WO2017193939A1 - 数据传输结构的配置方法及装置 - Google Patents

数据传输结构的配置方法及装置 Download PDF

Info

Publication number
WO2017193939A1
WO2017193939A1 PCT/CN2017/083811 CN2017083811W WO2017193939A1 WO 2017193939 A1 WO2017193939 A1 WO 2017193939A1 CN 2017083811 W CN2017083811 W CN 2017083811W WO 2017193939 A1 WO2017193939 A1 WO 2017193939A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
uplink control
uplink
guard interval
data
Prior art date
Application number
PCT/CN2017/083811
Other languages
English (en)
French (fr)
Inventor
苟伟
毕峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/300,485 priority Critical patent/US20190149302A1/en
Publication of WO2017193939A1 publication Critical patent/WO2017193939A1/zh
Priority to US17/100,600 priority patent/US11394513B2/en
Priority to US17/867,606 priority patent/US11581998B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to the field of communication technology applications, and in particular, to a method and an apparatus for configuring a data transmission structure.
  • LTE Long Term Evolution
  • some companies have proposed "proposed to study the problem of LTE deployed in unlicensed carriers.” For example, Qualcomm in the United States believes that with the rapid growth of data services, in the near future, authorized carriers will not be able to withstand the huge amount of data brought by rapid business growth.
  • the data volume pressure brought by the service growth can be solved.
  • the unlicensed carrier has the following characteristics: on the one hand, since the unlicensed carrier does not need to be purchased, or the carrier resource is zero cost, the unlicensed carrier is free or low-cost; on the other hand, since the individual and the enterprise can participate in the deployment, the device The quotient equipment is also available, so the admission requirements for unlicensed carriers are low; Furthermore, the unlicensed carrier is shared. When multiple different systems are operating or when different operators of the same system are operating, some shared resources may be considered to improve carrier efficiency.
  • the shared carrier is shared, that is, multiple operators are allocated the same spectrum, and multiple operators use the spectrum together. Therefore, the shared licensed carrier has similar properties to the unlicensed carrier and may have problems (hereinafter, an unlicensed carrier is taken as an example). ).
  • LTE is deployed in an unlicensed carrier
  • the existing LTE is deployed in the licensed carrier, and one operator has exclusive access to a spectrum
  • wireless access technologies cross-communication standards, difficult collaboration, diverse network topologies
  • multiple wireless access sites large number of users, difficult collaboration, and large centralized management overhead
  • Due to the large number of wireless access technologies there will be various wireless systems in the unlicensed carrier, which are difficult to coordinate with each other and have serious interference. Therefore, for LTE deployed in unlicensed carriers, there is still a need to support the regulation of unlicensed carriers.
  • Most countries require the system to support the listening and speaking mechanism when deployed in unlicensed carriers.
  • the neighboring system sites (generally the neighboring transmission nodes of the same system) can avoid the interference caused by the neighboring transmission nodes of the same system simultaneously using the unlicensed carriers through the contention back-off mechanism.
  • the regulation stipulates that devices that use unlicensed carriers (including base stations and user equipments (UEs)) need to perform a listening and speaking mechanism (ie, Clear Channel Assessment (CCA), also called CSA). Listening to Listen Before Talk (LBT), when the channel is idle, the device can use the unlicensed carrier channel for data transmission.
  • CCA Clear Channel Assessment
  • LBT Listening to Listen Before Talk
  • FIG. 1 is a schematic structural diagram of a transmission unit in the prior art. As shown in FIG. 1, it can be regarded as a basic transmission unit, such as a TTI composed of multiple OFDM symbols, or a subframe composed of multiple TTIs.
  • the downlink control is control type information related to downlink data sent by the base station to the UE; the guard interval (GP) is used to implement the time of receiving/transmission state transition; the uplink data is data sent by the UE to the base station; the uplink control is The downlink data sent by the UE to the base station receives ACK/NACK feedback information, channel state information, scheduling request, etc., and the UE needs Information other than the uplink data sent to the base station.
  • the uplink control is always at the end of the subframe and is continuous with the uplink data (no guard interval GP).
  • the front of the subframe is always downlink controlled, and there is a guard interval between the uplink data.
  • the above design has the following problems, and the following problems exist in a given scenario, such as in the case of an unlicensed carrier, or a shared grant.
  • the subframe (or TTI) has no uplink data but uplink control (UCI, etc.).
  • the UE needs to perform CCA detection when the uplink control needs to be sent, but there is no idle symbol reserved between the uplink data and the uplink control in the subframe, so such UE cannot perform CCA, and finally such UE will The uplink control could not be sent because the CCA was not successful.
  • the embodiment of the invention provides a method and a device for configuring a data transmission structure, so as to at least solve the problem that the uplink control cannot be sent due to the failure of the CCA success in the related art.
  • a method for configuring a data transmission structure including: acquiring a transmission data parameter group; configuring a transmission data parameter group according to a preset configuration order, and obtaining a transmission unit, wherein the preset configuration sequence is based on The order in which the requirements of the transport service are determined.
  • the transmission data parameter group includes an uplink data area, a downlink control area, a guard interval area, a first uplink control area, and a second uplink control area
  • the preset configuration is compliant.
  • the sequence is: a downlink control area, a guard interval, a first uplink control area, an uplink data area, and a second uplink control area.
  • the time domain resources of the first uplink control area and the second uplink control area are preset; or dynamically configured by the device; or the time domain total resources of the first uplink control area and the second uplink control area are Each of the time domain resources in the time domain is configured by the device; or the first uplink control area is dynamically configured by the device, and preferably, when there is only the uplink control, the UE needs to send The device configures the first uplink control area to exist. Otherwise, the configuration of the first uplink control area does not exist.
  • the user equipment UE that transmits data in the first uplink control area and/or the uplink data area performs the idle channel assessment CCA detection.
  • the starting time point of the first uplink control area and/or the uplink data area, or the starting orthogonal frequency division multiplexing OFDM symbol is configured by the device, or configured according to a preset condition.
  • the end time point of the first uplink control area and/or the uplink data area, or the end of the orthogonal frequency division multiplexing OFDM symbol is configured by the device, or configured according to a preset condition.
  • the base station is configured by using high layer signaling and/or physical layer signaling.
  • the physical layer signaling is sent in the downlink control area by using the physical layer.
  • the downlink control area includes: control signaling or authorization information for uplink data transmission and/or control signaling for downlink data transmission.
  • the method further includes: in a case that only the user equipment UE that needs to be sent by the uplink control is used, the user equipment UE uses the first uplink control area for sending; preferably, the UE performs CCA detection in the guard interval area. .
  • the method further includes: in the transmission unit, the user equipment UE that needs to send the uplink control and the uplink data to be sent, uses the first uplink control area and/or the second uplink control area to send the uplink control; preferably, The user equipment UE performs an idle channel assessment CCA detection in the guard interval region.
  • the method further includes: in the transmission unit, the user equipment UE that needs to send the uplink control and the uplink data to be sent, uses the first uplink control area to send the uplink control, and then uses the uplink data area to send the uplink data;
  • the user equipment UE performs the idle channel assessment CCA detection in the guard interval region.
  • the method further includes: in the transmission unit, only the user equipment UE that needs to send uplink data keeps silent in the first uplink control area, or sends a signal in a frequency domain resource corresponding to the uplink data, or sends a false Uplink control, or sending a signal at a previously agreed resource location; preferably, the user equipment UE performs a clear channel assessment CCA detection in the guard interval region.
  • the fake uplink control is sent by the user equipment UE in a frequency domain resource that is pre-allocated or set by the UE in the first uplink control area.
  • a part of the frequency domain resource is pre-allocated or pre-agreed in the first uplink control area to send the fake uplink control to the user equipment UE.
  • the part of the frequency domain resource is frequency domain discrete.
  • some of the frequency domain resources are uniform frequency domain discrete.
  • the method further includes: configuring or not configuring the first uplink control area according to the preset transmission requirement; when not configuring, the data parameter group in the transmission includes an uplink data area, a downlink control area, a guard interval area, and the In the case of the second uplink control area, the preset configuration sequence is: a downlink control area, a guard interval, an uplink data area, and a second uplink control area; or the second uplink control area is configured or not configured according to a preset transmission requirement; When not configured, in the case that the transmission data parameter group includes an uplink data area, a downlink control area, a guard interval area, and a first uplink control area, the preset configuration sequence is: a downlink control area, a guard interval, a first uplink control area, and Upstream data area.
  • the method further includes: if the second uplink control area is configured or not configured, the configuration is configured.
  • the second uplink control area is used for the uplink data or the state of being kept empty; or, when the first uplink control area is configured or not, the first uplink control area is configured for the uplink data or the state of being kept empty.
  • the downlink control area and the guard interval area are configured as the first uplink control area and/or the uplink data area, if the downlink control area and the guard interval area are not configured.
  • the downlink control area when the downlink control area is not configured and the guard interval area is configured, the downlink control area is configured as a guard interval area and/or a first uplink control area and/or an uplink data area.
  • the method further includes: combining the same or different multiple transmission units obtained according to the preset configuration sequence into one continuous transmission unit in time.
  • the preset configuration sequence is: a downlink control area, a first protection The interval area, the uplink data area, the second guard interval area, and the uplink control area.
  • the method further includes: the time domain resources of the first guard interval area and the second guard interval area are pre-agreed; or dynamically configured by the device; or the first guard interval area and the second guard interval area.
  • the time domain total resources are fixed, wherein the time domain resources of the first guard interval area and the second guard interval area are configured by the device.
  • the first guard interval area and the second guard interval area are used by the user equipment UE that sends data in the uplink data area and the uplink control area to perform idle channel assessment CCA detection.
  • the starting time point of the uplink control area and/or the uplink data area, or the starting orthogonal frequency division multiplexing OFDM symbol is configured by the device, or according to a preset condition.
  • the end time point of the uplink data area, or the end of the orthogonal frequency division multiplexing OFDM symbol is configured by the device, or configured according to a preset condition.
  • the base station is configured by using high layer signaling and/or physical layer signaling.
  • the physical layer signaling is sent in the downlink control area by using the physical layer.
  • the downlink control area includes: control signaling or authorization information for uplink data transmission and/or control signaling for downlink data transmission.
  • the method further includes: when the user equipment UE that needs to be sent by the uplink control is used, the user equipment UE sends the uplink control area; preferably, the UE performs the CCA detection in the second guard interval area. .
  • the method further includes: in the transmission unit, the user equipment that needs to send the uplink control and the uplink data to be sent, the UE sends the uplink data in the uplink data area and the uplink control in the uplink control area.
  • the user The device UE performs the idle channel assessment CCA detection in the first guard interval region and the second guard interval region, respectively.
  • the method further includes: in the transmission unit, the user equipment UE that needs to send the uplink control and the uplink data to be sent, sends the uplink data in the uplink data area, and sends the uplink data in the second guard interval area, where The uplink control is sent in the uplink control region.
  • the user equipment UE performs the idle channel assessment CCA detection in the first guard interval region.
  • the method further includes: the user equipment UE that needs to send both the uplink control and the uplink data to be sent in the transmission unit sends the uplink data in the uplink data area, and remains silent and does not execute in the second guard interval area.
  • the idle channel evaluates the CCA detection, and directly sends the uplink control in the uplink control region.
  • the user equipment UE performs the idle channel assessment CCA detection in the first guard interval region.
  • the method further includes: in the transmission unit, only the user equipment UE that needs to send the uplink data sends the uplink data in the uplink data area.
  • the user equipment UE performs the idle channel assessment CCA detection in the first guard interval area.
  • the method further includes: combining the same or different multiple transmission units obtained according to the preset configuration sequence into one continuous transmission unit in time.
  • a data transmission structure configuration apparatus including: an acquisition module configured to acquire a transmission data parameter group; and a configuration module configured to configure a transmission data parameter group according to a preset configuration order, a transmission unit, wherein the preset configuration order is a configuration order determined according to a requirement of the transmission service.
  • the transmission data parameter group includes an uplink data area, a downlink control area, a guard interval area, a first uplink control area, and a second uplink control area
  • the preset configuration is compliant.
  • the sequence is: a downlink control area, a guard interval, a first uplink control area, an uplink data area, and a second uplink control area.
  • the time domain resources of the first uplink control area and the second uplink control area are preset, or are dynamically configured by the device; or the time domain total resources of the first uplink control area and the second uplink control area are Each of the time domain resources in the time domain is configured by the device; or the first uplink control area is dynamically configured by the device, and preferably, when there is only the uplink control, the UE needs to send The device configures the first uplink control area to exist. Otherwise, the configuration of the first uplink control area does not exist.
  • the user equipment UE that transmits data in the first uplink control area and/or the uplink data area performs the idle channel assessment CCA detection.
  • the starting time point of the first uplink control area and/or the uplink data area, or the starting orthogonal frequency division multiplexing OFDM symbol is configured by the device, or configured according to a preset condition.
  • the end time point of the first uplink control area and/or the uplink data area, or the end of the orthogonal frequency division multiplexing OFDM symbol is configured by the device, or configured according to a preset condition.
  • the base station is configured by using high layer signaling and/or physical layer signaling.
  • the physical layer signaling is sent in the downlink control area by using the physical layer.
  • the downlink control area includes: control signaling or authorization information for uplink data transmission and/or control signaling for downlink data transmission.
  • the device further includes: a first configuration module, where the user equipment UE uses the first uplink control area to send, if the user equipment UE needs to be sent by the uplink control in the transmission unit; Perform CCA detection in the guard interval area.
  • a first configuration module where the user equipment UE uses the first uplink control area to send, if the user equipment UE needs to be sent by the uplink control in the transmission unit; Perform CCA detection in the guard interval area.
  • the device further includes: a second configuration module, configured to: in the transmission unit, the user equipment UE that needs to send the uplink control and the uplink data to be sent uses the first uplink control area and/or the second uplink control area.
  • the uplink control is sent; preferably, the user equipment UE performs the idle channel assessment CCA detection in the guard interval area.
  • the device further includes: a third configuration module, configured to: in the transmission unit, the user equipment UE that needs to send the uplink control and the uplink data to be sent uses the first uplink control area and/or the second uplink control area.
  • the uplink control is sent; preferably, the user equipment UE performs the idle channel assessment CCA detection in the guard interval area.
  • the device further includes: a fourth configuration module, configured to: in the transmission unit, only the user equipment UE that needs to send the uplink data remains silent in the first uplink control area, or in the frequency domain resource corresponding to the uplink data. Sending a signal, or sending a false uplink control, or transmitting a signal at a previously agreed resource location; preferably, the user equipment UE performs a clear channel assessment CCA detection in the guard interval region.
  • a fourth configuration module configured to: in the transmission unit, only the user equipment UE that needs to send the uplink data remains silent in the first uplink control area, or in the frequency domain resource corresponding to the uplink data. Sending a signal, or sending a false uplink control, or transmitting a signal at a previously agreed resource location; preferably, the user equipment UE performs a clear channel assessment CCA detection in the guard interval region.
  • the fake uplink control is sent by the user equipment UE in a frequency domain resource that is pre-allocated or set by the UE in the first uplink control area.
  • a part of the frequency domain resource is pre-allocated or pre-agreed in the first uplink control area to send the fake uplink control to the user equipment UE.
  • the part of the frequency domain resource is frequency domain discrete.
  • part of the frequency domain resources are uniform frequency domain dispersion.
  • the device further includes: a fifth configuration module, configured to configure or not configure the first uplink control area according to the preset transmission requirement; when not configured, the data parameter group includes an uplink data area, and downlink control
  • the preset configuration sequence is: a downlink control area, a guard interval, an uplink data area, and a second uplink control area; or a second uplink control area according to a preset transmission requirement
  • the preset configuration sequence is: the downlink control area and the guard interval. The first uplink control area and the uplink data area.
  • the apparatus further includes: a sixth configuration module, configured to: after configuring or not configuring the first uplink control area or the second uplink control area according to the preset transmission requirement, in the second uplink control area If the configuration is not configured, the second uplink control area is configured to be used for uplink data or is kept empty; or, in the case where the first uplink control area is configured or not, the first uplink control area is configured to be used for Upstream data or an empty state.
  • a sixth configuration module configured to: after configuring or not configuring the first uplink control area or the second uplink control area according to the preset transmission requirement, in the second uplink control area If the configuration is not configured, the second uplink control area is configured to be used for uplink data or is kept empty; or, in the case where the first uplink control area is configured or not, the first uplink control area is configured to be used for Upstream data or an empty state.
  • the configuration module is configured to configure the downlink control region and the guard interval region as the first uplink control region and/or the uplink data region, if the downlink control region and the guard interval region are not configured.
  • the configuration module is configured to configure the downlink control region as the guard interval region and/or the first uplink control region and/or the uplink data region when the downlink control region is not configured and the guard interval region is configured.
  • the device further includes: a first combination module, configured to combine the same or different multiple transmission units obtained according to the preset configuration sequence into one continuous transmission unit in time.
  • a first combination module configured to combine the same or different multiple transmission units obtained according to the preset configuration sequence into one continuous transmission unit in time.
  • the preset configuration sequence is: a downlink control area, a first protection The interval area, the uplink data area, the second guard interval area, and the uplink control area.
  • the time domain resources of the first guard interval area and the second guard interval area are pre-agreed; or dynamically configured by the device; or, the time of the first guard interval area and the second guard interval area
  • the domain total resource is fixed, wherein the time domain resources of the first guard interval area and the second guard interval area are configured by the device.
  • the first guard interval area and the second guard interval area are used by the user equipment UE that sends data in the uplink data area and the uplink control area to perform idle channel assessment CCA detection.
  • the starting time point of the uplink control area and/or the uplink data area, or the starting orthogonal frequency division multiplexing OFDM symbol is configured by the device, or according to a preset condition.
  • the end time point of the uplink data area, or the end of the orthogonal frequency division multiplexing OFDM symbol is configured by the device, or configured according to a preset condition.
  • the base station is configured by using high layer signaling and/or physical layer signaling.
  • the physical layer signaling is sent in the downlink control area by using the physical layer.
  • the downlink control area includes: control signaling or authorization information for uplink data transmission and/or control signaling for downlink data transmission.
  • the device further includes: a seventh configuration module, configured to: when the user equipment UE that needs to be sent by the uplink control is configured, the user equipment UE sends the uplink control area; preferably, the UE is in the second Perform CCA detection in the guard interval area.
  • a seventh configuration module configured to: when the user equipment UE that needs to be sent by the uplink control is configured, the user equipment UE sends the uplink control area; preferably, the UE is in the second Perform CCA detection in the guard interval area.
  • the apparatus further includes: an eighth configuration module, configured to: when the user equipment UE that needs to be sent by the uplink control is configured, the user equipment UE sends the uplink control area; preferably, the UE is in the second Perform CCA detection in the guard interval area.
  • an eighth configuration module configured to: when the user equipment UE that needs to be sent by the uplink control is configured, the user equipment UE sends the uplink control area; preferably, the UE is in the second Perform CCA detection in the guard interval area.
  • the device further includes: a ninth configuration module, configured to: in the transmission unit, both the uplink control needs to be sent, and the uplink data needs to be sent, the user equipment UE sends the uplink data in the uplink data area, and is in the second guard interval.
  • the uplink data is sent in the area, and the uplink control is sent in the uplink control area.
  • the user equipment UE performs the idle channel assessment CCA detection in the first guard interval area.
  • the device further includes: a tenth configuration module, configured to: in the transmission unit, both the uplink control needs to be sent, and the uplink data needs to be sent, the user equipment UE sends uplink data in the uplink data area, and is in the second guard interval.
  • the CMA detection is performed in the area and the idle channel assessment CCA detection is not performed, and the uplink control is directly sent in the uplink control area.
  • the user equipment UE performs the idle channel assessment CCA detection in the first guard interval area.
  • the device further includes: an eleventh configuration module, configured to: in the transmission unit, only the user equipment that needs to send uplink data sends the uplink data in the uplink data area.
  • the user equipment UE is in the first guard interval area.
  • the idle channel is evaluated in the CCA detection.
  • the apparatus further includes: a second combination module, configured to perform the idle channel assessment CCA detection in the first guard interval area, where the user equipment UE that only uplink data needs to be sent is configured in the transmission unit.
  • a second combination module configured to perform the idle channel assessment CCA detection in the first guard interval area, where the user equipment UE that only uplink data needs to be sent is configured in the transmission unit.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the following steps: obtaining a transmission data parameter group; configuring a transmission data parameter group according to a preset configuration order to obtain a transmission unit, wherein the preset configuration sequence is determined according to a requirement of the transmission service. Configuration order.
  • the storage medium is further configured to store program code for performing the following steps:
  • the preset configuration sequence is: a downlink control area, a guard interval, and a first uplink control area.
  • the storage medium is further configured to store program code for performing the following steps: the time domain resources of the first uplink control area and the second uplink control area are preset; or dynamically configured by the device; or, first The time domain total resources of the uplink control area and the second uplink control area are fixed, and each time domain resource in the time domain total resource is configured by the device; or, the first uplink control area is dynamically configured by the device whether It is preferred that, when there is a UE that only needs to be sent by the uplink control UE, the device configures that the first uplink control area exists. Otherwise, the configuration that the first uplink control area does not exist is allowed.
  • the storage medium is further configured to store program code for performing the following steps: during the guard interval region, the user equipment UE transmitting data in the first uplink control region and/or the uplink data region performs idle channel assessment CCA detection.
  • the storage medium is further configured to store program code for performing the following steps: a first uplink control region and/or a start time point of the uplink data region, or, starting Orthogonal Frequency Division Multiplexing (OFDM)
  • OFDM Orthogonal Frequency Division Multiplexing
  • the storage medium is further configured to store program code for performing the following steps: an end time point of the first uplink control area and/or the uplink data area, or ending the OFDM symbol is configured by the device, Or configured according to preset conditions.
  • the storage medium is further configured to store program code for performing the following steps:
  • the base station is configured by higher layer signaling and/or physical layer signaling.
  • the storage medium is further configured to store program code for performing the following steps: transmitting physical layer signaling in the downlink control region through the physical layer.
  • the storage medium is further configured to store program code for performing the following steps: the downlink control region comprises: control signaling or authorization information for uplink data transmission and/or control signaling for downlink data transmission.
  • the storage medium is further configured to store program code for performing the following steps: the party The method further includes: in a case that only the user equipment UE that needs to be sent by the uplink control is used, the user equipment UE transmits using the first uplink control area; preferably, the UE performs CCA detection in the guard interval area.
  • the storage medium is further configured to store the program code for performing the following steps: the method further includes: the user equipment UE that has both the uplink control and the uplink data to be sent in the transmission unit uses the first uplink control area. And/or the second uplink control region sends the uplink control; preferably, the user equipment UE performs the idle channel assessment CCA detection in the guard interval region.
  • the storage medium is further configured to store the program code for performing the following steps: the method further includes: the user equipment UE that has both the uplink control and the uplink data to be sent in the transmission unit uses the first uplink control area. The uplink control is sent, and then the uplink data is sent using the uplink data area; preferably, the user equipment UE performs the idle channel assessment CCA detection in the guard interval area.
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: in the transmission unit, only the user equipment UE that needs to send the uplink data remains silent in the first uplink control area, or Transmitting a signal in a frequency domain resource corresponding to the uplink data, or sending a false uplink control, or transmitting a signal at a previously agreed resource location; preferably, the user equipment UE performs the idle channel assessment CCA detection in the guard interval region.
  • the storage medium is further configured to store program code for performing the following steps: the fake uplink control is in the frequency domain resource that the user equipment UE pre-allocates or sets for the UE in the first uplink control area. send.
  • the storage medium is further configured to store program code for performing the following steps: pre-allocating or pre-arranging part of the frequency domain resources in the first uplink control area to send false uplink control to the user equipment UE; wherein, the partial frequency Domain resources are discrete in the frequency domain.
  • the storage medium is further configured to store program code for performing the following steps: part of the frequency domain resource is a uniform frequency domain dispersion.
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: configuring or not configuring the first uplink control area according to a preset transmission requirement;
  • the preset configuration sequence is: a downlink control area, a guard interval, an uplink data area, and a second
  • the uplink control area is configured or not configured according to the preset transmission requirement; when not configured, the data parameter group includes an uplink data area, a downlink control area, a guard interval area, and a first uplink control area.
  • the preset configuration sequence is: a downlink control area, a guard interval, a first uplink control area, and an uplink data area.
  • the storage medium is further configured to store the program code for performing the following steps: after configuring or not configuring the first uplink control area or the second uplink control area according to the preset transmission requirement, the method further includes: If the second uplink control area is configured or not configured, the second uplink control area is configured to be used for uplink data or is kept empty; or, when the first uplink control area is configured or not configured, the first uplink is configured. The control area is used for upstream data or for keeping empty.
  • the storage medium is further configured to store program code for performing the following steps: configuring the downlink control region and the guard interval region as the first uplink control region and/or without configuring the downlink control region and the guard interval region. Or the upstream data area.
  • the storage medium is further configured to store program code for performing the following steps: configuring the downlink control area as the guard interval area and/or the first uplink if the downlink control area is not configured and the guard interval area is configured Control area and/or upstream data area.
  • the storage medium is further configured to store program code for performing the following steps: the method further comprises: combining the same or different multiple transmission units obtained according to the preset configuration sequence into one continuous transmission unit in time.
  • the storage medium is further configured to store program code for performing the following steps: when the transmission data parameter group includes an uplink data area, a downlink control area, a first guard interval area, a second guard interval area, and an uplink control area.
  • the preset configuration sequence is: a downlink control area, a first guard interval area, an uplink data area, a second guard interval area, and an uplink control area.
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: the time domain resources of the first guard interval area and the second guard interval area are pre-agreed; or, dynamically configured by the device Or; the time domain total resources of the first guard interval area and the second guard interval area are fixed, wherein the time domain resources of the first guard interval area and the second guard interval area are configured by the device.
  • the storage medium is further configured to store program code for performing the following steps: a first guard interval area and a second guard interval area, where the user equipment UE that sends data in the uplink data area and the uplink control area performs idle Channel evaluation CCA detection.
  • the storage medium is further configured to store program code for performing the following steps: an initial control point of the uplink control region and/or the uplink data region, or the initial orthogonal frequency division multiplexing OFDM symbol is configured by the device, or According to the preset conditions.
  • the storage medium is further configured to store program code for performing the following steps: an end time point of the uplink data area, or ending the orthogonal frequency division multiplexing OFDM symbol configured by the device, or configured according to a preset condition.
  • the storage medium is further configured to store program code for performing the following steps:
  • the base station is configured by high layer signaling and/or physical layer signaling.
  • the storage medium is further configured to store program code for performing the following steps: transmitting physical layer signaling in the downlink control region through the physical layer.
  • the storage medium is further configured to store program code for performing the following steps: the downlink control region comprises: control signaling or authorization information for uplink data transmission and/or control signaling for downlink data transmission.
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: when only the user equipment UE that needs to be sent by the uplink control is in the transmission unit, the user equipment UE sends the uplink control area. Preferably, the UE performs CCA detection in the second guard interval region.
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: in the transmission unit, both the uplink control needs to be sent and the uplink data needs to be sent.
  • the user equipment UE sends the uplink data in the uplink data area and the uplink control in the uplink control area.
  • the user equipment UE performs the idle channel assessment CCA detection in the first guard interval area and the second guard interval area, respectively.
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: in the transmission unit, both the uplink control needs to send and the uplink data needs to be sent, and the user equipment UE sends the uplink in the uplink data area.
  • the data is sent in the second guard interval area, and the uplink control is sent in the uplink control area.
  • the user equipment UE performs the idle channel assessment CCA detection in the first guard interval area.
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: in the transmission unit, both the uplink control needs to send and the uplink data needs to be sent, and the user equipment UE sends the uplink in the uplink data area. Data, and keep silent in the second guard interval region and do not perform idle channel estimation CCA detection, and directly send uplink control in the uplink control region. Preferably, the user equipment UE performs idle channel assessment CCA detection in the first guard interval region. .
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: in the transmission unit, only the user equipment UE that needs to send uplink data sends uplink data in the uplink data area, preferably, the user equipment The UE performs idle channel assessment CCA detection in the first guard interval region.
  • the storage medium is further configured to store program code for performing the following steps: the method further comprises: combining the same or different multiple transmission units obtained according to the preset configuration sequence into one continuous transmission unit in time.
  • the transmission data parameter group is obtained; the transmission data parameter group is configured according to the preset configuration order, and the transmission unit is obtained, wherein the preset configuration sequence is a configuration sequence determined according to the requirement of the transmission service, and therefore, the relevant In the technology, the problem that the uplink control cannot be sent due to the failure of the CCA is successful, and the effect of improving the spectrum efficiency is achieved.
  • FIG. 1 is a schematic structural view of a transmission unit in the prior art
  • FIG. 2 is a block diagram showing the hardware structure of a mobile terminal according to a method for configuring a data transmission structure according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method of configuring a data transmission structure according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a basic transmission unit in a method for configuring a data transmission structure according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of another basic transmission unit in a method for configuring a data transmission structure according to an embodiment of the present invention
  • FIG. 6 is a structural block diagram of a configuration apparatus of a data transmission structure according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a hardware structure of a mobile terminal according to a method for configuring a data transmission structure according to an embodiment of the present invention.
  • the mobile terminal 20 may include one or more (only one shown) processor 202 (the processor 202 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA).
  • Memory 204 for storing data, and for communication Functional transmission device 206.
  • the structure shown in FIG. 2 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 20 may also include more or fewer components than those shown in FIG. 2, or have a different configuration than that shown in FIG. 2.
  • the memory 204 can be used to store software programs and modules of the application software, such as program instructions/modules corresponding to the configuration method of the data transfer structure in the embodiment of the present invention, and the processor 202 runs the software programs and modules stored in the memory 204, thereby The above methods are implemented by performing various functional applications and data processing.
  • Memory 204 can include high speed random access memory and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 204 can further include memory remotely located relative to processor 202, which can be connected to mobile terminal 20 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 206 is arranged to receive or transmit data via a network.
  • the above specific network example may include a wireless network provided by a communication provider of the mobile terminal 20.
  • transmission device 206 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • NIC Network Interface Controller
  • the transmission device 106 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • RF Radio Frequency
  • FIG. 3 is a flowchart of a method for configuring a data transmission structure according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • Step S302 acquiring a transmission data parameter group
  • step S304 the transmission data parameter group is configured according to the preset configuration order, and the transmission unit is obtained.
  • the preset configuration sequence is a configuration sequence determined according to the requirement of the transmission service.
  • the transmission data parameter group is obtained; the transmission data parameter group is configured according to the preset configuration order, and the transmission unit is obtained, wherein the preset configuration sequence is based on the requirement of the transmission service.
  • the configuration sequence is determined, so that the problem that the uplink control cannot be sent due to the failure of the CCA success can be solved in the related art, and the spectrum efficiency is improved.
  • the transmission data parameter group includes an uplink data area, a downlink control area, a guard interval area, a first uplink control area, and a second uplink control area
  • the preset configuration sequence is: a downlink control area, a guard interval, and The first uplink control area, the uplink data area, and the second uplink control area.
  • the time domain resources of the first uplink control area and the second uplink control area are preset; or dynamically configured by the device; or the time domain total resources of the first uplink control area and the second uplink control area are Each of the time domain resources in the time domain is configured by the device; or the first uplink control area is dynamically configured by the device, and preferably, when there is only the uplink control, the UE needs to send The device configures the first uplink control area to exist. Otherwise, the configuration of the first uplink control area does not exist.
  • the user equipment UE that transmits data in the first uplink control area and/or the uplink data area performs the idle channel assessment CCA detection.
  • the starting time point of the first uplink control area and/or the uplink data area, or the starting orthogonal frequency division multiplexing OFDM symbol is configured by the device, or configured according to a preset condition.
  • the end time point of the first uplink control area and/or the uplink data area, or the end of the orthogonal frequency division multiplexing OFDM symbol is configured by the device, or configured according to a preset condition.
  • the base station is configured by using high layer signaling and/or physical layer signaling.
  • the physical layer signaling is sent in the downlink control area by using the physical layer.
  • the downlink control area includes: control signaling or authorization information for uplink data transmission and/or control signaling for downlink data transmission.
  • the method for configuring the data transmission structure of the embodiment of the present application further includes: when only the user equipment UE that needs to be sent by the uplink control is used in the transmission unit, the user equipment UE uses the first uplink control area to transmit; preferably, The UE performs a CCA check in the guard interval area. Measurement.
  • the method for configuring the data transmission structure in the embodiment of the present application further includes: in the transmission unit, the user equipment UE that needs to send the uplink control and the uplink data to be sent, uses the first uplink control area and/or the second uplink.
  • the control region sends uplink control; preferably, the user equipment UE performs idle channel assessment CCA detection in the guard interval region.
  • the method for configuring the data transmission structure in the embodiment of the present application further includes: in the transmission unit, the user equipment that needs to send the uplink control and the uplink data to be sent, uses the first uplink control area to send the uplink control, and then uses the uplink control.
  • the uplink data area transmits uplink data; preferably, the user equipment UE performs the idle channel assessment CCA detection in the guard interval area.
  • the method for configuring the data transmission structure in the embodiment of the present application further includes: in the transmission unit, only the user equipment UE that needs to send uplink data remains silent in the first uplink control area, or is in a frequency domain corresponding to the uplink data.
  • the signal is sent in the resource, or the spurious uplink control is sent, or the signal is sent at the previously agreed resource location; preferably, the user equipment UE performs the idle channel assessment CCA detection in the guard interval region.
  • the fake uplink control is sent by the user equipment UE in a frequency domain resource that is pre-allocated or set by the UE in the first uplink control area.
  • a part of the frequency domain resource is pre-allocated or pre-agreed in the first uplink control area to send the fake uplink control to the user equipment UE.
  • the part of the frequency domain resource is frequency domain discrete.
  • some of the frequency domain resources are uniform frequency domain discrete.
  • the method for configuring the data transmission structure of the embodiment of the present application further includes: configuring or not configuring the first uplink control area according to the preset transmission requirement; when not configuring, the data parameter group includes an uplink data area,
  • the preset configuration sequence is: a downlink control area, a guard interval, an uplink data area, and a second uplink control area; or a second uplink according to a preset transmission requirement
  • the control area is configured or not configured.
  • the preset configuration sequence is: the downlink control area, The guard interval, the first uplink control region, and the uplink data region.
  • the method further includes: if the second uplink control area is configured or not configured, the configuration is configured.
  • the second uplink control area is used for uplink data or is kept empty; or, when the first uplink control area is configured or not, the first uplink control area is configured for uplink data or remains empty;
  • the state is used to configure the implementation of the idle channel assessment CCA detection.
  • the downlink control area and the guard interval area are configured as the first uplink control area and/or the uplink data area, if the downlink control area and the guard interval area are not configured.
  • the downlink control area when the downlink control area is not configured and the guard interval area is configured, the downlink control area is configured as a guard interval area and/or a first uplink control area and/or an uplink data area.
  • the method for configuring the data transmission structure of the embodiment of the present application further includes: combining the same or different multiple transmission units obtained according to the preset configuration sequence into one continuous transmission unit in time.
  • the preset configuration sequence is: a downlink control area, a first protection The interval area, the uplink data area, the second guard interval area, and the uplink control area.
  • the method for configuring the data transmission structure of the embodiment of the present application further includes: the time domain resources of the first guard interval area and the second guard interval area are pre-agreed; or dynamically configured by the device; or, first The time domain total resources of the guard interval area and the second guard interval area are fixed, wherein the time domain resources of the first guard interval area and the second guard interval area are configured by the device.
  • the first guard interval area and the second guard interval area are used by the user equipment UE that sends data in the uplink data area and the uplink control area to perform idle channel assessment CCA detection.
  • the starting time point of the uplink control area and/or the uplink data area, or the starting orthogonal The frequency division multiplexed OFDM symbols are configured by the device or according to preset conditions.
  • the end time point of the uplink data area, or the end of the orthogonal frequency division multiplexing OFDM symbol is configured by the device, or configured according to a preset condition.
  • the base station is configured by using high layer signaling and/or physical layer signaling.
  • the physical layer signaling is sent in the downlink control area by using the physical layer.
  • the downlink control area includes: control signaling or authorization information for uplink data transmission and/or control signaling for downlink data transmission.
  • the method for configuring the data transmission structure of the embodiment of the present application further includes: when only the user equipment UE that needs to be sent by the uplink control is used in the transmission unit, the user equipment UE uses the uplink control area to transmit; preferably, the UE is The CCA detection is performed in the second guard interval region.
  • the method for configuring the data transmission structure in the embodiment of the present application further includes: in the transmission unit, the user equipment that needs to send the uplink control and the uplink data to be sent, the UE sends the uplink data and the uplink control in the uplink data area.
  • the area transmits uplink control; preferably, the user equipment UE performs the idle channel assessment CCA detection in the first guard interval area and the second guard interval area, respectively.
  • the method for configuring the data transmission structure in the embodiment of the present application further includes: in the transmission unit, the user equipment UE that needs to send the uplink control and the uplink data to be sent, sends the uplink data in the uplink data area, and is in the second.
  • the uplink data is sent in the protection interval, and the uplink control is sent in the uplink control region.
  • the user equipment UE performs the idle channel assessment CCA detection in the first guard interval region.
  • the method for configuring the data transmission structure in the embodiment of the present application further includes: in the transmission unit, the user equipment UE that needs to send the uplink control and the uplink data to be sent, sends the uplink data in the uplink data area, and is in the second.
  • the CSS detection is performed in the Guard interval and the CSS detection is not performed.
  • the uplink control is directly sent in the uplink control region.
  • the user equipment UE performs the CSA detection in the first Guard Interval region.
  • the method for configuring the data transmission structure of the embodiment of the present application further includes: The user equipment UE that only needs to send the uplink data in the element sends uplink data in the uplink data area.
  • the user equipment UE performs the idle channel assessment CCA detection in the first guard interval area.
  • the method for configuring the data transmission structure of the embodiment of the present application further includes: combining the same or different multiple transmission units obtained according to the preset configuration sequence into one continuous transmission unit in time.
  • FIG. 4 and FIG. 5 are schematic diagrams showing the structure of two basic transmission units according to an embodiment of the present application.
  • a data, a control structure, and a corresponding transmission method are provided in a transmission unit (for example, A subframe, a TTI or a plurality of consecutive subframes or TTIs, including a plurality of consecutive OFDM symbols, includes (chronological order): downlink control, guard interval, uplink control 1, uplink data, and uplink control 2.
  • the above uplink control 1 and 2 can determine the presence or absence and the respective time domain length according to the configuration of the base station.
  • the base station and the UE specifically use this structure for data and control transmission.
  • the specific usage is as follows:
  • UE1 represents both uplink data and uplink control UE
  • UE2 represents UEs with only uplink control (no uplink data).
  • the base station determines whether the uplink control 1 exists according to the scheduling situation. For example, when UE2 needs to transmit in the transmission unit, uplink control 1 is present, and the uplink control transmission for UE2 is used at this time. In this case, it can also be understood that the uplink control 1 occupies part of the OFDM symbol of the original uplink data. It can also be understood that the partial OFDM symbol of the uplink control 2 is migrated to the front as the uplink control 1. In this case, the total symbol of the uplink data is not reduced relative to the prior art FIG. Obviously, partial control signaling of UE1 can also be transmitted in uplink control 1, and the remaining control signaling can also be transmitted in uplink control 2.
  • the base station preferably configures the uplink control 1 to be absent.
  • the symbol of the uplink control 1 is used for uplink data transmission. It can also be understood as the structure in Fig. 1 at this time.
  • the CCA detection position of UE1 can be performed during the guard interval. If the time when the UE1 performs CCA success has an interval M from the starting point of the uplink control 1, At this time, UE1 can only keep transmitting data or continue to perform CCA, but can send uplink control or send occupation signal in uplink control 1, then send uplink data during uplink data, and then send uplink control information, such as UCI, in uplink control 2. , SRS or SR, etc.
  • the UE2 performs a CCA detection location that is also performed during a preferred location guard interval.
  • the UE 2 can only start to send uplink control information, such as UCI, SRS, or SR, at the starting point of the uplink control 1.
  • uplink control information such as UCI, SRS, or SR
  • the uplink control 2 in FIG. 4 can be deleted, and is also a transmission unit structure for data transmission, in which all uplink control is placed after the guard interval.
  • UE1 and UE2 perform CCA at the guard interval and then transmit uplink control and/or uplink data.
  • the uplink and downlink control is used to transmit related uplink control information sent by UEs such as UCI, SRS, and SR.
  • the essence of this paper is the determination of the time domain position when the relevant uplink control information is transmitted in the transmission unit. Therefore, the uplink control may be an independent control channel, or may be a resource for transmitting related uplink control information.
  • the relative position of the uplink control information in the transmission unit is as described herein, the purpose of solving the problem in this paper can be achieved, and corresponding benefit.
  • a data, a control structure, and a corresponding transmission method are included in a transmission unit (eg, a subframe, a TTI, or a plurality of consecutive subframes or TTIs, including a plurality of consecutive OFDM symbols) (time) Sequence): downlink control, guard interval 1, uplink data, guard interval 2, and uplink control 2.
  • a transmission unit eg, a subframe, a TTI, or a plurality of consecutive subframes or TTIs, including a plurality of consecutive OFDM symbols
  • time Sequence downlink control, guard interval 1, uplink data, guard interval 2, and uplink control 2.
  • the above-mentioned guard intervals 1, 2 can be determined according to the configuration of the base station and the respective time domain lengths.
  • the base station and the UE specifically use this structure for data and control transmission. The specific usage is as follows:
  • UE1 represents both uplink data and uplink control UE
  • UE2 represents UEs with only uplink control (no uplink data).
  • the base station determines whether the guard interval 2 exists according to the scheduling situation. For example, when UE2 needs to transmit in the transmission unit, the guard interval 2 is present, and the CCA check for UE2 is used at this time. It is determined that if the CCA detects that the channel is idle, UE2 sends an uplink control in the uplink control region. At this time, it can also be understood that the guard interval 2 occupies part of the OFDM symbol of the original uplink data. It can also be understood that the partial OFDM symbol of the uplink control is used as the guard interval 2. In this case, the total symbol of the uplink data is not reduced relative to the prior art FIG. Obviously, if UE1 needs to send uplink control, UE1 also needs to perform CCA in guard interval 2. The CCA detects that the channel is idle and then transmits, or can perform uplink control directly in the uplink control region without performing CCA.
  • the base station preferably configures the guard interval 2 to be absent. At this time, the guard interval 2 symbol is used for uplink data transmission or uplink control.
  • the UE 2 performs the CCA detection position during the guard interval 2. If there is an interval N between the time point when the UE2 performs CCA success and the starting point of the uplink control, the UE2 can only start to send uplink control information, such as UCI, SRS, or SR, at the uplink control start point. The UE 2 can keep not transmitting data or continue to perform CCA during the interval N.
  • uplink control information such as UCI, SRS, or SR
  • the present application relates to a data, control transmission unit structure design and corresponding flexible use manner.
  • the transmission unit is composed of at least one uplink data interval, and whether other components are further included in the transmission unit.
  • the corresponding transmission unit configuration needs to be determined according to the service requirements of the UEs scheduled to be carried or scheduled by each transmission unit during transmission of the device.
  • the specific configuration can be seen in the following examples.
  • the configuration of a complete transmission unit is: downlink control, guard interval, uplink control 1, uplink data, and uplink control 2 (the CCA area before the downlink control is not included in the transmission unit at this time, because the CCA interval of the device may not be fixed.
  • the device can start the CCA for a relatively long time in advance. If the calculation is in the transmission unit, the fixed downlink control is required to perform the time domain interval of the CCA.
  • the device can dynamically or semi-statically configure the time domain duration of each area in the transmission unit, or pre-arrange the respective fixed durations. When one of the areas does not exist, the duration of the area is now agreed to be used for other areas.
  • the time domain resources of the uplink control 1 and the uplink control 2 are pre-agreed, or the device is dynamically configured. Or the time domain total resources of the uplink control 1 and the uplink control 2 are fixed, and each part of the time domain resource is configured for the device.
  • a UE that needs to transmit data in an uplink control 1 area and/or an uplink data area performs CCA detection.
  • the device dynamically or semi-statically configures the start time point or the starting OFDM symbol of the uplink control 1 region and/or the uplink data region to be configured by the device. Or agree in advance.
  • the device may also dynamically configure the end time point or end OFDM symbol of the uplink control 1 area and/or the uplink data area to be configured by the device. Or agree in advance. For example, using high layer signaling and/or physical layer signaling to notify.
  • the device sends notification signaling in the downlink control region.
  • the device in the downlink control includes control signaling or authorization information for uplink data transmission and/or control signaling for downlink data transmission, for example, using common area transmission in the downlink control area (the downlink control area is divided into a common control area and UE dedicated area).
  • the device only has uplink control for the UE to be transmitted in the transmission unit, and such UE preferably uses the uplink control 1 for transmission. This will delete the Upstream Control 2 area.
  • such UE can use either uplink control 1 or uplink control 2, or use it at the same time.
  • such UE preferentially uses the uplink control 1 to transmit uplink control, and then transmits uplink data.
  • the UEs perform CCA during the guard interval, (if the CCA is successful, that is, the channel is idle), remain silent during the uplink control 1 region, or The signal is transmitted in a frequency domain resource corresponding to the uplink data, or a false uplink control is sent.
  • the false uplink control is sent by the UE in the uplink control 1 for the frequency domain resources allocated or agreed by the UE in advance, for occupying the channel purpose.
  • the device pre-configures or pre-arranges some frequency domain resources in the uplink control 1 to send false uplink control to the UE.
  • some of the frequency domain resources are frequency domain discrete, preferably uniform frequency domain dispersion. If the configuration mode is adopted, both dynamic signaling and high layer signaling may be used, and the configuration signaling is preferably sent in a broadcast manner.
  • the uplink control 2 in the transmission unit may not be configured, and the uplink control 2 area is used for uplink data.
  • the uplink control 1 may not be configured, and the uplink control 1 area is used for uplink data.
  • the downlink control and guard interval are used by the uplink control 1 and/or the uplink data when the downlink control in the transmission unit is not configured and the guard interval does not need to be configured.
  • Downlink control in the transmission unit The system may not be configured, and when the guard interval is configured, the downlink control is used for the guard interval and/or the uplink control 1 and/or the uplink data.
  • the device (referred to generally as the sender device, the base station, and the terminal) can determine the transmission according to the requirements of the transmission data, for example, the type of downlink control, uplink control, or uplink data, and the corresponding data amount in the process of transmitting data.
  • the configuration of the unit for example, whether it is necessary to configure a corresponding area and a corresponding time domain section, or whether to configure a plurality of consecutive transmission units for transmission, and the like.
  • the structures in the transmission unit that the device can configure are:
  • UE1 indicates a class of UEs having uplink data and uplink control to be transmitted in the transmission unit; UE2 indicates that one type of uplink control is to be transmitted in the transmission unit, and no uplink data is to be transmitted; UE3 indicates one type. In the transmission unit, there is uplink data to be transmitted, and no uplink control is to be transmitted.
  • the structure of the device configuration transmission unit is:
  • the transmission unit includes: downlink control, guard interval, uplink control 1, uplink data, and uplink control 2 in sequence; when the device determines that UE1, UE2, and UE3 are simultaneously present in the transmission unit, the transmission unit uses the structure.
  • the CCAs of all types of UEs are only executed in the guard interval, thereby realizing the CCA location sharing, and is the guard interval for the shared use device to switch from the transmit state to the receive state (this conversion switch is necessarily left with an interval).
  • this conversion switch is necessarily left with an interval.
  • the transmission unit includes: downlink control, guard interval, uplink control, and uplink data.
  • the guard interval is reduced.
  • the device configures the uplink control of the UE in the uplink control. send.
  • the resources of the uplink control 2 are used for uplink data.
  • the transmission unit includes: downlink control, guard interval, and uplink data in sequence; when the device determines that the transmission unit has only UE3, the device configures the transmission unit to be configuration 3.
  • the transmission unit includes: protection interval, uplink control 1, and uplink data in sequence; when the device determines that the transmission unit has UE1, UE2, and UE3, and no UE in the transmission unit needs to receive uplink authorization or downlink authorization in downlink control.
  • the device configures the transmission unit as configuration four.
  • the transmission unit includes: uplink control 1 and uplink data in sequence; in addition to the requirements in configuration 4, when configuring the transmission unit 5, it should be noted that the previous transmission unit of the transmission unit is also the end of the above-mentioned UE to the previous transmission unit.
  • the transmission unit includes: uplink data in sequence.
  • the device determines that only UE3 is continuously transmitted from the previous transmission unit, and the device configures the transmission unit to be configured six.
  • the device may serially connect the candidate structures described above for data transmission.
  • the transmission unit starts counting data from the device and its subordinate UEs.
  • the CCA interval before the downlink control can also be calculated in the transmission unit.
  • the device (referred to generally as the sender device, the base station, and the terminal) can determine the transmission according to the requirements of the transmission data, for example, the type of downlink control, uplink control, or uplink data, and the corresponding data amount in the process of transmitting data.
  • the configuration of the unit for example, whether it is necessary to configure a corresponding area and a corresponding time domain section, or whether to configure a plurality of consecutive transmission units for transmission, and the like.
  • the structures in the transmission unit that the device can configure are:
  • UE1 indicates that there is a type of uplink data in the transmission unit.
  • the UE controls the UE to be transmitted;
  • UE2 indicates that one type of uplink control is to be transmitted in the transmission unit, and no uplink data is to be transmitted;
  • UE3 indicates that one type of uplink data is to be transmitted in the transmission unit, and no uplink control is to be transmitted.
  • the structure of the device configuration transmission unit is:
  • the transmission unit includes: downlink control, guard interval 1, uplink data, guard interval 2, and uplink control.
  • the transmission unit uses the structure.
  • UE1 performs CCA for uplink data and uplink control transmission in guard interval 1 and guard interval 2, respectively.
  • UE1 may also not perform CCA before transmitting uplink control.
  • UE2 performs CCA for uplink control transmission at guard interval 2.
  • UE3 performs CCA for uplink data transmission at guard interval 1.
  • the transmission unit includes: downlink control, guard interval 1, and uplink data in sequence; when the device determines that only UE3 appears at the same time in the transmission unit, the transmission unit uses the structure.
  • UE3 performs CCA for uplink data transmission at guard interval 1.
  • the guard interval 2 and the uplink control region are all used for uplink data transmission.
  • the transmission unit includes: guard interval 1, uplink data, guard interval 2, and uplink control in sequence; when the device determines that no UE receives the downlink control in the transmission unit, the transmission unit uses the structure.
  • UE1 performs CCA for uplink data and uplink control transmission in guard interval 1 and guard interval 2, respectively.
  • UE1 may also not perform CCA before transmitting uplink control.
  • UE2 performs CCA for uplink control transmission at guard interval 2.
  • UE3 performs CCA for uplink data transmission at guard interval 1.
  • the transmission unit includes: uplink data, guard interval 2, and uplink control in sequence; when the device determines that no UE receives downlink control in the transmission unit, and uplink data of UE1 and UE3 in the transmission unit are continuously continued from above.
  • UE2 performs CCA for uplink control transmission at guard interval 2.
  • the transmission unit includes: uplink data and uplink control in sequence; when the device determines that there is no When any UE receives the downlink control in the transmission unit, and the uplink data of UE1 and UE3 in the transmission unit is continuously continued from the previous transmission unit, the transmission unit uses the structure. UE1 does not perform CCA transmission directly at the transmission unit.
  • the transmission unit includes: uplink data in sequence.
  • the transmission unit uses the structure.
  • UE1, UE3 do not perform CCA and transmit directly at the transmission unit.
  • the device may serially connect the candidate structures described above for data transmission.
  • the transmission unit starts counting data from the device and its subordinate UEs.
  • the CCA interval before the downlink control can also be calculated in the transmission unit.
  • the CCA execution location of UE1 is a guard interval area. After successful CCA, UE1 may send in uplink control 1, and then send uplink data in the uplink data area, and continue to send control in uplink control 2. Alternatively, the CCA execution location of the UE1 is a guard interval area, and the UE1 may send the uplink data in the uplink control 1 after the CCA succeeds, and then send the uplink data in the uplink data area, and the uplink control 2 does not send the control (in this case, the uplink control 2 may not Configuration).
  • the CCA execution position of the UE1 is a guard interval area, and after the CCA succeeds, the UE1 sends a false control in the uplink control 1 (the spurious control is used to occupy the channel), and then sends the uplink data in the uplink data area, and the uplink control 2 Send control.
  • the CCA execution location of UE2 is a guard interval area, and UE2 transmits in uplink control 1 after the CCA succeeds.
  • the CCA execution location of UE3 is a guard interval area, and UE3 needs to be in the CCA success.
  • the area of the uplink control 1 transmits a virtual control, and then the uplink data is transmitted in the uplink data area.
  • the UE can transmit the virtual control in the interval N interval.
  • the frequency domain location of the virtual control is configured in advance by the base station or dynamically or semi-statically configured by signaling.
  • the virtual control can be some reference signal, UCI signal or partial signal repetition of the uplink control. Specifically, when the part of the time domain signal whose virtual control is uplink control is repeated, the UE may be in the same frequency domain position in the interval N area. Or directly repeat the signal of part of the time domain of the uplink control.
  • the CCA execution position of the UE1 is the guard interval 1 area. After the CCA succeeds, the UE1 may send the uplink data in the uplink data, and then perform the CCA in the guard interval 2 area. If successful, the uplink control is sent in the uplink control area.
  • the CCA execution location of the UE1 is the guard interval 1 region, and the UE1 may send the uplink data in the uplink data region after the CCA succeeds, and then continue to send the uplink data in the guard interval 2, and then send the control in the uplink control (equivalent to UE1 does not perform CCA in guard interval 2, and directly transmits control in the uplink control).
  • the CCA execution position of UE2 is the guard interval 2 area, and UE2 sends control in the uplink control after the CCA succeeds.
  • the CCA execution position of the UE3 is the guard interval 1 area, and after the CCA succeeds, the UE3 transmits the uplink data in the uplink data area.
  • the UE can transmit the virtual control in the interval N interval.
  • the frequency domain location of the virtual control is configured in advance by the base station or dynamically or semi-statically configured by signaling.
  • the virtual control can be some reference signal, UCI signal or partial signal repetition of the uplink control.
  • the time domain signal is repeated, which may be The UE is in the same frequency domain position in the interval N region. Or directly repeat the signal of part of the time domain of the uplink control.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a device for configuring a data transmission structure is provided, which is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 6 is a structural block diagram of a configuration apparatus of a data transmission structure according to an embodiment of the present invention. As shown in FIG. 6, the apparatus includes: an obtaining module 62 and a configuration module 64, where
  • the obtaining module 62 is configured to obtain a transmission data parameter group
  • the configuration module 64 is configured to configure the transmission data parameter group according to the preset configuration order to obtain a transmission unit, where the preset configuration sequence is a configuration sequence determined according to the requirements of the transmission service.
  • the transmission data parameter group is obtained; the transmission data parameter group is configured according to the preset configuration order, and the transmission unit is obtained, wherein the preset configuration sequence is a configuration sequence determined according to the requirements of the transmission service, and therefore, the related technology can be solved.
  • the problem of improving the spectrum efficiency is achieved because the problem of the uplink control cannot be sent due to the failure of the CCA.
  • the transmission data parameter group includes an uplink data area, a downlink control area, a guard interval area, a first uplink control area, and a second uplink control area
  • the preset configuration is compliant.
  • the sequence is: a downlink control area, a guard interval, a first uplink control area, an uplink data area, and a second uplink control area.
  • the time domain resources of the first uplink control area and the second uplink control area are preset, or are dynamically configured by the device; or the time domain total resources of the first uplink control area and the second uplink control area are Each of the time domain resources in the time domain is configured by the device; or the first uplink control area is dynamically configured by the device, and preferably, when there is only the uplink control, the UE needs to send The device configures the first uplink control area to exist. Otherwise, the configuration of the first uplink control area does not exist.
  • the user equipment UE that transmits data in the first uplink control area and/or the uplink data area performs the idle channel assessment CCA detection.
  • the starting time point of the first uplink control area and/or the uplink data area, or the starting orthogonal frequency division multiplexing OFDM symbol is configured by the device, or configured according to a preset condition.
  • the end time point of the first uplink control area and/or the uplink data area, or the end of the orthogonal frequency division multiplexing OFDM symbol is configured by the device, or configured according to a preset condition.
  • the base station is configured by using high layer signaling and/or physical layer signaling.
  • the physical layer signaling is sent in the downlink control area by using the physical layer.
  • the downlink control area includes: control signaling or authorization information for uplink data transmission and/or control signaling for downlink data transmission.
  • the device for configuring the data transmission structure of the embodiment of the present application further includes: a first configuration module, where the user equipment UE uses the first uplink control in a case that only the user equipment UE that needs to be sent by the uplink control is sent in the transmission unit The area is transmitted; preferably, the UE performs CCA detection in the guard interval area.
  • the device for configuring the data transmission structure of the embodiment of the present application further includes: a second configuration module, configured to: in the transmission unit, the user equipment UE that needs to send both the uplink control and the uplink data needs to use the first uplink control
  • the area and/or the second uplink control area sends an uplink control; preferably, the user equipment UE performs an idle channel assessment CCA check in the guard interval area. Measurement.
  • the device for configuring the data transmission structure of the embodiment of the present application further includes: a third configuration module, configured to: in the transmission unit, the user equipment UE that needs to send both the uplink control and the uplink data needs to use the first uplink control
  • the area and/or the second uplink control area sends uplink control; preferably, the user equipment UE performs idle channel assessment CCA detection in the guard interval area.
  • the device for configuring the data transmission structure of the embodiment of the present application further includes: a fourth configuration module, configured to: in the transmission unit, only the user equipment UE that needs to send uplink data remains silent in the first uplink control area, or Transmitting a signal in a frequency domain resource corresponding to the uplink data, or transmitting a false uplink control, or transmitting a signal at a previously agreed resource location; preferably, the user equipment UE performs the idle channel assessment CCA detection in the guard interval region.
  • a fourth configuration module configured to: in the transmission unit, only the user equipment UE that needs to send uplink data remains silent in the first uplink control area, or Transmitting a signal in a frequency domain resource corresponding to the uplink data, or transmitting a false uplink control, or transmitting a signal at a previously agreed resource location; preferably, the user equipment UE performs the idle channel assessment CCA detection in the guard interval region.
  • the fake uplink control is sent by the user equipment UE in a frequency domain resource that is pre-allocated or set by the UE in the first uplink control area.
  • a part of the frequency domain resource is pre-allocated or pre-agreed in the first uplink control area to send the fake uplink control to the user equipment UE.
  • the part of the frequency domain resource is frequency domain discrete.
  • part of the frequency domain resources are uniform frequency domain dispersion.
  • the device for configuring the data transmission structure of the embodiment of the present application further includes: the device further includes: a fifth configuration module, configured to configure or not configure the first uplink control area according to the preset transmission requirement;
  • the preset configuration sequence is: a downlink control area, a guard interval, an uplink data area, and a second uplink control.
  • the second uplink control area is configured or not configured according to the preset transmission requirement; when not configured, the data parameter group includes the uplink data area, the downlink control area, the guard interval area, and the first uplink control area.
  • the preset configuration sequence is: a downlink control area, a guard interval, a first uplink control area, and an uplink data area.
  • the configuration apparatus of the data transmission structure of the embodiment of the present application further includes: a sixth configuration module, configured to be on the first uplink control area or the second on the basis of the preset transmission requirement After the line control area is configured or not configured, if the second uplink control area is configured or not configured, the second uplink control area is set to be in uplink data or remains empty; or, in the first uplink control area, If the configuration is not configured, the first uplink control area is configured for uplink data or remains empty.
  • a sixth configuration module configured to be on the first uplink control area or the second on the basis of the preset transmission requirement After the line control area is configured or not configured, if the second uplink control area is configured or not configured, the second uplink control area is set to be in uplink data or remains empty; or, in the first uplink control area, If the configuration is not configured, the first uplink control area is configured for uplink data or remains empty.
  • the configuration module is configured to configure the downlink control region and the guard interval region as the first uplink control region and/or the uplink data region, if the downlink control region and the guard interval region are not configured.
  • the configuration module is configured to configure the downlink control region as the guard interval region and/or the first uplink control region and/or the uplink data region, if the downlink control region is not configured, and the guard interval region is configured.
  • the device for configuring the data transmission structure of the embodiment of the present application further includes: a first combination module, configured to combine the same or different multiple transmission units obtained according to the preset configuration sequence into one continuous transmission unit in time.
  • a first combination module configured to combine the same or different multiple transmission units obtained according to the preset configuration sequence into one continuous transmission unit in time.
  • the preset configuration sequence is: a downlink control area, a first protection The interval area, the uplink data area, the second guard interval area, and the uplink control area.
  • the time domain resources of the first guard interval area and the second guard interval area are pre-agreed; or dynamically configured by the device; or, the time of the first guard interval area and the second guard interval area
  • the domain total resource is fixed, wherein the time domain resources of the first guard interval area and the second guard interval area are configured by the device.
  • the first guard interval area and the second guard interval area are used by the user equipment UE that sends data in the uplink data area and the uplink control area to perform idle channel assessment CCA detection.
  • the starting time point of the uplink control area and/or the uplink data area, or the starting orthogonal frequency division multiplexing OFDM symbol is configured by the device, or according to a preset condition.
  • the end time point of the uplink data area, or the end of the orthogonal frequency division multiplexing OFDM symbol is configured by the device, or configured according to a preset condition.
  • the base station is configured by using high layer signaling and/or physical layer signaling.
  • the physical layer signaling is sent in the downlink control area by using the physical layer.
  • the downlink control area includes: control signaling or authorization information for uplink data transmission and/or control signaling for downlink data transmission.
  • the device for configuring the data transmission structure of the embodiment of the present application further includes: a seventh configuration module, configured to: when the user equipment UE that needs to be sent by the uplink control is configured, the user equipment UE uses the uplink control area. Transmit; preferably, the UE performs CCA detection in the second guard interval region.
  • a seventh configuration module configured to: when the user equipment UE that needs to be sent by the uplink control is configured, the user equipment UE uses the uplink control area. Transmit; preferably, the UE performs CCA detection in the second guard interval region.
  • the device for configuring the data transmission structure of the embodiment of the present application further includes: an eighth configuration module, configured to: when the user equipment UE that needs to be sent by the uplink control is configured, the user equipment UE uses the uplink control area. Transmit; preferably, the UE performs CCA detection in the second guard interval region.
  • an eighth configuration module configured to: when the user equipment UE that needs to be sent by the uplink control is configured, the user equipment UE uses the uplink control area. Transmit; preferably, the UE performs CCA detection in the second guard interval region.
  • the device for configuring the data transmission structure of the embodiment of the present application further includes: a ninth configuration module, configured to: in the transmission unit, the user equipment UE that needs to send the uplink control and the uplink data to be sent is sent in the uplink data area.
  • the uplink data is sent in the second guard interval area, and the uplink control is sent in the uplink control area.
  • the user equipment UE performs the idle channel assessment CCA detection in the first guard interval area.
  • the device for configuring the data transmission structure of the embodiment of the present application further includes: a tenth configuration module, configured to: in the transmission unit, the user equipment UE that needs to send the uplink control and the uplink data to be sent is sent in the uplink data area. Upstream data, and staying silent in the second guard interval region and not performing idle channel estimation CCA detection, and directly transmitting uplink control in the uplink control region.
  • the user equipment UE performs the idle channel assessment CCA in the first guard interval region. Detection.
  • the device for configuring the data transmission structure of the embodiment of the present application further includes: an eleventh configuration module, configured to: in the transmission unit, only the user equipment UE that needs to send uplink data sends uplink data in the uplink data area, preferably, The user equipment UE performs idle channel assessment CCA detection in the first guard interval region.
  • an eleventh configuration module configured to: in the transmission unit, only the user equipment UE that needs to send uplink data sends uplink data in the uplink data area, preferably, The user equipment UE performs idle channel assessment CCA detection in the first guard interval region.
  • the device for configuring the data transmission structure of the embodiment of the present application further includes: a second combination module, where the user equipment UE is in the first guard interval, if the user equipment UE that needs to send uplink data only needs to be sent in the transmission unit The idle channel assessment CCA detection is performed in the area.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the transmission data parameter group is configured according to the preset configuration order to obtain a transmission unit, where the preset configuration sequence is a configuration sequence determined according to the requirement of the transmission service.
  • the storage medium is further configured to store program code for performing the following steps: the data parameter group includes an uplink data area, a downlink control area, a guard interval area, a first uplink control area, and a second uplink control area.
  • the preset configuration sequence is: a downlink control area, a guard interval, a first uplink control area, an uplink data area, and a second uplink control area.
  • the storage medium is further configured to store program code for performing the following steps: the time domain resources of the first uplink control area and the second uplink control area are preset; or are dynamically configured by the device; or, The time domain total resources of an uplink control region and the second uplink control region are fixed, and each time domain resource in the time domain total resource is configured by the device; or, the first uplink control region is dynamically configured by the device If the UE that needs to be sent by the uplink control UE exists, the device configures the first uplink control area to exist. Otherwise, the first uplink control area is allowed to be configured.
  • the storage medium is further configured to store program code for performing the following steps: during the guard interval area, the user equipment UE transmitting data in the first uplink control area and/or the uplink data area performs idle channel assessment CCA detection .
  • the storage medium is further configured to store a program for performing the following steps Code: the starting time point of the first uplink control region and/or the uplink data region, or the starting orthogonal frequency division multiplexing OFDM symbol is configured by the device or configured according to a preset condition.
  • the storage medium is further configured to store program code for performing the following steps: an end time point of the first uplink control area and/or the uplink data area, or ending the OFDM symbol is configured by the device, Or configured according to preset conditions.
  • the storage medium is further configured to store program code for performing the following steps:
  • the base station is configured by higher layer signaling and/or physical layer signaling.
  • the storage medium is further configured to store program code for performing the following steps: transmitting physical layer signaling in the downlink control region through the physical layer.
  • the storage medium is further configured to store program code for performing the following steps: the downlink control region comprises: control signaling or authorization information for uplink data transmission and/or control signaling for downlink data transmission.
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: in a case that only the user equipment UE that needs to be sent by the uplink control is in the transmission unit, the user equipment UE uses the first uplink control area. Transmitting is performed; preferably, the UE performs CCA detection in the guard interval region.
  • the storage medium is further configured to store the program code for performing the following steps: the method further includes: the user equipment UE that has both the uplink control and the uplink data to be sent in the transmission unit uses the first uplink control area. And/or the second uplink control region sends the uplink control; preferably, the user equipment UE performs the idle channel assessment CCA detection in the guard interval region.
  • the storage medium is further configured to store the program code for performing the following steps: the method further includes: the user equipment UE that has both the uplink control and the uplink data to be sent in the transmission unit uses the first uplink control area. The uplink control is sent, and then the uplink data is sent using the uplink data area; preferably, the user equipment UE performs the idle channel assessment CCA detection in the guard interval area.
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: only the user equipment UE that needs to send uplink data in the transmission unit is on the first
  • the line control area remains silent, or sends a signal in a frequency domain resource corresponding to the uplink data, or sends a false uplink control, or sends a signal at a previously agreed resource location; preferably, the user equipment UE performs in the guard interval area.
  • the idle channel evaluates the CCA detection.
  • the storage medium is further configured to store program code for performing the following steps: the fake uplink control is in the frequency domain resource that the user equipment UE pre-allocates or sets for the UE in the first uplink control area. send.
  • the storage medium is further configured to store program code for performing the following steps: pre-allocating or pre-arranging part of the frequency domain resources in the first uplink control area to send false uplink control to the user equipment UE; wherein, the partial frequency Domain resources are discrete in the frequency domain.
  • the storage medium is further configured to store program code for performing the following steps: part of the frequency domain resource is a uniform frequency domain dispersion.
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: configuring or not configuring the first uplink control area according to a preset transmission requirement; when not configuring, transmitting the data parameter
  • the preset configuration sequence is: a downlink control area, a guard interval, an uplink data area, and a second uplink control area; The second uplink control area needs to be configured or not configured. If the data parameter group includes the uplink data area, the downlink control area, the guard interval area, and the first uplink control area, the preset configuration sequence is used. It is: downlink control area, guard interval, first uplink control area, and uplink data area.
  • the storage medium is further configured to store the program code for performing the following steps: after configuring or not configuring the first uplink control area or the second uplink control area according to the preset transmission requirement, the method further includes: If the second uplink control area is configured or not configured, the second uplink control area is configured to be used for uplink data or is kept empty; or, when the first uplink control area is configured or not configured, the first uplink is configured. The control area is used for upstream data or for keeping empty.
  • the storage medium is further configured to store program code for performing the following steps: When the downlink control region and the guard interval region are configured, the downlink control region and the guard interval region are configured as a first uplink control region and/or an uplink data region.
  • the storage medium is further configured to store program code for performing the following steps: configuring the downlink control area as the guard interval area and/or the first uplink if the downlink control area is not configured and the guard interval area is configured Control area and/or upstream data area.
  • the storage medium is further configured to store program code for performing the following steps: the method further comprises: combining the same or different multiple transmission units obtained according to the preset configuration sequence into one continuous transmission unit in time.
  • the storage medium is further configured to store program code for performing the following steps: when the transmission data parameter group includes an uplink data area, a downlink control area, a first guard interval area, a second guard interval area, and an uplink control area.
  • the preset configuration sequence is: a downlink control area, a first guard interval area, an uplink data area, a second guard interval area, and an uplink control area.
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: the time domain resources of the first guard interval area and the second guard interval area are pre-agreed; or, dynamically configured by the device Or; the time domain total resources of the first guard interval area and the second guard interval area are fixed, wherein the time domain resources of the first guard interval area and the second guard interval area are configured by the device.
  • the storage medium is further configured to store program code for performing the following steps: a first guard interval area and a second guard interval area, where the user equipment UE that sends data in the uplink data area and the uplink control area performs idle Channel evaluation CCA detection.
  • the storage medium is further configured to store program code for performing the following steps: an initial control point of the uplink control region and/or the uplink data region, or the initial orthogonal frequency division multiplexing OFDM symbol is configured by the device, or According to the preset conditions.
  • the storage medium is further configured to store program code for performing the following steps: an end time point of the uplink data area, or ending the orthogonal frequency division multiplexing OFDM symbol configured by the device, or configured according to a preset condition.
  • the storage medium is further configured to store program code for performing the following steps:
  • the base station is configured by high layer signaling and/or physical layer signaling.
  • the storage medium is further configured to store program code for performing the following steps: transmitting physical layer signaling in the downlink control region through the physical layer.
  • the storage medium is further configured to store program code for performing the following steps: the downlink control region comprises: control signaling or authorization information for uplink data transmission and/or control signaling for downlink data transmission.
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: when only the user equipment UE that needs to be sent by the uplink control is in the transmission unit, the user equipment UE sends the uplink control area. Preferably, the UE performs CCA detection in the second guard interval region.
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: in the transmission unit, both the uplink control needs to be sent and the uplink data needs to be sent, and the user equipment UE sends the uplink in the uplink data area. Uplink data and uplink control are sent in the uplink control region; preferably, the user equipment UE performs the idle channel assessment CCA detection in the first guard interval region and the second guard interval region, respectively.
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: in the transmission unit, both the uplink control needs to send and the uplink data needs to be sent, and the user equipment UE sends the uplink in the uplink data area.
  • the data is sent in the second guard interval area, and the uplink control is sent in the uplink control area.
  • the user equipment UE performs the idle channel assessment CCA detection in the first guard interval area.
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: in the transmission unit, both the uplink control needs to send and the uplink data needs to be sent, and the user equipment UE sends the uplink in the uplink data area. Data, and keep silent in the second guard interval region and do not perform idle channel estimation CCA detection, and directly send uplink control in the uplink control region. Preferably, the user equipment UE performs idle channel assessment CCA detection in the first guard interval region. .
  • the storage medium is further configured to store program code for performing the following steps: the method further includes: in the transmission unit, only the user equipment UE that needs to send uplink data sends uplink data in the uplink data area, preferably, the user equipment The UE performs idle channel assessment CCA detection in the first guard interval region.
  • the storage medium is further configured to store program code for performing the following steps: the method further comprises: combining the same or different multiple transmission units obtained according to the preset configuration sequence into one continuous transmission unit in time.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the foregoing technical solution provided by the embodiment of the present invention may be applied to a data transmission structure configuration process, in which a transmission data parameter group is acquired; a transmission data parameter group is configured according to a preset configuration sequence, and a transmission unit is obtained, wherein the preset configuration sequence is
  • the configuration sequence determined according to the requirements of the transmission service can solve the problem that the uplink control cannot be sent due to the failure of the CCA success in the related art, thereby achieving the effect of improving the spectrum efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种数据传输结构的配置方法及装置,通过本发明获取传输数据参数组;依据预设配置顺序配置传输数据参数组,得到传输单元,其中,预设配置顺序为依据传输业务的需求确定的配置顺序,解决相关技术中由于无法CCA成功导致无法发送上行控制的问题,达到提升频谱效率的效果。

Description

数据传输结构的配置方法及装置 技术领域
本发明涉及通信技术应用领域,具体而言,涉及一种数据传输结构的配置方法及装置。
背景技术
随着无线电技术的不断进步,各种各样的无线电业务大量涌现,而无线电业务所依托的频谱资源是有限的,面对人们对带宽需求的不断增加,传统的商业通信主要使用的300MHz~3GHz之间频谱资源表现出极为紧张的局面,已经无法满足未来无线通信的需求。
在未来无线通信中,将会采用比第四代(4G)通信系统所采用的载波频率更高的载波频率进行通信,比如28GHz、45GHz等等,这种高频信道具有自由传播损耗较大,容易被氧气吸收,受雨衰影响大等缺点,严重影响了高频通信系统的覆盖性能。但是,由于高频通信对应的载波频率具有更短的波长,所以可以保证单位面积上能容纳更多的天线元素,而更多的天线元素意味着可以采用波束赋形的方法来提高天线增益,从而保证高频通信的覆盖性能。在更高频段中,存在大量的非授权载波、共享授权载波等。
同时,目前长期演进技术(Long Term Evolution,简称LTE)的通信网络都是部署在授权载波中运营的,随着LTE的发展,一些公司提出了“建议研究LTE部署在非授权载波中的课题”,例如美国的高通公司认为:随着数据业务的快速增长,在不久的将来,授权载波将不能承受快速业务增长带来的巨大的数据量。考虑通过在非授权载波中部署LTE,以此来分担授权载波中的数据流量,可以解决业务增长带来的数据量压力。同时,非授权载波具有以下特点:一方面,由于非授权载波不需要购买,或者载波资源为零成本,因此非授权载波免费或低费用;另一方面,由于个人、企业都可以参与部署,设备商的设备也可以,因此非授权载波的准入要求低; 再者,非授权载波具有共享性,通过多个不同系统都运营其中时或者同一系统的不同运营商运营其中时,可以考虑一些共享资源的方式,以提高载波效率。
共享授权载波,即为多个运营商分配相同的频谱,多个运营商共同使用这段频谱,所以共享授权载波与非授权载波具有类似的性质以及可能存在的问题(下面以非授权载波为例)。
综上所述,虽然LTE部署在非授权载波(现有LTE是部署在授权载波中的,一家运营商独享一段频谱)中具有明显的优势,但是,在部署的过程中,依然存在问题;其中,无线接入技术多(跨不同的通信标准,协作难,网络拓扑多样)和无线接入站点多(用户数量大,协作难度大,集中式管理开销大)。由于无线接入技术多,非授权载波中将存在各种各样的无线系统,彼此之间难于协调,干扰严重。因此,针对LTE部署在非授权载波中,仍然需要支持非授权载波的管制,多数国家要求系统在非授权载波中部署时,需要支持先听后说机制。通过先听后说机制可以避免相邻系统之间同时使用非授权载波而为彼此带来的干扰。并且进一步引入竞争回退机制,即邻近的系统站点(一般是同一系统的邻近传输节点),通过竞争回退机制后可以避免相同系统的邻近传输节点同时使用非授权载波时带来的干扰。并且,管制中规定,使用非授权载波的设备(包括基站和用户设备(UE))在发送之前都是需要进行先听后说机制(即空闲信道评估(Clear Channel Assessment,简称CCA),也称先听后说Listen Before Talk,简称LBT),当信道空闲时,设备才能使用非授权载波信道进行数据发送。
下面是一些针对第五代无线通信技术(5G)设计的无线数据、控制结构。图1是现有技术中传输单元的结构示意图,如图1所示,可以看做一个基本传输单元,例如一个由于多个OFDM符号组成的TTI,或者一个由多个TTI组成的子帧。其中,下行控制是基站发送给UE的与下行数据相关的控制类信息;保护间隔(GP),用于实现接收/发送状态转换的时间;上行数据,是UE发送给基站的数据;上行控制是UE发送给基站的下行数据接收ACK/NACK反馈信息、信道状态信息,调度请求等,UE需要 发送给基站的除了上行数据之外的信息。
在图1中可以看出下面的基本特点:
1.当子帧(或TTI,下以子帧为例)中的上行数据时,上行控制总是在子帧末尾,且与上行data之间是连续的(没有保护间隔GP)。
2.子帧的前面总是下行控制,且与上行数据之间留有保护间隔。
上述的设计存在下面问题,在给定的场景下,例如在非授权载波情况,或共享授权时存在下面的问题。
问题1,在一些存在对于频谱存在地区/国家管制的地区,设备发送数据之前执行CCA检测时必须满足时,那么在该子帧(或TTI)对于没有上行数据但有上行控制(UCI等)的UE,此时如果需要发送上行控制时,这类UE需要执行CCA检测,但是子帧中在上行数据与上行控制之间没有预留空闲符号,所以这类UE无法进行CCA,最终这类UE将由于无法CCA成功导致无法发送上行控制。
问题2,即使在非管制地区,即设备发送数据之前执行CCA检测不是必选的时,结合问题1,需要发送上行控制的UE,有可能影响邻近正在发送的UE,即与邻近站点同时使用载波发送信号,此时,存在潜在干扰问题。
发明内容
本发明实施例提供了一种数据传输结构的配置方法及装置,以至少解决相关技术中由于无法CCA成功导致无法发送上行控制的问题。
根据本发明的一个实施例,提供了一种数据传输结构的配置方法,包括:获取传输数据参数组;依据预设配置顺序配置传输数据参数组,得到传输单元,其中,预设配置顺序为依据传输业务的需求确定的配置顺序。
可选的,在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第一上行控制区域、第二上行控制区域的情况下,预设配置顺 序为:下行控制区域、保护间隔、第一上行控制区域、上行数据区域和第二上行控制区域。
可选的,第一上行控制区域和第二上行控制区域的时域资源为预先设定;或者,由设备动态配置;或者,第一上行控制区域和第二上行控制区域的时域总资源是固定的,且时域总资源中的每个时域资源是由设备配置的;或者,第一上行控制区域是由设备动态配置其是否存在的,优选的,当存在只有上行控制的UE需要发送的UE时,设备配置第一上行控制区域存在,否则,允许配置第一上行控制区域不存在。
可选的,在保护间隔区域期间,在第一上行控制区域和/或上行数据区域发送数据的用户设备UE执行空闲信道评估CCA检测。
进一步地,可选的,第一上行控制区域和/或上行数据区域的起始时刻点,或,起始正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
可选的,第一上行控制区域和/或上行数据区域的结束时刻点,或,结束正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
进一步地,可选的,在配置过程中,基站通过高层信令和/或物理层信令进行配置。
可选的,通过物理层在下行控制区域发送物理层信令。
可选的,下行控制区域包括:用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令。
可选的,该方法还包括:在传输单元中只有上行控制需要发送的用户设备UE的情况下,用户设备UE使用第一上行控制区域进行发送;优选的,UE在保护间隔区域内执行CCA检测。
可选的,该方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE使用第一上行控制区域和/或第二上行控制区域发送上行控制;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
可选的,该方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE使用第一上行控制区域发送上行控制,然后使用上行数据区域发送上行数据;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
可选的,该方法还包括:在传输单元中只有上行数据需要发送的用户设备UE在第一上行控制区域保持静默,或者,在与上行数据对应的频域资源中发送信号,或者,发送虚假的上行控制,或者在事先约定的资源位置发送信号;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
进一步地,可选的,虚假的上行控制为用户设备UE在第一上行控制区域中为UE预先分配的或设定的频域资源中发送。
可选的,在第一上行控制区域中预先分配或预先约定有部分频域资源为用户设备UE发送虚假上行控制的;其中,部分频域资源是频域离散的。
可选的,部分频域资源为均匀的频域离散。
可选的,该方法还包括:依据预设传输需要对第一上行控制区域进行配置或不配置;当不配置时,在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第二上行控制区域的情况下,预设配置顺序为:下行控制区域、保护间隔、上行数据区域和第二上行控制区域;或依据预设传输需要对第二上行控制区域进行配置或不配置;当不配置时,在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第一上行控制区域的情况下,预设配置顺序为:下行控制区域、保护间隔、第一上行控制区域和上行数据区域。
可选的,在依据预设传输需要对第一上行控制区域或第二上行控制区域进行配置或不配置之后,方法还包括:在第二上行控制区域进行配置或不配置的情况下,配置第二上行控制区域用于上行数据或保持空的状态;或,在第一上行控制区域进行配置或不配置的情况下,配置第一上行控制区域用于上行数据或保持空的状态。
可选的,在不配置下行控制区域和保护间隔区域的情况下,将下行控制区域和保护间隔区域配置为第一上行控制区域和/或上行数据区域。
可选的,在不配置下行控制区域,且配置保护间隔区域的情况下,将下行控制区域配置为保护间隔区域和/或第一上行控制区域和/或上行数据区域。
可选的,该方法还包括:依据预设配置顺序得到的相同或不同的多个传输单元在时间上组合为一个连续传输单元。
可选的,在传输数据参数组包括上行数据区域、下行控制区域、第一保护间隔区域、第二保护间隔区域和上行控制区域的情况下,预设配置顺序为:下行控制区域、第一保护间隔区域、上行数据区域、第二保护间隔区域和上行控制区域。
可选的,该方法还包括:第一保护间隔区域和第二保护间隔区域的时域资源为预先约定的;或者,由设备动态配置的;或者,第一保护间隔区域和第二保护间隔区域的时域总资源是固定的,其中,第一保护间隔区域和第二保护间隔区域的的时域资源是由设备配置的。
可选的,第一保护间隔区域和第二保护间隔区域,分别用于在上行数据区域和上行控制区域发送数据的用户设备UE执行空闲信道评估CCA检测。
可选的,上行控制区域和/或上行数据区域的起始时刻点,或起始正交频分复用OFDM符号由设备配置,或者依据预设条件约定。
可选的,上行数据区域的结束时刻点,或,结束正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
可选的,在配置过程中,基站通过高层信令和/或物理层信令进行配置。
可选的,通过物理层在下行控制区域发送物理层信令。
可选的,下行控制区域包括:用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令。
可选的,该方法还包括:在传输单元中只有上行控制需要发送的用户设备UE的情况下,用户设备UE使用上行控制区域进行发送;优选的,UE在第二保护间隔区域内执行CCA检测。
可选的,该方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE分别在上行数据区域发送上行数据和在上行控制区域发送上行控制;优选的,用户设备UE在第一保护间隔区域和第二保护间隔区域中分别执行空闲信道评估CCA检测。
可选的,该方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,并在第二保护间隔区域中发送上行数据,在上行控制区域中发送上行控制,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,该方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,并在第二保护间隔区域中保持静默且不执行空闲信道评估CCA检测,在上行控制区域中直接发送上行控制,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,该方法还包括:在传输单元中只有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,该方法还包括:依据预设配置顺序得到的相同或不同的多个传输单元在时间上组合为一个连续传输单元。
根据本发明的另一个实施例,提供了一种数据传输结构的配置装置,包括:获取模块,设置为获取传输数据参数组;配置模块,设置为依据预设配置顺序配置传输数据参数组,得到传输单元,其中,预设配置顺序为依据传输业务的需求确定的配置顺序。
可选的,在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第一上行控制区域、第二上行控制区域的情况下,预设配置顺 序为:下行控制区域、保护间隔、第一上行控制区域、上行数据区域和第二上行控制区域。
可选的,第一上行控制区域和第二上行控制区域的时域资源为预先设定,或者,由设备动态配置;或者,第一上行控制区域和第二上行控制区域的时域总资源是固定的,且时域总资源中的每个时域资源是由设备配置的;或者,第一上行控制区域是由设备动态配置其是否存在的,优选的,当存在只有上行控制的UE需要发送的UE时,设备配置第一上行控制区域存在,否则,允许配置第一上行控制区域不存在。
进一步地,可选的,在保护间隔区域期间,在第一上行控制区域和/或上行数据区域发送数据的用户设备UE执行空闲信道评估CCA检测。
可选的,第一上行控制区域和/或上行数据区域的起始时刻点,或,起始正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
进一步地,可选的,第一上行控制区域和/或上行数据区域的结束时刻点,或,结束正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
可选的,在配置过程中,基站通过高层信令和/或物理层信令进行配置。
可选的,通过物理层在下行控制区域发送物理层信令。
可选的,下行控制区域包括:用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令。
可选的,该装置还包括:第一配置模块,设置为在传输单元中只有上行控制需要发送的用户设备UE的情况下,用户设备UE使用第一上行控制区域进行发送;优选的,UE在保护间隔区域内执行CCA检测。
可选的,该装置还包括:第二配置模块,设置为在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE使用第一上行控制区域和/或第二上行控制区域发送上行控制;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
可选的,该装置还包括:第三配置模块,设置为在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE使用第一上行控制区域和/或第二上行控制区域发送上行控制;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
可选的,该装置还包括:第四配置模块,设置为在传输单元中只有上行数据需要发送的用户设备UE在第一上行控制区域保持静默,或者,在与上行数据对应的频域资源中发送信号,或者,发送虚假的上行控制,或者在事先约定的资源位置发送信号;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
进一步地,可选的,虚假的上行控制为用户设备UE在第一上行控制区域中为UE预先分配的或设定的频域资源中发送。
可选的,在第一上行控制区域中预先分配或预先约定有部分频域资源为用户设备UE发送虚假上行控制的;其中,部分频域资源是频域离散的。
进一步地,可选的,部分频域资源为均匀的频域离散。
可选的,该装置还包括:第五配置模块,设置为依据预设传输需要对第一上行控制区域进行配置或不配置;当不配置时,在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第二上行控制区域的情况下,预设配置顺序为:下行控制区域、保护间隔、上行数据区域和第二上行控制区域;或依据预设传输需要对第二上行控制区域进行配置或不配置;当不配置时,在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第一上行控制区域的情况下,预设配置顺序为:下行控制区域、保护间隔、第一上行控制区域和上行数据区域。
进一步地,可选的,该装置还包括:第六配置模块,设置为在依据预设传输需要对第一上行控制区域或第二上行控制区域进行配置或不配置之后,在第二上行控制区域进行配置或不配置的情况下,配置第二上行控制区域用于上行数据或保持空的状态;或,在第一上行控制区域进行配置或不配置的情况下,配置第一上行控制区域用于上行数据或保持空的状态。
可选的,配置模块,设置为在不配置下行控制区域和保护间隔区域的情况下,将下行控制区域和保护间隔区域配置为第一上行控制区域和/或上行数据区域。
可选的,配置模块,设置为在不配置下行控制区域,且配置保护间隔区域的情况下,将下行控制区域配置为保护间隔区域和/或第一上行控制区域和/或上行数据区域。
可选的,该装置还包括:第一组合模块,设置为依据预设配置顺序得到的相同或不同的多个传输单元在时间上组合为一个连续传输单元。
可选的,在传输数据参数组包括上行数据区域、下行控制区域、第一保护间隔区域、第二保护间隔区域和上行控制区域的情况下,预设配置顺序为:下行控制区域、第一保护间隔区域、上行数据区域、第二保护间隔区域和上行控制区域。
进一步地,可选的,第一保护间隔区域和第二保护间隔区域的时域资源为预先约定的;或者,由设备动态配置的;或者,第一保护间隔区域和第二保护间隔区域的时域总资源是固定的,其中,第一保护间隔区域和第二保护间隔区域的的时域资源是由设备配置的。
可选的,第一保护间隔区域和第二保护间隔区域,用于在上行数据区域、上行控制区域发送数据的用户设备UE执行空闲信道评估CCA检测。
可选的,上行控制区域和/或上行数据区域的起始时刻点,或起始正交频分复用OFDM符号由设备配置,或者依据预设条件约定。
可选的,上行数据区域的结束时刻点,或,结束正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
可选的,在配置过程中,基站通过高层信令和/或物理层信令进行配置。
可选的,通过物理层在下行控制区域发送物理层信令。
可选的,下行控制区域包括:用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令。
可选的,该装置还包括:第七配置模块,设置为在传输单元中只有上行控制需要发送的用户设备UE的情况下,用户设备UE使用上行控制区域进行发送;优选的,UE在第二保护间隔区域内执行CCA检测。
可选的,该装置还包括:第八配置模块,设置为在传输单元中只有上行控制需要发送的用户设备UE的情况下,用户设备UE使用上行控制区域进行发送;优选的,UE在第二保护间隔区域内执行CCA检测。
可选的,该装置还包括:第九配置模块,设置为在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,并在第二保护间隔区域中发送上行数据,在上行控制区域中发送上行控制,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,该装置还包括:第十配置模块,设置为在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,并在第二保护间隔区域中保持静默且不执行空闲信道评估CCA检测,在上行控制区域中直接发送上行控制,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,该装置还包括:第十一配置模块,设置为在传输单元中只有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,该装置还包括:第二组合模块,设置为在传输单元中只有上行数据需要发送的用户设备UE的情况下,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:获取传输数据参数组;依据预设配置顺序配置传输数据参数组,得到传输单元,其中,预设配置顺序为依据传输业务的需求确定的配置顺序。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在传 输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第一上行控制区域、第二上行控制区域的情况下,预设配置顺序为:下行控制区域、保护间隔、第一上行控制区域、上行数据区域和第二上行控制区域。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:第一上行控制区域和第二上行控制区域的时域资源为预先设定;或者,由设备动态配置;或者,第一上行控制区域和第二上行控制区域的时域总资源是固定的,且时域总资源中的每个时域资源是由设备配置的;或者,第一上行控制区域是由设备动态配置其是否存在的,优选的,当存在只有上行控制的UE需要发送的UE时,设备配置第一上行控制区域存在,否则,允许配置第一上行控制区域不存在。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:在保护间隔区域期间,在第一上行控制区域和/或上行数据区域发送数据的用户设备UE执行空闲信道评估CCA检测。
进一步地,可选的,存储介质还设置为存储用于执行以下步骤的程序代码:第一上行控制区域和/或上行数据区域的起始时刻点,或,起始正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:第一上行控制区域和/或上行数据区域的结束时刻点,或,结束正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
进一步地,可选的,存储介质还设置为存储用于执行以下步骤的程序代码:在配置过程中,基站通过高层信令和/或物理层信令进行配置。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:通过物理层在下行控制区域发送物理层信令。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:下行控制区域包括:用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方 法还包括:在传输单元中只有上行控制需要发送的用户设备UE的情况下,用户设备UE使用第一上行控制区域进行发送;优选的,UE在保护间隔区域内执行CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE使用第一上行控制区域和/或第二上行控制区域发送上行控制;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE使用第一上行控制区域发送上行控制,然后使用上行数据区域发送上行数据;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中只有上行数据需要发送的用户设备UE在第一上行控制区域保持静默,或者,在与上行数据对应的频域资源中发送信号,或者,发送虚假的上行控制,或者在事先约定的资源位置发送信号;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
进一步地,可选的,存储介质还设置为存储用于执行以下步骤的程序代码:虚假的上行控制为用户设备UE在第一上行控制区域中为UE预先分配的或设定的频域资源中发送。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:在第一上行控制区域中预先分配或预先约定有部分频域资源为用户设备UE发送虚假上行控制的;其中,部分频域资源是频域离散的。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:部分频域资源为均匀的频域离散。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:依据预设传输需要对第一上行控制区域进行配置或不配置;当 不配置时,在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第二上行控制区域的情况下,预设配置顺序为:下行控制区域、保护间隔、上行数据区域和第二上行控制区域;或依据预设传输需要对第二上行控制区域进行配置或不配置;当不配置时,在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第一上行控制区域的情况下,预设配置顺序为:下行控制区域、保护间隔、第一上行控制区域和上行数据区域。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:在依据预设传输需要对第一上行控制区域或第二上行控制区域进行配置或不配置之后,方法还包括:在第二上行控制区域进行配置或不配置的情况下,配置第二上行控制区域用于上行数据或保持空的状态;或,在第一上行控制区域进行配置或不配置的情况下,配置第一上行控制区域用于上行数据或保持空的状态。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:在不配置下行控制区域和保护间隔区域的情况下,将下行控制区域和保护间隔区域配置为第一上行控制区域和/或上行数据区域。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:在不配置下行控制区域,且配置保护间隔区域的情况下,将下行控制区域配置为保护间隔区域和/或第一上行控制区域和/或上行数据区域。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:依据预设配置顺序得到的相同或不同的多个传输单元在时间上组合为一个连续传输单元。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:在传输数据参数组包括上行数据区域、下行控制区域、第一保护间隔区域、第二保护间隔区域和上行控制区域的情况下,预设配置顺序为:下行控制区域、第一保护间隔区域、上行数据区域、第二保护间隔区域和上行控制区域。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:第一保护间隔区域和第二保护间隔区域的时域资源为预先约定的;或者,由设备动态配置的;或者,第一保护间隔区域和第二保护间隔区域的时域总资源是固定的,其中,第一保护间隔区域和第二保护间隔区域的的时域资源是由设备配置的。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:第一保护间隔区域和第二保护间隔区域,分别用于在上行数据区域和上行控制区域发送数据的用户设备UE执行空闲信道评估CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:上行控制区域和/或上行数据区域的起始时刻点,或起始正交频分复用OFDM符号由设备配置,或者依据预设条件约定。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:上行数据区域的结束时刻点,或,结束正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:在配置过程中,基站通过高层信令和/或物理层信令进行配置。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:通过物理层在下行控制区域发送物理层信令。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:下行控制区域包括:用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中只有上行控制需要发送的用户设备UE的情况下,用户设备UE使用上行控制区域进行发送;优选的,UE在第二保护间隔区域内执行CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的 用户设备UE分别在上行数据区域发送上行数据和在上行控制区域发送上行控制;优选的,用户设备UE在第一保护间隔区域和第二保护间隔区域中分别执行空闲信道评估CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,并在第二保护间隔区域中发送上行数据,在上行控制区域中发送上行控制,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,并在第二保护间隔区域中保持静默且不执行空闲信道评估CCA检测,在上行控制区域中直接发送上行控制,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中只有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:依据预设配置顺序得到的相同或不同的多个传输单元在时间上组合为一个连续传输单元。
通过本发明实施例,由于获取传输数据参数组;依据预设配置顺序配置传输数据参数组,得到传输单元,其中,预设配置顺序为依据传输业务的需求确定的配置顺序,因此,可以解决相关技术中由于无法CCA成功导致无法发送上行控制的问题,达到提升频谱效率的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是现有技术中传输单元的结构示意图;
图2是本发明实施例的一种数据传输结构的配置方法的移动终端的硬件结构框图;
图3是根据本发明实施例的数据传输结构的配置方法的流程图;
图4是根据本发明实施例的数据传输结构的配置方法中一种基本传输单元的结构示意图;
图5是根据本发明实施例的数据传输结构的配置方法中另一种基本传输单元的结构示意图;
图6是根据本发明实施例的数据传输结构的配置装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例1所提供的方法实施例可以在移动终端、计算机终端、基站或中继设备类似的运算装置中执行。以运行在移动终端上为例,图2是本发明实施例的一种数据传输结构的配置方法的移动终端的硬件结构框图。如图2所示,移动终端20可以包括一个或多个(图中仅示出一个)处理器202(处理器202可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器204、以及用于通信 功能的传输装置206。本领域普通技术人员可以理解,图2所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端20还可包括比图2中所示更多或者更少的组件,或者具有与图2所示不同的配置。
存储器204可用于存储应用软件的软件程序以及模块,如本发明实施例中的数据传输结构的配置方法对应的程序指令/模块,处理器202通过运行存储在存储器204内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器204可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器204可进一步包括相对于处理器202远程设置的存储器,这些远程存储器可以通过网络连接至移动终端20。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置206设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端20的通信供应商提供的无线网络。在一个实例中,传输装置206包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端的方法,图3是根据本发明实施例的数据传输结构的配置方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,获取传输数据参数组;
步骤S304,依据预设配置顺序配置传输数据参数组,得到传输单元,其中,预设配置顺序为依据传输业务的需求确定的配置顺序。
通过本发明,由于获取传输数据参数组;依据预设配置顺序配置传输数据参数组,得到传输单元,其中,预设配置顺序为依据传输业务的需求 确定的配置顺序,因此,可以解决相关技术中由于无法CCA成功导致无法发送上行控制的问题,达到提升频谱效率的效果。
可选的,在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第一上行控制区域、第二上行控制区域的情况下,预设配置顺序为:下行控制区域、保护间隔、第一上行控制区域、上行数据区域和第二上行控制区域。
可选的,第一上行控制区域和第二上行控制区域的时域资源为预先设定;或者,由设备动态配置;或者,第一上行控制区域和第二上行控制区域的时域总资源是固定的,且时域总资源中的每个时域资源是由设备配置的;或者,第一上行控制区域是由设备动态配置其是否存在的,优选的,当存在只有上行控制的UE需要发送的UE时,设备配置第一上行控制区域存在,否则,允许配置第一上行控制区域不存在。
可选的,在保护间隔区域期间,在第一上行控制区域和/或上行数据区域发送数据的用户设备UE执行空闲信道评估CCA检测。
进一步地,可选的,第一上行控制区域和/或上行数据区域的起始时刻点,或,起始正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
可选的,第一上行控制区域和/或上行数据区域的结束时刻点,或,结束正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
进一步地,可选的,在配置过程中,基站通过高层信令和/或物理层信令进行配置。
可选的,通过物理层在下行控制区域发送物理层信令。
可选的,下行控制区域包括:用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令。
可选的,本申请实施例的数据传输结构的配置方法还包括:在传输单元中只有上行控制需要发送的用户设备UE的情况下,用户设备UE使用第一上行控制区域进行发送;优选的,UE在保护间隔区域内执行CCA检 测。
可选的,本申请实施例的数据传输结构的配置方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE使用第一上行控制区域和/或第二上行控制区域发送上行控制;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
可选的,本申请实施例的数据传输结构的配置方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE使用第一上行控制区域发送上行控制,然后使用上行数据区域发送上行数据;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
可选的,本申请实施例的数据传输结构的配置方法还包括:在传输单元中只有上行数据需要发送的用户设备UE在第一上行控制区域保持静默,或者,在与上行数据对应的频域资源中发送信号,或者,发送虚假的上行控制,或者在事先约定的资源位置发送信号;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
进一步地,可选的,虚假的上行控制为用户设备UE在第一上行控制区域中为UE预先分配的或设定的频域资源中发送。
可选的,在第一上行控制区域中预先分配或预先约定有部分频域资源为用户设备UE发送虚假上行控制的;其中,部分频域资源是频域离散的。
可选的,部分频域资源为均匀的频域离散。
可选的,本申请实施例的数据传输结构的配置方法还包括:依据预设传输需要对第一上行控制区域进行配置或不配置;当不配置时,在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第二上行控制区域的情况下,预设配置顺序为:下行控制区域、保护间隔、上行数据区域和第二上行控制区域;或依据预设传输需要对第二上行控制区域进行配置或不配置;当不配置时,在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第一上行控制区域的情况下,预设配置顺序为:下行控制区域、保护间隔、第一上行控制区域和上行数据区域。
可选的,在依据预设传输需要对第一上行控制区域或第二上行控制区域进行配置或不配置之后,方法还包括:在第二上行控制区域进行配置或不配置的情况下,配置第二上行控制区域用于上行数据或保持空的状态;或,在第一上行控制区域进行配置或不配置的情况下,配置第一上行控制区域用于上行数据或保持空的状态;其中,空的状态用于配置执行空闲信道评估CCA检测。
可选的,在不配置下行控制区域和保护间隔区域的情况下,将下行控制区域和保护间隔区域配置为第一上行控制区域和/或上行数据区域。
可选的,在不配置下行控制区域,且配置保护间隔区域的情况下,将下行控制区域配置为保护间隔区域和/或第一上行控制区域和/或上行数据区域。
可选的,本申请实施例的数据传输结构的配置方法还包括:依据预设配置顺序得到的相同或不同的多个传输单元在时间上组合为一个连续传输单元。
可选的,在传输数据参数组包括上行数据区域、下行控制区域、第一保护间隔区域、第二保护间隔区域和上行控制区域的情况下,预设配置顺序为:下行控制区域、第一保护间隔区域、上行数据区域、第二保护间隔区域和上行控制区域。
可选的,本申请实施例的数据传输结构的配置方法还包括:第一保护间隔区域和第二保护间隔区域的时域资源为预先约定的;或者,由设备动态配置的;或者,第一保护间隔区域和第二保护间隔区域的时域总资源是固定的,其中,第一保护间隔区域和第二保护间隔区域的的时域资源是由设备配置的。
可选的,第一保护间隔区域和第二保护间隔区域,分别用于在上行数据区域和上行控制区域发送数据的用户设备UE执行空闲信道评估CCA检测。
可选的,上行控制区域和/或上行数据区域的起始时刻点,或起始正交 频分复用OFDM符号由设备配置,或者依据预设条件约定。
可选的,上行数据区域的结束时刻点,或,结束正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
可选的,在配置过程中,基站通过高层信令和/或物理层信令进行配置。
可选的,通过物理层在下行控制区域发送物理层信令。
可选的,下行控制区域包括:用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令。
可选的,本申请实施例的数据传输结构的配置方法还包括:在传输单元中只有上行控制需要发送的用户设备UE的情况下,用户设备UE使用上行控制区域进行发送;优选的,UE在第二保护间隔区域内执行CCA检测。
可选的,本申请实施例的数据传输结构的配置方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE分别在上行数据区域发送上行数据和在上行控制区域发送上行控制;优选的,用户设备UE在第一保护间隔区域和第二保护间隔区域中分别执行空闲信道评估CCA检测。
可选的,本申请实施例的数据传输结构的配置方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,并在第二保护间隔区域中发送上行数据,在上行控制区域中发送上行控制,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,本申请实施例的数据传输结构的配置方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,并在第二保护间隔区域中保持静默且不执行空闲信道评估CCA检测,在上行控制区域中直接发送上行控制,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,本申请实施例的数据传输结构的配置方法还包括:在传输单 元中只有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,本申请实施例的数据传输结构的配置方法还包括:依据预设配置顺序得到的相同或不同的多个传输单元在时间上组合为一个连续传输单元。
综上,图4和图5为本申请实施例提供的两种基本传输单元的结构示意图,其中,参考图4,一种数据、控制结构以及对应的传输方法,该方式在一个传输单元(例如子帧、TTI或多个连续的子帧或TTI,也包括连续的多个OFDM符号)包括(时间顺序):下行控制、保护间隔、上行控制1、上行数据和上行控制2。上述的上行控制1、2,都可以根据基站的配置确定有无以及各自的时域长度。基站和UE具体如何使用这个结构进行数据、控制的传输,具体使用方式如下:
为了描述方便,进行下面的假设。假定有2类UE在该子帧,UE1代表既有上行数据,又有上行控制的UE;UE2代表仅有上行控制的UE(没有上行数据)。
基站根据调度的情况,确定上行控制1是否存在。例如,当UE2需要在该传输单元传输时,上行控制1是存在的,此时用于UE2的上行控制发送。此时也可以理解为上行控制1占用原有上行数据的部分OFDM符号。也可以理解为把上行控制2的部分OFDM符号移植到前面作为上行控制1,这种情况下,上行数据的总符号相对于现有技术的图1不会减少。显然,UE1的部分控制信令也可以在上行控制1中传输,其余的控制信令也可以在上行控制2中传输。
如果UE2不存在时,基站优选的,配置上行控制1不存在,此时上行控制1的符号用于上行数据发送。也可以理解为此时像图1中的结构。
在上述的情况下,UE1的CCA检测位置可以在保护间隔期间执行。如果UE1执行CCA成功的时刻点距离上行控制1的起始点存在间隔M时, 此时UE1只能保持不发送数据或者继续执行CCA,但可以在上行控制1中发送上行控制或发送占用信号,之后在上行数据期间发送上行数据,然后在上行控制2发送上行控制信息,例如UCI、SRS或SR等。UE2执行CCA检测位置也优选的位置保护间隔期间执行。如果UE2执行CCA成功的时刻点距离上行控制1的起始点存在间隔N时,则UE2只能在上行控制1起始点开始发送上行控制信息,例如UCI、SRS或SR等。在间隔N期间UE2能保持不发送数据或者继续执行CCA。
图4中的上行控制2可以删除,也是一种用于数据传输的传输单元结构,此时所有的上行控制都放置在保护间隔之后。UE1和UE2在保护间隔执行CCA,然后发送上行控制和/或上行数据。
上下控制是用来传输UCI、SRS、SR等UE发送的相关上行控制信息。本文中其本质是,所述相关上行控制信息在传输单元中传输时的时域位置的确定。所以,上行控制可以是独立的控制信道,也可以是传输相关上行控制信息的资源,只要上行控制信息在传输单元中的相对位置如本文所述,即可实现本文解决问题的目的,获得相应的益处。
另一种结构以及对应的传输方法:
参考图5,一种数据、控制结构以及对应的传输方法,该方式在一个传输单元(例如子帧、TTI或多个连续的子帧或TTI,也包括连续的多个OFDM符号)包括(时间顺序):下行控制、保护间隔1、上行数据、保护间隔2和上行控制2。上述的保护间隔1、2,都可以根据基站的配置确定有无以及各自的时域长度。基站和UE具体如何使用这个结构进行数据、控制的传输,具体使用方式如下:
为了描述方便,进行下面的假设。假定有2类UE在该子帧,UE1代表既有上行数据,又有上行控制的UE;UE2代表仅有上行控制的UE(没有上行数据)。
基站根据调度的情况,确定保护间隔2是否存在。例如,当UE2需要在该传输单元传输时,保护间隔2是存在的,此时用于UE2的CCA检 测,如果CCA检测认为信道空闲,UE2在上行控制区域发送上行控制。此时也可以理解为保护间隔2占用原有上行数据的部分OFDM符号。也可以理解为把上行控制的部分OFDM符号作为保护间隔2,这种情况下,上行数据的总符号相对于现有技术的图1不会减少。显然,UE1如果需要发送上行控制,UE1也需要执行CCA在保护间隔2中,CCA检测信道空闲,然后发送,也可以不执行CCA直接在上行控制区域发送上行控制。
如果UE2不存在时,基站优选的,配置保护间隔2不存在,此时保护间隔2的符号用于上行数据发送或上行控制。
在上述的情况下,UE2执行CCA检测位置在保护间隔2期间执行。如果UE2执行CCA成功的时刻点距离上行控制的起始点存在间隔N时,则UE2只能在上行控制起始点开始发送上行控制信息,例如UCI、SRS或SR等。在间隔N期间UE2能保持不发送数据或者继续执行CCA。
由上可知,参考图4,本申请涉及一种数据、控制的传输单元结构设计以及对应的灵活使用方式。首先传输单元由至少一个上行数据区间构成,对于传输单元中是否还进一步包括其他。需要根据设备传输期间计划在每一个传输单元承载或调度的UE的业务需求来确定对应的传输单元配置。具体的配置可以见之后的示例。一个完整的传输单元的配置为:下行控制、保护间隔、上行控制1、上行数据、上行控制2(此时不把下行控制之前的CCA区域计入传输单元,因为设备的CCA区间可以不固定,例如设备可以提前相当长的时间开始CCA。如果计算在传输单元内的话,需要固定下行控制执行CCA的时域区间)。
设备可以动态或半静态配置传输单元中每个区域的时域时长,也可以事先约定各自固定的时长。当其中某一个区域不存在时,此时该区域的时长被约定划分给其他区域使用。
参考图4中示意的传输单元的区域配置,其中,上行控制1和上行控制2的时域资源为事先约定的,或者设备动态配置的。或者上行控制1和上行控制2的时域总资源是固定,每一部分时域资源为设备配置的。
参考图4,所述保护间隔期间,需要在上行控制1区域和/或上行数据区域发送数据的UE执行CCA检测。设备动态的或半静态配置所述上行控制1区域和/或上行数据区域的起始时刻点或起始OFDM符号由设备配置。或者事先约定。设备也可以动态配置所述上行控制1区域和/或上行数据区域的结束时刻点或结束OFDM符号由设备配置。或者事先约定。例如使用高层信令和/或物理层信令来通知。优选,设备在下行控制区域发送通知信令。设备在下行控制包括用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令,例如使用下行控制区域中的公共区域发送(下行控制区域区分为公共控制区域和UE专用区域)。
参考图4,设备在传输单元中只有上行控制需要发送的UE,这类UE优选使用上行控制1进行发送。这样可以删除上行控制2区域。或者,对于在上述传输单元中既有上行控制需要发送又有上行数据需要发送的UE,这类UE既可以使用上行控制1也可以使用上行控制2,或者同时使用之。对于在上述传输单元中既有上行控制需要发送又有上行数据需要发送的UE,这类UE优先使用上行控制1发送上行控制,然后发送上行数据。
参考图4,对于在所述传输单元中只有上行数据需要发送的UE,这类UE在保护间隔期间执行CCA,(如果CCA成功,即检测信道为空闲)在上行控制1区域期间保持静默,或者在与上行数据对应的频域资源中发送信号,或者,发送虚假的上行控制。虚假的上行控制为UE在上行控制1中为UE事先分配的或约定的频域资源中发送,用于占住信道目的。设备在上行控制1中事先配置或事先约定有部分频域资源为UE发送虚假上行控制的。优选的,部分频域资源是频域离散的,优选的是均匀的频域离散。如果采用配置的方式,动态信令和高层信令都可以使用,优选以广播方式发送所述配置信令。
参考图4,传输单元中上行控制2可以不配置,此时上行控制2区域用于上行数据。上行控制1也可以不配置,此时上行控制1区域用于上行数据。传输单元中下行控制可以不配置,且保护间隔也不需要配置时,下行控制和保护间隔被上行控制1和/或上行数据使用。传输单元中当下行控 制可以不配置,保护间隔被配置时,此时下行控制被用于保护间隔和/或上行控制1和/或上行数据。
参考图4,在各种不同的配置下,产生不同类型的传输单元,这些传输单元可以根据需求在时间上进行组合为多个连续传输单元。
示例1
典型的传输单元配置举例。针对图4的结构。
设备(泛指发送端设备,基站、终端都可以的)在传输数据过程中,可以根据传输数据的需求,例如数据为下行控制、上行控制或上行数据等的类型以及对应的数据量,确定传输单元的配置,例如是否需要配置对应的区域以及对应的时域区间,或是否配置连续多个传输单元进行传输等。
设备能够配置的传输单元中的结构有:
为了便于描述,假设UE1表示一类在该传输单元中有上行数据、上行控制要传输的UE;UE2表示一类在该传输单元中有上行控制要传输,没有上行数据要传输;UE3表示一类在该传输单元中有上行数据要传输,没有上行控制要传输。
设备如果要支持在非授权载波或共享授权载波中运行时,设备配置传输单元的结构为:
配置一:传输单元依次包括:下行控制、保护间隔、上行控制1、上行数据、上行控制2;当设备确定UE1、UE2、UE3在该传输单元同时出现时,该传输单元使用该结构。这样,所有类型的UE的CCA就只在保护间隔中执行,从而实现CCA位置共享,且是共享使用设备从发送状态转为接收状态的保护间隔(这个转化切换是必选留有间隔的),从而具有较少的保护间隔的出现次数。
配置二:传输单元依次包括:下行控制、保护间隔、上行控制1、上行数据;除了前述的配置一中,减少了保护间隔外,配置二中,设备将UE的上行控制都配置在上行控制1发送。上行控制2的资源用于上行数据。
配置三:传输单元依次包括:下行控制、保护间隔、上行数据;设备确定该传输单元只有UE3时,设备配置该传输单元为配置三。
配置四:传输单元依次包括:保护间隔、上行控制1、上行数据;设备确定该传输单元有UE1、UE2、UE3时,且该传输单元中没有任何UE需要接收下行控制中的上行授权或下行授权信息时,设备配置该传输单元为配置四。
配置五:传输单元依次包括:上行控制1、上行数据;除了配置四中需求外,当配置传输单元五时,需要注意该传输单元前一个传输单元中也是上述UE连续至上一个传输单元结束。
配置六:传输单元依次包括:上行数据。设备确定只有UE3在该传输单元传输时,且是从上一个传输单元连续传输的,设备配置该传输单元为配置六。
当设备确定连续多个子帧需要进行传输的数据类型和数量时,设备可以将上述的候选结构在时间上串接起来进行数据传输。
下行控制之前也应该有一个设备执行CCA的区间,但是由于此时的CCA区间之前不执行任何的发送,所以传输单元从设备及其下属UE发送数据开始计算。当然,如果计算传输的方式不同变化时,也可以将下行控制之前的CCA区间计算在传输单元内。
示例2
典型的传输单元配置举例。针对图5的结构。
设备(泛指发送端设备,基站、终端都可以的)在传输数据过程中,可以根据传输数据的需求,例如数据为下行控制、上行控制或上行数据等的类型以及对应的数据量,确定传输单元的配置,例如是否需要配置对应的区域以及对应的时域区间,或是否配置连续多个传输单元进行传输等。
设备能够配置的传输单元中的结构有:
为了便于描述,假设UE1表示一类在该传输单元中有上行数据、上 行控制要传输的UE;UE2表示一类在该传输单元中有上行控制要传输,没有上行数据要传输;UE3表示一类在该传输单元中有上行数据要传输,没有上行控制要传输。
设备如果要支持在非授权载波或共享授权载波中运行时,设备配置传输单元的结构为:
配置一:传输单元依次包括:下行控制、保护间隔1、上行数据、保护间隔2、上行控制;当设备确定UE1、UE2、UE3在该传输单元同时出现时,该传输单元使用该结构。UE1分别在保护间隔1和保护间隔2中执行CCA为上行数据、上行控制发送。UE1也可以在发送上行控制之前不执行CCA。UE2在保护间隔2执行CCA为上行控制发送。UE3在保护间隔1执行CCA为上行数据发送。
配置二:传输单元依次包括:下行控制、保护间隔1、上行数据;当设备确定只有UE3在该传输单元同时出现时,该传输单元使用该结构。UE3在保护间隔1执行CCA为上行数据发送。保护间隔2、上行控制区域都用于上行数据发送。
配置三:传输单元依次包括:保护间隔1、上行数据、保护间隔2、上行控制;当设备确定没有任何UE在该传输单元接收下行控制时,该传输单元使用该结构。UE1分别在保护间隔1和保护间隔2中执行CCA为上行数据、上行控制发送。UE1也可以在发送上行控制之前不执行CCA。UE2在保护间隔2执行CCA为上行控制发送。UE3在保护间隔1执行CCA为上行数据发送。
配置四:传输单元依次包括:上行数据、保护间隔2、上行控制;当设备确定没有任何UE在该传输单元接收下行控制时,且该传输单元中的UE1、UE3的上行数据被连续延续从上一个传输单元,该传输单元使用该结构。UE1、UE3不执行CCA直接在该传输单元发送。UE2在保护间隔2执行CCA为上行控制发送。
配置五:传输单元依次包括:上行数据、上行控制;当设备确定没有 任何UE在该传输单元接收下行控制时,且该传输单元中的UE1、UE3的上行数据被连续延续从上一个传输单元,该传输单元使用该结构。UE1不执行CCA直接在该传输单元发送。
配置六:传输单元依次包括:上行数据。当设备确定没有任何UE在该传输单元接收下行控制时,且该传输单元中的UE1、UE3的上行数据被连续延续从上一个传输单元,该传输单元使用该结构。UE1、UE3不执行CCA直接在该传输单元发送。
当设备确定连续多个子帧需要进行传输的数据类型和数量时,设备可以将上述的候选结构在时间上串接起来进行数据传输。
下行控制之前也应该有一个设备执行CCA的区间,但是由于此时的CCA区间之前不执行任何的发送,所以传输单元从设备及其下属UE发送数据开始计算。当然,如果计算传输的方式不同变化时,也可以将下行控制之前的CCA区间计算在传输单元内。
示例3
示例1的基础上,描述对应的UE行为。参考图4。
基于示例1中假设的3类UE,存在下面的处理方式。
UE1的CCA执行位置为保护间隔区域,UE1可以在CCA成功后,在上行控制1中发送,之后再在上行数据区域发送上行数据,继续在上行控制2发送控制。或者,UE1的CCA执行位置为保护间隔区域,UE1可以在CCA成功后,在上行控制1中发送,之后再在上行数据区域发送上行数据,不在上行控制2发送控制(此时上行控制2可以不配置)。或者,UE1的CCA执行位置为保护间隔区域,UE1在CCA成功后,在上行控制1中发送虚假控制(虚假控制用于占住信道),之后再在上行数据区域发送上行数据,在上行控制2发送控制。
UE2的CCA执行位置为保护间隔区域,UE2在CCA成功后,在上行控制1中发送。
UE3的CCA执行位置为保护间隔区域,UE3在CCA成功后,需要在 上行控制1的区域发送虚拟控制,然后再在上行数据区域发送上行数据。
对于所有UE,当CCA执行成功时刻点距离计划发送的上行控制或上行数据的时刻点存在间隔N时,UE能够在间隔N区间发送虚拟控制。
虚拟控制的频域位置为基站事先配置的或通过信令动态或半静态配置的。虚拟控制可以是一些参考信号、UCI信号或者是上行控制的部分信号重复。具体的,当虚拟控制为上行控制的部分时域信号重复时,可以是UE在间隔N区域相同的频域位置。或者直接重复上行控制的部分时域的信号。
示例4
示例2的基础上,描述对应的UE行为。参考图5。
基于示例1中假设的3类UE,存在下面的处理方式。
UE1的CCA执行位置为保护间隔1区域,UE1可以在CCA成功后,在上行数据中发送上行数据,之后再在保护间隔2区域执行CCA,如果成功,再在上行控制区域发送上行控制。或者,UE1的CCA执行位置为保护间隔1区域,UE1可以在CCA成功后,在上行数据区域中发送上行数据,之后在保护间隔2中继续发送上行数据,再在上行控制中发送控制(相当于UE1在保护间隔2中不执行CCA,直接在上行控制发送控制)。
UE2的CCA执行位置为保护间隔2区域,UE2在CCA成功后,在上行控制中发送控制。
UE3的CCA执行位置为保护间隔1区域,UE3在CCA成功后,在上行数据区域发送上行数据。
对于所有UE,当CCA执行成功时刻点距离计划发送的上行控制或上行数据的时刻点存在间隔N时,UE能够在间隔N区间发送虚拟控制。
虚拟控制的频域位置为基站事先配置的或通过信令动态或半静态配置的。虚拟控制可以是一些参考信号、UCI信号或者是上行控制的部分信号重复。具体的,当虚拟控制为上行控制的部分时域信号重复时,可以是 UE在间隔N区域相同的频域位置。或者直接重复上行控制的部分时域的信号。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种数据传输结构的配置装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本发明实施例的数据传输结构的配置装置的结构框图,如图6所示,该装置包括:获取模块62和配置模块64,其中,
获取模块62,设置为获取传输数据参数组;
配置模块64,设置为依据预设配置顺序配置传输数据参数组,得到传输单元,其中,预设配置顺序为依据传输业务的需求确定的配置顺序。
通过本发明,由于获取传输数据参数组;依据预设配置顺序配置传输数据参数组,得到传输单元,其中,预设配置顺序为依据传输业务的需求确定的配置顺序,因此,可以解决相关技术中由于无法CCA成功导致无法发送上行控制的问题,达到提升频谱效率的效果。
可选的,在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第一上行控制区域、第二上行控制区域的情况下,预设配置顺 序为:下行控制区域、保护间隔、第一上行控制区域、上行数据区域和第二上行控制区域。
可选的,第一上行控制区域和第二上行控制区域的时域资源为预先设定,或者,由设备动态配置;或者,第一上行控制区域和第二上行控制区域的时域总资源是固定的,且时域总资源中的每个时域资源是由设备配置的;或者,第一上行控制区域是由设备动态配置其是否存在的,优选的,当存在只有上行控制的UE需要发送的UE时,设备配置第一上行控制区域存在,否则,允许配置第一上行控制区域不存在。
进一步地,可选的,在保护间隔区域期间,在第一上行控制区域和/或上行数据区域发送数据的用户设备UE执行空闲信道评估CCA检测。
可选的,第一上行控制区域和/或上行数据区域的起始时刻点,或,起始正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
进一步地,可选的,第一上行控制区域和/或上行数据区域的结束时刻点,或,结束正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
可选的,在配置过程中,基站通过高层信令和/或物理层信令进行配置。
可选的,通过物理层在下行控制区域发送物理层信令。
可选的,下行控制区域包括:用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令。
可选的,本申请实施例的数据传输结构的配置装置还包括:第一配置模块,设置为在传输单元中只有上行控制需要发送的用户设备UE的情况下,用户设备UE使用第一上行控制区域进行发送;优选的,UE在保护间隔区域内执行CCA检测。
可选的,本申请实施例的数据传输结构的配置装置还包括:第二配置模块,设置为在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE使用第一上行控制区域和/或第二上行控制区域发送上行控制;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检 测。
可选的,本申请实施例的数据传输结构的配置装置还包括:第三配置模块,设置为在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE使用第一上行控制区域和/或第二上行控制区域发送上行控制;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
可选的,本申请实施例的数据传输结构的配置装置还包括:第四配置模块,设置为在传输单元中只有上行数据需要发送的用户设备UE在第一上行控制区域保持静默,或者,在与上行数据对应的频域资源中发送信号,或者,发送虚假的上行控制,或者在事先约定的资源位置发送信号;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
进一步地,可选的,虚假的上行控制为用户设备UE在第一上行控制区域中为UE预先分配的或设定的频域资源中发送。
可选的,在第一上行控制区域中预先分配或预先约定有部分频域资源为用户设备UE发送虚假上行控制的;其中,部分频域资源是频域离散的。
进一步地,可选的,部分频域资源为均匀的频域离散。
可选的,本申请实施例的数据传输结构的配置装置还包括:该装置还包括:第五配置模块,设置为依据预设传输需要对第一上行控制区域进行配置或不配置;当不配置时,在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第二上行控制区域的情况下,预设配置顺序为:下行控制区域、保护间隔、上行数据区域和第二上行控制区域;或依据预设传输需要对第二上行控制区域进行配置或不配置;当不配置时,在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第一上行控制区域的情况下,预设配置顺序为:下行控制区域、保护间隔、第一上行控制区域和上行数据区域。
进一步地,可选的,本申请实施例的数据传输结构的配置装置还包括:第六配置模块,设置为在依据预设传输需要对第一上行控制区域或第二上 行控制区域进行配置或不配置之后,在第二上行控制区域进行配置或不配置的情况下,配置第二上行控制区域设置为上行数据或保持空的状态;或,在第一上行控制区域进行配置或不配置的情况下,配置第一上行控制区域用于上行数据或保持空的状态。
可选的,配置模块,设置为在不配置下行控制区域和保护间隔区域的情况下,将下行控制区域和保护间隔区域配置为第一上行控制区域和/或上行数据区域。
可选的,配置模块,用于在不配置下行控制区域,且配置保护间隔区域的情况下,将下行控制区域配置为保护间隔区域和/或第一上行控制区域和/或上行数据区域。
可选的,本申请实施例的数据传输结构的配置装置还包括:第一组合模块,设置为依据预设配置顺序得到的相同或不同的多个传输单元在时间上组合为一个连续传输单元。
可选的,在传输数据参数组包括上行数据区域、下行控制区域、第一保护间隔区域、第二保护间隔区域和上行控制区域的情况下,预设配置顺序为:下行控制区域、第一保护间隔区域、上行数据区域、第二保护间隔区域和上行控制区域。
进一步地,可选的,第一保护间隔区域和第二保护间隔区域的时域资源为预先约定的;或者,由设备动态配置的;或者,第一保护间隔区域和第二保护间隔区域的时域总资源是固定的,其中,第一保护间隔区域和第二保护间隔区域的的时域资源是由设备配置的。
可选的,第一保护间隔区域和第二保护间隔区域,用于在上行数据区域、上行控制区域发送数据的用户设备UE执行空闲信道评估CCA检测。
可选的,上行控制区域和/或上行数据区域的起始时刻点,或起始正交频分复用OFDM符号由设备配置,或者依据预设条件约定。
可选的,上行数据区域的结束时刻点,或,结束正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
可选的,在配置过程中,基站通过高层信令和/或物理层信令进行配置。
可选的,通过物理层在下行控制区域发送物理层信令。
可选的,下行控制区域包括:用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令。
可选的,本申请实施例的数据传输结构的配置装置还包括:第七配置模块,设置为在传输单元中只有上行控制需要发送的用户设备UE的情况下,用户设备UE使用上行控制区域进行发送;优选的,UE在第二保护间隔区域内执行CCA检测。
可选的,本申请实施例的数据传输结构的配置装置还包括:第八配置模块,设置为在传输单元中只有上行控制需要发送的用户设备UE的情况下,用户设备UE使用上行控制区域进行发送;优选的,UE在第二保护间隔区域内执行CCA检测。
可选的,本申请实施例的数据传输结构的配置装置还包括:第九配置模块,设置为在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,并在第二保护间隔区域中发送上行数据,在上行控制区域中发送上行控制,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,本申请实施例的数据传输结构的配置装置还包括:第十配置模块,设置为在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,并在第二保护间隔区域中保持静默且不执行空闲信道评估CCA检测,在上行控制区域中直接发送上行控制,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,本申请实施例的数据传输结构的配置装置还包括:第十一配置模块,设置为在传输单元中只有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,本申请实施例的数据传输结构的配置装置还包括:第二组合模块,设置为在传输单元中只有上行数据需要发送的用户设备UE的情况下,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,获取传输数据参数组;
S2,依据预设配置顺序配置传输数据参数组,得到传输单元,其中,预设配置顺序为依据传输业务的需求确定的配置顺序。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第一上行控制区域、第二上行控制区域的情况下,预设配置顺序为:下行控制区域、保护间隔、第一上行控制区域、上行数据区域和第二上行控制区域。
可选的,存储介质还被设置为存储用于执行以下步骤的程序代码:第一上行控制区域和第二上行控制区域的时域资源为预先设定;或者,由设备动态配置;或者,第一上行控制区域和第二上行控制区域的时域总资源是固定的,且时域总资源中的每个时域资源是由设备配置的;或者,第一上行控制区域是由设备动态配置其是否存在的,优选的,当存在只有上行控制的UE需要发送的UE时,设备配置第一上行控制区域存在,否则,允许配置第一上行控制区域不存在。
可选的,存储介质还被设置为存储用于执行以下步骤的程序代码:在保护间隔区域期间,在第一上行控制区域和/或上行数据区域发送数据的用户设备UE执行空闲信道评估CCA检测。
进一步地,可选的,存储介质还设置为存储用于执行以下步骤的程序 代码:第一上行控制区域和/或上行数据区域的起始时刻点,或,起始正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:第一上行控制区域和/或上行数据区域的结束时刻点,或,结束正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
进一步地,可选的,存储介质还设置为存储用于执行以下步骤的程序代码:在配置过程中,基站通过高层信令和/或物理层信令进行配置。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:通过物理层在下行控制区域发送物理层信令。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:下行控制区域包括:用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中只有上行控制需要发送的用户设备UE的情况下,用户设备UE使用第一上行控制区域进行发送;优选的,UE在保护间隔区域内执行CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE使用第一上行控制区域和/或第二上行控制区域发送上行控制;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE使用第一上行控制区域发送上行控制,然后使用上行数据区域发送上行数据;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中只有上行数据需要发送的用户设备UE在第一上 行控制区域保持静默,或者,在与上行数据对应的频域资源中发送信号,或者,发送虚假的上行控制,或者在事先约定的资源位置发送信号;优选的,用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
进一步地,可选的,存储介质还设置为存储用于执行以下步骤的程序代码:虚假的上行控制为用户设备UE在第一上行控制区域中为UE预先分配的或设定的频域资源中发送。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:在第一上行控制区域中预先分配或预先约定有部分频域资源为用户设备UE发送虚假上行控制的;其中,部分频域资源是频域离散的。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:部分频域资源为均匀的频域离散。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:依据预设传输需要对第一上行控制区域进行配置或不配置;当不配置时,在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第二上行控制区域的情况下,预设配置顺序为:下行控制区域、保护间隔、上行数据区域和第二上行控制区域;或依据预设传输需要对第二上行控制区域进行配置或不配置;当不配置时,在传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第一上行控制区域的情况下,预设配置顺序为:下行控制区域、保护间隔、第一上行控制区域和上行数据区域。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:在依据预设传输需要对第一上行控制区域或第二上行控制区域进行配置或不配置之后,方法还包括:在第二上行控制区域进行配置或不配置的情况下,配置第二上行控制区域用于上行数据或保持空的状态;或,在第一上行控制区域进行配置或不配置的情况下,配置第一上行控制区域用于上行数据或保持空的状态。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:在不 配置下行控制区域和保护间隔区域的情况下,将下行控制区域和保护间隔区域配置为第一上行控制区域和/或上行数据区域。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:在不配置下行控制区域,且配置保护间隔区域的情况下,将下行控制区域配置为保护间隔区域和/或第一上行控制区域和/或上行数据区域。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:依据预设配置顺序得到的相同或不同的多个传输单元在时间上组合为一个连续传输单元。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:在传输数据参数组包括上行数据区域、下行控制区域、第一保护间隔区域、第二保护间隔区域和上行控制区域的情况下,预设配置顺序为:下行控制区域、第一保护间隔区域、上行数据区域、第二保护间隔区域和上行控制区域。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:第一保护间隔区域和第二保护间隔区域的时域资源为预先约定的;或者,由设备动态配置的;或者,第一保护间隔区域和第二保护间隔区域的时域总资源是固定的,其中,第一保护间隔区域和第二保护间隔区域的的时域资源是由设备配置的。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:第一保护间隔区域和第二保护间隔区域,分别用于在上行数据区域和上行控制区域发送数据的用户设备UE执行空闲信道评估CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:上行控制区域和/或上行数据区域的起始时刻点,或起始正交频分复用OFDM符号由设备配置,或者依据预设条件约定。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:上行数据区域的结束时刻点,或,结束正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:在配置过程中,基站通过高层信令和/或物理层信令进行配置。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:通过物理层在下行控制区域发送物理层信令。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:下行控制区域包括:用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中只有上行控制需要发送的用户设备UE的情况下,用户设备UE使用上行控制区域进行发送;优选的,UE在第二保护间隔区域内执行CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE分别在上行数据区域发送上行数据和在上行控制区域发送上行控制;优选的,用户设备UE在第一保护间隔区域和第二保护间隔区域中分别执行空闲信道评估CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,并在第二保护间隔区域中发送上行数据,在上行控制区域中发送上行控制,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,并在第二保护间隔区域中保持静默且不执行空闲信道评估CCA检测,在上行控制区域中直接发送上行控制,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:在传输单元中只有上行数据需要发送的用户设备UE在上行数据区域发送上行数据,优选的,用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
可选的,存储介质还设置为存储用于执行以下步骤的程序代码:该方法还包括:依据预设配置顺序得到的相同或不同的多个传输单元在时间上组合为一个连续传输单元。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例提供的上述技术方案,可以应用于数据传输结构的配置过程中,由于获取传输数据参数组;依据预设配置顺序配置传输数据参数组,得到传输单元,其中,预设配置顺序为依据传输业务的需求确定的配置顺序,因此,可以解决相关技术中由于无法CCA成功导致无法发送上行控制的问题,达到提升频谱效率的效果。

Claims (70)

  1. 一种数据传输结构的配置方法,包括:
    获取传输数据参数组;
    依据预设配置顺序配置所述传输数据参数组,得到传输单元,其中,所述预设配置顺序为依据传输业务的需求确定的配置顺序。
  2. 根据权利要求1所述的方法,其中,在所述传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第一上行控制区域、第二上行控制区域的情况下,所述预设配置顺序为:所述下行控制区域、所述保护间隔、所述第一上行控制区域、所述上行数据区域和所述第二上行控制区域。
  3. 根据权利要求2所述的方法,其中,所述第一上行控制区域和所述第二上行控制区域的时域资源为预先设定;或者,由设备动态配置;或者,所述第一上行控制区域和所述第二上行控制区域的时域总资源是固定的,且所述时域总资源中的每个时域资源是由所述设备配置的;
    或者,所述第一上行控制区域是由设备动态配置其是否存在的,优选的,当存在只有上行控制的UE需要发送的UE时,设备配置所述第一上行控制区域存在,否则,允许配置第一上行控制区域不存在。
  4. 根据权利要求2所述的方法,其中,在所述保护间隔区域期间,在所述第一上行控制区域和/或所述上行数据区域发送数据的用户设备UE执行空闲信道评估CCA检测。
  5. 根据权利要求4所述的方法,其中,所述第一上行控制区域和/或所述上行数据区域的起始时刻点,或,起始正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
  6. 根据权利要求4所述的方法,其中,所述第一上行控制区域和/或所述上行数据区域的结束时刻点,或,结束正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
  7. 根据权利要求5或6所述的方法,其中,在配置过程中,基站通过高层信令和/或物理层信令进行配置。
  8. 根据权利要求7所述的方法,其中,通过物理层在下行控制区域发送所述物理层信令。
  9. 根据权利要求2所述的方法,其中,所述下行控制区域包括:用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令。
  10. 根据权利要求2所述的方法,其中,所述方法还包括:
    在所述传输单元中只有上行控制需要发送的用户设备UE的情况下,所述用户设备UE使用所述第一上行控制区域进行发送;优选的,所述UE在保护间隔区域内执行CCA检测。
  11. 根据权利要求2所述的方法,其中,所述方法还包括:
    在所述传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE使用所述第一上行控制区域和/或所述第二上行控制区域发送上行控制;优选的,所述用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
  12. 根据权利要求2所述的方法,其中,所述方法还包括:
    在所述传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE使用第一上行控制区域发送上行控制,然后使用上行数据区域发送上行数据;优选的,所述用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
  13. 根据权利要求2所述的方法,其中,所述方法还包括:
    在所述传输单元中只有上行数据需要发送的用户设备UE在所述第一上行控制区域保持静默,或者,在与所述上行数据对应的频域资源中发送信号,或者,发送虚假的上行控制,或者在事先约定的资源位置发送信号;优选的,所述用户设备UE在保护间隔区域执行空闲 信道评估CCA检测。
  14. 根据权利要求13所述的方法,其中,所述虚假的上行控制为用户设备UE在所述第一上行控制区域中为所述UE预先分配的或设定的频域资源中发送。
  15. 根据权利要求13所述的方法,其中,在所述第一上行控制区域中预先分配或预先约定有部分频域资源为用户设备UE发送虚假上行控制的;其中,所述部分频域资源是频域离散的。
  16. 根据权利要求15所述的方法,其中,所述部分频域资源为均匀的频域离散。
  17. 根据权利要求2所述的方法,其中,所述方法还包括:
    依据预设传输需要对所述第一上行控制区域进行配置或不配置;当不配置时,在所述传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第二上行控制区域的情况下,所述预设配置顺序为:所述下行控制区域、所述保护间隔、所述上行数据区域和所述第二上行控制区域;
    或依据预设传输需要对所述第二上行控制区域进行配置或不配置;当不配置时,在所述传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第一上行控制区域的情况下,所述预设配置顺序为:所述下行控制区域、所述保护间隔、第一上行控制区域和所述上行数据区域。
  18. 根据权利要求17所述的方法,其中,在所述依据预设传输需要对所述第一上行控制区域或所述第二上行控制区域进行配置或不配置之后,所述方法还包括:
    在所述第二上行控制区域进行配置或不配置的情况下,配置所述第二上行控制区域用于上行数据或保持空的状态;或,在所述第一上行控制区域进行配置或不配置的情况下,配置所述第一上行控制区域用于上行数据或保持空的状态。
  19. 根据权利要求2所述的方法,其中,
    在不配置所述下行控制区域和所述保护间隔区域的情况下,将所述下行控制区域和所述保护间隔区域配置为所述第一上行控制区域和/或所述上行数据区域。
  20. 根据权利要求2所述的方法,其中,
    在不配置所述下行控制区域,且配置所述保护间隔区域的情况下,将所述下行控制区域配置为所述保护间隔区域和/或所述第一上行控制区域和/或所述上行数据区域。
  21. 根据权利要求2所述的方法,其中,所述方法还包括:
    依据预设配置顺序得到的相同或不同的多个所述传输单元在时间上组合为一个连续传输单元。
  22. 根据权利要求1所述的方法,其中,在所述传输数据参数组包括上行数据区域、下行控制区域、第一保护间隔区域、第二保护间隔区域和上行控制区域的情况下,所述预设配置顺序为:所述下行控制区域、所述第一保护间隔区域、所述上行数据区域、所述第二保护间隔区域和所述上行控制区域。
  23. 根据权利要求22所述的方法,其中,所述方法还包括:所述第一保护间隔区域和所述第二保护间隔区域的时域资源为预先约定的;
    或者,由设备动态配置的;
    或者,所述第一保护间隔区域和所述第二保护间隔区域的时域总资源是固定的,其中,所述第一保护间隔区域和所述第二保护间隔区域的时域资源是由所述设备配置的。
  24. 根据权利要求22所述的方法,其中,所述第一保护间隔区域和所述第二保护间隔区域,分别用于在所述上行数据区域和所述上行控制区域发送数据的用户设备UE执行空闲信道评估CCA检测。
  25. 根据权利要求22所述的方法,其中,所述上行控制区域和/或所述上行数据区域的起始时刻点,或起始正交频分复用OFDM符号由设备配置,或者依据预设条件约定。
  26. 根据权利要求22所述的方法,其中,所述上行数据区域的结束时刻点,或,结束正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
  27. 根据权利要求25或26所述的方法,其中,在配置过程中,基站通过高层信令和/或物理层信令进行配置。
  28. 根据权利要求27所述的方法,其中,通过物理层在下行控制区域发送所述物理层信令。
  29. 根据权利要求23所述的方法,其中,所述下行控制区域包括:用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令。
  30. 根据权利要求22所述的方法,其中,所述方法还包括:
    在所述传输单元中只有上行控制需要发送的用户设备UE的情况下,所述用户设备UE使用所述上行控制区域进行发送;优选的,所述UE在第二保护间隔区域内执行CCA检测。
  31. 根据权利要求22所述的方法,其中,所述方法还包括:
    在所述传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE分别在所述上行数据区域发送上行数据和在所述上行控制区域发送上行控制;优选的,所述用户设备UE在所述第一保护间隔区域和所述第二保护间隔区域中分别执行空闲信道评估CCA检测。
  32. 根据权利要求22所述的方法,其中,所述方法还包括:
    在所述传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE在所述上行数据区域发送上行数据,并在所述第二保 护间隔区域中发送上行数据,在所述上行控制区域中发送上行控制,优选的,所述用户设备UE在所述第一保护间隔区域中执行空闲信道评估CCA检测。
  33. 根据权利要求22所述的方法,其中,所述方法还包括:
    在所述传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE在所述上行数据区域发送上行数据,并在所述第二保护间隔区域中保持静默且不执行所述空闲信道评估CCA检测,在所述上行控制区域中直接发送上行控制,优选的,所述用户设备UE在所述第一保护间隔区域中执行空闲信道评估CCA检测。
  34. 根据权利要求22所述的方法,其中,所述方法还包括:
    在所述传输单元中只有上行数据需要发送的用户设备UE在所述上行数据区域发送上行数据,优选的,所述用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
  35. 根据权利要求22所述的方法,其中,所述方法还包括:
    依据预设配置顺序得到的相同或不同的多个所述传输单元在时间上组合为一个连续传输单元。
  36. 一种数据传输结构的配置装置,包括:
    获取模块,设置为获取传输数据参数组;
    配置模块,设置为依据预设配置顺序配置所述传输数据参数组,得到传输单元,其中,所述预设配置顺序为依据传输业务的需求确定的配置顺序。
  37. 根据权利要求36所述的装置,其中,在所述传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第一上行控制区域、第二上行控制区域的情况下,所述预设配置顺序为:所述下行控制区域、所述保护间隔、所述第一上行控制区域、所述上行数据区域和所述第二上行控制区域。
  38. 根据权利要求37所述的装置,其中,所述第一上行控制区域和所述第二上行控制区域的时域资源为预先设定,或者,由设备动态配置;或者,所述第一上行控制区域和所述第二上行控制区域的时域总资源是固定的,且所述时域总资源中的每个时域资源是由所述设备配置的;
    或者,所述第一上行控制区域是由设备动态配置其是否存在的,优选的,当存在只有上行控制的UE需要发送的UE时,设备配置所述第一上行控制区域存在,否则,允许配置第一上行控制区域不存在。
  39. 根据权利要求37所述的装置,其中,在所述保护间隔区域期间,在所述第一上行控制区域和/或所述上行数据区域发送数据的用户设备UE执行空闲信道评估CCA检测。
  40. 根据权利要求39所述的装置,其中,所述第一上行控制区域和/或所述上行数据区域的起始时刻点,或,起始正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
  41. 根据权利要求39所述的装置,其中,所述第一上行控制区域和/或所述上行数据区域的结束时刻点,或,结束正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
  42. 根据权利要求39或40所述的装置,其中,在配置过程中,基站通过高层信令和/或物理层信令进行配置。
  43. 根据权利要求41所述的装置,其中,通过物理层在下行控制区域发送所述物理层信令。
  44. 根据权利要求37所述的装置,其中,所述下行控制区域包括:用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令。
  45. 根据权利要求37所述的装置,其中,所述装置还包括:
    第一配置模块,设置为在所述传输单元中只有上行控制需要发送的用户设备UE的情况下,所述用户设备UE使用所述第一上行控制区 域进行发送;优选的,所述UE在保护间隔区域内执行CCA检测。
  46. 根据权利要求37所述的装置,其中,所述装置还包括:
    第二配置模块,设置为在所述传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE使用所述第一上行控制区域和/或所述第二上行控制区域发送上行控制;优选的,所述用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
  47. 根据权利要求37所述的装置,其中,所述装置还包括:
    第三配置模块,设置为在所述传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE使用所述第一上行控制区域和/或所述第二上行控制区域发送上行控制;优选的,所述用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
  48. 根据权利要求37所述的装置,其中,所述装置还包括:
    第四配置模块,设置为在所述传输单元中只有上行数据需要发送的用户设备UE在所述第一上行控制区域保持静默,或者,在与所述上行数据对应的频域资源中发送信号,或者,发送虚假的上行控制,或者在事先约定的资源位置发送信号;优选的,所述用户设备UE在保护间隔区域执行空闲信道评估CCA检测。
  49. 根据权利要求48所述的装置,其中,所述虚假的上行控制为用户设备UE在所述第一上行控制区域中为所述UE预先分配的或设定的频域资源中发送。
  50. 根据权利要求48所述的装置,其中,在所述第一上行控制区域中预先分配或预先约定有部分频域资源为用户设备UE发送虚假上行控制的;其中,所述部分频域资源是频域离散的。
  51. 根据权利要求50所述的装置,其中,所述部分频域资源为均匀的频域离散。
  52. 根据权利要求37所述的装置,其中,所述装置还包括:
    第五配置模块,设置为依据预设传输需要对所述第一上行控制区域进行配置或不配置;当不配置时,在所述传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第二上行控制区域的情况下,所述预设配置顺序为:所述下行控制区域、所述保护间隔、所述上行数据区域和所述第二上行控制区域;
    或依据预设传输需要对所述第二上行控制区域进行配置或不配置;当不配置时,在所述传输数据参数组包括上行数据区域、下行控制区域、保护间隔区域、第一上行控制区域的情况下,所述预设配置顺序为:所述下行控制区域、所述保护间隔、第一上行控制区域和所述上行数据区域。
  53. 根据权利要求52所述的装置,其中,所述装置还包括:
    第六配置模块,设置为在所述依据预设传输需要对所述第一上行控制区域或所述第二上行控制区域进行配置或不配置之后,在所述第二上行控制区域进行配置或不配置的情况下,配置所述第二上行控制区域用于上行数据或保持空的状态;或,在所述第一上行控制区域进行配置或不配置的情况下,配置所述第一上行控制区域用于上行数据或保持空的状态。
  54. 根据权利要求37所述的装置,其中,所述配置模块,设置为在不配置所述下行控制区域和所述保护间隔区域的情况下,将所述下行控制区域和所述保护间隔区域配置为所述第一上行控制区域和/或所述上行数据区域。
  55. 根据权利要求37所述的装置,其中,所述配置模块,设置为在不配置所述下行控制区域,且配置所述保护间隔区域的情况下,将所述下行控制区域配置为所述保护间隔区域和/或所述第一上行控制区域和/或所述上行数据区域。
  56. 根据权利要求37所述的装置,其中,所述装置还包括:
    第一组合模块,设置为依据预设配置顺序得到的相同或不同的多 个所述传输单元在时间上组合为一个连续传输单元。
  57. 根据权利要求36所述的装置,其中,在所述传输数据参数组包括上行数据区域、下行控制区域、第一保护间隔区域、第二保护间隔区域和上行控制区域的情况下,所述预设配置顺序为:所述下行控制区域、所述第一保护间隔区域、所述上行数据区域、所述第二保护间隔区域和所述上行控制区域。
  58. 根据权利要求57所述的装置,其中,所述第一保护间隔区域和所述第二保护间隔区域的时域资源为预先约定的;或者,由设备动态配置的;或者,所述第一保护间隔区域和所述第二保护间隔区域的时域总资源是固定的,其中,所述第一保护间隔区域和所述第二保护间隔区域的的时域资源是由所述设备配置的。
  59. 根据权利要求57所述的装置,其中,所述第一保护间隔区域和所述第二保护间隔区域,设置为在所述上行数据区域、所述上行控制区域发送数据的用户设备UE执行空闲信道评估CCA检测。
  60. 根据权利要求59所述的装置,其中,所述上行控制区域和/或所述上行数据区域的起始时刻点,或起始正交频分复用OFDM符号由设备配置,或者依据预设条件约定。
  61. 根据权利要求59所述的装置,其中,所述上行数据区域的结束时刻点,或,结束正交频分复用OFDM符号由设备配置,或者依据预设条件配置。
  62. 根据权利要求60或61所述的装置,其中,在配置过程中,基站通过高层信令和/或物理层信令进行配置。
  63. 根据权利要求62所述的装置,其中,通过物理层在下行控制区域发送所述物理层信令。
  64. 根据权利要求57所述的装置,其中,所述下行控制区域包括:用于上行数据发送的控制信令或授权信息和/或用于下行数据发送的控制信令。
  65. 根据权利要求57所述的装置,其中,所述装置还包括:
    第七配置模块,设置为在所述传输单元中只有上行控制需要发送的用户设备UE的情况下,所述用户设备UE使用所述上行控制区域进行发送;优选的,所述UE在第二保护间隔区域内执行CCA检测。
  66. 根据权利要求57所述的装置,其中,所述装置还包括:
    第八配置模块,设置为在所述传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE分别在所述上行数据区域发送上行数据和在所述上行控制区域发送上行控制;优选的,所述用户设备UE在所述第一保护间隔区域和所述第二保护间隔区域中分别执行空闲信道评估CCA检测。
  67. 根据权利要求57所述的装置,其中,所述装置还包括:
    第九配置模块,设置为在所述传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE在所述上行数据区域发送上行数据,并在所述第二保护间隔区域中发送上行数据,在所述上行控制区域中发送上行控制,优选的,所述用户设备UE在所述第一保护间隔区域中执行空闲信道评估CCA检测。
  68. 根据权利要求57所述的装置,其中,所述装置还包括:
    第十配置模块,设置为在所述传输单元中既有上行控制需要发送又有上行数据需要发送的用户设备UE在所述上行数据区域发送上行数据,并在所述第二保护间隔区域中保持静默且不执行所述空闲信道评估CCA检测,在所述上行控制区域中直接发送上行控制,优选的,所述用户设备UE在所述第一保护间隔区域中执行空闲信道评估CCA检测。
  69. 根据权利要求57所述的装置,其中,所述装置还包括:
    第十一配置模块,设置为在所述传输单元中只有上行数据需要发送的用户设备UE在所述上行数据区域发送上行数据,优选的,所述用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
  70. 根据权利要求57所述的装置,其中,所述装置还包括:
    第二组合模块,设置为在所述传输单元中只有上行数据需要发送的用户设备UE的情况下,所述用户设备UE在第一保护间隔区域中执行空闲信道评估CCA检测。
PCT/CN2017/083811 2016-05-13 2017-05-10 数据传输结构的配置方法及装置 WO2017193939A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/300,485 US20190149302A1 (en) 2016-05-13 2017-05-10 Configuration method and device for data transmission structure
US17/100,600 US11394513B2 (en) 2016-05-13 2020-11-20 Configuration method and device for data transmission structure
US17/867,606 US11581998B2 (en) 2016-05-13 2022-07-18 Configuration method and device for data transmission structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610319550.9A CN107371266B (zh) 2016-05-13 2016-05-13 数据传输结构的配置方法及装置
CN201610319550.9 2016-05-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/300,485 A-371-Of-International US20190149302A1 (en) 2016-05-13 2017-05-10 Configuration method and device for data transmission structure
US17/100,600 Continuation US11394513B2 (en) 2016-05-13 2020-11-20 Configuration method and device for data transmission structure

Publications (1)

Publication Number Publication Date
WO2017193939A1 true WO2017193939A1 (zh) 2017-11-16

Family

ID=60266294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083811 WO2017193939A1 (zh) 2016-05-13 2017-05-10 数据传输结构的配置方法及装置

Country Status (3)

Country Link
US (3) US20190149302A1 (zh)
CN (2) CN107371266B (zh)
WO (1) WO2017193939A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11272546B2 (en) * 2017-08-08 2022-03-08 Samsung Electronics Co., Ltd. Methods and apparatus for transmitting and receiving uplink control information and for requesting random access in wireless communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379860A (zh) * 2006-02-03 2009-03-04 交互数字技术公司 高速分组接入演进型和长期演进型系统中的基于服务质量的资源确定和分配的设备和方法
CN102421195A (zh) * 2010-09-28 2012-04-18 华为技术有限公司 一种数据传输方法和系统
CN102938935A (zh) * 2012-11-19 2013-02-20 北京理工大学 Fdd异构网络中获取信道互易性并交互控制信息的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200934154A (en) * 2007-12-28 2009-08-01 Panasonic Corp Communication device and communication system
US10136442B2 (en) * 2013-04-19 2018-11-20 Lg Electronics Inc. Method and apparatus for allocating resources in wireless communication system
EP2802091A1 (en) * 2013-05-08 2014-11-12 Panasonic Intellectual Property Corporation of America Flexible TDD uplink-downlink configuration with flexible subframes
CN105007600A (zh) * 2014-04-15 2015-10-28 中兴通讯股份有限公司 一种下行数据速率匹配的方法和装置
EP3216136B1 (en) * 2014-11-06 2023-08-30 Apple Inc. User equipment and method for communicating on cells configured for licensed assisted access (laa)
CN105577339A (zh) * 2014-11-06 2016-05-11 中兴通讯股份有限公司 数据传输方法及装置
US10667243B2 (en) * 2015-11-18 2020-05-26 Lg Electronics Inc. Methods for transmitting and receiving reference signals in wireless communication system, and devices for same
CN105517061B (zh) 2016-01-15 2019-03-22 宇龙计算机通信科技(深圳)有限公司 一种非授权频谱上指示上行子帧的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379860A (zh) * 2006-02-03 2009-03-04 交互数字技术公司 高速分组接入演进型和长期演进型系统中的基于服务质量的资源确定和分配的设备和方法
CN102421195A (zh) * 2010-09-28 2012-04-18 华为技术有限公司 一种数据传输方法和系统
CN102938935A (zh) * 2012-11-19 2013-02-20 北京理工大学 Fdd异构网络中获取信道互易性并交互控制信息的方法

Also Published As

Publication number Publication date
CN107371266B (zh) 2022-08-23
CN107371266A (zh) 2017-11-21
US20190149302A1 (en) 2019-05-16
US11394513B2 (en) 2022-07-19
US20210075576A1 (en) 2021-03-11
US11581998B2 (en) 2023-02-14
CN116321491A (zh) 2023-06-23
US20220353030A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
US20230020105A1 (en) Method and device for allocating resource in v2x system
CN107079455B (zh) 使用移动通信系统中免执照频带的用于通信的方法和设备
Ali et al. Design of MAC layer resource allocation schemes for IEEE 802.11 ax: Future directions
CN115868227A (zh) 非授权侧行链路的基于子信道的占用时间共享
JP2023515093A (ja) V2xシステムで端末の間の協力を通じるリソース割り当て方法及び装置
US11303491B2 (en) Method and apparatus for transmitting and receiving reference signal for sidelink data in wireless communication system
CN109076566A (zh) 调度方法、设备和系统
CN108024385A (zh) 随机接入的方法、网络设备和用户设备
CN108886715B (zh) 一种资源管理方法及相关设备
US20210321392A1 (en) Resource determination for communicating uplink control signal in wide bandwidth deployments
KR20210142481A (ko) V2x 시스템에서 반송파 결합을 통한 자원 할당 방법 및 장치
WO2017132964A1 (zh) 一种上行数据传输方法及相关设备
CN115002787B (zh) 通信方法及终端设备
US20220150008A1 (en) Resource configuration for a bandwidth part for a wireless network
WO2017020761A1 (zh) 数据发送、接收方法及装置
WO2017113077A1 (zh) 一种上行紧急业务传输方法、基站、用户设备及系统
WO2017133013A1 (zh) 一种传输控制信令的方法及设备
CN115589596A (zh) 侧行通信的方法及装置
US11581998B2 (en) Configuration method and device for data transmission structure
US20220417919A1 (en) Method and apparatus for resource allocation by sidelink inter-ue coordination in communication system
CN107432004A (zh) 传输数据的方法、装置及系统
CN116918412A (zh) 侧链路资源预留技术
CN114026940A (zh) 用于上行链路传输的方法、终端设备和网络节点
CN115316032A (zh) 用于在共享射频频谱中发送多信道的技术
CN106992839B (zh) 数据传输的方法及装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795557

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795557

Country of ref document: EP

Kind code of ref document: A1