せる場合と比較して、位置合わせの精度を高めることが可能であり、表示装置の高精細化が可能となる。例えば500ppiを超える精細度の表示装置を実現することができる。 Further, by using a substrate having poor flexibility for the substrate 12a and the substrate 11a, the alignment of the substrate 12a and the substrate 11a can be performed more easily than in the case where the substrates having flexibility are bonded to each other. The accuracy can be increased, and the display device can have higher definition. For example, a display device having a definition exceeding 500 ppi can be realized.
 また、このような構成とすることで、作製工程を大幅に簡略化できるため、作製コストを低減できる。 Also, with such a configuration, the manufacturing process can be greatly simplified, so that the manufacturing cost can be reduced.
 以上が構成例2の変形例についての説明である。 The above is the description of the modified example of the configuration example 2.
 なお、上記で説明した各構成例において、発光素子120として、EL層122を異なる色の画素間で共通して設け、着色層152により発光素子120からの光を着色して、異なる色を射出する方式を示している。 Note that in each structural example described above, as the light-emitting element 120, the EL layer 122 is provided in common between pixels of different colors, and light from the light-emitting element 120 is colored by the coloring layer 152 to emit different colors. It shows the method to do.
 ここで、発光素子120は、EL層122が異なる色の画素間で分断されるように、いわゆる塗り分け方式で形成してもよい。このとき、EL層122の全部が画素間で分断されてもよいし、EL層122を構成する積層膜の内、少なくとも1以上が画素間に分断され、他はつながっていてもよい。このとき、発光素子120が画素毎に異なる色の光を射出することができるため、着色層152を設けない構成とすることができる。着色層152を設けないことで、取り出し効率を高めることができる。 Here, the light emitting element 120 may be formed by a so-called coloring method so that the EL layer 122 is divided between pixels of different colors. At this time, the entire EL layer 122 may be divided between the pixels, or at least one of the stacked films constituting the EL layer 122 may be divided between the pixels, and the other may be connected. At this time, since the light-emitting element 120 can emit different colors of light for each pixel, a structure without the colored layer 152 can be provided. By not providing the colored layer 152, the extraction efficiency can be increased.
[トランジスタについて]
 図1で例示した表示装置10は、トランジスタ110とトランジスタ210の両方に、ボトムゲート構造のトランジスタを適用した場合の例である。
[About transistors]
The display device 10 illustrated in FIG. 1 is an example in which a bottom-gate transistor is applied to both the transistor 110 and the transistor 210.
 トランジスタ110は、ゲート電極として機能する導電層111が、半導体層112よりも被形成面側(樹脂層101側)に位置する。また、絶縁層132が導電層111を覆って設けられている。また半導体層112は、導電層111を覆って設けられている。半導体層112の導電層111と重なる領域が、チャネル形成領域に相当する。また、導電層113a及び導電層113bは、それぞれ半導体層112の上面及び側端部に接して設けられている。 In the transistor 110, the conductive layer 111 functioning as a gate electrode is located closer to the formation surface (resin layer 101 side) than the semiconductor layer 112. An insulating layer 132 is provided to cover the conductive layer 111. The semiconductor layer 112 is provided so as to cover the conductive layer 111. A region of the semiconductor layer 112 that overlaps with the conductive layer 111 corresponds to a channel formation region. In addition, the conductive layer 113a and the conductive layer 113b are provided in contact with the upper surface and the side end portion of the semiconductor layer 112, respectively.
 なお、トランジスタ110は、導電層111よりも半導体層112の幅が大きい場合の例を示している。このような構成により、導電層111と導電層113aまたは導電層113bの間に半導体層112が配置されるため、導電層111と導電層113aまたは導電層113bとの間の寄生容量を小さくすることができる。 Note that the transistor 110 is an example in which the width of the semiconductor layer 112 is larger than that of the conductive layer 111. With such a structure, the semiconductor layer 112 is disposed between the conductive layer 111 and the conductive layer 113a or the conductive layer 113b, so that the parasitic capacitance between the conductive layer 111 and the conductive layer 113a or the conductive layer 113b is reduced. Can do.
 トランジスタ110は、チャネルエッチ型のトランジスタであり、トランジスタの占有面積を縮小することが比較的容易であるため、高精細な表示装置に好適に用いることができる。 The transistor 110 is a channel etch type transistor, and can easily be used for a high-definition display device because it is relatively easy to reduce the area occupied by the transistor.
 トランジスタ210は、トランジスタ110と共通の特徴を有している。 The transistor 210 has the same characteristics as the transistor 110.
 ここで、トランジスタ110及びトランジスタ210に適用可能な、トランジスタの構成例について説明する。 Here, a structural example of a transistor that can be applied to the transistor 110 and the transistor 210 will be described.
 図30(A)に示したトランジスタ110aは、トランジスタ110と比較して、導電層114及び絶縁層136を有する点で相違している。導電層114は、絶縁層133上に設けられ、半導体層112と重なる領域を有する。また絶縁層136は、導電層114及び絶縁層133を覆って設けられている。 30A is different from the transistor 110 in that it includes a conductive layer 114 and an insulating layer 136. The transistor 110a illustrated in FIG. The conductive layer 114 is provided over the insulating layer 133 and has a region overlapping with the semiconductor layer 112. The insulating layer 136 is provided so as to cover the conductive layer 114 and the insulating layer 133.
 導電層114は、半導体層112を挟んで導電層111とは反対側に位置している。導電層111を第1のゲート電極とした場合、導電層114は、第2のゲート電極として機能することができる。導電層111と導電層114に同じ電位を与えることで、トランジスタ110aのオン電流を高めることができる。また導電層111及び導電層114の一方にしきい値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタ110aのしきい値電圧を制御することができる。 The conductive layer 114 is located on the opposite side of the conductive layer 111 with the semiconductor layer 112 interposed therebetween. In the case where the conductive layer 111 is a first gate electrode, the conductive layer 114 can function as a second gate electrode. By applying the same potential to the conductive layer 111 and the conductive layer 114, the on-state current of the transistor 110a can be increased. The threshold voltage of the transistor 110a can be controlled by applying a potential for controlling the threshold voltage to one of the conductive layers 111 and 114 and a potential for driving the other.
 ここで、導電層114として、酸化物を含む導電性材料を用いることが好ましい。これにより、導電層114を構成する導電膜の成膜時に、酸素を含む雰囲気下で成膜することで、絶縁層133に酸素を供給することができる。好適には、成膜ガス中の酸素ガスの割合を90%以上100%以下の範囲とすることが好ましい。絶縁層133に供給された酸素は、後の熱処理により半導体層112に供給され、半導体層112中の酸素欠損の低減を図ることができる。 Here, a conductive material including an oxide is preferably used for the conductive layer 114. Thus, oxygen can be supplied to the insulating layer 133 by forming the conductive film that forms the conductive layer 114 in an atmosphere containing oxygen. Preferably, the proportion of oxygen gas in the film forming gas is in the range of 90% to 100%. Oxygen supplied to the insulating layer 133 is supplied to the semiconductor layer 112 by a subsequent heat treatment, so that oxygen vacancies in the semiconductor layer 112 can be reduced.
 特に、導電層114には低抵抗化された酸化物半導体を用いることが好ましい。このとき、絶縁層136に水素を放出する絶縁膜、例えば窒化シリコン膜等を用いることが好ましい。絶縁層136の成膜中、またはその後の熱処理によって導電層114中に水素が供給され、導電層114の電気抵抗を効果的に低減することができる。 In particular, the conductive layer 114 is preferably formed using a low-resistance oxide semiconductor. At this time, an insulating film that releases hydrogen, for example, a silicon nitride film or the like is preferably used for the insulating layer 136. Hydrogen is supplied into the conductive layer 114 during the formation of the insulating layer 136 or by heat treatment thereafter, so that the electrical resistance of the conductive layer 114 can be effectively reduced.
 図30(B)に示すトランジスタ110bは、トップゲート構造のトランジスタである。 A transistor 110b illustrated in FIG. 30B is a top-gate transistor.
 トランジスタ110bは、ゲート電極として機能する導電層111が、半導体層112よりも上側(被形成面側とは反対側)に設けられている。また、絶縁層131上に半導体層112が形成されている。また半導体層112上には、絶縁層132及び導電層111が積層して形成されている。また、絶縁層133は、半導体層112の上面及び側端部、絶縁層133の側面、及び導電層111を覆って設けられている。導電層113a及び導電層113bは、絶縁層133上に設けられている。導電層113a及び導電層113bは、絶縁層133に設けられた開口を介して、半導体層112の上面と電気的に接続されている。 In the transistor 110b, the conductive layer 111 functioning as a gate electrode is provided above the semiconductor layer 112 (on the side opposite to the formation surface side). In addition, the semiconductor layer 112 is formed over the insulating layer 131. Further, an insulating layer 132 and a conductive layer 111 are stacked over the semiconductor layer 112. The insulating layer 133 is provided so as to cover the upper surface and side edges of the semiconductor layer 112, the side surface of the insulating layer 133, and the conductive layer 111. The conductive layer 113 a and the conductive layer 113 b are provided over the insulating layer 133. The conductive layer 113a and the conductive layer 113b are electrically connected to the upper surface of the semiconductor layer 112 through an opening provided in the insulating layer 133.
 なお、ここでは絶縁層132が、導電層111と重ならない部分に存在しない場合の例を示しているが、絶縁層132が半導体層112の上面及び側端部を覆って設けられていてもよい。 Note that although the example in which the insulating layer 132 does not exist in a portion that does not overlap with the conductive layer 111 is shown here, the insulating layer 132 may be provided so as to cover the upper surface and the side end portion of the semiconductor layer 112. .
 トランジスタ110bは、導電層111と導電層113aまたは導電層113bとの物理的な距離を離すことが容易なため、これらの間の寄生容量を低減することが可能である。 Since the transistor 110b can easily separate a physical distance between the conductive layer 111 and the conductive layer 113a or the conductive layer 113b, parasitic capacitance between them can be reduced.
 図30(C)に示すトランジスタ110cは、トランジスタ110bと比較して、導電層115及び絶縁層137を有している点で相違している。導電層115は絶縁層131上に設けられ、半導体層112と重なる領域を有する。また絶縁層137は、導電層115及び絶縁層131を覆って設けられている。 A transistor 110c illustrated in FIG. 30C is different from the transistor 110b in that the transistor 110c includes a conductive layer 115 and an insulating layer 137. The conductive layer 115 is provided over the insulating layer 131 and has a region overlapping with the semiconductor layer 112. The insulating layer 137 is provided so as to cover the conductive layer 115 and the insulating layer 131.
 導電層115は、上記導電層114と同様に第2のゲート電極として機能する。そのため、オン電流を高めることや、しきい値電圧を制御することなどが可能である。 The conductive layer 115 functions as a second gate electrode similarly to the conductive layer 114. Therefore, it is possible to increase the on-current, control the threshold voltage, and the like.
 図30(D)には、トランジスタ110とトランジスタ110dとを積層した構成を示している。トランジスタ110dは、一対のゲート電極を有するトランジスタである。 FIG. 30D illustrates a structure in which the transistor 110 and the transistor 110d are stacked. The transistor 110d is a transistor having a pair of gate electrodes.
 トランジスタ110dは、第1のゲート電極として機能する導電層113bの一部と、第1のゲート絶縁層として機能する絶縁層133の一部と、半導体層112aと、ソース電極及びドレイン電極の一方として機能する導電層113cと、ソース電極及びドレイン電極の他方として機能する導電層113dと、第2のゲート絶縁層として機能する絶縁層136の一部と、第2のゲート電極として機能する導電層114aと、を有する。 The transistor 110d includes a part of the conductive layer 113b functioning as the first gate electrode, a part of the insulating layer 133 functioning as the first gate insulating layer, the semiconductor layer 112a, and one of the source electrode and the drain electrode. A conductive layer 113c that functions, a conductive layer 113d that functions as the other of the source electrode and the drain electrode, a part of the insulating layer 136 that functions as the second gate insulating layer, and a conductive layer 114a that functions as the second gate electrode And having.
 このような構成は、特に第1の素子層100aに好適に適用することができる。すなわち、トランジスタ110を、画素の選択、非選択状態を制御するトランジスタ(スイッチングトランジスタ、または選択トランジスタともいう)に用い、トランジスタ110dを発光素子120に流れる電流を制御するトランジスタ(駆動トランジスタともいう)に用いることが好ましい。 Such a configuration can be preferably applied particularly to the first element layer 100a. That is, the transistor 110 is used as a transistor (also referred to as a switching transistor or a selection transistor) that controls the selection / non-selection state of a pixel, and the transistor 110d is used as a transistor (also referred to as a drive transistor) that controls a current flowing through the light-emitting element 120. It is preferable to use it.
 図30(D)に示す構成では、導電層114aは、絶縁層136に設けられた開口を介して導電層113cと電気的に接続されている。また、導電層121は、絶縁層134に設けられた開口を介して、導電層114aと電気的に接続されている。このとき、導電層114aと半導体層112aの間の容量成分(ゲート容量ともいう)を、画素の保持容量として利用することができる。 30D, the conductive layer 114a is electrically connected to the conductive layer 113c through an opening provided in the insulating layer 136. In the structure illustrated in FIG. In addition, the conductive layer 121 is electrically connected to the conductive layer 114 a through an opening provided in the insulating layer 134. At this time, a capacitor component (also referred to as a gate capacitor) between the conductive layer 114a and the semiconductor layer 112a can be used as a storage capacitor of the pixel.
 なお、図30(E)に示すように、導電層113cと導電層121とを接続するための電極として機能する導電層114bと、トランジスタ110dの第2のゲート電極として機能する導電層114aとを、別々に設ける構成としてもよい。このとき、導電層114aは、導電層113cと接続されないため、例えばトランジスタ110dのしきい値電圧を制御するための電位を与えてもよいし、第1のゲート電極として機能する導電層113bと電気的に接続し、これらに同じ電位を与えてもよい。 Note that as illustrated in FIG. 30E, a conductive layer 114b functioning as an electrode for connecting the conductive layer 113c and the conductive layer 121 and a conductive layer 114a functioning as the second gate electrode of the transistor 110d are formed. It is good also as a structure provided separately. At this time, since the conductive layer 114a is not connected to the conductive layer 113c, for example, a potential for controlling the threshold voltage of the transistor 110d may be applied, or the conductive layer 114a may be electrically connected to the conductive layer 113b functioning as the first gate electrode. May be connected to each other and given the same potential.
 図1等に示すトランジスタ110に代えて、トランジスタ110a、トランジスタ110b、トランジスタ110c、またはトランジスタ110d等を用いることができる。また、トランジスタ210に代えて、トランジスタ110a、トランジスタ110b、トランジスタ110c、またはトランジスタ110d等を用いることができる。 In place of the transistor 110 illustrated in FIG. 1 or the like, a transistor 110a, a transistor 110b, a transistor 110c, a transistor 110d, or the like can be used. Further, instead of the transistor 210, the transistor 110a, the transistor 110b, the transistor 110c, the transistor 110d, or the like can be used.
 ここで、表示装置10において、素子層100aが有するトランジスタと、素子層100bが有するトランジスタとを、異なるトランジスタで構成してもよい。一例としては、発光素子120と電気的に接続するトランジスタは、比較的大きな電流を流す必要があるためトランジスタ110a、トランジスタ110c、トランジスタ110d等のように、ゲート電極を2つ有するトランジスタを適用し、その他のトランジスタには、トランジスタの占有面積を低減するために、トランジスタ110等を好適に適用することができる。 Here, in the display device 10, the transistor included in the element layer 100a and the transistor included in the element layer 100b may be formed of different transistors. As an example, a transistor electrically connected to the light-emitting element 120 needs to pass a relatively large current. Therefore, a transistor having two gate electrodes, such as the transistor 110a, the transistor 110c, and the transistor 110d, is applied. The transistor 110 and the like can be preferably applied to other transistors in order to reduce the area occupied by the transistors.
 一例として、図31(A)には、図1のトランジスタ210に代えてトランジスタ110aを適用し、トランジスタ110に代えてトランジスタ110cを適用した場合の例を示している。 As an example, FIG. 31A illustrates an example in which the transistor 110a is applied instead of the transistor 210 in FIG. 1 and the transistor 110c is applied instead of the transistor 110.
 また図31(A)では、発光素子120を覆う絶縁層124が設けられ、絶縁層124上に着色層152及び遮光層153が設けられている例を示している。 FIG. 31A illustrates an example in which an insulating layer 124 that covers the light-emitting element 120 is provided, and a coloring layer 152 and a light-blocking layer 153 are provided over the insulating layer 124.
 また、図31(B)では、図1のトランジスタ210に代えてトランジスタ110bを適用し、トランジスタ110に代えてトランジスタ110cを適用した場合の例を示している。 FIG. 31B illustrates an example in which the transistor 110b is applied instead of the transistor 210 in FIG. 1 and the transistor 110c is applied instead of the transistor 110.
 また、図31(A)、(B)では、樹脂層201と導電層221bとの間に、絶縁層230を設けた場合の例を示している。絶縁層230は、水や水素などが拡散しにくい無機絶縁材料を用いることができる。絶縁層230により、素子層100bが有するトランジスタに水や水素などの不純物が拡散することを防ぎ、信頼性を向上させることができる。 31A and 31B show an example in which an insulating layer 230 is provided between the resin layer 201 and the conductive layer 221b. The insulating layer 230 can be formed using an inorganic insulating material that does not easily diffuse water, hydrogen, or the like. The insulating layer 230 can prevent impurities such as water and hydrogen from diffusing into the transistor included in the element layer 100b, and can improve reliability.
 また、図32(A)には、図15のトランジスタ210に代えてトランジスタ110aを適用し、トランジスタ110に代えてトランジスタ110cを適用した場合の例を示している。 32A shows an example in which the transistor 110a is applied instead of the transistor 210 in FIG. 15 and the transistor 110c is applied instead of the transistor 110.
 また、図32(B)では、図15のトランジスタ210に代えてトランジスタ110bを適用し、トランジスタ110に代えてトランジスタ110cを適用した場合の例を示している。 FIG. 32B shows an example in which the transistor 110b is applied instead of the transistor 210 in FIG. 15 and the transistor 110c is applied instead of the transistor 110.
 また、図32(B)では、樹脂層201と導電層221bとの間に、絶縁層230を設けた場合の例を示している。絶縁層230は、水や水素などが拡散しにくい無機絶縁材料を用いることができる。絶縁層230により、素子層100bが有するトランジスタに水や水素などの不純物が拡散することを防ぎ、信頼性を向上させることができる。 FIG. 32B shows an example in which an insulating layer 230 is provided between the resin layer 201 and the conductive layer 221b. The insulating layer 230 can be formed using an inorganic insulating material that does not easily diffuse water, hydrogen, or the like. The insulating layer 230 can prevent impurities such as water and hydrogen from diffusing into the transistor included in the element layer 100b, and can improve reliability.
 また、図32(B)では、素子層100aと素子層100bとの間の樹脂層101を有さず、トランジスタ110cの被形成面を成す絶縁層131が接着層50と接して設けられている例を示している。これにより、発光素子120等を平坦な面に形成することができ、表示品位の高い表示装置を実現できる。 In FIG. 32B, the insulating layer 131 which is a formation surface of the transistor 110c is provided in contact with the adhesive layer 50 without the resin layer 101 between the element layer 100a and the element layer 100b. An example is shown. Accordingly, the light emitting element 120 and the like can be formed on a flat surface, and a display device with high display quality can be realized.
 また図32(B)では、図27(D)と同様に、基板12側に接着層52、樹脂層202、及び絶縁層204が設けられず、基板12と導電層223とが接して設けられている例を示している。これにより、表示装置の構成を簡略化でき、また厚さを低減できる。 32B, similarly to FIG. 27D, the adhesive layer 52, the resin layer 202, and the insulating layer 204 are not provided on the substrate 12 side, and the substrate 12 and the conductive layer 223 are provided in contact with each other. An example is shown. Thereby, the structure of a display apparatus can be simplified and thickness can be reduced.
 また、図32(B)では、図29(A)と同様に、トランジスタ110bと発光素子120との間に、着色層152と遮光層153を設けた例を示している。具体的には、トランジスタ110bを覆う絶縁層に接して着色層152と遮光層153が設けられている。 32B illustrates an example in which a coloring layer 152 and a light-blocking layer 153 are provided between the transistor 110b and the light-emitting element 120, as in FIG. 29A. Specifically, a coloring layer 152 and a light-blocking layer 153 are provided in contact with the insulating layer covering the transistor 110b.
 また、図32(B)では、トランジスタ110bを覆い平坦化膜として機能する絶縁層234を設けず、着色層152と遮光層153が接着層50に接して設けられている例を示している。このような構成とすることで、図15等と比較して作製コストを低減することができる。また絶縁層234を有さないため、表示装置10の厚さをより薄くすることができる。また、発光素子120を視認側に近づけることが可能となり、視野角特性を向上させることができる。 FIG. 32B illustrates an example in which the insulating layer 234 that covers the transistor 110b and functions as a planarization film is not provided, and the coloring layer 152 and the light-blocking layer 153 are provided in contact with the adhesive layer 50. With such a structure, manufacturing cost can be reduced as compared with FIG. Further, since the insulating layer 234 is not provided, the thickness of the display device 10 can be further reduced. In addition, the light emitting element 120 can be brought closer to the viewer side, and viewing angle characteristics can be improved.
 以上がトランジスタについての説明である。 The above is the description of the transistor.
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。 Note that at least part of this embodiment can be implemented in combination with any of the other embodiments described in this specification as appropriate.
(実施の形態2)
 本実施の形態では、本発明の一態様の表示装置のより具体的な例について説明する。以下で例示する表示装置は、反射型の液晶素子と、発光素子の両方を有し、透過モードと反射モードの両方の表示を行うことのできる、表示装置である。
(Embodiment 2)
In this embodiment, a more specific example of the display device of one embodiment of the present invention will be described. The display device exemplified below is a display device that includes both a reflective liquid crystal element and a light-emitting element and can perform both transmission mode and reflection mode display.
[構成例]
 図33(A)は、表示装置400の構成の一例を示すブロック図である。表示装置400は、表示部362にマトリクス状に配列した複数の画素410を有する。また表示装置400は、回路GDと、回路SDを有する。また方向Rに配列した複数の画素410、及び回路GDと電気的に接続する複数の配線G1、複数の配線G2、複数の配線ANO、及び複数の配線CSCOMを有する。また方向Cに配列した複数の画素410、及び回路SDと電気的に接続する複数の配線S1及び複数の配線S2を有する。
[Configuration example]
FIG. 33A is a block diagram illustrating an example of a structure of the display device 400. The display device 400 includes a plurality of pixels 410 arranged in a matrix on the display portion 362. The display device 400 includes a circuit GD and a circuit SD. In addition, a plurality of pixels 410 arranged in the direction R, a plurality of wirings G1, a plurality of wirings G2, a plurality of wirings ANO, and a plurality of wirings CSCOM electrically connected to the circuit GD are provided. In addition, a plurality of pixels 410 arranged in the direction C, and a plurality of wirings S1 and a plurality of wirings S2 electrically connected to the circuit SD are provided.
 なお、ここでは簡単のために回路GDと回路SDを1つずつ有する構成を示したが、液晶素子を駆動する回路GD及び回路SDと、発光素子を駆動する回路GD及び回路SDとを、別々に設けてもよい。より具体的には、実施の形態1で例示した素子層100aと素子層100bとが、それぞれ個別に回路GD及び回路SDを有していてもよい。 Note that, here, for the sake of simplicity, a configuration including one circuit GD and one circuit SD is shown; however, the circuit GD and the circuit SD that drive the liquid crystal element and the circuit GD and the circuit SD that drive the light emitting element are separately provided. May be provided. More specifically, the element layer 100a and the element layer 100b exemplified in Embodiment 1 may have the circuit GD and the circuit SD, respectively.
 画素410は、反射型の液晶素子と、発光素子を有する。画素410において、液晶素子と発光素子とは、互いに重なる部分を有する。 The pixel 410 includes a reflective liquid crystal element and a light emitting element. In the pixel 410, the liquid crystal element and the light-emitting element have portions that overlap each other.
 図33(B1)は、画素410が有する導電層311bの構成例を示す。導電層311bは、画素410における液晶素子の反射電極として機能する。また導電層311bには、開口451が設けられている。 FIG. 33B1 illustrates a configuration example of the conductive layer 311b included in the pixel 410. The conductive layer 311b functions as a reflective electrode of the liquid crystal element in the pixel 410. In addition, an opening 451 is provided in the conductive layer 311b.
 図33(B1)には、導電層311bと重なる領域に位置する発光素子360を破線で示している。発光素子360は、導電層311bが有する開口451と重ねて配置されている。これにより、発光素子360が発する光は、開口451を介して表示面側に射出される。 In FIG. 33B1, the light-emitting element 360 located in a region overlapping with the conductive layer 311b is indicated by a broken line. The light-emitting element 360 is disposed so as to overlap with the opening 451 included in the conductive layer 311b. Thereby, the light emitted from the light emitting element 360 is emitted to the display surface side through the opening 451.
 図33(B1)では、方向Rに隣接する画素410が異なる色に対応する画素である。このとき、図33(B1)に示すように、方向Rに配列する複数の画素において、複数の開口451が一直線上に配列されないように、それぞれ導電層311bの異なる位置に設けられていることが好ましい。これにより、隣接する2つの発光素子360を離すことが可能で、発光素子360が発する光が隣接する画素410が有する着色層に入射してしまう現象(クロストークともいう)を抑制することができる。また、隣接する2つの発光素子360を離して配置することができるため、発光素子360のEL層をシャドウマスク等により作り分ける場合であっても、高い精細度の表示装置を実現できる。 In FIG. 33 (B1), the pixel 410 adjacent in the direction R is a pixel corresponding to a different color. At this time, as shown in FIG. 33B1, in the plurality of pixels arranged in the direction R, the plurality of openings 451 may be provided at different positions on the conductive layer 311b so as not to be arranged in a straight line. preferable. Accordingly, the two adjacent light emitting elements 360 can be separated, and a phenomenon (also referred to as crosstalk) in which light emitted from the light emitting element 360 enters the colored layer of the adjacent pixel 410 can be suppressed. . In addition, since the two adjacent light emitting elements 360 can be arranged apart from each other, a display device with high definition can be realized even when the EL layer of the light emitting element 360 is separately formed using a shadow mask or the like.
 また、図33(B2)に示すような配列としてもよい。 Alternatively, an arrangement as shown in FIG. 33 (B2) may be used.
 非開口部の総面積に対する開口451の総面積の比の値が大きすぎると、液晶素子を用いた表示が暗くなってしまう。また、非開口部の総面積に対する開口451の総面積の比の値が小さすぎると、発光素子360を用いた表示が暗くなってしまう。 If the ratio of the total area of the opening 451 to the total area of the non-opening is too large, the display using the liquid crystal element becomes dark. If the ratio of the total area of the openings 451 to the total area of the non-openings is too small, the display using the light emitting element 360 is darkened.
 また、反射電極として機能する導電層311bに設ける開口451の面積が小さすぎると、発光素子360が射出する光から取り出せる光の効率が低下してしまう。 If the area of the opening 451 provided in the conductive layer 311b functioning as the reflective electrode is too small, the efficiency of light that can be extracted from the light emitted from the light emitting element 360 is reduced.
 開口451の形状は、例えば多角形、四角形、楕円形、円形または十字等の形状とすることができる。また、細長い筋状、スリット状、市松模様状の形状としてもよい。また、開口451を隣接する画素に寄せて配置してもよい。好ましくは、開口451を同じ色を表示する他の画素に寄せて配置する。これにより、クロストークを抑制できる。 The shape of the opening 451 can be, for example, a polygon, a rectangle, an ellipse, a circle, a cross, or the like. Moreover, it is good also as an elongated streak shape, a slit shape, and a checkered shape. Further, the opening 451 may be arranged close to adjacent pixels. Preferably, the opening 451 is arranged close to other pixels displaying the same color. Thereby, crosstalk can be suppressed.
[回路構成例]
 図34は、画素410の構成例を示す回路図である。図34では、隣接する2つの画素410を示している。
[Circuit configuration example]
FIG. 34 is a circuit diagram illustrating a configuration example of the pixel 410. In FIG. 34, two adjacent pixels 410 are shown.
 画素410は、スイッチSW1、容量素子C1、液晶素子340、スイッチSW2、トランジスタM、容量素子C2、及び発光素子360等を有する。また、画素410には、配線G1、配線G2、配線ANO、配線CSCOM、配線S1、及び配線S2が電気的に接続されている。また、図34では、液晶素子340と電気的に接続する配線VCOM1、及び発光素子360と電気的に接続する配線VCOM2を示している。 The pixel 410 includes a switch SW1, a capacitor element C1, a liquid crystal element 340, a switch SW2, a transistor M, a capacitor element C2, a light emitting element 360, and the like. In addition, a wiring G1, a wiring G2, a wiring ANO, a wiring CSCOM, a wiring S1, and a wiring S2 are electrically connected to the pixel 410. In FIG. 34, a wiring VCOM1 electrically connected to the liquid crystal element 340 and a wiring VCOM2 electrically connected to the light emitting element 360 are shown.
 図34では、スイッチSW1及びスイッチSW2に、トランジスタを用いた場合の例を示している。 FIG. 34 shows an example in which transistors are used for the switch SW1 and the switch SW2.
 スイッチSW1は、ゲートが配線G1と接続され、ソース又はドレインの一方が配線S1と接続され、ソース又はドレインの他方が容量素子C1の一方の電極、及び液晶素子340の一方の電極と接続されている。容量素子C1は、他方の電極が配線CSCOMと接続されている。液晶素子340は、他方の電極が配線VCOM1と接続されている。 The switch SW1 has a gate connected to the wiring G1, a source or drain connected to the wiring S1, and the other source or drain connected to one electrode of the capacitor C1 and one electrode of the liquid crystal element 340. Yes. The other electrode of the capacitor C1 is connected to the wiring CSCOM. The other electrode of the liquid crystal element 340 is connected to the wiring VCOM1.
 またスイッチSW2は、ゲートが配線G2と接続され、ソース又はドレインの一方が配線S2と接続され、ソース又はドレインの他方が、容量素子C2の一方の電極、トランジスタMのゲートと接続されている。容量素子C2は、他方の電極がトランジスタMのソース又はドレインの一方、及び配線ANOと接続されている。トランジスタMは、ソース又はドレインの他方が発光素子360の一方の電極と接続されている。発光素子360は、他方の電極が配線VCOM2と接続されている。 The switch SW2 has a gate connected to the wiring G2, one of the source and the drain connected to the wiring S2, and the other of the source and the drain connected to one electrode of the capacitor C2 and the gate of the transistor M. The other electrode of the capacitor C2 is connected to one of the source and the drain of the transistor M and the wiring ANO. In the transistor M, the other of the source and the drain is connected to one electrode of the light emitting element 360. The other electrode of the light emitting element 360 is connected to the wiring VCOM2.
 図34では、トランジスタMが半導体を挟む2つのゲートを有し、これらが接続されている例を示している。これにより、トランジスタMが流すことのできる電流を増大させることができる。 FIG. 34 shows an example in which the transistor M has two gates sandwiching a semiconductor and these are connected. As a result, the current that can be passed by the transistor M can be increased.
 配線G1には、スイッチSW1を導通状態または非導通状態に制御する信号を与えることができる。配線VCOM1には、所定の電位を与えることができる。配線S1には、液晶素子340が有する液晶の配向状態を制御する信号を与えることができる。配線CSCOMには、所定の電位を与えることができる。 The signal which controls switch SW1 to a conduction | electrical_connection state or a non-conduction state can be given to wiring G1. A predetermined potential can be applied to the wiring VCOM1. A signal for controlling the alignment state of the liquid crystal included in the liquid crystal element 340 can be supplied to the wiring S1. A predetermined potential can be applied to the wiring CSCOM.
 配線G2には、スイッチSW2を導通状態または非導通状態に制御する信号を与えることができる。配線VCOM2及び配線ANOには、発光素子360が発光する電位差が生じる電位をそれぞれ与えることができる。配線S2には、トランジスタMの導通状態を制御する信号を与えることができる。 The signal which controls switch SW2 to a conduction | electrical_connection state or a non-conduction state can be given to wiring G2. The wiring VCOM2 and the wiring ANO can each be supplied with a potential at which a potential difference generated by the light emitting element 360 emits light. A signal for controlling the conduction state of the transistor M can be supplied to the wiring S2.
 図34に示す画素410は、例えば反射モードの表示を行う場合には、配線G1及び配線S1に与える信号により駆動し、液晶素子340による光学変調を利用して表示することができる。また、透過モードで表示を行う場合には、配線G2及び配線S2に与える信号により駆動し、発光素子360を発光させて表示することができる。また両方のモードで駆動する場合には、配線G1、配線G2、配線S1及び配線S2のそれぞれに与える信号により駆動することができる。 The pixel 410 shown in FIG. 34 can be driven by a signal applied to the wiring G1 and the wiring S1 and display using optical modulation by the liquid crystal element 340, for example, when performing reflection mode display. In the case where display is performed in the transmissive mode, display can be performed by driving the light-emitting element 360 by driving with signals supplied to the wiring G2 and the wiring S2. In the case of driving in both modes, the driving can be performed by signals given to the wiring G1, the wiring G2, the wiring S1, and the wiring S2.
 なお、図34では一つの画素410に、一つの液晶素子340と一つの発光素子360とを有する例を示したが、これに限られない。図35(A)は、一つの画素410に一つの液晶素子340と4つの発光素子360(発光素子360r、360g、360b、360w)を有する例を示している。図35(A)に示す画素410は、図34とは異なり、1つの画素でフルカラーの表示が可能な画素である。 Note that although FIG. 34 illustrates an example in which one pixel 410 includes one liquid crystal element 340 and one light emitting element 360, the present invention is not limited thereto. FIG. 35A illustrates an example in which one pixel 410 includes one liquid crystal element 340 and four light-emitting elements 360 (light-emitting elements 360r, 360g, 360b, and 360w). A pixel 410 illustrated in FIG. 35A is a pixel capable of full color display with one pixel, unlike FIG.
 図35(A)では図34の例に加えて、画素410に配線G3及び配線S3が接続されている。 35A, in addition to the example of FIG. 34, a wiring G3 and a wiring S3 are connected to the pixel 410.
 図35(A)に示す例では、例えば4つの発光素子360を、それぞれ赤色(R)、緑色(G)、青色(B)、及び白色(W)を呈する発光素子を用いることができる。また液晶素子340として、白色を呈する反射型の液晶素子を用いることができる。これにより、反射モードの表示を行う場合には、反射率の高い白色の表示を行うことができる。また透過モードで表示を行う場合には、演色性の高い表示を低い電力で行うことができる。 In the example shown in FIG. 35A, for example, four light-emitting elements 360 can be light-emitting elements exhibiting red (R), green (G), blue (B), and white (W), respectively. As the liquid crystal element 340, a reflective liquid crystal element exhibiting white can be used. Thereby, when displaying in reflection mode, white display with high reflectance can be performed. In addition, when display is performed in the transmissive mode, display with high color rendering properties can be performed with low power.
 また、図35(B)には、画素410の構成例を示している。画素410は、導電層311が有する開口部と重なる発光素子360wと、導電層311の周囲に配置された発光素子360r、発光素子360g、及び発光素子360bとを有する。発光素子360r、発光素子360g、及び発光素子360bは、発光面積がほぼ同等であることが好ましい。 FIG. 35B shows a configuration example of the pixel 410. The pixel 410 includes a light-emitting element 360 w that overlaps with an opening of the conductive layer 311, and a light-emitting element 360 r, a light-emitting element 360 g, and a light-emitting element 360 b that are arranged around the conductive layer 311. The light emitting element 360r, the light emitting element 360g, and the light emitting element 360b preferably have substantially the same light emitting area.
[表示装置の構成例1]
 図36は、本発明の一態様の表示装置300の斜視概略図である。表示装置300は、基板351と基板361とが貼り合わされた構成を有する。図36では、基板361を破線で明示している。
[Configuration Example 1 of Display Device]
FIG. 36 is a schematic perspective view of a display device 300 of one embodiment of the present invention. The display device 300 has a structure in which a substrate 351 and a substrate 361 are attached to each other. In FIG. 36, the substrate 361 is indicated by a broken line.
 表示装置300は、表示部362、回路部364、配線365、回路部366、配線367等を有する。基板351には、例えば回路部364、配線365、回路部366、配線367及び画素電極として機能する導電層311b等が設けられる。また図36では基板351上にIC373、FPC372、IC375及びFPC374が実装されている例を示している。そのため、図36に示す構成は、表示装置300とIC373、FPC372、IC375及びFPC374を有する表示モジュールと言うこともできる。 The display device 300 includes a display unit 362, a circuit unit 364, a wiring 365, a circuit unit 366, a wiring 367, and the like. The substrate 351 is provided with, for example, a circuit portion 364, a wiring 365, a circuit portion 366, a wiring 367, a conductive layer 311b functioning as a pixel electrode, and the like. FIG. 36 shows an example in which an IC 373, an FPC 372, an IC 375, and an FPC 374 are mounted on a substrate 351. Therefore, the structure illustrated in FIG. 36 can also be referred to as a display module including the display device 300 and the IC 373, the FPC 372, the IC 375, and the FPC 374.
 回路部364は、例えば走査線駆動回路として機能する回路を用いることができる。 As the circuit unit 364, for example, a circuit that functions as a scanning line driver circuit can be used.
 配線365は、表示部や回路部364に信号や電力を供給する機能を有する。当該信号や電力は、FPC372を介して外部、またはIC373から配線365に入力される。 The wiring 365 has a function of supplying signals and power to the display unit and the circuit unit 364. The signal and power are input to the wiring 365 from the outside or the IC 373 via the FPC 372.
 また、図36では、COG(Chip On Glass)方式等により、基板351にIC373が設けられている例を示している。IC373は、例えば走査線駆動回路、または信号線駆動回路などとしての機能を有するICを適用できる。なお表示装置300が走査線駆動回路及び信号線駆動回路として機能する回路を備える場合や、走査線駆動回路や信号線駆動回路として機能する回路を外部に設け、FPC372を介して表示装置300を駆動するための信号を入力する場合などでは、IC373を設けない構成としてもよい。また、IC373を、COF(Chip On Film)方式等により、FPC372に実装してもよい。 FIG. 36 shows an example in which the IC 373 is provided on the substrate 351 by a COG (Chip On Glass) method or the like. As the IC 373, for example, an IC having a function as a scan line driver circuit, a signal line driver circuit, or the like can be used. Note that in the case where the display device 300 includes a circuit that functions as a scan line driver circuit and a signal line driver circuit, or a circuit that functions as a scan line driver circuit or a signal line driver circuit is provided outside, and the display device 300 is driven through the FPC 372. For example, the IC 373 may not be provided in the case of inputting a signal to do so. The IC 373 may be mounted on the FPC 372 by a COF (Chip On Film) method or the like.
 図36には、表示部362の一部の拡大図を示している。表示部362には、複数の表示素子が有する導電層311bがマトリクス状に配置されている。導電層311bは、可視光を反射する機能を有し、後述する液晶素子340の反射電極として機能する。 FIG. 36 shows an enlarged view of a part of the display unit 362. In the display portion 362, conductive layers 311b included in the plurality of display elements are arranged in a matrix. The conductive layer 311b has a function of reflecting visible light, and functions as a reflective electrode of a liquid crystal element 340 described later.
 また、図36に示すように、導電層311bは開口を有する。さらに導電層311bよりも基板351側に、発光素子360を有する。発光素子360からの光は、導電層311bの開口を介して基板361側に射出される。 As shown in FIG. 36, the conductive layer 311b has an opening. Further, the light-emitting element 360 is provided on the substrate 351 side of the conductive layer 311b. Light from the light-emitting element 360 is emitted to the substrate 361 side through the opening of the conductive layer 311b.
[断面構成例1]
 図37に、図36で例示した表示装置の、FPC372を含む領域の一部、回路部364を含む領域の一部、表示部362を含む領域の一部、回路部366を含む領域の一部、及びFPC374を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
[Cross-section configuration example 1]
FIG. 37 shows part of the region including the FPC 372, part of the region including the circuit portion 364, part of the region including the display portion 362, and part of the region including the circuit portion 366 of the display device illustrated in FIG. , And an example of a cross section when part of a region including the FPC 374 is cut.
 図37に示す表示装置は、基板351側から素子層100a、素子層200a、素子層100b、及び素子層200bが順に積層された構成を有する。素子層100aと基板351の間には樹脂層101を有する。素子層200bと基板361の間には樹脂層202を有する。樹脂層101と基板351とは、接着層51によって接着されている。また樹脂層202と基板361とは、接着層52により接着されている。 The display device shown in FIG. 37 has a structure in which an element layer 100a, an element layer 200a, an element layer 100b, and an element layer 200b are sequentially stacked from the substrate 351 side. A resin layer 101 is provided between the element layer 100 a and the substrate 351. A resin layer 202 is provided between the element layer 200 b and the substrate 361. The resin layer 101 and the substrate 351 are bonded by an adhesive layer 51. In addition, the resin layer 202 and the substrate 361 are bonded by an adhesive layer 52.
〔素子層100a、素子層200a〕
 素子層100aは、樹脂層101上に、絶縁層478、複数のトランジスタ、容量素子405、配線365、絶縁層411、絶縁層412、絶縁層413、絶縁層414等を有する。素子層200aは、絶縁層415、発光素子360、スペーサ416、着色層425、遮光層426等を有する。着色層425と遮光層426は後述する絶縁層514側に設けられ、絶縁層514は接着層417によって樹脂層101側と接着されている。
[Element layer 100a, Element layer 200a]
The element layer 100a includes an insulating layer 478, a plurality of transistors, a capacitor 405, a wiring 365, an insulating layer 411, an insulating layer 412, an insulating layer 413, an insulating layer 414, and the like over the resin layer 101. The element layer 200a includes an insulating layer 415, a light emitting element 360, a spacer 416, a colored layer 425, a light shielding layer 426, and the like. The coloring layer 425 and the light shielding layer 426 are provided on the insulating layer 514 side described later, and the insulating layer 514 is bonded to the resin layer 101 side by an adhesive layer 417.
 回路部364はトランジスタ401を有する。表示部362は、トランジスタ402、トランジスタ403及び容量素子405を有する。 The circuit unit 364 includes a transistor 401. The display portion 362 includes a transistor 402, a transistor 403, and a capacitor 405.
 各トランジスタは、ゲート、絶縁層411、半導体層、ソース、及びドレインを有する。ゲートと半導体層は、絶縁層411を介して重なる。絶縁層411の一部は、ゲート絶縁層としての機能を有し、他の一部は、容量素子405の誘電体としての機能を有する。トランジスタ402のソース又はドレインとして機能する導電層は、容量素子405の一方の電極を兼ねる。 Each transistor has a gate, an insulating layer 411, a semiconductor layer, a source, and a drain. The gate and the semiconductor layer overlap with each other with the insulating layer 411 interposed therebetween. Part of the insulating layer 411 functions as a gate insulating layer, and the other part functions as a dielectric of the capacitor 405. A conductive layer functioning as a source or a drain of the transistor 402 also serves as one electrode of the capacitor 405.
 図37では、ボトムゲート構造のトランジスタを示す。回路部364と表示部362とで、トランジスタの構造が異なっていてもよい。回路部364及び表示部362は、それぞれ、複数の種類のトランジスタを有していてもよい。 FIG. 37 shows a bottom-gate transistor. The circuit portion 364 and the display portion 362 may have different transistor structures. Each of the circuit portion 364 and the display portion 362 may include a plurality of types of transistors.
 容量素子405は、一対の電極と、その間の誘電体とを有する。容量素子405は、トランジスタのゲートと同一の材料、及び同一の工程で形成した導電層と、トランジスタのソース及びドレインと同一の材料、及び同一の工程で形成した導電層と、を有する。 The capacitor element 405 includes a pair of electrodes and a dielectric between them. The capacitor 405 includes the same material as the gate of the transistor and a conductive layer formed in the same process, and the same material as the source and drain of the transistor and a conductive layer formed in the same process.
 絶縁層412、絶縁層413、及び絶縁層414は、それぞれ、トランジスタ等を覆って設けられる。トランジスタ等を覆う絶縁層の数は特に限定されない。絶縁層414は、平坦化層としての機能を有する。絶縁層412、絶縁層413、及び絶縁層414のうち、少なくとも一層には、水又は水素などの不純物が拡散しにくい材料を用いることが好ましい。外部から不純物がトランジスタに拡散することを効果的に抑制することが可能となり、表示装置の信頼性を高めることができる。 The insulating layer 412, the insulating layer 413, and the insulating layer 414 are each provided so as to cover a transistor or the like. The number of insulating layers covering the transistors and the like is not particularly limited. The insulating layer 414 functions as a planarization layer. It is preferable that at least one layer of the insulating layer 412, the insulating layer 413, and the insulating layer 414 be formed using a material that does not easily diffuse impurities such as water or hydrogen. It becomes possible to effectively suppress the diffusion of impurities from the outside into the transistor, and the reliability of the display device can be improved.
 絶縁層414として有機材料を用いる場合、表示装置の端部に露出した絶縁層414を通って発光素子360等に表示装置の外部から水分等の不純物が侵入する恐れがある。不純物の侵入により、発光素子360が劣化すると、表示装置の劣化につながる。そのため、図37に示すように、絶縁層414が、表示装置の端部に位置しないことが好ましい。図37の構成では、有機材料を用いた絶縁層が表示装置の端部に位置しないため、発光素子360に不純物が侵入することを抑制できる。 When an organic material is used for the insulating layer 414, impurities such as moisture may enter the light emitting element 360 or the like from the outside of the display device through the insulating layer 414 exposed at the end of the display device. When the light emitting element 360 is deteriorated due to the entry of impurities, the display device is deteriorated. Therefore, as illustrated in FIG. 37, the insulating layer 414 is preferably not positioned at the end portion of the display device. In the structure in FIG. 37, since the insulating layer using an organic material is not located at the end portion of the display device, entry of impurities into the light-emitting element 360 can be suppressed.
 発光素子360は、導電層421、EL層422、及び導電層423を有する。発光素子360は、光学調整層424を有していてもよい。発光素子360は、導電層423側に光を射出する、トップエミッション構造である。 The light-emitting element 360 includes a conductive layer 421, an EL layer 422, and a conductive layer 423. The light emitting element 360 may have an optical adjustment layer 424. The light-emitting element 360 has a top emission structure that emits light toward the conductive layer 423.
 トランジスタ、容量素子、及び配線等を、発光素子360の発光領域と重ねて配置することで、表示部362の開口率を高めることができる。 The aperture ratio of the display portion 362 can be increased by arranging a transistor, a capacitor, a wiring, and the like so as to overlap with a light-emitting region of the light-emitting element 360.
 導電層421及び導電層423のうち、一方は、陽極として機能し、他方は、陰極として機能する。導電層421及び導電層423の間に、発光素子360の閾値電圧より高い電圧を印加すると、EL層422に陽極側から正孔が注入され、陰極側から電子が注入される。注入された電子と正孔はEL層422において再結合し、EL層422に含まれる発光物質が発光する。 One of the conductive layer 421 and the conductive layer 423 functions as an anode, and the other functions as a cathode. When a voltage higher than the threshold voltage of the light-emitting element 360 is applied between the conductive layer 421 and the conductive layer 423, holes are injected from the anode side into the EL layer 422 and electrons are injected from the cathode side. The injected electrons and holes are recombined in the EL layer 422, and the light-emitting substance contained in the EL layer 422 emits light.
 導電層421は、トランジスタ403のソース又はドレインと電気的に接続される。これらは、直接接続されてもよいし、他の導電層を介して接続されてもよい。導電層421は、画素電極として機能し、発光素子360ごとに設けられている。隣り合う2つの導電層421は、絶縁層415によって電気的に絶縁されている。 The conductive layer 421 is electrically connected to the source or drain of the transistor 403. These may be directly connected or may be connected via another conductive layer. The conductive layer 421 functions as a pixel electrode and is provided for each light-emitting element 360. Two adjacent conductive layers 421 are electrically insulated by an insulating layer 415.
 EL層422は、発光性の物質を含む層である。 The EL layer 422 is a layer containing a light-emitting substance.
 導電層423は、共通電極として機能し、複数の発光素子360にわたって設けられている。導電層423には、定電位が供給される。 The conductive layer 423 functions as a common electrode and is provided over the plurality of light emitting elements 360. A constant potential is supplied to the conductive layer 423.
 発光素子360は、接着層417を介して着色層425と重なる。スペーサ416は、接着層417を介して遮光層426と重なる。図37では、導電層423と遮光層426との間に隙間がある場合を示しているが、これらが接していてもよい。図37では、スペーサ416を基板351側に設ける構成を示したが、基板361側(例えば遮光層426よりも基板351側)に設けてもよい。 The light emitting element 360 overlaps the colored layer 425 with the adhesive layer 417 interposed therebetween. The spacer 416 overlaps the light shielding layer 426 with the adhesive layer 417 interposed therebetween. Although FIG. 37 shows a case where there is a gap between the conductive layer 423 and the light shielding layer 426, they may be in contact with each other. In FIG. 37, the structure in which the spacer 416 is provided on the substrate 351 side is shown;
 カラーフィルタ(着色層425)とマイクロキャビティ構造(光学調整層424)との組み合わせにより、表示装置からは、色純度の高い光を取り出すことができる。光学調整層424の膜厚は、各画素の色に応じて変化させる。 The combination of the color filter (colored layer 425) and the microcavity structure (optical adjustment layer 424) makes it possible to extract light with high color purity from the display device. The film thickness of the optical adjustment layer 424 is changed according to the color of each pixel.
 着色層425は特定の波長域の光を透過する有色層である。例えば、赤色、緑色、青色、又は黄色の波長域の光を透過するカラーフィルタなどを用いることができる。 The colored layer 425 is a colored layer that transmits light in a specific wavelength range. For example, a color filter that transmits light in a red, green, blue, or yellow wavelength range can be used.
 なお、本発明の一態様は、カラーフィルタ方式に限られず、塗り分け方式、色変換方式、又は量子ドット方式等を適用してもよい。 Note that one embodiment of the present invention is not limited to the color filter method, and a color separation method, a color conversion method, a quantum dot method, or the like may be applied.
 遮光層426は、隣接する着色層425の間に設けられている。遮光層426は隣接する発光素子360からの光を遮光し、隣接する発光素子360間における混色を抑制する。ここで、着色層425の端部を、遮光層426と重なるように設けることにより、光漏れを抑制することができる。遮光層426としては、発光素子360が発する光を遮る材料を用いることができる。なお、遮光層426は、回路部364などの表示部362以外の領域に設けると、導波光などによる意図しない光漏れを抑制できるため好ましい。 The light shielding layer 426 is provided between the adjacent colored layers 425. The light blocking layer 426 blocks light from the adjacent light emitting elements 360 and suppresses color mixing between the adjacent light emitting elements 360. Here, light leakage can be suppressed by providing the end portion of the colored layer 425 so as to overlap the light shielding layer 426. As the light-blocking layer 426, a material that blocks light emitted from the light-emitting element 360 can be used. Note that the light-blocking layer 426 is preferably provided in a region other than the display portion 362 such as the circuit portion 364 because unintended light leakage due to guided light or the like can be suppressed.
 樹脂層101の一方の表面には絶縁層478が形成されている。また、発光素子360の基板361側には、絶縁層513等が設けられている。絶縁層478及び絶縁層513に防湿性の高い膜を用いることが好ましい。一対の防湿性の高い絶縁層の間に発光素子360及びトランジスタ等を配置することで、これらの素子に水等の不純物が侵入することを抑制でき、表示装置の信頼性が高くなるため好ましい。なお、着色層425と遮光層426を覆って、防湿性の高い絶縁膜を設けてもよい。 An insulating layer 478 is formed on one surface of the resin layer 101. Further, an insulating layer 513 or the like is provided on the substrate 361 side of the light-emitting element 360. It is preferable to use a highly moisture-proof film for the insulating layers 478 and 513. The light-emitting element 360, a transistor, and the like are preferably provided between the pair of highly moisture-proof insulating layers, so that impurities such as water can be prevented from entering these elements and the reliability of the display device is improved. Note that an insulating film with high moisture resistance may be provided so as to cover the colored layer 425 and the light-blocking layer 426.
 防湿性の高い絶縁膜としては、窒化シリコン膜、窒化酸化シリコン膜等の窒素と珪素を含む膜、及び、窒化アルミニウム膜等の窒素とアルミニウムを含む膜等が挙げられる。また、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜等を用いてもよい。 Examples of the highly moisture-proof insulating film include a film containing nitrogen and silicon such as a silicon nitride film and a silicon nitride oxide film, and a film containing nitrogen and aluminum such as an aluminum nitride film. Alternatively, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, or the like may be used.
 例えば、防湿性の高い絶縁膜の水蒸気透過量は、1×10−5[g/(m・day)]以下、好ましくは1×10−6[g/(m・day)]以下、より好ましくは1×10−7[g/(m・day)]以下、さらに好ましくは1×10−8[g/(m・day)]以下とする。 For example, the moisture permeation amount of the highly moisture-proof insulating film is 1 × 10 −5 [g / (m 2 · day)] or less, preferably 1 × 10 −6 [g / (m 2 · day)] or less, More preferably, it is 1 × 10 −7 [g / (m 2 · day)] or less, and further preferably 1 × 10 −8 [g / (m 2 · day)] or less.
 接続部406は、配線365を有する。配線365は、例えばトランジスタのソース及びドレインと同一の材料、及び同一の工程で形成することができる。接続部406は、回路部364に外部からの信号や電位を伝達する外部入力端子と電気的に接続する。ここでは、外部入力端子としてFPC372を設ける例を示している。接続層419を介してFPC372と接続部406は電気的に接続する。 The connection unit 406 includes a wiring 365. The wiring 365 can be formed using the same material and the same process as the source and drain of a transistor, for example. The connection unit 406 is electrically connected to an external input terminal that transmits an external signal or potential to the circuit unit 364. Here, an example in which an FPC 372 is provided as an external input terminal is shown. The FPC 372 and the connection portion 406 are electrically connected through the connection layer 419.
 接続層419としては、様々な異方性導電フィルム(ACF:Anisotropic Conductive Film)及び異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。 As the connection layer 419, various anisotropic conductive films (ACF: Anisotropic Conductive Film), anisotropic conductive pastes (ACP: Anisotropic Conductive Paste), and the like can be used.
 以上が素子層100a及び素子層200aについての説明である。 The above is the description of the element layer 100a and the element layer 200a.
〔素子層100b、素子層200b〕
 素子層100bと素子層200bとは、絶縁層510を介して積層されている。素子層100aと素子層200bは、縦電界方式が適用された反射型液晶表示装置であるということができる。
[Element layer 100b, Element layer 200b]
The element layer 100b and the element layer 200b are stacked with an insulating layer 510 interposed therebetween. It can be said that the element layer 100a and the element layer 200b are reflective liquid crystal display devices to which a vertical electric field method is applied.
 素子層100bは、絶縁層510よりも基板351側に、複数のトランジスタ、容量素子(図示しない)、配線367、絶縁層511、絶縁層512、絶縁層513、絶縁層514等を有する。また素子層200bは、絶縁層510よりも基板361側に、液晶素子340、樹脂層201、配向膜564、接着層517、絶縁層576等を有する。また素子層200bと接着層52の間に、樹脂層202が設けられている。 The element layer 100b includes a plurality of transistors, a capacitor element (not shown), a wiring 367, an insulating layer 511, an insulating layer 512, an insulating layer 513, an insulating layer 514, and the like on the substrate 351 side of the insulating layer 510. The element layer 200b includes a liquid crystal element 340, a resin layer 201, an alignment film 564, an adhesive layer 517, an insulating layer 576, and the like on the substrate 361 side of the insulating layer 510. A resin layer 202 is provided between the element layer 200 b and the adhesive layer 52.
 樹脂層201と樹脂層202とは、接着層517によって貼り合わされている。樹脂層201、樹脂層202、及び接着層517に囲まれた領域に、液晶563が封止されている。基板361の外側の面には、偏光板599が位置する。 The resin layer 201 and the resin layer 202 are bonded together by an adhesive layer 517. A liquid crystal 563 is sealed in a region surrounded by the resin layer 201, the resin layer 202, and the adhesive layer 517. A polarizing plate 599 is located on the outer surface of the substrate 361.
 また樹脂層202には、液晶素子340及び発光素子360と重なる開口部が設けられている。 The resin layer 202 is provided with openings that overlap with the liquid crystal element 340 and the light emitting element 360.
 液晶素子340は、導電層311b、導電層561、導電層562、及び液晶563を有する。導電層311b及び導電層561は電気的に接続され、画素電極として機能する。導電層562は共通電極として機能する。導電層561と導電層562との間に生じる電界により、液晶563の配向を制御することができる。液晶563と導電層561の間には配向膜として機能する樹脂層201が設けられている。液晶563と導電層562の間には、配向膜564が設けられている。 The liquid crystal element 340 includes a conductive layer 311b, a conductive layer 561, a conductive layer 562, and a liquid crystal 563. The conductive layer 311b and the conductive layer 561 are electrically connected and function as a pixel electrode. The conductive layer 562 functions as a common electrode. The alignment of the liquid crystal 563 can be controlled by an electric field generated between the conductive layers 561 and 562. A resin layer 201 that functions as an alignment film is provided between the liquid crystal 563 and the conductive layer 561. An alignment film 564 is provided between the liquid crystal 563 and the conductive layer 562.
 また、導電層561と導電層311bとは積層して設けられ、導電層561と導電層311bを覆って絶縁層510が設けられている。絶縁層510と導電層561のそれぞれの基板361側の表面は、高さが概略一致している。また、絶縁層510と導電層561の基板361側の表面に、樹脂層201が設けられている。 The conductive layer 561 and the conductive layer 311b are stacked, and the insulating layer 510 is provided to cover the conductive layer 561 and the conductive layer 311b. The surfaces of the insulating layer 510 and the conductive layer 561 on the substrate 361 side have substantially the same height. A resin layer 201 is provided on the surfaces of the insulating layer 510 and the conductive layer 561 on the substrate 361 side.
 また平面視において、導電層561は導電層311bよりも外側に延在して設けられている。導電層561の一部は、発光素子360と重ねて設けられている。 In a plan view, the conductive layer 561 is provided so as to extend outside the conductive layer 311b. Part of the conductive layer 561 is provided so as to overlap with the light-emitting element 360.
 樹脂層202を覆って、絶縁層576、導電層562、及び配向膜564等が設けられている。 An insulating layer 576, a conductive layer 562, an alignment film 564, and the like are provided so as to cover the resin layer 202.
 絶縁層510の基板351側には、トランジスタ501、トランジスタ503、容量素子(図示しない)配線367等が設けられている。また、絶縁層510の基板351側には、絶縁層511、絶縁層512、絶縁層513、絶縁層514等の絶縁層が設けられている。絶縁層514の基板351側には、着色層425及び遮光層426が設けられている。 On the substrate 351 side of the insulating layer 510, a transistor 501, a transistor 503, a capacitor element (not shown) wiring 367, and the like are provided. Further, insulating layers such as an insulating layer 511, an insulating layer 512, an insulating layer 513, and an insulating layer 514 are provided on the substrate 351 side of the insulating layer 510. A colored layer 425 and a light shielding layer 426 are provided on the substrate 351 side of the insulating layer 514.
 トランジスタ503のソース又はドレインの一方は、絶縁層510に設けられた開口を介して導電層311bと電気的に接続されている。図37では、トランジスタ503のゲート電極と同一の導電膜を加工して形成した導電層を介して、トランジスタ503のソース又はドレインの一方と導電層311bとが電気的に接続されている例を示している。 One of a source and a drain of the transistor 503 is electrically connected to the conductive layer 311b through an opening provided in the insulating layer 510. FIG. 37 illustrates an example in which one of the source and the drain of the transistor 503 and the conductive layer 311b are electrically connected to each other through a conductive layer formed by processing the same conductive film as the gate electrode of the transistor 503. ing.
 図37に示すように、導電層311bは、トランジスタ503のソース又はドレインの一方とのコンタクト部においても、視認側の面を平坦な形状とすることが可能である。したがって、当該コンタクト部も表示に寄与できるため、開口率を向上させることができる。 As shown in FIG. 37, the conductive layer 311b can have a flat surface on the viewing side even in a contact portion with one of the source and the drain of the transistor 503. Therefore, since the contact portion can also contribute to display, the aperture ratio can be improved.
 ここで、トランジスタ503のソース又はドレインのうち、導電層311bと電気的に接続されていない方の導電層は、信号線の一部として機能してもよい。また、トランジスタ503のゲートとして機能する導電層は、走査線の一部として機能してもよい。 Here, of the source and drain of the transistor 503, the conductive layer that is not electrically connected to the conductive layer 311b may function as part of the signal line. The conductive layer functioning as the gate of the transistor 503 may function as part of the scan line.
 図37では、表示部362の例として、着色層を設けない構成を示している。そのため、液晶素子340は、白黒の階調表示を行う素子である。 FIG. 37 shows a configuration in which a colored layer is not provided as an example of the display portion 362. Therefore, the liquid crystal element 340 is an element that performs monochrome gradation display.
 図37では、回路部366の例としてトランジスタ501が設けられている例を示している。 FIG. 37 shows an example in which a transistor 501 is provided as an example of the circuit portion 366.
 各トランジスタを覆う絶縁層512、絶縁層513のうち少なくとも一方は、水や水素などの不純物が拡散しにくい材料を用いることが好ましい。 At least one of the insulating layer 512 and the insulating layer 513 that covers each transistor is preferably made of a material in which impurities such as water and hydrogen hardly diffuse.
 ここでは、反射型の液晶表示装置とするため、導電層311bに可視光を反射する導電性材料を用い、導電層562に可視光を透過する導電性材料を用いる。 Here, in order to obtain a reflective liquid crystal display device, a conductive material that reflects visible light is used for the conductive layer 311b, and a conductive material that transmits visible light is used for the conductive layer 562.
 ここで、偏光板599として直線偏光板を用いてもよいが、円偏光板を用いることもできる。円偏光板としては、例えば直線偏光板と1/4波長位相差板を積層したものを用いることができる。これにより、外光反射を抑制することができる。また、偏光板599の種類に応じて、液晶素子340に用いる液晶素子のセルギャップ、配向、駆動電圧等を調整することで、所望のコントラストが実現されるようにすればよい。 Here, a linearly polarizing plate may be used as the polarizing plate 599, but a circularly polarizing plate may also be used. As a circularly-polarizing plate, what laminated | stacked the linearly-polarizing plate and the quarter wavelength phase difference plate, for example can be used. Thereby, external light reflection can be suppressed. In addition, a desired contrast may be realized by adjusting a cell gap, an alignment, a driving voltage, or the like of the liquid crystal element used for the liquid crystal element 340 in accordance with the type of the polarizing plate 599.
 樹脂層201の端部に近い領域には、接続部506が設けられている。接続部506には、端子として機能する導電層581が設けられている。導電層581は、絶縁層510に設けられた開口を介して、配線367と電気的に接続されている。また導電層581はその上面が露出して設けられ、接続層519を介してFPC374と電気的に接続されている。図37に示す例では、配線367の一部と、トランジスタのゲート電極と同一の導電膜を加工して得られた導電層と、導電層311bと同一の導電膜を加工して得られた導電層と、導電層561と同一の導電膜を加工して得られた導電層581と、を積層することで接続部506を構成している例を示している。 In a region near the end of the resin layer 201, a connection portion 506 is provided. The connection portion 506 is provided with a conductive layer 581 functioning as a terminal. The conductive layer 581 is electrically connected to the wiring 367 through an opening provided in the insulating layer 510. The conductive layer 581 is provided with the upper surface exposed, and is electrically connected to the FPC 374 through the connection layer 519. In the example shown in FIG. 37, a part of the wiring 367, a conductive layer obtained by processing the same conductive film as the gate electrode of the transistor, and a conductive layer obtained by processing the same conductive film as the conductive layer 311b. In this example, the connection portion 506 is formed by stacking a layer and a conductive layer 581 obtained by processing the same conductive film as the conductive layer 561.
 また、導電層581の上面は、樹脂層201の上面の高さよりも突出して設けられている。樹脂層201に開口を形成し、当該開口を埋めるように導電層581を形成し、樹脂層201と支持基板とを分離した後に、樹脂層201の薄膜化を行うことで、このような形状の導電層581を形成することができる。導電層581の上面が突出することで、露出した表面の表面積が増大し、接続層519との密着性を向上させることができる。 Further, the upper surface of the conductive layer 581 is provided so as to protrude from the height of the upper surface of the resin layer 201. An opening is formed in the resin layer 201, a conductive layer 581 is formed so as to fill the opening, the resin layer 201 and the supporting substrate are separated, and then the resin layer 201 is thinned, whereby such a shape is obtained. A conductive layer 581 can be formed. By projecting the upper surface of the conductive layer 581, the surface area of the exposed surface can be increased and adhesion with the connection layer 519 can be improved.
 また、導電層562は、樹脂層202の端部に近い部分において、樹脂層201側に設けられた導電層と接続体543により電気的に接続されている。これにより、樹脂層201側に配置されるFPC374やIC等から導電層562に電位や信号を供給することができる。 Further, the conductive layer 562 is electrically connected to the conductive layer provided on the resin layer 201 side by a connection body 543 in a portion near the end of the resin layer 202. Accordingly, a potential or a signal can be supplied to the conductive layer 562 from the FPC 374, IC, or the like disposed on the resin layer 201 side.
 接続体543としては、例えば導電性の粒子を用いることができる。導電性の粒子としては、有機樹脂またはシリカなどの粒子の表面を金属材料で被覆したものを用いることができる。金属材料としてニッケルや金を用いると接触抵抗を低減できるため好ましい。またニッケルをさらに金で被覆するなど、2種類以上の金属材料を層状に被覆させた粒子を用いることが好ましい。また接続体543として、弾性変形、または塑性変形する材料を用いることが好ましい。このとき導電性の粒子である接続体543は、図37に示すように上下方向に潰れた形状となる場合がある。こうすることで、接続体543と、これと電気的に接続する導電層との接触面積が増大し、接触抵抗を低減できるほか、接続不良などの不具合の発生を抑制することができる。 As the connection body 543, for example, conductive particles can be used. As the conductive particles, those obtained by coating the surface of particles such as organic resin or silica with a metal material can be used. It is preferable to use nickel or gold as the metal material because the contact resistance can be reduced. In addition, it is preferable to use particles in which two or more kinds of metal materials are coated in layers, such as further coating nickel with gold. Further, as the connection body 543, a material that is elastically deformed or plastically deformed is preferably used. At this time, the connection body 543 which is a conductive particle may have a shape crushed in the vertical direction as shown in FIG. By doing so, the contact area between the connection body 543 and the conductive layer electrically connected to the connection body 543 can be increased, the contact resistance can be reduced, and the occurrence of problems such as poor connection can be suppressed.
 接続体543は、接着層517に覆われるように配置することが好ましい。例えば例えば、硬化前の接着層517に接続体543を分散させておけばよい。 The connection body 543 is preferably arranged so as to be covered with the adhesive layer 517. For example, the connection body 543 may be dispersed in the adhesive layer 517 before curing.
 なお、導電層581、導電層311b、及び導電層561等は、トランジスタ503等の被形成面側に位置している。そのため、これら導電層は、裏面電極とも呼ぶことができる。 Note that the conductive layer 581, the conductive layer 311 b, the conductive layer 561, and the like are located on a formation surface side of the transistor 503 and the like. Therefore, these conductive layers can also be called back electrodes.
 以上が素子層100b及び素子層200bについての説明である。 The above is the description of the element layer 100b and the element layer 200b.
[各構成要素について]
 以下では、上記に示す各構成要素について説明する。
[About each component]
Below, each component shown above is demonstrated.
〔基板〕
 表示パネルが有する基板には、平坦面を有する材料を用いることができる。表示素子からの光を取り出す側の基板には、該光を透過する材料を用いる。例えば、ガラス、石英、セラミック、サファイヤ、有機樹脂などの材料を用いることができる。
〔substrate〕
A substrate having a flat surface can be used for the substrate included in the display panel. For the substrate from which light from the display element is extracted, a material that transmits the light is used. For example, materials such as glass, quartz, ceramic, sapphire, and organic resin can be used.
 厚さの薄い基板を用いることで、表示パネルの軽量化、薄型化を図ることができる。さらに、可撓性を有する程度の厚さの基板を用いることで、可撓性を有する表示パネルを実現できる。 By using a thin substrate, the display panel can be reduced in weight and thickness. Furthermore, a flexible display panel can be realized by using a flexible substrate.
 また、発光を取り出さない側の基板は、透光性を有していなくてもよいため、上記に挙げた基板の他に、金属基板等を用いることもできる。金属基板は熱伝導性が高く、基板全体に熱を容易に伝導できるため、表示パネルの局所的な温度上昇を抑制することができ、好ましい。可撓性や曲げ性を得るためには、金属基板の厚さは、10μm以上400μm以下が好ましく、20μm以上50μm以下であることがより好ましい。 Further, since the substrate on the side from which light emission is not extracted does not have to be translucent, a metal substrate or the like can be used in addition to the above-described substrates. A metal substrate is preferable because it has high thermal conductivity and can easily conduct heat to the entire substrate, which can suppress a local temperature increase of the display panel. In order to obtain flexibility and bendability, the thickness of the metal substrate is preferably 10 μm or more and 400 μm or less, and more preferably 20 μm or more and 50 μm or less.
 金属基板を構成する材料としては、特に限定はないが、例えば、アルミニウム、銅、ニッケル等の金属、もしくはアルミニウム合金またはステンレス等の合金などを好適に用いることができる。 The material constituting the metal substrate is not particularly limited, and for example, a metal such as aluminum, copper, or nickel, an aluminum alloy, an alloy such as stainless steel, or the like can be preferably used.
 また、金属基板の表面を酸化する、又は表面に絶縁膜を形成するなどにより、絶縁処理が施された基板を用いてもよい。例えば、スピンコート法やディップ法などの塗布法、電着法、蒸着法、又はスパッタリング法などを用いて絶縁膜を形成してもよいし、酸素雰囲気で放置する又は加熱するほか、陽極酸化法などによって、基板の表面に酸化膜を形成してもよい。 Alternatively, a substrate that has been subjected to insulation treatment by oxidizing the surface of the metal substrate or forming an insulating film on the surface may be used. For example, the insulating film may be formed by using a coating method such as a spin coating method or a dip method, an electrodeposition method, a vapor deposition method, or a sputtering method, or it is left in an oxygen atmosphere or heated, or an anodic oxidation method. For example, an oxide film may be formed on the surface of the substrate.
 可撓性及び可視光に対する透過性を有する材料としては、例えば、可撓性を有する程度の厚さのガラスや、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリ塩化ビニル樹脂、ポリテトラフルオロエチレン(PTFE)樹脂等が挙げられる。特に、熱膨張係数の低い材料を用いることが好ましく、例えば、熱膨張係数が30×10−6/K以下であるポリアミドイミド樹脂、ポリイミド樹脂、PET等を好適に用いることができる。また、ガラス繊維に有機樹脂を含浸した基板や、無機フィラーを有機樹脂に混ぜて熱膨張係数を下げた基板を使用することもできる。このような材料を用いた基板は、重量が軽いため、該基板を用いた表示パネルも軽量にすることができる。 Examples of the material having flexibility and transparency to visible light include, for example, glass having a thickness having flexibility, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and polyacrylonitrile resin. , Polyimide resin, polymethyl methacrylate resin, polycarbonate (PC) resin, polyethersulfone (PES) resin, polyamide resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyvinyl chloride resin, polytetrafluoroethylene (PTFE) resin Etc. In particular, a material having a low thermal expansion coefficient is preferably used. For example, a polyamideimide resin, a polyimide resin, PET, or the like having a thermal expansion coefficient of 30 × 10 −6 / K or less can be suitably used. Further, a substrate in which glass fiber is impregnated with an organic resin, or a substrate in which an inorganic filler is mixed with an organic resin to reduce the thermal expansion coefficient can be used. Since a substrate using such a material is light in weight, a display panel using the substrate can be lightweight.
 上記材料中に繊維体が含まれている場合、繊維体は有機化合物または無機化合物の高強度繊維を用いる。高強度繊維とは、具体的には引張弾性率またはヤング率の高い繊維のことを言い、代表例としては、ポリビニルアルコール系繊維、ポリエステル系繊維、ポリアミド系繊維、ポリエチレン系繊維、アラミド系繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、ガラス繊維、または炭素繊維が挙げられる。ガラス繊維としては、Eガラス、Sガラス、Dガラス、Qガラス等を用いたガラス繊維が挙げられる。これらは、織布または不織布の状態で用い、この繊維体に樹脂を含浸させ樹脂を硬化させた構造物を、可撓性を有する基板として用いてもよい。可撓性を有する基板として、繊維体と樹脂からなる構造物を用いると、曲げや局所的押圧による破損に対する信頼性が向上するため、好ましい。 When the above material contains a fibrous body, the fibrous body uses high strength fibers of an organic compound or an inorganic compound. The high-strength fiber specifically refers to a fiber having a high tensile modulus or Young's modulus, and representative examples include polyvinyl alcohol fiber, polyester fiber, polyamide fiber, polyethylene fiber, aramid fiber, Examples include polyparaphenylene benzobisoxazole fibers, glass fibers, and carbon fibers. Examples of the glass fiber include glass fibers using E glass, S glass, D glass, Q glass, and the like. These may be used in the form of a woven fabric or a non-woven fabric, and a structure obtained by impregnating the fiber body with a resin and curing the resin may be used as a flexible substrate. When a structure made of a fibrous body and a resin is used as the flexible substrate, it is preferable because reliability against breakage due to bending or local pressing is improved.
 または、可撓性を有する程度に薄いガラス、金属などを基板に用いることもできる。または、ガラスと樹脂材料とが接着層により貼り合わされた複合材料を用いてもよい。特に、ガラス層を有する構成とすると、水や酸素に対するバリア性を向上させ、信頼性の高い表示パネルとすることができる。 Alternatively, glass or metal that is thin enough to be flexible can be used for the substrate. Alternatively, a composite material in which glass and a resin material are bonded to each other with an adhesive layer may be used. In particular, when the glass layer is used, the barrier property against water and oxygen can be improved and a highly reliable display panel can be obtained.
 可撓性を有する基板に、表示パネルの表面を傷などから保護するハードコート層(例えば、窒化シリコン、酸化アルミニウムなど)や、押圧を分散可能な材質の層(例えば、アラミド樹脂など)等が積層されていてもよい。また、水分等による表示素子の寿命の低下等を抑制するために、可撓性を有する基板に透水性の低い絶縁膜が積層されていてもよい。例えば、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、窒化アルミニウム等の無機絶縁材料を用いることができる。 A hard coat layer (for example, silicon nitride, aluminum oxide) that protects the surface of the display panel from scratches, a layer of a material that can disperse the pressure (for example, aramid resin), etc. on a flexible substrate It may be laminated. In order to suppress a decrease in the lifetime of the display element due to moisture or the like, an insulating film with low water permeability may be stacked over a flexible substrate. For example, an inorganic insulating material such as silicon nitride, silicon oxynitride, silicon nitride oxide, aluminum oxide, or aluminum nitride can be used.
〔トランジスタ〕
 トランジスタは、ゲート電極として機能する導電層と、半導体層と、ソース電極として機能する導電層と、ドレイン電極として機能する導電層と、ゲート絶縁層として機能する絶縁層と、を有する。上記では、ボトムゲート構造のトランジスタを適用した場合を示している。
[Transistor]
The transistor includes a conductive layer that functions as a gate electrode, a semiconductor layer, a conductive layer that functions as a source electrode, a conductive layer that functions as a drain electrode, and an insulating layer that functions as a gate insulating layer. The above shows the case where a bottom-gate transistor is applied.
 なお、本発明の一態様の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタとしてもよいし、スタガ型のトランジスタとしてもよいし、逆スタガ型のトランジスタとしてもよい。また、トップゲート型又はボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルの上下にゲート電極が設けられていてもよい。 Note that there is no particular limitation on the structure of the transistor included in the display device of one embodiment of the present invention. For example, a planar transistor, a staggered transistor, or an inverted staggered transistor may be used. Further, a top-gate or bottom-gate transistor structure may be employed. Alternatively, gate electrodes may be provided above and below the channel.
 トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、又は一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。 There is no particular limitation on the crystallinity of a semiconductor material used for the transistor, and any of an amorphous semiconductor and a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partially including a crystal region) is used. May be used. It is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
 また、トランジスタに用いる半導体材料としては、酸化物半導体を用いることができる。代表的には、インジウムを含む酸化物半導体などを適用できる。 An oxide semiconductor can be used as a semiconductor material used for the transistor. Typically, an oxide semiconductor containing indium can be used.
 特にシリコンよりもバンドギャップが広く、且つキャリア密度の小さい半導体材料を用いると、トランジスタのオフ状態における電流を低減できるため好ましい。 In particular, it is preferable to use a semiconductor material having a wider band gap and lower carrier density than silicon because current in the off-state of the transistor can be reduced.
 また、シリコンよりもバンドギャップの大きな酸化物半導体を用いたトランジスタは、その低いオフ電流により、トランジスタと直列に接続された容量素子に蓄積した電荷を長期間に亘って保持することが可能である。このようなトランジスタを画素に適用することで、各画素の階調を維持しつつ、駆動回路を停止することも可能となる。その結果、極めて消費電力の低減された表示装置を実現できる。 In addition, a transistor including an oxide semiconductor having a band gap larger than that of silicon can hold charge accumulated in a capacitor connected in series with the transistor for a long time because of the low off-state current. . By applying such a transistor to a pixel, the driving circuit can be stopped while maintaining the gradation of each pixel. As a result, a display device with extremely reduced power consumption can be realized.
 半導体層は、例えば少なくともインジウム、亜鉛及びM(アルミニウム、チタン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、セリウム、スズ、ネオジムまたはハフニウム等の金属)を含むIn−M−Zn系酸化物で表記される膜を含むことが好ましい。また、該酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすため、それらと共に、スタビライザーを含むことが好ましい。 The semiconductor layer is represented by an In-M-Zn-based oxide containing at least indium, zinc, and M (metal such as aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, tin, neodymium, or hafnium). It is preferable to include a film. In addition, in order to reduce variation in electrical characteristics of the transistor including the oxide semiconductor, a stabilizer is preferably included together with the transistor.
 スタビライザーとしては、上記Mで記載の金属を含め、例えば、ランタノイドである、プラセオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム等がある。 Examples of stabilizers include the metals described in M above, and examples thereof include lanthanoids such as praseodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
 半導体層を構成する酸化物半導体として、例えば、In−Ga−Zn系酸化物、In−Al−Zn系酸化物、In−Sn−Zn系酸化物、In−Hf−Zn系酸化物、In−La−Zn系酸化物、In−Ce−Zn系酸化物、In−Pr−Zn系酸化物、In−Nd−Zn系酸化物、In−Sm−Zn系酸化物、In−Eu−Zn系酸化物、In−Gd−Zn系酸化物、In−Tb−Zn系酸化物、In−Dy−Zn系酸化物、In−Ho−Zn系酸化物、In−Er−Zn系酸化物、In−Tm−Zn系酸化物、In−Yb−Zn系酸化物、In−Lu−Zn系酸化物、In−Sn−Ga−Zn系酸化物、In−Hf−Ga−Zn系酸化物、In−Al−Ga−Zn系酸化物、In−Sn−Al−Zn系酸化物、In−Sn−Hf−Zn系酸化物、In−Hf−Al−Zn系酸化物を用いることができる。 As an oxide semiconductor included in the semiconductor layer, for example, an In—Ga—Zn-based oxide, an In—Al—Zn-based oxide, an In—Sn—Zn-based oxide, an In—Hf—Zn-based oxide, an In— La-Zn oxide, In-Ce-Zn oxide, In-Pr-Zn oxide, In-Nd-Zn oxide, In-Sm-Zn oxide, In-Eu-Zn oxide In-Gd-Zn-based oxide, In-Tb-Zn-based oxide, In-Dy-Zn-based oxide, In-Ho-Zn-based oxide, In-Er-Zn-based oxide, In-Tm -Zn oxide, In-Yb-Zn oxide, In-Lu-Zn oxide, In-Sn-Ga-Zn oxide, In-Hf-Ga-Zn oxide, In-Al- Ga-Zn-based oxide, In-Sn-Al-Zn-based oxide, In-Sn-Hf-Zn Oxide, can be used In-Hf-Al-Zn-based oxide.
 なお、ここで、In−Ga−Zn系酸化物とは、InとGaとZnを主成分として有する酸化物という意味であり、InとGaとZnの比率は問わない。また、InとGaとZn以外の金属元素が入っていてもよい。 Note that here, the In—Ga—Zn-based oxide means an oxide containing In, Ga, and Zn as main components, and the ratio of In, Ga, and Zn is not limited. Moreover, metal elements other than In, Ga, and Zn may be contained.
 また、半導体層と導電層は、上記酸化物のうち同一の金属元素を有していてもよい。半導体層と導電層を同一の金属元素とすることで、製造コストを低減させることができる。例えば、同一の金属組成の金属酸化物ターゲットを用いることで、製造コストを低減させることができる。また半導体層と導電層を加工する際のエッチングガスまたはエッチング液を共通して用いることができる。ただし、半導体層と導電層は、同一の金属元素を有していても、組成が異なる場合がある。例えば、トランジスタ及び容量素子の作製工程中に、膜中の金属元素が脱離し、異なる金属組成となる場合がある。 Further, the semiconductor layer and the conductive layer may have the same metal element among the above oxides. Manufacturing costs can be reduced by using the same metal element for the semiconductor layer and the conductive layer. For example, the manufacturing cost can be reduced by using metal oxide targets having the same metal composition. Further, an etching gas or an etching solution for processing the semiconductor layer and the conductive layer can be used in common. However, the semiconductor layer and the conductive layer may have different compositions even if they have the same metal element. For example, a metal element in a film may be detached during a manufacturing process of a transistor and a capacitor to have a different metal composition.
 半導体層を構成する酸化物半導体は、エネルギーギャップが2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上であることが好ましい。このように、エネルギーギャップの広い酸化物半導体を用いることで、トランジスタのオフ電流を低減することができる。 The oxide semiconductor constituting the semiconductor layer preferably has an energy gap of 2 eV or more, preferably 2.5 eV or more, more preferably 3 eV or more. In this manner, off-state current of a transistor can be reduced by using an oxide semiconductor with a wide energy gap.
 半導体層を構成する酸化物半導体がIn−M−Zn系酸化物の場合、In−M−Zn酸化物を成膜するために用いるスパッタリングターゲットの金属元素の原子数比は、In≧M、Zn≧Mを満たすことが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8等が好ましい。なお、成膜される半導体層の原子数比はそれぞれ、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。 In the case where the oxide semiconductor included in the semiconductor layer is an In-M-Zn-based oxide, the atomic ratio of the metal elements of the sputtering target used for forming the In-M-Zn oxide is In ≧ M, Zn It is preferable to satisfy ≧ M. As the atomic ratio of the metal elements of such a sputtering target, In: M: Zn = 1: 1: 1, In: M: Zn = 1: 1: 1.2, In: M: Zn = 3: 1: 2, In: M: Zn = 4: 2: 3, In: M: Zn = 4: 2: 4.1, In: M: Zn = 5: 1: 6, In: M: Zn = 5: 1: 7, In: M: Zn = 5: 1: 8 etc. are preferable. Note that the atomic ratio of the semiconductor layer to be formed includes a variation of plus or minus 40% of the atomic ratio of the metal element contained in the sputtering target.
 本実施の形態で例示したボトムゲート構造のトランジスタは、作製工程を削減できるため好ましい。またこのとき酸化物半導体を用いることで、多結晶シリコンよりも低温で形成できる、半導体層よりも下層の配線や電極の材料、基板の材料として、耐熱性の低い材料を用いることが可能なため、材料の選択の幅を広げることができる。例えば、極めて大面積のガラス基板などを好適に用いることができる。 The bottom-gate transistor exemplified in this embodiment is preferable because the number of manufacturing steps can be reduced. In addition, by using an oxide semiconductor at this time, a material having low heat resistance can be used as a material for a wiring, an electrode, or a substrate below the semiconductor layer, which can be formed at a lower temperature than polycrystalline silicon. Can widen the choice of materials. For example, a glass substrate having an extremely large area can be suitably used.
〔導電層〕
 トランジスタのゲート、ソースおよびドレインのほか、表示装置を構成する各種配線および電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンなどの金属、またはこれを主成分とする合金などが挙げられる。またこれらの材料を含む膜を単層で、または積層構造として用いることができる。例えば、シリコンを含むアルミニウム膜の単層構造、チタン膜上にアルミニウム膜を積層する二層構造、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造、チタン膜または窒化チタン膜と、その上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、その上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛等の酸化物を用いてもよい。また、マンガンを含む銅を用いると、エッチングによる形状の制御性が高まるため好ましい。
[Conductive layer]
In addition to the gate, source, and drain of a transistor, materials that can be used for conductive layers such as various wirings and electrodes that constitute a display device include aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, A metal such as tantalum or tungsten, or an alloy containing the same as a main component can be given. A film containing any of these materials can be used as a single layer or a stacked structure. For example, a single layer structure of an aluminum film containing silicon, a two layer structure in which an aluminum film is stacked on a titanium film, a two layer structure in which an aluminum film is stacked on a tungsten film, and a copper film on a copper-magnesium-aluminum alloy film Two-layer structure to stack, two-layer structure to stack copper film on titanium film, two-layer structure to stack copper film on tungsten film, titanium film or titanium nitride film, and aluminum film or copper film on top of it A three-layer structure for forming a titanium film or a titanium nitride film thereon, a molybdenum film or a molybdenum nitride film, and an aluminum film or a copper film stacked thereon, and a molybdenum film or a There is a three-layer structure for forming a molybdenum nitride film. Note that an oxide such as indium oxide, tin oxide, or zinc oxide may be used. Further, it is preferable to use copper containing manganese because the controllability of the shape by etching is increased.
 また、表示素子(液晶素子、発光素子またはその他の表示素子)が有する導電層(画素電極や共通電極として機能する導電層)には、可視光を透過する導電性材料、または可視光を反射する導電性材料を用いることができる。 In addition, a conductive layer (a conductive layer functioning as a pixel electrode or a common electrode) included in a display element (a liquid crystal element, a light-emitting element, or another display element) reflects a conductive material that transmits visible light or reflects visible light. A conductive material can be used.
 可視光を透過する導電性材料としては、例えば、インジウム、亜鉛、錫の中から選ばれた一種を含む材料を用いるとよい。具体的には、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、酸化シリコンを含むインジウム錫酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛などが挙げられる。また、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、もしくはチタン等の金属材料、これら金属材料を含む合金、又はこれら金属材料の窒化物(例えば、窒化チタン)等も、透光性を有する程度に薄く形成することで用いることができる。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウム錫酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。なお、グラフェンを含む膜を用いることもできる。グラフェンを含む膜は、例えば膜状に形成された酸化グラフェンを含む膜を還元して形成することができる。 As the conductive material that transmits visible light, for example, a material containing one kind selected from indium, zinc, and tin may be used. Specifically, indium oxide, indium tin oxide, indium zinc oxide, indium oxide including tungsten oxide, indium zinc oxide including tungsten oxide, indium oxide including titanium oxide, indium tin oxide including titanium oxide And indium tin oxide containing silicon oxide, zinc oxide, and zinc oxide containing gallium. In addition, a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, or titanium, an alloy including these metal materials, or a nitride of these metal materials (for example, Titanium nitride) can also be used by forming it thin enough to have translucency. In addition, a stacked film of the above materials can be used as a conductive layer. For example, it is preferable to use a stacked film of an alloy of silver and magnesium and indium tin oxide because the conductivity can be increased. Note that a film containing graphene can also be used. The film containing graphene can be formed, for example, by reducing a film containing graphene oxide formed in a film shape.
 可視光を反射する導電性材料としては、例えば、アルミニウム、銀、またはこれらの金属材料を含む合金等が挙げられる。そのほか、金、白金、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、もしくはパラジウム等の金属材料、またはこれら金属材料を含む合金を用いることができる。また、上記金属材料または合金に、ランタン、ネオジム、またはゲルマニウム等が添加されていてもよい。アルミニウムとチタンの合金、アルミニウムとニッケルの合金、アルミニウムとネオジムの合金、アルミニウム、ニッケル、及びランタンの合金(Al−Ni−La)等のアルミニウムを含む合金(アルミニウム合金)、銀と銅の合金、銀とパラジウムと銅の合金(Ag−Pd−Cu、APCとも記す)、銀とマグネシウムの合金等の銀を含む合金を用いてもよい。銀と銅を含む合金は、耐熱性が高いため好ましい。さらに、アルミニウム膜またはアルミニウム合金膜に接して金属膜又は金属酸化物膜を積層することで、酸化を抑制することができる。このような金属膜、金属酸化物膜の材料としては、チタンや酸化チタンなどが挙げられる。また、上記可視光を透過する導電膜と金属材料からなる膜とを積層してもよい。例えば、銀とインジウム錫酸化物の積層膜、銀とマグネシウムの合金とインジウム錫酸化物の積層膜などを用いることができる。 Examples of the conductive material that reflects visible light include aluminum, silver, and alloys containing these metal materials. In addition, a metal material such as gold, platinum, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, or palladium, or an alloy containing these metal materials can be used. In addition, lanthanum, neodymium, germanium, or the like may be added to the metal material or alloy. Alloys containing aluminum such as aluminum and titanium alloys, aluminum and nickel alloys, aluminum and neodymium alloys, aluminum, nickel, and lanthanum alloys (Al-Ni-La), silver and copper alloys, An alloy containing silver such as an alloy of silver, palladium, and copper (also referred to as Ag-Pd-Cu, APC), an alloy of silver and magnesium, or the like may be used. An alloy containing silver and copper is preferable because of its high heat resistance. Furthermore, oxidation can be suppressed by stacking a metal film or a metal oxide film in contact with the aluminum film or the aluminum alloy film. Examples of materials for such metal films and metal oxide films include titanium and titanium oxide. Alternatively, the conductive film that transmits visible light and a film made of a metal material may be stacked. For example, a laminated film of silver and indium tin oxide, a laminated film of an alloy of silver and magnesium and indium tin oxide, or the like can be used.
 導電層は、それぞれ、蒸着法やスパッタリング法を用いて形成すればよい。そのほか、インクジェット法などの吐出法、スクリーン印刷法などの印刷法、又はメッキ法を用いて形成することができる。 The conductive layers may be formed using a vapor deposition method or a sputtering method, respectively. In addition, it can be formed using a discharge method such as an inkjet method, a printing method such as a screen printing method, or a plating method.
〔絶縁層〕
 各絶縁層に用いることのできる絶縁材料としては、例えば、ポリイミド、アクリル、エポキシ、シリコーン樹脂等の他、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料を用いることもできる。
[Insulating layer]
As an insulating material that can be used for each insulating layer, for example, polyimide, acrylic, epoxy, silicone resin, and the like, and inorganic insulating materials such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, and aluminum oxide are used. You can also
 また発光素子は、一対の透水性の低い絶縁膜の間に設けられていることが好ましい。これにより、発光素子に水等の不純物が侵入することを抑制でき、装置の信頼性の低下を抑制できる。 The light-emitting element is preferably provided between a pair of insulating films with low water permeability. Thereby, impurities such as water can be prevented from entering the light emitting element, and a decrease in reliability of the apparatus can be suppressed.
 透水性の低い絶縁膜としては、窒化シリコン膜、窒化酸化シリコン膜等の窒素と珪素を含む膜や、窒化アルミニウム膜等の窒素とアルミニウムを含む膜等が挙げられる。また、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜等を用いてもよい。 Examples of the low water-permeable insulating film include a film containing nitrogen and silicon such as a silicon nitride film and a silicon nitride oxide film, and a film containing nitrogen and aluminum such as an aluminum nitride film. Alternatively, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, or the like may be used.
 例えば、透水性の低い絶縁膜の水蒸気透過量は、1×10−5[g/(m・day)]以下、好ましくは1×10−6[g/(m・day)]以下、より好ましくは1×10−7[g/(m・day)]以下、さらに好ましくは1×10−8[g/(m・day)]以下とする。 For example, the water vapor transmission rate of an insulating film with low water permeability is 1 × 10 −5 [g / (m 2 · day)] or less, preferably 1 × 10 −6 [g / (m 2 · day)] or less, More preferably, it is 1 × 10 −7 [g / (m 2 · day)] or less, and further preferably 1 × 10 −8 [g / (m 2 · day)] or less.
〔表示素子について〕
 表示面側に位置する第1の画素が有する表示素子には、外光を反射して表示する素子を用いることができる。このような素子は、光源を持たないため、表示の際の消費電力を極めて小さくすることが可能となる。第1の画素が有する表示素子には、代表的には反射型の液晶素子を用いることができる。または、第1の画素が有する表示素子として、シャッター方式のMEMS(Micro Electro Mechanical Systems)素子、光干渉方式のMEMS素子の他、マイクロカプセル方式、電気泳動方式、エレクトロウェッティング方式、電子粉流体(登録商標)方式等を適用した素子などを用いることができる。
[Display elements]
As a display element included in the first pixel located on the display surface side, an element that reflects and displays external light can be used. Since such an element does not have a light source, power consumption during display can be extremely reduced. As the display element included in the first pixel, a reflective liquid crystal element can be typically used. Alternatively, as a display element included in the first pixel, a shutter type MEMS (Micro Electro Mechanical Systems) element, an optical interference type MEMS element, a microcapsule type, an electrophoretic type, an electrowetting type, an electronic powder fluid ( A device to which a registered trademark method or the like is applied can be used.
 また、表示面側とは反対側に位置する第2の画素が有する表示素子は光源を有し、その光源からの光を利用して表示する素子を用いることができる。このような画素が射出する光は、その輝度や色度が外光に左右されることがないため、色再現性が高く(色域が広く)、且つコントラストの高い、つまり鮮やかな表示を行うことができる。第2の画素が有する表示素子には、例えばOLED(Organic Light Emitting Diode)、LED(Light Emitting Diode)、QLED(Quantum−dot Light Emitting Diode)などの自発光性の発光素子を用いることができる。または、第2の画素が有する表示素子として、光源であるバックライトと、バックライトからの光の透過光の光量を制御する透過型の液晶素子とを組み合わせたものを用いてもよい。 Further, the display element included in the second pixel located on the side opposite to the display surface side has a light source, and an element that displays using light from the light source can be used. The light emitted from such a pixel is not affected by the brightness or chromaticity of the light, and therefore has high color reproducibility (wide color gamut) and high contrast, that is, vivid display. be able to. As a display element included in the second pixel, for example, a self-luminous light emitting element such as an OLED (Organic Light Emitting Diode), an LED (Light Emitting Diode), or a QLED (Quantum-dot Light Emitting Diode) can be used. Alternatively, as the display element included in the second pixel, a combination of a backlight that is a light source and a transmissive liquid crystal element that controls the amount of light transmitted through the backlight may be used.
〔液晶素子〕
 液晶素子としては、例えば垂直配向(VA:Vertical Alignment)モードが適用された液晶素子を用いることができる。垂直配向モードとしては、MVA(Multi−Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASV(Advanced Super View)モードなどを用いることができる。
[Liquid crystal element]
As the liquid crystal element, for example, a liquid crystal element to which a vertical alignment (VA: Vertical Alignment) mode is applied can be used. As the vertical alignment mode, an MVA (Multi-Domain Vertical Alignment) mode, a PVA (Patterned Vertical Alignment) mode, an ASV (Advanced Super View) mode, or the like can be used.
 また、液晶素子には、様々なモードが適用された液晶素子を用いることができる。例えばVAモードのほかに、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optically Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モード等が適用された液晶素子を用いることができる。 Further, liquid crystal elements to which various modes are applied can be used as the liquid crystal elements. For example, in addition to the VA mode, TN (Twisted Nematic) mode, IPS (In-Plane-Switching) mode, FFS (Fringe Field Switching) mode, ASM (Axially Symmetrical Aligned Micro-cell) mode A liquid crystal element to which an FLC (Ferroelectric Liquid Crystal) mode, an AFLC (Antiferroelectric Liquid Crystal) mode, or the like is applied can be used.
 なお、液晶素子は、液晶の光学的変調作用によって光の透過または非透過を制御する素子である。なお、液晶の光学的変調作用は、液晶にかかる電界(横方向の電界、縦方向の電界又は斜め方向の電界を含む)によって制御される。なお、液晶素子に用いる液晶としては、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。 The liquid crystal element is an element that controls transmission or non-transmission of light by an optical modulation action of liquid crystal. Note that the optical modulation action of the liquid crystal is controlled by an electric field applied to the liquid crystal (including a horizontal electric field, a vertical electric field, or an oblique electric field). As the liquid crystal used in the liquid crystal element, a thermotropic liquid crystal, a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal (PDLC), a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like is used. Can do. These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, and the like depending on conditions.
 また、液晶材料としては、ポジ型の液晶、またはネガ型の液晶のいずれを用いてもよく、適用するモードや設計に応じて最適な液晶材料を用いればよい。 Also, as the liquid crystal material, either a positive type liquid crystal or a negative type liquid crystal may be used, and an optimal liquid crystal material may be used according to the mode and design to be applied.
 また、液晶の配向を制御するため、配向膜を設けることができる。なお、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために数重量%以上のカイラル剤を混合させた液晶組成物を液晶層に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が短く、光学的等方性である。また、ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、配向処理が不要であり、視野角依存性が小さい。また配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができる。 Also, an alignment film can be provided to control the alignment of the liquid crystal. Note that in the case of employing a horizontal electric field mode, liquid crystal exhibiting a blue phase for which an alignment film is unnecessary may be used. The blue phase is one of the liquid crystal phases. When the temperature of the cholesteric liquid crystal is increased, the blue phase appears immediately before the transition from the cholesteric phase to the isotropic phase. Since the blue phase appears only in a narrow temperature range, a liquid crystal composition mixed with several percent by weight or more of a chiral agent is used for the liquid crystal layer in order to improve the temperature range. A liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral agent has a short response speed and is optically isotropic. In addition, a liquid crystal composition including a liquid crystal exhibiting a blue phase and a chiral agent does not require alignment treatment and has a small viewing angle dependency. Further, since it is not necessary to provide an alignment film, a rubbing process is not required, so that electrostatic breakdown caused by the rubbing process can be prevented, and defects or breakage of the liquid crystal display device during the manufacturing process can be reduced. .
 本発明の一態様では、特に反射型の液晶素子を用いることができる。反射型の液晶素子は、視認側に位置する電極に可視光を透過する導電性材料を用い、視認側とは反対側に位置する電極に可視光を反射する導電性材料を用いることができる。 In one embodiment of the present invention, a reflective liquid crystal element can be used. In the reflective liquid crystal element, a conductive material that transmits visible light can be used for the electrode positioned on the viewing side, and a conductive material that reflects visible light can be used for the electrode positioned on the side opposite to the viewing side.
 反射型の液晶素子を用いる場合には、表示面側に偏光板を設ける。またこれとは別に、表示面側に光拡散板を配置すると、視認性を向上させられるため好ましい。 When a reflective liquid crystal element is used, a polarizing plate is provided on the display surface side. Separately from this, it is preferable to arrange a light diffusing plate on the display surface side because the visibility can be improved.
〔発光素子〕
 発光素子としては、自発光が可能な素子を用いることができ、電流又は電圧によって輝度が制御される素子をその範疇に含んでいる。例えば、LED、QLED、有機EL素子、無機EL素子等を用いることができる。
[Light emitting element]
As the light-emitting element, an element capable of self-emission can be used, and an element whose luminance is controlled by current or voltage is included in its category. For example, an LED, a QLED, an organic EL element, an inorganic EL element, or the like can be used.
 本発明の一態様では、特に発光素子は、トップエミッション型の発光素子を用いることが好ましい。光を取り出す側の電極には、上記可視光を透過する導電性材料を用いる。また、光を取り出さない側の電極には、上記可視光を反射する導電性材料を用いることが好ましい。 In one embodiment of the present invention, it is preferable to use a top emission type light emitting element as the light emitting element. The conductive material that transmits visible light is used for the electrode from which light is extracted. Moreover, it is preferable to use the said electroconductive material which reflects the said visible light for the electrode of the side which does not take out light.
 EL層は少なくとも発光層を有する。EL層は、発光層以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子注入性の高い物質、又はバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質)等を含む層をさらに有していてもよい。 The EL layer has at least a light emitting layer. The EL layer is a layer other than the light-emitting layer, such as a substance having a high hole injection property, a substance having a high hole transport property, a hole blocking material, a substance having a high electron transport property, a substance having a high electron injection property, or a bipolar property. A layer including a substance (a substance having a high electron transporting property and a high hole transporting property) and the like may be further included.
 EL層には低分子系化合物及び高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。EL層を構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。 The EL layer can use either a low molecular compound or a high molecular compound, and may contain an inorganic compound. The layers constituting the EL layer can be formed by a method such as a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an ink jet method, or a coating method.
 陰極と陽極の間に、発光素子の閾値電圧より高い電圧を印加すると、EL層に陽極側から正孔が注入され、陰極側から電子が注入される。注入された電子と正孔はEL層において再結合し、EL層に含まれる発光物質が発光する。 When a voltage higher than the threshold voltage of the light emitting element is applied between the cathode and the anode, holes are injected into the EL layer from the anode side, and electrons are injected from the cathode side. The injected electrons and holes are recombined in the EL layer, and the light-emitting substance contained in the EL layer emits light.
 発光素子として、白色発光の発光素子を適用する場合には、EL層に2種類以上の発光物質を含む構成とすることが好ましい。例えば2以上の発光物質の各々の発光が補色の関係となるように、発光物質を選択することにより白色発光を得ることができる。例えば、それぞれR(赤)、G(緑)、B(青)、Y(黄)、O(橙)等の発光を示す発光物質、またはR、G、Bのうち2以上の色のスペクトル成分を含む発光を示す発光物質のうち、2以上を含むことが好ましい。また、発光素子からの発光のスペクトルが、可視光領域の波長(例えば350nm~750nm)の範囲内に2以上のピークを有する発光素子を適用することが好ましい。また、黄色の波長領域にピークを有する材料の発光スペクトルは、緑色及び赤色の波長領域にもスペクトル成分を有する材料であることが好ましい。 When a white light emitting element is applied as the light emitting element, it is preferable that the EL layer includes two or more kinds of light emitting substances. For example, white light emission can be obtained by selecting the light emitting material so that the light emission of each of the two or more light emitting materials has a complementary color relationship. For example, a light emitting material that emits light such as R (red), G (green), B (blue), Y (yellow), and O (orange), or spectral components of two or more colors of R, G, and B It is preferable that 2 or more are included among the luminescent substances which show light emission containing. In addition, it is preferable to apply a light-emitting element whose emission spectrum from the light-emitting element has two or more peaks in a wavelength range of visible light (for example, 350 nm to 750 nm). The emission spectrum of the material having a peak in the yellow wavelength region is preferably a material having spectral components in the green and red wavelength regions.
 EL層は、一の色を発光する発光材料を含む発光層と、他の色を発光する発光材料を含む発光層とが積層された構成とすることが好ましい。例えば、EL層における複数の発光層は、互いに接して積層されていてもよいし、いずれの発光材料も含まない領域を介して積層されていてもよい。例えば、蛍光発光層と燐光発光層との間に、当該蛍光発光層または燐光発光層と同一の材料(例えばホスト材料、アシスト材料)を含み、且ついずれの発光材料も含まない領域を設ける構成としてもよい。これにより、発光素子の作製が容易になり、また、駆動電圧が低減される。 The EL layer preferably has a structure in which a light-emitting layer including a light-emitting material that emits one color and a light-emitting layer including a light-emitting material that emits another color are stacked. For example, the plurality of light emitting layers in the EL layer may be stacked in contact with each other, or may be stacked through a region not including any light emitting material. For example, a region including the same material (for example, a host material or an assist material) as the fluorescent light emitting layer or the phosphorescent light emitting layer and not including any light emitting material is provided between the fluorescent light emitting layer and the phosphorescent light emitting layer. Also good. This facilitates the production of the light emitting element and reduces the driving voltage.
 また、発光素子は、EL層を1つ有するシングル素子であってもよいし、複数のEL層が電荷発生層を介して積層されたタンデム素子であってもよい。 The light-emitting element may be a single element having one EL layer or a tandem element in which a plurality of EL layers are stacked with a charge generation layer interposed therebetween.
 なお、上述した、発光層、ならびに正孔注入性の高い物質、正孔輸送性の高い物質、電子輸送性の高い物質、及び電子注入性の高い物質、バイポーラ性の物質等を含む層は、それぞれ量子ドットなどの無機化合物や、高分子化合物(オリゴマー、デンドリマー、ポリマー等)を有していてもよい。例えば、量子ドットを発光層に用いることで、発光材料として機能させることもできる。 Note that the above-described light-emitting layer and a layer containing a substance having a high hole-injecting property, a substance having a high hole-transporting property, a substance having a high electron-transporting property, a substance having a high electron-injecting property, a bipolar substance, Each may have an inorganic compound such as a quantum dot or a polymer compound (oligomer, dendrimer, polymer, etc.). For example, a quantum dot can be used for a light emitting layer to function as a light emitting material.
 なお、量子ドット材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料などを用いることができる。また、12族と16族、13族と15族、または14族と16族の元素グループを含む材料を用いてもよい。または、カドミウム、セレン、亜鉛、硫黄、リン、インジウム、テルル、鉛、ガリウム、ヒ素、アルミニウム等の元素を含む量子ドット材料を用いてもよい。 As the quantum dot material, a colloidal quantum dot material, an alloy type quantum dot material, a core / shell type quantum dot material, a core type quantum dot material, or the like can be used. Alternatively, a material including an element group of Group 12 and Group 16, Group 13 and Group 15, or Group 14 and Group 16 may be used. Alternatively, a quantum dot material containing an element such as cadmium, selenium, zinc, sulfur, phosphorus, indium, tellurium, lead, gallium, arsenic, or aluminum may be used.
 発光素子の電極に用いることのできる、可視光を透過する導電性材料、及び可視光を反射する導電性材料については、上記を援用できる。 The above can be used for a conductive material that transmits visible light and a conductive material that reflects visible light, which can be used for an electrode of a light-emitting element.
〔接着層〕
 接着層としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
[Adhesive layer]
As the adhesive layer, various curable adhesives such as an ultraviolet curable photocurable adhesive, a reactive curable adhesive, a thermosetting adhesive, and an anaerobic adhesive can be used. Examples of these adhesives include epoxy resins, acrylic resins, silicone resins, phenol resins, polyimide resins, imide resins, PVC (polyvinyl chloride) resins, PVB (polyvinyl butyral) resins, EVA (ethylene vinyl acetate) resins, and the like. In particular, a material with low moisture permeability such as an epoxy resin is preferable. Alternatively, a two-component mixed resin may be used. Further, an adhesive sheet or the like may be used.
 また、上記樹脂に乾燥剤を含んでいてもよい。例えば、アルカリ土類金属の酸化物(酸化カルシウムや酸化バリウム等)のように、化学吸着によって水分を吸着する物質を用いることができる。または、ゼオライトやシリカゲル等のように、物理吸着によって水分を吸着する物質を用いてもよい。乾燥剤が含まれていると、水分などの不純物が素子に侵入することを抑制でき、表示パネルの信頼性が向上するため好ましい。 Further, the resin may contain a desiccant. For example, a substance that adsorbs moisture by chemical adsorption, such as an alkaline earth metal oxide (such as calcium oxide or barium oxide), can be used. Alternatively, a substance that adsorbs moisture by physical adsorption, such as zeolite or silica gel, may be used. The inclusion of a desiccant is preferable because impurities such as moisture can be prevented from entering the element and the reliability of the display panel is improved.
 また、上記樹脂に屈折率の高いフィラーや光散乱部材を混合することにより、光取り出し効率を向上させることができる。例えば、酸化チタン、酸化バリウム、ゼオライト、ジルコニウム等を用いることができる。 Also, the light extraction efficiency can be improved by mixing a filler having a high refractive index or a light scattering member with the resin. For example, titanium oxide, barium oxide, zeolite, zirconium, or the like can be used.
〔接続層〕
 接続層としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)や、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
(Connection layer)
As the connection layer, an anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Conductive Paste), or the like can be used.
〔着色層〕
 着色層に用いることのできる材料としては、金属材料、樹脂材料、顔料または染料が含まれた樹脂材料などが挙げられる。
(Colored layer)
Examples of materials that can be used for the colored layer include metal materials, resin materials, resin materials containing pigments or dyes, and the like.
〔遮光層〕
 遮光層として用いることのできる材料としては、カーボンブラック、チタンブラック、金属、金属酸化物、複数の金属酸化物の固溶体を含む複合酸化物等が挙げられる。遮光層は、樹脂材料を含む膜であってもよいし、金属などの無機材料の薄膜であってもよい。また、遮光層に、着色層の材料を含む膜の積層膜を用いることもできる。例えば、ある色の光を透過する着色層に用いる材料を含む膜と、他の色の光を透過する着色層に用いる材料を含む膜との積層構造を用いることができる。着色層と遮光層の材料を共通化することで、装置を共通化できるほか工程を簡略化できるため好ましい。
[Light shielding layer]
Examples of the material that can be used for the light-shielding layer include carbon black, titanium black, metal, metal oxide, and composite oxide containing a solid solution of a plurality of metal oxides. The light shielding layer may be a film containing a resin material or a thin film of an inorganic material such as a metal. Alternatively, a stacked film of a film containing a material for the colored layer can be used for the light shielding layer. For example, a stacked structure of a film including a material used for a colored layer that transmits light of a certain color and a film including a material used for a colored layer that transmits light of another color can be used. It is preferable to use a common material for the coloring layer and the light-shielding layer because the apparatus can be shared and the process can be simplified.
 以上が各構成要素についての説明である。 The above is an explanation of each component.
[変形例1]
 以下では、上記断面構成例で例示した表示装置とは一部の構成の異なる例を説明する。なお、上記と重複する部分については説明を省略し、相違点のみ説明する。
[Modification 1]
Hereinafter, an example in which a part of the configuration is different from the display device exemplified in the above-described cross-sectional configuration example will be described. In addition, description is abbreviate | omitted about the part which overlaps with the above, and only difference is demonstrated.
〔断面構成例1の変形例1〕
 図38は、図37と比較してトランジスタの構成及び樹脂層202の構成が異なる点、ならびに着色層565、遮光層566、及び絶縁層567を有する点で相違している。
[Variation 1 of cross-sectional configuration example 1]
FIG. 38 is different from FIG. 37 in that the structure of the transistor and the structure of the resin layer 202 are different, and that a colored layer 565, a light shielding layer 566, and an insulating layer 567 are provided.
 図38に示すトランジスタ401、トランジスタ403、トランジスタ501は、第2のゲート電極を有する。このように、回路部364や回路部366に設けるトランジスタ、及び発光素子360に流れる電流を制御するトランジスタ等に、一対のゲートを有するトランジスタを適用することが好ましい。 38, the transistor 401, the transistor 403, and the transistor 501 each have a second gate electrode. As described above, a transistor having a pair of gates is preferably used as the transistor provided in the circuit portion 364 or the circuit portion 366, the transistor that controls current flowing in the light-emitting element 360, and the like.
 樹脂層202は、液晶素子340と重なる開口部と、発光素子360と重なる開口部とが、別々に設けられている。これにより、液晶素子340の反射率を向上させることができる。 The resin layer 202 is provided with an opening overlapping the liquid crystal element 340 and an opening overlapping the light emitting element 360 separately. Thereby, the reflectance of the liquid crystal element 340 can be improved.
 また、絶縁層576の液晶素子340側の面には、遮光層566と、着色層565が設けられている。着色層565は、液晶素子340と重ねて設けられている。これにより、素子層200bはカラー表示を行うことができる。また、遮光層566は、液晶素子340と重なる開口部と、発光素子360と重なる開口部を有する。これにより、隣接画素間の混色を抑制し、色再現性の高い表示装置を実現できる。 Further, a light shielding layer 566 and a coloring layer 565 are provided on the surface of the insulating layer 576 on the liquid crystal element 340 side. The colored layer 565 is provided so as to overlap with the liquid crystal element 340. Thereby, the element layer 200b can perform color display. In addition, the light-blocking layer 566 has an opening that overlaps with the liquid crystal element 340 and an opening that overlaps with the light-emitting element 360. Thereby, color mixing between adjacent pixels can be suppressed, and a display device with high color reproducibility can be realized.
〔断面構成例1の変形例2〕
 図39は、各トランジスタにトップゲート型のトランジスタを適用した場合の例である。このように、トップゲート型のトランジスタを適用することにより、寄生容量が低減できるため、表示のフレーム周波数を高めることができる。また、例えば8インチ以上の大型の表示パネルに好適に用いることができる。
[Modification 2 of the cross-sectional configuration example 1]
FIG. 39 shows an example in which a top-gate transistor is applied to each transistor. In this manner, by applying a top-gate transistor, parasitic capacitance can be reduced, so that a display frame frequency can be increased. For example, it can be suitably used for a large display panel of 8 inches or more.
 また図39では、トランジスタ401、トランジスタ402、トランジスタ403、トランジスタ501に第2のゲート電極を有するトップゲート型のトランジスタを適用した場合の例を示している。 FIG. 39 shows an example in which a top-gate transistor having a second gate electrode is applied to the transistor 401, the transistor 402, the transistor 403, and the transistor 501.
 素子層100a側のトランジスタは、絶縁層478上に導電層491を有する。また導電層491を覆って絶縁層418が設けられている。また、素子層100b側のトランジスタは、絶縁層510上に導電層591を有する。また導電層591を覆って絶縁層578が設けられている。 The transistor on the element layer 100a side includes a conductive layer 491 over the insulating layer 478. An insulating layer 418 is provided to cover the conductive layer 491. In addition, the transistor on the element layer 100 b side includes a conductive layer 591 over the insulating layer 510. An insulating layer 578 is provided so as to cover the conductive layer 591.
 以上が変形例1についての説明である。 The above is the description of the first modification.
[表示装置の構成例2]
 上記表示装置の構成例1では、発光素子としてトップエミッション型の発光素子を用いたのに対し、本構成例2では、発光素子にボトムエミッション型の発光素子を用いた場合の例について説明する。
[Configuration Example 2 of Display Device]
In the configuration example 1 of the display device described above, a top emission type light emitting element is used as the light emitting element. In this configuration example 2, an example in which a bottom emission type light emitting element is used as the light emitting element will be described.
 なお、上記と共通する構成要素については同一の符号を付し、説明を省略する場合がある。 In addition, the same code | symbol is attached | subjected about the same component as the above, and description may be abbreviate | omitted.
 図40は、本発明の一態様の表示装置300の斜視概略図である。表示装置300は、基板351と基板361とが貼り合わされた構成を有する。図40では、基板361を破線で明示している。 FIG. 40 is a schematic perspective view of a display device 300 according to one embodiment of the present invention. The display device 300 has a structure in which a substrate 351 and a substrate 361 are attached to each other. In FIG. 40, the substrate 361 is indicated by a broken line.
 表示装置300は、表示部362、回路部364、配線365、回路部366、配線367等を有する。基板351と基板361の間には、例えば回路部364、配線365、回路部366、配線367及び画素電極として機能する導電層311b等が設けられる。また図40では基板361にIC373とFPC372が、基板351にIC375とFPC374がそれぞれ実装されている例を示している。そのため、図40に示す構成は、表示装置300とIC373、FPC372、IC375及びFPC374を有する表示モジュールと言うこともできる。 The display device 300 includes a display unit 362, a circuit unit 364, a wiring 365, a circuit unit 366, a wiring 367, and the like. Between the substrate 351 and the substrate 361, for example, a circuit portion 364, a wiring 365, a circuit portion 366, a wiring 367, a conductive layer 311b functioning as a pixel electrode, and the like are provided. 40 shows an example in which an IC 373 and an FPC 372 are mounted on the substrate 361, and an IC 375 and an FPC 374 are mounted on the substrate 351, respectively. Therefore, the structure illustrated in FIG. 40 can also be referred to as a display module including the display device 300, the IC 373, the FPC 372, the IC 375, and the FPC 374.
[断面構成例2]
 図41に、図40で例示した表示装置の、FPC372を含む領域の一部、回路部364を含む領域の一部、表示部362を含む領域の一部、回路部366を含む領域の一部、及びFPC374を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
[Cross-section configuration example 2]
41, part of the region including the FPC 372, part of the region including the circuit portion 364, part of the region including the display portion 362, and part of the region including the circuit portion 366 of the display device illustrated in FIG. , And an example of a cross section when part of a region including the FPC 374 is cut.
 図41に示す表示装置は、基板351側から素子層200a、素子層100a、素子層100b、及び素子層200bが順に積層された構成を有する。素子層100aと素子層100bの間には樹脂層101を有する。素子層200bと基板361の間には樹脂層202を有する。素子層200aと基板351とは、接着層417によって接着されている。また樹脂層202と基板361とは、接着層52により接着されている。 41 has a structure in which an element layer 200a, an element layer 100a, an element layer 100b, and an element layer 200b are sequentially stacked from the substrate 351 side. A resin layer 101 is provided between the element layer 100a and the element layer 100b. A resin layer 202 is provided between the element layer 200 b and the substrate 361. The element layer 200 a and the substrate 351 are bonded by an adhesive layer 417. In addition, the resin layer 202 and the substrate 361 are bonded by an adhesive layer 52.
〔素子層100a、素子層200a〕
 素子層100aは、樹脂層101の基板351側に、絶縁層478、複数のトランジスタ、容量素子405、配線365、絶縁層411、絶縁層412、絶縁層413、絶縁層414等を有する。素子層200aは、絶縁層415、発光素子360、スペーサ416、着色層425等を有する。
[Element layer 100a, Element layer 200a]
The element layer 100a includes an insulating layer 478, a plurality of transistors, a capacitor 405, a wiring 365, an insulating layer 411, an insulating layer 412, an insulating layer 413, an insulating layer 414, and the like on the substrate 351 side of the resin layer 101. The element layer 200a includes an insulating layer 415, a light-emitting element 360, a spacer 416, a coloring layer 425, and the like.
 発光素子360は、導電層421、EL層422、及び導電層423を有する。発光素子360は、光学調整層424を有していてもよい。発光素子360は、導電層421側に光を射出する、ボトムエミッション構造である。 The light-emitting element 360 includes a conductive layer 421, an EL layer 422, and a conductive layer 423. The light emitting element 360 may have an optical adjustment layer 424. The light-emitting element 360 has a bottom emission structure that emits light toward the conductive layer 421.
 発光素子360は、絶縁層418に覆われている。また、絶縁層418等を覆って基板351を接着する接着層417が設けられている。 The light emitting element 360 is covered with an insulating layer 418. In addition, an adhesive layer 417 that covers the insulating layer 418 and the like and adheres the substrate 351 is provided.
 着色層425は、発光素子360と重なる。着色層425は、絶縁層413と絶縁層414の間に設けられている。スペーサ416は、発光素子360と重ならない部分に設けられている。図41では、スペーサ416上の絶縁層418と基板351との間にわずかに隙間がある場合を示しているが、これらが接していてもよい。図41では、スペーサ416を樹脂層101側に設ける構成を示したが、基板351側に設けてもよい。 The colored layer 425 overlaps with the light emitting element 360. The coloring layer 425 is provided between the insulating layer 413 and the insulating layer 414. The spacer 416 is provided in a portion that does not overlap with the light emitting element 360. FIG. 41 shows the case where there is a slight gap between the insulating layer 418 over the spacer 416 and the substrate 351, but these may be in contact with each other. In FIG. 41, the spacer 416 is provided on the resin layer 101 side, but may be provided on the substrate 351 side.
 なお、絶縁層415よりも樹脂層101側に、遮光層を設けてもよい。例えば、着色層425と同じ被形成面上に設けることができる。ここで、着色層425の端部を、遮光層と重なるように設けることにより、光漏れを抑制することができる。なお、遮光層は、回路部364などの表示部362以外の領域に設けると、導波光などによる意図しない光漏れを抑制できるため好ましい。 Note that a light shielding layer may be provided closer to the resin layer 101 than the insulating layer 415. For example, it can be provided over the same surface as the colored layer 425. Here, light leakage can be suppressed by providing the end portion of the colored layer 425 so as to overlap the light shielding layer. Note that the light-blocking layer is preferably provided in a region other than the display portion 362 such as the circuit portion 364 because unintended light leakage due to guided light or the like can be suppressed.
 樹脂層101の一方の表面には絶縁層478が形成されている。また、発光素子360を覆って絶縁層418等が設けられている。絶縁層478及び絶縁層418に防湿性の高い膜を用いることが好ましい。 An insulating layer 478 is formed on one surface of the resin layer 101. Further, an insulating layer 418 and the like are provided so as to cover the light-emitting element 360. A highly moisture-proof film is preferably used for the insulating layers 478 and 418.
〔素子層100b、素子層200b〕
 素子層100bと素子層200bとは、絶縁層510を介して積層されている。素子層100aと素子層200bは、縦電界方式が適用された反射型液晶表示装置であるということができる。
[Element layer 100b, Element layer 200b]
The element layer 100b and the element layer 200b are stacked with an insulating layer 510 interposed therebetween. It can be said that the element layer 100a and the element layer 200b are reflective liquid crystal display devices to which a vertical electric field method is applied.
 素子層100bは、絶縁層510よりも基板351側に、複数のトランジスタ、容量素子(図示しない)、配線367、絶縁層511、絶縁層512、絶縁層513、絶縁層514等を有する。また素子層200bは、絶縁層510よりも基板361側に、液晶素子340、樹脂層201、配向膜564、接着層517、絶縁層576等を有する。また素子層200bと接着層52の間に、樹脂層202が設けられている。 The element layer 100b includes a plurality of transistors, a capacitor element (not shown), a wiring 367, an insulating layer 511, an insulating layer 512, an insulating layer 513, an insulating layer 514, and the like on the substrate 351 side of the insulating layer 510. The element layer 200b includes a liquid crystal element 340, a resin layer 201, an alignment film 564, an adhesive layer 517, an insulating layer 576, and the like on the substrate 361 side of the insulating layer 510. A resin layer 202 is provided between the element layer 200 b and the adhesive layer 52.
 また接着層517の外側には素子層100aが有する接続部406と重なる接着層518が設けられている。 Further, an adhesive layer 518 that overlaps with the connection portion 406 included in the element layer 100a is provided outside the adhesive layer 517.
 以上が断面構成例2についての説明である。 The above is the description of the cross-sectional configuration example 2.
[変形例2]
 以下では、上記断面構成例2で例示した表示装置とは一部の構成の異なる例を説明する。
[Modification 2]
Hereinafter, an example in which a part of the configuration is different from the display device illustrated in the cross-sectional configuration example 2 will be described.
〔断面構成例2の変形例1〕
 図42は、図41と比較してトランジスタの構成が異なる点、樹脂層101及び樹脂層202を有さない点、ならびに着色層565及び遮光層566を有する点で、主に相違している。
[Variation 1 of cross-sectional configuration example 2]
FIG. 42 is mainly different from FIG. 41 in that the structure of the transistor is different, the resin layer 101 and the resin layer 202 are not provided, and the colored layer 565 and the light shielding layer 566 are provided.
 図42に示すトランジスタ401、トランジスタ403、トランジスタ501は、第2のゲート電極を有する。このように、回路部364や回路部366に設けるトランジスタ、及び発光素子360に流れる電流を制御するトランジスタ等に、一対のゲートを有するトランジスタを適用することが好ましい。 42, the transistor 401, the transistor 403, and the transistor 501 each have a second gate electrode. As described above, a transistor having a pair of gates is preferably used as the transistor provided in the circuit portion 364 or the circuit portion 366, the transistor that controls current flowing in the light-emitting element 360, and the like.
 また、絶縁層576と基板361の間には、遮光層566と、着色層565が設けられている。着色層565は、液晶素子340と重ねて設けられている。これにより、素子層200bはカラー表示を行うことができる。また、遮光層566は、液晶素子340と重なる開口部と、発光素子360と重なる開口部を有する。これにより、隣接画素間の混色を抑制し、色再現性の高い表示装置を実現できる。 Further, a light shielding layer 566 and a colored layer 565 are provided between the insulating layer 576 and the substrate 361. The colored layer 565 is provided so as to overlap with the liquid crystal element 340. Thereby, the element layer 200b can perform color display. In addition, the light-blocking layer 566 has an opening that overlaps with the liquid crystal element 340 and an opening that overlaps with the light-emitting element 360. Thereby, color mixing between adjacent pixels can be suppressed, and a display device with high color reproducibility can be realized.
 図42に示す構成では、樹脂層101及び樹脂層202を有さないため、表示装置の厚さを低減できる。また、着色層425や着色層565等の厚さを均一にすることができ、表示品位を向上させることができる。 42 does not have the resin layer 101 and the resin layer 202, the thickness of the display device can be reduced. In addition, the thickness of the colored layer 425, the colored layer 565, and the like can be made uniform, and display quality can be improved.
〔断面構成例の変形例2〕
 図43は、各トランジスタにトップゲート型のトランジスタを適用した場合の例である。このように、トップゲート型のトランジスタを適用することにより、寄生容量が低減できるため、表示のフレーム周波数を高めることができる。また、例えば8インチ以上の大型の表示パネルに好適に用いることができる。
[Modification 2 of cross-sectional configuration example]
FIG. 43 shows an example in which a top-gate transistor is applied to each transistor. In this manner, by applying a top-gate transistor, parasitic capacitance can be reduced, so that a display frame frequency can be increased. For example, it can be suitably used for a large display panel of 8 inches or more.
 また図43では、トランジスタ401、トランジスタ403、トランジスタ501に第2のゲート電極を有するトップゲート型のトランジスタを適用した場合の例を示している。 FIG. 43 shows an example in which a top-gate transistor having a second gate electrode is applied to the transistor 401, the transistor 403, and the transistor 501.
 素子層100aは、接着層50と絶縁層478の間に絶縁層479を有する。また、絶縁層479と絶縁層478の間にトランジスタの第2のゲートとして機能する導電層491を有する。また導電層491を覆って絶縁層478が設けられている。また、素子層100bは、絶縁層510と絶縁層578の間にトランジスタの第2のゲートとして機能する導電層591を有する。また導電層591を覆って絶縁層578が設けられている。 The element layer 100 a includes an insulating layer 479 between the adhesive layer 50 and the insulating layer 478. In addition, a conductive layer 491 functioning as a second gate of the transistor is provided between the insulating layers 479 and 478. An insulating layer 478 is provided to cover the conductive layer 491. The element layer 100b includes a conductive layer 591 functioning as a second gate of the transistor between the insulating layer 510 and the insulating layer 578. An insulating layer 578 is provided so as to cover the conductive layer 591.
 以上が変形例2についての説明である。 The above is the description of the second modification.
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。 Note that at least part of this embodiment can be implemented in combination with any of the other embodiments described in this specification as appropriate.
(実施の形態3)
 本実施の形態では、本発明の一態様を用いて作製することができる表示モジュールについて説明する。
(Embodiment 3)
In this embodiment, a display module that can be manufactured using one embodiment of the present invention will be described.
 図44に示す表示モジュール8000は、上部カバー8001と下部カバー8002との間に、FPC8003に接続されたタッチパネル8004、FPC8005に接続された表示パネル8006、フレーム8009、プリント基板8010、及びバッテリ8011を有する。 A display module 8000 illustrated in FIG. 44 includes a touch panel 8004 connected to the FPC 8003, a display panel 8006 connected to the FPC 8005, a frame 8009, a printed circuit board 8010, and a battery 8011 between an upper cover 8001 and a lower cover 8002. .
 本発明の一態様を用いて作製された表示装置は、例えば、表示パネル8006に用いることができる。 The display device manufactured using one embodiment of the present invention can be used for the display panel 8006, for example.
 上部カバー8001及び下部カバー8002は、タッチパネル8004及び表示パネル8006のサイズに合わせて、形状や寸法を適宜変更することができる。 The shape and dimensions of the upper cover 8001 and the lower cover 8002 can be changed as appropriate in accordance with the sizes of the touch panel 8004 and the display panel 8006.
 タッチパネル8004としては、抵抗膜方式又は静電容量方式のタッチパネルを表示パネル8006に重畳して用いることができる。また、タッチパネル8004を設けず、表示パネル8006に、タッチパネル機能を持たせるようにすることも可能である。 As the touch panel 8004, a resistive film type or capacitive type touch panel can be used by being superimposed on the display panel 8006. Alternatively, the touch panel 8004 may be omitted, and the display panel 8006 may have a touch panel function.
 フレーム8009は、タッチパネル8004の保護機能の他、プリント基板8010の動作により発生する電磁波を遮断するための電磁シールドとしての機能を有する。またフレーム8009は、放熱板としての機能を有していてもよい。 The frame 8009 has a function as an electromagnetic shield for blocking electromagnetic waves generated by the operation of the printed board 8010 in addition to the protective function of the touch panel 8004. The frame 8009 may have a function as a heat sink.
 プリント基板8010は、電源回路、ビデオ信号及びクロック信号を出力するための信号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であっても良いし、別途設けたバッテリ8011による電源であってもよい。バッテリ8011は、商用電源を用いる場合には、省略可能である。 The printed circuit board 8010 has a power supply circuit, a signal processing circuit for outputting a video signal and a clock signal. As a power supply for supplying power to the power supply circuit, an external commercial power supply may be used, or a power supply using a battery 8011 provided separately may be used. The battery 8011 can be omitted when a commercial power source is used.
 また、表示モジュール8000は、偏光板、位相差板、プリズムシートなどの部材を追加して設けてもよい。 Further, the display module 8000 may be additionally provided with a member such as a polarizing plate, a retardation plate, and a prism sheet.
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。 Note that at least part of this embodiment can be implemented in combination with any of the other embodiments described in this specification as appropriate.
(実施の形態4)
 本実施の形態では、本発明の一態様の表示装置を適用可能な電子機器について説明する。
(Embodiment 4)
In this embodiment, electronic devices to which the display device of one embodiment of the present invention can be applied will be described.
 本発明の一態様の表示装置は、外光の強さによらず、高い視認性を実現することができる。そのため、携帯型の電子機器、装着型の電子機器(ウェアラブル機器)、及び電子書籍端末などに好適に用いることができる。 The display device of one embodiment of the present invention can achieve high visibility regardless of the intensity of external light. Therefore, it can be suitably used for a portable electronic device, a wearable electronic device (wearable device), an electronic book terminal, and the like.
 図45(A)、(B)に、携帯情報端末800の一例を示す。携帯情報端末800は、筐体801、筐体802、表示部803、表示部804、及びヒンジ部805等を有する。 45A and 45B show an example of the portable information terminal 800. FIG. The portable information terminal 800 includes a housing 801, a housing 802, a display portion 803, a display portion 804, a hinge portion 805, and the like.
 筐体801と筐体802は、ヒンジ部805で連結されている。携帯情報端末800は、図45(A)に示すように折り畳んだ状態から、図45(B)に示すように筐体801と筐体802を開くことができる。 The housing 801 and the housing 802 are connected by a hinge portion 805. The portable information terminal 800 can open the housing 801 and the housing 802 as illustrated in FIG. 45B from the folded state as illustrated in FIG.
 例えば表示部803及び表示部804に、文書情報を表示することが可能であり、電子書籍端末としても用いることができる。また、表示部803及び表示部804に静止画像や動画像を表示することもできる。 For example, document information can be displayed on the display portion 803 and the display portion 804, and can also be used as an electronic book terminal. In addition, still images and moving images can be displayed on the display portion 803 and the display portion 804.
 このように、携帯情報端末800は、持ち運ぶ際には折り畳んだ状態にできるため、汎用性に優れる。 Thus, since the portable information terminal 800 can be folded when being carried, it has excellent versatility.
 なお、筐体801及び筐体802には、電源ボタン、操作ボタン、外部接続ポート、スピーカ、マイク等を有していてもよい。 Note that the housing 801 and the housing 802 may include a power button, an operation button, an external connection port, a speaker, a microphone, and the like.
 図45(C)に携帯情報端末の一例を示す。図45(C)に示す携帯情報端末810は、筐体811、表示部812、操作ボタン813、外部接続ポート814、スピーカ815、マイク816、カメラ817等を有する。 FIG. 45C shows an example of a portable information terminal. A portable information terminal 810 illustrated in FIG. 45C includes a housing 811, a display portion 812, operation buttons 813, an external connection port 814, a speaker 815, a microphone 816, a camera 817, and the like.
 表示部812に、本発明の一態様の表示装置を備える。 The display portion 812 includes the display device of one embodiment of the present invention.
 携帯情報端末810は、表示部812にタッチセンサを備える。電話を掛ける、或いは文字を入力するなどのあらゆる操作は、指やスタイラスなどで表示部812に触れることで行うことができる。 The portable information terminal 810 includes a touch sensor in the display unit 812. Any operation such as making a call or inputting characters can be performed by touching the display portion 812 with a finger or a stylus.
 また、操作ボタン813の操作により、電源のON、OFF動作や、表示部812に表示される画像の種類を切り替えることができる。例えば、メール作成画面から、メインメニュー画面に切り替えることができる。 Further, by operating the operation button 813, the power ON / OFF operation and the type of image displayed on the display unit 812 can be switched. For example, the mail creation screen can be switched to the main menu screen.
 また、携帯情報端末810の内部に、ジャイロセンサまたは加速度センサ等の検出装置を設けることで、携帯情報端末810の向き(縦か横か)を判断して、表示部812の画面表示の向きを自動的に切り替えるようにすることができる。また、画面表示の向きの切り替えは、表示部812を触れること、操作ボタン813の操作、またはマイク816を用いた音声入力等により行うこともできる。 Further, by providing a detection device such as a gyro sensor or an acceleration sensor inside the portable information terminal 810, the orientation (portrait or landscape) of the portable information terminal 810 is determined, and the screen display orientation of the display unit 812 is changed. It can be switched automatically. In addition, the screen display orientation can be switched by touching the display portion 812, operating the operation button 813, or inputting voice using the microphone 816.
 携帯情報端末810は、例えば、電話機、手帳または情報閲覧装置等から選ばれた一つまたは複数の機能を有する。具体的には、スマートフォンとして用いることができる。携帯情報端末810は、例えば、移動電話、電子メール、文章閲覧及び作成、音楽再生、動画再生、インターネット通信、ゲームなどの種々のアプリケーションを実行することができる。 The portable information terminal 810 has one or a plurality of functions selected from, for example, a telephone, a notebook, an information browsing device, or the like. Specifically, it can be used as a smartphone. The portable information terminal 810 can execute various applications such as mobile phone, electronic mail, text browsing and creation, music playback, video playback, Internet communication, and games.
 図45(D)に、カメラの一例を示す。カメラ820は、筐体821、表示部822、操作ボタン823、シャッターボタン824等を有する。またカメラ820には、着脱可能なレンズ826が取り付けられている。 FIG. 45D shows an example of a camera. The camera 820 includes a housing 821, a display portion 822, operation buttons 823, a shutter button 824, and the like. A removable lens 826 is attached to the camera 820.
 表示部822に、本発明の一態様の表示装置を備える。 The display portion 822 includes the display device of one embodiment of the present invention.
 ここではカメラ820として、レンズ826を筐体821から取り外して交換することが可能な構成としたが、レンズ826と筐体が一体となっていてもよい。 Here, the camera 820 is configured such that the lens 826 can be removed from the housing 821 and replaced, but the lens 826 and the housing may be integrated.
 カメラ820は、シャッターボタン824を押すことにより、静止画、または動画を撮像することができる。また、表示部822はタッチパネルとしての機能を有し、表示部822をタッチすることにより撮像することも可能である。 The camera 820 can capture a still image or a moving image by pressing the shutter button 824. In addition, the display portion 822 has a function as a touch panel and can capture an image by touching the display portion 822.
 なお、カメラ820は、ストロボ装置や、ビューファインダーなどを別途装着することができる。または、これらが筐体821に組み込まれていてもよい。 Note that the camera 820 can be separately equipped with a strobe device, a viewfinder, and the like. Alternatively, these may be incorporated in the housing 821.
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。 Note that at least part of this embodiment can be implemented in combination with any of the other embodiments described in this specification as appropriate.
 本実施例では、液晶素子と発光素子とが積層された表示装置について、発光素子へのノイズの影響を計算によって調査した。 In this example, the influence of noise on a light emitting element was investigated by calculation for a display device in which a liquid crystal element and a light emitting element were stacked.
 計算に用いた2種類の表示装置の構造モデルを図46(A)、(B)にそれぞれ示す。 46A and 46B show the structural models of the two types of display devices used for the calculation.
 図46(A)、(B)にそれぞれ示すModel1とModel2は、それぞれ一対のガラス基板の間に、反射型液晶素子(LC)と、有機EL素子(OLED)とが積層されている点で一致している。Model1は、LCとOLEDとを駆動するための制御回路(Control Circuit)とが同一の層に配置されている構成を有する。一方、Model2は、LCを駆動するための制御回路と、OLEDを駆動するための制御回路とがそれぞれ別の層に配置され、且つ、その間にOLEDを有する。また、OLEDの構成は、Model1では、ボトムエミッション型であるのに対し、Model2ではトップエミッション型である。 Each of Model 1 and Model 2 shown in FIGS. 46A and 46B is the same in that a reflective liquid crystal element (LC) and an organic EL element (OLED) are stacked between a pair of glass substrates. I'm doing it. Model 1 has a configuration in which a control circuit (Control Circuit) for driving LC and OLED is arranged in the same layer. On the other hand, in Model 2, a control circuit for driving the LC and a control circuit for driving the OLED are arranged in different layers, and the OLED is provided therebetween. Further, the OLED has a bottom emission type in Model 1 and a top emission type in Model 2.
 Model2では、OLEDにトップエミッション型の素子を用いることに加え、制御回路を別々に設けることができるため、制御回路の設計の自由度が高く、また微細化が容易となる。一方、Model1では、LCとOLEDのそれぞれについて、制御回路を配置する必要がある点、及びOLEDの光を透過する領域を設ける必要がある点などから、制御回路の設計の自由度は、Model2と比較して低くなる。 In Model 2, since a control circuit can be separately provided in addition to using a top emission type element for the OLED, the design flexibility of the control circuit is high and miniaturization is easy. On the other hand, in Model 1, the degree of freedom in designing the control circuit is Model 2 and that, for each of LC and OLED, it is necessary to arrange a control circuit, and it is necessary to provide a region that transmits the light of OLED. Compared to lower.
 図47(A)に、Model1におけるOLED用の制御回路の例を示す。高精細な表示装置の場合、制御回路の占有可能な面積を縮小する必要がある。そのため、画素面積の都合上、OLEDの電流制御用のトランジスタM2に2つのゲートを設けた構成とした場合であっても、2つのゲートを接続することができないため、一方のゲートをトランジスタM2のソースと接続する構成とする。 FIG. 47A shows an example of a control circuit for OLED in Model1. In the case of a high-definition display device, it is necessary to reduce the area that can be occupied by the control circuit. Therefore, for the sake of pixel area, even if the OLED current control transistor M2 is provided with two gates, the two gates cannot be connected. It is configured to connect with the source.
 図47(B)には、Model2におけるOLED用の制御回路の例を示している。Model1と同じ精細度であっても、Model2では利用可能な面積が大きいため、OLED駆動用トランジスタM2の2つのゲートを接続するデュアルゲート構造を実現できる。駆動用トランジスタをデュアルゲート構造とすることで、飽和電圧が小さくなるため、消費電力を低減できる。さらに、図47(B)では、初期化用のトランジスタM3を設けた例を示している。 FIG. 47B shows an example of a control circuit for OLED in Model2. Even with the same definition as Model 1, since the available area is large in Model 2, a dual gate structure in which the two gates of the OLED driving transistor M2 are connected can be realized. Since the driving transistor has a dual gate structure, the saturation voltage is reduced, so that power consumption can be reduced. Further, FIG. 47B shows an example in which an initialization transistor M3 is provided.
 図47(A)、(B)に示すトランジスタM1、M2、M3には、それぞれオフ状態におけるリーク電流(オフ電流とも呼ぶ)が、チャネル幅1μmあたり10−24A程度にまで低減可能な、酸化物半導体を用いたトランジスタを適用することが好ましい。これにより、低いフレーム周波数(例えば1Hz以下)で、表示品位を低下させることなく駆動することが可能となり、消費電力を低減できる。 In each of the transistors M1, M2, and M3 shown in FIGS. 47A and 47B , an oxidation current that can reduce leakage current in an off state (also referred to as off-current) to about 10 −24 A per channel width of 1 μm. It is preferable to use a transistor including a physical semiconductor. Accordingly, it is possible to drive at a low frame frequency (for example, 1 Hz or less) without degrading display quality, and power consumption can be reduced.
 続いて、Model1、及びModel2について、OLED及びLCのデータ書き換え時の、OLEDに流れる電流についてシミュレーションを行った結果について説明する。シミュレーションは、OLEDの走査線の電位及びLCの走査線の電位を、低電位から高電位に変化させた際に、OLEDに流れる電流値を見積もった。 Subsequently, with respect to Model 1 and Model 2, the results of simulation of the current flowing through the OLED when the OLED and LC data are rewritten will be described. The simulation estimated the value of the current flowing through the OLED when the potential of the scanning line of the OLED and the potential of the scanning line of the LC were changed from a low potential to a high potential.
 図48(A)に、Model1についてのシミュレーション結果を示す。Model1では、LCの走査線からのノイズにより、瞬間的にOLEDに電流が流れていることが確認できる。これは極めて短時間であるため、通常のフレーム周波数(例えば60Hz)では視認されない程度であるが、低いフレーム周波数では、ちらつきとして視認されてしまう場合がある。 FIG. 48 (A) shows the simulation results for Model1. In Model 1, it can be confirmed that current is instantaneously flowing in the OLED due to noise from the scanning line of the LC. Since this is an extremely short time, it is not visually recognized at a normal frame frequency (for example, 60 Hz), but may be visually recognized as flicker at a low frame frequency.
 Model2の構造では、LCとOLEDのそれぞれの制御回路の間に封止樹脂(厚さ約3μm)が設けられるため、これらの距離を離すことができる。さらに、2つの制御回路の間に存在するOLEDの陰極が、ノイズに対するシールドとして機能する。これらにより、Model2の構成では、Model1と比較し、ノイズの影響を抑制することができる。図48(B)には、Model2についてのシミュレーション結果を示す。Model2では、Model1に比べてほとんどノイズの影響を受けていないことが確認できる。 In the Model 2 structure, since the sealing resin (thickness of about 3 μm) is provided between the control circuits of the LC and the OLED, these distances can be separated. Furthermore, the cathode of the OLED present between the two control circuits functions as a shield against noise. As a result, the configuration of Model 2 can suppress the influence of noise as compared with Model 1. FIG. 48B shows the simulation result for Model2. It can be confirmed that Model 2 is hardly affected by noise as compared to Model 1.
 本実施例では、本発明の一態様の表示装置を作製した。 In this example, a display device of one embodiment of the present invention was manufactured.
 まず、図49(A)に示すように、ガラス基板上にOLED用の制御回路と、トップエミッション型の発光素子(OLED)を形成した。制御回路に含まれるトランジスタには、半導体層に酸化物半導体を適用した。また制御回路は、上記図47(B)に示す構成を適用した。 First, as shown in FIG. 49A, a control circuit for OLED and a top emission type light emitting element (OLED) were formed on a glass substrate. For the transistors included in the control circuit, an oxide semiconductor was applied to the semiconductor layer. Further, the structure shown in FIG. 47B was applied to the control circuit.
 続いて、他のガラス基板上に、剥離層、絶縁層、LC用の制御回路、OLED用の着色層を順に形成した。LC用の制御回路に含まれるトランジスタも上記と同様に、半導体層に酸化物半導体を適用した。またここでは、剥離層としてタングステン膜及び酸化タングステン膜の積層膜を用い、絶縁層として酸化シリコンを用いた。続いて、図49(B)に示すように、2つの基板を封止樹脂により貼り合せた。 Subsequently, a release layer, an insulating layer, a control circuit for LC, and a colored layer for OLED were sequentially formed on another glass substrate. Similarly to the above, an oxide semiconductor was applied to the semiconductor layer in the transistor included in the LC control circuit. Here, a stacked film of a tungsten film and a tungsten oxide film is used as the separation layer, and silicon oxide is used as the insulating layer. Subsequently, as shown in FIG. 49B, the two substrates were bonded with a sealing resin.
 続いて、図49(C)に示すように、剥離層と絶縁層との間で剥離し、ガラス基板を除去した。 Subsequently, as shown in FIG. 49C, the glass substrate was removed by peeling between the peeling layer and the insulating layer.
 続いて、図49(D)に示すように、LC用の着色層が形成された他のガラス基板を準備し、このガラス基板とOLED等が設けられたガラス基板とを、液晶を挟んで貼り合せた。 Subsequently, as shown in FIG. 49D, another glass substrate on which a colored layer for LC is formed is prepared, and this glass substrate and a glass substrate provided with an OLED or the like are attached with a liquid crystal sandwiched therebetween. Combined.
 以上の工程により、表示装置を作製した。表1に、作製した表示装置の仕様を示す。 The display device was manufactured through the above steps. Table 1 shows the specifications of the manufactured display device.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 作製した表示装置は、OLEDの精細度がLCよりも高精細となっている。これは、反射型のLCの開口率を高め、明所での視認性をより高めることを目的としている。また、OLEDにはRGB3色に加えて黄色(Y)の副画素を用いることで、低消費電力化を図っている。 The manufactured display device has a higher definition of OLED than LC. This is intended to increase the aperture ratio of the reflective LC and to further improve the visibility in a bright place. The OLED uses a yellow (Y) sub-pixel in addition to the three RGB colors to reduce power consumption.
 図50(A)、(B)に、それぞれ明所と暗所での表示状態を示している。このように、どちらの状態においても高い視認性が得られていることが確認できた。また、OLEDとLCを同時に表示させることで、例えば室内で使用する際など、照度が足りない環境下ではOLEDで輝度を補って表示することが可能である。またOLEDとLCの両方を同時に駆動させる際においても、低消費電力で、且つチラつきのない良好な表示を行うことができる。 FIGS. 50 (A) and 50 (B) show display states in a bright place and a dark place, respectively. Thus, it was confirmed that high visibility was obtained in either state. In addition, by displaying the OLED and the LC at the same time, for example, when used indoors, it is possible to display with the OLED supplementing in an environment where the illuminance is insufficient. In addition, when both the OLED and the LC are driven simultaneously, a good display with low power consumption and no flickering can be performed.
10  表示装置
11  基板
11a  基板
12  基板
12a  基板
21  発光
22  反射光
31  領域
32  領域
50  接着層
51  接着層
52  接着層
61  支持基板
63  支持基板
64  支持基板
65  支持基板
70  光
80  プラズマ
85  ラビングロール
90  粘着層
100a  素子層
100b  素子層
101  樹脂層
101a  樹脂層
101b  樹脂層
101d  樹脂層
103  光吸収層
103a  光吸収層
103b  光吸収層
110  トランジスタ
110a  トランジスタ
110b  トランジスタ
110c  トランジスタ
110d  トランジスタ
111  導電層
112  半導体層
112a  半導体層
113a  導電層
113b  導電層
113c  導電層
113d  導電層
114  導電層
114a  導電層
114b  導電層
115  導電層
120  発光素子
121  導電層
122  EL層
123  導電層
124  絶縁層
131  絶縁層
132  絶縁層
133  絶縁層
134  絶縁層
135  絶縁層
136  絶縁層
137  絶縁層
151  接着層
152  着色層
153  遮光層
200a  素子層
200b  素子層
201  樹脂層
201a  樹脂層
202  樹脂層
202a  樹脂層
202b  樹脂層
204  絶縁層
210  トランジスタ
211  導電層
212  半導体層
213a  導電層
213b  導電層
220  液晶素子
221a  導電層
221b  導電層
222  液晶
223  導電層
224  配向膜
230  絶縁層
231  絶縁層
232  絶縁層
233  絶縁層
234  絶縁層
300  表示装置
311  導電層
311b  導電層
340  液晶素子
351  基板
360  発光素子
360b  発光素子
360g  発光素子
360r  発光素子
360w  発光素子
361  基板
362  表示部
364  回路部
365  配線
366  回路部
367  配線
372  FPC
373  IC
374  FPC
375  IC
400  表示装置
401  トランジスタ
402  トランジスタ
403  トランジスタ
405  容量素子
406  接続部
410  画素
411  絶縁層
412  絶縁層
413  絶縁層
414  絶縁層
415  絶縁層
416  スペーサ
417  接着層
418  絶縁層
419  接続層
421  導電層
422  EL層
423  導電層
424  光学調整層
425  着色層
426  遮光層
451  開口
478  絶縁層
479  絶縁層
491  導電層
501  トランジスタ
503  トランジスタ
506  接続部
510  絶縁層
511  絶縁層
512  絶縁層
513  絶縁層
514  絶縁層
517  接着層
518  接着層
519  接続層
543  接続体
561  導電層
562  導電層
563  液晶
564  配向膜
565  着色層
566  遮光層
567  絶縁層
576  絶縁層
578  絶縁層
581  導電層
591  導電層
599  偏光板
800  携帯情報端末
801  筐体
802  筐体
803  表示部
804  表示部
805  ヒンジ部
810  携帯情報端末
811  筐体
812  表示部
813  操作ボタン
814  外部接続ポート
815  スピーカ
816  マイク
817  カメラ
820  カメラ
821  筐体
822  表示部
823  操作ボタン
824  シャッターボタン
826  レンズ
8000  表示モジュール
8001  上部カバー
8002  下部カバー
8003  FPC
8004  タッチパネル
8005  FPC
8006  表示パネル
8009  フレーム
8010  プリント基板
8011  バッテリ
DESCRIPTION OF SYMBOLS 10 Display apparatus 11 Substrate 11a Substrate 12 Substrate 12a Substrate 21 Light emission 22 Reflected light 31 Region 32 Region 50 Adhesive layer 51 Adhesive layer 52 Adhesive layer 61 Support substrate 63 Support substrate 64 Support substrate 65 Support substrate 70 Light 80 Plasma 85 Rubbing roll 90 Adhesion Layer 100a element layer 100b element layer 101 resin layer 101a resin layer 101b resin layer 101d resin layer 103 light absorbing layer 103a light absorbing layer 103b light absorbing layer 110 transistor 110a transistor 110b transistor 110c transistor 110d transistor 111 conductive layer 112 semiconductor layer 112a semiconductor layer 113a conductive layer 113b conductive layer 113c conductive layer 113d conductive layer 114 conductive layer 114a conductive layer 114b conductive layer 115 conductive layer 120 light emitting element 121 conductive Electrical layer 122 EL layer 123 Conductive layer 124 Insulating layer 131 Insulating layer 132 Insulating layer 133 Insulating layer 134 Insulating layer 135 Insulating layer 137 Insulating layer 151 Adhesive layer 152 Colored layer 153 Light shielding layer 200a Element layer 200b Element layer 201 Resin layer 201 a resin layer 202 resin layer 202 a resin layer 202 b resin layer 204 insulating layer 210 transistor 211 conductive layer 212 semiconductor layer 213 a conductive layer 213 b conductive layer 220 liquid crystal element 221 a conductive layer 221 b conductive layer 222 liquid crystal 223 conductive layer 224 alignment film 230 insulating layer 231 Insulating layer 232 Insulating layer 233 Insulating layer 234 Insulating layer 300 Display device 311 Conductive layer 311b Conductive layer 340 Liquid crystal element 351 Substrate 360 Light emitting element 360b Light emitting element 360g Light emitting element 360r Light emitting element 36 w emitting element 361 substrate 362 display unit 364 circuit portion 365 wiring 366 circuit 367 wiring 372 FPC
373 IC
374 FPC
375 IC
400 Display device 401 Transistor 402 Transistor 403 Transistor 405 Capacitance element 406 Connection portion 410 Pixel 411 Insulating layer 412 Insulating layer 413 Insulating layer 414 Insulating layer 415 Insulating layer 416 Spacer 417 Adhesive layer 418 Insulating layer 419 Connecting layer 421 Conductive layer 422 EL layer 423 Conductive layer 424 Optical adjustment layer 425 Colored layer 426 Light shielding layer 451 Opening 478 Insulating layer 479 Insulating layer 491 Conductive layer 501 Transistor 503 Transistor 506 Connection portion 510 Insulating layer 511 Insulating layer 512 Insulating layer 513 Insulating layer 514 Insulating layer 517 Adhesive layer 518 Adhesive Layer 519 Connection layer 543 Connection body 561 Conductive layer 562 Conductive layer 563 Liquid crystal 564 Alignment film 565 Colored layer 566 Light shielding layer 567 Insulating layer 576 Insulating layer 578 Insulating layer 581 Conductive layer 591 Conductive layer 599 Polarizing plate 800 Portable information terminal 801 Case 802 Case 803 Display portion 804 Display portion 805 Hinge portion 810 Portable information terminal 811 Case 812 Display portion 813 Operation button 814 External connection port 815 Speaker 816 Microphone 817 Camera 820 Camera 821 Case 822 Display unit 823 Operation button 824 Shutter button 826 Lens 8000 Display module 8001 Upper cover 8002 Lower cover 8003 FPC
8004 Touch panel 8005 FPC
8006 Display panel 8009 Frame 8010 Printed circuit board 8011 Battery

Claims (26)

  1.  反射型の液晶素子と、発光素子と、第1のトランジスタと、第2のトランジスタと、第1の絶縁層と、第2の絶縁層と、第1の接着層と、を有する表示装置であって、
     前記第1の絶縁層は、前記液晶素子と前記第1のトランジスタとの間に位置し、
     前記第1のトランジスタは、前記第1の絶縁層と前記第1の接着層との間に位置し、
     前記第2のトランジスタ、前記発光素子、及び前記第2の絶縁層は、前記第1の接着層を挟んで前記第1のトランジスタとは反対側に位置し、
     前記第1のトランジスタは、前記液晶素子と電気的に接続され、
     前記第2のトランジスタは、前記発光素子と電気的に接続され、
     前記第1のトランジスタは、前記第1の絶縁層の前記第1の接着層側の面に設けられ、
     前記液晶素子は、前記第1の絶縁層側とは反対側に光を反射する機能を有し、
     前記発光素子は、前記第1の接着層側に光を発する機能を有する、
     表示装置。
    A display device having a reflective liquid crystal element, a light emitting element, a first transistor, a second transistor, a first insulating layer, a second insulating layer, and a first adhesive layer. And
    The first insulating layer is located between the liquid crystal element and the first transistor,
    The first transistor is located between the first insulating layer and the first adhesive layer;
    The second transistor, the light emitting element, and the second insulating layer are located on the opposite side of the first transistor with the first adhesive layer interposed therebetween,
    The first transistor is electrically connected to the liquid crystal element;
    The second transistor is electrically connected to the light emitting element;
    The first transistor is provided on a surface of the first insulating layer on the first adhesive layer side,
    The liquid crystal element has a function of reflecting light to the side opposite to the first insulating layer side,
    The light emitting element has a function of emitting light to the first adhesive layer side.
    Display device.
  2.  反射型の液晶素子と、発光素子と、第1のトランジスタと、第2のトランジスタと、第1の絶縁層と、第2の絶縁層と、第1の接着層と、を有する表示装置であって、
     前記第1の絶縁層は、前記液晶素子と前記第1のトランジスタとの間に位置し、
     前記第1のトランジスタは、前記第1の絶縁層と前記第1の接着層との間に位置し、
     前記第2のトランジスタ及び前記発光素子は、前記第2の絶縁層と前記第1の接着層との間に位置し、
     前記第1のトランジスタは、前記液晶素子と電気的に接続され、
     前記第2のトランジスタは、前記発光素子と電気的に接続され、
     前記第1のトランジスタは、前記第1の絶縁層の前記第1の接着層側の面に設けられ、
     前記第2のトランジスタは、前記第2の絶縁層の前記第1の接着層側の面に設けられ、
     前記液晶素子は、前記第1の絶縁層側とは反対側に光を反射する機能を有し、
     前記発光素子は、前記第1の接着層側に光を発する機能を有する、
     表示装置。
    A display device having a reflective liquid crystal element, a light emitting element, a first transistor, a second transistor, a first insulating layer, a second insulating layer, and a first adhesive layer. And
    The first insulating layer is located between the liquid crystal element and the first transistor,
    The first transistor is located between the first insulating layer and the first adhesive layer;
    The second transistor and the light emitting element are located between the second insulating layer and the first adhesive layer,
    The first transistor is electrically connected to the liquid crystal element;
    The second transistor is electrically connected to the light emitting element;
    The first transistor is provided on a surface of the first insulating layer on the first adhesive layer side,
    The second transistor is provided on a surface of the second insulating layer on the first adhesive layer side,
    The liquid crystal element has a function of reflecting light to the side opposite to the first insulating layer side,
    The light emitting element has a function of emitting light to the first adhesive layer side.
    Display device.
  3.  請求項1または請求項2において、
     前記第2の絶縁層の前記第1の接着層とは反対側に第2の樹脂層を有し、
     前記液晶素子の前記第1の接着層とは反対側に第3の樹脂層を有し、
     前記第2の樹脂層と、前記第3の樹脂層とは、厚さが0.1μm以上3μm以下である領域を有する、
     表示装置。
    In claim 1 or claim 2,
    A second resin layer on the opposite side of the second insulating layer from the first adhesive layer;
    A third resin layer on the opposite side of the liquid crystal element from the first adhesive layer;
    The second resin layer and the third resin layer have a region having a thickness of 0.1 μm or more and 3 μm or less.
    Display device.
  4.  請求項3において、
     前記第3の樹脂層は、開口部を有し、
     前記発光素子は、前記開口部を介して、光を射出する機能を有する、
     表示装置。
    In claim 3,
    The third resin layer has an opening,
    The light emitting element has a function of emitting light through the opening.
    Display device.
  5.  請求項4において、
     前記開口部は、前記液晶素子と重なる部分を有し、
     前記液晶素子は、前記開口部を介して、光を反射する機能を有する、
     表示装置。
    In claim 4,
    The opening has a portion overlapping the liquid crystal element,
    The liquid crystal element has a function of reflecting light through the opening.
    Display device.
  6.  請求項1または請求項2において、
     第1の基板と、第2の基板と、第2の接着層と、第3の接着層と、を有し、
     前記第2の接着層は、前記第1の基板と前記第2の絶縁層との間に位置し、
     前記第3の接着層は、前記液晶素子と前記第2の基板との間に位置する、
     表示装置。
    In claim 1 or claim 2,
    A first substrate, a second substrate, a second adhesive layer, and a third adhesive layer;
    The second adhesive layer is located between the first substrate and the second insulating layer;
    The third adhesive layer is located between the liquid crystal element and the second substrate;
    Display device.
  7.  請求項6において、
     前記第1の基板及び前記第2の基板は、それぞれ樹脂を含む、
     表示装置。
    In claim 6,
    Each of the first substrate and the second substrate includes a resin.
    Display device.
  8.  反射型の液晶素子と、発光素子と、第1のトランジスタと、第2のトランジスタと、第1の絶縁層と、第2の絶縁層と、第1の接着層と、を有する表示装置であって、
     前記第1の絶縁層は、前記液晶素子と前記第1のトランジスタとの間に位置し、
     前記第2の絶縁層は、前記第1の接着層と前記第2のトランジスタとの間に位置し、
     前記第1のトランジスタは、前記第1の絶縁層と前記第1の接着層との間に位置し、
     前記第2のトランジスタ及び前記発光素子は、前記第1の接着層を挟んで前記第1のトランジスタとは反対側に位置し、
     前記第1のトランジスタは、前記液晶素子と電気的に接続され、
     前記第2のトランジスタは、前記発光素子と電気的に接続され、
     前記第1のトランジスタは、前記第1の絶縁層の前記第1の接着層側の面に設けられ、
     前記第2のトランジスタは、前記第2の絶縁層の前記第1の接着層側とは反対側の面に設けられ、
     前記液晶素子は、前記第1の絶縁層側とは反対側に光を反射する機能を有し、
     前記発光素子は、前記第1の接着層側に光を発する機能を有する。
     表示装置。
    A display device having a reflective liquid crystal element, a light emitting element, a first transistor, a second transistor, a first insulating layer, a second insulating layer, and a first adhesive layer. And
    The first insulating layer is located between the liquid crystal element and the first transistor,
    The second insulating layer is located between the first adhesive layer and the second transistor;
    The first transistor is located between the first insulating layer and the first adhesive layer;
    The second transistor and the light emitting element are located on the opposite side of the first transistor across the first adhesive layer,
    The first transistor is electrically connected to the liquid crystal element;
    The second transistor is electrically connected to the light emitting element;
    The first transistor is provided on a surface of the first insulating layer on the first adhesive layer side,
    The second transistor is provided on a surface of the second insulating layer opposite to the first adhesive layer side,
    The liquid crystal element has a function of reflecting light to the side opposite to the first insulating layer side,
    The light emitting element has a function of emitting light to the first adhesive layer side.
    Display device.
  9.  請求項1または請求項8において、
     前記第1の接着層と、前記第2の絶縁層との間に、第2の樹脂層を有し、
     前記液晶素子の前記第1の接着層とは反対側に第3の樹脂層を有し、
     前記第2の樹脂層と、前記第3の樹脂層とは、厚さが0.1μm以上3μm以下である領域を有する、
     表示装置。
    In claim 1 or claim 8,
    Having a second resin layer between the first adhesive layer and the second insulating layer;
    A third resin layer on the opposite side of the liquid crystal element from the first adhesive layer;
    The second resin layer and the third resin layer have a region having a thickness of 0.1 μm or more and 3 μm or less.
    Display device.
  10.  請求項9において、
     前記第2の樹脂層は、第1の開口部を有し、
     前記第3の樹脂層は、第2の開口部を有し、
     前記発光素子は、前記第1の開口部及び前記第2の開口部を介して、光を射出する機能を有する、
     表示装置。
    In claim 9,
    The second resin layer has a first opening,
    The third resin layer has a second opening,
    The light emitting element has a function of emitting light through the first opening and the second opening.
    Display device.
  11.  請求項10において、
     前記第2の開口部は、前記液晶素子と重なる部分を有し、
     前記液晶素子は、前記第2の開口部を介して、光を反射する機能を有する、
     表示装置。
    In claim 10,
    The second opening has a portion overlapping the liquid crystal element,
    The liquid crystal element has a function of reflecting light through the second opening.
    Display device.
  12.  請求項1または請求項8において、
     第1の基板と、第2の基板と、第2の接着層と、第3の接着層と、を有し、
     前記第2の接着層は、前記第1の基板と前記発光素子との間に位置し、
     前記第3の接着層は、前記液晶素子と前記第2の基板との間に位置する、
     表示装置。
    In claim 1 or claim 8,
    A first substrate, a second substrate, a second adhesive layer, and a third adhesive layer;
    The second adhesive layer is located between the first substrate and the light emitting element,
    The third adhesive layer is located between the liquid crystal element and the second substrate;
    Display device.
  13.  請求項12において、
     前記第1の基板及び前記第2の基板は、それぞれ樹脂を含む、
     表示装置。
    In claim 12,
    Each of the first substrate and the second substrate includes a resin.
    Display device.
  14.  請求項1、請求項2及び請求項8のいずれか一において、
     前記第1のトランジスタ及び前記第2のトランジスタは、酸化物半導体にチャネルが形成される、
     表示装置。
    In any one of Claim 1, Claim 2, and Claim 8,
    The first transistor and the second transistor each have a channel formed in an oxide semiconductor.
    Display device.
  15.  請求項1、請求項2及び請求項8のいずれか一において、
     前記液晶素子は、第1の導電層、第2の導電層、及び液晶を有し、
     前記第1の導電層は、前記第1の絶縁層に設けられた開口を介して前記第1のトランジスタのソース又はドレインの一方と電気的に接続され、且つ、可視光を反射する機能を有し、
     前記液晶は、前記第1の導電層と前記第2の導電層との間に位置し、
     前記第2の導電層は、可視光を透過する機能を有する、
     表示装置。
    In any one of Claim 1, Claim 2, and Claim 8,
    The liquid crystal element includes a first conductive layer, a second conductive layer, and a liquid crystal,
    The first conductive layer is electrically connected to one of a source and a drain of the first transistor through an opening provided in the first insulating layer and has a function of reflecting visible light. And
    The liquid crystal is located between the first conductive layer and the second conductive layer,
    The second conductive layer has a function of transmitting visible light.
    Display device.
  16.  請求項15において、
     前記液晶素子は、第3の導電層を有し、
     前記第3の導電層は、前記第1の導電層と前記液晶との間で前記第1の導電層と接する部分を有し、且つ可視光を透過する機能を有し、
     前記第2の導電層及び前記第3の導電層は、前記発光素子と重なる部分を有し、
     前記発光素子は、前記第3の導電層及び前記第2の導電層を介して光を射出する機能を有する、
     表示装置。
    In claim 15,
    The liquid crystal element has a third conductive layer,
    The third conductive layer has a portion in contact with the first conductive layer between the first conductive layer and the liquid crystal, and has a function of transmitting visible light,
    The second conductive layer and the third conductive layer have a portion overlapping the light emitting element,
    The light emitting element has a function of emitting light through the third conductive layer and the second conductive layer.
    Display device.
  17.  請求項15において、
     前記第1の導電層と前記液晶との間に位置する、第1の樹脂層を有し、
     前記第1の樹脂層は、厚さが5nm以上1μm以下である領域を有する、
     表示装置。
    In claim 15,
    Having a first resin layer located between the first conductive layer and the liquid crystal;
    The first resin layer has a region having a thickness of 5 nm to 1 μm.
    Display device.
  18.  請求項17において、
     前記第1の樹脂層は、配向膜としての機能を有する、
     表示装置。
    In claim 17,
    The first resin layer has a function as an alignment film.
    Display device.
  19.  請求項1、請求項2及び請求項8のいずれか一において、
     前記第1のトランジスタは、第1のソース電極、第1のドレイン電極、及び第1の半導体層を有し、
     前記第2のトランジスタは、第2のソース電極、第2のドレイン電極、及び第2の半導体層を有し、
     前記第1のソース電極及び前記第1のドレイン電極は、前記第1の半導体層の上面及び側端部に接して設けられ、
     前記第2のソース電極及び前記第2のドレイン電極は、前記第2の半導体層の上面及び側端部に接して設けられた、
     表示装置。
    In any one of Claim 1, Claim 2, and Claim 8,
    The first transistor has a first source electrode, a first drain electrode, and a first semiconductor layer,
    The second transistor has a second source electrode, a second drain electrode, and a second semiconductor layer,
    The first source electrode and the first drain electrode are provided in contact with an upper surface and a side end of the first semiconductor layer,
    The second source electrode and the second drain electrode are provided in contact with an upper surface and a side end of the second semiconductor layer,
    Display device.
  20.  請求項19において、
     前記第1のトランジスタは、第1のゲート電極及び第2のゲート電極を有し、
     前記第1のゲート電極と、前記第2のゲート電極は、前記第1の半導体層を挟んで対向して設けられ、
     前記第2のトランジスタは、第3のゲート電極及び第4のゲート電極を有し、
     前記第3のゲート電極と、前記第4のゲート電極は、前記第2の半導体層を挟んで対向して設けられた、
     表示装置。
    In claim 19,
    The first transistor has a first gate electrode and a second gate electrode;
    The first gate electrode and the second gate electrode are provided to face each other with the first semiconductor layer interposed therebetween,
    The second transistor has a third gate electrode and a fourth gate electrode,
    The third gate electrode and the fourth gate electrode are provided to face each other with the second semiconductor layer interposed therebetween.
    Display device.
  21.  請求項1、請求項2及び請求項8のいずれか一において、
     前記第1のトランジスタは、第1のソース電極、第1のドレイン電極、及び第1の半導体層を有し、
     前記第2のトランジスタは、第2のソース電極、第2のドレイン電極、及び第2の半導体層を有し、
     前記第1の半導体層の上面の一部及び側端部を覆う第1の絶縁層を有し、
     前記第2の半導体層の上面の一部及び側端部を覆う第2の絶縁層を有し、
     前記第1のソース電極及び前記第1のドレイン電極は、前記第1の絶縁層上に設けられ、且つ前記第1の絶縁層に設けられた開口を介して前記第1の半導体層と電気的に接続され、
     前記第2のソース電極及び前記第2のドレイン電極は、前記第2の絶縁層上に設けられ、且つ前記第2の絶縁層に設けられた開口を介して前記第2の半導体層と電気的に接続された、
     表示装置。
    In any one of Claim 1, Claim 2, and Claim 8,
    The first transistor has a first source electrode, a first drain electrode, and a first semiconductor layer,
    The second transistor has a second source electrode, a second drain electrode, and a second semiconductor layer,
    A first insulating layer covering a part of an upper surface and a side edge of the first semiconductor layer;
    A second insulating layer covering a part of the upper surface and the side edge of the second semiconductor layer;
    The first source electrode and the first drain electrode are provided on the first insulating layer and electrically connected to the first semiconductor layer through an opening provided in the first insulating layer. Connected to
    The second source electrode and the second drain electrode are provided on the second insulating layer and electrically connected to the second semiconductor layer through an opening provided in the second insulating layer. Connected to the
    Display device.
  22.  請求項21において、
     前記第1のトランジスタは、第1のゲート電極及び第2のゲート電極を有し、
     前記第1のゲート電極と、前記第2のゲート電極は、前記第1の半導体層を挟んで対向して設けられ、
     前記第2のトランジスタは、第3のゲート電極及び第4のゲート電極を有し、
     前記第3のゲート電極と、前記第4のゲート電極は、前記第2の半導体層を挟んで対向して設けられた、
     表示装置。
    In claim 21,
    The first transistor has a first gate electrode and a second gate electrode;
    The first gate electrode and the second gate electrode are provided to face each other with the first semiconductor layer interposed therebetween,
    The second transistor has a third gate electrode and a fourth gate electrode,
    The third gate electrode and the fourth gate electrode are provided to face each other with the second semiconductor layer interposed therebetween.
    Display device.
  23.  請求項1、請求項2及び請求項8のいずれか一において、
     前記第1のトランジスタは、第1のソース電極、第1のドレイン電極、及び第1の半導体層を有し、
     前記第2のトランジスタは、第2のソース電極、第2のドレイン電極、及び第2の半導体層を有し、
     前記第1のソース電極及び前記第1のドレイン電極は、前記第1の半導体層の上面及び側端部に接して設けられ、
     前記第2の半導体層の上面の一部及び側端部を覆う第2の絶縁層を有し、
     前記第2のソース電極及び前記第2のドレイン電極は、前記第2の絶縁層上に設けられ、且つ前記第2の絶縁層に設けられた開口を介して前記第2の半導体層と電気的に接続された、
     表示装置。
    In any one of Claim 1, Claim 2, and Claim 8,
    The first transistor has a first source electrode, a first drain electrode, and a first semiconductor layer,
    The second transistor has a second source electrode, a second drain electrode, and a second semiconductor layer,
    The first source electrode and the first drain electrode are provided in contact with an upper surface and a side end of the first semiconductor layer,
    A second insulating layer covering a part of the upper surface and the side edge of the second semiconductor layer;
    The second source electrode and the second drain electrode are provided on the second insulating layer and electrically connected to the second semiconductor layer through an opening provided in the second insulating layer. Connected to the
    Display device.
  24.  請求項23において、
     前記第1のトランジスタは、第1のゲート電極及び第2のゲート電極を有し、
     前記第1のゲート電極と、前記第2のゲート電極は、前記第1の半導体層を挟んで対向して設けられ、
     前記第2のトランジスタは、第3のゲート電極及び第4のゲート電極を有し、
     前記第3のゲート電極と、前記第4のゲート電極は、前記第2の半導体層を挟んで対向して設けられた、
     表示装置。
    In claim 23,
    The first transistor has a first gate electrode and a second gate electrode;
    The first gate electrode and the second gate electrode are provided to face each other with the first semiconductor layer interposed therebetween,
    The second transistor has a third gate electrode and a fourth gate electrode,
    The third gate electrode and the fourth gate electrode are provided to face each other with the second semiconductor layer interposed therebetween.
    Display device.
  25.  請求項1、請求項2及び請求項8のいずれか一において、
     前記第1のトランジスタは、第1のソース電極、第1のドレイン電極、及び第1の半導体層を有し、
     前記第2のトランジスタは、第2のソース電極、第2のドレイン電極、及び第2の半導体層を有し、
     前記第1の半導体層の上面の一部及び側端部を覆う第1の絶縁層を有し、
     前記第1のソース電極及び前記第1のドレイン電極は、前記第1の絶縁層上に設けられ、且つ前記第1の絶縁層に設けられた開口を介して前記第1の半導体層と電気的に接続され、
     前記第2のソース電極及び前記第2のドレイン電極は、前記第2の半導体層の上面及び側端部に接して設けられた、
     表示装置。
    In any one of Claim 1, Claim 2, and Claim 8,
    The first transistor has a first source electrode, a first drain electrode, and a first semiconductor layer,
    The second transistor has a second source electrode, a second drain electrode, and a second semiconductor layer,
    A first insulating layer covering a part of an upper surface and a side edge of the first semiconductor layer;
    The first source electrode and the first drain electrode are provided on the first insulating layer and electrically connected to the first semiconductor layer through an opening provided in the first insulating layer. Connected to
    The second source electrode and the second drain electrode are provided in contact with an upper surface and a side end of the second semiconductor layer,
    Display device.
  26.  請求項25において、
     前記第1のトランジスタは、第1のゲート電極及び第2のゲート電極を有し、
     前記第1のゲート電極と、前記第2のゲート電極は、前記第1の半導体層を挟んで対向して設けられ、
     前記第2のトランジスタは、第3のゲート電極及び第4のゲート電極を有し、
     前記第3のゲート電極と、前記第4のゲート電極は、前記第2の半導体層を挟んで対向して設けられた、
     表示装置。
    In claim 25,
    The first transistor has a first gate electrode and a second gate electrode;
    The first gate electrode and the second gate electrode are provided to face each other with the first semiconductor layer interposed therebetween,
    The second transistor has a third gate electrode and a fourth gate electrode,
    The third gate electrode and the fourth gate electrode are provided to face each other with the second semiconductor layer interposed therebetween.
    Display device.
PCT/IB2017/052517 2016-05-10 2017-05-01 Display device WO2017195067A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-094517 2016-05-10
JP2016-094516 2016-05-10
JP2016094517 2016-05-10
JP2016094516 2016-05-10

Publications (1)

Publication Number Publication Date
WO2017195067A1 true WO2017195067A1 (en) 2017-11-16

Family

ID=60267497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/052517 WO2017195067A1 (en) 2016-05-10 2017-05-01 Display device

Country Status (1)

Country Link
WO (1) WO2017195067A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002196705A (en) * 2000-12-25 2002-07-12 Sony Corp Image display device
JP2003076302A (en) * 2001-09-06 2003-03-14 Sharp Corp Display device
JP2003157026A (en) * 2001-09-06 2003-05-30 Sharp Corp Display device and driving method thereof
JP2003229548A (en) * 2001-11-30 2003-08-15 Semiconductor Energy Lab Co Ltd Vehicle, display device and method for manufacturing semiconductor device
JP2003316295A (en) * 2002-04-16 2003-11-07 Ind Technol Res Inst Picture element structure of display under sunlight
WO2004053819A1 (en) * 2002-12-06 2004-06-24 Citizen Watch Co., Ltd. Liquid crystal display
JP2013225052A (en) * 2012-04-23 2013-10-31 Sony Corp Display device
JP2015109427A (en) * 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 Oxide semiconductor film manufacturing method
JP2015187620A (en) * 2012-08-10 2015-10-29 シャープ株式会社 display device
WO2016055897A1 (en) * 2014-10-08 2016-04-14 Semiconductor Energy Laboratory Co., Ltd. Display device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002196705A (en) * 2000-12-25 2002-07-12 Sony Corp Image display device
JP2003076302A (en) * 2001-09-06 2003-03-14 Sharp Corp Display device
JP2003157026A (en) * 2001-09-06 2003-05-30 Sharp Corp Display device and driving method thereof
JP2003229548A (en) * 2001-11-30 2003-08-15 Semiconductor Energy Lab Co Ltd Vehicle, display device and method for manufacturing semiconductor device
JP2003316295A (en) * 2002-04-16 2003-11-07 Ind Technol Res Inst Picture element structure of display under sunlight
WO2004053819A1 (en) * 2002-12-06 2004-06-24 Citizen Watch Co., Ltd. Liquid crystal display
JP2013225052A (en) * 2012-04-23 2013-10-31 Sony Corp Display device
JP2015187620A (en) * 2012-08-10 2015-10-29 シャープ株式会社 display device
JP2015109427A (en) * 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 Oxide semiconductor film manufacturing method
WO2016055897A1 (en) * 2014-10-08 2016-04-14 Semiconductor Energy Laboratory Co., Ltd. Display device

Similar Documents

Publication Publication Date Title
US10345670B2 (en) Display device including light-emitting element and light-condensing means
JP6863803B2 (en) Display device
JP6983569B2 (en) Manufacturing method of semiconductor device
JP7049784B2 (en) Display device
US10515609B2 (en) Display device and operation method thereof, and electronic device
JP6871253B2 (en) How to make a display device
TW201813147A (en) Display device, display module, electronic device, and method for manufacturing display device
JP2018060196A (en) Display device, display module, and method for manufacturing display device
JP2018025775A (en) Electronic apparatus and method of driving the same
JP6702781B2 (en) Display device
JP7043189B2 (en) Display devices, display modules, electronic devices
JP6930864B2 (en) Display device
JP2018004952A (en) Display device and method for making the same
JP2018013622A (en) Display device, and electronic apparatus
JP6999315B2 (en) How to make a display device
JP2017207701A (en) Display device
WO2017195067A1 (en) Display device
JP2018010126A (en) Display device
JP2020144391A (en) Display device
JP2017227794A (en) Display device, method of driving the same, and electronic apparatus
JP2018036583A (en) Display device
JP2018036584A (en) Display device
JP2018049208A (en) Display divice
JP2018010290A (en) Display device
JP2017227816A (en) Display device and method for making the same, and frame-like member

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795698

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP