WO2017193402A1 - 一种数据传输方法、装置及系统 - Google Patents

一种数据传输方法、装置及系统 Download PDF

Info

Publication number
WO2017193402A1
WO2017193402A1 PCT/CN2016/082131 CN2016082131W WO2017193402A1 WO 2017193402 A1 WO2017193402 A1 WO 2017193402A1 CN 2016082131 W CN2016082131 W CN 2016082131W WO 2017193402 A1 WO2017193402 A1 WO 2017193402A1
Authority
WO
WIPO (PCT)
Prior art keywords
access device
cellular access
cellular
data transmission
information
Prior art date
Application number
PCT/CN2016/082131
Other languages
English (en)
French (fr)
Inventor
石小丽
罗海燕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16901357.0A priority Critical patent/EP3457758B1/en
Priority to PCT/CN2016/082131 priority patent/WO2017193402A1/zh
Priority to BR112018073421-7A priority patent/BR112018073421A2/pt
Priority to CN201680085649.5A priority patent/CN109155956B/zh
Publication of WO2017193402A1 publication Critical patent/WO2017193402A1/zh
Priority to US16/189,347 priority patent/US10701591B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/082Load balancing or load distribution among bearers or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations
    • H04W28/0865Load balancing or load distribution among access entities between base stations of different Radio Access Technologies [RATs], e.g. LTE or WiFi
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to the field of communications, and in particular, to a data transmission method, apparatus, and system.
  • a wireless cellular network has the advantages of wide coverage and high-speed mobility, but has the disadvantages of low data transmission rate, high price, and large transmission power; and Wireless Local Area Networks (WLAN) has a data transmission rate. High, low price, low transmission power, etc., but at the same time has a short covering and other shortcomings.
  • the prior art integrates wireless cellular network technology and WLAN technology, and uses WLAN to offload data traffic of the wireless cellular network, improve user experience, and achieve efficient and low-cost communication.
  • 3GPP 3rd Generation Partnership Project
  • WLAN Wireless Local Area Networks
  • LWA Long Term Evolution Wireless Local Area Networks
  • WT Local Area Networks termination
  • GTP-U General Packet Radio Service Tunneling Protocol-User Plane
  • the technology and WLAN technology are integrated to realize the technology of WLAN offloading.
  • the existing LWA technology can only transmit downlink data.
  • the user equipment User Equipment, UE
  • the GTP-U tunnel established between the base station and the WT cannot transmit the offloaded data to the base station.
  • the embodiments of the present invention provide a data transmission method, apparatus, and system.
  • the non-cellular access device can allocate resources of a non-cellular network to the UE, so that the UE sends uplink data to the cellular access device through the non-cellular access device.
  • an embodiment of the present invention provides a data transmission method, including:
  • the cellular access device sends a non-cellular access device for instructing the non-cellular access device to allocate resources of the non-cellular network to the user equipment UE to add request information to the non-cellular access device, and the non-cellular access device increases the request information by at least
  • the first tunnel endpoint includes a first tunnel endpoint identifier TEID and a first transport layer address, where the first tunnel endpoint is used to indicate a destination of data transmission in the uplink data transmission path; and second, the cellular interface
  • the inbound device receives the non-cellular access device sent by the non-cellular access device to increase the response information, and the non-cellular access device adds the response information to at least the second tunnel end point allocated for the bearer of the data to which the UE belongs, and the second tunnel end point includes the second tunnel
  • the endpoint identifies the TEID and the second transport layer address, and the second tunnel endpoint is used to indicate the destination of the data transmission in the downlink data transmission path.
  • the cellular access device receives the uplink data sent by
  • the cellular access device since the cellular access device sends the non-cellular access device to the non-cellular access device to increase the request information for indicating that the non-cellular access device allocates the resources of the non-cellular network to the UE, The non-access device allocates resources for the UE, where the tunnel for the uplink transmission is established for the UE, and the tunnel for the downlink transmission is established for the bearer of the data of the UE, and the UE connects to the cellular by allocating the resources of the non-cellular network.
  • the inbound device sends uplink data, which solves the problem that the existing LWA technology can only transmit downlink data.
  • the non-cellular access device addition request information further includes: a media access control MAC address of the UE and a to-be-added bearer list, where the to-be-added bearer list includes a third tunnel end point, a radio access bearer identifier ERAB ID, and a radio bearer service.
  • Quality priority the third tunnel end point includes a third TEID and a third transport layer address, and the third tunnel end point is used to indicate the destination end of the data transmission in the data transmission for the uplink control
  • the radio bearer service quality priority is the radio bearer information. Corresponding quality of service Qos priority level.
  • the adding the response information by the non-cellular access device further includes allowing the bearer list to be increased, wherein the allowed bearer list includes the radio bearer identifier.
  • the method further includes :
  • the cellular access device sends the RRC connection configuration information including the configuration information of the Long Term Evolution wireless local area network convergence LWA to the UE; secondly, the cellular access device receives the RRC connection configuration completion information sent by the UE; finally, the cellular access The device receives the non-cellular access device association completion information sent by the UE.
  • the UE accesses the cellular access device and associates with the non-cellular access device to ensure that the UE accesses the cellular access device.
  • the transmitted uplink data can be transmitted normally.
  • the method further includes:
  • the cellular access device receives the non-cellular access device connection status information sent by the UE for indicating the connection status between the UE and the non-cellular access device.
  • the data transmission method provided by the embodiment of the present invention may cause the UE to fail to associate with the non-cellular access device due to different user preferences, terminal configuration, or access network discovery and selection function (ANDSF) policies. Therefore, the UE is also capable of transmitting non-cellular access device connection status information indicating the connection status of the UE with the non-cellular access device to the cellular access device.
  • ANDSF access network discovery and selection function
  • the type of the uplink data of the uplink data sent by the UE through the non-cellular access device is the type number of the uplink transmission data corresponding to the PDCP protocol.
  • an embodiment of the present invention provides a data transmission method, including:
  • the non-cellular access device first receives the non-cellular access device sent by the cellular access device for instructing the non-cellular access device to allocate the non-cellular network resource to the user equipment UE, and the non-cellular access device increases the request information by at least Including allocation for the UE a first tunnel endpoint, the first tunnel endpoint includes a first tunnel endpoint identifier TEID and a first transport layer address, the first tunnel endpoint is used to indicate a destination of data transmission in the uplink data transmission path; and the non-cellular access device resends the non-cellular
  • the access device adds response information to the cellular access device, where the non-cellular access device adds response information including at least a second tunnel destination allocated for the bearer of the data of the UE, and the second tunnel endpoint includes the second tunnel endpoint identifier TEID and the The second transport layer address, the second tunnel end point is used to indicate the destination of the data transmission in the downlink data transmission path.
  • the non-cellular access device receives the request information from the non-cellular access device that is sent by the cellular access device and is used to indicate that the non-cellular access device allocates resources of the non-cellular network to the UE. And allocating resources of the non-cellular network to the UE, where the tunnel for the uplink transmission is established for the UE, and the tunnel for the downlink transmission is established for the bearer of the data of the UE, so that the UE allocates the resources of the non-cellular network to The cellular access device sends uplink data, which solves the problem that the existing LWA technology can only transmit downlink data.
  • an embodiment of the present invention provides a data transmission method, including:
  • the user equipment UE transmits uplink data to the cellular access device through the non-cellular access device, wherein the resources of the non-cellular network are allocated by the non-cellular access device for the UE.
  • the cellular access device since the cellular access device sends the non-cellular access device to the non-cellular access device to increase the request information for indicating that the non-cellular access device allocates the resources of the non-cellular network to the UE, The non-access device allocates resources for the UE, where the tunnel for the uplink transmission is established for the UE, and the tunnel for the downlink transmission is established for the bearer of the data of the UE, and the UE connects to the cellular by allocating the resources of the non-cellular network.
  • the inbound device sends uplink data, which solves the problem that the existing LWA technology can only transmit downlink data.
  • the method further includes:
  • the UE receives the radio resource control RRC connection configuration information that is sent by the cellular access device and includes the configuration information of the Long Term Evolution wireless local area network convergence LWA. Second, the UE sends the RRC connection configuration completion information to the cellular access device. Finally, the UE will After the UE is associated with the non-cellular access device, the UE sends the non-cellular access device association completion information to the cellular access device.
  • the UE accesses the cellular access device and associates with the non-cellular access device to ensure that the UE accesses the cellular access device.
  • the transmitted uplink data can be transmitted normally.
  • the method further includes:
  • the UE transmits non-cellular access device connection status information indicating a connection status of the UE and the non-cellular access device to the cellular access device.
  • the user may not be associated with the non-cellular access device due to the user preference, the terminal configuration, or the access network discovery and the ANDSF policy. Therefore, the UE may also send the indication for the UE.
  • the non-cellular access device that is in connection with the non-cellular access device connects the status information to the cellular access device.
  • the type Type of the uplink data sent by the UE by the non-cellular access device is the type number of the uplink transmission data corresponding to the PDCP protocol.
  • the embodiment of the present invention further provides a data transmission method, including:
  • the cellular access device sends a non-cellular access device for instructing the non-cellular access device to allocate resources of the non-cellular network to the user equipment UE to add request information to the non-cellular access device, and the non-cellular access device increases the request information by at least
  • the bearer list to be added includes a data radio bearer identifier DRB ID or an evolved packet system EPS bearer identifier.
  • the cellular access device receives the non-cellular access device sent by the non-cellular access device to increase response information.
  • the non-cellular access device adds response information including at least a second tunnel destination allocated for the bearer of the data of the UE, the second tunnel endpoint includes a second tunnel endpoint identifier TEID and a second transport layer address, and the second tunnel endpoint is used for Indicates the destination of the data transmission in the downlink data transmission path; finally, the cellular access device receives the uplink data sent by the UE through the non-cellular access device.
  • the cellular access device sends a non-cellular access device to the non-cellular access device to indicate that the non-cellular access device allocates the non-cellular network to the UE.
  • the non-cellular access device of the resource increases the request information, so that the non-access device allocates resources for the UE, and the UE sends the uplink data to the cellular access device by using the allocated non-cellular network resources, thereby solving the existing LWA technology only The problem of transmitting downlink data.
  • the method further includes :
  • the cellular access device sends the RRC connection configuration information including the configuration information of the Long Term Evolution wireless local area network convergence LWA to the UE; secondly, the cellular access device receives the RRC connection configuration completion information sent by the UE; finally, the cellular access The device receives the non-cellular access device association completion information sent by the UE.
  • the UE accesses the cellular access device and associates with the non-cellular access device to ensure that the UE accesses the cellular access device.
  • the transmitted uplink data can be transmitted normally.
  • the method further includes:
  • the cellular access device receives non-cellular access device connection status information sent by the UE for indicating a connection status between the UE and the non-cellular access device.
  • the data transmission method provided by the embodiment of the present invention may cause the UE to fail to associate with the non-cellular access device due to different user preferences, terminal configuration, or ANDSF policies. Therefore, the UE can also send the UE to indicate the non-cellular access.
  • an embodiment of the present invention provides a data transmission method, including:
  • the non-cellular access device receives the non-cellular access device sent by the cellular access device to instruct the non-cellular access device to allocate the non-cellular network resource to the user equipment UE, and the non-cellular access device increase request information includes at least
  • the bearer list to be added includes a data radio bearer identifier DRB ID or an evolved packet system EPS bearer identifier, and the non-cellular access device sends the non-cellular access device to add a response message to the cellular access device, where Cellular access device adds response information to
  • the second tunnel end point includes a second tunnel end point identifier TEID and a second transport layer address, and the second tunnel end point is used to indicate a destination end of data transmission in the downlink data transmission path. .
  • the non-cellular access device receives the request information from the non-cellular access device that is sent by the cellular access device and is used to indicate that the non-cellular access device allocates resources of the non-cellular network to the UE. And allocating the resources of the non-cellular network to the UE, so that the UE sends the uplink data to the cellular access device by using the allocated resources of the non-cellular network, thereby solving the problem that the existing LWA technology can only transmit the downlink data.
  • an embodiment of the present invention provides a cellular access device, including a sending module and a receiving module.
  • the sending module is configured to send a non-cellular access device for instructing the non-cellular access device to allocate a resource of the non-cellular network to the user equipment UE to add request information to the non-cellular access device, where the non-cellular access device adds the request information to at least
  • the first tunnel end point allocated by the UE the first tunnel end point includes a first tunnel end point identifier TEID and a first transport layer address, and the first tunnel end point is used to indicate a destination end of data transmission in the uplink data transmission path.
  • the receiving module is configured to: after the sending module sends the non-cellular access device to send the request information to the non-cellular access device, receive the non-cellular access device sent by the non-cellular access device to increase response information, where the non-cellular access device increases the response.
  • the information includes at least a second tunnel destination allocated for the bearer of the data of the UE, the second tunnel endpoint includes a second tunnel endpoint identifier TEID and a second transport layer address, and the second tunnel endpoint is used to indicate the purpose of data transmission in the downlink data transmission path. End; and receiving uplink data sent by the UE through the non-cellular access device.
  • the technical effects of the cellular access device provided by the embodiment of the present invention can be referred to the technical effects of the cellular access device described in the data transmission method performed by the cellular access device in the foregoing first aspect, and details are not described herein again.
  • the sending module is further configured to: after the receiving module receives the non-cellular access device sent by the non-cellular access device, adding the response information, and after receiving the UE by using the non-cellular connection Before the uplink data sent by the device is sent, the radio resource control RRC connection configuration information including the configuration information of the long-term evolution WLAN aggregation LWA is sent to the UE; the receiving module is further configured to: after the sending module sends the RRC connection configuration information to the UE, Receiving RRC connection configuration completion information sent by the UE; and receiving non-cellular access device association completion information sent by the UE.
  • the receiving module is further configured to: after receiving, by the receiving module, the RRC connection configuration completion information sent by the UE, and before receiving the non-cellular access device association completion information sent by the UE, receiving, by the UE, the UE and the non-cellular Non-cellular access device connection status information of the connection status of the access device.
  • an embodiment of the present invention provides a non-cellular access device, including a receiving module and a sending module.
  • the receiving module is configured to receive, by the cellular access device, a non-cellular access device for requesting the non-cellular access device to allocate a resource of the non-cellular network to the user equipment UE, and the non-cellular access device adds the request information to at least
  • the sending module is configured to send the non-cellular access device to send the response information to the cellular access device after the receiving module receives the non-cellular access device increase request information sent by the cellular access device, where the non-cellular access device increases the response information by at least
  • the second tunnel end point includes a second tunnel end point identifier TEID and a second transport layer address, and the second tunnel end point is used to indicate a destination end of data transmission in the downlink data transmission path.
  • the eighth aspect of the present invention provides a user equipment UE, including a sending module.
  • the sending module is configured to send uplink data to the cellular access device by using the non-cellular access device, where the resources of the non-cellular network are allocated by the non-cellular access device for the UE.
  • the UE further includes a receiving module and an association module.
  • the receiving module is configured to receive, after the sending module sends the uplink data to the cellular access device by using the non-cellular access device, the radio resource control RRC connection configuration information that is sent by the cellular access device, including the configuration information of the long term evolution wireless local area network convergence LWA;
  • the sending module is further configured to: after the receiving module receives the RRC connection configuration information sent by the cellular access device, send the RRC connection configuration completion information to the cellular access device; the association module is configured to associate the UE with the non-cellular access device;
  • the sending module is further configured to send the non-cellular access device association completion information to the cellular access device after the association module associates the UE with the non-cellular access device.
  • the sending module is further configured to: after the sending module sends the RRC connection configuration completion information to the cellular access device, and send the non-cellular access device association completion information to the cellular access device, send the indication to the UE and the non- The non-cellular access device connection status information of the connection state of the cellular access device to the cellular access device.
  • an embodiment of the present invention provides a cellular access device, including a sending module and a receiving module.
  • the sending module is configured to send a non-cellular access device for instructing the non-cellular access device to allocate a resource of the non-cellular network to the user equipment UE to add request information to the non-cellular access device, where the non-cellular access device increases the request information to include at least And increasing the bearer list, where the to-be-added bearer list includes a data radio bearer identifier DRB ID or an evolved packet system EPS bearer identifier.
  • the receiving module is configured to: after the sending module sends the non-cellular access device to send the request information to the non-cellular access device, receive the non-cellular access device sent by the non-cellular access device to increase response information, where the non-cellular access device increases the response.
  • the information includes at least a second tunnel destination allocated for the bearer of the data of the UE, the second tunnel endpoint includes a second tunnel endpoint identifier TEID and a second transport layer address, and the second tunnel endpoint is used to indicate the purpose of data transmission in the downlink data transmission path. And receiving uplink data sent by the UE through resources of the non-cellular network.
  • the technical effects of the cellular access device provided by the embodiment of the present invention can be referred to the technical effects of the cellular access device described in the data transmission method performed by the cellular access device in the foregoing fourth aspect, and details are not described herein again.
  • the sending module is further configured to: after the receiving module receives the non-cellular access device sending the response information sent by the non-cellular access device, and before receiving the uplink data sent by the UE by the non-cellular access device, sending, including the long-term evolution wireless
  • the RRC connection configuration information of the configuration information of the LWA is aggregated to the UE; the receiving module is further configured to: after the sending module sends the RRC connection configuration information to the UE, receive the RRC connection configuration completion information sent by the UE; The non-cellular access device association completion information sent by the UE.
  • the receiving module is further configured to: after receiving, by the receiving module, the RRC connection configuration completion information sent by the UE, and before receiving the non-cellular access device association completion information sent by the UE, receiving, by the UE, the UE and the non-cellular Non-cellular access device connection status information of the connection status of the access device.
  • an embodiment of the present invention provides a non-cellular access device, including a receiving module and a sending module.
  • the receiving module is configured to receive, by the cellular access device, a non-cellular access device for requesting the non-cellular access device to allocate a resource of the non-cellular network to the user equipment UE, and the non-cellular access device adds the request information to at least And increasing the bearer list, where the to-be-added bearer list includes a data radio bearer identifier DRB ID or an evolved packet system EPS bearer identifier.
  • the sending module is configured to send the non-cellular access device to send the response information to the cellular access device after the receiving module receives the non-cellular access device increase request information sent by the cellular access device, where the non-cellular access device increases the response information by at least
  • the second tunnel end point includes a second tunnel end point identifier TEID and a second transport layer address, and the second tunnel end point is used to indicate a destination end of data transmission in the downlink data transmission path.
  • the non-cellular access device provided by the embodiment of the present invention, refer to the non-cellular access described in the data transmission method performed by the non-cellular access device in the fifth aspect.
  • the technical effects of the device are not described here.
  • an embodiment of the present invention provides a cellular access device, including a memory, a processor, a communication interface, and a system bus; the memory, the processor, and the communication interface are connected through a system bus, and the memory is used to store computer instructions, and the processor uses The computer instructions for storing the memory are executed to cause the cellular access device to perform the data transmission method in the first aspect or the data transmission method in the fourth aspect.
  • an embodiment of the present invention provides a non-cellular access device, including a memory, a processor, a communication interface, and a system bus; the memory, the processor, and the communication interface are connected through a system bus, and the memory is configured to store computer instructions and process The computer program for executing the memory storage to cause the non-cellular access device to perform the data transmission method in the second aspect or the data transmission method in the fifth aspect.
  • the technical effects of the non-cellular access device provided by the embodiment of the present invention can be referred to the technical effects of the non-cellular access device described in the data transmission method performed by the non-cellular access device in the second aspect or the fifth aspect, and no longer Narration.
  • an embodiment of the present invention provides a UE, including a memory, a processor, a communication interface, and a system bus; the memory, the processor, and the communication interface are connected through a system bus, the memory is used to store computer instructions, and the processor is configured to execute the memory.
  • the computer instructions are stored to cause the UE to perform the data transmission method in the third aspect.
  • the embodiment of the present invention provides a data transmission system, including the cellular access device of the eleventh aspect, the non-cellular access device of the twelfth aspect, and the user equipment UE of the thirteenth aspect.
  • the cellular access device since the cellular access device sends the non-cellular access device to the non-cellular access device to increase the request information for indicating that the non-cellular access device allocates resources of the non-cellular network to the UE, So that the UE is allocated well
  • the non-cellular network resources send uplink data to the cellular access device, which solves the problem that the existing LWA technology can only transmit downlink data.
  • FIG. 1 is a structural diagram of a communication system based on LWA technology according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a protocol stack of an eNB and a UE including an LWAAP protocol layer according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a configuration of an LWAAP protocol layer in each protocol stack of an eNB, a UE, and a WT according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a configuration of a protocol stack of a UE and a WT including an LWAEP protocol layer according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart 1 of a data transmission method according to Embodiment 1 of the present invention.
  • FIG. 6 is a second schematic flowchart of a data transmission method according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic flowchart 3 of a data transmission method according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic flowchart 1 of a data transmission method according to Embodiment 2 of the present invention.
  • FIG. 9 is a second schematic flowchart of a data transmission method according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic flowchart 3 of a data transmission method according to Embodiment 2 of the present invention.
  • FIG. 11 is a schematic structural diagram of a cellular access device according to Embodiment 3 of the present invention.
  • FIG. 12 is a schematic structural diagram of a non-cellular access device according to Embodiment 4 of the present invention.
  • FIG. 13 is a schematic structural diagram 1 of a UE according to Embodiment 5 of the present invention.
  • FIG. 14 is a second schematic structural diagram of a UE according to Embodiment 5 of the present invention.
  • FIG. 15 is a schematic structural diagram of a cellular access device according to Embodiment 6 of the present invention.
  • FIG. 16 is a schematic structural diagram of a non-cellular access device according to Embodiment 7 of the present invention.
  • FIG. 17 is a schematic diagram of hardware of a cellular access device according to Embodiment 8 of the present invention.
  • FIG. 18 is a schematic diagram of hardware of a non-cellular access device according to Embodiment 9 of the present invention.
  • FIG. 19 is a schematic diagram of hardware of a UE according to Embodiment 10 of the present invention.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • the architecture diagram of the communication system based on the LWA technology provided by the embodiment of the present invention is shown in FIG. 1.
  • the communication system is divided into three network elements, an Evolved Packet Core (EPC) device, and an evolved base station (Evolved Node B). , eNode B) and WLAN Termination (WT).
  • the EPC is responsible for the core network part, including the Mobility Management Entity (MME) and the Serving Gateway (S-GW), wherein the MME performs signaling processing and the S-GW performs data processing.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the eNode B and the WT are responsible for the access network part, also called the Evolved Universal Terrestrial Radio Access Network (E-UTRAN).
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the eNode Bs may be collectively referred to as cellular access devices, and the WTs may be collectively referred to as non-cellular access devices.
  • the data transmission method provided by the embodiment of the present invention is performed between a cellular access device, a non-cellular access device, and a UE. Meanwhile, the data transmission method provided by the embodiment of the present invention is applicable to a common access station of a cellular access device and a non-cellular access device, In the scenario where the cellular access device and the non-cellular access device are not co-located, the invention is not limited.
  • the UE may also be referred to as a mobile terminal (English: Mobile Terminal), a mobile user equipment, or the like, and may communicate with one or more core networks via a Radio Access Network (RAN).
  • the UE may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device that is connected to the wireless device.
  • the network exchange language and/or data is not limited in the present invention.
  • the cellular access device may be a base station device, such as a Base Transceiver Station (BTS) in GSM or CDMA, or a Node B (Node B) in WCDMA, or may be LTE.
  • BTS Base Transceiver Station
  • Node B Node B
  • the eNB in the present invention is not limited to the present invention.
  • the cellular access device may also be a control node of various access network nodes, such as a Radio Network Controller (RNC) in UMTS, or a controller that manages multiple small base stations.
  • RNC Radio Network Controller
  • the non-cellular access device may be a Wireless Local Area Networks Access Point (WLAN AP), or may be a Wireless Local Area Networks Access Controller (Wireless Local Area Networks Access Controller, WLAN AC), or other separately deployed physical WLAN Termination (WT), where the WT can be located in the WLAN AP, in the WLAN AC, or as an independent entity, and at least one WLAN AP can be managed under one WT.
  • WLAN AP Wireless Local Area Networks Access Point
  • WLAN AC Wireless Local Area Networks Access Controller
  • WLAN AC Wireless Local Area Networks Access Controller
  • the non-cellular network may also be referred to as a non-cellular system, and the term "non-cellular" in the embodiment of the present invention refers to a non-cellular network or a non-cellular system.
  • the user-side terminal device is a station (Station, STA), and for the wireless cellular network, the user-side terminal device is a UE.
  • the user-side terminal device may be referred to as a UE or an STA, and can receive services of two networks.
  • UEs For convenience of description, the following are collectively referred to as UEs.
  • the configuration structures of the protocol stacks in the eNB, the UE, and the WT in the embodiment of the present invention may be classified into three types: the first is that the protocol stack of the eNB and the UE includes the LWAAP protocol layer; the second is the eNB and the UE. And each protocol stack in the WT includes the LWAAP protocol layer; the third is that the protocol stack of the UE and the WT includes the LWAEP protocol layer.
  • the configuration structure of each of the three eNBs, UEs, and WTs is first described.
  • the case where the protocol stack of the eNB and the UE includes the LWAAP protocol layer is as shown in FIG. 2.
  • the case where the protocol stack of the eNB and the UE includes the LWAAP protocol layer is the same as the configuration structure of the existing protocol stack.
  • each protocol stack in the eNB, the UE, and the WT includes the LWAAP protocol layer, as shown in FIG.
  • the eNB protocol stack may have an eNB first protocol stack and an eNB second protocol stack, where the eNB first protocol stack is used to implement data processing for communication with the user equipment on the eNB side, and the eNB second protocol stack is used in the eNB.
  • the side implements data processing for communication with the WT.
  • the first protocol stack of the eNB for example, the existing communication protocol stack between the eNB and the user equipment can be implemented within the protection scope.
  • the eNB second protocol stack it can be directly aggregated on the at least one protocol layer of the first protocol stack of the eNB through the interface.
  • the eNB first protocol stack and the eNB second protocol stack may include a user plane protocol stack, and may also include a user plane protocol stack and a control plane protocol stack.
  • the eNB first protocol stack may include the following protocol layers: Packet Data Convergence Protocol (PDCP), Radio Link Control (RLC), and media intervention control layer ( Media Access Control (MAC), Physical Layer (Physical, PHY).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • Physical Layer Physical Layer
  • the eNB second protocol stack may include a user plane protocol stack, and may also include a control plane protocol stack.
  • the transport layer of the user plane protocol stack adopts a newly defined Xw interface user protocol (Xw user, Xw-U), specifically The Xw-U protocol can use the GPRS Tunneling Protocol-User Plane (GTP-U) protocol.
  • the control layer protocol stack transport layer uses the Stream Control Transmission Protocol (SCTP) protocol, the Transmission Control Protocol (TCP), or the User Datagram Protocol (UDP), and the application layer adopts New definition Xw Application Protocol (XwAP).
  • the eNB second protocol stack may be PDCP aggregation at the first protocol stack of the eNB.
  • the eNB first protocol stack can be offloaded in PDCP.
  • the eNB second protocol stack further has an LWAAP protocol layer, and the LWAAP protocol layer is located on the GTP-U layer.
  • the WT protocol stack has a WT first protocol stack and a WT second protocol stack.
  • the WT first protocol stack is configured to implement data processing for communication with the eNB at the WLAN WT
  • the WT second protocol stack is configured to implement data processing for communication with the user equipment on the WT side.
  • the communication between the WT and the WLAN AP is implemented internally.
  • the communication protocol stack between the WT and the WLAN AP is determined by the Institute of Electrical and Electronics (Institute of Electrical and Electronics). Engineers, IEEE) to define.
  • the WT first protocol stack may include a user plane protocol stack, and may also include a control plane protocol stack and a user plane protocol stack.
  • the transport layer of the user plane protocol stack adopts Xw-U, and the specific Xw-U protocol may be used.
  • the control plane protocol stack transport layer uses the SCTP protocol, and the application layer adopts the newly defined XwAP protocol.
  • the WT second protocol stack may use, for example, a protocol stack of an existing wireless local area network communication, for example, a WIFI protocol stack, a MAC layer, a PHY layer, and optionally, the WT second protocol stack may also include a logical link control (Logical Link Control). , LLC) layer, there is also an LWAAP protocol layer above the MAC layer. If there is an LLC layer, the LWAAP protocol layer is above the LLC layer.
  • LLC logical link control
  • the user equipment protocol stack may have a user equipment first protocol stack and a user equipment second protocol stack, where the user equipment first protocol stack is used to implement data processing for communication with the eNB on the user equipment side, and the user equipment second protocol stack Data processing for implementing communication with the WT on the user equipment side.
  • the second protocol stack of the user equipment is connected to at least one protocol layer of the first protocol stack of the user equipment.
  • the user equipment second protocol stack may include the following protocol layers: a MAC layer, a PHY layer, and further, an LWAAP protocol layer may also be included on the MAC layer.
  • the second protocol stack of the user equipment may further include an LLC layer. If the LLC layer is included, the LWAAP protocol layer may be in the LLC layer. Above.
  • the protocol stack of the UE and the WT includes the LWAEP protocol layer, as shown in FIG.
  • the protocol stack configuration structure in the eNB is similar to the protocol stack configuration structure in the eNB in FIG. 3, except that the eNB second protocol stack does not have an LWAAP protocol layer.
  • the configuration of the protocol stack in the WT is similar to the configuration of the protocol stack in the WT in Figure 3. The difference is that there is a new protocol layer (LWAEP) above the MAC layer. If there is an LLC layer, the new protocol. The layer is above the LLC layer.
  • LWAEP new protocol layer
  • LLC LLC layer
  • the protocol stack configuration structure in the user equipment is similar to the protocol stack configuration structure in the user equipment in FIG. 3, and the difference is that a new adaptation protocol layer (LWAEP) may be included on the MAC layer.
  • LWAEP new adaptation protocol layer
  • the second protocol stack of the user equipment may further include an LLC layer. If the LLC layer is included, the newly added adaptation protocol layer may be at the LLC layer.
  • An embodiment of the present invention provides a data transmission method.
  • the protocol stack of the eNB and the UE includes a configuration structure of an LWAAP protocol layer.
  • the method includes:
  • the cellular access device sends the non-cellular access device to add the request information to the non-cellular access device.
  • the non-cellular access device increase request information is used to indicate that the non-cellular access device allocates resources of the non-cellular network to the user equipment UE, and the non-cellular access device increase request information includes at least the first tunnel end point allocated for the UE, where The tunnel end point includes a first tunnel end point identifier (TEID) and a first transport layer address, and the first tunnel end point is used to indicate a destination end of data transmission in the uplink data transmission path.
  • TEID tunnel end point identifier
  • the first tunnel endpoint allocated for the UE refers to the first tunnel endpoint allocated by the cellular access device for each UE, and the multiple UEs correspond to multiple first tunnel endpoints, and the first tunnel allocated by each UE The end point is unique.
  • the non-cellular access device addition request information further includes: a media access control (MAC) address of the UE and a to-be-added bearer list, where the to-be-added bearer list includes a third tunnel destination, and the radio access bearer identifier (EUTRAN-Radio Access Bearer Identifier, ERAB ID) and radio bearer quality of service priority, the third tunnel end point includes a third TEID and a third transport layer address, and the third tunnel end point is used to indicate data in the data transmission for uplink flow control
  • the radio bearer service quality priority is the quality of service (QoS) priority corresponding to the radio bearer information.
  • QoS quality of service
  • the MAC address of the UE may be indicated by the UE when the UE is reported, or may be sent to the cellular access device by using the UE to send a separate message, which is not limited by the present invention.
  • the cellular access device can configure the UE to perform measurement and reporting of the non-cellular access device, so that the cellular access device performs measurement according to the non-cellular access device reported by the UE (for example, The load of the non-cellular access device or the subscription information of the UE is selected to increase the appropriate non-cellular access device for LWA transmission.
  • the non-cellular access device receives the non-cellular access device increase request information sent by the cellular access device.
  • step S101 The step corresponding to step S101.
  • the non-cellular access device sends the non-cellular access device to add the response information to the cellular access device.
  • the non-cellular access device adds response information including at least a second tunnel end point allocated for the bearer of the data of the UE, where the second tunnel end point includes the second tunnel end point identifier TEID and the second transport layer address, and the second tunnel end point is used to indicate The destination of data transmission in the downlink data transmission path.
  • Adding the response information to the non-cellular access device further includes allowing the bearer list to be increased, wherein allowing the increase of the bearer list includes the radio bearer identity.
  • the second tunnel endpoint and the radio bearer identity are also consistent.
  • the cellular access device receives the non-cellular access device sent by the non-cellular access device. Add response information.
  • step S103 The step corresponding to step S103.
  • the user equipment UE sends the uplink data to the cellular access device by using the non-cellular access device, where the resources of the non-cellular network are allocated by the non-cellular access device for the UE.
  • the type of the uplink data of the uplink data received by the UE to be received by the UE by the non-cellular network is the type of the uplink transmission data corresponding to the PDCP protocol.
  • the cellular access device may directly process the uplink data after receiving the uplink data.
  • the cellular access device receives uplink data sent by the UE by using the non-cellular access device.
  • step S105 The step corresponding to step S105.
  • the step of using the cellular access device as the eNB and the non-cellular access device as the WT as an example, the step of the user equipment UE transmitting the uplink data to the cellular access device through the non-cellular network resource is described:
  • the UE sends an LWA Protocol Data Unit (PDU) to the WT, that is, the PDCP PDU of the LWAAP is added.
  • PDU LWA Protocol Data Unit
  • the WT After receiving the LWA PDU data packet, the WT first identifies which UE sends the data packet according to the MAC address of the UE. Then, the first TEID corresponding to the UE is found.
  • the first TEID that is, the TEID allocated by the eNB for the uplink data transmission during the tunnel establishment process, may be directly found by the MAC address of the UE because the MAC address of the UE corresponds to the first TEID.
  • the TEID adding a GTP-U header to the LWA PDU through the uplink dedicated GTP-U tunnel, filling the first TEID corresponding to the uplink corresponding to the UE in the header, and transmitting the data to the LWAAP protocol layer of the eNB, if the GTP-U header Including the type number of the uplink transmission data, firstly, according to the PDU type in the GTP-U header (extended header), it is identified whether the LWA PDU is the type number of the uplink transmission data corresponding to the PDCP protocol, and if so, the GTP-U header is deleted; if GTP The -U header does not include the type number of the uplink transmission data, and the GTP-U header is directly deleted. Then, the DRB bearer information in the LWAAP protocol layer is read, and the LWAAP header is deleted, and the PDCP PDU is delivered to the PDCP entity corresponding to the bearer identifier for processing.
  • the embodiment of the present invention provides The supplied data transmission method further includes steps S107-S113:
  • the cellular access device sends the radio resource control RRC connection configuration information to the UE.
  • the RRC connection configuration information includes configuration information of the Long Term Evolution Wireless Local Area Network convergence LWA. Such as the Basic Service Set Identifier (BSSID) list.
  • BSSID Basic Service Set Identifier
  • the UE receives the radio resource control RRC connection configuration information sent by the cellular access device.
  • step S107 The step corresponding to step S107.
  • the UE sends an RRC connection configuration complete message to the cellular access device.
  • the cellular access device receives the RRC connection configuration completion information sent by the UE.
  • step S109 The step corresponding to step S109.
  • the UE associates the UE with the non-cellular access device.
  • the step of the UE associating the UE with the non-cellular access device includes: first, the UE discovers the specified non-cellular access device by listening to a beacon frame or sending a Probe frame, and then sequentially The non-cellular access device performs authentication and association, and completes processes such as authentication, capability negotiation, and key derivation.
  • the UE sends the non-cellular access device association completion information to the cellular access device.
  • the UE After the UE associates the UE with the non-cellular access device, the UE can also send the non-cellular access device association completion information to the cellular access device.
  • the cellular access device receives the non-cellular access device association completion information sent by the UE.
  • the data transmission method provided by the embodiment of the present invention may further include steps S114 and S115:
  • the UE sends the non-cellular access device connection status information to the cellular access device.
  • the non-cellular access device connection status information is used to indicate a connection status between the UE and the non-cellular access device.
  • the socket access device transmits non-cellular access device connection status information indicating a connection status of the UE with the non-cellular access device.
  • the cellular access device receives the non-cellular access device connection status information sent by the UE.
  • step S114 The step corresponding to step S114.
  • An embodiment of the present invention provides a data transmission method, where the method includes: a cellular access device sends a non-cellular access device to increase request information to a non-cellular access device, where the non-cellular access device adds request information to indicate a non-cellular
  • the access device allocates resources of the non-cellular network to the user equipment UE, and the non-cellular access equipment increase request information includes at least a first tunnel end point allocated for the UE, where the first tunnel end point includes the first tunnel end point identifier TEID and the first transport layer address.
  • the first tunnel end point is used to indicate the destination end of the data transmission in the uplink data transmission path; the cellular access device receives the non-cellular access device sent by the non-cellular access device to increase the response information, wherein the non-cellular access device increases the response information.
  • the second tunnel end point includes a second tunnel end point identifier TEID and a second transport layer address, and the second tunnel end point is used to indicate a destination end of data transmission in the downlink data transmission path.
  • the cellular access device receives uplink data transmitted by the UE through resources of the non-cellular network.
  • the cellular access device transmits to the non-cellular access device a non-cellular access device for instructing the non-cellular access device to allocate resources of the non-cellular network to the UE
  • the request information is added to
  • the inbound device allocates resources to the UE, where the uplink transmission tunnel is established for the UE, and the downlink transmission tunnel is established for the bearer of the data of the UE, and the UE sends the uplink to the cellular access device by using the allocated non-cellular network resource.
  • the data solves the problem that the existing LWA technology can only transmit downlink data.
  • the embodiment of the present invention provides a data transmission method.
  • the protocol stack of the UE and the WT according to FIG. 4 includes a configuration structure of the LWAEP protocol layer. As shown in FIG. 8, the method includes:
  • the cellular access device sends the non-cellular access device to increase the request information to the non-bee.
  • the socket is connected to the device.
  • the non-cellular access device addition request information is used to indicate that the non-cellular access device allocates the non-cellular network resource to the user equipment UE, and the non-cellular access device increase request information includes at least the to-be-added bearer list, where the bearer list to be added
  • the data radio bearer identifier (DRB ID) or the Evolved Packet System (EPS) bearer identifier is included.
  • the to-be-added bearer list may further include an ERAB ID.
  • the to-be-added bearer list may include a DRB ID, or an EPS bearer identifier, or a DRB ID and an ERAB ID, or an EPS bearer identifier and an ERAB ID.
  • the non-cellular access device addition request information further includes: a media access control MAC address of the UE; the to-be-added bearer list further includes a third tunnel destination, a radio access bearer identifier ERAB ID, and a radio bearer service quality priority, and the third tunnel end point includes The third TEID and the third transport layer address are used to indicate the destination end of the data transmission in the data transmission for the flow control, and the radio bearer service quality priority is the QoS priority corresponding to the radio bearer information. Specifically, the MAC address, the third tunnel end point, the ERAB ID, and the radio bearer service quality priority of the UE are consistent.
  • the MAC address of the UE may be indicated by the UE when the UE is reported, or may be sent to the cellular access device by using the UE to send a separate message, which is not limited by the present invention.
  • the cellular access device can configure the UE to perform measurement and reporting of the non-cellular access device, so that the cellular access device performs measurement according to the non-cellular access device reported by the UE (for example, The load of the non-cellular access device or the subscription information of the UE is selected to increase the appropriate non-cellular access device for LWA transmission.
  • the non-cellular access device receives the non-cellular access device increase request information sent by the cellular access device.
  • step S201 The step corresponding to step S201.
  • the non-cellular access device sends the non-cellular access device to add the response information to the cellular access device.
  • the non-cellular access device adds response information to at least the data for the UE.
  • the second tunnel end point includes a second tunnel end point identifier TEID and a second transport layer address, and the second tunnel end point is used to indicate a destination end of data transmission in the downlink data transmission path.
  • Adding the response information to the non-cellular access device further includes allowing the bearer list to be increased, wherein allowing the increase of the bearer list includes the radio bearer identity.
  • the second tunnel endpoint and the radio bearer identity are also consistent.
  • the cellular access device receives the non-cellular access device sent by the non-cellular access device to increase response information.
  • step S203 The step corresponding to step S203.
  • the user equipment UE sends the uplink data to the cellular access device by using the resource of the non-cellular network, where the resource of the non-cellular network is allocated by the non-cellular access device for the UE.
  • the type of the uplink data of the uplink data received by the UE to be received by the UE by the non-cellular network is the type of the uplink transmission data corresponding to the PDCP protocol.
  • the cellular access device may directly process the uplink data after receiving the uplink data.
  • the cellular access device receives uplink data that is sent by the UE through resources of the non-cellular network.
  • step S205 The step corresponding to step S205.
  • the step of using the cellular access device as the eNB and the non-cellular access device as the WT, and the step of transmitting the uplink data to the cellular access device by using the non-cellular network resource by the user equipment UE is described:
  • the uplink PDCP PDU that is offloaded by the UE after the DRB ID or the EPS bearer identifier is added through the LWAEP protocol layer, sends an uplink LWAEP PDU to the WT (that is, the PDCP PDU of the LWAEP is added).
  • the WT After receiving the LWAEP PDU packet, the WT first identifies the packet. Which packet is sent by the UE (ie, identified by the MAC address of the UE). Then, the ERAB ID corresponding to the UE is found according to the DRB ID or the EPS bearer identifier in the LWAEP.
  • the step may be omitted, and the corresponding DRB ID or EPS bearer identifier is directly found according to the LWAEP.
  • the third TEID of the tunnel can be used, so that the corresponding tunnel of the bearer can be found according to the ERAB ID.
  • the third TEID of the tunnel (the third TEID is the TEID allocated by the eNB for the specific bearer in the tunnel establishment process); or the third TEID of the tunnel corresponding to the bearer is directly found according to the DRB ID or the EPS bearer identifier.
  • the header of the LWAEP is deleted, the GTP-U header is added, and the third TEID corresponding to the ERAB ID is filled in the header, and the GTP-U tunnel corresponding to the ERAB ID is used for transmission.
  • the GTP-U header is deleted first, according to The third TEID in the header finds the corresponding bearer ERAB ID information, and then the PDCP PDU is handed over to the PDCP entity corresponding to the bearer identifier for processing.
  • the data transmission method provided by the embodiment of the present invention further includes steps S207-S213:
  • the cellular access device sends the radio resource control RRC connection configuration information to the UE.
  • the RRC connection configuration information includes configuration information of the Long Term Evolution Wireless Local Area Network convergence LWA.
  • the UE receives the radio resource control RRC connection configuration information sent by the cellular access device.
  • the UE sends an RRC connection configuration complete message to the cellular access device.
  • the cellular access device receives the RRC connection configuration completion information sent by the UE.
  • the UE associates the UE with the non-cellular access device.
  • the UE sends the non-cellular access device association completion information to the cellular access device.
  • the cellular access device receives the non-cellular access device association completion information sent by the UE.
  • the data transmission method provided by the embodiment of the present invention may further include steps S214 and S215:
  • the UE sends the non-cellular access device connection status information to the cellular access device.
  • the non-cellular access device connection status information is used to indicate a connection status between the UE and the non-cellular access device.
  • the cellular access device receives the non-cellular access device connection state information sent by the UE.
  • steps S207-S215 are the same as the methods described in steps S107-S115 in Embodiment 1, and are not described herein again.
  • the data transmission method provided by the embodiment of the present invention can also be used to configure the structure including the LWAAP protocol layer in each protocol stack of the eNB, the UE, and the WT as shown in FIG.
  • the non-cellular access device is a WT instance, and the step of transmitting the uplink data to the cellular access device by using the resource of the non-cellular network by the user equipment UE is described:
  • Which packet is sent by the UE ie, identified by the MAC address of the UE.
  • the ERAB ID corresponding to the UE is found according to the DRB ID or the EPS bearer identifier in the LWAAP.
  • the step may be omitted, and the corresponding DRB ID or EPS bearer identifier is directly found according to the LWAEP.
  • the third TEID of the tunnel may be, so that the third TEID of the tunnel corresponding to the bearer may be found according to the ERAB ID (the third TEID, that is, the TEID allocated by the eNB for the specific bearer during the tunnel establishment process); or according to the DRB ID in the LWAAP Or the EPS bearer identifier finds a third TEID of the tunnel corresponding to the bearer.
  • the GTP-U header is added, and the third TEID corresponding to the ERAB ID is filled in the header, and is transmitted through the GTP-U tunnel corresponding to the ERAB ID.
  • the GTP-U header includes the type number of the uplink transmission data.
  • the PDU type in the GTP-U header it is identified whether it is the type number of the uplink transmission data corresponding to the PDCP protocol, and if so, the GTP-U header is deleted; if the GTP-U header does not include the type number of the uplink transmission data, Then delete the GTP-U header directly.
  • the corresponding bearer ERAB ID information is found according to the third TEID in the header, and then the header of the LWAAP is deleted, and the PDCP PDU is delivered to the PDCP entity corresponding to the bearer for processing.
  • An embodiment of the present invention provides a data transmission method, where the method includes: a cellular access device sends a non-cellular access device to increase request information to a non-cellular access device, where the non-cellular access device adds request information to indicate a non-cellular
  • the access device allocates the resources of the non-cellular network to the user equipment UE, and the non-cellular access equipment increase request information includes at least the to-be-added bearer list, where the to-be-added bearer list includes the data radio bearer identifier DRB.
  • the ID or the evolved packet system EPS bearer identifier; the cellular access device receives the non-cellular access device to send the response information sent by the non-cellular access device, where the non-cellular access device adds the response information to at least include the bearer allocation of the data for the UE a second tunnel endpoint, the second tunnel endpoint includes a second tunnel endpoint identifier TEID and a second transport layer address, the second tunnel endpoint is used to indicate a destination of data transmission in the downlink data transmission path; and the cellular access device receives the UE through the non- Uplink data sent by the resources of the cellular network.
  • the cellular access device since the cellular access device sends a non-cellular access device for instructing the non-cellular access device to allocate resources of the non-cellular network to the UE, the request information is added to the non-cellular access device, so that the UE passes the The allocated non-cellular network resources send uplink data to the cellular access device, which solves the problem that the existing LWA technology can only transmit downlink data.
  • the embodiment of the present invention provides a cellular access device.
  • the cellular access device is configured to perform the steps performed by the cellular access device in the above method.
  • the cellular access device may include modules corresponding to the respective steps. Exemplarily, the transmitting module 10 and the receiving module 11 may be included.
  • the sending module 10 is configured to send the non-cellular access device increase request information to the non-cellular access device, where the non-cellular access device increase request information is used to indicate that the non-cellular access device allocates the non-cellular network resource to the user equipment UE
  • the non-cellular access device increase request information includes at least a first tunnel end point allocated for the UE, where the first tunnel end point includes a first tunnel end point identifier TEID and a first transport layer address, and the first tunnel end point is used to indicate the uplink data transmission path. The destination of data transmission.
  • the receiving module 11 is configured to: after the sending module 10 sends the non-cellular access device increase request information to the non-cellular access device, receive the non-cellular access device sent by the non-cellular access device to increase response information, where the non-cellular access
  • the device addition response information includes at least a second tunnel destination allocated for the bearer of the data of the UE, the second tunnel endpoint includes a second tunnel endpoint identifier TEID and a second transport layer address, and the second tunnel endpoint is used to indicate data in the downlink data transmission path.
  • the non-cellular access device addition request information further includes: a media access control MAC address of the UE and a to-be-added bearer list, where the to-be-added bearer list includes a third tunnel end point, a radio access bearer identifier ERAB ID, and a radio bearer.
  • the service quality priority, the third tunnel end point includes a third TEID and a third transport layer address, and the third tunnel end point is used to indicate the destination end of the data transmission in the data transmission for the flow control, and the radio bearer service quality priority is the radio bearer.
  • the quality of service corresponding to the Qos priority.
  • the adding the response information to the non-cellular access device further includes allowing the bearer list to be added, wherein the allowed bearer list includes the radio bearer identifier.
  • the sending module 10 is further configured to: after the receiving module 11 receives the non-cellular access device sent by the non-cellular access device to add response information, and send the uplink data sent by the UE through the non-cellular network resource,
  • the radio resource controls the RRC connection configuration information to the UE, where the RRC connection configuration information includes configuration information of the Long Term Evolution Wireless Local Area Network convergence LWA.
  • the receiving module 11 is further configured to: after the sending module 10 sends the RRC connection configuration information to the UE, receive the RRC connection configuration completion information sent by the UE; and receive the non-cellular access device association completion information sent by the UE.
  • the receiving module 11 is further configured to: after the receiving module 11 receives the RRC connection configuration complete information sent by the UE, and receive the non-cellular access sent by the UE before receiving the non-cellular access device association completion information sent by the UE.
  • the device connection status information where the non-cellular access device connection status information is used to indicate a connection status between the UE and the non-cellular access device.
  • the type of the uplink data of the uplink data received by the UE to be received by the UE by the non-cellular network is the type of the uplink transmission data corresponding to the PDCP protocol.
  • the cellular access device of this embodiment may correspond to the cellular access device in the data transmission method of the foregoing embodiment of any one of FIG. 5, FIG. 6, and FIG. 7, and the cellular connection of this embodiment
  • the division and/or function of each module in the device is to implement the method flow shown in any one of FIG. 5, FIG. 6 and FIG. 7.
  • no further details are provided herein.
  • the function of the receiving unit 11 may be implemented by a receiver, and the function of the transmitting unit 10 may be implemented by a transmitter.
  • the receiver and transmitter can be integrated in one transceiver.
  • the embodiment of the invention provides a cellular access device. Based on the description of the above embodiment, since the cellular access device sends a non-cellular access device for instructing the non-cellular access device to allocate resources of the non-cellular network to the UE, the request information is added to the non-cellular access device, so that the UE passes the The allocated non-cellular network resources send uplink data to the cellular access device, which solves the problem that the existing LWA technology can only transmit downlink data.
  • the embodiment of the present invention provides a non-cellular access device.
  • the non-cellular access device is configured to perform the steps performed by the non-cellular access device in the above method.
  • the non-cellular access device may include a module corresponding to the corresponding step.
  • the receiving module 20 and the transmitting module 21 are included.
  • the receiving module 20 is configured to receive the non-cellular access device increase request information sent by the cellular access device, where the non-cellular access device increase request information is used to indicate that the non-cellular access device allocates the non-cellular network resource to the user equipment UE
  • the non-cellular access device increase request information includes at least a first tunnel end point allocated for the UE, where the first tunnel end point includes a first tunnel end point identifier TEID and a first transport layer address, and the first tunnel end point is used to indicate the uplink data transmission path. The destination of data transmission.
  • the sending module 21 is configured to: after the receiving module 20 receives the non-cellular access device increase request information sent by the cellular access device, send the non-cellular access device to add the response information to the cellular access device, where the non-cellular access device increases
  • the response information includes at least a second tunnel endpoint allocated for the bearer of the data of the UE, the second tunnel endpoint includes a second tunnel endpoint identifier TEID and a second transport layer address, and the second tunnel endpoint is used to indicate data transmission in the downlink data transmission path. Destination.
  • the non-cellular access device addition request information further includes: a media access control MAC address of the UE and a to-be-added bearer list, where the to-be-added bearer list includes a third tunnel end point, a radio access bearer identifier ERAB ID, and a radio bearer.
  • the third tunnel end point includes a third TEID and a third transport layer address, and the third tunnel end point is used to indicate the destination end of the data transmission in the data transmission for the flow control, and the radio bearer service quality priority is the quality of service corresponding to the radio bearer information. Qos priority.
  • the adding the response information to the non-cellular access device further includes allowing the bearer list to be added, wherein the allowed bearer list includes the radio bearer identifier.
  • the non-cellular access device of this embodiment may correspond to the non-cellular access device in the data transmission method of the foregoing embodiment of any one of FIG. 5, FIG. 6 and FIG. 7, and the present embodiment is
  • the division and/or function of each module in the non-cellular access device is to implement the method flow shown in any one of FIG. 5, FIG. 6 and FIG. 7.
  • no further details are provided herein.
  • the function of the receiving unit 20 may be implemented by a receiver, and the function of the transmitting unit 21 may be implemented by a transmitter.
  • the receiver and transmitter can be integrated in one transceiver.
  • the embodiment of the invention provides a non-cellular access device. Based on the description of the above embodiment, since the cellular access device sends a non-cellular access device for instructing the non-cellular access device to allocate resources of the non-cellular network to the UE, the request information is added to the non-cellular access device, so that the UE passes the The allocated non-cellular network resources send uplink data to the cellular access device, which solves the problem that the existing LWA technology can only transmit downlink data.
  • An embodiment of the present invention provides a UE. As shown in FIG. 13, the UE is configured to perform the steps performed by the UE in the foregoing method.
  • the UE may include a module corresponding to the corresponding step.
  • the transmitting module 30 is included.
  • the sending module 30 is configured to send uplink data to the cellular access device by using a resource of the non-cellular network, where the resource of the non-cellular network is allocated by the non-cellular access device for the UE.
  • the UE further includes a receiving module 31 and an association module 32.
  • the receiving module 31 is configured to receive the radio resource control RRC connection configuration information sent by the cellular access device, where the RRC connection configuration information includes long-term evolution, before the sending module 30 sends the uplink data to the cellular access device by using the resource of the non-cellular network.
  • Wireless bureau The domain network aggregates the configuration information of the LWA.
  • the sending module 30 is further configured to send the RRC connection configuration completion information to the cellular access device after the receiving module 31 receives the radio resource control RRC connection configuration information sent by the cellular access device.
  • the association module 32 is configured to associate the UE with the non-cellular access device.
  • the sending module 30 is further configured to send the non-cellular access device association completion information to the cellular access device after the association module 32 associates the UE with the non-cellular access device.
  • the sending module 30 is further configured to: after the sending module 30 sends the RRC connection configuration complete information to the cellular access device, and send the non-cellular access device to complete the information to the cellular access device, send the non-cellular connection
  • the device connection status information is sent to the cellular access device, where the non-cellular access device connection status information is used to indicate a connection status between the UE and the non-cellular access device.
  • the type Type of the uplink data sent by the UE by using the resource of the non-cellular network is the type of the uplink transmission data corresponding to the PDCP protocol.
  • the UE in this embodiment may be the user equipment served by the cell in the cell or the non-cell access device, and the UE may correspond to the data in the foregoing embodiment of any one of FIG. 5 to FIG.
  • the UE in the transmission method, and the division and/or function of each module in the UE in this embodiment are all used to implement the method flow shown in any one of FIG. 5 to FIG. 10. For brevity, no further description is provided herein. .
  • the function of the receiving unit 31 may be implemented by a receiver
  • the function of the transmitting unit 30 may be implemented by a transmitter
  • the function of the associating module 32 may be implemented by a processor.
  • the receiver and transmitter can be integrated in one transceiver.
  • An embodiment of the present invention provides a UE. Based on the description of the above embodiment, since the cellular access device sends a non-cellular access device for instructing the non-cellular access device to allocate resources of the non-cellular network to the UE, the request information is added to the non-cellular access device, so that the UE passes the The allocated non-cellular network resources send uplink data to the cellular access device, which solves the problem that the existing LWA technology can only transmit downlink data.
  • the embodiment of the present invention provides a cellular access device.
  • the cellular access device is configured to perform the steps performed by the cellular access device in the above method.
  • the cellular access device may include modules corresponding to the respective steps. Exemplarily, the transmitting module 40 and the receiving module 41 may be included.
  • the sending module 40 is configured to send the non-cellular access device increase request information to the non-cellular access device, where the non-cellular access device increase request information is used to indicate that the non-cellular access device allocates resources of the non-cellular network to the user equipment UE.
  • the non-cellular access device addition request information includes at least a to-be-added bearer list, where the to-be-added bearer list includes a data radio bearer identifier DRB ID or an evolved packet system EPS bearer identifier.
  • the receiving module 41 is configured to: after the sending module 40 sends the non-cellular access device increase request information to the non-cellular access device, receive the non-cellular access device sent by the non-cellular access device to increase response information, where the non-cellular access
  • the device addition response information includes at least a second tunnel destination allocated for the bearer of the data of the UE, the second tunnel endpoint includes a second tunnel endpoint identifier TEID and a second transport layer address, and the second tunnel endpoint is used to indicate data in the downlink data transmission path.
  • the destination of the transmission and the uplink data received by the UE through the resources of the non-cellular network.
  • the non-cellular access device addition request information further includes: a media access control MAC address of the UE; the to-be-added bearer list further includes a third tunnel destination, a radio access bearer identifier ERAB ID, and a radio bearer service quality priority, where The third tunnel end point includes a third TEID and a third transport layer address, and the third tunnel end point is used to indicate the destination end of the data transmission in the data transmission for the flow control, and the radio bearer service quality priority is the QoS priority corresponding to the radio bearer information.
  • the adding the response information to the non-cellular access device further includes allowing the bearer list to be added, wherein the allowed bearer list includes the radio bearer identifier.
  • the sending module 40 is further configured to: after the receiving module 41 receives the non-cellular access device sending the response information sent by the non-cellular access device, and send the uplink data sent by the UE through the non-cellular network resource, The radio resource control RRC connection configuration information to the UE, where the RRC connection configuration information includes a long term evolution wireless local area network Poly LWA configuration information.
  • the receiving module 41 is further configured to: after the sending module 40 sends the RRC connection configuration information to the UE, receive the RRC connection configuration completion information sent by the UE; and receive the non-cellular access device association completion information sent by the UE.
  • the receiving module 41 is further configured to: after receiving, by the receiving module 41, the RRC connection configuration complete information sent by the UE, and before receiving the non-cellular access device association completion information sent by the UE, receiving the non-cellular access sent by the UE The device connection status information, where the non-cellular access device connection status information is used to indicate a connection status between the UE and the non-cellular access device.
  • the type of the uplink data of the uplink data received by the UE to be received by the UE by the non-cellular network is the type of the uplink transmission data corresponding to the PDCP protocol.
  • the cellular access device of this embodiment may correspond to the cellular access device in the data transmission method of the foregoing embodiment of any one of FIG. 8, FIG. 9 and FIG. 10, and the cellular connection of this embodiment
  • the division and/or function of each module in the device is to implement the method flow shown in any one of FIG. 8, FIG. 9 and FIG. 10.
  • no further details are provided herein.
  • the function of the receiving unit 41 may be implemented by a receiver, and the function of the transmitting unit 40 may be implemented by a transmitter.
  • the receiver and transmitter can be integrated in one transceiver.
  • the cellular access device provided in Embodiment 6 may be the same cellular access device as the cellular access device provided in Embodiment 3. If the cellular access device provided in Embodiment 6 and the cellular access device provided in Embodiment 3 are the same cellular access device, the cellular access device should have the cellular access device provided in Embodiment 6 at the same time.
  • the function and the function of the cellular access device provided in Embodiment 3 are such that the method flow shown in any one of FIGS. 5 to 10 is implemented, and the present invention is not limited.
  • the embodiment of the invention provides a cellular access device. Based on the description of the above embodiment, since the cellular access device sends a non-cellular access device for instructing the non-cellular access device to allocate resources of the non-cellular network to the UE, the request information is added to the non-cellular access device, so that the UE passes the The allocated non-cellular network resources send uplink numbers to the cellular access device According to the problem, the existing LWA technology can only transmit downlink data.
  • the embodiment of the present invention provides a non-cellular access device.
  • the non-cellular access device is configured to perform the steps performed by the non-cellular access device in the above method.
  • the non-cellular access device may include a module corresponding to the corresponding step.
  • the receiving module 50 and the transmitting module 51 are included.
  • the receiving module 50 is configured to receive the non-cellular access device increase request information sent by the cellular access device, where the non-cellular access device increase request information is used to indicate that the non-cellular access device allocates the non-cellular network resource to the user equipment UE,
  • the cellular access device addition request information includes at least a to-be-added bearer list, where the to-be-added bearer list includes a data radio bearer identifier DRB ID or an evolved packet system EPS bearer identifier.
  • the sending module 51 is configured to: after the receiving module 50 receives the non-cellular access device increase request information sent by the cellular access device, send the non-cellular access device to add the response information to the cellular access device, where the non-cellular access device increases
  • the response information includes at least a second tunnel endpoint allocated for the bearer of the data of the UE, the second tunnel endpoint includes a second tunnel endpoint identifier TEID and a second transport layer address, and the second tunnel endpoint is used to indicate data transmission in the downlink data transmission path. Destination.
  • the non-cellular access device addition request information further includes: a media access control MAC address of the UE; the to-be-added bearer list further includes a second tunnel destination, a radio access bearer identifier ERAB ID, and a radio bearer service quality priority,
  • the second tunnel end point includes a second TEID and a second transport layer address, and the second tunnel end point is used to indicate the destination end of the data transmission in the data transmission for the data link layer flow control, and the radio bearer service quality priority is the radio bearer information corresponding.
  • the QoS priority is used to indicate the destination end of the data transmission in the data transmission for the data link layer flow control
  • the QoS priority is used to indicate the destination end of the data transmission in the data transmission for the data link layer flow control
  • the adding the response information to the non-cellular access device further includes allowing the bearer list to be added, wherein the allowed bearer list includes the radio bearer identifier.
  • the non-cellular access device of this embodiment may correspond to the non-cellular access device in the data transmission method of the foregoing embodiment of any one of FIG. 8, FIG. 9 and FIG. 10, and the embodiment is Division and/or work of individual modules in a non-cellular access device
  • the method can be implemented to implement the method flow shown in any one of FIG. 8 , FIG. 9 and FIG. 10 .
  • FIG. 8 , FIG. 9 and FIG. 10 For brevity, details are not described herein again.
  • the function of the receiving unit 50 may be implemented by a receiver, and the function of the transmitting unit 51 may be implemented by a transmitter.
  • the receiver and transmitter can be integrated in one transceiver.
  • the non-cellular access device provided in Embodiment 7 may be the same non-cellular access device as the non-cellular access device provided in Embodiment 4. If the non-cellular access device provided in Embodiment 7 and the non-cellular access device provided in Embodiment 4 are the same non-cellular access device, the non-cellular access device should have the non-National The function of the cellular access device and the function of the non-cellular access device provided in Embodiment 4 are such that the method flow shown in any one of FIGS. 5 to 10 is implemented, and the present invention is not limited.
  • the embodiment of the invention provides a non-cellular access device. Based on the description of the above embodiment, since the cellular access device sends a non-cellular access device for instructing the non-cellular access device to allocate resources of the non-cellular network to the UE, the request information is added to the non-cellular access device, so that the UE passes the The allocated non-cellular network resources send uplink data to the cellular access device, which solves the problem that the existing LWA technology can only transmit downlink data.
  • the embodiment of the present invention further provides a cellular access device.
  • the cellular access device includes: a memory 60, a processor 61, a communication interface 62, and a system bus 63.
  • the memory 60, the processor 61 and the communication interface 62 are connected by a system bus 63 for storing some computer instructions for executing computer instructions to cause the cellular access device to perform as shown in Figures 5, 6 and 7. Any one of the data transmission methods, or the cellular access device performs the data transmission method as shown in any one of FIG. 8, FIG. 9, and FIG.
  • Any one of the data transmission methods, or the cellular access device performs the data transmission method as shown in any one of FIG. 8, FIG. 9, and FIG.
  • FIG. I For a specific data transmission method, refer to the foregoing embodiment shown in any one of FIG. 5, FIG. 6, and FIG. 7, or the related description in the foregoing embodiment shown in any one of FIG. 8, FIG. 9, and FIG. I will not repeat them here.
  • the memory is further configured to store an uplink data transmission resource, and the uplink data is sent.
  • the resource is sent as an uplink non-scheduled data transmission resource or an uplink shared data transmission resource.
  • the processor 61 can be a central processing unit (CPU).
  • the processor 61 can also be other general purpose processors, digital signal processing (DSP), application specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 61 may be a dedicated processor, which may include at least one of a baseband processing chip, a radio frequency processing chip, and the like. Further, the dedicated processor may also include a chip having other dedicated processing functions of the cellular access device.
  • the memory 60 may include a volatile memory such as a random-access memory (RAM); the memory 60 may also include a non-volatile memory such as a read-only memory (read) -only memory, ROM), flash memory, hard disk drive (HDD) or solid-state drive (SSD); the memory 60 may also include a combination of the above types of memories.
  • RAM random-access memory
  • ROM read-only memory
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory 60 may also include a combination of the above types of memories.
  • System bus 63 can include a data bus, a power bus, a control bus, and a signal status bus. For the sake of clarity in the present embodiment, various buses are illustrated as the system bus 63 in FIG.
  • Communication interface 62 can include a receiver and a transmitter. And in a specific implementation of the cellular access device, the receiver and the transmitter may specifically be transceivers on the cellular access device.
  • the transceiver can be a wireless transceiver.
  • the wireless transceiver can be an antenna of a cellular access device or the like.
  • the processor 61 transmits and receives data to and from other devices, such as non-cellular access devices, through the transceiver.
  • the method flow shown in any one of the foregoing FIG. 5, FIG. 6 and FIG. 7 or the steps in the method flow shown in any one of the foregoing FIG. 8, FIG. 9 and FIG. It is implemented by hardware execution of a computer-executed instruction in the form of software. To avoid repetition, we will not repeat them here.
  • the embodiment of the invention provides a cellular access device. Based on the description of the above embodiment, since the cellular access device sends a non-cellular access device for instructing the non-cellular access device to allocate resources of the non-cellular network to the UE, the request information is added to the non-cellular access device, so that the UE passes the The allocated non-cellular network resources send uplink data to the cellular access device, which solves the problem that the existing LWA technology can only transmit downlink data.
  • the embodiment of the present invention further provides a non-cellular access device.
  • the non-cellular access device includes a memory 70, a processor 71, a communication interface 72, and a system bus 73.
  • the memory 70, the processor 71 and the communication interface 72 are connected by a system bus 73 for storing some computer instructions for executing computer instructions to cause the non-cellular access device to perform as shown in Figures 5, 6 and Any one of the data transmission methods, or the non-cellular access device performs the data transmission method of any one of FIG. 8, FIG. 9, and FIG.
  • a specific data transmission method refer to the foregoing embodiment shown in any one of FIG. 5, FIG. 6, and FIG. 7, or the related description in the foregoing embodiment shown in any one of FIG. 8, FIG. 9, and FIG. I will not repeat them here.
  • the memory is further configured to store an uplink data transmission resource, where the uplink data transmission resource is an uplink unscheduled data transmission resource or an uplink shared data transmission resource.
  • the processor 71 can be a CPU.
  • the processor 71 can also be other general purpose processors, DSPs, ASICs, FPGAs or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 71 may be a dedicated processor, which may include at least one of a baseband processing chip, a radio frequency processing chip, and the like. Further, the dedicated processor may also include a chip with other dedicated processing functions of the non-cellular access device.
  • the memory 70 can include a volatile memory, such as a RAM; the memory 70 can also To include a non-volatile memory, such as a ROM, flash memory, HDD or SSD; the memory 70 may also include a combination of the above types of memory.
  • a volatile memory such as a RAM
  • the memory 70 can also To include a non-volatile memory, such as a ROM, flash memory, HDD or SSD; the memory 70 may also include a combination of the above types of memory.
  • System bus 73 can include a data bus, a power bus, a control bus, and a signal status bus. For the sake of clarity in the present embodiment, various buses are illustrated as the system bus 73 in FIG.
  • Communication interface 72 can include a receiver and a transmitter. And in a specific implementation of the non-cellular access device, the receiver and the transmitter may specifically be transceivers on the non-cellular access device.
  • the transceiver can be a wireless transceiver.
  • the wireless transceiver can be an antenna of a non-cellular access device or the like.
  • the processor 71 transmits and receives data to and from other devices, such as cellular access devices, through the transceiver.
  • the method flow shown in any one of the foregoing FIG. 5, FIG. 6 and FIG. 7 or the steps in the method flow shown in any one of the foregoing FIG. 8, FIG. 9 and FIG. It is implemented by hardware execution of a computer-executed instruction in the form of software. To avoid repetition, we will not repeat them here.
  • the embodiment of the invention provides a non-cellular access device. Based on the description of the above embodiment, since the cellular access device sends a non-cellular access device for instructing the non-cellular access device to allocate resources of the non-cellular network to the UE, the request information is added to the non-cellular access device, so that the UE passes the The allocated non-cellular network resources send uplink data to the cellular access device, which solves the problem that the existing LWA technology can only transmit downlink data.
  • the embodiment of the present invention further provides a UE.
  • the UE includes: a memory 80, a processor 81, a communication interface 82, and a system bus 83.
  • the memory 80, the processor 81 and the communication interface 82 are connected by a system bus 83 for storing some computer instructions, and the processor 81 is for executing computer instructions to enable the UE to perform data transmission as shown in any one of Figures 5-10. method.
  • a specific data transmission method refer to the related description in the foregoing embodiment shown in any one of FIG. 5 to FIG. 10, and details are not described herein again.
  • the memory is further configured to store an uplink data transmission resource, and the uplink data is sent.
  • the resource is sent as an uplink non-scheduled data transmission resource or an uplink shared data transmission resource.
  • the processor 81 can be a CPU. Processor 81 can also be other general purpose processors, DSPs, ASICs, FPGAs or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 81 may be a dedicated processor, which may include at least one of a baseband processing chip, a radio frequency processing chip, and the like. Further, the dedicated processor may also include a chip having other dedicated processing functions of the UE.
  • Memory 80 may include volatile memory, such as RAM; memory 80 may also include non-volatile memory, such as ROM, flash memory, HDD or SSD; memory 80 may also include a combination of the types of memory described above.
  • the system bus 83 can include a data bus, a power bus, a control bus, and a signal status bus. For the sake of clarity in the present embodiment, various buses are illustrated as the system bus 83 in FIG.
  • Communication interface 82 can include a receiver and a transmitter. And in a specific implementation of the UE, the receiver and the transmitter may specifically be transceivers on the UE.
  • the transceiver can be a wireless transceiver.
  • the wireless transceiver can be an antenna of the UE or the like.
  • the processor 81 performs data transmission and reception between the transceiver and other devices, such as a cellular access device or a non-cellular access device.
  • each step in the method flow shown in any of the above-mentioned FIG. 5 to FIG. 10 can be implemented by hardware execution of a computer-executed instruction in the form of software. To avoid repetition, we will not repeat them here.
  • An embodiment of the present invention provides a UE. Based on the description of the above embodiment, since the cellular access device sends a non-cellular access device for instructing the non-cellular access device to allocate resources of the non-cellular network to the UE, the request information is added to the non-cellular access device, so that the UE passes the The allocated non-cellular network resources send uplink data to the cellular access device, which solves the problem that the existing LWA technology can only transmit downlink data.
  • Embodiments of the present invention provide a data transmission system, where the system includes a cellular access device, a non-cellular access device, and a UE.
  • a description of the cellular access device refer to the related description of the cellular access device in the foregoing embodiment 3, the embodiment 6 and the embodiment 8.
  • the description of the non-cellular access device refer to the foregoing embodiment 4 and the embodiment. 7 and the related description of the non-cellular access device in the embodiment 9, for the description of the UE, refer to the descriptions of the UE in the foregoing embodiment 5 and the embodiment 10, and details are not described herein again.
  • the cellular access device performs the data transmission method of the embodiment of the present invention by performing corresponding steps in the method flow shown in any one of FIG. 5 to FIG. 10;
  • the cellular access device performs the data transmission method of the embodiment of the present invention by performing corresponding steps in the method flow shown in any one of FIG. 5 to FIG. 10;
  • the UE performs the method shown in any one of FIG. 5 to FIG.
  • the corresponding steps in the flow complete the data transmission method of the embodiment of the present invention.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, ie, Located in one place, or distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • An integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种数据传输方法、装置及系统,涉及通信领域,非蜂窝接入设备能够为UE分配非蜂窝网的资源,使得UE通过非蜂窝网的资源向蜂窝接入设备发送上行数据。该数据传输方法包括:蜂窝接入设备发送非蜂窝接入设备增加请求信息至非蜂窝接入设备;蜂窝接入设备接收非蜂窝接入设备发送的非蜂窝接入设备增加响应信息;蜂窝接入设备接收UE通过非蜂窝网的资源发送的上行数据。

Description

一种数据传输方法、装置及系统 技术领域
本发明涉及通信领域,尤其涉及一种数据传输方法、装置及系统。
背景技术
随着智能移动终端的普及和移动应用的迅速发展,用户使用移动数据的场合大大增多,导致现有的网络越来越难以满足移动数据流量增长的需求。通常的,无线蜂窝网络具有覆盖范围广,支持高速移动等优点,但同时具有数据传输速率低、价格高、传输功率大等缺点;而无线局域网络(Wireless Local Area Networks,WLAN)具有数据传输速率高、价格低、传输功率小等优点,但同时具有覆盖范围小等缺点。
为了满足移动数据流量增长的需求,现有技术将无线蜂窝网络技术和WLAN技术相互融合,利用WLAN分流无线蜂窝网络的数据流量,提高用户体验,实现高效低成本的通信。目前,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)提出了一种长期演进无线局域网络汇聚(Long Term Evolution Wireless Local Area Networks aggregation,LWA)技术,能够在基站和无线局域网络端点(Wireless Local Area Networks termination,WT)之间建立用户层面的通用无线分组业务隧道协议(General Packet Radio Service Tunnelling Protocol-User Plane,GTP-U)隧道,并通过GTP-U隧道传输数据,从而实现无线蜂窝网络技术和WLAN技术的相互融合,实现WLAN分流的技术。
然而,现有的LWA技术只能够传输下行数据,当用户设备(User Equipment,UE)需要发送上行数据时,无法通过基站和WT之间建立的GTP-U隧道传输分流的数据至基站。
发明内容
本发明的实施例提供一种数据传输方法、装置及系统,非蜂窝接入设备能够为UE分配非蜂窝网的资源,使得UE通过非蜂窝接入设备向蜂窝接入设备发送上行数据。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明实施例提供一种数据传输方法,包括:
首先,蜂窝接入设备发送用于指示非蜂窝接入设备为用户设备UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息至非蜂窝接入设备,非蜂窝接入设备增加请求信息至少包括针对UE分配的第一隧道终点,第一隧道终点包括第一隧道端点标识TEID和第一传输层地址,第一隧道终点用于指示上行数据传输路径中数据传输的目的端;其次,蜂窝接入设备接收非蜂窝接入设备发送的非蜂窝接入设备增加响应信息,非蜂窝接入设备增加响应信息至少包括针对UE的数据所属承载分配的第二隧道终点,第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,第二隧道终点用于指示下行数据传输路径中数据传输的目的端;最后,蜂窝接入设备接收UE通过非蜂窝接入设备发送的上行数据。
本发明实施例提供的数据传输方法中,由于蜂窝接入设备向非蜂窝接入设备发送了用于指示非蜂窝接入设备为UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,以使得非接入设备为UE分配资源,其中,上行传输的隧道是针对UE建立的,下行传输的隧道是针对UE的数据所属承载建立的,UE通过分配好的非蜂窝网的资源向蜂窝接入设备发送上行数据,解决了现有的LWA技术只能传输下行数据的问题。
进一步地,非蜂窝接入设备增加请求信息还包括:UE的媒体访问控制MAC地址和待增加承载列表,其中,待增加承载列表包括第三隧道终点、无线接入承载标识ERAB ID和无线承载业务质量优先级,第三隧道终点包括第三TEID和第三传输层地址,第三隧道终点用于指示上行针对流量控制的数据传输中数据传输的目的端,无线承载业务质量优先级为无线承载信息对应的服务质量Qos优先 级。
进一步地,非蜂窝接入设备增加响应信息还包括允许增加承载列表,其中,允许增加承载列表包括无线承载标识。
进一步地,在蜂窝接入设备接收非蜂窝接入设备发送的非蜂窝接入设备增加响应信息后,且在蜂窝接入设备接收UE通过非蜂窝接入设备发送的上行数据前,该方法还包括:
首先,蜂窝接入设备发送包括长期演进无线局域网络汇聚LWA的配置信息的无线资源控制RRC连接配置信息至UE;其次,蜂窝接入设备接收UE发送的RRC连接配置完成信息;最后,蜂窝接入设备接收UE发送的非蜂窝接入设备关联完成信息。
本发明实施例提供的数据传输方法中,在非蜂窝接入设备为UE分配非蜂窝网的资源后,UE接入蜂窝接入设备并与非蜂窝接入设备关联,保证UE向蜂窝接入设备发送的上行数据能够正常传输。
可选的,在蜂窝接入设备接收UE发送的RRC连接配置完成信息后,且在蜂窝接入设备接收UE发送的非蜂窝接入设备关联完成信息前,该方法还包括:
蜂窝接入设备接收UE发送的用于指示UE与非蜂窝接入设备的连接状态非蜂窝接入设备连接状态信息。
本发明实施例提供的数据传输方法中,由于用户喜好、终端配置或者接入网发现和选择功能(Access Network Discovery and Selection Function,ANDSF)策略不同,可能会导致UE与非蜂窝接入设备关联失败,因此,UE还能够发送用于指示UE与非蜂窝接入设备的连接状态的非蜂窝接入设备连接状态信息至蜂窝接入设备。
进一步地,蜂窝接入设备接收UE通过非蜂窝接入设备发送的上行数据的类型Type为PDCP协议对应的上行传输数据的类型号。
第二方面,本发明实施例提供一种数据传输方法,包括:
非蜂窝接入设备先接收蜂窝接入设备发送的用于指示非蜂窝接入设备为用户设备UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,非蜂窝接入设备增加请求信息至少包括针对UE分配的 第一隧道终点,第一隧道终点包括第一隧道端点标识TEID和第一传输层地址,第一隧道终点用于指示上行数据传输路径中数据传输的目的端;非蜂窝接入设备再发送非蜂窝接入设备增加响应信息至蜂窝接入设备,其中,非蜂窝接入设备增加响应信息至少包括针对UE的数据所属承载分配的第二隧道终点,第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,第二隧道终点用于指示下行数据传输路径中数据传输的目的端。
本发明实施例提供的数据传输方法中,由于非蜂窝接入设备接收了蜂窝接入设备发送的用于指示非蜂窝接入设备为UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,并为UE分配非蜂窝网的资源,其中,上行传输的隧道是针对UE建立的,下行传输的隧道是针对UE的数据所属承载建立的,以使得UE通过分配好的非蜂窝网的资源向蜂窝接入设备发送上行数据,解决了现有的LWA技术只能传输下行数据的问题。
第三方面,本发明实施例提供一种数据传输方法,包括:
用户设备UE通过非蜂窝接入设备发送上行数据至蜂窝接入设备,其中,非蜂窝网的资源是非蜂窝接入设备为UE分配的。
本发明实施例提供的数据传输方法中,由于蜂窝接入设备向非蜂窝接入设备发送了用于指示非蜂窝接入设备为UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,以使得非接入设备为UE分配资源,其中,上行传输的隧道是针对UE建立的,下行传输的隧道是针对UE的数据所属承载建立的,UE通过分配好的非蜂窝网的资源向蜂窝接入设备发送上行数据,解决了现有的LWA技术只能传输下行数据的问题。
进一步地,在用户设备UE通过非蜂窝接入设备发送上行数据至蜂窝接入设备前,该方法还包括:
首先,UE接收蜂窝接入设备发送的包括长期演进无线局域网络汇聚LWA的配置信息的无线资源控制RRC连接配置信息;其次,UE发送RRC连接配置完成信息至蜂窝接入设备;最后,在UE将 UE和非蜂窝接入设备关联后,UE发送非蜂窝接入设备关联完成信息至蜂窝接入设备。
本发明实施例提供的数据传输方法中,在非蜂窝接入设备为UE分配非蜂窝网的资源后,UE接入蜂窝接入设备并与非蜂窝接入设备关联,保证UE向蜂窝接入设备发送的上行数据能够正常传输。
可选的,在UE发送RRC连接配置完成信息至蜂窝接入设备后,且在UE发送非蜂窝接入设备关联完成信息至蜂窝接入设备前,该方法还包括:
UE发送用于指示UE与非蜂窝接入设备的连接状态的非蜂窝接入设备连接状态信息至蜂窝接入设备。
本发明实施例提供的数据传输方法中,由于用户喜好、终端配置或者接入网发现和ANDSF策略不同,可能会导致UE与非蜂窝接入设备关联失败,因此,UE还能够发送用于指示UE与非蜂窝接入设备的连接状态的非蜂窝接入设备连接状态信息至蜂窝接入设备。
进一步地,UE通过非蜂窝接入设备发送上行数据的类型Type为PDCP协议对应的上行传输数据的类型号。
第四方面,本发明实施例还提供一种数据传输方法,包括:
首先,蜂窝接入设备发送用于指示非蜂窝接入设备为用户设备UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息至非蜂窝接入设备,非蜂窝接入设备增加请求信息至少包括待增加承载列表,其中,待增加承载列表包括数据无线承载标识DRB ID或者演进的分组系统EPS承载标识;其次,蜂窝接入设备接收非蜂窝接入设备发送的非蜂窝接入设备增加响应信息,其中,非蜂窝接入设备增加响应信息至少包括针对UE的数据所属承载分配的第二隧道终点,第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,第二隧道终点用于指示下行数据传输路径中数据传输的目的端;最后,蜂窝接入设备接收UE通过非蜂窝接入设备发送的上行数据。
本发明实施例提供的数据传输方法中,由于蜂窝接入设备向非蜂窝接入设备发送了用于指示非蜂窝接入设备为UE分配非蜂窝网 的资源的非蜂窝接入设备增加请求信息,以使得非接入设备为UE分配资源,UE通过分配好的非蜂窝网的资源向蜂窝接入设备发送上行数据,解决了现有的LWA技术只能传输下行数据的问题。
进一步地,在蜂窝接入设备接收非蜂窝接入设备发送的非蜂窝接入设备增加响应信息后,且在蜂窝接入设备接收UE通过非蜂窝接入设备发送的上行数据前,该方法还包括:
首先,蜂窝接入设备发送包括长期演进无线局域网络汇聚LWA的配置信息的无线资源控制RRC连接配置信息至UE;其次,蜂窝接入设备接收UE发送的RRC连接配置完成信息;最后,蜂窝接入设备接收UE发送的非蜂窝接入设备关联完成信息。
本发明实施例提供的数据传输方法中,在非蜂窝接入设备为UE分配非蜂窝网的资源后,UE接入蜂窝接入设备并与非蜂窝接入设备关联,保证UE向蜂窝接入设备发送的上行数据能够正常传输。
可选的,在蜂窝接入设备接收UE发送的RRC连接配置完成信息后,且在蜂窝接入设备接收UE发送的非蜂窝接入设备关联完成信息前,该方法还包括:
蜂窝接入设备接收UE发送的用于指示UE与非蜂窝接入设备的连接状态的非蜂窝接入设备连接状态信息。
本发明实施例提供的数据传输方法中,由于用户喜好、终端配置或者ANDSF策略不同,可能会导致UE与非蜂窝接入设备关联失败,因此,UE还能够发送用于指示UE与非蜂窝接入设备的连接状态的非蜂窝接入设备连接状态信息至蜂窝接入设备。
第五方面,本发明实施例提供一种数据传输方法,包括:
非蜂窝接入设备接收蜂窝接入设备发送的用于指示非蜂窝接入设备为用户设备UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,非蜂窝接入设备增加请求信息至少包括待增加承载列表,其中,待增加承载列表包括数据无线承载标识DRB ID或者演进的分组系统EPS承载标识;非蜂窝接入设备发送非蜂窝接入设备增加响应信息至蜂窝接入设备,其中,非蜂窝接入设备增加响应信息至 少包括针对UE的数据所属承载分配的第二隧道终点,第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,第二隧道终点用于指示下行数据传输路径中数据传输的目的端。
本发明实施例提供的数据传输方法中,由于非蜂窝接入设备接收了蜂窝接入设备发送的用于指示非蜂窝接入设备为UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,并为UE分配非蜂窝网的资源,以使得UE通过分配好的非蜂窝网的资源向蜂窝接入设备发送上行数据,解决了现有的LWA技术只能传输下行数据的问题。
第六方面,本发明实施例提供一种蜂窝接入设备,包括发送模块和接收模块。
发送模块用于发送用于指示非蜂窝接入设备为用户设备UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息至非蜂窝接入设备,非蜂窝接入设备增加请求信息至少包括针对UE分配的第一隧道终点,第一隧道终点包括第一隧道端点标识TEID和第一传输层地址,第一隧道终点用于指示上行数据传输路径中数据传输的目的端。
接收模块用于在发送模块发送非蜂窝接入设备增加请求信息至非蜂窝接入设备后,接收非蜂窝接入设备发送的非蜂窝接入设备增加响应信息,其中,非蜂窝接入设备增加响应信息至少包括针对UE的数据所属承载分配的第二隧道终点,第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,第二隧道终点用于指示下行数据传输路径中数据传输的目的端;以及接收UE通过非蜂窝接入设备发送的上行数据。
本发明实施例提供的蜂窝接入设备的技术效果可以参见上述第一方面蜂窝接入设备执行的数据传输方法中描述的蜂窝接入设备的技术效果,此处不再赘述。
进一步地,发送模块还用于在接收模块接收非蜂窝接入设备发送的非蜂窝接入设备增加响应信息后,且在接收UE通过非蜂窝接 入设备发送的上行数据前,发送包括长期演进无线局域网络汇聚LWA的配置信息的无线资源控制RRC连接配置信息至UE;接收模块还用于在发送模块发送无线资源控制RRC连接配置信息至UE后,接收UE发送的RRC连接配置完成信息;以及接收UE发送的非蜂窝接入设备关联完成信息。
可选的,接收模块还用于在接收模块接收UE发送的RRC连接配置完成信息后,且在接收UE发送的非蜂窝接入设备关联完成信息前,接收UE发送的用于指示UE与非蜂窝接入设备的连接状态的非蜂窝接入设备连接状态信息。
第七方面,本发明实施例提供一种非蜂窝接入设备,包括接收模块和发送模块。
接收模块用于接收蜂窝接入设备发送的用于指示非蜂窝接入设备为用户设备UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,非蜂窝接入设备增加请求信息至少包括针对UE分配的第一隧道终点,第一隧道终点包括第一隧道端点标识TEID和第一传输层地址,第一隧道终点用于指示上行数据传输路径中数据传输的目的端。
发送模块用于在接收模块接收蜂窝接入设备发送的非蜂窝接入设备增加请求信息后,发送非蜂窝接入设备增加响应信息至蜂窝接入设备,其中,非蜂窝接入设备增加响应信息至少包括针对UE的数据所属承载分配的第二隧道终点,第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,第二隧道终点用于指示下行数据传输路径中数据传输的目的端。
本发明实施例提供的非蜂窝接入设备的技术效果可以参见上述第二方面非蜂窝接入设备执行的数据传输方法中描述的非蜂窝接入设备的技术效果,此处不再赘述。
第八方面,本发明实施例提供一种用户设备UE,包括发送模块。
发送模块用于通过非蜂窝接入设备发送上行数据至蜂窝接入设备,其中,非蜂窝网的资源是非蜂窝接入设备为UE分配的。
本发明实施例提供的UE的技术效果可以参见上述第三方面UE执行的数据传输方法中描述的UE的技术效果,此处不再赘述。
进一步地,UE还包括接收模块和关联模块。
接收模块用于在发送模块通过非蜂窝接入设备发送上行数据至蜂窝接入设备前,接收蜂窝接入设备发送的包括长期演进无线局域网络汇聚LWA的配置信息的无线资源控制RRC连接配置信息;发送模块还用于在接收模块接收蜂窝接入设备发送的无线资源控制RRC连接配置信息后,发送RRC连接配置完成信息至蜂窝接入设备;关联模块用于将UE和非蜂窝接入设备关联;发送模块还用于在关联模块将UE和非蜂窝接入设备关联后,发送非蜂窝接入设备关联完成信息至蜂窝接入设备。
可选的,发送模块还用于在发送模块发送RRC连接配置完成信息至蜂窝接入设备后,且在发送非蜂窝接入设备关联完成信息至蜂窝接入设备前,发送用于指示UE与非蜂窝接入设备的连接状态的非蜂窝接入设备连接状态信息至蜂窝接入设备。
第九方面,本发明实施例提供一种蜂窝接入设备,包括发送模块和接收模块。
发送模块用于发送用于指示非蜂窝接入设备为用户设备UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息至非蜂窝接入设备,非蜂窝接入设备增加请求信息至少包括待增加承载列表,其中,待增加承载列表包括数据无线承载标识DRB ID或者演进的分组系统EPS承载标识。
接收模块用于在发送模块发送非蜂窝接入设备增加请求信息至非蜂窝接入设备后,接收非蜂窝接入设备发送的非蜂窝接入设备增加响应信息,其中,非蜂窝接入设备增加响应信息至少包括针对UE的数据所属承载分配的第二隧道终点,第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,第二隧道终点用于指示下行数据传输路径中数据传输的目的端;以及接收UE通过非蜂窝网的资源发送的上行数据。
本发明实施例提供的蜂窝接入设备的技术效果可以参见上述第四方面蜂窝接入设备执行的数据传输方法中描述的蜂窝接入设备的技术效果,此处不再赘述。
进一步地,发送模块还用于在接收模块接收非蜂窝接入设备发送的非蜂窝接入设备增加响应信息后,且在接收UE通过非蜂窝接入设备发送的上行数据前,发送包括长期演进无线局域网络汇聚LWA的配置信息的无线资源控制RRC连接配置信息至UE;接收模块还用于在发送模块发送无线资源控制RRC连接配置信息至UE后,接收UE发送的RRC连接配置完成信息;以及接收UE发送的非蜂窝接入设备关联完成信息。
可选的,接收模块还用于在接收模块接收UE发送的RRC连接配置完成信息后,且在接收UE发送的非蜂窝接入设备关联完成信息前,接收UE发送的用于指示UE与非蜂窝接入设备的连接状态的非蜂窝接入设备连接状态信息。
第十方面,本发明实施例提供一种非蜂窝接入设备,包括接收模块和发送模块。
接收模块用于接收蜂窝接入设备发送的用于指示非蜂窝接入设备为用户设备UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,非蜂窝接入设备增加请求信息至少包括待增加承载列表,其中,待增加承载列表包括数据无线承载标识DRB ID或者演进的分组系统EPS承载标识。
发送模块用于在接收模块接收蜂窝接入设备发送的非蜂窝接入设备增加请求信息后,发送非蜂窝接入设备增加响应信息至蜂窝接入设备,其中,非蜂窝接入设备增加响应信息至少包括针对UE的数据所属承载分配的第二隧道终点,第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,第二隧道终点用于指示下行数据传输路径中数据传输的目的端。
本发明实施例提供的非蜂窝接入设备的技术效果可以参见上述第五方面非蜂窝接入设备执行的数据传输方法中描述的非蜂窝接入 设备的技术效果,此处不再赘述。
第十一方面,本发明实施例提供一种蜂窝接入设备,包括存储器、处理器、通信接口和系统总线;存储器、处理器和通信接口通过系统总线连接,存储器用于存储计算机指令,处理器用于执行存储器存储的计算机指令,以使蜂窝接入设备执行第一方面中的数据传输方法或者第四方面中的数据传输方法。
本发明实施例提供的蜂窝接入设备的技术效果可以参见上述第一方面或者第四方面蜂窝接入设备执行的数据传输方法中描述的蜂窝接入设备的技术效果,此处不再赘述。
第十二方面,本发明实施例提供一种非蜂窝接入设备,包括存储器、处理器、通信接口和系统总线;存储器、处理器和通信接口通过系统总线连接,存储器用于存储计算机指令,处理器用于执行存储器存储的计算机指令,以使非蜂窝接入设备执行第二方面中的数据传输方法或者第五方面中的数据传输方法。
本发明实施例提供的非蜂窝接入设备的技术效果可以参见上述第二方面或者第五方面非蜂窝接入设备执行的数据传输方法中描述的非蜂窝接入设备的技术效果,此处不再赘述。
第十三方面,本发明实施例提供一种UE,包括存储器、处理器、通信接口和系统总线;存储器、处理器和通信接口通过系统总线连接,存储器用于存储计算机指令,处理器用于执行存储器存储的计算机指令,以使UE执行第三方面中的数据传输方法。
本发明实施例提供的UE的技术效果可以参见上述第三方面UE执行的数据传输方法中描述的UE的技术效果,此处不再赘述。
第十四方面,本发明实施例提供一种数据传输系统,包括第十一方面的蜂窝接入设备,第十二方面的非蜂窝接入设备,以及第十三方面的用户设备UE。
本发明实施例提供的数据传输系统中,由于蜂窝接入设备向非蜂窝接入设备发送了用于指示非蜂窝接入设备为UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,以使得UE通过分配好的 非蜂窝网的资源向蜂窝接入设备发送上行数据,解决了现有的LWA技术只能传输下行数据的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例。
图1为本发明实施例提供的基于LWA技术的通信系统的架构图;
图2为本发明实施例提供的eNB和UE的协议栈包括LWAAP协议层的配置结构示意图;
图3为本发明实施例提供的eNB、UE和WT中各个协议栈包括LWAAP协议层的配置结构示意图;
图4为本发明实施例提供的UE和WT的协议栈包括LWAEP协议层的配置结构示意图;
图5为本发明实施例1提供的数据传输方法的流程示意图一;
图6为本发明实施例1提供的数据传输方法的流程示意图二;
图7为本发明实施例1提供的数据传输方法的流程示意图三;
图8为本发明实施例2提供的数据传输方法的流程示意图一;
图9为本发明实施例2提供的数据传输方法的流程示意图二;
图10为本发明实施例2提供的数据传输方法的流程示意图三;
图11为本发明实施例3提供的蜂窝接入设备的结构示意图;
图12为本发明实施例4提供的非蜂窝接入设备的结构示意图;
图13为本发明实施例5提供的UE的结构示意图一;
图14为本发明实施例5提供的UE的结构示意图二;
图15为本发明实施例6提供的蜂窝接入设备的结构示意图;
图16为本发明实施例7提供的非蜂窝接入设备的结构示意图;
图17为本发明实施例8提供的蜂窝接入设备的硬件示意图;
图18为本发明实施例9提供的非蜂窝接入设备的硬件示意图;
图19为本发明实施例10提供的UE的硬件示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要说明的是,本发明的技术方案可以应用于无线蜂窝网络的各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统,码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,长期演进(Long Term Evolution,LTE)系统,通用移动通信系统(Universal Mobile Telecommunications System,UMTS)等,本发明并不限定。
本发明实施例提供的基于LWA技术的通信系统的架构图如图1所示,通信系统分为三个网元,演进分组核心网(Evolved Packet Core,EPC)设备、演进型基站(Evolved Node B,eNode B)和WLAN结点(WLAN Termination,WT)。EPC负责核心网部分,包括移动性管理实体(Mobility Management Entity,MME)和服务网关(Serving Gateway,S-GW),其中,MME进行信令处理,S-GW进行数据处理。eNode B和WT负责接入网部分,也称演进的通用陆地无线接入网络(Evolved Universal Terrestrial Radio Access Network,E-UTRAN)。eNode B可以统称为蜂窝接入设备,WT可以统称为非蜂窝接入设备。本发明实施例提供的数据传输方法就是在蜂窝接入设备、非蜂窝接入设备和UE之间进行的。同时,本发明实施例提供的数据传输方法适用于蜂窝接入设备和非蜂窝接入设备共站,以 及蜂窝接入设备和非蜂窝接入设备非共站两种场景中,本发明不做限制。
在本发明实施例中,UE也可称之为移动终端(英文:Mobile Terminal)、移动用户设备等,可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,UE可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据,本发明并不限定。
在本发明实施例中,蜂窝接入设备可以是基站设备,例如GSM或CDMA中的基站收发台(Base Transceiver Station,BTS),也可以是WCDMA中的节点B(Node B),还可以是LTE中的eNB,本发明并不限定。蜂窝接入设备也可以是各种接入网节点的控制节点,例如UMTS中的无线网口控制器(Radio Network Controller,RNC),或管理多个小基站的控制器等。
在本发明实施例中,非蜂窝接入设备可以是无线局域网络接入点(Wireless Local Area Networks Access Point,WLAN AP),还可以是无线局域网络接入控制器(Wireless Local Area Networks Access Controller,WLAN AC),或其他单独部署的实体WLAN结点(WLAN Termination,WT),其中,WT可以位于WLAN AP,也可以位于WLAN AC,也可以是独立的实体,一个WT下可以管理至少一个WLAN AP。WT和WLAN AP之间的数据传输可以通过各种传输方法实现,本发明不做限制。
在本发明实施例中,非蜂窝网络也可以称为非蜂窝系统,可以简称为“非蜂窝”,本发明实施例中出现的“非蜂窝”即指代非蜂窝网络或者非蜂窝系统。
对于非蜂窝网络来说,用户侧终端设备为工作站(Station,STA),而对于无线蜂窝网络来说,用户侧终端设备为UE。在本发明实施例的非蜂窝网络和无线蜂窝网络组成的异构网络场景中,用户侧终端设备可以称为UE或STA,能够接收两个网络的服务,为了方便描述,以下统称为UE。
需要说明的是,本发明实施例的eNB、UE和WT中各个协议栈的配置结构可以分为三种:第一种是eNB和UE的协议栈包括LWAAP协议层;第二种是eNB、UE和WT中各个协议栈包括LWAAP协议层;第三种是UE和WT的协议栈包括LWAEP协议层。下面,首先对这三种eNB、UE和WT中各个协议栈的配置结构进行说明。
对于eNB和UE的协议栈包括LWAAP协议层的情况,如图2所示。eNB和UE的协议栈包括LWAAP协议层的情况与现有的协议栈的配置结构相同。
对于eNB、UE和WT中各个协议栈包括LWAAP协议层的情况,如图3所示。
首先,对eNB中的协议栈配置结构进行说明:
eNB协议栈可以有eNB第一协议栈和eNB第二协议栈,该eNB第一协议栈用于在eNB侧实现与该用户设备之间通信的数据处理,该eNB第二协议栈用于在eNB侧实现与WT之间通信的数据处理。作为eNB第一协议栈,例如现有能够实现eNB与用户设备之间的通信协议栈均在保护范围内。作为eNB第二协议栈,可以通过接口直接聚合在eNB第一协议栈的至少一个协议层上。
eNB第一协议栈和eNB第二协议栈可以包括用户面协议栈,也可以包括用户面协议栈和控制面协议栈。例如,如图3所示,eNB第一协议栈可以包括如下协议层:分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)、无线链路控制层(Radio Link Control,RLC)、媒体介入控制层(Media Access Control,MAC)、物理层(Physical,PHY)。作为eNB第二协议栈,可以包括用户面协议栈,也可以包括控制面协议栈,本发明中用户面协议栈的传输层采用新定义的Xw接口用户协议(Xw user,Xw-U),具体的Xw-U协议可以使用GPRS通道协议-用户面GPRS隧道(GPRS Tunnelling Protocol-User Plane,GTP-U)协议。本发明中控制面协议栈传输层使用流控制传输协议(Stream Control Transmission Protocol,SCTP)协议、传输控制协议(Transmission Control Protocol,TCP)或者用户数据报协议(User Datagram Protocol,UDP),应用层采用新定义 的Xw接口应用(Xw Application Protocol,XwAP)协议。eNB第二协议栈可以在eNB第一协议栈的PDCP汇聚。eNB第一协议栈可以在PDCP分流。可选的,eNB第二协议栈还存在一个LWAAP协议层,LWAAP协议层位于GTP-U层之上。
然后,对WT中的协议栈配置结构进行说明。
WT协议栈具有WT第一协议栈和WT第二协议栈。该WT第一协议栈用于在该WLAN WT实现与该eNB之间通信的数据处理,该WT第二协议栈用于在该WT侧实现与该用户设备之间通信的数据处理。具体的,若WT位于WLAN AP,则WT和WLAN AP之间通信内部实现,若WT独立于WLAN AP,则WT和WLAN AP之间的通信协议栈由电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)来定义。
作为WT第一协议栈,可以包括用户面协议栈,也可以包括控制面协议栈和用户面协议栈,本发明中用户面协议栈的传输层采用Xw-U,具体的Xw-U协议可以使用GTP-U协议,本发明中控制面协议栈传输层使用SCTP协议,应用层采用新定义的XwAP协议。WT第二协议栈可以使用例如现有的无线局域网通信的协议栈,例如,WIFI协议栈,MAC层、PHY层,可选的,WT第二协议栈还可以包括逻辑链路控制(Logical Link Control,LLC)层,在MAC层之上还存在一个LWAAP协议层,如果有LLC层,那么LWAAP协议层在LLC层之上。
最后,对用户设备中的协议栈配置结构进行说明:
用户设备协议栈可以有用户设备第一协议栈和用户设备第二协议栈,该用户设备第一协议栈用于在用户设备侧实现与eNB之间通信的数据处理,该用户设备第二协议栈用于在用户设备侧实现与WT之间通信的数据处理。其中,该用户设备第二协议栈与该用户设备第一协议栈的至少一个协议层相连。具体的,用户设备第二协议栈可以包括如下协议层:MAC层,PHY层,进一步的,在MAC层之上还可以包括LWAAP协议层。可选的,用户设备第二协议栈还可以包括LLC层,如果包括LLC层,那么LWAAP协议层可以在LLC层 之上。
对于UE和WT的协议栈包括LWAEP协议层的情况,如图4所示。
首先,对eNB中的协议栈配置结构进行说明:
eNB中的协议栈配置结构与图3中eNB中的协议栈配置结构类似,与其不同的是:eNB第二协议栈不存在LWAAP协议层。
然后,对WT中的协议栈配置结构进行说明。
WT中的协议栈配置结构与图3中WT中的协议栈配置结构类似,与其不同的是:在MAC层之上还存在一个新的协议层(LWAEP),如果有LLC层,那么新的协议层在LLC层之上。
最后,对用户设备中的协议栈配置结构进行说明:
用户设备中的协议栈配置结构与图3中用户设备中的协议栈配置结构类似,与其不同的是:在MAC层之上还可以包括新增的适配协议层(LWAEP)。可选的,用户设备第二协议栈还可以包括LLC层,如果包括LLC层,那么新增的适配协议层可以在LLC层。
实施例1
本发明实施例提供一种数据传输方法,基于如图2所示的eNB和UE的协议栈包括LWAAP协议层的配置结构,如图5所示,该方法包括:
S101、蜂窝接入设备发送非蜂窝接入设备增加请求信息至非蜂窝接入设备。
其中,非蜂窝接入设备增加请求信息用于指示非蜂窝接入设备为用户设备UE分配非蜂窝网的资源,非蜂窝接入设备增加请求信息至少包括针对UE分配的第一隧道终点,第一隧道终点包括第一隧道端点标识(Tunnel Endpoint Identifier,TEID)和第一传输层地址,第一隧道终点用于指示上行数据传输路径中数据传输的目的端。
可以理解的是,针对UE分配的第一隧道终点是指蜂窝接入设备针对每一个UE分配的第一隧道终点,多个UE对应多个第一隧道终点,每个UE分配到的第一隧道终点都是唯一的。
进一步地,非蜂窝接入设备增加请求信息还包括:UE的媒体访问控制(Media Access Control,MAC)地址和待增加承载列表,其中,待增加承载列表包括第三隧道终点、无线接入承载标识(EUTRAN-Radio Access Bearer Identifier,ERAB ID)和无线承载业务质量优先级,第三隧道终点包括第三TEID和第三传输层地址,第三隧道终点用于指示上行针对流量控制的数据传输中数据传输的目的端,无线承载业务质量优先级为无线承载信息对应的服务质量(Quality of Service,Qos)优先级。具体的,UE的MAC地址、第三隧道终点、ERAB ID和无线承载业务质量优先级具有一致性。
需要说明的是,UE的MAC地址可以通过UE能力上报时指示,也可以通过UE发送单独的消息上报到蜂窝接入设备,本发明不做限制。
还需要补充的是,在步骤S101执行之前,蜂窝接入设备能够配置UE进行非蜂窝接入设备的测量和上报,从而使得蜂窝接入设备根据UE上报的非蜂窝接入设备的测量结果(例如非蜂窝接入设备的负荷或者UE的签约信息)选择增加合适的非蜂窝接入设备进行LWA传输。
S102、非蜂窝接入设备接收蜂窝接入设备发送的非蜂窝接入设备增加请求信息。
与步骤S101相对应的步骤。
S103、非蜂窝接入设备发送非蜂窝接入设备增加响应信息至蜂窝接入设备。
其中,非蜂窝接入设备增加响应信息至少包括针对UE的数据所属承载分配的第二隧道终点,第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,第二隧道终点用于指示下行数据传输路径中数据传输的目的端。
非蜂窝接入设备增加响应信息还包括允许增加承载列表,其中,允许增加承载列表包括无线承载标识。
具体的,第二隧道终点和无线承载标识也具有一致性。
S104、蜂窝接入设备接收非蜂窝接入设备发送的非蜂窝接入设 备增加响应信息。
与步骤S103相对应的步骤。
S105、用户设备UE通过非蜂窝接入设备发送上行数据至蜂窝接入设备,其中,非蜂窝网的资源是非蜂窝接入设备为UE分配的。
可选的,蜂窝接入设备接收UE通过非蜂窝网的资源发送的上行数据的类型Type为PDCP协议对应的上行传输数据的类型号。
若蜂窝接入设备接收UE通过非蜂窝网的资源发送的上行数据不携带上行传输数据的类型号,则蜂窝接入设备在接收到上行数据后可以直接对该上行数据进行处理。
S106、蜂窝接入设备接收UE通过非蜂窝接入设备发送的上行数据。
与步骤S105相对应的步骤。
具体的,以蜂窝接入设备为eNB,非蜂窝接入设备为WT为例,对上述用户设备UE通过非蜂窝网的资源发送上行数据至蜂窝接入设备的步骤进行说明:
UE向WT发送LWA协议数据单元(Protocol Data Unit,PDU),即增加了LWAAP的PDCP PDU,WT在接收到LWA PDU数据包后,首先根据UE的MAC地址识别出是哪个UE发送的数据包,然后找到该UE对应的第一TEID(第一TEID即eNB在隧道建立过程中为上行数据传输分配的TEID,由于UE的MAC地址和第一TEID对应,则可以直接通过UE的MAC地址找到第一TEID),通过上行专用的GTP-U隧道,为LWA PDU添加GTP-U报头,报头中填写该UE对应的上行专用的第一TEID,数据传输到eNB的LWAAP协议层后,如果GTP-U报头中包括上行传输数据的类型号,那么首先根据GTP-U报头(扩展报头)中的PDU type识别LWA PDU是否为PDCP协议对应的上行传输数据的类型号,如是则删除GTP-U报头;如果GTP-U报头中不包括上行传输数据的类型号,则直接删除GTP-U报头。然后读取LWAAP协议层中的DRB承载信息,并删除LWAAP报头,以及把PDCP PDU交给承载标识对应的PDCP实体来处理。
进一步地,如图6所示,在执行步骤S105前,本发明实施例提 供的数据传输方法还包括步骤S107-S113:
S107、蜂窝接入设备发送无线资源控制RRC连接配置信息至UE。
其中,RRC连接配置信息包括长期演进无线局域网络汇聚LWA的配置信息。如基本服务集标识符(Basic Service Set Identifier,BSSID)列表等。
S108、UE接收蜂窝接入设备发送的无线资源控制RRC连接配置信息。
与步骤S107相对应的步骤。
S109、UE发送RRC连接配置完成信息至蜂窝接入设备。
S110、蜂窝接入设备接收UE发送的RRC连接配置完成信息。
与步骤S109相对应的步骤。
S111、UE将UE和非蜂窝接入设备关联。
具体的,UE将UE和非蜂窝接入设备关联的步骤具体包括:首先,UE通过侦听信标(beacon)帧或发送探寻(Probe)帧的方式发现指定的非蜂窝接入设备,然后依次对该非蜂窝接入设备进行认证和关联(Association),完成鉴权、能力协商、密钥衍生等过程。
S112、UE发送非蜂窝接入设备关联完成信息至蜂窝接入设备。
在UE将UE和非蜂窝接入设备关联后,UE还能够发送非蜂窝接入设备关联完成信息至蜂窝接入设备。
S113、蜂窝接入设备接收UE发送的非蜂窝接入设备关联完成信息。
与步骤S112相对应的步骤。
进一步地,如图7所示,在执行步骤S112前,本发明实施例提供的数据传输方法还可以包括步骤S114和S115:
S114、UE发送非蜂窝接入设备连接状态信息至蜂窝接入设备。
其中,非蜂窝接入设备连接状态信息用于指示UE与非蜂窝接入设备的连接状态。
若UE由于用户喜好、终端配置或ANDSF策略等原因无法接受LWA的上行数据传输请求,或者UE关联成功时,则UE能够向蜂 窝接入设备发送用于指示UE与非蜂窝接入设备的连接状态的非蜂窝接入设备连接状态信息。
S115、蜂窝接入设备接收UE发送的非蜂窝接入设备连接状态信息。
与步骤S114相对应的步骤。
本发明实施例提供一种数据传输方法,该方法包括:蜂窝接入设备发送非蜂窝接入设备增加请求信息至非蜂窝接入设备,其中,非蜂窝接入设备增加请求信息用于指示非蜂窝接入设备为用户设备UE分配非蜂窝网的资源,非蜂窝接入设备增加请求信息至少包括针对UE分配的第一隧道终点,第一隧道终点包括第一隧道端点标识TEID和第一传输层地址,第一隧道终点用于指示上行数据传输路径中数据传输的目的端;蜂窝接入设备接收非蜂窝接入设备发送的非蜂窝接入设备增加响应信息,其中,非蜂窝接入设备增加响应信息至少包括针对UE的数据所属承载分配的第二隧道终点,第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,第二隧道终点用于指示下行数据传输路径中数据传输的目的端;蜂窝接入设备接收UE通过非蜂窝网的资源发送的上行数据。基于上述实施例的描述,由于蜂窝接入设备向非蜂窝接入设备发送了用于指示非蜂窝接入设备为UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,以使得非接入设备为UE分配资源,其中,上行传输的隧道是针对UE建立的,下行传输的隧道是针对UE的数据所属承载建立的,UE通过分配好的非蜂窝网的资源向蜂窝接入设备发送上行数据,解决了现有的LWA技术只能传输下行数据的问题。
实施例2
本发明实施例提供一种数据传输方法,基于如图4所示的UE和WT的协议栈包括LWAEP协议层的配置结构,如图8所示,该方法包括:
S201、蜂窝接入设备发送非蜂窝接入设备增加请求信息至非蜂 窝接入设备。
其中,非蜂窝接入设备增加请求信息用于指示非蜂窝接入设备为用户设备UE分配非蜂窝网的资源,非蜂窝接入设备增加请求信息至少包括待增加承载列表,其中,待增加承载列表包括数据无线承载标识(Data Radio Bearer Identifier,DRB ID)或者演进的分组系统(Evolved Packet System,EPS)承载标识。
可选的,待增加承载列表还可以包括ERAB ID。
因此,待增加承载列表可以包括DRB ID,或者EPS承载标识,或者DRB ID和ERAB ID,或者EPS承载标识和ERAB ID四种情况。
非蜂窝接入设备增加请求信息还包括:UE的媒体访问控制MAC地址;待增加承载列表还包括第三隧道终点、无线接入承载标识ERAB ID和无线承载业务质量优先级,第三隧道终点包括第三TEID和第三传输层地址,第三隧道终点用于指示上行针对流量控制的数据传输中数据传输的目的端,无线承载业务质量优先级为无线承载信息对应的Qos优先级。具体的,UE的MAC地址、第三隧道终点、ERAB ID和无线承载业务质量优先级具有一致性。
需要说明的是,UE的MAC地址可以通过UE能力上报时指示,也可以通过UE发送单独的消息上报到蜂窝接入设备,本发明不做限制。
还需要补充的是,在步骤S101执行之前,蜂窝接入设备能够配置UE进行非蜂窝接入设备的测量和上报,从而使得蜂窝接入设备根据UE上报的非蜂窝接入设备的测量结果(例如非蜂窝接入设备的负荷或者UE的签约信息)选择增加合适的非蜂窝接入设备进行LWA传输。
S202、非蜂窝接入设备接收蜂窝接入设备发送的非蜂窝接入设备增加请求信息。
与步骤S201相对应的步骤。
S203、非蜂窝接入设备发送非蜂窝接入设备增加响应信息至蜂窝接入设备。
其中,非蜂窝接入设备增加响应信息至少包括针对UE的数据所 属承载分配的第二隧道终点,第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,第二隧道终点用于指示下行数据传输路径中数据传输的目的端。
非蜂窝接入设备增加响应信息还包括允许增加承载列表,其中,允许增加承载列表包括无线承载标识。
具体的,第二隧道终点和无线承载标识也具有一致性。
S204、蜂窝接入设备接收非蜂窝接入设备发送的非蜂窝接入设备增加响应信息。
与步骤S203相对应的步骤。
S205、用户设备UE通过非蜂窝网的资源发送上行数据至蜂窝接入设备,其中,非蜂窝网的资源是非蜂窝接入设备为UE分配的。
可选的,蜂窝接入设备接收UE通过非蜂窝网的资源发送的上行数据的类型Type为PDCP协议对应的上行传输数据的类型号。
若蜂窝接入设备接收UE通过非蜂窝网的资源发送的上行数据不携带上行传输数据的类型号,则蜂窝接入设备在接收到上行数据后可以直接对该上行数据进行处理。
S206、蜂窝接入设备接收UE通过非蜂窝网的资源发送的上行数据。
与步骤S205相对应的步骤。
具体的,以蜂窝接入设备为eNB,非蜂窝接入设备为WT例,对上述用户设备UE通过非蜂窝网的资源发送上行数据至蜂窝接入设备的步骤进行说明:
UE分流的上行PDCP PDU,通过LWAEP协议层,增加DRB ID或者EPS承载标识后,向WT发送上行LWAEP PDU(即增加了LWAEP的PDCP PDU),WT在接收到LWAEP PDU数据包后,首先识别出是哪个UE发送的数据包(即通过UE的MAC地址识别)。然后根据LWAEP中的DRB ID或者EPS承载标识找到该UE对应的ERAB ID(若待增加承载列表中不包括ERAB ID,则可以省略该步骤,直接根据LWAEP中的DRB ID或者EPS承载标识找到对应的隧道的第三TEID即可),从而可以根据ERAB ID找到该承载对应的隧 道的第三TEID(第三TEID即eNB在隧道建立过程中为特定承载分配的TEID);或者直接根据DRB ID或者EPS承载标识找到该承载对应的隧道的第三TEID。删除LWAEP的报头,添加GTP-U报头,报头中填写该ERAB ID对应的第三TEID,通过该ERAB ID对应的GTP-U隧道进行传输,数据传输到eNB后,首先删除GTP-U报头,根据报头中的第三TEID找到对应的承载ERAB ID信息,然后把该PDCP PDU交给承载标识对应的PDCP实体来处理。
进一步地,如图9所示,在执行步骤S205前,本发明实施例提供的数据传输方法还包括步骤S207-S213:
S207、蜂窝接入设备发送无线资源控制RRC连接配置信息至UE。
其中,RRC连接配置信息包括长期演进无线局域网络汇聚LWA的配置信息。
S208、UE接收蜂窝接入设备发送的无线资源控制RRC连接配置信息。
S209、UE发送RRC连接配置完成信息至蜂窝接入设备。
S210、蜂窝接入设备接收UE发送的RRC连接配置完成信息。
S211、UE将UE和非蜂窝接入设备关联。
S212、UE发送非蜂窝接入设备关联完成信息至蜂窝接入设备。
S213、蜂窝接入设备接收UE发送的非蜂窝接入设备关联完成信息。
进一步地,如图10所示,在执行步骤S212前,本发明实施例提供的数据传输方法还可以包括步骤S214和S215:
S214、UE发送非蜂窝接入设备连接状态信息至蜂窝接入设备。
其中,非蜂窝接入设备连接状态信息用于指示UE与非蜂窝接入设备的连接状态。
S215、蜂窝接入设备接收UE发送的非蜂窝接入设备连接状态信息。
具体的,步骤S207-S215所描述的方法与实施例1中步骤S107-S115所描述的方法相同,此处不再赘述。
需要补充的是,本发明实施例提供的数据传输方法还能够用于基于如图3所示的eNB、UE和WT中各个协议栈包括LWAAP协议层的配置结构,此时,以蜂窝接入设备为eNB,非蜂窝接入设备为WT例,对上述用户设备UE通过非蜂窝网的资源发送上行数据至蜂窝接入设备的步骤进行说明:
UE分流的上行PDCP PDU,通过LWAAP协议层,增加DRB ID或者EPS承载标识后,向WT发送上行LWAAP PDU(即增加了LWAAP的PDCP PDU),WT在接收到上行LWA PDU数据包后,首先识别出是哪个UE发送的数据包(即通过UE的MAC地址识别)。然后根据LWAAP中的DRB ID或者EPS承载标识找到该UE对应的ERAB ID(若待增加承载列表中不包括ERAB ID,则可以省略该步骤,直接根据LWAEP中的DRB ID或者EPS承载标识找到对应的隧道的第三TEID即可),从而可以根据ERAB ID找到该承载对应的隧道的第三TEID(第三TEID即eNB在隧道建立过程中为特定承载分配的TEID);或者根据LWAAP中的DRB ID或者EPS承载标识找到该承载对应的隧道的第三TEID。添加GTP-U报头,报头中填写该ERAB ID对应的第三TEID,通过该ERAB ID对应的GTP-U隧道进行传输,数据传输到eNB后,如果GTP-U报头中包括上行传输数据的类型号,那么首先根据GTP-U报头中的PDU type识别是否为PDCP协议对应的上行传输数据的类型号,如果是则删除GTP-U报头;如果GTP-U报头中不包括上行传输数据的类型号,则直接删除GTP-U报头。然后根据报头中的第三TEID找到对应的承载ERAB ID信息,然后删除LWAAP的报头,把该PDCP PDU交给承载对应的PDCP实体来处理。
本发明实施例提供一种数据传输方法,该方法包括:蜂窝接入设备发送非蜂窝接入设备增加请求信息至非蜂窝接入设备,其中,非蜂窝接入设备增加请求信息用于指示非蜂窝接入设备为用户设备UE分配非蜂窝网的资源,非蜂窝接入设备增加请求信息至少包括待增加承载列表,其中,待增加承载列表包括数据无线承载标识DRB  ID或者演进的分组系统EPS承载标识;蜂窝接入设备接收非蜂窝接入设备发送的非蜂窝接入设备增加响应信息,其中,非蜂窝接入设备增加响应信息至少包括针对UE的数据所属承载分配的第二隧道终点,第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,第二隧道终点用于指示下行数据传输路径中数据传输的目的端;蜂窝接入设备接收UE通过非蜂窝网的资源发送的上行数据。基于上述实施例的描述,由于蜂窝接入设备向非蜂窝接入设备发送了用于指示非蜂窝接入设备为UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,以使得UE通过分配好的非蜂窝网的资源向蜂窝接入设备发送上行数据,解决了现有的LWA技术只能传输下行数据的问题。
实施例3
本发明实施例提供一种蜂窝接入设备,如图11所示,蜂窝接入设备用于执行以上方法中的蜂窝接入设备所执行的步骤。蜂窝接入设备可以包括相应步骤所对应的模块。示例性的,可以包括发送模块10和接收模块11。
发送模块10,用于发送非蜂窝接入设备增加请求信息至非蜂窝接入设备,其中,非蜂窝接入设备增加请求信息用于指示非蜂窝接入设备为用户设备UE分配非蜂窝网的资源,非蜂窝接入设备增加请求信息至少包括针对UE分配的第一隧道终点,第一隧道终点包括第一隧道端点标识TEID和第一传输层地址,第一隧道终点用于指示上行数据传输路径中数据传输的目的端。
接收模块11,用于在发送模块10发送非蜂窝接入设备增加请求信息至非蜂窝接入设备后,接收非蜂窝接入设备发送的非蜂窝接入设备增加响应信息,其中,非蜂窝接入设备增加响应信息至少包括针对UE的数据所属承载分配的第二隧道终点,第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,第二隧道终点用于指示下行数据传输路径中数据传输的目的端;以及接收UE通过非 蜂窝网的资源发送的上行数据。
可选的,非蜂窝接入设备增加请求信息还包括:UE的媒体访问控制MAC地址和待增加承载列表,其中,待增加承载列表包括第三隧道终点、无线接入承载标识ERAB ID和无线承载业务质量优先级,第三隧道终点包括第三TEID和第三传输层地址,第三隧道终点用于指示上行针对流量控制的数据传输中数据传输的目的端,无线承载业务质量优先级为无线承载信息对应的服务质量Qos优先级。
可选的,非蜂窝接入设备增加响应信息还包括允许增加承载列表,其中,允许增加承载列表包括无线承载标识。
可选的,发送模块10,还用于在接收模块11接收非蜂窝接入设备发送的非蜂窝接入设备增加响应信息后,且在接收UE通过非蜂窝网的资源发送的上行数据前,发送无线资源控制RRC连接配置信息至UE,其中,RRC连接配置信息包括长期演进无线局域网络汇聚LWA的配置信息。
接收模块11,还用于在发送模块10发送无线资源控制RRC连接配置信息至UE后,接收UE发送的RRC连接配置完成信息;以及接收UE发送的非蜂窝接入设备关联完成信息。
可选的,接收模块11,还用于在接收模块11接收UE发送的RRC连接配置完成信息后,且在接收UE发送的非蜂窝接入设备关联完成信息前,接收UE发送的非蜂窝接入设备连接状态信息,其中,非蜂窝接入设备连接状态信息用于指示UE与非蜂窝接入设备的连接状态。
可选的,蜂窝接入设备接收UE通过非蜂窝网的资源发送的上行数据的类型Type为PDCP协议对应的上行传输数据的类型号。
可以理解的是,本实施例的蜂窝接入设备可对应于上述如图5、图6和图7任意之一的实施例的数据传输方法中的蜂窝接入设备,并且本实施例的蜂窝接入设备中的各个模块的划分和/或功能等均是为了实现如图5、图6和图7任意之一所示的方法流程,为了简洁,在此不再赘述。
可选地,作为本发明的另一个实施例,接收单元11的功能可以由接收器实现,发送单元10的功能可以由发送器实现。其中,接收器和发送器可以集成在一个收发器内。
本发明实施例提供一种蜂窝接入设备。基于上述实施例的描述,由于蜂窝接入设备向非蜂窝接入设备发送了用于指示非蜂窝接入设备为UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,以使得UE通过分配好的非蜂窝网的资源向蜂窝接入设备发送上行数据,解决了现有的LWA技术只能传输下行数据的问题。
实施例4
本发明实施例提供一种非蜂窝接入设备,如图12所示,非蜂窝接入设备用于执行以上方法中的非蜂窝接入设备所执行的步骤。非蜂窝接入设备可以包括相应步骤所对应的模块。示例性的,包括接收模块20和发送模块21。
接收模块20,用于接收蜂窝接入设备发送的非蜂窝接入设备增加请求信息,其中,非蜂窝接入设备增加请求信息用于指示非蜂窝接入设备为用户设备UE分配非蜂窝网的资源,非蜂窝接入设备增加请求信息至少包括针对UE分配的第一隧道终点,第一隧道终点包括第一隧道端点标识TEID和第一传输层地址,第一隧道终点用于指示上行数据传输路径中数据传输的目的端。
发送模块21,用于在接收模块20接收蜂窝接入设备发送的非蜂窝接入设备增加请求信息后,发送非蜂窝接入设备增加响应信息至蜂窝接入设备,其中,非蜂窝接入设备增加响应信息至少包括针对UE的数据所属承载分配的第二隧道终点,第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,第二隧道终点用于指示下行数据传输路径中数据传输的目的端。
可选的,非蜂窝接入设备增加请求信息还包括:UE的媒体访问控制MAC地址和待增加承载列表,其中,待增加承载列表包括第三隧道终点、无线接入承载标识ERAB ID和无线承载业务质量优先级, 第三隧道终点包括第三TEID和第三传输层地址,第三隧道终点用于指示上行针对流量控制的数据传输中数据传输的目的端,无线承载业务质量优先级为无线承载信息对应的服务质量Qos优先级。
可选的,非蜂窝接入设备增加响应信息还包括允许增加承载列表,其中,允许增加承载列表包括无线承载标识。
可以理解的是,本实施例的非蜂窝接入设备可对应于上述如图5、图6和图7任意之一的实施例的数据传输方法中的非蜂窝接入设备,并且本实施例的非蜂窝接入设备中的各个模块的划分和/或功能等均是为了实现如图5、图6和图7任意之一所示的方法流程,为了简洁,在此不再赘述。
可选地,作为本发明的另一个实施例,接收单元20的功能可以由接收器实现,发送单元21的功能可以由发送器实现。其中,接收器和发送器可以集成在一个收发器内。
本发明实施例提供一种非蜂窝接入设备。基于上述实施例的描述,由于蜂窝接入设备向非蜂窝接入设备发送了用于指示非蜂窝接入设备为UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,以使得UE通过分配好的非蜂窝网的资源向蜂窝接入设备发送上行数据,解决了现有的LWA技术只能传输下行数据的问题。
实施例5
本发明实施例提供一种UE,如图13所示,UE用于执行以上方法中的UE所执行的步骤。UE可以包括相应步骤所对应的模块。示例性的,包括发送模块30。
发送模块30,用于通过非蜂窝网的资源发送上行数据至蜂窝接入设备,其中,非蜂窝网的资源是非蜂窝接入设备为UE分配的。
可选的,如图14所示,UE还包括接收模块31和关联模块32。
接收模块31,用于在发送模块30通过非蜂窝网的资源发送上行数据至蜂窝接入设备前,接收蜂窝接入设备发送的无线资源控制RRC连接配置信息,其中,RRC连接配置信息包括长期演进无线局 域网络汇聚LWA的配置信息。
发送模块30,还用于在接收模块31接收蜂窝接入设备发送的无线资源控制RRC连接配置信息后,发送RRC连接配置完成信息至蜂窝接入设备。
关联模块32,用于将UE和非蜂窝接入设备关联。
发送模块30,还用于在关联模块32将UE和非蜂窝接入设备关联后,发送非蜂窝接入设备关联完成信息至蜂窝接入设备。
可选的,发送模块30,还用于在发送模块30发送RRC连接配置完成信息至蜂窝接入设备后,且在发送非蜂窝接入设备关联完成信息至蜂窝接入设备前,发送非蜂窝接入设备连接状态信息至蜂窝接入设备,其中,非蜂窝接入设备连接状态信息用于指示UE与非蜂窝接入设备的连接状态。
可选的,UE通过非蜂窝网的资源发送上行数据的类型Type为PDCP协议对应的上行传输数据的类型号。
可以理解的是,本实施例的UE可以为上述蜂窝接入设备或者非蜂窝接入设备下小区所服务的用户设备,UE可对应于上述如图5-图10任意之一的实施例的数据传输方法中的UE,并且本实施例的UE中的各个模块的划分和/或功能等均是为了实现如图5-图10任意之一所示的方法流程,为了简洁,在此不再赘述。
可选地,作为本发明的另一个实施例,接收单元31的功能可以由接收器实现,发送单元30的功能可以由发送器实现,关联模块32的功能可以由处理器实现。其中,接收器和发送器可以集成在一个收发器内。
本发明实施例提供一种UE。基于上述实施例的描述,由于蜂窝接入设备向非蜂窝接入设备发送了用于指示非蜂窝接入设备为UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,以使得UE通过分配好的非蜂窝网的资源向蜂窝接入设备发送上行数据,解决了现有的LWA技术只能传输下行数据的问题。
实施例6
本发明实施例提供一种蜂窝接入设备,如图15所示,蜂窝接入设备用于执行以上方法中的蜂窝接入设备所执行的步骤。蜂窝接入设备可以包括相应步骤所对应的模块。示例性的,可以包括发送模块40和接收模块41。
发送模块40,用于发送非蜂窝接入设备增加请求信息至非蜂窝接入设备,其中,非蜂窝接入设备增加请求信息用于指示非蜂窝接入设备为用户设备UE分配非蜂窝网的资源,非蜂窝接入设备增加请求信息至少包括待增加承载列表,其中,待增加承载列表包括数据无线承载标识DRB ID或者演进的分组系统EPS承载标识。
接收模块41,用于在发送模块40发送非蜂窝接入设备增加请求信息至非蜂窝接入设备后,接收非蜂窝接入设备发送的非蜂窝接入设备增加响应信息,其中,非蜂窝接入设备增加响应信息至少包括针对UE的数据所属承载分配的第二隧道终点,第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,第二隧道终点用于指示下行数据传输路径中数据传输的目的端;以及接收UE通过非蜂窝网的资源发送的上行数据。
可选的,非蜂窝接入设备增加请求信息还包括:UE的媒体访问控制MAC地址;待增加承载列表还包括第三隧道终点、无线接入承载标识ERAB ID和无线承载业务质量优先级,第三隧道终点包括第三TEID和第三传输层地址,第三隧道终点用于指示上行针对流量控制的数据传输中数据传输的目的端,无线承载业务质量优先级为无线承载信息对应的Qos优先级。
可选的,非蜂窝接入设备增加响应信息还包括允许增加承载列表,其中,允许增加承载列表包括无线承载标识。
可选的,发送模块40,还用于在接收模块41接收非蜂窝接入设备发送的非蜂窝接入设备增加响应信息后,且在接收UE通过非蜂窝网的资源发送的上行数据前,发送无线资源控制RRC连接配置信息至UE,其中,RRC连接配置信息包括长期演进无线局域网络汇 聚LWA的配置信息。
接收模块41,还用于在发送模块40发送无线资源控制RRC连接配置信息至UE后,接收UE发送的RRC连接配置完成信息;以及接收UE发送的非蜂窝接入设备关联完成信息。
可选的,接收模块41,还用于在接收模块41接收UE发送的RRC连接配置完成信息后,且在接收UE发送的非蜂窝接入设备关联完成信息前,接收UE发送的非蜂窝接入设备连接状态信息,其中,非蜂窝接入设备连接状态信息用于指示UE与非蜂窝接入设备的连接状态。
可选的,蜂窝接入设备接收UE通过非蜂窝网的资源发送的上行数据的类型Type为PDCP协议对应的上行传输数据的类型号。
可以理解的是,本实施例的蜂窝接入设备可对应于上述如图8、图9和图10任意之一的实施例的数据传输方法中的蜂窝接入设备,并且本实施例的蜂窝接入设备中的各个模块的划分和/或功能等均是为了实现如图8、图9和图10任意之一所示的方法流程,为了简洁,在此不再赘述。
可选地,作为本发明的另一个实施例,接收单元41的功能可以由接收器实现,发送单元40的功能可以由发送器实现。其中,接收器和发送器可以集成在一个收发器内。
需要说明的是,实施例6所提供的蜂窝接入设备可以和实施例3所提供的蜂窝接入设备是同一种蜂窝接入设备。若实施例6所提供的蜂窝接入设备和实施例3所提供的蜂窝接入设备是同一种蜂窝接入设备,则该蜂窝接入设备应该同时具有实施例6所提供的蜂窝接入设备的功能和实施例3所提供的蜂窝接入设备的功能,以使得实现如图5-图10任意之一所示的方法流程,本发明不做限制。
本发明实施例提供一种蜂窝接入设备。基于上述实施例的描述,由于蜂窝接入设备向非蜂窝接入设备发送了用于指示非蜂窝接入设备为UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,以使得UE通过分配好的非蜂窝网的资源向蜂窝接入设备发送上行数 据,解决了现有的LWA技术只能传输下行数据的问题。
实施例7
本发明实施例提供一种非蜂窝接入设备,如图16所示,非蜂窝接入设备用于执行以上方法中的非蜂窝接入设备所执行的步骤。非蜂窝接入设备可以包括相应步骤所对应的模块。示例性的,包括接收模块50和发送模块51。
接收模块50,用于接收蜂窝接入设备发送的非蜂窝接入设备增加请求信息,非蜂窝接入设备增加请求信息用于指示非蜂窝接入设备为用户设备UE分配非蜂窝网的资源,非蜂窝接入设备增加请求信息至少包括待增加承载列表,其中,待增加承载列表包括数据无线承载标识DRB ID或者演进的分组系统EPS承载标识。
发送模块51,用于在接收模块50接收蜂窝接入设备发送的非蜂窝接入设备增加请求信息后,发送非蜂窝接入设备增加响应信息至蜂窝接入设备,其中,非蜂窝接入设备增加响应信息至少包括针对UE的数据所属承载分配的第二隧道终点,第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,第二隧道终点用于指示下行数据传输路径中数据传输的目的端。
可选的,非蜂窝接入设备增加请求信息还包括:UE的媒体访问控制MAC地址;待增加承载列表还包括第二隧道终点、无线接入承载标识ERAB ID和无线承载业务质量优先级,第二隧道终点包括第二TEID和第二传输层地址,第二隧道终点用于指示上行针对数据链路层流量控制的数据传输中数据传输的目的端,无线承载业务质量优先级为无线承载信息对应的Qos优先级。
可选的,非蜂窝接入设备增加响应信息还包括允许增加承载列表,其中,允许增加承载列表包括无线承载标识。
可以理解的是,本实施例的非蜂窝接入设备可对应于上述如图8、图9和图10任意之一的实施例的数据传输方法中的非蜂窝接入设备,并且本实施例的非蜂窝接入设备中的各个模块的划分和/或功 能等均是为了实现如图8、图9和图10任意之一所示的方法流程,为了简洁,在此不再赘述。
可选地,作为本发明的另一个实施例,接收单元50的功能可以由接收器实现,发送单元51的功能可以由发送器实现。其中,接收器和发送器可以集成在一个收发器内。
需要说明的是,实施例7所提供的非蜂窝接入设备可以和实施例4所提供的非蜂窝接入设备是同一种非蜂窝接入设备。若实施例7所提供的非蜂窝接入设备和实施例4所提供的非蜂窝接入设备是同一种非蜂窝接入设备,则该非蜂窝接入设备应该同时具有实施例7所提供的非蜂窝接入设备的功能和实施例4所提供的非蜂窝接入设备的功能,以使得实现如图5-图10任意之一所示的方法流程,本发明不做限制。
本发明实施例提供一种非蜂窝接入设备。基于上述实施例的描述,由于蜂窝接入设备向非蜂窝接入设备发送了用于指示非蜂窝接入设备为UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,以使得UE通过分配好的非蜂窝网的资源向蜂窝接入设备发送上行数据,解决了现有的LWA技术只能传输下行数据的问题。
实施例8
本发明实施例还提供一种蜂窝接入设备,如图17所示,该蜂窝接入设备包括:存储器60、处理器61、通信接口62和系统总线63。
存储器60、处理器61和通信接口62通过系统总线63连接,存储器60用于存储一些计算机指令,处理器61用于执行计算机指令,以使蜂窝接入设备执行如图5、图6和图7任意之一的数据传输方法,或者,使蜂窝接入设备执行如图8、图9和图10任意之一的数据传输方法。具体的数据传输方法可参见上述如图5、图6和图7任意之一所示的实施例,或者上述如图8、图9和图10任意之一所示的实施例中的相关描述,此处不再赘述。
进一步地,存储器还用于存储上行数据发送资源,上行数据发 送资源为上行非调度的数据发送资源或者上行共享的数据发送资源。
处理器61可以为中央处理器(central processing unit,CPU)。处理器61还可以为其他通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
处理器61可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有蜂窝接入设备其他专用处理功能的芯片。
存储器60可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器60也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器60还可以包括上述种类的存储器的组合。
系统总线63可以包括数据总线、电源总线、控制总线和信号状态总线等。本实施例中为了清楚说明,在图17中将各种总线都示意为系统总线63。
通信接口62可以包括接收器和发送器。并且在蜂窝接入设备的具体实现中,接收器和发送器具体可以是蜂窝接入设备上的收发器。该收发器可以为无线收发器。例如,无线收发器可以是蜂窝接入设备的天线等。处理器61通过收发器与其他设备,例如非蜂窝接入设备之间进行数据的收发。
在具体实现过程中,上述如图5、图6和图7任意之一所示的方法流程,或者上述如图8、图9和图10任意之一所示的方法流程中的各步骤均可以通过硬件执行软件形式的计算机执行指令实现。 为避免重复,此处不再赘述。
本发明实施例提供一种蜂窝接入设备。基于上述实施例的描述,由于蜂窝接入设备向非蜂窝接入设备发送了用于指示非蜂窝接入设备为UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,以使得UE通过分配好的非蜂窝网的资源向蜂窝接入设备发送上行数据,解决了现有的LWA技术只能传输下行数据的问题。
实施例9
本发明实施例还提供一种非蜂窝接入设备,如图18所示,该非蜂窝接入设备包括:存储器70、处理器71、通信接口72和系统总线73。
存储器70、处理器71和通信接口72通过系统总线73连接,存储器70用于存储一些计算机指令,处理器71用于执行计算机指令,以使非蜂窝接入设备执行如图5、图6和图7任意之一的数据传输方法,或者,使非蜂窝接入设备执行如图8、图9和图10任意之一的数据传输方法。具体的数据传输方法可参见上述如图5、图6和图7任意之一所示的实施例,或者上述如图8、图9和图10任意之一所示的实施例中的相关描述,此处不再赘述。
进一步地,存储器还用于存储上行数据发送资源,上行数据发送资源为上行非调度的数据发送资源或者上行共享的数据发送资源。
处理器71可以为CPU。处理器71还可以为其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
处理器71可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有非蜂窝接入设备其他专用处理功能的芯片。
存储器70可以包括易失性存储器,例如RAM;存储器70也可 以包括非易失性存储器,例如ROM,快闪存储器,HDD或SSD;存储器70还可以包括上述种类的存储器的组合。
系统总线73可以包括数据总线、电源总线、控制总线和信号状态总线等。本实施例中为了清楚说明,在图18中将各种总线都示意为系统总线73。
通信接口72可以包括接收器和发送器。并且在非蜂窝接入设备的具体实现中,接收器和发送器具体可以是非蜂窝接入设备上的收发器。该收发器可以为无线收发器。例如,无线收发器可以是非蜂窝接入设备的天线等。处理器71通过收发器与其他设备,例如蜂窝接入设备之间进行数据的收发。
在具体实现过程中,上述如图5、图6和图7任意之一所示的方法流程,或者上述如图8、图9和图10任意之一所示的方法流程中的各步骤均可以通过硬件执行软件形式的计算机执行指令实现。为避免重复,此处不再赘述。
本发明实施例提供一种非蜂窝接入设备。基于上述实施例的描述,由于蜂窝接入设备向非蜂窝接入设备发送了用于指示非蜂窝接入设备为UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,以使得UE通过分配好的非蜂窝网的资源向蜂窝接入设备发送上行数据,解决了现有的LWA技术只能传输下行数据的问题。
实施例10
本发明实施例还提供一种UE,如图19所示,该UE包括:存储器80、处理器81、通信接口82和系统总线83。
存储器80、处理器81和通信接口82通过系统总线83连接,存储器80用于存储一些计算机指令,处理器81用于执行计算机指令,以使UE执行如图5-图10任意之一的数据传输方法。具体的数据传输方法可参见上述如图5-图10任意之一所示的实施例中的相关描述,此处不再赘述。
进一步地,存储器还用于存储上行数据发送资源,上行数据发 送资源为上行非调度的数据发送资源或者上行共享的数据发送资源。
处理器81可以为CPU。处理器81还可以为其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
处理器81可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有UE其他专用处理功能的芯片。
存储器80可以包括易失性存储器,例如RAM;存储器80也可以包括非易失性存储器,例如ROM,快闪存储器,HDD或SSD;存储器80还可以包括上述种类的存储器的组合。
系统总线83可以包括数据总线、电源总线、控制总线和信号状态总线等。本实施例中为了清楚说明,在图19中将各种总线都示意为系统总线83。
通信接口82可以包括接收器和发送器。并且在UE的具体实现中,接收器和发送器具体可以是UE上的收发器。该收发器可以为无线收发器。例如,无线收发器可以是UE的天线等。处理器81通过收发器与其他设备,例如蜂窝接入设备或者非蜂窝接入设备之间进行数据的收发。
在具体实现过程中,上述如图5-图10任意之一所示的方法流程中的各步骤均可以通过硬件执行软件形式的计算机执行指令实现。为避免重复,此处不再赘述。
本发明实施例提供一种UE。基于上述实施例的描述,由于蜂窝接入设备向非蜂窝接入设备发送了用于指示非蜂窝接入设备为UE分配非蜂窝网的资源的非蜂窝接入设备增加请求信息,以使得UE通过分配好的非蜂窝网的资源向蜂窝接入设备发送上行数据,解决了现有的LWA技术只能传输下行数据的问题。
实施例11
本发明实施例提供一种数据传输系统,该系统包括蜂窝接入设备,非蜂窝接入设备和UE。对于蜂窝接入设备的描述具体可参见上述实施例3、实施例6和实施例8中对蜂窝接入设备的相关描述,对于非蜂窝接入设备的描述具体可参见上述实施例4、实施例7和实施例9中对非蜂窝接入设备的相关描述,对于UE的描述具体可参见上述实施例5和实施例10中对UE的相关描述,此处不再赘述。
本发明实施例提供的数据传输方法中,蜂窝接入设备分别通过执行如图5-图10任意之一所示的方法流程中的相应步骤完成本发明实施例的数据传输方法;相应的,非蜂窝接入设备通过执行如图5-图10任意之一所示的方法流程中的相应步骤完成本发明实施例的数据传输方法;UE通过执行如图5-图10任意之一所示的方法流程中的相应步骤完成本发明实施例的数据传输方法。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以 位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种数据传输方法,其特征在于,包括:
    蜂窝接入设备发送非蜂窝接入设备增加请求信息至非蜂窝接入设备,其中,所述非蜂窝接入设备增加请求信息用于指示所述非蜂窝接入设备为用户设备UE分配非蜂窝网的资源,所述非蜂窝接入设备增加请求信息至少包括针对所述UE分配的第一隧道终点,所述第一隧道终点包括第一隧道端点标识TEID和第一传输层地址,所述第一隧道终点用于指示上行数据传输路径中数据传输的目的端;
    所述蜂窝接入设备接收所述非蜂窝接入设备发送的非蜂窝接入设备增加响应信息,其中,所述非蜂窝接入设备增加响应信息至少包括针对所述UE的数据所属承载分配的第二隧道终点,所述第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,所述第二隧道终点用于指示下行数据传输路径中数据传输的目的端;
    所述蜂窝接入设备接收所述UE通过所述非蜂窝接入设备发送的上行数据。
  2. 根据权利要求1所述的数据传输方法,其特征在于,
    所述非蜂窝接入设备增加请求信息还包括:所述UE的媒体访问控制MAC地址和待增加承载列表,其中,所述待增加承载列表包括第三隧道终点、无线接入承载标识ERAB ID和无线承载业务质量优先级,所述第三隧道终点包括第三TEID和第三传输层地址,所述第三隧道终点用于指示上行针对流量控制的数据传输中数据传输的目的端,所述无线承载业务质量优先级为无线承载信息对应的服务质量Qos优先级。
  3. 根据权利要求1所述的数据传输方法,其特征在于,
    所述非蜂窝接入设备增加响应信息还包括允许增加承载列表,其中,所述允许增加承载列表包括无线承载标识。
  4. 根据权利要求1-3中任意一项所述的数据传输方法,其特征在于,在所述蜂窝接入设备接收所述非蜂窝接入设备发送的非蜂窝接入设备增加响应信息后,且在所述蜂窝接入设备接收所述UE通过所 述非蜂窝接入设备发送的上行数据前,所述方法还包括:
    所述蜂窝接入设备发送无线资源控制RRC连接配置信息至所述UE,其中,所述RRC连接配置信息包括长期演进无线局域网络汇聚LWA的配置信息;
    所述蜂窝接入设备接收所述UE发送的RRC连接配置完成信息;
    所述蜂窝接入设备接收所述UE发送的非蜂窝接入设备关联完成信息。
  5. 根据权利要求4所述的数据传输方法,其特征在于,在所述蜂窝接入设备接收所述UE发送的RRC连接配置完成信息后,且在所述蜂窝接入设备接收所述UE发送的非蜂窝接入设备关联完成信息前,所述方法还包括:
    所述蜂窝接入设备接收所述UE发送的非蜂窝接入设备连接状态信息,其中,所述非蜂窝接入设备连接状态信息用于指示所述UE与所述非蜂窝接入设备的连接状态。
  6. 根据权利要求1-5中任意一项所述的数据传输方法,其特征在于,所述蜂窝接入设备接收所述UE通过所述非蜂窝接入设备发送的上行数据的类型Type为PDCP协议对应的上行传输数据的类型号。
  7. 一种数据传输方法,其特征在于,包括:
    非蜂窝接入设备接收蜂窝接入设备发送的非蜂窝接入设备增加请求信息,其中,所述非蜂窝接入设备增加请求信息用于指示所述非蜂窝接入设备为用户设备UE分配非蜂窝网的资源,所述非蜂窝接入设备增加请求信息至少包括针对所述UE分配的第一隧道终点,所述第一隧道终点包括第一隧道端点标识TEID和第一传输层地址,所述第一隧道终点用于指示上行数据传输路径中数据传输的目的端;
    所述非蜂窝接入设备发送非蜂窝接入设备增加响应信息至所述蜂窝接入设备,其中,所述非蜂窝接入设备增加响应信息至少包括针对所述UE的数据所属承载分配的第二隧道终点,所述第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,所述第二隧道终点用于指示下行数据传输路径中数据传输的目的端。
  8. 根据权利要求7所述的数据传输方法,其特征在于,
    所述非蜂窝接入设备增加请求信息还包括:所述UE的媒体访问控制MAC地址和待增加承载列表,其中,所述待增加承载列表包括第三隧道终点、无线接入承载标识ERAB ID和无线承载业务质量优先级,所述第三隧道终点包括第三TEID和第三传输层地址,所述第三隧道终点用于指示上行针对流量控制的数据传输中数据传输的目的端,所述无线承载业务质量优先级为无线承载信息对应的服务质量Qos优先级。
  9. 根据权利要求7所述的数据传输方法,其特征在于,
    所述非蜂窝接入设备增加响应信息还包括允许增加承载列表,其中,所述允许增加承载列表包括无线承载标识。
  10. 一种数据传输方法,其特征在于,包括:
    用户设备UE通过非蜂窝接入设备发送上行数据至蜂窝接入设备,其中,所述非蜂窝网的资源是非蜂窝接入设备为所述UE分配的。
  11. 根据权利要求10所述的数据传输方法,其特征在于,在所述用户设备UE通过非蜂窝接入设备发送上行数据至蜂窝接入设备前,所述方法还包括:
    所述UE接收所述蜂窝接入设备发送的无线资源控制RRC连接配置信息,其中,所述RRC连接配置信息包括长期演进无线局域网络汇聚LWA的配置信息;
    所述UE发送RRC连接配置完成信息至所述蜂窝接入设备;
    在所述UE将所述UE和所述非蜂窝接入设备关联后,所述UE发送非蜂窝接入设备关联完成信息至所述蜂窝接入设备。
  12. 根据权利要求11所述的数据传输方法,其特征在于,在所述UE发送RRC连接配置完成信息至所述蜂窝接入设备后,且在所述UE发送非蜂窝接入设备关联完成信息至所述蜂窝接入设备前,所述方法还包括:
    所述UE发送非蜂窝接入设备连接状态信息至所述蜂窝接入设备,其中,所述非蜂窝接入设备连接状态信息用于指示所述UE与所 述非蜂窝接入设备的连接状态。
  13. 根据权利要求10-12中任意一项所述的数据传输方法,其特征在于,所述UE通过所述非蜂窝接入设备发送上行数据的类型Type为PDCP协议对应的上行传输数据的类型号。
  14. 一种蜂窝接入设备,其特征在于,所述蜂窝接入设备包括发送模块和接收模块;
    所述发送模块,用于发送非蜂窝接入设备增加请求信息至非蜂窝接入设备,其中,所述非蜂窝接入设备增加请求信息用于指示所述非蜂窝接入设备为用户设备UE分配非蜂窝网的资源,所述非蜂窝接入设备增加请求信息至少包括针对所述UE分配的第一隧道终点,所述第一隧道终点包括第一隧道端点标识TEID和第一传输层地址,所述第一隧道终点用于指示上行数据传输路径中数据传输的目的端;
    所述接收模块,用于在所述发送模块发送非蜂窝接入设备增加请求信息至非蜂窝接入设备后,接收所述非蜂窝接入设备发送的非蜂窝接入设备增加响应信息,其中,所述非蜂窝接入设备增加响应信息至少包括针对所述UE的数据所属承载分配的第二隧道终点,所述第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,所述第二隧道终点用于指示下行数据传输路径中数据传输的目的端;以及接收所述UE通过所述非蜂窝接入设备发送的上行数据。
  15. 根据权利要求14所述的蜂窝接入设备,其特征在于,
    所述非蜂窝接入设备增加请求信息还包括:所述UE的媒体访问控制MAC地址和待增加承载列表,其中,所述待增加承载列表包括第三隧道终点、无线接入承载标识ERAB ID和无线承载业务质量优先级,所述第三隧道终点包括第三TEID和第三传输层地址,所述第三隧道终点用于指示上行针对流量控制的数据传输中数据传输的目的端,所述无线承载业务质量优先级为无线承载信息对应的服务质量Qos优先级。
  16. 根据权利要求14所述的蜂窝接入设备,其特征在于,
    所述非蜂窝接入设备增加响应信息还包括允许增加承载列表,其 中,所述允许增加承载列表包括无线承载标识。
  17. 根据权利要求14-15中任意一项所述的蜂窝接入设备,其特征在于,
    所述发送模块,还用于在所述接收模块接收所述非蜂窝接入设备发送的非蜂窝接入设备增加响应信息后,且在接收所述UE通过所述非蜂窝接入设备发送的上行数据前,发送无线资源控制RRC连接配置信息至所述UE,其中,所述RRC连接配置信息包括长期演进无线局域网络汇聚LWA的配置信息;
    所述接收模块,还用于在所述发送模块发送无线资源控制RRC连接配置信息至所述UE后,接收所述UE发送的RRC连接配置完成信息;以及接收所述UE发送的非蜂窝接入设备关联完成信息。
  18. 根据权利要求17所述的蜂窝接入设备,其特征在于,
    所述接收模块,还用于在所述接收模块接收所述UE发送的RRC连接配置完成信息后,且在接收所述UE发送的非蜂窝接入设备关联完成信息前,接收所述UE发送的非蜂窝接入设备连接状态信息,其中,所述非蜂窝接入设备连接状态信息用于指示所述UE与所述非蜂窝接入设备的连接状态。
  19. 根据权利要求14-18中任意一项所述的蜂窝接入设备,其特征在于,所述蜂窝接入设备接收所述UE通过所述非蜂窝接入设备发送的上行数据的类型Type为PDCP协议对应的上行传输数据的类型号。
  20. 一种非蜂窝接入设备,其特征在于,所述非蜂窝接入设备包括接收模块和发送模块;
    所述接收模块,用于接收蜂窝接入设备发送的非蜂窝接入设备增加请求信息,其中,所述非蜂窝接入设备增加请求信息用于指示所述非蜂窝接入设备为用户设备UE分配非蜂窝网的资源,所述非蜂窝接入设备增加请求信息至少包括针对所述UE分配的第一隧道终点,所述第一隧道终点包括第一隧道端点标识TEID和第一传输层地址,所述第一隧道终点用于指示上行数据传输路径中数据传输的目的端;
    所述发送模块,用于在所述接收模块接收蜂窝接入设备发送的非蜂窝接入设备增加请求信息后,发送非蜂窝接入设备增加响应信息至所述蜂窝接入设备,其中,所述非蜂窝接入设备增加响应信息至少包括针对所述UE的数据所属承载分配的第二隧道终点,所述第二隧道终点包括第二隧道端点标识TEID和第二传输层地址,所述第二隧道终点用于指示下行数据传输路径中数据传输的目的端。
  21. 根据权利要求20所述的非蜂窝接入设备,其特征在于,
    所述非蜂窝接入设备增加请求信息还包括:所述UE的媒体访问控制MAC地址和待增加承载列表,其中,所述待增加承载列表包括第三隧道终点、无线接入承载标识ERAB ID和无线承载业务质量优先级,所述第三隧道终点包括第三TEID和第三传输层地址,所述第三隧道终点用于指示上行针对流量控制的数据传输中数据传输的目的端,所述无线承载业务质量优先级为无线承载信息对应的服务质量Qos优先级。
  22. 根据权利要求20所述的非蜂窝接入设备,其特征在于,
    所述非蜂窝接入设备增加响应信息还包括允许增加承载列表,其中,所述允许增加承载列表包括无线承载标识。
  23. 一种用户设备UE,其特征在于,所述UE包括发送模块;
    所述发送模块,用于通过非蜂窝接入设备发送上行数据至蜂窝接入设备,其中,所述非蜂窝网的资源是非蜂窝接入设备为所述UE分配的。
  24. 根据权利要求23所述的UE,其特征在于,所述UE还包括接收模块和关联模块;
    所述接收模块,用于在所述发送模块通过非蜂窝接入设备发送上行数据至蜂窝接入设备前,接收所述蜂窝接入设备发送的无线资源控制RRC连接配置信息,其中,所述RRC连接配置信息包括长期演进无线局域网络汇聚LWA的配置信息;
    所述发送模块,还用于在所述接收模块接收所述蜂窝接入设备发送的无线资源控制RRC连接配置信息后,发送RRC连接配置完成信 息至所述蜂窝接入设备;
    所述关联模块,用于将所述UE和所述非蜂窝接入设备关联;
    所述发送模块,还用于在所述关联模块将所述UE和所述非蜂窝接入设备关联后,发送非蜂窝接入设备关联完成信息至所述蜂窝接入设备。
  25. 根据权利要求24所述的UE,其特征在于,
    所述发送模块,还用于在所述发送模块发送RRC连接配置完成信息至所述蜂窝接入设备后,且在发送非蜂窝接入设备关联完成信息至所述蜂窝接入设备前,发送非蜂窝接入设备连接状态信息至所述蜂窝接入设备,其中,所述非蜂窝接入设备连接状态信息用于指示所述UE与所述非蜂窝接入设备的连接状态。
  26. 根据权利要求23-25中任意一项所述的UE,其特征在于,所述UE通过所述非蜂窝接入设备发送上行数据的类型Type为PDCP协议对应的上行传输数据的类型号。
  27. 一种蜂窝接入设备,其特征在于,所述蜂窝接入设备包括存储器、处理器、通信接口和系统总线;
    所述存储器、所述处理器和所述通信接口通过所述系统总线连接,所述存储器用于存储计算机指令,所述处理器用于执行所述存储器存储的计算机指令,以使所述蜂窝接入设备执行权利要求1-6任一项所述的数据传输方法。
  28. 一种非蜂窝接入设备,其特征在于,所述非蜂窝接入设备包括存储器、处理器、通信接口和系统总线;
    所述存储器、所述处理器和所述通信接口通过所述系统总线连接,所述存储器用于存储计算机指令,所述处理器用于执行所述存储器存储的计算机指令,以使所述非蜂窝接入设备执行权利要求7-9任一项所述的数据传输方法。
  29. 一种用户设备UE,其特征在于,所述UE包括存储器、处理器、通信接口和系统总线;
    所述存储器、所述处理器和所述通信接口通过所述系统总线连 接,所述存储器用于存储计算机指令,所述处理器用于执行所述存储器存储的计算机指令,以使所述UE执行权利要求10-13任一项所述的数据传输方法。
  30. 一种数据传输系统,其特征在于,包括如权利要求27所述的蜂窝接入设备,以及如权利要求28所述的非蜂窝接入设备。
PCT/CN2016/082131 2016-05-13 2016-05-13 一种数据传输方法、装置及系统 WO2017193402A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16901357.0A EP3457758B1 (en) 2016-05-13 2016-05-13 Data transmission methods and devices
PCT/CN2016/082131 WO2017193402A1 (zh) 2016-05-13 2016-05-13 一种数据传输方法、装置及系统
BR112018073421-7A BR112018073421A2 (pt) 2016-05-13 2016-05-13 método, aparelho e sistema de transmissão de dados
CN201680085649.5A CN109155956B (zh) 2016-05-13 2016-05-13 一种数据传输方法、装置及系统
US16/189,347 US10701591B2 (en) 2016-05-13 2018-11-13 Data transmission method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082131 WO2017193402A1 (zh) 2016-05-13 2016-05-13 一种数据传输方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/189,347 Continuation US10701591B2 (en) 2016-05-13 2018-11-13 Data transmission method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2017193402A1 true WO2017193402A1 (zh) 2017-11-16

Family

ID=60266938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082131 WO2017193402A1 (zh) 2016-05-13 2016-05-13 一种数据传输方法、装置及系统

Country Status (5)

Country Link
US (1) US10701591B2 (zh)
EP (1) EP3457758B1 (zh)
CN (1) CN109155956B (zh)
BR (1) BR112018073421A2 (zh)
WO (1) WO2017193402A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020068952A1 (en) * 2018-09-27 2020-04-02 Apple Inc. Uplink in-order delivery for qos flow offloaded in 5gc multi-rat dual connectivity

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11265884B2 (en) * 2016-09-30 2022-03-01 Apple Inc. Systems, methods and devices for uplink bearer and access category mapping
WO2019134112A1 (zh) * 2018-01-05 2019-07-11 Oppo广东移动通信有限公司 数据承载的标识分配方法、网络节点及计算机存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349419A (zh) * 2013-08-09 2015-02-11 中兴通讯股份有限公司 终端多连接的管理方法、装置和系统
CN104796227A (zh) * 2015-04-03 2015-07-22 电信科学技术研究院 一种数据传输方法及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7814195B2 (en) * 2004-09-10 2010-10-12 Sony Corporation Method for data synchronization with mobile wireless devices
BR112013030072B1 (pt) * 2011-05-31 2021-11-23 Huawei Technologies Co., Ltd Sistema de transmissão convergente, nó de descarregamento e convergência de dados e equipamento de usuário
CN105144830B (zh) * 2013-10-28 2019-07-05 Lg电子株式会社 用于在异构网络中执行双重连接的方法和装置
KR101879969B1 (ko) * 2014-04-29 2018-07-18 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 전송 방법 및 디바이스

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349419A (zh) * 2013-08-09 2015-02-11 中兴通讯股份有限公司 终端多连接的管理方法、装置和系统
CN104796227A (zh) * 2015-04-03 2015-07-22 电信科学技术研究院 一种数据传输方法及设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access Network (E-UTRAN Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 13", 3GPP TS 36.300, no. V13.3.0, 31 March 2016 (2016-03-31), XP051088532 *
"Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Wireless LAN (WLAN); Xw Application Protocol (XwAP) (Release 13", 3GPP TS 36.463, no. V2.0.0, 31 March 2016 (2016-03-31), XP051087858 *
See also references of EP3457758A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020068952A1 (en) * 2018-09-27 2020-04-02 Apple Inc. Uplink in-order delivery for qos flow offloaded in 5gc multi-rat dual connectivity

Also Published As

Publication number Publication date
EP3457758A4 (en) 2019-04-17
CN109155956B (zh) 2021-04-20
US10701591B2 (en) 2020-06-30
EP3457758B1 (en) 2021-07-21
CN109155956A (zh) 2019-01-04
BR112018073421A2 (pt) 2019-03-26
EP3457758A1 (en) 2019-03-20
US20190104439A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP7036268B2 (ja) ターゲット無線アクセスネットワークノード、5gコアネットワークノード、及びこれらの方法
US11438941B2 (en) Communication method and communications apparatus
JP7327616B2 (ja) 方法及びノード
JP6517343B2 (ja) LTE IPアンカーを用いたWiFiブースト
US10412650B2 (en) Data transmission method, apparatus and system
US11805564B2 (en) Multi-connectivity communication method and device
CN108476535B (zh) 无线终端、无线站、方法及其介质
JP7290193B2 (ja) 無線端末及び無線端末における方法
WO2018127018A1 (zh) 多链接通信方法、设备和终端
JP6920550B2 (ja) 通信方法および装置ならびに無線アクセス・ネットワーク
WO2020244652A1 (zh) 一种通信方法及相关设备
US10701591B2 (en) Data transmission method, apparatus, and system
WO2015062063A1 (zh) 传输数据的方法、装置和系统
WO2016155089A1 (zh) 一种数据传输方法、装置及系统
WO2022082544A1 (zh) Iab节点的移植方法及装置
CN106465439B (zh) 多流聚合方法、装置及系统
WO2016154828A1 (zh) 一种数据传输方法、装置及系统
WO2016074222A1 (zh) 数据传输方法及设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018073421

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016901357

Country of ref document: EP

Effective date: 20181213

ENP Entry into the national phase

Ref document number: 112018073421

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181113