WO2017191842A1 - Display body - Google Patents

Display body Download PDF

Info

Publication number
WO2017191842A1
WO2017191842A1 PCT/JP2017/017287 JP2017017287W WO2017191842A1 WO 2017191842 A1 WO2017191842 A1 WO 2017191842A1 JP 2017017287 W JP2017017287 W JP 2017017287W WO 2017191842 A1 WO2017191842 A1 WO 2017191842A1
Authority
WO
WIPO (PCT)
Prior art keywords
concavo
structure forming
convex structure
region
optical distance
Prior art date
Application number
PCT/JP2017/017287
Other languages
French (fr)
Japanese (ja)
Inventor
海老名 一義
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016208699A external-priority patent/JP6834344B2/en
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to EP17792774.6A priority Critical patent/EP3454099B1/en
Publication of WO2017191842A1 publication Critical patent/WO2017191842A1/en
Priority to US16/178,726 priority patent/US10908330B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions

Definitions

  • the present invention relates to a display body.
  • the latter color development by providing the uneven shape is called structural color development (structural color).
  • structural color development structural color
  • the structural color is generated by light irradiating a fine structure of about several ⁇ m to several nm and effects such as light diffraction, light scattering, thin film interference, or multilayer film interference.
  • Patent Document 1 a display body in which the color change does not become so large depending on the observation angle has been developed.
  • this display body when light is incident on the concavo-convex structure provided on the display surface, diffracted light is emitted in various directions, and even if the observation direction changes slightly, the color change does not increase so much.
  • the display body of the present embodiment includes a concave-convex structure forming layer having a plurality of concave portions or convex portions having a bottom plane and a top plane substantially parallel to the bottom plane on one surface, and the concave-convex portions of the concave-convex structure-forming layer.
  • the concavo-convex structure forming layer includes two types of concavo-convex structure forming regions, and in each region of the concavo-convex structure forming region, The optical distance between the bottom plane and the top plane is constant, but the optical distance is different between regions, the two types of concavo-convex structure forming regions are alternately arranged, and the concavo-convex structure
  • the set value of the optical distance in each of the two types of concavo-convex structure forming regions is selected to be a combination that contributes to the reduction of the color shift of the display body. It is characterized by that.
  • the display body of the present embodiment includes a concavo-convex structure forming layer having a plurality of concave portions or convex portions having a bottom plane and a top plane substantially parallel to the bottom plane on one surface, and the concavo-convex structure forming layer. And a light reflecting layer covering all or part of the concavo-convex surface of the concavo-convex structure forming layer, the concavo-convex structure forming layer including two types of concavo-convex structure forming regions, The optical distance between the bottom plane and the top plane is constant, and the optical distance in one of the two concavo-convex structure forming areas is selected from the range of 90 to 308 nm.
  • optical distance in the other concavo-convex structure forming region is selected from the range of 252 to 385 nm, or whether the optical distance in the one concavo-convex structure forming region is in the range of 252 nm to 385 nm.
  • the optical distance in the other concavo-convex structure forming region is selected from the range of 315 nm to 561 nm, or the optical distance in one concavo-convex structure forming region is selected from the range of 315 nm to 561 nm, and the other
  • the optical distance in the concavo-convex structure forming region is selected from the range of 459 nm to 660 nm, provided that the optical distance is different between the concavo-convex structure forming regions, and the at least two types of concavo-convex structure formation are performed.
  • the regions are characterized by being alternately arranged.
  • the display body of the present embodiment can suppress color misregistration during manufacturing. For this reason, productivity can be made high.
  • FIG. 1B is a cross-sectional view taken along the line IC-IC shown in FIG. 1B. It is a figure which shows roughly a mode that illumination light injects into the convex structure provided in the uneven
  • the display according to the present embodiment includes a concavo-convex structure forming layer having a plurality of concave portions or convex portions on one surface, and a light reflecting layer covering a part or all of the concavo-convex surface of the concavo-convex structure forming layer.
  • the concavo-convex structure forming layer includes two types of concavo-convex structure forming regions, and the optical distance between the bottom plane and the top plane is constant in each region of the concavo-convex structure forming region, and is selected from a specific range. However, there is a difference between the regions of the uneven structure forming region. Further, the two types of concavo-convex structure forming regions are alternately arranged.
  • FIG. 1A is a plan view schematically showing an example of a display body according to the present embodiment
  • FIG. 1B is an enlarged view of a portion surrounded by a one-dot chain line circle in the plan view of FIG. 1A
  • 1C is a cross-sectional view taken along the line IC-IC shown in FIG. 1B.
  • the X direction and the Y direction are parallel to the display surface and perpendicular to each other.
  • the Z direction is a direction perpendicular to the X direction and the Y direction.
  • the display body 10 includes a concavo-convex structure forming layer 2 having a convex portion, and a light reflecting layer 4 covering the concavo-convex surface of the concavo-convex structure forming layer 2.
  • a concave portion may be provided instead of the convex portion. That is, a plurality of recesses including bottom planes 2b and 2B and top planes 2a and 2A substantially parallel to the bottom planes 2b and 2B may be provided on one surface.
  • the concavo-convex structure forming layer 2 has optical transparency and is typically transparent, particularly colorless and transparent.
  • the concavo-convex structure forming layer 2 has a plurality of convex portions including bottom planes 2b and 2B and top planes 2a and 2A substantially parallel to the bottom planes 2b and 2B on one surface.
  • the details of the concavo-convex structure of the concavo-convex structure forming layer 2 will be described later in the section (Concave and convex structure in each concavo-convex structure forming region of the concavo-convex structure forming layer).
  • thermoplastic resin a thermosetting resin, or a photocurable resin
  • thermosetting resin a thermosetting resin
  • photocurable resin a thermosetting resin
  • an olefin-based resin can be used, and specific examples include polypropylene (PP), polyethylene (PE), and vinyl chloride. These materials have easy processability and flexibility, and the finished product has a good texture.
  • a general transparent resin can be used as a material.
  • materials that are relatively easy to process include polycarbonate resins and methacrylstyrene (MS) resins. If these are used, since the impact resistance is excellent, it is possible to give the uneven structure forming layer 2 the characteristic of being hard to break. If an acrylic resin and a polystyrene resin are used, the characteristics excellent in abrasion resistance can be imparted. If a thermosetting resin or a photocurable resin is used, hard coat properties can also be imparted. The hard coat property may be a hardness of H or more and 5H or less in a pencil hardness test (JIS K5600-5-4).
  • the refractive index of the uneven structure forming layer 2 can be 1.4 to 1.6.
  • the thickness of the concavo-convex structure forming layer 2 can be 1 ⁇ m to 10 ⁇ m.
  • the concavo-convex structure forming layer 2 may include a base material on a surface opposite to the concavo-convex surface.
  • the base material serves as a base for the concavo-convex structure forming layer 2 and also serves to protect the concavo-convex structure forming layer 2.
  • the substrate may have a hard coat property.
  • Resin can be used as the base material.
  • a thermoplastic resin, a thermosetting resin, or an ultraviolet curable resin can be used.
  • an olefin resin can be used.
  • polypropylene, polyethylene, or polyethylene terephthalate (PET) can be used.
  • a urethane resin can be used as the thermosetting resin.
  • An acrylic resin can be used as the ultraviolet curable resin.
  • Thermosetting resins and ultraviolet curable resins have high heat resistance.
  • the ultraviolet curable resin has a hard coat property.
  • the refractive index of the substrate can be 1.4 to 1.6.
  • the thickness of the substrate can be 1 ⁇ m to 100 ⁇ m.
  • the base material can be formed into a sheet shape whose front and back surfaces are parallel to each other.
  • the light reflecting layer 4 is a layer that reflects light.
  • the light reflecting layer 4 covers the entire surface of the concavo-convex structure forming layer 2 on which the concavo-convex structure is provided, but it is only necessary to cover at least a part thereof.
  • covers at least one part covers only the bottom part planes 2b and 2B and the top part planes 2a and 2A of the convex part of the uneven
  • the light reflecting layer 4 can be a metal layer.
  • As the material of the metal layer aluminum, silver, gold, and alloys thereof can be used.
  • a dielectric layer having a refractive index different from that of the uneven structure forming layer 2 may be used as the light reflecting layer 4.
  • An inorganic compound can be used for the dielectric layer.
  • a metal compound is preferable. Titanium oxide, aluminum oxide, or zinc sulfide can be used as the metal compound.
  • a laminated body of dielectric layers having different refractive indexes between adjacent ones, that is, a dielectric multilayer film may be used as the light reflecting layer 4.
  • the refractive index of the dielectric layer included in the dielectric multilayer film that is in contact with the concavo-convex structure forming layer 2 is different from the refractive index of the concavo-convex structure forming layer 2.
  • the thickness of the light reflecting layer 4 can be set to 40 nm to 1000 nm.
  • the display body 10 may further include other layers such as a transparent layer and an adhesive layer.
  • the transparent layer is a layer for protecting the surface of the display body 10.
  • the transparent layer 6 when the light reflection layer 4 side is the front surface (display surface), the transparent layer 6 can cover the light reflection layer 4 and protect the light reflection layer 4.
  • the uneven structure forming layer 2 side when the uneven structure forming layer 2 side is the front surface (display surface), the uneven structure forming layer 2 can be protected by covering the uneven structure forming layer 2.
  • the transparent layer preferably has hard coat properties.
  • a transparent resin can be used as the material of the transparent layer 6.
  • a curable resin can be used as the transparent resin.
  • the curable resin has a hard coat property.
  • An ultraviolet curable resin can be used as the curable resin.
  • the refractive index of the transparent layer 6 can be 1.4 to 1.6.
  • the thickness of the transparent layer 6 can be 1 ⁇ m to 5 ⁇ m.
  • the adhesive layer is a layer provided to give an adhesive force when the display body 10 is adhered to a card, paper, plastic film or the like.
  • the adhesive layer can be provided on the surface of the concavo-convex structure forming layer 2 opposite to the light reflecting layer 4 when the light reflecting layer 4 side is the front surface.
  • the thickness of the adhesive layer can be 1 ⁇ m to 50 ⁇ m.
  • a resin adhesive can be used as the material of the adhesive layer.
  • An acrylic adhesive can be used as the resin adhesive.
  • the concavo-convex structure forming layer 2 has a plurality of recesses or protrusions having a bottom plane and a top plane substantially parallel to the bottom plane on one surface, and includes at least two types of concavo-convex structure formation regions. In each region of the concavo-convex structure forming region, the optical distance between the bottom plane and the top plane is constant. The distance between the bottom plane and the top plane can be between 55 nm and 470 nm.
  • the concavo-convex structure forming layer 2 has a distance between the bottom flat surface 2b and the top flat surface 2a in the first concavo-convex structure forming region R1 (hereinafter also simply referred to as “first region R1”).
  • first region R1 the first concavo-convex structure forming region
  • second region R2 the second concavo-convex structure forming region
  • the distance d in the first region R1 is different from the distance D in the second region R2.
  • the distance between the bottom planes 2b and 2B and the top planes 2a and 2A in the concavo-convex structure forming region is constant in each region, but is different between the regions. If the distance between the bottom planes 2b and 2B and the top planes 2a and 2A is constant in each region of the concavo-convex structure formation region, a specific color corresponding to the height of the convex portion can be perceived.
  • the display body 10 is different in the distance between the bottom planes 2b and 2B and the top planes 2a and 2A between the regions of the concavo-convex structure forming region, and can display a color mixture of specific colors generated in each region.
  • the bottom plane 2b in the first region R1 and the bottom plane 2B in the second region R2 do not exist on the same plane, but these bottom planes 2b and 2B are the same plane. May be present above.
  • the display body 10 has been described as displaying a specific color corresponding to the distance between the bottom plane and the top plane (the height of the convex portion), but strictly speaking, it can be described as follows. Since the light incident on the display body 10 travels in the medium before reaching the uneven surface, the display body 10 actually multiplies the distance between the bottom plane and the top plane by the refractive index n of the medium. A specific color corresponding to the value (hereinafter, also referred to as “optical distance between the bottom plane and the top plane”) is displayed. For example, as shown in FIG.
  • the material constituting the transparent layer 6 is a medium
  • the refractive index of the transparent layer 6 is the refractive index of the medium.
  • the refractive index of the concavo-convex structure forming layer 2 is the refractive index of the medium.
  • the optical distance n ⁇ d is the distance between the bottom planes 2b and 2B and the top planes 2a and 2A when the light reflecting layer 4 side is the front surface (display surface) (the bottom plane is the reference plane).
  • the height d, D) of the convex portion is multiplied by the refractive index n of the transparent layer 6.
  • the distance between the bottom planes 2b and 2B and the top planes 2a and 2A Is a value obtained by multiplying by the refractive index n of the concavo-convex structure forming layer 2.
  • the display body 10 displays a color corresponding to the optical distance between the bottom plane and the top plane.
  • the concavo-convex structure forming layer 2 includes at least two concavo-convex structure forming regions.
  • the optical distance between the bottom plane and the top plane in these concavo-convex structure formation regions is selected from a specific range. That is, the optical distance between the bottom plane and the top plane in one type of concavo-convex structure forming region is in the range of 90 to 308 nm, preferably in the range of 100 to 280 nm, more preferably in the range of 110 to 280 nm.
  • optical distance between the bottom plane and the top plane in the other concavo-convex structure forming region is selected from a range of 252 to 385 nm, preferably a range of 280 to 350 nm, and more preferably a range of 280 to 315 nm. .
  • the optical distance between the bottom plane and the top plane in one concavo-convex structure forming region is selected from the range of 252 to 385 nm, preferably 280 to 350 nm, more preferably 308 to 350 nm, and the others
  • the optical distance between the bottom plane and the top plane in the concavo-convex structure forming region is selected from the range of 315 to 561 nm, preferably 350 to 510 nm, and more preferably 350 to 459 nm.
  • the optical distance between the bottom plane and the top plane in one type of concavo-convex structure forming region is selected from the range of 315 to 561 nm, preferably 350 to 510 nm, more preferably 459 to 510 nm.
  • the optical distance between the bottom plane and the top plane in the structure formation region is selected from a range of 459 nm to 660 nm, preferably a range of 510 to 600 nm, and more preferably a range of 510 to 540 nm.
  • it is assumed that the optical distance between the bottom plane and the top plane is different between the two types of concavo-convex structure forming areas.
  • the optical distance between the bottom plane and the top plane in one of the two concavo-convex structure formation regions is 90 to 308 nm.
  • the optical distance in the other concavo-convex structure forming region is in the range of 252 to 385 nm, preferably in the range of 280 to 350 nm. More preferably, it is selected from the range of 280 to 315 nm.
  • the optical distance between the bottom plane and the top plane in one concavo-convex structure forming region is selected from the range of 252 to 385 nm, preferably 280 to 350 nm, more preferably 308 to 350 nm, and the other concavo-convex
  • the optical distance in the structure forming region is selected from the range of 315 to 561 nm, preferably from 350 to 510 nm, and more preferably from 350 to 459 nm.
  • the optical distance between the bottom plane and the top plane in one concavo-convex structure forming region is selected from the range of 315 to 561 nm, preferably 350 to 510 nm, more preferably 459 to 510 nm, and the other concavo-convex
  • the optical distance in the structure formation region is selected from the range of 459 nm to 660 nm, preferably from 510 to 600 nm, and more preferably from 510 to 540 nm.
  • it is assumed that the optical distance between the bottom plane and the top plane is different between the two types of concavo-convex structure forming areas.
  • the concavo-convex structure forming layer 2 has a plurality of concave portions or convex portions arranged in each region of the concavo-convex structure forming region.
  • a plurality of convex portions are randomly arranged in each of the first region R1 and the second region R2.
  • the convex portions are randomly arranged means that the convex portions are arranged so that the distance between the centers of the adjacent convex portions is not constant.
  • the convex portions may be arranged such that the distance between the centers of the adjacent convex portions is constant.
  • a convex part can also be arrange
  • the (average) center-to-center distance between adjacent convex portions can be 0.5 ⁇ m to 10 ⁇ m. Further, the (average) center-to-center distance between adjacent convex portions may be less than 1 ⁇ m in order to diffract visible light.
  • the top plane of the convex portion can be a square in plan view.
  • the shape is not limited to this, and a convex hull shape may be used.
  • the top plane of the convex portion can be a quadrilateral such as a triangle, a rectangle, and a trapezoid, a polygon such as a pentagon, a hexagon, a circle, and an ellipse in plan view.
  • the thing from which a shape differs may be mixed.
  • the top flat surface of the convex portion is preferably a rectangle, particularly a square, for ease of manufacturing.
  • the side surface extending from the top plane of the convex portion to the bottom plane may be a vertical plane or an inclined plane with respect to the bottom plane.
  • the side surface may be a flat surface or a curved surface such as a concave surface and a convex surface. Curved surfaces such as convex surfaces include arcuate surfaces. If the side surface is curved, it is easy to achieve both optical performance and moldability.
  • the length of the long side and the short side of the top surface of the convex portion can be made less than 2 ⁇ m because it is necessary to diffract visible light.
  • the long side and the short side are defined as follows. First, the longest length of line segments connecting two points on the contour of the top plane of the convex portion is determined, and this is defined as the long side. Then, a rectangle having a side parallel to the long side and circumscribing the outline of the top plane of the convex portion is drawn, and this short side is defined as the short side of the top plane of the convex portion.
  • the shape of the top plane of the convex part is a square or the like having the same side length and the same interior angle, the long side and the short side have the same length.
  • the area ratio occupied by the top flat surface of the convex portion can be 15% to 80% in plan view.
  • the “area ratio occupied by the top plane of the convex portion” is a percentage of the area occupied by the top plane of the convex portion with respect to the area of each region of the concavo-convex structure forming region.
  • the ratio of the area of the top plane of the convex portion to the area of the bottom plane is 1: 1
  • the area ratio occupied by the top plane of the convex portion is 50%.
  • the concavo-convex structure forming layer 2 is provided with a plurality of concavo-convex structure forming regions having different optical distances.
  • an observer recognizes the color displayed on the display body 10 based on the overlap of the diffracted light inject
  • the color approaches white, so that the saturation of the color displayed on the display body 10 tends to decrease.
  • the saturation of the color displayed on the display body 10 changes depending on the area ratio occupied by the top plane of the convex portion, the saturation can be increased by appropriately setting this area ratio.
  • each concavo-convex structure forming region if the area ratio is set too high when the convex portions are arranged, a region in which the distance between the adjacent convex portions becomes extremely small appears, and the adjacent convex portions interfere with each other.
  • the two convex portions may not function as independent convex portions.
  • the area ratio occupied by the top plane of the convex portions is preferably 26% to 31%. % To 28% is more preferable.
  • the concavo-convex structure in each concavo-convex structure forming region of the concavo-convex structure forming layer 2 has been described, but the (optical) distance between the bottom plane and the top plane is different between the areas, The (average) center-to-center distance, the shape of the top plane of the projection, the area ratio occupied by the top plane of the projection, etc. may be the same or different.
  • the uneven structure forming layer 2 includes two types of uneven structure forming regions.
  • the two types of concavo-convex structure forming regions are alternately arranged.
  • the first region R1 and the second region R2 which are two types of concavo-convex structure forming regions are arranged alternately (in a checkered pattern) in the X direction and the Y direction.
  • the outer shape of each of the first region R1 and the second region R2 is indicated by a two-dot chain line as a square, but this is to clarify the outer shape of each region. This is used for convenience, and there is actually no such chain line.
  • each concavo-convex structure forming region can be a square, a triangle, a rectangle, a parallelogram, a quadrangle such as a trapezoid, a pentagon, and a polygon such as a hexagon.
  • the arrangement of the concavo-convex structure forming regions can be alternately arranged in a honeycomb shape.
  • alternately arranging the concavo-convex structure forming regions includes forming a line by arranging a plurality of the same concavo-convex structure forming regions in parallel, and alternately arranging the lines formed for each region.
  • 6A and 6B are diagrams showing an example of this.
  • lines in which a plurality of first regions R1 are formed in parallel in the X direction and lines in which a plurality of second regions R2 are formed in parallel in the X direction are alternately arranged in the Y direction.
  • lines composed of a plurality of first regions R1 and lines composed of a plurality of second regions R2 are arranged in a stripe pattern.
  • the outer shapes of the first region R1 and the second region R2 are both square. Further, the arrangement and the number of convex portions in the first region R1 and the second region R2 are the same.
  • FIG. 6B shows an example in which the parallel direction of the first region R1 and the second region R2 intersects the X and Y directions at approximately 45 °.
  • the outer shape of each of the first region R1 and the second region R2 is a rhombus. Further, the arrangement and the number of convex portions in the first region R1 and the second region R2 are the same.
  • the lines made of the first region R1 and the lines made of the second region R2 are arranged in stripes.
  • the left half is composed of a region (horizontal stripe region) in which the parallel direction of the first region R1 and the second region R2 is the X direction.
  • the right half is composed of a region (vertical stripe region) that has the Y direction in the parallel direction of the first region R1 and the second region R2.
  • the arrangement of the protrusions is different between the first region R1 and the second region R2.
  • the repetition period of the convex portion in the first region R1 (or the convex portion in the second region R2) is shorter in the X direction than in the Y direction.
  • diffracted light is more likely to be generated in the X direction than in the Y direction.
  • diffracted light is more likely to be generated in the Y direction than in the X direction in the vertical stripe region.
  • Such an optical effect can be added to the display 10 by the arrangement of the concavo-convex structure forming regions.
  • the line widths of the line formed of the first region R1 and the line formed of the second region R2 are drawn the same, but they may be different. Good.
  • the concavo-convex structure forming layer 2 may include a structure other than the concavo-convex structure described in the above section (the concavo-convex structure in each concavo-convex structure forming region of the concavo-convex structure forming layer).
  • FIG. 8A is a plan view showing an example in which another region R ′ having a flat structure is included in addition to the first region R1 and the second region R2.
  • FIG. 8B is a plan view showing an example in which the first region R1, the second region R2, and the other region R ′ having a flat structure whose outer shape is a triangle are alternately arranged.
  • the other region R ′ includes a flat structure, but is not limited to this structure, and may be a diffraction grating.
  • the other region R ′ may be a transmission region.
  • a printing layer may be provided in the other region R ′.
  • the lengths of the long side and the short side of the outer shape of each concavo-convex structure forming region are desirably such that they cannot be easily identified visually, and are preferably 200 ⁇ m or less.
  • the long side and the short side are defined as follows. First, the line segment connecting two points on the contour of the outline of each concavo-convex structure forming region is determined to have the longest length, and this is defined as the long side. A rectangle having a side parallel to the long side and circumscribing the outline of the outline of each concavo-convex structure forming region is drawn, and this short side is defined as the short side of the outline of each concavo-convex structure forming region.
  • the concavo-convex structure forming layer 2 includes at least two types of concavo-convex structure forming regions, and the at least two types of concavo-convex structure forming regions are alternately arranged.
  • the display 10 can display characters, figures, symbols, and other marks as a collection of uneven structure forming regions. As shown in FIG. 1A, the display body 10 can display a convex mark by arranging the first region R ⁇ b> 1 and the second region R ⁇ b> 2 according to the shape of the convex mark 8. In order to display the mark 8 in a specific color, the optical distance in each region of the uneven structure forming region described above may be set to a value corresponding to the specific color. Further, when displaying a plurality of marks, the display body 10 can set an optical distance for each mark so as to develop a color for each mark.
  • FIG. 3 shows the change in display color when the optical distance is changed in a display body in which the optical distance between the bottom plane and the top plane in the concavo-convex structure forming region 2 of the concavo-convex structure forming layer 2 is the same.
  • FIG. 6 is a diagram showing a curve 12 on a “v” chromaticity diagram (hereinafter, also simply referred to as “u′v” chromaticity diagram). More specifically, the curve 12 shown in FIG. 3 is obtained from the color displayed when the optical distance is continuously changed in the range of 100 nm to 600 nm in a display body having one kind of optical distance n ⁇ d.
  • the curve 12 showing the color change sequentially passes through the warm color region, the cold color region, and the neutral (green) region as the optical distance n ⁇ d gradually increases from 100 nm. Therefore, in order to cause the display body to develop a color among the colors of the passing region, the display body may be manufactured at an optical distance corresponding to the color to be developed.
  • the set value of the optical distance set in the design stage is different from the actual value, and a color shift occurs in the color of the display body 10.
  • FIG. 4 is an enlarged view of a portion surrounded by an alternate long and short dash line in FIG.
  • the optical distance between the bottom plane and the top plane provided in each region of the concavo-convex structure forming layer 2 of the display body 10 is set to the optical distance at points A and B shown in FIG.
  • the optical distances set at points A and B change to optical distances corresponding to points C and D, respectively.
  • the distance between the bottom plane and the top plane of the concavo-convex structure forming layer 2 (the height of the bulge) varies uniformly with respect to the set value over the entire concavo-convex structure formation region.
  • the optical distance between the bottom plane and the top plane which is a value obtained by multiplying the distance between the bottom plane and the top plane (height of the convex portion) by the refractive index of the medium, is also set over the entire concavo-convex structure forming region.
  • it varies by the same amount. Therefore, an increase in the optical distance in the change from the point A to the point C is equal to an increase in the optical distance in the change from the point B to the point D.
  • the display body 10 in which two types of concavo-convex structure forming regions having different optical distances are provided in the concavo-convex structure forming layer 2 and these regions are alternately arranged, the display body 10 develops a color mixture of colors generated from the respective regions. .
  • This mixed color is a color corresponding to the position of the midpoint of the line segment connecting two points on the curve 12 indicating the color change. Therefore, when the optical distance at the points A and B is set as the optical distance in each concavo-convex structure forming region, the observer perceives a color corresponding to the position of the midpoint E of the line segment connecting the two points.
  • the observer can detect the line segment connecting the points C and D.
  • the color corresponding to the position of the middle point F is perceived as a mixed color.
  • the distance between two points on the chromaticity diagram indicates the degree of color shift (color difference)
  • the distance between the points E and F is the color that the observer actually perceives (point F). It can be said that the color difference from the initially set color (point E) is shown.
  • the optical distance between the bottom plane and the top plane in the concavo-convex structure forming region is the same, and the display body has an optical distance corresponding to the point C as a result of being manufactured using the optical distance corresponding to the point A as a set value.
  • the color difference between the color actually perceived by the observer and the set color is indicated by the distance between the point A and the point C.
  • the distance between the point A and the point C is larger than the distance between the point E and the point F.
  • the display body 10 having two types of uneven structure forming regions in the uneven structure forming layer 2 and having a predetermined optical distance that differs between the regions has the same optical distance in the uneven structure forming region.
  • the color shift from the initially set color can be reduced more than the display body. For the same reason, the color shift due to the change in optical distance accompanying the change in refractive index of the concavo-convex structure forming layer 2 and the transparent layer 6 can also be reduced.
  • the case where two types of concavo-convex structure forming regions are provided in the concavo-convex structure forming layer 2 has been described, but even when three or more types of concavo-convex structure forming regions are provided in the concavo-convex structure forming layer 2. The same can be said.
  • the color perceived by the observer is a color corresponding to the position of the midpoint of the line segment connecting two points on the curve 12 indicating the color change.
  • the center of gravity of a polygon formed by connecting a plurality of points corresponding to the optical distance in each region on the curve 12 indicating the color change (for example, 3 In the case of a point, the color corresponds to the position of the center of gravity of the triangle, and in the case of four points, the center of gravity of a square.
  • the curve 12 showing the color change of the display body 10 shown in FIGS. 3 and 4 represents the optical distance n ⁇ d in the range of 100 nm to 600 nm on the u′v ′ chromaticity diagram. Therefore, the position corresponding to each optical distance n ⁇ d on the curve 12 can be specified by coordinates (u ′, v ′). Therefore, using each optical distance n ⁇ d and u ′, v ′ corresponding thereto, a graph is created with the optical distance as the horizontal axis and u ′, v ′, and u ′ + v ′ as the vertical axis. did. The created graph is shown in FIG. In the figure, a broken line indicates u ', a two-dot chain line indicates v', and a solid line indicates u '+ v'.
  • the change in increase or decrease of u ′ occurs at three points where the optical distances n ⁇ d are approximately 300, 370, and 540.
  • the increase or decrease in v ′ occurs at three points where the optical distances n ⁇ d are approximately 270, 340, and 500.
  • the optical distance in one region is a range where both u ′ and v ′ increase. And selecting the optical distance in the other region from a range where both u ′ and v ′ decrease. In this case, even if the optical distance provided in each region changes after manufacturing, the change corresponds to the colors to be displayed (conjugate action) so that the changes cancel each other, so that the color shift is also reduced.
  • the optical distance provided in one region is selected from the region where both u ′ and v ′ increase, and the optical distance provided in the other region is decreased by both u ′ and v ′.
  • the optical distance provided in each region changes after manufacturing, at the point corresponding to the color to be displayed (that is, the midpoint of the line segment connecting the two points). Since the fluctuations act so as to cancel each other (conjugate action), the fluctuation of the midpoint is reduced and the color shift from the color set in this place is also reduced.
  • an inflection point (n ⁇ d is 300, 370, and 540, which is a point where u ′ increases and decreases), and an inflection point of v ′ (n ⁇ d is 270, Since the three points 340 and 500 do not match, it becomes a problem how to select the optical distance provided in each region. Therefore, the increase / decrease of the sum of u ′ and v ′ (u ′ + v ′) changes from the graph showing the change of the sum of u ′ and v ′ (u ′ + v ′) with respect to the optical distance n ⁇ d. (Inflection point) was derived, and the optical distance of each region was selected before and after this point.
  • the inflection points are three points with optical distances of approximately 280 nm, 350 nm, and 510 nm. Therefore, when the optical distances different between the concavo-convex structure forming regions are provided within the range of 100 to 600 nm, the optical distances in the respective regions may be set around these three points.
  • the set value of the optical distance in one concavo-convex structure forming region is selected from the range of 100 to 280 nm among the concavo-convex structure forming regions, and other
  • the setting value of the optical distance in the concavo-convex structure forming region is selected from the range of 280 to 350 nm, or the setting value of the optical distance in the one concavo-convex structure forming region is selected from the range of 280 nm to 350 nm, and others
  • the setting value of the optical distance in the concavo-convex structure forming region is selected from the range of 350 nm to 510 nm, or the setting value of the optical distance in the one concavo-convex structure forming region is selected from the range of 350 nm to 510 nm, and others
  • the set value of the optical distance in the concavo-convex structure forming region may be selected from
  • the set value of the optical distance in one concavo-convex structure forming region is selected from a range of 100 to 280 nm, and the other concavo-convex structure forming region is formed.
  • the setting value of the optical distance in the region is selected from the range of 280 to 350 nm, or the setting value of the optical distance in the one uneven structure forming region is selected from the range of 280 to 350 nm, and the other uneven structure forming region is selected.
  • the optical distance setting value is selected from the range of 350 nm to 510 nm, or the optical distance setting value of one uneven structure forming region is selected from the range of 350 nm to 510 nm and the other uneven structure forming region is selected.
  • the set value of the optical distance may be selected from the range of 510 nm to 600 nm. However, it is assumed that the set values of the two types of optical distances selected are different.
  • the optical distance can be determined according to the display color.
  • the set value of the optical distance in at least one kind of uneven structure forming region is selected from the range of 100 to 280 nm, and the set value of optical distance in the other uneven structure forming region is set to 280 to It can be selected from a range of 350 nm.
  • the set value of the optical distance in one type of concavo-convex structure forming region is selected from the range of 280 nm to 350 nm, and the set value of the optical distance in the other concavo-convex structure forming region is set to 350 nm to 510 nm. Select from a range.
  • each optical distance may vary depending on the manufacturing method and manufacturing conditions. Assuming that the optical distance fluctuates by 10% with respect to the set value described above, the optical distance in one concavo-convex structure forming region in the concavo-convex structure forming region of the concavo-convex structure forming layer 2 in the display 10 after manufacture is The optical distance in the other concavo-convex structure forming region is in the range of 252 to 385 nm.
  • the optical distance in one concavo-convex structure forming region is in the range of 252 nm to 385 nm, and the optical distance in the other concavo-convex structure forming region is in the range of 315 nm to 561 nm.
  • the optical distance in one concavo-convex structure forming region is in the range of 315 nm to 561 nm, and the optical distance in the other concavo-convex structure forming region is in the range of 459 nm to 660 nm.
  • the set value of the optical distance in each region of the concavo-convex structure formation region is set to a combination from a specific range, thereby manufacturing the display body 10. It is possible to reduce color misregistration due to. Thereby, the display body 10 is less likely to cause color misregistration due to a change in the optical distance during manufacture. For this reason, productivity becomes high.
  • the display body 10 can be manufactured by appropriately selecting an appropriate method from publicly known methods according to the material and layer structure constituting each layer.
  • the concavo-convex structure forming layer 2 constituting the display body 10 can be formed as follows.
  • the concavo-convex structure forming layer 2 forms the concavo-convex structure forming layer 2 by bringing the molten resin into contact with a cooling roll having a concavo-convex structure on the surface, transferring the concavo-convex pattern on the surface of the cooling roll to the molten resin, and then solidifying by cooling. can do.
  • the distance between the bottom plane and the top plane in the concavo-convex structure provided on the surface of the cooling roll is determined according to the set value of the optical distance provided in each region of the concavo-convex structure forming region of the concavo-convex structure forming layer 2.
  • a base material is included as the base of the concavo-convex structure forming layer 2
  • a thermoplastic resin or a photocurable resin is applied on a base material made of polyethylene terephthalate (PET) to form a concavo-convex shape on the coating film.
  • PET polyethylene terephthalate
  • the metal stamper is adhered, and the resin layer is heated or irradiated with light. After the resin is cured, the metal stamper is peeled from the cured resin, thereby forming the concavo-convex structure forming layer 2.
  • the metal stamper uses a method of directly forming a concavo-convex structure on a metal surface, a method of mechanically forming a concavo-convex structure on a copper layer or a nickel layer on a roll surface using a cutting tool such as a diamond tool, and a photosensitive material.
  • the metal surface can be formed by a selective etching method using an exposure process or a method of processing a metal surface using ablation by laser light or the like.
  • the distance between the bottom plane and the top plane in the concavo-convex structure provided on the surface of the metal stamper is determined according to the set value of the optical distance provided in each region of the concavo-convex structure forming region of the concavo-convex structure forming layer 2.
  • a metal stamper having a fine concavo-convex shape draws a pattern on a photoresist plate with a stepper device or an electron beam drawing device (exposure processing), develops this, and obtains an original plate, A method obtained by electroforming from this original plate is preferred.
  • the exposure intensity when drawing a desired pattern on the photoresist layer is determined according to the set value of the optical distance provided in each region of the concavo-convex structure forming region of the concavo-convex structure forming layer 2.
  • a light reflecting layer 4 is formed on the concavo-convex structure forming layer 2 by depositing a metal such as aluminum or a dielectric in a single layer or multiple layers by a method such as vapor deposition, sputtering, or silver mirror treatment.
  • the display body 10 can be a transfer foil, a label, or a seal.
  • the display body 10 can be used by being transferred, pasted and rolled into a security medium.
  • Security media include banknotes, cards, and booklets. When the color deviation of the display body is small, the true cancer determination of the security medium is easy.
  • the display body 10 can be applied to security devices such as banknotes, cards, stickers, and booklets. Further, the display body 10 can be used for decoration of packages, cards, labels, and the like.

Abstract

The purpose of the present invention is to provide a display body in which color shift is less likely to occur, even when the display body is manufactured using a conventional method. This display body of the present invention is provided with: a concavo-convex structure formation layer having a plurality of concave parts or convex parts provided with a bottom flat surface and a top flat surface substantially parallel to the bottom flat surface, the concavo-convex structure formation layer being provided on one surface of the display body; and a light reflection layer covering all or a part of the concavo-convex surface of the concavo-convex structure formation layer. The concavo-convex structure formation layer is provided with two types of concavo-convex structure formation regions. The optical distance between the bottom flat surfaces and the top flat surfaces is uniform within each of the regions but is different between the regions. The two types of concavo-convex structure formation regions are alternately arranged. When the concavo-convex surface of the concavo-convex structure formation layer is formed, the set values for the optical distance in each of the regions are selected so as to produce a combination that contributes towards reducing color shift due to the manufacture of the display body.

Description

表示体Indicator
 本発明は、表示体に関する。 The present invention relates to a display body.
 表示体を発色させる技術としては、顔料および染料といった色素を表示体の表面に塗布する印刷などの手法、或いは、色素を用いずに、表示体に微細な凹凸形状を設けて発色させる手法が知られている。 As a technique for coloring the display body, there are known techniques such as printing in which pigments and dyes are applied to the surface of the display body, or a technique in which fine irregularities are provided on the display body without using a pigment. It has been.
 特に、後者の凹凸形状を設ける手法による発色は、構造性発色(構造色)と呼ばれている。構造色は、数μmから数nm程度の微細な構造に光が照射して、光回折、光散乱、薄膜干渉、あるいは多層膜干渉などの作用により生じる。 In particular, the latter color development by providing the uneven shape is called structural color development (structural color). The structural color is generated by light irradiating a fine structure of about several μm to several nm and effects such as light diffraction, light scattering, thin film interference, or multilayer film interference.
特許第5570210号公報Japanese Patent No. 5570210
 構造色を発現する構造の中で、例えば、回折格子に代表される周期構造では、観察角度を徐々に変化させると、その表示面が虹色に変化するなど、色素を用いた発色とは見え方が大きく異なる。したがって、この構造によれば、印刷などの手法で表現できない発色が可能となるが、観察角度により、色が変化して表示色が一定とならないため、色を識別することが必要な用途に周期構造のみを用いることに制限がある。 Among the structures that exhibit structural colors, for example, in a periodic structure represented by a diffraction grating, when the observation angle is gradually changed, the display surface changes to a rainbow color, so that coloring using a dye appears to be visible. Is much different. Therefore, according to this structure, it is possible to develop colors that cannot be expressed by techniques such as printing, but the color changes depending on the observation angle, and the display color does not become constant. There are limitations to using only the structure.
 これに対し、観察角度により、色の変化がさほど大きくならない表示体が開発されている(特許文献1)。この表示体では、その表示面に設けられた凹凸構造に光が入射すると、様々な方向に回折光が射出し、観察方向が多少変化しても、色の変化がさほど大きくならない。 On the other hand, a display body in which the color change does not become so large depending on the observation angle has been developed (Patent Document 1). In this display body, when light is incident on the concavo-convex structure provided on the display surface, diffracted light is emitted in various directions, and even if the observation direction changes slightly, the color change does not increase so much.
 しかしながら、この表示体では、所望の色を発現させるために、凹凸構造の底部平面と頂部平面との距離を高い寸法精度で形成する必要がある。この距離を高い精度で形成することは容易ではなく、設定された色と実際に表示される色とにずれが生じやすい。 However, in this display body, in order to express a desired color, it is necessary to form the distance between the bottom plane and the top plane of the concavo-convex structure with high dimensional accuracy. It is not easy to form this distance with high accuracy, and a difference between the set color and the actually displayed color tends to occur.
 本実施形態の表示体は、一方の面に、底部平面、および前記底部平面と略平行である頂部平面を備える複数の凹部または凸部を有する凹凸構造形成層と、前記凹凸構造形成層の凹凸面を全部または一部被覆している光反射層とを備える表示体であって、前記凹凸構造形成層は、2種の凹凸構造形成領域を備え、前記凹凸構造形成領域の各領域内では、前記底部平面と前記頂部平面との光学距離は一定であるが、領域間で前記光学距離が相違しており、前記2種の凹凸構造形成領域は交互に配列されており、さらに、前記凹凸構造形成層の凹凸面を形成する際に、前記2種の凹凸構造形成領域の各領域における光学距離の設定値が、前記表示体の色ずれの低減に寄与する組み合わせとなるように選択されていることを特徴とする。 The display body of the present embodiment includes a concave-convex structure forming layer having a plurality of concave portions or convex portions having a bottom plane and a top plane substantially parallel to the bottom plane on one surface, and the concave-convex portions of the concave-convex structure-forming layer. A light reflecting layer covering all or part of the surface, wherein the concavo-convex structure forming layer includes two types of concavo-convex structure forming regions, and in each region of the concavo-convex structure forming region, The optical distance between the bottom plane and the top plane is constant, but the optical distance is different between regions, the two types of concavo-convex structure forming regions are alternately arranged, and the concavo-convex structure When forming the concavo-convex surface of the formation layer, the set value of the optical distance in each of the two types of concavo-convex structure forming regions is selected to be a combination that contributes to the reduction of the color shift of the display body. It is characterized by that.
 また、本実施形態の表示体は、一方の面に、底部平面、および前記底部平面と略平行である頂部平面を備える複数の凹部または凸部を有する凹凸構造形成層と、前記凹凸構造形成層の凹凸面を全部または一部被覆している光反射層とを備える表示体であって、前記凹凸構造形成層は、2種の凹凸構造形成領域を備え、前記凹凸構造形成領域の各領域内おいて、前記底部平面と前記頂部平面との光学距離は、一定であり、前記2種の凹凸構造形成領域のうち、一方の凹凸構造形成領域における前記光学距離が90~308nmの範囲から選択され、且つ、他方の凹凸構造形成領域における前記光学距離が252~385nmの範囲から選択されるか、或いは、一方の凹凸構造形成領域における前記光学距離が252nm~385nmの範囲から選択され、且つ、他方の凹凸構造形成領域における前記光学距離が315nm~561nmの範囲から選択されるか、或いは、一方の凹凸構造形成領域における前記光学距離が315nm~561nmの範囲から選択され、他方の凹凸構造形成領域における前記光学距離が459nm~660nmの範囲から選択されるが、但し、前記凹凸構造形成領域の領域間において、前記光学距離は相違しており、前記少なくとも2種の凹凸構造形成領域は交互に配列されていることを特徴とする。 Further, the display body of the present embodiment includes a concavo-convex structure forming layer having a plurality of concave portions or convex portions having a bottom plane and a top plane substantially parallel to the bottom plane on one surface, and the concavo-convex structure forming layer. And a light reflecting layer covering all or part of the concavo-convex surface of the concavo-convex structure forming layer, the concavo-convex structure forming layer including two types of concavo-convex structure forming regions, The optical distance between the bottom plane and the top plane is constant, and the optical distance in one of the two concavo-convex structure forming areas is selected from the range of 90 to 308 nm. And whether the optical distance in the other concavo-convex structure forming region is selected from the range of 252 to 385 nm, or whether the optical distance in the one concavo-convex structure forming region is in the range of 252 nm to 385 nm. And the optical distance in the other concavo-convex structure forming region is selected from the range of 315 nm to 561 nm, or the optical distance in one concavo-convex structure forming region is selected from the range of 315 nm to 561 nm, and the other The optical distance in the concavo-convex structure forming region is selected from the range of 459 nm to 660 nm, provided that the optical distance is different between the concavo-convex structure forming regions, and the at least two types of concavo-convex structure formation are performed. The regions are characterized by being alternately arranged.
 本実施形態の表示体は、製造時等での色ずれを抑制できる。このため、生産性を高くできる。 The display body of the present embodiment can suppress color misregistration during manufacturing. For this reason, productivity can be made high.
本実施形態に係る表示体の一例を概略的に示す平面図である。It is a top view which shows roughly an example of the display body which concerns on this embodiment. 図1Aの平面図において一点鎖線の円で囲まれた部分を拡大した図である。It is the figure which expanded the part enclosed with the dashed-dotted line circle in the top view of FIG. 1A. 図1Bに示すIC-IC線に沿った断面図である。FIG. 1B is a cross-sectional view taken along the line IC-IC shown in FIG. 1B. 本実施形態に係る表示体の凹凸構造形成領域に設けられた凸構造に照明光が入射し、底部平面および頂部平面で反射する様子を概略的に示す図である。It is a figure which shows roughly a mode that illumination light injects into the convex structure provided in the uneven | corrugated structure formation area | region of the display body which concerns on this embodiment, and reflects with a bottom plane and a top plane. 表示体の色変化をCIE 1976 UCS u’v’色度図上に曲線で示した図である。It is the figure which showed the color change of the display body with the curve on the CIE 1976 UCS u'v 'chromaticity diagram. 図3において一点鎖線の囲まれた部分を拡大した図である。It is the figure which expanded the part enclosed with the dashed-dotted line in FIG. 光学距離を横軸とし、u’、v’、およびu’+v’を縦軸として示したグラフである。It is the graph which showed optical distance as a horizontal axis and showed u ', v', and u '+ v' as a vertical axis | shaft. 本実施形態に係る表示体の凹凸構造形成領域に設けられる凹凸構造の一例を示す概略平面図である。It is a schematic plan view which shows an example of the uneven structure provided in the uneven structure formation area | region of the display body which concerns on this embodiment. 本実施形態に係る表示体の凹凸構造形成領域に設けられる凹凸構造の一例を示す概略平面図である。It is a schematic plan view which shows an example of the uneven structure provided in the uneven structure formation area | region of the display body which concerns on this embodiment. 本実施形態に係る表示体の凹凸構造形成領域に設けられる凹凸構造の一例を示す概略平面図である。It is a schematic plan view which shows an example of the uneven structure provided in the uneven structure formation area | region of the display body which concerns on this embodiment. 本実施形態に係る表示体の凹凸構造形成層に設けられる構造の一例を示す概略平面図である。It is a schematic plan view which shows an example of the structure provided in the uneven | corrugated structure formation layer of the display body which concerns on this embodiment. 本実施形態に係る表示体の凹凸構造形成層に設けられる構造の一例を示す概略平面図である。It is a schematic plan view which shows an example of the structure provided in the uneven | corrugated structure formation layer of the display body which concerns on this embodiment.
 以下に、本発明の実施の形態について詳細に説明する。以下の説明において適宜図面を参照するが、図面に記載された態様は本発明の例示であり、本発明はこれらの図面に記載された態様に制限されない。なお、各図において、同様の、または類似した機能を発揮する構成要素には同一の参照符号を付し、重複する説明を省略することがある。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。さらに、本明細書において、「~」とは、その前後に記載される数値を下限値および上限値として含む意味で使用される。 Hereinafter, embodiments of the present invention will be described in detail. In the following description, the drawings are referred to as appropriate, but the embodiments described in the drawings are examples of the present invention, and the present invention is not limited to the embodiments described in these drawings. In addition, in each figure, the same referential mark is attached | subjected to the component which exhibits the same or similar function, and the overlapping description may be abbreviate | omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios. Further, in the present specification, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 <表示体>
 本実施形態に係る表示体は、一方の面に複数の凹部または凸部を有する凹凸構造形成層と、凹凸構造形成層の凹凸面を一部または全部被覆している光反射層とを備える。また、凹凸構造形成層は、2種の凹凸構造形成領域を備え、底部平面と頂部平面との光学距離は、凹凸構造形成領域の各領域内おいて、一定であり、特定の範囲から選択されるが、凹凸構造形成領域の領域間において、相違している。さらに、2種の凹凸構造形成領域は交互に配列されている。
<Display body>
The display according to the present embodiment includes a concavo-convex structure forming layer having a plurality of concave portions or convex portions on one surface, and a light reflecting layer covering a part or all of the concavo-convex surface of the concavo-convex structure forming layer. The concavo-convex structure forming layer includes two types of concavo-convex structure forming regions, and the optical distance between the bottom plane and the top plane is constant in each region of the concavo-convex structure forming region, and is selected from a specific range. However, there is a difference between the regions of the uneven structure forming region. Further, the two types of concavo-convex structure forming regions are alternately arranged.
 図1Aは、本実施形態に係る表示体の一例を概略的に示す平面図であり、図1Bは、図1Aの平面図において一点鎖線の円で囲まれた部分を拡大した図であり、図1Cは、図1Bに示すIC-IC線に沿った断面図である。なお、図1Aにおいて、X方向およびY方向は、表示面に対して平行であり、且つ、互いに対して垂直な方向である。また、Z方向は、X方向およびY方向に対して垂直な方向である。 FIG. 1A is a plan view schematically showing an example of a display body according to the present embodiment, and FIG. 1B is an enlarged view of a portion surrounded by a one-dot chain line circle in the plan view of FIG. 1A. 1C is a cross-sectional view taken along the line IC-IC shown in FIG. 1B. In FIG. 1A, the X direction and the Y direction are parallel to the display surface and perpendicular to each other. The Z direction is a direction perpendicular to the X direction and the Y direction.
 表示体10は、図1Cに示すように、凸部を有する凹凸構造形成層2と、凹凸構造形成層2の凹凸面を被覆している光反射層4とを備えている。ここで、図1Cにおいて、凹凸構造形成層2に、凸部が設けられていることを述べたが、凸部の代わりに凹部が設けられていてもよい。すなわち、一方の面に底部平面2b,2B、および底部平面2b,2Bと略平行である頂部平面2a,2Aを備える凹部が複数設けられていてもよい。このため、本明細書において、凸部の説明がされている場合、これを凹部の説明として適宜読み替えることができるものとする。また、下記に説明する表示体10の光学的作用および効果は、凸部の代わりに凹部を設けた場合においても当てはまる。以下、表示体10の構成要素について説明する。 As shown in FIG. 1C, the display body 10 includes a concavo-convex structure forming layer 2 having a convex portion, and a light reflecting layer 4 covering the concavo-convex surface of the concavo-convex structure forming layer 2. Here, although it has been described in FIG. 1C that the concavo-convex structure forming layer 2 is provided with a convex portion, a concave portion may be provided instead of the convex portion. That is, a plurality of recesses including bottom planes 2b and 2B and top planes 2a and 2A substantially parallel to the bottom planes 2b and 2B may be provided on one surface. For this reason, in this specification, when the convex part is described, it can be appropriately read as the explanation of the concave part. Moreover, the optical action and effect of the display body 10 to be described below are also applicable when a concave portion is provided instead of the convex portion. Hereinafter, components of the display body 10 will be described.
 (凹凸構造形成層)
 凹凸構造形成層2は、光透過性を有しており、典型的には透明、特に無色透明である。
(Uneven structure forming layer)
The concavo-convex structure forming layer 2 has optical transparency and is typically transparent, particularly colorless and transparent.
 凹凸構造形成層2は、図1Cに示すように、一方の面に底部平面2b,2B、および底部平面2b,2Bと略平行である頂部平面2a,2Aを備える凸部を複数有する。なお、凹凸構造形成層2の凹凸構造の詳細については、後述する(凹凸構造形成層の各凹凸構造形成領域における凹凸構造)の項で説明する。 As shown in FIG. 1C, the concavo-convex structure forming layer 2 has a plurality of convex portions including bottom planes 2b and 2B and top planes 2a and 2A substantially parallel to the bottom planes 2b and 2B on one surface. The details of the concavo-convex structure of the concavo-convex structure forming layer 2 will be described later in the section (Concave and convex structure in each concavo-convex structure forming region of the concavo-convex structure forming layer).
 凹凸構造形成層2の材料としては、熱可塑性樹脂、熱硬化性樹脂または光硬化性樹脂を使用することができる。 As the material for the concavo-convex structure forming layer 2, a thermoplastic resin, a thermosetting resin, or a photocurable resin can be used.
 その一例としては、オレフィン系樹脂を用いることができ、具体的には、ポリプロピレン(PP)、ポリエチレン(PE)、塩化ビニルなどが挙げられる。これら材料は、易加工性と柔軟性を有し、仕上がり品の風合いがよい。 As an example, an olefin-based resin can be used, and specific examples include polypropylene (PP), polyethylene (PE), and vinyl chloride. These materials have easy processability and flexibility, and the finished product has a good texture.
 また、他の例としては、一般的な透明樹脂を材料として用いることもできる。加工が比較的容易なものとして、ポリカーボネート樹脂、メタクリルスチレン(MS)樹脂などが挙げられる。これらを用いれば耐衝撃性に優れるために、凹凸構造形成層2に割れにくい特性を持たせることができる。アクリル系樹脂およびポリスチレン系樹脂を用いれば耐擦性に優れた特徴を付与することができる。熱硬化性樹脂または光硬化性樹脂を用いればハードコート性も付与することができる。ハードコート性は、鉛筆硬度試験(JIS K5600-5-4)において、H以上5H以下の硬度であるとすることができる。 As another example, a general transparent resin can be used as a material. Examples of materials that are relatively easy to process include polycarbonate resins and methacrylstyrene (MS) resins. If these are used, since the impact resistance is excellent, it is possible to give the uneven structure forming layer 2 the characteristic of being hard to break. If an acrylic resin and a polystyrene resin are used, the characteristics excellent in abrasion resistance can be imparted. If a thermosetting resin or a photocurable resin is used, hard coat properties can also be imparted. The hard coat property may be a hardness of H or more and 5H or less in a pencil hardness test (JIS K5600-5-4).
 凹凸構造形成層2の屈折率は、1.4~1.6とすることができる。また、凹凸構造形成層2の厚みは、1μm~10μmとすることができる。 The refractive index of the uneven structure forming layer 2 can be 1.4 to 1.6. The thickness of the concavo-convex structure forming layer 2 can be 1 μm to 10 μm.
 また、凹凸構造形成層2は、凹凸面とは反対の面に基材を含んでいてもよい。この場合、基材は、凹凸構造形成層2の下地としての役割を果たすとともに、凹凸構造形成層2を保護する役割を果たす。これにより、表示体10の強度を高めることができ、さらに、表示体10の厚みを薄くすることも可能となる。基材は、ハードコート性を有していてもよい。 Further, the concavo-convex structure forming layer 2 may include a base material on a surface opposite to the concavo-convex surface. In this case, the base material serves as a base for the concavo-convex structure forming layer 2 and also serves to protect the concavo-convex structure forming layer 2. Thereby, the intensity | strength of the display body 10 can be raised and also the thickness of the display body 10 can also be made thin. The substrate may have a hard coat property.
 基材の材料としては、樹脂を用いることができる。樹脂は、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化樹脂を用いることができる。熱可塑性樹脂としては、オレフィン系樹脂を用いることができる。オレフィン系樹脂としては、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート(PET)を用いることができる。熱硬化性樹脂としては、ウレタン樹脂を用いることができる。紫外線硬化樹脂としては、アクリル樹脂を用いることができる。熱硬化性樹脂、紫外硬化樹脂は、高い耐熱性を有している。また、紫外硬化樹脂は、ハードコート性を有する。尚、基材の屈折率は、1.4~1.6とすることができる。また、基材の厚みは、1μm~100μmとすることができる。基材は、その表裏面が相互に平行なシート状とすることができる。 Resin can be used as the base material. As the resin, a thermoplastic resin, a thermosetting resin, or an ultraviolet curable resin can be used. As the thermoplastic resin, an olefin resin can be used. As the olefin resin, polypropylene, polyethylene, or polyethylene terephthalate (PET) can be used. A urethane resin can be used as the thermosetting resin. An acrylic resin can be used as the ultraviolet curable resin. Thermosetting resins and ultraviolet curable resins have high heat resistance. Moreover, the ultraviolet curable resin has a hard coat property. The refractive index of the substrate can be 1.4 to 1.6. The thickness of the substrate can be 1 μm to 100 μm. The base material can be formed into a sheet shape whose front and back surfaces are parallel to each other.
 (光反射層)
 光反射層4は、光を反射する層である。
(Light reflecting layer)
The light reflecting layer 4 is a layer that reflects light.
 図1Cに示す例では、光反射層4は、凹凸構造形成層2の凹凸構造が設けられた面の全てを被覆しているが、少なくとも一部を被覆していればよい。少なくとも一部を被覆している態様としては、凹凸構造形成層2の凸部の底部平面2b,2Bおよび頂部平面2a,2Aのみを被覆し、側面を被覆していない態様が挙げられる。 In the example shown in FIG. 1C, the light reflecting layer 4 covers the entire surface of the concavo-convex structure forming layer 2 on which the concavo-convex structure is provided, but it is only necessary to cover at least a part thereof. As an aspect which coat | covers at least one part, the aspect which coat | covers only the bottom part planes 2b and 2B and the top part planes 2a and 2A of the convex part of the uneven | corrugated structure formation layer 2 is not covered.
 光反射層4は、金属層とすることができる。金属層の材料としては、アルミニウム、銀、金、およびそれらの合金を使用することができる。或いは、光反射層4として、凹凸構造形成層2とは屈折率が異なる誘電体層を使用してもよい。誘電体層には、無機化合物を用いることができる。無機化合物としては、金属化合物が好ましい。金属化合物として酸化チタン、酸化アルミニウム、硫化亜鉛を用いることができる。或いは、光反射層4として、隣り合うもの同士の屈折率が異なる誘電体層の積層体、即ち、誘電体多層膜を使用してもよい。なお、誘電体多層膜に含まれる誘電体層のうち、凹凸構造形成層2と接触しているものの屈折率は、凹凸構造形成層2の屈折率とは異なっていることが望ましい。光反射層4の厚みは、40nm~1000nmとすることができる。 The light reflecting layer 4 can be a metal layer. As the material of the metal layer, aluminum, silver, gold, and alloys thereof can be used. Alternatively, a dielectric layer having a refractive index different from that of the uneven structure forming layer 2 may be used as the light reflecting layer 4. An inorganic compound can be used for the dielectric layer. As the inorganic compound, a metal compound is preferable. Titanium oxide, aluminum oxide, or zinc sulfide can be used as the metal compound. Alternatively, a laminated body of dielectric layers having different refractive indexes between adjacent ones, that is, a dielectric multilayer film may be used as the light reflecting layer 4. In addition, it is desirable that the refractive index of the dielectric layer included in the dielectric multilayer film that is in contact with the concavo-convex structure forming layer 2 is different from the refractive index of the concavo-convex structure forming layer 2. The thickness of the light reflecting layer 4 can be set to 40 nm to 1000 nm.
 (任意の層)
 表示体10は、透明層、接着層などその他の層を更に含んでいてもよい。
(Any layer)
The display body 10 may further include other layers such as a transparent layer and an adhesive layer.
 透明層は、表示体10の表面を保護するための層である。例えば、図1Cに示すように、光反射層4側を前面(表示面)とする場合には、透明層6は、光反射層4を覆って、光反射層4を保護することができる。他方、凹凸構造形成層2側を前面(表示面)とする場合には、凹凸構造形成層2を覆って、凹凸構造形成層2を保護することができる。透明層は、ハードコート性を有することが好ましい。 The transparent layer is a layer for protecting the surface of the display body 10. For example, as shown in FIG. 1C, when the light reflection layer 4 side is the front surface (display surface), the transparent layer 6 can cover the light reflection layer 4 and protect the light reflection layer 4. On the other hand, when the uneven structure forming layer 2 side is the front surface (display surface), the uneven structure forming layer 2 can be protected by covering the uneven structure forming layer 2. The transparent layer preferably has hard coat properties.
 透明層6の材料としては、透明樹脂を用いることができる。透明樹脂は硬化性樹脂を用いることができる。硬化性樹脂は、ハードコート性を有する。硬化性樹脂としては、紫外線硬化性樹脂を用いることができる。 As the material of the transparent layer 6, a transparent resin can be used. A curable resin can be used as the transparent resin. The curable resin has a hard coat property. An ultraviolet curable resin can be used as the curable resin.
 透明層6の屈折率は、1.4~1.6とすることができる。透明層6の厚みは、1μm~5μmとすることができる。 The refractive index of the transparent layer 6 can be 1.4 to 1.6. The thickness of the transparent layer 6 can be 1 μm to 5 μm.
 接着層は、カード、紙、プラスチックフィルムなどに表示体10を接着して使用する場合に、接着力を付与するために設けられる層である。 The adhesive layer is a layer provided to give an adhesive force when the display body 10 is adhered to a card, paper, plastic film or the like.
 接着層は、光反射層4側を前面とする場合には、凹凸構造形成層2の、光反射層4と反対側の面に設けることができる。接着層の厚みは、1μm~50μmとすることができる。 The adhesive layer can be provided on the surface of the concavo-convex structure forming layer 2 opposite to the light reflecting layer 4 when the light reflecting layer 4 side is the front surface. The thickness of the adhesive layer can be 1 μm to 50 μm.
 接着層の材料としては、樹脂の接着剤を用いることができる。樹脂の接着材としては、アクリル接着剤を用いることができる。 As the material of the adhesive layer, a resin adhesive can be used. An acrylic adhesive can be used as the resin adhesive.
 (凹凸構造形成層の各凹凸構造形成領域における凹凸構造)
 次に、凹凸構造形成層2の各凹凸構造形成領域における凹凸構造について説明する。
(Uneven structure in each uneven structure forming region of the uneven structure forming layer)
Next, the uneven structure in each uneven structure forming region of the uneven structure forming layer 2 will be described.
 凹凸構造形成層2は、一方の面に底部平面、および底部平面と略平行である頂部平面を備える複数の凹部または凸部を有し、少なくとも2種の凹凸構造形成領域を備える。また、凹凸構造形成領域の各領域内は、底部平面と頂部平面との光学距離が一定である。底部平面と頂部平面との距離は、55nm~470nmとすることができる。 The concavo-convex structure forming layer 2 has a plurality of recesses or protrusions having a bottom plane and a top plane substantially parallel to the bottom plane on one surface, and includes at least two types of concavo-convex structure formation regions. In each region of the concavo-convex structure forming region, the optical distance between the bottom plane and the top plane is constant. The distance between the bottom plane and the top plane can be between 55 nm and 470 nm.
 図1A~図1Cに示す例では、2種の凹凸構造形成領域を有する表示体10が示されている。図1Cに示すように、凹凸構造形成層2は、第1の凹凸構造形成領域R1(以下、単に「第1の領域R1」とも称する)内では、底部平面2bと頂部平面2aとの距離(底部平面を基準面とした凸部の頂部の高さ)dは、一定であり、第2の凹凸構造形成領域R2(以下、単に「第2の領域R2」とも称する)内では、底部平面2Bと頂部平面2Aとの距離Dは一定である。これに対し、第1の領域R1内の距離dと第2の領域R2内の距離Dとは相違している。このように、凹凸構造形成領域における底部平面2b,2Bと頂部平面2a,2Aとの距離は、各領域内において一定であるが、領域間において相違している。凹凸構造形成領域の各領域内で、底部平面2b,2Bと頂部平面2a,2Aとの距離を一定とすれば、凸部の高さに応じた特定の色を知覚できる。他方、底部平面2b,2Bと頂部平面2a,2Aとの距離が一定でないと、異なる波長の光による干渉が生じてしまい、様々な波長の光が表示され、凸部の高さに応じた特定の色を表示できない。他方、表示体10は凹凸構造形成領域の領域間で、底部平面2b,2Bと頂部平面2a,2Aとの距離が相違しており、各領域で生じる色の特定の色の混色を表示できる。 In the example shown in FIGS. 1A to 1C, a display body 10 having two types of uneven structure forming regions is shown. As shown in FIG. 1C, the concavo-convex structure forming layer 2 has a distance between the bottom flat surface 2b and the top flat surface 2a in the first concavo-convex structure forming region R1 (hereinafter also simply referred to as “first region R1”). The height (d) of the top of the convex portion with respect to the bottom plane is constant, and in the second concavo-convex structure forming region R2 (hereinafter also simply referred to as “second region R2”), the bottom plane 2B And the distance D between the top plane 2A is constant. On the other hand, the distance d in the first region R1 is different from the distance D in the second region R2. As described above, the distance between the bottom planes 2b and 2B and the top planes 2a and 2A in the concavo-convex structure forming region is constant in each region, but is different between the regions. If the distance between the bottom planes 2b and 2B and the top planes 2a and 2A is constant in each region of the concavo-convex structure formation region, a specific color corresponding to the height of the convex portion can be perceived. On the other hand, if the distance between the bottom planes 2b and 2B and the top planes 2a and 2A is not constant, interference due to light of different wavelengths occurs, light of various wavelengths is displayed, and identification according to the height of the convex portion Cannot be displayed. On the other hand, the display body 10 is different in the distance between the bottom planes 2b and 2B and the top planes 2a and 2A between the regions of the concavo-convex structure forming region, and can display a color mixture of specific colors generated in each region.
 また、図1Cに示す例では、第1の領域R1における底部平面2bと第2の領域R2における底部平面2Bとは同一面上に存在していないが、これらの底部平面2b,2Bが同一面上に存在していてもよい。 In the example shown in FIG. 1C, the bottom plane 2b in the first region R1 and the bottom plane 2B in the second region R2 do not exist on the same plane, but these bottom planes 2b and 2B are the same plane. May be present above.
 上記において、表示体10は、底部平面と頂部平面との距離(凸部の高さ)に応じた特定の色を表示すると説明したが、厳密には、以下のように説明することができる。表示体10に入射する光は、凹凸表面に到達するまでに媒質内を進行するため、表示体10は、実際には、底部平面と頂部平面との距離に、媒質の屈折率nを乗じた値(以下、「底部平面と頂部平面との光学距離」とも称する)に応じた特定の色を表示することになる。例えば、図2に示すように、光反射層4側を前面(表示面)とし、透明層6で光反射層4を保護する場合には、表示体10に入射する光Lは、光反射層4の凹凸表面に到達するまでに透明層6内を進む。この場合、透明層6を構成する材料が媒質となり、透明層6の屈折率が媒質の屈折率となる。他方、凹凸構造形成層2側を前面(表示面)とする場合には、表示体10に入射する光Lは、光反射層4の凹凸表面に到達するまでに凹凸構造形成層2内を進む。この場合、凹凸構造形成層2の屈折率が媒質の屈折率となる。 In the above description, the display body 10 has been described as displaying a specific color corresponding to the distance between the bottom plane and the top plane (the height of the convex portion), but strictly speaking, it can be described as follows. Since the light incident on the display body 10 travels in the medium before reaching the uneven surface, the display body 10 actually multiplies the distance between the bottom plane and the top plane by the refractive index n of the medium. A specific color corresponding to the value (hereinafter, also referred to as “optical distance between the bottom plane and the top plane”) is displayed. For example, as shown in FIG. 2, when the light reflection layer 4 side is the front surface (display surface) and the light reflection layer 4 is protected by the transparent layer 6, the light L incident on the display body 10 is reflected by the light reflection layer. 4 advances through the transparent layer 6 until reaching the uneven surface. In this case, the material constituting the transparent layer 6 is a medium, and the refractive index of the transparent layer 6 is the refractive index of the medium. On the other hand, when the concavo-convex structure forming layer 2 side is the front surface (display surface), the light L incident on the display body 10 travels through the concavo-convex structure forming layer 2 before reaching the concavo-convex surface of the light reflecting layer 4. . In this case, the refractive index of the concavo-convex structure forming layer 2 is the refractive index of the medium.
 以上の説明のとおり、光学距離n・dは、光反射層4側を前面(表示面)とする場合には、底部平面2b,2Bと頂部平面2a,2Aとの距離(底部平面を基準面とした凸部の高さd,D)に、透明層6の屈折率nを乗じた値である。他方、凹凸構造形成層2側を前面(表示面)とする場合には、底部平面2b,2Bと頂部平面2a,2Aとの距離(底部平面を基準面とした凹部の深さd,D)に、凹凸構造形成層2の屈折率nを乗じた値である。 As described above, the optical distance n · d is the distance between the bottom planes 2b and 2B and the top planes 2a and 2A when the light reflecting layer 4 side is the front surface (display surface) (the bottom plane is the reference plane). The height d, D) of the convex portion is multiplied by the refractive index n of the transparent layer 6. On the other hand, when the concavo-convex structure forming layer 2 side is the front surface (display surface), the distance between the bottom planes 2b and 2B and the top planes 2a and 2A (the depths d and D of the recesses with respect to the bottom plane) Is a value obtained by multiplying by the refractive index n of the concavo-convex structure forming layer 2.
 このように、表示体10は、底部平面と頂部平面との光学距離に応じた色を表示することになる。 Thus, the display body 10 displays a color corresponding to the optical distance between the bottom plane and the top plane.
 表示体10において、凹凸構造形成層2は、少なくとも2種の凹凸構造形成領域を備える。そして、これら凹凸構造形成領域における底部平面と頂部平面との光学距離は、特定の範囲から選択される。すなわち、凹凸構造形成領域のうち、1種の凹凸構造形成領域における底部平面と頂部平面との光学距離は、90~308nmの範囲、好ましくは100~280nmの範囲、さらに好ましくは110~280nmの範囲から選択され、且つ、その他の凹凸構造形成領域における底部平面と頂部平面との光学距離は、252~385nmの範囲、好ましくは280~350nmの範囲、さらに好ましくは280~315nmの範囲から選択される。或いは、1種の凹凸構造形成領域における底部平面と頂部平面との光学距離は、252~385nmの範囲、好ましくは280~350nmの範囲、さらに好ましくは308~350nmの範囲から選択され、且つ、その他の凹凸構造形成領域における底部平面と頂部平面との光学距離は、315~561nmの範囲、好ましくは350~510nmの範囲、さらに好ましくは350~459nmの範囲から選択される。或いは、1種の凹凸構造形成領域における底部平面と頂部平面との光学距離は、315~561nmの範囲、好ましくは350~510nmの範囲、さらに好ましくは459~510nmの範囲から選択され、その他の凹凸構造形成領域における底部平面と頂部平面との光学距離は、459nm~660nmの範囲、好ましくは510~600nmの範囲、さらに好ましくは510~540nmの範囲から選択される。但し、2種の凹凸構造形成領域の領域間において、底部平面と頂部平面との光学距離は相違しているものとする。 In the display body 10, the concavo-convex structure forming layer 2 includes at least two concavo-convex structure forming regions. The optical distance between the bottom plane and the top plane in these concavo-convex structure formation regions is selected from a specific range. That is, the optical distance between the bottom plane and the top plane in one type of concavo-convex structure forming region is in the range of 90 to 308 nm, preferably in the range of 100 to 280 nm, more preferably in the range of 110 to 280 nm. And the optical distance between the bottom plane and the top plane in the other concavo-convex structure forming region is selected from a range of 252 to 385 nm, preferably a range of 280 to 350 nm, and more preferably a range of 280 to 315 nm. . Alternatively, the optical distance between the bottom plane and the top plane in one concavo-convex structure forming region is selected from the range of 252 to 385 nm, preferably 280 to 350 nm, more preferably 308 to 350 nm, and the others The optical distance between the bottom plane and the top plane in the concavo-convex structure forming region is selected from the range of 315 to 561 nm, preferably 350 to 510 nm, and more preferably 350 to 459 nm. Alternatively, the optical distance between the bottom plane and the top plane in one type of concavo-convex structure forming region is selected from the range of 315 to 561 nm, preferably 350 to 510 nm, more preferably 459 to 510 nm. The optical distance between the bottom plane and the top plane in the structure formation region is selected from a range of 459 nm to 660 nm, preferably a range of 510 to 600 nm, and more preferably a range of 510 to 540 nm. However, it is assumed that the optical distance between the bottom plane and the top plane is different between the two types of concavo-convex structure forming areas.
 凹凸構造形成層2が2種の凹凸構造形成領域を備える場合には、前記2種の凹凸構造形成領域のうち、一方の凹凸構造形成領域における底部平面と頂部平面との光学距離が90~308nmの範囲、好ましくは100~280nmの範囲、さらに好ましくは110~280nmの範囲から選択され、且つ、他方の凹凸構造形成領域における前記光学距離が252~385nmの範囲、好ましくは280~350nmの範囲、さらに好ましくは280~315nmの範囲から選択される。或いは、一方の凹凸構造形成領域における底部平面と頂部平面との光学距離が252~385nmの範囲、好ましくは280~350nmの範囲、さらに好ましくは308~350nmの範囲から選択され、且つ、他方の凹凸構造形成領域における前記光学距離が315~561nmの範囲、好ましくは350~510nmの範囲、さらに好ましくは350~459nmの範囲から選択される。或いは、一方の凹凸構造形成領域における底部平面と頂部平面との光学距離が315~561nmの範囲、好ましくは350~510nmの範囲、さらに好ましくは459~510nmの範囲から選択され、且つ、他方の凹凸構造形成領域における前記光学距離が459nm~660nmの範囲、好ましくは510~600nmの範囲、さらに好ましくは510~540nmの範囲から選択される。但し、2種の凹凸構造形成領域の領域間において、底部平面と頂部平面との光学距離は相違しているものとする。 When the concavo-convex structure forming layer 2 includes two types of concavo-convex structure formation regions, the optical distance between the bottom plane and the top plane in one of the two concavo-convex structure formation regions is 90 to 308 nm. , Preferably in the range of 100 to 280 nm, more preferably in the range of 110 to 280 nm, and the optical distance in the other concavo-convex structure forming region is in the range of 252 to 385 nm, preferably in the range of 280 to 350 nm. More preferably, it is selected from the range of 280 to 315 nm. Alternatively, the optical distance between the bottom plane and the top plane in one concavo-convex structure forming region is selected from the range of 252 to 385 nm, preferably 280 to 350 nm, more preferably 308 to 350 nm, and the other concavo-convex The optical distance in the structure forming region is selected from the range of 315 to 561 nm, preferably from 350 to 510 nm, and more preferably from 350 to 459 nm. Alternatively, the optical distance between the bottom plane and the top plane in one concavo-convex structure forming region is selected from the range of 315 to 561 nm, preferably 350 to 510 nm, more preferably 459 to 510 nm, and the other concavo-convex The optical distance in the structure formation region is selected from the range of 459 nm to 660 nm, preferably from 510 to 600 nm, and more preferably from 510 to 540 nm. However, it is assumed that the optical distance between the bottom plane and the top plane is different between the two types of concavo-convex structure forming areas.
 表示体10において、凹凸構造形成層2は、凹凸構造形成領域の各領域内において、複数の凹部または凸部が配置されている。 In the display body 10, the concavo-convex structure forming layer 2 has a plurality of concave portions or convex portions arranged in each region of the concavo-convex structure forming region.
 図1Bに示す例では、第1の領域R1および第2の領域R2の各領域内において、複数の凸部がランダムに配置されている。本明細書で「凸部がランダムに配置されている」とは、隣り合う凸部の中心間距離が一定にならないように凸部が配置されていることを意味する。図1Bに示す例のように、凸部がランダムに配置されている場合だけでなく、隣り合う凸部の中心間距離が一定になるように凸部が配置されていてもよい。また、凸部を規則的に配置することもできる。 In the example shown in FIG. 1B, a plurality of convex portions are randomly arranged in each of the first region R1 and the second region R2. In the present specification, “the convex portions are randomly arranged” means that the convex portions are arranged so that the distance between the centers of the adjacent convex portions is not constant. As in the example illustrated in FIG. 1B, not only when the convex portions are randomly arranged, the convex portions may be arranged such that the distance between the centers of the adjacent convex portions is constant. Moreover, a convex part can also be arrange | positioned regularly.
 隣り合う凸部の(平均)中心間距離は、0.5μm~10μmとすることができる。また、隣り合う凸部の(平均)中心間距離は、可視光を回折させるために、1μm未満としてもよい。 The (average) center-to-center distance between adjacent convex portions can be 0.5 μm to 10 μm. Further, the (average) center-to-center distance between adjacent convex portions may be less than 1 μm in order to diffract visible light.
 図1Bに示すように、凸部の頂部平面は、平面視で、正方形とすることができる。しかしながら、当該形状に限られず、凸包(convex hull)形状としてもよい。凸部の頂部平面は、平面視で、三角形、長方形および台形などの四角形、五角形、六角形などの多角形、円形、楕円形とすることができる。また、形状の相違するものが混在していてもよい。凸部の頂部平面は、製造の容易性からは、矩形、特に正方形が好ましい。 As shown in FIG. 1B, the top plane of the convex portion can be a square in plan view. However, the shape is not limited to this, and a convex hull shape may be used. The top plane of the convex portion can be a quadrilateral such as a triangle, a rectangle, and a trapezoid, a polygon such as a pentagon, a hexagon, a circle, and an ellipse in plan view. Moreover, the thing from which a shape differs may be mixed. The top flat surface of the convex portion is preferably a rectangle, particularly a square, for ease of manufacturing.
 凸部の頂部平面から底部平面に延びる側面は、底部平面に対して垂直面であっても、傾斜面であってもよい。また、側面は、平坦面、または凹面および凸面などの曲面であってもよい。凸面などの曲面には、円弧状面が含まれる。側面が曲面であれば、光学的性能と成形性を両立しやすい。 The side surface extending from the top plane of the convex portion to the bottom plane may be a vertical plane or an inclined plane with respect to the bottom plane. The side surface may be a flat surface or a curved surface such as a concave surface and a convex surface. Curved surfaces such as convex surfaces include arcuate surfaces. If the side surface is curved, it is easy to achieve both optical performance and moldability.
 凸部の頂部平面の長辺および短辺の長さは、可視光を回折させる必要があるために、2μm未満とすることができる。ここで、長辺および短辺は以下のように定義する。まず、凸部の頂部平面の輪郭上の2点を結ぶ線分のうち長さが最大のもの定め、これを長辺とする。そして、この長辺に平行な辺を有し、かつ凸部の頂部平面の輪郭に外接する矩形を描き、この短辺を凸部の頂部平面の短辺とする。なお、凸部の頂部平面の形状が、辺の長さおよび内角が全て等しい正方形などである場合には、長辺と短辺の長さは等しくなる。 The length of the long side and the short side of the top surface of the convex portion can be made less than 2 μm because it is necessary to diffract visible light. Here, the long side and the short side are defined as follows. First, the longest length of line segments connecting two points on the contour of the top plane of the convex portion is determined, and this is defined as the long side. Then, a rectangle having a side parallel to the long side and circumscribing the outline of the top plane of the convex portion is drawn, and this short side is defined as the short side of the top plane of the convex portion. In addition, when the shape of the top plane of the convex part is a square or the like having the same side length and the same interior angle, the long side and the short side have the same length.
 凹凸構造形成領域の各領域内において、平面視で、凸部の頂部平面が占める面積率は、15%~80%とすることができる。ここで、「凸部の頂部平面の占める面積率」は、凹凸構造形成領域の各領域の面積に対する、凸部の頂部平面の占める面積の百分率である。凸部の頂部平面の面積と底部平面の面積の割合が1対1の比率となるときに、凸部の頂部平面の占める面積率は、50%となる。表示体10では、凹凸構造形成層2に、光学距離が相違する複数の凹凸構造形成領域が設けられている。これにより、観察者は、各凹凸構造形成領域から射出される回折光の重なりに基づいて、表示体10に表示される色を認識する。異なる波長領域の光が重なると白色に近づくため、表示体10に表示される色の彩度は低下する傾向にある。ここで、表示体10に表示される色の彩度は、凸部の頂部平面が占める面積率により変化するため、この面積率を適切に設定することにより、彩度を高めることができる。 In each region of the concavo-convex structure forming region, the area ratio occupied by the top flat surface of the convex portion can be 15% to 80% in plan view. Here, the “area ratio occupied by the top plane of the convex portion” is a percentage of the area occupied by the top plane of the convex portion with respect to the area of each region of the concavo-convex structure forming region. When the ratio of the area of the top plane of the convex portion to the area of the bottom plane is 1: 1, the area ratio occupied by the top plane of the convex portion is 50%. In the display body 10, the concavo-convex structure forming layer 2 is provided with a plurality of concavo-convex structure forming regions having different optical distances. Thereby, an observer recognizes the color displayed on the display body 10 based on the overlap of the diffracted light inject | emitted from each uneven | corrugated structure formation area. When light in different wavelength regions overlaps, the color approaches white, so that the saturation of the color displayed on the display body 10 tends to decrease. Here, since the saturation of the color displayed on the display body 10 changes depending on the area ratio occupied by the top plane of the convex portion, the saturation can be increased by appropriately setting this area ratio.
 各凹凸構造形成領域において、凸部を配置する場合に、面積率を高く設定しすぎると、隣り合う凸部間の距離が極端に小さくなる領域が出現し、隣り合う凸部が干渉し、二つの凸部がそれぞれ独立した凸部として機能しないこともあり得る。このため、彩度の向上効果と前記凸部の配置上の制約の兼ね合いから、凸部を配置する場合には、凸部の頂部平面の占める面積率は、26%~31%が好ましく、26%~28%がより好ましい。 In each concavo-convex structure forming region, if the area ratio is set too high when the convex portions are arranged, a region in which the distance between the adjacent convex portions becomes extremely small appears, and the adjacent convex portions interfere with each other. The two convex portions may not function as independent convex portions. For this reason, in view of the effect of improving the saturation and restrictions on the arrangement of the convex portions, when the convex portions are arranged, the area ratio occupied by the top plane of the convex portions is preferably 26% to 31%. % To 28% is more preferable.
 以上のように、凹凸構造形成層2の各凹凸構造形成領域における凹凸構造を説明したが、各領域間で、底部平面と頂部平面との(光学)距離は相違するが、隣り合う凸部の(平均)中心間距離、凸部の頂部平面の形状、凸部の頂部平面が占める面積率などその他については、同一であっても相違していてもよい。 As described above, the concavo-convex structure in each concavo-convex structure forming region of the concavo-convex structure forming layer 2 has been described, but the (optical) distance between the bottom plane and the top plane is different between the areas, The (average) center-to-center distance, the shape of the top plane of the projection, the area ratio occupied by the top plane of the projection, etc. may be the same or different.
 (凹凸構造形成領域の配列)
 次に、上記に説明した凹凸構造を備える各凹凸構造形成領域の配列について説明する。
(Arrangement of uneven structure forming region)
Next, the arrangement of the concavo-convex structure forming regions having the concavo-convex structure described above will be described.
 凹凸構造形成層2は、2種の凹凸構造形成領域を備える。そして、この2種の凹凸構造形成領域は交互に配列されている。 The uneven structure forming layer 2 includes two types of uneven structure forming regions. The two types of concavo-convex structure forming regions are alternately arranged.
 図1Bに示す例では、2種の凹凸構造形成領域である第1の領域R1および第2の領域R2がX方向およびY方向に交互に(市松状に)配列されている。ここで、同図において、第1の領域R1および第2の領域R2のそれぞれは、二点鎖線によって、その外形が正方形で示されているが、これは、各領域の外形を明確にするため便宜的に用いているものであり、実際には、このような鎖線は存在しない。 In the example shown in FIG. 1B, the first region R1 and the second region R2 which are two types of concavo-convex structure forming regions are arranged alternately (in a checkered pattern) in the X direction and the Y direction. Here, in the same figure, the outer shape of each of the first region R1 and the second region R2 is indicated by a two-dot chain line as a square, but this is to clarify the outer shape of each region. This is used for convenience, and there is actually no such chain line.
 各凹凸構造形成領域の外形は、正方形、三角形、長方形、平行四辺形、および台形などの四角形、五角形、ならびに六角形などの多角形とすることができる。 The outer shape of each concavo-convex structure forming region can be a square, a triangle, a rectangle, a parallelogram, a quadrangle such as a trapezoid, a pentagon, and a polygon such as a hexagon.
 また、各凹凸構造形成領域の配列は、ハニカム状に交互に配置することもできる。 Also, the arrangement of the concavo-convex structure forming regions can be alternately arranged in a honeycomb shape.
 さらに、各凹凸構造形成領域を交互に配列するということには、同一の凹凸構造形成領域を複数並列してラインを形成し、各領域に対して形成したラインを交互に配置することも含まれる。図6Aおよび図6Bは、この一例を示す図である。 Further, alternately arranging the concavo-convex structure forming regions includes forming a line by arranging a plurality of the same concavo-convex structure forming regions in parallel, and alternately arranging the lines formed for each region. . 6A and 6B are diagrams showing an example of this.
 図6Aに示す例では、第1の領域R1をX方向に複数並列して形成したラインと、第2の領域R2をX方向に複数並列して形成したラインとが、Y方向に交互に配置されている。すなわち、複数の第1の領域R1からなるラインと、複数の第2の領域R2からなるラインとが、ストライプ状に配置されている。この例では、第1の領域R1および第2の領域R2の外形はいずれも正方形である。また、第1の領域R1および第2の領域R2における凸部の配置および数は同一である。 In the example shown in FIG. 6A, lines in which a plurality of first regions R1 are formed in parallel in the X direction and lines in which a plurality of second regions R2 are formed in parallel in the X direction are alternately arranged in the Y direction. Has been. In other words, lines composed of a plurality of first regions R1 and lines composed of a plurality of second regions R2 are arranged in a stripe pattern. In this example, the outer shapes of the first region R1 and the second region R2 are both square. Further, the arrangement and the number of convex portions in the first region R1 and the second region R2 are the same.
 図6Bは、第1の領域R1および第2の領域R2の並列方向が、XおよびY方向に対して略45°で交差する方向である例を示している。この例では、第1の領域R1および第2の領域R2の外形はいずれもひし形である。また、第1の領域R1および第2の領域R2における凸部の配置および数は同一である。 FIG. 6B shows an example in which the parallel direction of the first region R1 and the second region R2 intersects the X and Y directions at approximately 45 °. In this example, the outer shape of each of the first region R1 and the second region R2 is a rhombus. Further, the arrangement and the number of convex portions in the first region R1 and the second region R2 are the same.
 図7に示す例では、図6Aおよび図6Bに示す例と同様、第1の領域R1からなるラインと、第2の領域R2からなるラインとがストライプ状に配置されている。図7に示す例において、左半分は、第1の領域R1および第2の領域R2の並列方向がX方向である領域(横縞領域)から構成されている。右半分は、第1の領域R1および第2の領域R2の並列方向がY方向である領域(縦縞領域) から構成されている。図7に示す例では、第1の領域R1と第2の領域R2との領域間で、凸部の配置が相違している。このため、横縞領域では、第1の領域R1における凸部(または第2の領域R2における凸部)の繰り返し周期がY方向よりもX方向で短くなる。これにより、横縞領域では、Y方向よりもX方向に回折光を生じ易くなる。これと同様の考えに基づき、縦縞領域では、X方向よりもY方向に回折光を生じ易くなる。各凹凸構造形成領域の配列により、表示体10に、このような光学的効果を付加することができる。 In the example shown in FIG. 7, as in the example shown in FIGS. 6A and 6B, the lines made of the first region R1 and the lines made of the second region R2 are arranged in stripes. In the example shown in FIG. 7, the left half is composed of a region (horizontal stripe region) in which the parallel direction of the first region R1 and the second region R2 is the X direction. The right half is composed of a region (vertical stripe region) that has the Y direction in the parallel direction of the first region R1 and the second region R2. In the example illustrated in FIG. 7, the arrangement of the protrusions is different between the first region R1 and the second region R2. For this reason, in the horizontal stripe region, the repetition period of the convex portion in the first region R1 (or the convex portion in the second region R2) is shorter in the X direction than in the Y direction. Thereby, in the horizontal stripe region, diffracted light is more likely to be generated in the X direction than in the Y direction. Based on the same idea, diffracted light is more likely to be generated in the Y direction than in the X direction in the vertical stripe region. Such an optical effect can be added to the display 10 by the arrangement of the concavo-convex structure forming regions.
 なお、図6A、図6B、および図7に示す例では、第1の領域R1からなるラインと、第2の領域R2からなるラインのライン幅を同一に描いているが、相違していてもよい。 In the examples shown in FIGS. 6A, 6B, and 7, the line widths of the line formed of the first region R1 and the line formed of the second region R2 are drawn the same, but they may be different. Good.
 また、凹凸構造形成層2には、上記(凹凸構造形成層の各凹凸構造形成領域における凹凸構造)の項で説明した凹凸構造以外の構造が含まれていてもよい。 In addition, the concavo-convex structure forming layer 2 may include a structure other than the concavo-convex structure described in the above section (the concavo-convex structure in each concavo-convex structure forming region of the concavo-convex structure forming layer).
 図8Aは、第1の領域R1および第2の領域R2に加えて、平坦構造を備えたその他の領域R’が含まれる一例を示した平面図である。同図では、外形がひし形である、第1の領域R1、第2の領域R2、およびその他の領域R’の3種類の領域が交互に配置されている。図8Bは、外形が三角形である、第1の領域R1、第2の領域R2、および平坦構造を備えたその他の領域R’が交互に配置されている一例を示す平面図である。図8Aおよび図8Bに示す例では、その他の領域R’に、平坦構造が含まれていているが、この構造に制限されるわけではなく、回折格子であってもよい。さらに、その他の領域R’を透過領域としてもよい。また、その他の領域R’に印刷層を設けてもよい。 FIG. 8A is a plan view showing an example in which another region R ′ having a flat structure is included in addition to the first region R1 and the second region R2. In the figure, three types of regions, the first region R1, the second region R2, and the other region R ', whose outer shape is a rhombus, are alternately arranged. FIG. 8B is a plan view showing an example in which the first region R1, the second region R2, and the other region R ′ having a flat structure whose outer shape is a triangle are alternately arranged. In the example shown in FIGS. 8A and 8B, the other region R ′ includes a flat structure, but is not limited to this structure, and may be a diffraction grating. Further, the other region R ′ may be a transmission region. Further, a printing layer may be provided in the other region R ′.
 各凹凸構造形成領域の外形の長辺および短辺の長さは、目視で、容易に識別できない程度の大きさであることが望ましく、200μm以下が望ましい。ここで、長辺および短辺は以下のように定義する。まず、各凹凸構造形成領域の外形の輪郭上の2点を結ぶ線分のうち長さが最大のもの定め、これを長辺とする。そして、この長辺に平行な辺を有し、かつ各凹凸構造形成領域の外形の輪郭に外接する矩形を描き、この短辺を各凹凸構造形成領域の外形の短辺とする。 The lengths of the long side and the short side of the outer shape of each concavo-convex structure forming region are desirably such that they cannot be easily identified visually, and are preferably 200 μm or less. Here, the long side and the short side are defined as follows. First, the line segment connecting two points on the contour of the outline of each concavo-convex structure forming region is determined to have the longest length, and this is defined as the long side. A rectangle having a side parallel to the long side and circumscribing the outline of the outline of each concavo-convex structure forming region is drawn, and this short side is defined as the short side of the outline of each concavo-convex structure forming region.
 以上のように、表示体10において、凹凸構造形成層2は、少なくとも2種の凹凸構造形成領域を備え、この少なくとも2種の凹凸構造形成領域が交互に配列されている。 As described above, in the display body 10, the concavo-convex structure forming layer 2 includes at least two types of concavo-convex structure forming regions, and the at least two types of concavo-convex structure forming regions are alternately arranged.
 表示体10では、文字、図形、記号その他のマークを凹凸構造形成領域の集まりで表示することができる。図1Aに示すように、表示体10では、凸のマーク8の形状にあわせて第1の領域R1および第2の領域R2を配列することで、凸のマークを表示できる。また、特定の色でマーク8を表示するには、上記に示した凹凸構造形成領域の各領域における光学距離を特定の色に応じた値に設定すればよい。さらに、表示体10では、複数のマークを表示する場合に、マークごとに光学距離を設定して、マークごとの色を発色するようにすることもできる。 The display 10 can display characters, figures, symbols, and other marks as a collection of uneven structure forming regions. As shown in FIG. 1A, the display body 10 can display a convex mark by arranging the first region R <b> 1 and the second region R <b> 2 according to the shape of the convex mark 8. In order to display the mark 8 in a specific color, the optical distance in each region of the uneven structure forming region described above may be set to a value corresponding to the specific color. Further, when displaying a plurality of marks, the display body 10 can set an optical distance for each mark so as to develop a color for each mark.
 (色ずれ低減について)
 次に、表示体10を製造する場合に、色ずれが生じにくい理由を説明する。
(About color shift reduction)
Next, the reason why color misregistration hardly occurs when the display body 10 is manufactured will be described.
 図3は、凹凸構造形成層2の凹凸構造形成領域における底部平面と頂部平面との光学距離が全て同一である表示体において、光学距離を変化させた場合における表示色の変化をCIE 1976 UCS u’v’色度図(以下、単に、「u’v’色度図」とも称する)上に曲線12で示した図である。より詳細には、図3に示す曲線12は、1種類の光学距離n・dを有する表示体において、光学距離を100nm~600nmの範囲で連続的に変化させた場合に表示される色から、各光学距離に対応するu’およびv’を決定し、これをu’v’色度図上にプロットして結んだ線である。なお、ここで使用した表示体における凹凸構造形成層は、複数の凸部がランダムに配置されており、凸部の頂部平面が正方形であり、その一辺の長さが0.8μmであり、凸部の頂部平面が占める面積率が26%である凹凸構造を有していた。 FIG. 3 shows the change in display color when the optical distance is changed in a display body in which the optical distance between the bottom plane and the top plane in the concavo-convex structure forming region 2 of the concavo-convex structure forming layer 2 is the same. FIG. 6 is a diagram showing a curve 12 on a “v” chromaticity diagram (hereinafter, also simply referred to as “u′v” chromaticity diagram). More specifically, the curve 12 shown in FIG. 3 is obtained from the color displayed when the optical distance is continuously changed in the range of 100 nm to 600 nm in a display body having one kind of optical distance n · d. This is a line obtained by determining u ′ and v ′ corresponding to each optical distance and plotting them on the u′v ′ chromaticity diagram. Note that, in the uneven structure forming layer in the display body used here, a plurality of convex portions are randomly arranged, the top plane of the convex portions is square, the length of one side is 0.8 μm, It had a concavo-convex structure in which the area ratio occupied by the top plane of the part was 26%.
 図3に示すとおり、色変化を示す曲線12は、光学距離n・dが100nmから徐々に大きくなるに従い、暖色領域、寒色領域、中性(緑色)領域を順次通過する。したがって、この通過する領域の色のうちある色を表示体に発色させるには、発色させる色に対応する光学距離にて表示体を製造すればよい。 As shown in FIG. 3, the curve 12 showing the color change sequentially passes through the warm color region, the cold color region, and the neutral (green) region as the optical distance n · d gradually increases from 100 nm. Therefore, in order to cause the display body to develop a color among the colors of the passing region, the display body may be manufactured at an optical distance corresponding to the color to be developed.
 しかしながら、凹凸構造形成層2の底部平面と頂部平面との光学距離を、精密に形成することは容易ではない。このため、設計段階で設定された光学距離の設定値と実際の値とは相違し、表示体10の発色に色ずれが生じてしまう。 However, it is not easy to precisely form the optical distance between the bottom plane and the top plane of the concavo-convex structure forming layer 2. For this reason, the set value of the optical distance set in the design stage is different from the actual value, and a color shift occurs in the color of the display body 10.
 そこで、凹凸構造形成層2に2種以上の凹凸構造形成領域を設けて、領域間で相違する所定の光学距離を設けることにより、色ずれを低減するに至った。以下、図4を参照して、色ずれを低減できる理由を説明する。 Therefore, by providing two or more concavo-convex structure forming regions in the concavo-convex structure forming layer 2 and providing predetermined optical distances that differ between the regions, color misregistration has been reduced. Hereinafter, the reason why the color shift can be reduced will be described with reference to FIG.
 説明を簡略化するために、表示体10として、凹凸構造形成層2に2種の凹凸構造形成領域を設ける場合を考える。図4は、図3において一点鎖線の囲まれた部分を拡大した図である。ここで、表示体10の凹凸構造形成層2の各領域に設ける底部平面と頂部平面との光学距離を、図4に示す点AおよびBでの光学距離に設定し、製造後の表示体10において、点AおよびBに設定した光学距離がそれぞれ点CおよびDに対応する光学距離に変動する場合を考える。通常、表示体10の製造において、凹凸構造形成層2の底部平面と頂部平面との距離(凸部の高さ)は、凹凸構造形成領域の全体にわたり、設定値に対して、均等に変動する。このため、底部平面と頂部平面との距離(凸部の高さ)に媒質の屈折率を乗じた値である、底部平面と頂部平面との光学距離も凹凸構造形成領域の全体にわたり、設定値に対して、同じだけ変動する。したがって、点Aから点Cへの変動における光学距離の増加は、点Bから点Dへの変動における光学距離の増加と等しくなる。 In order to simplify the description, consider the case where two types of concavo-convex structure forming regions are provided in the concavo-convex structure forming layer 2 as the display body 10. FIG. 4 is an enlarged view of a portion surrounded by an alternate long and short dash line in FIG. Here, the optical distance between the bottom plane and the top plane provided in each region of the concavo-convex structure forming layer 2 of the display body 10 is set to the optical distance at points A and B shown in FIG. Suppose that the optical distances set at points A and B change to optical distances corresponding to points C and D, respectively. Usually, in the manufacture of the display body 10, the distance between the bottom plane and the top plane of the concavo-convex structure forming layer 2 (the height of the bulge) varies uniformly with respect to the set value over the entire concavo-convex structure formation region. . For this reason, the optical distance between the bottom plane and the top plane, which is a value obtained by multiplying the distance between the bottom plane and the top plane (height of the convex portion) by the refractive index of the medium, is also set over the entire concavo-convex structure forming region. However, it varies by the same amount. Therefore, an increase in the optical distance in the change from the point A to the point C is equal to an increase in the optical distance in the change from the point B to the point D.
 ところで、凹凸構造形成層2に光学距離が相違する2種の凹凸構造形成領域を設け、これら領域を交互に配列した表示体10では、表示体10は、各領域から生じる色の混色を発色する。この混色は、色変化を示す曲線12上の2点を結んだ線分の中点の位置に対応する色となる。したがって、点AおよびBでの光学距離を各凹凸構造形成領域における光学距離とする場合に、観察者は、この2点を結んだ線分の中点Eの位置に対応する色を知覚する。しかしながら、点AおよびBに対応する光学距離を設定値として製造した表示体10において、光学距離が点CおよびDまでそれぞれ変動した場合には、観察者は、点CおよびDを結んだ線分の中点Fの位置に対応する色を混色として知覚することとなる。ここで、色度図上での2点間の距離は、色ずれの程度(色差)を示すことから、点Eと点Fとの距離は、観察者が実際に知覚する色(点F)と、当初に設定した色(点E)との色差を示しているといえる。 By the way, in the display body 10 in which two types of concavo-convex structure forming regions having different optical distances are provided in the concavo-convex structure forming layer 2 and these regions are alternately arranged, the display body 10 develops a color mixture of colors generated from the respective regions. . This mixed color is a color corresponding to the position of the midpoint of the line segment connecting two points on the curve 12 indicating the color change. Therefore, when the optical distance at the points A and B is set as the optical distance in each concavo-convex structure forming region, the observer perceives a color corresponding to the position of the midpoint E of the line segment connecting the two points. However, in the display 10 manufactured using the optical distances corresponding to the points A and B as the set values, when the optical distances fluctuate up to the points C and D, respectively, the observer can detect the line segment connecting the points C and D. The color corresponding to the position of the middle point F is perceived as a mixed color. Here, since the distance between two points on the chromaticity diagram indicates the degree of color shift (color difference), the distance between the points E and F is the color that the observer actually perceives (point F). It can be said that the color difference from the initially set color (point E) is shown.
 他方、凹凸構造形成領域における底部平面と頂部平面との光学距離が全て同一であって、点Aに対応する光学距離を設定値として製造された結果、点Cに対応する光学距離を有する表示体が得られる場合を考える。この場合、観察者が実際に知覚する色と、設定していた色との色差は、点Aと点Cとの距離で示される。図4から理解できるように、点Aと点Cとの距離は、点Eと点Fとの距離よりも大きい。このように、凹凸構造形成層2に2種の凹凸構造形成領域を有し、領域間で、相違する所定の光学距離を備える表示体10は、凹凸構造形成領域において全て同一の光学距離を備える表示体よりも、当初に設定した色からの色ずれを低減することができる。また同様の理由により、凹凸構造形成層2、透明層6の屈折率の変化に伴う光学距離の変化による色ずれも低減できる。 On the other hand, the optical distance between the bottom plane and the top plane in the concavo-convex structure forming region is the same, and the display body has an optical distance corresponding to the point C as a result of being manufactured using the optical distance corresponding to the point A as a set value. Consider the case where In this case, the color difference between the color actually perceived by the observer and the set color is indicated by the distance between the point A and the point C. As can be understood from FIG. 4, the distance between the point A and the point C is larger than the distance between the point E and the point F. Thus, the display body 10 having two types of uneven structure forming regions in the uneven structure forming layer 2 and having a predetermined optical distance that differs between the regions has the same optical distance in the uneven structure forming region. The color shift from the initially set color can be reduced more than the display body. For the same reason, the color shift due to the change in optical distance accompanying the change in refractive index of the concavo-convex structure forming layer 2 and the transparent layer 6 can also be reduced.
 上記の表示体10の説明においては、凹凸構造形成層2に2種の凹凸構造形成領域を設ける場合について説明したが、凹凸構造形成層2に3種以上の凹凸構造形成領域を設ける場合においても同様のことがいえる。なお、2種の凹凸構造形成領域を設ける場合、観察者が知覚する色は、色変化を示す曲線12上の2点を結んだ線分の中点の位置に対応する色となる。これに対し、3種以上の凹凸構造形成領域を設ける場合では、色変化を示す曲線12上の、各領域での光学距離に対応する複数の点を結んでできる多角形の重心(例えば、3点の場合には三角形の重心、4点の場合には四角形の重心)の位置に対応する色となる。 In the description of the display body 10 described above, the case where two types of concavo-convex structure forming regions are provided in the concavo-convex structure forming layer 2 has been described, but even when three or more types of concavo-convex structure forming regions are provided in the concavo-convex structure forming layer 2. The same can be said. In the case where two types of concavo-convex structure forming regions are provided, the color perceived by the observer is a color corresponding to the position of the midpoint of the line segment connecting two points on the curve 12 indicating the color change. On the other hand, when three or more types of concavo-convex structure forming regions are provided, the center of gravity of a polygon formed by connecting a plurality of points corresponding to the optical distance in each region on the curve 12 indicating the color change (for example, 3 In the case of a point, the color corresponds to the position of the center of gravity of the triangle, and in the case of four points, the center of gravity of a square.
 次に、凹凸構造形成層2に2種の凹凸構造形成領域を設けて、領域間で、相違する光学距離を設ける場合に、各領域における光学距離をどのように設定すると色ずれが低減できるかについて説明する。 Next, when two types of concavo-convex structure forming regions are provided in the concavo-convex structure forming layer 2 and different optical distances are provided between the regions, how can the color shift be reduced by setting the optical distance in each region? Will be described.
 上記のとおり、図3および4に示した表示体10の色変化を示す曲線12は、100nm~600nmの範囲の光学距離n・dを、u’v’色度図上に表したものであるから、曲線12上の各光学距離n・dに対応する位置は、座標(u’,v’)にて特定することができる。そこで、各光学距離n・dと、これに対応するu’,v’を用いて、光学距離を横軸とし、u’、v’、およびu’+v’を縦軸として示したグラフを作成した。この作成したグラフを図5に示す。同図において、破線はu’、2点鎖線はv’、実線はu’+v’を示す。 As described above, the curve 12 showing the color change of the display body 10 shown in FIGS. 3 and 4 represents the optical distance n · d in the range of 100 nm to 600 nm on the u′v ′ chromaticity diagram. Therefore, the position corresponding to each optical distance n · d on the curve 12 can be specified by coordinates (u ′, v ′). Therefore, using each optical distance n · d and u ′, v ′ corresponding thereto, a graph is created with the optical distance as the horizontal axis and u ′, v ′, and u ′ + v ′ as the vertical axis. did. The created graph is shown in FIG. In the figure, a broken line indicates u ', a two-dot chain line indicates v', and a solid line indicates u '+ v'.
 u’のグラフを参照すると、u’は、n・d=100からn・d=300付近まで徐々に増加し、その後、n・d=370付近まで減少し、再度、n・d=540付近まで増加した後、再度低減する。このように、u’の増減の変化は、光学距離n・dがおよそ300、370、および540である3点で生じる。同様に、v’のグラフでは、v’の増減の変化は、光学距離n・dがおよそ270、340、および500である3点で生じる。 Referring to the graph of u ′, u ′ gradually increases from n · d = 100 to near n · d = 300, then decreases to near n · d = 370, and again near n · d = 540. After the increase, decrease again. Thus, the change in increase or decrease of u ′ occurs at three points where the optical distances n · d are approximately 300, 370, and 540. Similarly, in the graph of v ′, the increase or decrease in v ′ occurs at three points where the optical distances n · d are approximately 270, 340, and 500.
 ここで、表示体10の製造に際し、凹凸構造形成領域を設けて、領域間で相違する光学距離を設定する場合に、1種の領域における光学距離を、u’およびv’がともに増加する範囲から選択し、その他の領域における光学距離を、u’およびv’がともに減少する範囲から選択することを考える。この場合、製造後に、各領域に設けた光学距離が変動したとしても、表示する色に対応する点では、その変動が互いに打ち消されるように作用(共役作用)するため、色ずれも小さくなる。2種の凹凸構造形成領域を設ける場合において、一方の領域に設ける光学距離をu’およびv’ がともに増加する領域から選択し、他方の領域に設ける光学距離をu’およびv’がともに減少する領域から選択する場合を考える。このように光学距離が選択された表示体10において、製造後に、各領域に設けた光学距離が変動したとしても、表示する色に対応する点(すなわち2点を結ぶ線分の中点)では、その変動は互いに打ち消すように作用(共役作用)するため、中点の変動は低減し、当所に設定された色からの色ずれも小さくなる。 Here, when manufacturing the display body 10, when an uneven structure forming region is provided and different optical distances are set between the regions, the optical distance in one region is a range where both u ′ and v ′ increase. And selecting the optical distance in the other region from a range where both u ′ and v ′ decrease. In this case, even if the optical distance provided in each region changes after manufacturing, the change corresponds to the colors to be displayed (conjugate action) so that the changes cancel each other, so that the color shift is also reduced. When providing two types of concavo-convex structure forming regions, the optical distance provided in one region is selected from the region where both u ′ and v ′ increase, and the optical distance provided in the other region is decreased by both u ′ and v ′. Consider the case of selecting from a region to be selected. In the display body 10 in which the optical distance is selected in this way, even if the optical distance provided in each region changes after manufacturing, at the point corresponding to the color to be displayed (that is, the midpoint of the line segment connecting the two points). Since the fluctuations act so as to cancel each other (conjugate action), the fluctuation of the midpoint is reduced and the color shift from the color set in this place is also reduced.
 ところで、上記のとおり、u’の増減が変化する点である変曲点(n・dが300、370、および540の3点、)と、v’の変曲点(n・dが270、340、および500の3点)は一致しないことから、各領域に設ける光学距離を、どのように選択するか問題となる。そこで、光学距離n・dに対して、u’とv’の和(u’+v’)の変化を示したグラフからu’とv’の和(u’+v’)の増減が変化する点(変曲点)を導き出し、この点の前後で、各領域の光学距離を選択することとした。 By the way, as described above, an inflection point (n · d is 300, 370, and 540, which is a point where u ′ increases and decreases), and an inflection point of v ′ (n · d is 270, Since the three points 340 and 500 do not match, it becomes a problem how to select the optical distance provided in each region. Therefore, the increase / decrease of the sum of u ′ and v ′ (u ′ + v ′) changes from the graph showing the change of the sum of u ′ and v ′ (u ′ + v ′) with respect to the optical distance n · d. (Inflection point) was derived, and the optical distance of each region was selected before and after this point.
 図5に示すu’+v’のグラフにおいて、変曲点は、光学距離がおよそ280nm、350nm、および510nmの3点である。したがって、凹凸構造形成領域間で相違する光学距離を、100~600nmの範囲内で設ける場合に、各領域における光学距離をこの3点の前後で設定すればよいこととなる。 In the graph of u ′ + v ′ shown in FIG. 5, the inflection points are three points with optical distances of approximately 280 nm, 350 nm, and 510 nm. Therefore, when the optical distances different between the concavo-convex structure forming regions are provided within the range of 100 to 600 nm, the optical distances in the respective regions may be set around these three points.
 すなわち、凹凸構造形成層2の凹凸面を形成する際に、凹凸構造形成領域のうち、1種の凹凸構造形成領域における光学距離の設定値を、100~280nmの範囲から選択し、且つ、その他の凹凸構造形成領域における光学距離の設定値を280~350nmの範囲から選択するか、或いは、1種の凹凸構造形成領域における光学距離の設定値を280nm~350nmの範囲から選択し、且つ、その他の凹凸構造形成領域における光学距離の設定値を350nm~510nmの範囲から選択するか、或いは、1種の凹凸構造形成領域における光学距離の設定値を350nm~510nmの範囲から選択し、且つ、その他の凹凸構造形成領域における光学距離の設定値を510nm~600nmの範囲から選択すればよい。但し、選択される2種の光学距離の設定値は相違しているものとする。 That is, when forming the concavo-convex surface of the concavo-convex structure forming layer 2, the set value of the optical distance in one concavo-convex structure forming region is selected from the range of 100 to 280 nm among the concavo-convex structure forming regions, and other The setting value of the optical distance in the concavo-convex structure forming region is selected from the range of 280 to 350 nm, or the setting value of the optical distance in the one concavo-convex structure forming region is selected from the range of 280 nm to 350 nm, and others The setting value of the optical distance in the concavo-convex structure forming region is selected from the range of 350 nm to 510 nm, or the setting value of the optical distance in the one concavo-convex structure forming region is selected from the range of 350 nm to 510 nm, and others The set value of the optical distance in the concavo-convex structure forming region may be selected from the range of 510 nm to 600 nm. However, it is assumed that the set values of the two types of optical distances selected are different.
 特に、凹凸構造形成層2が2種の凹凸構造形成領域を備える場合には、一方の凹凸構造形成領域における光学距離の設定値を100~280nmの範囲から選択し、且つ、他方の凹凸構造形成領域における光学距離の設定値を280~350nmの範囲から選択するか、或いは、一方の凹凸構造形成領域における光学距離の設定値を280~350nmの範囲から選択し、且つ、他方の凹凸構造形成領域における光学距離の設定値を350nm~510nmの範囲から選択するか、或いは、一方の凹凸構造形成領域における光学距離の設定値を350nm~510nmの範囲から選択し、且つ、他方の凹凸構造形成領域における光学距離の設定値を510nm~600nmの範囲から選択すればよい。但し、選択される2種の光学距離の設定値は相違しているものとする。 In particular, when the concavo-convex structure forming layer 2 includes two types of concavo-convex structure forming regions, the set value of the optical distance in one concavo-convex structure forming region is selected from a range of 100 to 280 nm, and the other concavo-convex structure forming region is formed. The setting value of the optical distance in the region is selected from the range of 280 to 350 nm, or the setting value of the optical distance in the one uneven structure forming region is selected from the range of 280 to 350 nm, and the other uneven structure forming region is selected The optical distance setting value is selected from the range of 350 nm to 510 nm, or the optical distance setting value of one uneven structure forming region is selected from the range of 350 nm to 510 nm and the other uneven structure forming region is selected. The set value of the optical distance may be selected from the range of 510 nm to 600 nm. However, it is assumed that the set values of the two types of optical distances selected are different.
 光学距離は、表示色に応じて決定できる。暖色を表示する場合には、少なくとも1種の凹凸構造形成領域における光学距離の設定値を、100~280nmの範囲から選択し、且つ、その他の凹凸構造形成領域における光学距離の設定値を280~350nmの範囲から選択することができる。寒色を表示する場合には、1種の凹凸構造形成領域における光学距離の設定値を280nm~350nmの範囲から選択し、且つ、その他の凹凸構造形成領域における光学距離の設定値を350nm~510nmの範囲から選択すればよい。 The optical distance can be determined according to the display color. In the case of displaying warm colors, the set value of the optical distance in at least one kind of uneven structure forming region is selected from the range of 100 to 280 nm, and the set value of optical distance in the other uneven structure forming region is set to 280 to It can be selected from a range of 350 nm. When displaying a cool color, the set value of the optical distance in one type of concavo-convex structure forming region is selected from the range of 280 nm to 350 nm, and the set value of the optical distance in the other concavo-convex structure forming region is set to 350 nm to 510 nm. Select from a range.
 このように光学距離を設定して製造した表示体10においては、各光学距離は、製造方法、製造条件により種々変動し得る。前掲の設定値に対して光学距離が大小10%変動すると仮定すると、製造後の表示体10における、凹凸構造形成層2の凹凸構造形成領域のうち、1種の凹凸構造形成領域における光学距離は90~308nmの範囲にあり、且つ、その他の凹凸構造形成領域における光学距離は252~385nmの範囲にある。或いは、1種の凹凸構造形成領域における光学距離が252nm~385nmの範囲にあり、且つ、その他の凹凸構造形成領域における光学距離が315nm~561nmの範囲にある。或いは、1種の凹凸構造形成領域における光学距離が315nm~561nmの範囲にあり、且つ、その他の凹凸構造形成領域における光学距離が459nm~660nmの範囲にある。 In the display body 10 manufactured by setting the optical distance in this way, each optical distance may vary depending on the manufacturing method and manufacturing conditions. Assuming that the optical distance fluctuates by 10% with respect to the set value described above, the optical distance in one concavo-convex structure forming region in the concavo-convex structure forming region of the concavo-convex structure forming layer 2 in the display 10 after manufacture is The optical distance in the other concavo-convex structure forming region is in the range of 252 to 385 nm. Alternatively, the optical distance in one concavo-convex structure forming region is in the range of 252 nm to 385 nm, and the optical distance in the other concavo-convex structure forming region is in the range of 315 nm to 561 nm. Alternatively, the optical distance in one concavo-convex structure forming region is in the range of 315 nm to 561 nm, and the optical distance in the other concavo-convex structure forming region is in the range of 459 nm to 660 nm.
 以上のように、凹凸構造形成層2の凹凸面を形成する際に、凹凸構造形成領域の各領域における光学距離の設定値を、特定の範囲からの組み合わせとすることにより、表示体10の製造による色ずれを低減することができる。これにより、表示体10は、製造時の光学距離の変化による、色ずれを生じにくい。このため、生産性が高くなる。 As described above, when the concavo-convex surface of the concavo-convex structure forming layer 2 is formed, the set value of the optical distance in each region of the concavo-convex structure formation region is set to a combination from a specific range, thereby manufacturing the display body 10. It is possible to reduce color misregistration due to. Thereby, the display body 10 is less likely to cause color misregistration due to a change in the optical distance during manufacture. For this reason, productivity becomes high.
 (表示体の製造方法)
 次に、表示体10の製造方法を説明する。
(Manufacturing method of display body)
Next, the manufacturing method of the display body 10 is demonstrated.
 表示体10は、各層を構成する材料および層構成に応じて、公知の方法から適切な方法を適宜選択して製造することができる。 The display body 10 can be manufactured by appropriately selecting an appropriate method from publicly known methods according to the material and layer structure constituting each layer.
 まず、表示体10を構成する凹凸構造形成層2は、以下のようにして形成することができる。 First, the concavo-convex structure forming layer 2 constituting the display body 10 can be formed as follows.
 凹凸構造形成層2の材料として、ポリプロピレン(PP)、ポリエチレン(PE)などを用いる場合には、押出し成型方法などを適用することができる。凹凸構造形成層2は、表面に凹凸構造を形成した冷却ロールに溶融樹脂を接触させて、冷却ロール表面の凹凸パターンを溶融樹脂に転写した後、冷却固化して、凹凸構造形成層2を形成することができる。ここで、冷却ロールの表面に設けられる凹凸構造における底部平面と頂部平面との距離は、凹凸構造形成層2の凹凸構造形成領域の各領域に設ける光学距離の設定値に従い決定される。 When polypropylene (PP), polyethylene (PE), or the like is used as the material of the uneven structure forming layer 2, an extrusion molding method or the like can be applied. The concavo-convex structure forming layer 2 forms the concavo-convex structure forming layer 2 by bringing the molten resin into contact with a cooling roll having a concavo-convex structure on the surface, transferring the concavo-convex pattern on the surface of the cooling roll to the molten resin, and then solidifying by cooling. can do. Here, the distance between the bottom plane and the top plane in the concavo-convex structure provided on the surface of the cooling roll is determined according to the set value of the optical distance provided in each region of the concavo-convex structure forming region of the concavo-convex structure forming layer 2.
 また、凹凸構造形成層2の下地として基材を含む場合には、ポリエチレンテレフタレート(PET)からなる基材上に、熱可塑性樹脂または光硬化性樹脂を塗布し、塗膜に、凹凸形状を形成した金属製スタンパを密着させ、この状態で樹脂層を加熱するかまたは光を照射し、樹脂が硬化した後、硬化した樹脂から金属製スタンパを剥離することにより、凹凸構造形成層2を形成することができる。 In addition, when a base material is included as the base of the concavo-convex structure forming layer 2, a thermoplastic resin or a photocurable resin is applied on a base material made of polyethylene terephthalate (PET) to form a concavo-convex shape on the coating film. In this state, the metal stamper is adhered, and the resin layer is heated or irradiated with light. After the resin is cured, the metal stamper is peeled from the cured resin, thereby forming the concavo-convex structure forming layer 2. be able to.
 金属製スタンパは、金属表面上に凹凸構造を直接形成する方法、ロール表面の銅層もしくはニッケル層をダイヤモンドバイトなどの切削工具を用いて機械的に凹凸構造を形成する方法、感光材を使用した露光プロセスによる選択的なエッチング法による方法、または、レーザー光などによるアブレーションを利用して金属表面を加工する方法により形成することができる。ここで、金属製スタンパの表面に設けられる凹凸構造における底部平面と頂部平面との距離は、凹凸構造形成層2の凹凸構造形成領域の各領域に設ける光学距離の設定値に従い決定される。 The metal stamper uses a method of directly forming a concavo-convex structure on a metal surface, a method of mechanically forming a concavo-convex structure on a copper layer or a nickel layer on a roll surface using a cutting tool such as a diamond tool, and a photosensitive material. The metal surface can be formed by a selective etching method using an exposure process or a method of processing a metal surface using ablation by laser light or the like. Here, the distance between the bottom plane and the top plane in the concavo-convex structure provided on the surface of the metal stamper is determined according to the set value of the optical distance provided in each region of the concavo-convex structure forming region of the concavo-convex structure forming layer 2.
 また、微細な凹凸形状を有する金属製スタンパは、フォトレジストの板に、ステッパー装置や電子線描画装置などでパターンを描画(露光処理)し、これを現像処理して、原版を得、次いで、この原版から電鋳の方法により得る方法が好適である。ここで、フォトレジスト層に所望のパターンを描画する際の露光強度は、凹凸構造形成層2の凹凸構造形成領域の各領域に設ける光学距離の設定値に従い決定される。 In addition, a metal stamper having a fine concavo-convex shape draws a pattern on a photoresist plate with a stepper device or an electron beam drawing device (exposure processing), develops this, and obtains an original plate, A method obtained by electroforming from this original plate is preferred. Here, the exposure intensity when drawing a desired pattern on the photoresist layer is determined according to the set value of the optical distance provided in each region of the concavo-convex structure forming region of the concavo-convex structure forming layer 2.
 次に、凹凸構造形成層2上に、蒸着法、スパッタ法、銀鏡処理法などの方法によりアルミニウム等の金属または誘電体を単層または多層に堆積させ、光反射層4を形成する。なお、凹凸構造形成層2の一部のみを被覆した光反射層4、即ち、パターニングされた光反射層4は、気相堆積法により連続膜としての光反射層4を形成し、その後、薬品などによりその一部を溶解させることによって得られる。 Next, a light reflecting layer 4 is formed on the concavo-convex structure forming layer 2 by depositing a metal such as aluminum or a dielectric in a single layer or multiple layers by a method such as vapor deposition, sputtering, or silver mirror treatment. The light reflecting layer 4 covering only a part of the concavo-convex structure forming layer 2, that is, the patterned light reflecting layer 4 forms the light reflecting layer 4 as a continuous film by a vapor deposition method, and then chemicals It can be obtained by dissolving a part of the solution.
 表示体10は、転写箔、ラベル、シールとすることができる。表示体10は、セキュリティ媒体に転写、貼り合せ、漉き込んで使用することが可能である。セキュリティ媒体としては、紙幣、カード、冊子がある。表示体の色ズレが少ないと、セキュリティ媒体の真がん判定は容易である。このように、表示体10は、紙幣、カード、シール、冊子等のセキュリティデバイスに適用することが可能である。また、表示体10は、パッケージ、カード、ラベル等の装飾にも使用できる。 The display body 10 can be a transfer foil, a label, or a seal. The display body 10 can be used by being transferred, pasted and rolled into a security medium. Security media include banknotes, cards, and booklets. When the color deviation of the display body is small, the true cancer determination of the security medium is easy. Thus, the display body 10 can be applied to security devices such as banknotes, cards, stickers, and booklets. Further, the display body 10 can be used for decoration of packages, cards, labels, and the like.
 2  凹凸構造形成層
 4  光反射層
 2a 2A 頂部平面
 2b 2B 底部平面
 10  表示体
2 Uneven structure forming layer 4 Light reflecting layer 2a 2A Top plane 2b 2B Bottom plane 10 Display

Claims (6)

  1.  一方の面に、底部平面、および前記底部平面と略平行である頂部平面を備える複数の凹部または凸部を有する凹凸構造形成層と、
     前記凹凸構造形成層の凹凸面を全部または一部被覆している光反射層と、
    を備える表示体であって、
     前記凹凸構造形成層は、2種の凹凸構造形成領域を備え、前記凹凸構造形成領域の各領域内では、前記底部平面と前記頂部平面との光学距離は一定であるが、領域間で前記光学距離が相違しており、
     前記2種の凹凸構造形成領域は交互に配列されており、
     さらに、前記凹凸構造形成層の凹凸面を形成する際に、前記2種の凹凸構造形成領域の各領域における光学距離の設定値が、前記表示体の色ずれの低減に寄与する組み合わせとなるように選択されていることを特徴とする、表示体。
    On one surface, a concavo-convex structure forming layer having a plurality of recesses or protrusions having a bottom plane and a top plane substantially parallel to the bottom plane;
    A light reflecting layer covering all or part of the uneven surface of the uneven structure forming layer;
    A display body comprising:
    The concavo-convex structure forming layer includes two types of concavo-convex structure formation regions, and the optical distance between the bottom plane and the top plane is constant in each region of the concavo-convex structure formation region, but the optical The distance is different,
    The two types of uneven structure forming regions are alternately arranged,
    Furthermore, when forming the concavo-convex surface of the concavo-convex structure forming layer, the set value of the optical distance in each region of the two types of concavo-convex structure forming regions is a combination that contributes to the reduction of the color shift of the display body. A display body characterized by being selected.
  2.  前記2種の凹凸構造形成領域の各領域における光学距離の設定値のうち、一方の設定値が100~280nmの範囲から選択され、且つ、他方の設定値が280~350nmの範囲から選択されているか、或いは、一方の設定値が280~350nmの範囲から選択され、且つ、他方の設定値が350nm~510nmの範囲から選択されているか、或いは、一方の設定値が350nm~510nmの範囲から選択され、且つ、他方の設定値が510nm~600nmの範囲から選択されているが、但し、前記2種の光学距離の設定値は相違していることを特徴とする、請求項1に記載の表示体。 Of the set values of the optical distance in each of the two types of concavo-convex structure forming regions, one set value is selected from a range of 100 to 280 nm, and the other set value is selected from a range of 280 to 350 nm. Or one set value is selected from a range of 280 to 350 nm and the other set value is selected from a range of 350 nm to 510 nm, or one set value is selected from a range of 350 nm to 510 nm. 2. The display according to claim 1, wherein the other set value is selected from a range of 510 nm to 600 nm, except that the set values of the two optical distances are different. body.
  3.  前記2種の凹凸構造形成領域の各領域における光学距離の設定値のうち、一方の設定値が280~350nmの範囲から選択され、且つ、他方の設定値が350nm~510nmの範囲から選択されていることを特徴とする、請求項2に記載の表示体。 Of the set values of the optical distance in each of the two types of concavo-convex structure forming regions, one set value is selected from the range of 280 to 350 nm, and the other set value is selected from the range of 350 nm to 510 nm. The display body according to claim 2, wherein the display body is provided.
  4.  一方の面に、底部平面、および前記底部平面と略平行である頂部平面を備える複数の凹部または凸部を有する凹凸構造形成層と、
     前記凹凸構造形成層の凹凸面を全部または一部被覆している光反射層と、
    を備える表示体であって、
     前記凹凸構造形成層は、2種の凹凸構造形成領域を備え、
     前記凹凸構造形成領域の各領域内おいて、前記底部平面と前記頂部平面との光学距離は、一定であり、
     前記2種の凹凸構造形成領域のうち、一方の凹凸構造形成領域における前記光学距離が90~308nmの範囲から選択され、且つ、他方の凹凸構造形成領域における前記光学距離が252~385nmの範囲から選択されるか、或いは、一方の凹凸構造形成領域における前記光学距離が252nm~385nmの範囲から選択され、且つ、他方の凹凸構造形成領域における前記光学距離が315nm~561nmの範囲から選択されるか、或いは、一方の凹凸構造形成領域における前記光学距離が315nm~561nmの範囲から選択され、他方の凹凸構造形成領域における前記光学距離が459nm~660nmの範囲から選択されるが、但し、前記凹凸構造形成領域の領域間において、前記光学距離は相違しており、
     前記少なくとも2種の凹凸構造形成領域は交互に配列されていることを特徴とする、表示体。
    On one surface, a concavo-convex structure forming layer having a plurality of recesses or protrusions having a bottom plane and a top plane substantially parallel to the bottom plane;
    A light reflecting layer covering all or part of the uneven surface of the uneven structure forming layer;
    A display body comprising:
    The concavo-convex structure forming layer includes two types of concavo-convex structure forming regions,
    Within each region of the concavo-convex structure forming region, the optical distance between the bottom plane and the top plane is constant,
    Of the two types of concavo-convex structure forming regions, the optical distance in one concavo-convex structure forming region is selected from the range of 90 to 308 nm, and the optical distance in the other concavo-convex structure forming region is from the range of 252 to 385 nm. Or the optical distance in one concavo-convex structure forming region is selected from the range of 252 nm to 385 nm, and the optical distance in the other concavo-convex structure forming region is selected from the range of 315 nm to 561 nm. Alternatively, the optical distance in one uneven structure forming region is selected from a range of 315 nm to 561 nm, and the optical distance in the other uneven structure forming region is selected from a range of 459 nm to 660 nm, provided that the uneven structure The optical distance is different between the regions of the formation region,
    The display body, wherein the at least two types of uneven structure forming regions are alternately arranged.
  5.  前記2種の凹凸構造形成領域において、一方の凹凸構造形成領域における光学距離が252nm~385nmの範囲から選択され、且つ、他方の凹凸構造形成領域における光学距離が315nm~561nmの範囲から選択されることを特徴とする、請求項4に記載の表示体。 In the two types of concavo-convex structure forming regions, the optical distance in one concavo-convex structure forming region is selected from the range of 252 nm to 385 nm, and the optical distance in the other concavo-convex structure forming region is selected from the range of 315 nm to 561 nm. The display body according to claim 4, wherein:
  6.  前記凹凸構造形成領域の各領域内おいて、前記複数の凹部または凸部がランダムに配置されていることを特徴とする、請求項1から5のいずれかに記載の表示体。 The display body according to any one of claims 1 to 5, wherein the plurality of concave portions or convex portions are randomly arranged in each region of the concavo-convex structure forming region.
PCT/JP2017/017287 2016-05-06 2017-05-02 Display body WO2017191842A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17792774.6A EP3454099B1 (en) 2016-05-06 2017-05-02 Display body
US16/178,726 US10908330B2 (en) 2016-05-06 2018-11-02 Display

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016093423 2016-05-06
JP2016-093423 2016-05-06
JP2016-208699 2016-10-25
JP2016208699A JP6834344B2 (en) 2016-05-06 2016-10-25 Display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/178,726 Continuation US10908330B2 (en) 2016-05-06 2018-11-02 Display

Publications (1)

Publication Number Publication Date
WO2017191842A1 true WO2017191842A1 (en) 2017-11-09

Family

ID=60203674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017287 WO2017191842A1 (en) 2016-05-06 2017-05-02 Display body

Country Status (1)

Country Link
WO (1) WO2017191842A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294383A (en) * 2008-06-04 2009-12-17 Toppan Printing Co Ltd Display and information printed matter
JP4983948B2 (en) * 2010-03-29 2012-07-25 凸版印刷株式会社 Display body and article with display body
JP2012203266A (en) * 2011-03-25 2012-10-22 Toppan Printing Co Ltd Display body and information printed matter
JP5570210B2 (en) 2006-05-12 2014-08-13 ロリク アーゲー Optically effective surface relief microstructure and manufacturing method thereof
WO2014129202A1 (en) * 2013-02-21 2014-08-28 凸版印刷株式会社 Display and article with label

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5570210B2 (en) 2006-05-12 2014-08-13 ロリク アーゲー Optically effective surface relief microstructure and manufacturing method thereof
JP2009294383A (en) * 2008-06-04 2009-12-17 Toppan Printing Co Ltd Display and information printed matter
JP4983948B2 (en) * 2010-03-29 2012-07-25 凸版印刷株式会社 Display body and article with display body
JP2012203266A (en) * 2011-03-25 2012-10-22 Toppan Printing Co Ltd Display body and information printed matter
WO2014129202A1 (en) * 2013-02-21 2014-08-28 凸版印刷株式会社 Display and article with label

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3454099A4 *

Similar Documents

Publication Publication Date Title
US10330834B2 (en) Display and article with label
JP5163036B2 (en) Display and labeled goods
US10598833B2 (en) Display
JP5938963B2 (en) Display and labeled goods
JP5143855B2 (en) Display and labeled goods
JP5741125B2 (en) Display and labeled goods
JP6089387B2 (en) Display and labeled goods
JP6201289B2 (en) Image display body and information medium
JP2012123102A (en) Display body and labeled article
JP2010038940A (en) Display body and article with label
JP2012078447A (en) Display body and article with label
WO2017191842A1 (en) Display body
JP6907943B2 (en) Optical elements and articles with optical elements
US10908330B2 (en) Display
JP5834466B2 (en) Display and printed information
JP7009789B2 (en) Optical elements and personal authentication media
JP2010078821A (en) Display body, adhesive label, and labeled article
JP7196842B2 (en) optical structure
JP7435443B2 (en) Optical structure and method for manufacturing the optical structure
JP2016173596A (en) Display body and labeled article
JP5994899B2 (en) Display and labeled goods
CN114450606A (en) Color display, authentication medium, and method for determining authenticity of color display
JP2016212439A (en) Display body and article with label
JP2016218093A (en) Display body

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017792774

Country of ref document: EP

Effective date: 20181206