WO2017193851A1 - 热泵空调系统及电动汽车 - Google Patents

热泵空调系统及电动汽车 Download PDF

Info

Publication number
WO2017193851A1
WO2017193851A1 PCT/CN2017/082942 CN2017082942W WO2017193851A1 WO 2017193851 A1 WO2017193851 A1 WO 2017193851A1 CN 2017082942 W CN2017082942 W CN 2017082942W WO 2017193851 A1 WO2017193851 A1 WO 2017193851A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet
conditioning system
air conditioning
heat exchanger
valve
Prior art date
Application number
PCT/CN2017/082942
Other languages
English (en)
French (fr)
Inventor
叶梅娇
陈雪峰
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610304247.1A external-priority patent/CN107356019B/zh
Priority claimed from CN201620419100.2U external-priority patent/CN205980466U/zh
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2017193851A1 publication Critical patent/WO2017193851A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种热泵空调系统及电动汽车。热泵空调系统包括:HVAC总成(600)、压缩机(604)和室外换热器(605),HVAC总成(600)包括室内冷凝器(601)、室内蒸发器(602)和风门机构,其中风门机构用于选择性地导通通向室内冷凝器(601)的风道和/或通向室内蒸发器(602)的风道。压缩机(604)的出口与室内冷凝器(601)的入口连通,室内冷凝器(601)的出口选择性地经由第一节流支路或第一通流支路与室外换热器(605)的入口连通,室外换热器(605)的出口选择性地经由第二节流支路或第二通流支路与室内蒸发器(602)的入口连通,室内蒸发器(602)的出口与压缩机(604)的入口连通。

Description

热泵空调系统及电动汽车 技术领域
本公开涉及电动汽车领域,具体地,涉及一种热泵空调系统及电动汽车。
背景技术
电动汽车没有传统汽车用来采暖的发动机余热,无法提供采暖热源。因此,电动汽车的空调系统必须自身具有供暖的功能,即采用热泵型空调系统和/或电加热供热。
公开号为CN102788397A的发明专利申请公开了一种电动汽车热泵空调系统。该热泵空调系统虽然可以在各类电动汽车中使用,但是该系统使用两个室外换热器(一个室外冷凝器和一个室外蒸发器),导致汽车前端模块风阻较大,系统较复杂,影响采暖效果。
发明内容
本公开的目的是提供一种热泵空调系统及电动汽车,以解决无发动机余热循环系统的纯电动车或混合动力车使用纯电动模式的汽车热泵空调系统采暖能效低、无法满足除霜除雾法规要求、安装复杂等问题。
为了实现上述目的,根据本公开的第一方面,提供一种热泵空调系统,所述热泵空调系统包括:HVAC总成、压缩机和室外换热器,所述HVAC总成包括室内冷凝器、室内蒸发器和风门机构,所述风门机构用于选择性地导通通向所述室内冷凝器的风道和/或通向所述室内蒸发器的风道,所述压缩机的出口与所述室内冷凝器的入口连通,所述室内冷凝器的出口选择性地经由第一节流支路或第一通流支路与所述室外换热器的入口连通,所述室外换热器的出口选择性地经由第二节流支路或第二通流支路与所述室内蒸发器的入口连通,所述室内蒸发器的出口与所述压缩机的入口连通。
根据本公开的一个实施例,所述第一通流支路上设置有第一开关阀,所述第一节流支路上设置有第一膨胀阀。
根据本公开的一个实施例,所述热泵空调系统还包括第一膨胀开关阀,该第一膨胀开关阀的入口与所述室内冷凝器的出口连通,该第一膨胀开关阀的出口与所述室外换热器的入口连通,所述第一节流支路为所述第一膨胀开关阀的节流流道,所述第一通流支路为所述第一膨胀开关阀的通流流道。
根据本公开的一个实施例,所述第二通流支路上设置有第二开关阀,所述第二节流支 路上设置有第二膨胀阀。
根据本公开的一个实施例,所述热泵空调系统应用于电动汽车,并且所述热泵空调系统还包括:板式换热器,其中,所述板式换热器设置在所述第二通流支路中,并且所述板式换热器同时设置在所述电动汽车的电机冷却系统中。
根据本公开的一个实施例,所述板式换热器的制冷剂入口与所述室外换热器的出口连通,所述板式换热器的制冷剂出口与所述第二开关阀的入口连通。
根据本公开的一个实施例,所述电机冷却系统包括与所述板式换热器串联以形成回路的电机、电机散热器和水泵。
根据本公开的一个实施例,所述热泵空调系统还包括第二膨胀开关阀,该第二膨胀开关阀的入口与所述室外换热器的出口连通,该第二膨胀开关阀的出口与所述室内蒸发器的入口连通,所述第二节流支路为所述第二膨胀开关阀的节流流道,所述第二通流支路为所述第二膨胀开关阀的通流流道。
根据本公开的一个实施例,所述热泵空调系统应用于电动汽车,并且所述热泵空调系统还包括:板式换热器,其中,所述板式换热器的制冷剂入口与所述第二膨胀开关阀的出口连通,所述板式换热器的制冷剂出口与所述室内蒸发器的入口连通,并且所述板式换热器同时设置在所述电动汽车的电机冷却系统中。
根据本公开的一个实施例,所述电机冷却系统包括冷却液干路、第一冷却液支路和第二冷却液支路,所述冷却液干路的第一端选择性地与所述第一冷却液支路的第一端或所述第二冷却液支路的第一端连通,所述第一冷却液支路的第二端和所述第二冷却液支路的第二端与所述冷却液干路的第二端连通,其中,在所述冷却液干路上串联有电机、电机散热器和水泵,在所述第一冷却液支路上串联有所述板式换热器。
根据本公开的一个实施例,所述热泵空调系统还包括气液分离器,所述室内蒸发器的出口与所述气液分离器的入口连通,所述气液分离器的出口与所述压缩机的入口连通。
根据本公开的一个实施例,所述HVAC总成还包括PTC加热器,该PTC加热器用于对流经所述室内冷凝器的风进行加热。
根据本公开的一个实施例,所述PTC加热器布置在所述室内冷凝器的迎风侧或背风侧。
根据本公开的第二方面,提供一种电动汽车,包括根据本公开的第一方面提供的所述热泵空调系统。
本公开提供的热泵空调系统,在不改变制冷剂循环方向的情况下即可实现汽车空调系统制冷和制热、室外侧换热器除霜功能,且能满足同时制冷采暖的需求。在室外换热器旁通除霜过程中,仍能满足车内采暖需求。本公开中,HVAC总成中室内蒸发器和室内冷凝器的风的流向可通过风门机构单独控制调节,即风在制冷时仅流经室内蒸发器,室内冷凝器 无风经过,仅作为制冷剂流道使用;在采暖时仅流经室内冷凝器,室内蒸发器无风经过,仅作为制冷剂流道使用;需要同时制冷采暖时可根据需要改变冷暖风门的开度即可实现不同出风需求。此外,由于本公开的热泵空调系统仅采用一个室外换热器,因此能够减小汽车前端模块的风阻,解决了无发动机余热循环系统的纯电动车或混合动力车使用纯电动模式的汽车热泵空调系统采暖能效低、无法满足除霜除雾法规要求、安装复杂等问题,达到降低能耗、简化系统结构,方便管路布置的效果。本公开提供的热泵空调系统具有结构简单的特点,因此易于批量生产。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据本公开的一种实施方式的热泵空调系统的结构示意图;
图2是根据本公开的另一种实施方式的热泵空调系统的结构示意图;
图3是根据本公开的另一种实施方式的热泵空调系统的结构示意图;
图4是根据本公开的另一种实施方式的热泵空调系统的结构示意图;
图5A是根据本公开的另一种实施方式的热泵空调系统的结构示意图;
图5B是根据本公开的另一种实施方式的热泵空调系统的结构示意图;
图6是根据本公开的另一种实施方式的热泵空调系统的结构示意图;
图7是本公开优选实施方式提供的膨胀开关阀的俯视结构示意图;
图8是沿图7中线AB-AB所剖得的剖面结构示意图,其中,第一阀口和第二阀口均处于打开状态;
图9是本公开优选实施方式提供的膨胀开关阀的沿一个视角的正视结构示意图;
图10是沿图7中线AB-AB所剖得的剖面结构示意图,其中,第一阀口处于打开状态,第二阀口处于闭合状态;
图11是沿图7中线AB-AB所剖得的剖面结构示意图,其中,第一阀口处于闭合状态,第二阀口处于打开状态;
图12是本公开优选实施方式提供的膨胀开关阀的沿另一个视角的正视结构示意图;
图13是沿图12中线AC-AC所剖得的剖面结构示意图,其中,第一阀口处于打开状态,第二阀口处于闭合状态;
图14是本公开优选实施方式提供的膨胀开关阀的第一内部结构示意图,其中,第一阀口和第二阀口均处于打开状态;
图15是图14中A部的局部放大图;
图16是本公开优选实施方式提供的膨胀开关阀的第二内部结构示意图,其中,第一阀口处于打开状态,第二阀口处于关闭状态;
图17是本公开优选实施方式提供的膨胀开关阀的第三内部结构示意图,其中,第一阀口处于关闭状态,第二阀口均处于打开状态。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在本公开中,在未作相反说明的情况下,使用的方位词如“上、下、左、右”通常是相对于附图的图面方向而言的,“上游、下游”是相对于媒介,如,制冷剂的流动方向而言的,具体地,朝向制冷剂的流动方向为下游,背离制冷剂的流动方向为上游,“内、外”是指相应部件轮廓的内与外。
此外,在本公开中,电动汽车可以包括纯电动汽车、混合动力汽车、燃料电池汽车。
图1是根据本公开的一种实施方式的热泵空调系统的结构示意图。如图1所示,该系统可以包括:HVAC(采暖通风及空调,Heating Ventilation and Air Conditioning)总成600、压缩机604和室外换热器605。其中,HVAC总成600可以包括室内冷凝器601、室内蒸发器602和风门机构(未示出),其中,风门机构可以用于选择性地导通通向室内冷凝器601的风道和/或通向室内蒸发器602的风道。
在本公开中,HVAC总成中,通向室内冷凝器601的风道和通向室内蒸发器602的风道的导通和关闭可以通过风门机构来被独立控制。也就是说,通过风门机构,可以控制风只通过室内冷凝器601,或者只通过室内蒸发器602,或者通过室内冷凝器601和室内蒸发器602两者,由此,可以实现风向的独立控制。
此外,如图1所示,压缩机604的出口与室内冷凝器601的入口连通,室内冷凝器601的出口选择性地经由第一节流支路或第一通流支路与室外换热器605的入口连通,室外换热器605的出口选择性地经由第二节流支路或第二通流支路与室内蒸发器602的入口连通,室内蒸发器602的出口与压缩机604的入口连通。
在本公开中,室内冷凝器601的出口要么经由第一节流支路与室外换热器605的入口连通,要么经由第一通流支路与室外换热器605的入口连通。可以采用多种方式来实现这种连通方式。例如,在一种实施方式中,如图1所示,热泵空调系统还可以包括第一膨胀开关阀603,该第一膨胀开关阀603的入口与室内冷凝器601的出口连通,该第一膨胀开关阀603的出口与室外换热器605的入口连通,其中,第一节流支路为第一膨胀开关阀603 的节流流道,第一通流支路为第一膨胀开关阀603的通流流道。
在本公开中,膨胀开关阀是同时具有膨胀阀功能(亦可称为电子膨胀阀功能)和开关阀功能(亦可称为电磁阀功能)的阀门,可以将其视为是开关阀与膨胀阀的集成。在膨胀开关阀的内部形成有通流流道和节流流道,当膨胀开关阀作为开关阀使用时,其内部的通流流道导通,此时形成通流支路;当膨胀开关阀作为膨胀阀使用时,其内部的节流流道导通,此时形成节流支路。
作为另一种替换的实施方式,如图2所示,该热泵空调系统还可以包括第一开关阀608和第一膨胀阀607,其中,第一通流支路上设置有第一开关阀608,第一节流支路上设置有第一膨胀阀607。具体地,如图2所示,室内冷凝器601的出口经由第一开关阀608与室外换热器605的入口连通以形成第一通流支路,室内冷凝器601的出口经由第一膨胀阀607与室外换热器605的入口连通以形成第一节流支路。当系统处于高温制冷模式下时,第一开关阀608导通,第一膨胀阀607关闭,室内冷凝器601的出口经由第一通流支路与室外换热器605的入口连通。当系统处于低温采暖模式下时,第一膨胀阀607导通,第一开关阀608关闭,室内冷凝器601的出口经由第一节流支路与室外换热器605的入口连通。
与第一通流支路和第一节流支路的实现方式相类似,作为第二通流支路和第二节流支路的其中一种实施方式,如图1所示,热泵空调系统还可以包括第二膨胀开关阀606,该第二膨胀开关阀606的入口与室外换热器605的出口连通,该第二膨胀开关阀606的出口与室内蒸发器602的入口连通,其中,第二节流支路为第二膨胀开关阀606的节流流道,第二通流支路为第二膨胀开关阀606的通流流道。
作为另一种替换的实施方式,如图3所示,该热泵空调系统还可以包括第二开关阀610和第二膨胀阀609,其中,第二通流支路上设置有第二开关阀610,第二节流支路上设置有第二膨胀阀609。具体地,如图3所示,室外换热器605的出口经由第二开关阀610与室内蒸发器602的入口连通以形成第二通流支路,室外换热器605的出口经由第二膨胀阀609与室内蒸发器602的入口连通以形成第二节流支路。当系统处于高温制冷模式下时,第二膨胀阀609导通,第二开关阀610关闭,室外换热器605的出口经由第二节流支路与室内蒸发器602的入口连通。当系统处于低温采暖模式下时,第二开关阀610导通,第二膨胀阀609关闭,室外换热器605的出口经由第二通流支路与室内蒸发器602的入口连通。
为了方便管路布设,节省空间占用,优选地,在本公开提供的热泵空调系统中采用第一膨胀开关阀603和第二膨胀开关阀606,即,图1所示的实施方式。
图4示出了根据本公开的另一实施方式的热泵空调系统的结构示意图。如图4所示,该热泵空调系统还可以包括气液分离器611,其中,室内蒸发器602的出口与气液分离器611的入口连通,气液分离器611的出口与压缩机604的入口连通。这样,经室内蒸发器 602流出的制冷剂可以首先经过气液分离器611进行气液分离,分离出的气体再回流到压缩机604中,从而防止液态制冷剂进入到压缩机604而损坏压缩机604,从而可以延长压缩机604的使用寿命,并提高整个热泵空调系统的效率。
下面将以图4为例来详细描述本公开提供的热泵空调系统在不同的工作模式下的循环过程及原理。应当理解的是,其他实施方式(例如,图1至图3所示的实施方式)下的系统循环过程及原理与图4是相似的,此处就不再一一赘述。
模式一:高温制冷模式。在系统处于该模式下时,整个系统形成一个高温制冷循环系统。如图4所示,首先,压缩机604经过压缩排出高温高压的气体,且压缩机604与室内冷凝器601相连。此时,通过风门机构控制风不经过室内冷凝器601,由于无风经过,因此,在室内冷凝器601内不会进行热交换,该室内冷凝器601仅作为流道使用,此时室内冷凝器601出口仍为高温高压的气体。室内冷凝器601出口与第一膨胀开关阀603入口相连,此时第一膨胀开关阀603起开关阀作用,仅作为流道使用,此时第一膨胀开关阀603出口仍为高温高压的气体。第一膨胀开关阀603出口与室外换热器605入口相连,室外换热器605与室外空气换热,把热量散发到空气中,室外换热器605出口为中温高压的液体。室外换热器605出口与第二膨胀开关阀606入口相连,此时第二膨胀开关阀606起膨胀阀作用,作为节流元件起到节流作用,其出口为低温低压液体。第二膨胀开关阀606开度可以根据实际需求来设定,此开度可以根据安装在室内蒸发器602的出口与气液分离器611的入口之间的压力-温度传感器采集的的压力和温度数据计算蒸发器出口制冷剂过热度来调节。第二膨胀开关阀606出口与室内蒸发器602的入口相连,低温低压液体在室内蒸发器602内进行蒸发,使得室内蒸发器602出口为低温低压的气体。室内蒸发器602与气液分离器611相连,把未蒸发完的液体通过气液分离器611分离,最后低温低压的气体回到压缩机604中,由此形成一个循环。此时HVAC总成600中风的流向仅流经室内蒸发器602,室内冷凝器601无风经过,仅作为制冷剂流道使用。
模式二:低温采暖模式。在系统处于该模式下时,整个系统形成一个低温采暖循环系统。如图4所示,首先,压缩机604经过压缩排出高温高压的气体,且压缩机604与室内冷凝器601相连,高温高压的气体在室内冷凝器601内进行冷凝,使得室内冷凝器601出口为中温高压的液体。室内冷凝器601出口与第一膨胀开关阀603入口相连,此时第一膨胀开关阀603起膨胀阀的作用,作为节流元件起到节流作用,其出口为低温低压的液体。其中,第一膨胀开关阀603的开度可以根据实际需求来设定,此开度可以根据安装在压缩机604的出口处的压力-温度传感器采集的温度数据(即压缩机排气温度)来调节。第一膨胀开关阀603出口与室外换热器605入口相连,室外换热器605吸收室外空气的热量,室外换热器605出口为低温低压的气体。室外换热器605出口与第二膨胀开关阀606入口相 连,此时第二膨胀开关阀606起开关阀的作用,仅作为一个流道使用。第二膨胀开关阀606出口与室内蒸发器602的入口相连。通过风门机构控制风只流向室内冷凝器601而不流向室内蒸发器602,使得室内蒸发器602内不进行热交换,仅作为一个流道使用,其出口仍为低温低压的气体。室内蒸发器602与气液分离器611相连,把未蒸发完的液体通过气液分离器611分离,最后低温低压的气体回到压缩机604中,由此形成一个循环。此时HVAC总成600中风的流向仅流经室内冷凝器601,室内蒸发器602无风经过,仅作为制冷剂流道使用。
模式三:同时制冷采暖模式。在系统处于该模式下时,整个系统形成一个制冷采暖同时开循环系统。如图4所示,首先,压缩机604经过压缩排出高温高压的气体,且压缩机604与室内冷凝器601相连,高温高压的气体在室内冷凝器601内进行冷凝,使得室内冷凝器601出口为中温高压的液体。室内冷凝器601出口与第一膨胀开关阀603入口相连,此时第一膨胀开关阀603起膨胀阀的作用,作为节流元件起到节流作用,其出口为低温低压液体。其中,第一膨胀开关阀603的开度可以根据实际需求来设定,此开度可以根据安装在压缩机604的出口处的压力-温度传感器采集的温度数据(即压缩机排气温度)的多少来调节。第一膨胀开关阀603出口与室外换热器605入口相连,室外换热器605出口为低温低压的液体,通过不完全蒸发使其出口仍保持低温低压液体状态。室外换热器605出口与第二膨胀开关阀606入口相连,此时第二膨胀开关阀606起膨胀阀的作用,作为节流元件再节流一次。第二膨胀开关阀606出口与室内蒸发器602相连,低温低压的液体在室内蒸发器602内进行蒸发,使得室内蒸发器602出口为低温低压的气体。室内蒸发器602与气液分离器611相连,把未蒸发完的液体通过气液分离器611分离,最后低温低压的气体回到压缩机604中,由此形成一个循环。此时HVAC总成600中风的流向同时流经室内冷凝器601和室内蒸发器602。
模式四:室外换热器除霜模式。如图4所示,首先,压缩机604经过压缩排出高温高压的气体,且压缩机604与室内冷凝器601相连。此时,室内冷凝器601仅作为流道使用,室内冷凝器601出口仍为高温高压的气体。室内冷凝器601出口与第一膨胀开关阀603入口相连,此时第一膨胀开关阀603起开关阀作用,仅作为流道使用,此时第一膨胀开关阀603出口仍为高温高压的气体。第一膨胀开关阀603出口与室外换热器605入口相连,室外换热器605与室外空气换热,把热量散发到空气中,室外换热器605出口为中温高压的液体。室外换热器605出口与第二膨胀开关阀606入口相连,此时第二膨胀开关阀606起膨胀阀的作用,作为节流元件起到节流作用,其出口为低温低压液体。第二膨胀开关阀606开度可以根据实际需求来设定,此开度可以根据安装在室内蒸发器602的出口与气液分离器611的入口之间的压力-温度传感器采集的压力和温度数据计算蒸发器出口制冷剂过热 度来调节。第二膨胀开关阀606出口与室内蒸发器602相连,室内蒸发器602出口为低温低压的气体。室内蒸发器602与气液分离器611相连,把未蒸发完的液体通过气液分离器611分离,最后低温低压的气体回到压缩机604中,由此形成一个循环。此时HVAC总成600可不开风,若车内仍有采暖需求,HVAC总成600中的风可仅流经室内冷凝器601,室内蒸发器602无风经过,仅作为制冷剂流道使用。
综上所述,本公开提供的热泵空调系统,在不改变制冷剂循环方向的情况下即可实现汽车空调系统制冷和制热、室外侧换热器除霜功能,且能满足同时制冷采暖的需求。在室外换热器旁通除霜过程中,仍能满足车内采暖需求。本公开中,HVAC总成中室内蒸发器和室内冷凝器的流向可通过风门机构单独控制调节,即风的流向制冷时仅流经室内蒸发器,室内冷凝器无风经过,仅作为制冷剂流道使用;采暖时仅流经室内冷凝器,室内蒸发器无风经过,仅作为制冷剂流道使用;需要同时制冷采暖时可根据需要改变冷暖风门的开度即可实现不同出风需求。此外,由于本公开的热泵空调系统仅采用一个室外换热器,因此能够减小汽车前端模块的风阻,解决了无发动机余热循环系统的纯电动车或混合动力车使用纯电动模式的汽车热泵空调系统采暖能效低、无法满足除霜除雾法规要求、安装复杂等问题,达到降低能耗、简化系统结构,方便管路布置的效果。本公开提供的热泵空调系统具有结构简单的特点,因此易于批量生产。
在低温采暖模式、以及同时制冷采暖模式下,为了提高采暖能力,优选地,如图5A和图5B所示,在整个热泵空调系统中设置了板式换热器612,该板式换热器612同时也被设置在电动汽车的电机冷却系统中。这样,可以利用电机冷却系统的余热给空调系统制冷剂加热,从而可提高压缩机604的吸气温度和吸气量。
例如,如图5A所示,在热泵空调系统采用第二膨胀阀609和第二开关阀610的实施方式中,板式换热器612可以如图5A所示设置在第二通流支路中。例如,在一种实施方式中,板式换热器612的制冷剂入口612a与室外换热器605的出口连通,板式换热器612的制冷剂出口612b与第二开关阀610的入口连通。或者,在另一种实施方式中(未示出),板式换热器612的制冷剂入口612a也可以与第二开关阀610的出口连通,板式换热器612的制冷剂出口612b与室内蒸发器602的入口连通。
与此同时,板式换热器612同时设置在电机冷却系统中。如图5A所示,电机冷却系统可以包括与板式换热器612串联以形成回路的电机、电机散热器613和水泵614。这样,制冷剂能够通过板式换热器612与电机冷却系统中的冷却液进行热交换。经过第二开关阀610和室内蒸发器602后,室内蒸发器602的出口仍为低温低压的气体,此时第二开关阀610和室内蒸发器602仅作为流道使用。
或者,如图5B所示,在热泵空调系统采用第二膨胀开关阀606的实施方式中,板式换 热器612的制冷剂入口612a与第二膨胀开关阀606的出口连通,板式换热器612的制冷剂出口612b与室内蒸发器602的入口连通,并且板式换热器612同时设置在电动汽车的电机冷却系统中。这样,制冷剂能够通过板式换热器612与电机冷却系统中的冷却液进行热交换。
通过板式换热器612,可以提高空调系统在低温采暖模式、以及同时制冷采暖模式下的采暖能力。
不过,在图5B所示的热泵空调系统采用第二膨胀开关阀606的实施方式中,为了避免在高温制冷模式和室外换热器除霜模式下进行制冷剂的加热,可以采用阀门来控制是否在板式换热器612中进行热交换。具体地,电机冷却系统可以包括冷却液干路616、第一冷却液支路617和第二冷却液支路618,其中,冷却液干路616的第一端选择性地与第一冷却液支路617的第一端或第二冷却液支路618的第一端连通。例如,在一个实施方式中,冷却液干路616的第一端可以与三通阀615的进口615a连通,第一冷却液支路617的第一端可以与三通阀615的第一出口615b连通,第二冷却液支路618的第一端可以与三通阀615的第二出口615c连通,由此,通过该三通阀615,可以控制冷却液干路616的第一端选择性地与第一冷却液支路617的第一端或第二冷却液支路618的第一端连通。此外,如图5B所示,第一冷却液支路617的第二端与冷却液干路616的第二端连通,并且第二冷却液支路618的第二端也与冷却液干路616的第二端连通,其中,在冷却液干路616上串联有电机、电机散热器613和水泵614,在第一冷却液支路617上串联有板式换热器612。
这样,当空调系统工作在低温采暖模式或同时制冷采暖模式下时,此时为了提高采暖能力,需要在板式换热器612中对制冷剂进行加热。因此,在这种情况下,可以通过控制三通阀615使得第一冷却液支路617导通,由此,冷却系统中的冷却液流经板式换热器612,此时,可以实现与制冷剂的热交换。然而,当系统工作在高温制冷模式或室外换热器除霜模式下时,此时不需要在板式换热器612中对制冷剂进行加热。因此,在这种情况下,可以通过控制三通阀615使得第二冷却液支路618导通,由此,冷却系统中的冷却液不流经板式换热器612,板式换热器612仅仅作为制冷剂的流道使用。
在本公开提供的热泵空调系统中,可使用R134a、R410a、R32、R290等各种制冷剂,优先选用中高温制冷剂。
图6是根据本公开的另一实施方式的热泵空调系统的结构示意图。如图6所示,HVAC总成600还可以包括PTC加热器619,该PTC加热器619用于对流经室内冷凝器601的风进行加热。
在本公开中,PTC加热器619可以为高压PTC(由整车高压电池驱动),电压范围:200V-900V。或者,PTC加热器619也可以为低压PTC(12V或24V蓄电池驱动),电压范围: 9V-32V。另外,此PTC加热器619可以是由几条或几块PTC陶瓷片模块及散热翅片组成的一个完整的芯体,也可以为带散热翅片的条状或块状的PTC陶瓷片模块。
在本公开中,该PTC加热器619可以布置在室内冷凝器601的迎风侧或背风侧。并且,为了提高对流经室内冷凝器601的风的加热效果,该PTC加热器619可以与室内冷凝器601平行设置。在其他实施方式中,该PTC加热器619也可以布置在HVAC总成600的箱体的吹脚风口及除霜风口处,还可以布置在除霜风道的风口处。
如果将PTC加热器619布置在箱体内室内冷凝器601的迎风侧或背风侧,与室内冷凝器601平行布置,可在箱体壳体上挖槽,PTC加热器619垂直插入放进箱体,也可以在室内冷凝器601边板上焊接支架,PTC加热器619通过螺钉固定在室内冷凝器601的支架上。如果将PTC加热器619布置在箱体的吹脚风口及除霜风口处,或布置在除霜风道的风口处,可通过螺钉直接固定在箱体出风口及风道的风口处。
通过这一实施方式,当车外温度过低,热泵低温采暖的制热量不满足车内需求时,可运行PTC加热器619辅助采暖,由此可以消除热泵空调系统低温制热时制热量小,整车除霜除雾慢,采暖效果不佳等缺陷。
如上所述,在本公开中,膨胀开关阀是同时具有膨胀阀功能和开关阀功能的阀门,可以将其视为是开关阀与膨胀阀的集成。在下文中将提供一种膨胀开关阀的示例实施方式。
如图7所示,上文提及的膨胀开关阀可以包括阀体500,其中,该阀体500上形成有进口501、出口502以及连通在进口501和出口502之间的内部流道,内部流道上安装有第一阀芯503和第二阀芯504,第一阀芯503使得进口501和出口502直接连通或断开连通,第二阀芯504使得进口501和出口502通过节流口505连通或断开连通。
其中,第一阀芯所实现的“直接连通”是指从阀体500的进口501进入的制冷剂可以越过第一阀芯而通过内部流道不受影响地直接流到阀体500的出口502,第一阀芯所实现的“断开连通”是指从阀体500的进口501进入的制冷剂无法越过第一阀芯而不能通过内部流道流向阀体500的出口502。第二阀芯所实现的“通过节流口连通”是指从阀体500的进口501进入的制冷剂可以越过第二阀芯而通过节流口505的节流后流到阀体500的出口502,而第二阀芯所实现的“断开连通”是指从阀体500的进口501进入的制冷剂无法越过第二阀芯而不能通过节流口505流到阀体500的出口502。
这样,通过对第一阀芯和第二阀芯的控制,本公开的膨胀开关阀可以使得从进口501进入的制冷剂至少实现三种状态。即,1)截止状态;2)越过第一阀芯503的直接连通状态;以及3)越过第二阀芯504的节流连通方式。
其中,高温高压的液态制冷剂在经过节流口505节流后,可以成为低温低压的雾状的液态制冷剂,可以为制冷剂的蒸发创造条件,即节流口505的横截面积小于出口502的横 截面积,并且通过控制第二阀芯,节流口505的开度大小可以调节,以控制流经节流口505的流量,防止因制冷剂过少产生的制冷不足,以及防止因制冷剂过多而使得压缩机产生液击现象。即,第二阀芯504和阀体500的配合可以使得膨胀开关阀具有膨胀阀的功能。
这样,通过在同一阀体500的内部流道上安装第一阀芯503和第二阀芯504,以实现进口501和出口502的通断控制和/或节流控制功能,结构简单,易于生产和安装,且当本公开提供的膨胀开关阀应用于热泵系统时,可以减少整个热泵系统的制冷剂充注量,降低成本,简化管路连接,更利于热泵系统的回油。
作为阀体500的一种示例性的内部安装结构,如图7至图12所示,阀体500包括形成内部流道的阀座510和安装在该阀座510上的第一阀壳511和第二阀壳512,第一阀壳511内安装有用于驱动第一阀芯503的第一电磁驱动部521,第二阀壳512内安装有用于驱动第二阀芯504的第二电磁驱动部522,第一阀芯503从第一阀壳511延伸至阀座510内的内部流道,第二阀芯504从靠近第二阀壳512的一端延伸至阀座510内的内部流道。
其中,通过对第一电磁驱动部521(如,电磁线圈)的通断电的控制能够方便地控制第一阀芯503的位置,进而控制进口501和出口502直接连通或断开连通;通过对第二电磁驱动部522(如,电磁线圈)的通断电的控制能够方便地控制第二阀芯504的位置,从而控制进口501和出口502是否与节流口505连通。换言之,阀体500内并联安装有共有进口501和出口502的电子膨胀阀和电磁阀,因而能够实现膨胀开关阀的通断和/或节流的自动化控制,且简化管路走向。
为充分利用膨胀开关阀的各个方向的空间位置,避免膨胀开关阀和不同管路连接产生干涉,阀座510形成为多面体结构,第一阀壳511、第二阀壳512、进口501和出口502分别设置在该多面体结构的不同表面上,其中,第一阀壳511和第二阀壳512的安装方向相互垂直,进口501和出口502的开口方向相互垂直。这样,可以将进口、出口管路连接在多面体结构的不同表面上,能够避免管路布置凌乱、纠缠的问题。
作为膨胀开关阀的一种典型的内部结构,如图7至图10所示,内部流道包括分别与进口501连通的第一流道506和第二流道507,第一流道506上形成有与第一阀芯503配合的第一阀口516,节流口505形成在第二流道507上以形成为与第二阀芯504配合的第二阀口517,第一流道506和第二流道507交汇于第二阀口517的下游并与出口502连通。
即,通过变换第一阀芯503的位置来实现对第一阀口516的关闭或打开,进而控制连通进口501和出口502的第一流道506的截断或导通,从而可以实现上文描述的电磁阀的连通或断开连通的功能。同样地,通过变换第二阀芯504的位置来实现对第二阀口517的截断或导通,从而可以实现电子膨胀阀的节流功能。
第一流道506和第二流道507能够以任意合适的布置方式分别连通进口501和出口 502,为减少阀体500的整体占用空间,如图11所示,第二流道507与出口502同向开设,第一流道506形成为与第二流道507相互垂直的第一通孔526,进口501通过开设在第二流道507侧壁上的第二通孔527与第二流道507连通,第一通孔526和第二通孔527与进口501分别连通。其中,第一通孔526可以与第二通孔527在空间垂直设置或者平行设置,本公开对此不作限制,均属于本公开的保护范围之中。
为进一步简化阀体500的整体占用空间,如图14至图17所示,进口501与出口502相互垂直地开设在阀体500上。这样,如图14至图16所示,进口501的轴线、出口502的轴线(即第二流道507的轴线),和第一流道506的轴线在空间两两垂直地布置,从而防止第一阀芯503和第二阀芯504的移动产生干涉,且能够最大化地利用阀体500的内部空间。
如图10和图11所示,为便于实现第一阀口516的关闭和打开,第一阀芯503沿移动方向与第一阀口516同轴布设以可选择地封堵或脱离第一阀口516。
为便于实现第二阀口517的关闭和打开,第二阀芯504沿移动方向与第二阀口517同轴布设以可选择地封堵或脱离第二阀口517。
其中,如图13所示,为保证第一阀芯503对第一流道506堵塞的可靠性,第一阀芯503可以包括第一阀杆513和连接在该第一阀杆513端部的第一堵头523,该第一堵头523用于密封压靠在第一阀口516的端面上以封堵第一流道506。
为便于调节膨胀开关阀的节流口505的开度大小,如图10和图11所示,第二阀芯504包括第二阀杆514,该第二阀杆514的端部形成为锥形头结构,第二阀口517形成为与该锥形头结构相配合的锥形孔结构。
其中,膨胀开关阀的节流口505开度可以通过第二阀芯504的上下移动来调节,而第二阀芯504的上下移动可以通过第二电磁驱动部522来调节。若膨胀开关阀的节流口505的开度为零,如图10所示,第二阀芯504处于最低位置,第二阀芯504封堵第二阀口517,制冷剂完全不能通过节流口505,即第二阀口517;若膨胀开关阀节流口505具有开度,如图11所示,第二阀芯504的端部的锥形头结构与节流口505之间具有空隙,制冷剂节流后再流至出口502。若需要增加膨胀开关阀的节流开度时,可以通过控制第二电磁驱动部522,使得第二阀芯504向上移动,以使得锥形头结构远离节流口505,从而实现节流口505开度的变大;相反,当需要减少膨胀开关阀的节流口505的开度时,可以驱使第二阀芯504向下移动即可。
使用时,当只需要使用膨胀开关阀的电磁阀功能时,如图10、图13和图16所示,第一阀芯503脱离第一阀口516,第一阀口516处于打开状态,第二阀芯504处于最低位置,第二阀芯504将节流孔505封堵上,从进口501流入至内部流道的制冷剂完全不能通过节 流孔505,只能依次通过第一阀口516、第一通孔526流入至出口502中。当电磁阀断电,第一阀芯503向左移动,第一堵头523和第一阀口516分离,制冷剂可以从第一通孔526中通过;当电磁阀通电,第一阀芯503向右移动,第一堵头523和第一阀口516贴合,制冷剂无法从第一通孔526中通过。
需要说明的是,图10和图16中的带箭头的虚线代表制冷剂在使用电磁阀功能时的流通路线以及走向。
当只需要使用膨胀开关阀的电子膨胀阀功能时,如图11和图17所示,第二阀口517,即节流口505处于打开状态,第一阀芯503封堵第一阀口516,从进口501流入至内部流道的制冷剂无法通过第一通孔526,只能依次通过第二通孔527、节流口505流入至出口502中,并且可以上下移动第二阀芯504来调节节流口505的开度的大小。
需要说明的是,图11和图17中的带箭头的虚线代表制冷剂在使用电子膨胀阀功能时的流通路线以及走向。
当需要同时使用膨胀开关阀的电磁阀功能和电子膨胀阀功能时,如图8、图14和图15所示,其中,带箭头的虚线代表制冷剂的流动路线以及走向,第一阀芯503脱离第一阀口516,第一阀口516处于打开状态,节流口505处于打开状态,流入至内部流道的制冷剂可以分别沿第一流道506和第二流道507流向出口502,从而同时具有电磁阀功能和电子膨胀阀功能。
应当理解的是,上述实施方式仅仅作为膨胀开关阀的其中一种示例,并且并不用于限制本公开,其他同时具有膨胀阀功能和开关阀功能的膨胀开关阀同样适用于本公开。
本公开还提供一种电动汽车,包括根据本公开提供的上述热泵空调系统。其中,该电动汽车可以包括纯电动汽车、混合动力汽车、燃料电池汽车。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (14)

  1. 一种热泵空调系统,其特征在于,所述热泵空调系统包括:HVAC总成(600)、压缩机(604)和室外换热器(605),所述HVAC总成(600)包括室内冷凝器(601)、室内蒸发器(602)和风门机构,所述风门机构用于选择性地导通通向所述室内冷凝器(601)的风道和/或通向所述室内蒸发器(602)的风道,所述压缩机(604)的出口与所述室内冷凝器(601)的入口连通,所述室内冷凝器(601)的出口选择性地经由第一节流支路或第一通流支路与所述室外换热器(605)的入口连通,所述室外换热器(605)的出口选择性地经由第二节流支路或第二通流支路与所述室内蒸发器(602)的入口连通,所述室内蒸发器(602)的出口与所述压缩机(604)的入口连通。
  2. 根据权利要求1所述的热泵空调系统,其特征在于,所述第一通流支路上设置有第一开关阀(608),所述第一节流支路上设置有第一膨胀阀(607)。
  3. 根据权利要求1所述的热泵空调系统,其特征在于,所述热泵空调系统还包括第一膨胀开关阀(603),所述第一膨胀开关阀(603)的入口与所述室内冷凝器(601)的出口连通,所述第一膨胀开关阀(603)的出口与所述室外换热器(605)的入口连通,所述第一节流支路为所述第一膨胀开关阀(603)的节流流道,所述第一通流支路为所述第一膨胀开关阀(603)的通流流道。
  4. 根据权利要求1所述的热泵空调系统,其特征在于,所述第二通流支路上设置有第二开关阀(610),所述第二节流支路上设置有第二膨胀阀(609)。
  5. 根据权利要求4所述的热泵空调系统,其特征在于,所述热泵空调系统应用于电动汽车,并且所述热泵空调系统还包括:板式换热器(612),其中,所述板式换热器(612)设置在所述第二通流支路中,并且所述板式换热器(612)同时设置在所述电动汽车的电机冷却系统中。
  6. 根据权利要求5所述的热泵空调系统,其特征在于,所述板式换热器(612)的制冷剂入口与所述室外换热器(605)的出口连通,所述板式换热器(612)的制冷剂出口与所述第二开关阀(610)的入口连通。
  7. 根据权利要求5或6所述的热泵空调系统,其特征在于,所述电机冷却系统包括与所述板式换热器(612)串联以形成回路的电机、电机散热器(613)和水泵(614)。
  8. 根据权利要求1所述的热泵空调系统,其特征在于,所述热泵空调系统还包括第二膨胀开关阀(606),所述第二膨胀开关阀(606)的入口与所述室外换热器(605)的出口连通,所述第二膨胀开关阀(606)的出口与所述室内蒸发器(602)的入口连通,所述第二节流支路为所述第二膨胀开关阀(606)的节流流道,所述第二通流支路为所述第二膨胀 开关阀(606)的通流流道。
  9. 根据权利要求8所述的热泵空调系统,其特征在于,所述热泵空调系统应用于电动汽车,并且所述热泵空调系统还包括:板式换热器(612),其中,所述板式换热器(612)的制冷剂入口与所述第二膨胀开关阀(606)的出口连通,所述板式换热器(612)的制冷剂出口与所述室内蒸发器(602)的入口连通,并且所述板式换热器(612)同时设置在所述电动汽车的电机冷却系统中。
  10. 根据权利要求9所述的系统,其特征在于,所述电机冷却系统包括冷却液干路(616)、第一冷却液支路(617)和第二冷却液支路(618),所述冷却液干路(616)的第一端选择性地与所述第一冷却液支路(617)的第一端或所述第二冷却液支路(618)的第一端连通,所述第一冷却液支路(617)的第二端和所述第二冷却液支路(618)的第二端与所述冷却液干路(616)的第二端连通,其中,在所述冷却液干路(616)上串联有电机、电机散热器(613)和水泵(614),在所述第一冷却液支路(617)上串联有所述板式换热器(612)。
  11. 根据权利要求1所述的热泵空调系统,其特征在于,所述热泵空调系统还包括气液分离器(611),所述室内蒸发器(602)的出口与所述气液分离器(611)的入口连通,所述气液分离器(611)的出口与所述压缩机(604)的入口连通。
  12. 根据权利要求1所述的热泵空调系统,其特征在于,所述HVAC总成(600)还包括PTC加热器(619),所述PTC加热器(619)用于对流经所述室内冷凝器(601)的风进行加热。
  13. 根据权利要求12所述的热泵空调系统,其特征在于,所述PTC加热器(619)布置在所述室内冷凝器的迎风侧或背风侧。
  14. 一种电动汽车,其特征在于,包括根据权利要求1-13中任意一项所述的热泵空调系统。
PCT/CN2017/082942 2016-05-10 2017-05-03 热泵空调系统及电动汽车 WO2017193851A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610304247.1A CN107356019B (zh) 2016-05-10 2016-05-10 热泵空调系统及电动汽车
CN201610304247.1 2016-05-10
CN201620419100.2 2016-05-10
CN201620419100.2U CN205980466U (zh) 2016-05-10 2016-05-10 热泵空调系统及电动汽车

Publications (1)

Publication Number Publication Date
WO2017193851A1 true WO2017193851A1 (zh) 2017-11-16

Family

ID=60267671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082942 WO2017193851A1 (zh) 2016-05-10 2017-05-03 热泵空调系统及电动汽车

Country Status (1)

Country Link
WO (1) WO2017193851A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108016241A (zh) * 2018-01-05 2018-05-11 泰铂(上海)环保科技股份有限公司 一种纯电动汽车热泵空调系统
CN108155439A (zh) * 2018-02-01 2018-06-12 湖南华强电气股份有限公司 一种空调电池冷却单冷系统及控制方法
CN108224842A (zh) * 2018-03-19 2018-06-29 吉林大学 一种具有电池热管理功能的补气式电动汽车热泵空调系统
CN111301101A (zh) * 2020-03-06 2020-06-19 广汽新能源汽车有限公司 新能源汽车的热管理系统及新能源汽车
CN111688443A (zh) * 2020-06-15 2020-09-22 珠海格力电器股份有限公司 一种汽车空调系统及控制方法
CN113335021A (zh) * 2021-06-29 2021-09-03 东风汽车集团股份有限公司 一种增程式混合动力汽车余热回收式整车热管理系统
CN108155439B (zh) * 2018-02-01 2024-04-26 湖南华强电气股份有限公司 一种空调电池冷却单冷系统及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040079096A1 (en) * 2002-10-25 2004-04-29 Satoshi Itoh Vehicle air conditioning system
CN103121393A (zh) * 2011-11-17 2013-05-29 株式会社电装 车辆用热交换器的配置构造
CN103717423A (zh) * 2011-08-08 2014-04-09 丰田自动车株式会社 车辆空调装置
CN104290561A (zh) * 2014-09-11 2015-01-21 中国科学院理化技术研究所 电动汽车排风热回收的方法及应用该方法的热泵空调系统
CN105121977A (zh) * 2013-04-18 2015-12-02 株式会社电装 制冷循环装置
CN205980466U (zh) * 2016-05-10 2017-02-22 比亚迪股份有限公司 热泵空调系统及电动汽车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040079096A1 (en) * 2002-10-25 2004-04-29 Satoshi Itoh Vehicle air conditioning system
CN103717423A (zh) * 2011-08-08 2014-04-09 丰田自动车株式会社 车辆空调装置
CN103121393A (zh) * 2011-11-17 2013-05-29 株式会社电装 车辆用热交换器的配置构造
CN105121977A (zh) * 2013-04-18 2015-12-02 株式会社电装 制冷循环装置
CN104290561A (zh) * 2014-09-11 2015-01-21 中国科学院理化技术研究所 电动汽车排风热回收的方法及应用该方法的热泵空调系统
CN205980466U (zh) * 2016-05-10 2017-02-22 比亚迪股份有限公司 热泵空调系统及电动汽车

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108016241A (zh) * 2018-01-05 2018-05-11 泰铂(上海)环保科技股份有限公司 一种纯电动汽车热泵空调系统
CN108016241B (zh) * 2018-01-05 2024-01-26 泰铂(上海)环保科技股份有限公司 一种纯电动汽车热泵空调系统
CN108155439A (zh) * 2018-02-01 2018-06-12 湖南华强电气股份有限公司 一种空调电池冷却单冷系统及控制方法
CN108155439B (zh) * 2018-02-01 2024-04-26 湖南华强电气股份有限公司 一种空调电池冷却单冷系统及控制方法
CN108224842A (zh) * 2018-03-19 2018-06-29 吉林大学 一种具有电池热管理功能的补气式电动汽车热泵空调系统
CN108224842B (zh) * 2018-03-19 2024-04-16 吉林大学 一种具有电池热管理功能的补气式电动汽车热泵空调系统
CN111301101A (zh) * 2020-03-06 2020-06-19 广汽新能源汽车有限公司 新能源汽车的热管理系统及新能源汽车
CN111301101B (zh) * 2020-03-06 2024-03-26 广汽新能源汽车有限公司 新能源汽车的热管理系统及新能源汽车
CN111688443A (zh) * 2020-06-15 2020-09-22 珠海格力电器股份有限公司 一种汽车空调系统及控制方法
CN113335021A (zh) * 2021-06-29 2021-09-03 东风汽车集团股份有限公司 一种增程式混合动力汽车余热回收式整车热管理系统
CN113335021B (zh) * 2021-06-29 2022-05-31 东风汽车集团股份有限公司 一种增程式混合动力汽车余热回收式整车热管理系统

Similar Documents

Publication Publication Date Title
WO2017193852A1 (zh) 热泵空调系统及电动汽车
WO2017193857A1 (zh) 热泵空调系统及电动汽车
WO2017193859A1 (zh) 热泵空调系统及电动汽车
WO2017193858A1 (zh) 热泵空调系统及电动汽车
WO2017193853A1 (zh) 热泵空调系统及电动汽车
WO2017193856A1 (zh) 热泵空调系统及电动汽车
WO2017193851A1 (zh) 热泵空调系统及电动汽车
CN107351627B (zh) 汽车热管理系统和电动汽车
CN107351695B (zh) 汽车热管理系统和电动汽车
CN205980466U (zh) 热泵空调系统及电动汽车
CN205980465U (zh) 热泵空调系统及电动汽车
CN107359382B (zh) 汽车热管理系统及电动汽车
CN107351620B (zh) 汽车热管理系统和电动汽车
WO2017193854A1 (zh) 热泵空调系统及电动汽车
CN108248331B (zh) 热泵空调系统及电动汽车
CN107356002B (zh) 热泵空调系统及电动汽车
WO2017193860A1 (zh) 热泵空调系统及电动汽车
CN108116189B (zh) 汽车热管理系统及电动汽车
CN107356022B (zh) 热泵空调系统及电动汽车
CN107356020B (zh) 热泵空调系统及电动汽车
CN205980091U (zh) 热泵空调系统及电动汽车
CN107356019B (zh) 热泵空调系统及电动汽车
CN107356004B (zh) 热泵空调系统及电动汽车
CN108248333B (zh) 热泵空调系统及电动汽车
CN108248332B (zh) 热泵空调系统及电动汽车

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795469

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795469

Country of ref document: EP

Kind code of ref document: A1