WO2017191838A1 - Safe and stable plasmalogen, formulation thereof, and method for assessing presymptomatic state of dementia - Google Patents

Safe and stable plasmalogen, formulation thereof, and method for assessing presymptomatic state of dementia Download PDF

Info

Publication number
WO2017191838A1
WO2017191838A1 PCT/JP2017/017210 JP2017017210W WO2017191838A1 WO 2017191838 A1 WO2017191838 A1 WO 2017191838A1 JP 2017017210 W JP2017017210 W JP 2017017210W WO 2017191838 A1 WO2017191838 A1 WO 2017191838A1
Authority
WO
WIPO (PCT)
Prior art keywords
pls
plasmalogen
lipid
complex lipid
3hufa
Prior art date
Application number
PCT/JP2017/017210
Other languages
French (fr)
Japanese (ja)
Inventor
義剛 名達
永田 仁
Original Assignee
有限会社梅田事務所
株式会社ピーソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016254187A external-priority patent/JP6603923B2/en
Application filed by 有限会社梅田事務所, 株式会社ピーソリューション filed Critical 有限会社梅田事務所
Priority to CN201780027579.2A priority Critical patent/CN109153693B/en
Priority to KR1020187032946A priority patent/KR20190003570A/en
Publication of WO2017191838A1 publication Critical patent/WO2017191838A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • A23L33/28Substances of animal origin, e.g. gelatin or collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/683Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/57Birds; Materials from birds, e.g. eggs, feathers, egg white, egg yolk or endothelium corneum gigeriae galli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/68Sphingolipids, e.g. ceramides, cerebrosides, gangliosides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/10Phosphatides, e.g. lecithin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B11/00Recovery or refining of other fatty substances, e.g. lanolin or waxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/74Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes

Definitions

  • Non-Patent Document 9 central nervous system inflammation and related neuronal cell death
  • Patent Document 7 inhibition of neurogenesis
  • accumulation in A ⁇ brain Preventing neuropathy caused by damage to nerve cells due to inflammation caused by infection, treatment of neurodegenerative diseases such as AD and Parkinson's disease, or mental diseases such as schizophrenia, depression and autism It is expected that developmental disorders can be treated ([Non-Patent Document 8]). Under such circumstances, a method capable of treating central nervous system inflammation and the like effectively and without side effects is desired more than ever before.
  • the inventor has surprisingly found that PLs can be safely removed by introducing DHA at the SN-2 position in the PLs molecule, and also by simply emulsifying (solubilizing) PLs and transforming the shape.
  • DHA disulfide-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-containing lipid-like lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated lipid-associated
  • the present inventor has found that the three methods are effective as a result of earnest research on a method of rationally overcoming the “antagonism”.
  • One is to rationally emulsify PLs, and the second is to rationally introduce DHA into the PLs molecule, ie, SN-2. Integrating the two, that is, nanoemulsifying DHA-bound PLs, is the strongest rational defense.
  • “reasonable” means that the integrated cost-effectiveness ratio is remarkably high, thereby realizing “safe and practical stabilization”.
  • alkylphospholipid-containing material for example, krill unshelled meat
  • the egg yolk of the laying egg is surprisingly 1-alkenyl-2- It was confirmed that docosahexenoyl-glycerophospholipid and 1-alkyl-2-docosahexenoyl-glycerophospholipid were produced with high selectivity, that is, containing almost no EPA conjugate.
  • the anti-central nervous system inflammation of the present invention has an inhibitory effect on the increase and activation of glial cells that accompany the development of inflammation in the central nervous system, and it is possible to alleviate, prevent, improve and treat central nervous system inflammation. it can.
  • PLs is a component that is abundantly contained in living tissue, and the safety has been demonstrated since the living tissue containing PLs has been used for food, and has been extracted from living tissue.
  • the PLs used in the present invention are preferably those extracted and fractionated from chicken biological tissues.
  • a biological tissue is a tissue containing PLs in a living organism.
  • examples of the organism include animals and microorganisms.
  • an anaerobic bacterium is preferable, and for example, an enterobacteria acidaminococaceae bacterium is particularly preferable.
  • living tissue is bacteria itself.
  • animals birds, mammals, fish, krill, shellfish and the like are suitable.
  • livestock is preferable from the viewpoint of both supply stability and safety, and examples thereof include cattle, pigs, horses, sheep, and goats.
  • Specific examples of the process for extracting and purifying PLs include the following processes 1) to 5).
  • a step of extracting and fractionating complex lipids having a tissue-specific composition ratio from the total lipid fraction (2) A step of extracting and fractionating complex lipids having a tissue-specific composition ratio from the total lipid fraction. (3) A step of fractionating a water-soluble low molecular weight fraction from the above steps and adding this to the complex lipid fraction to obtain a complex lipid composition. (4) A step of separating the protein fraction from the above steps and adding the complex lipid composition described in the previous section to obtain a protein / lipid complex composition. (5) The enzyme is added to the complex lipid fraction to hydrolyze SN-1-linked fatty acid, and the mixed diacylglycerophospholipid is converted into a lyso form and extracted with a hydrophilic solvent together with by-product fatty acid to purify PLs. Process.
  • the water-containing ethanol phase is obtained by evaporating and concentrating ethanol to separate the aqueous layer, and then adding degassed hexane in advance to extract the phospholipid fraction.
  • the hexane solution is evaporated to dryness by a conventional method to obtain 7 g of a complex lipid fraction.
  • the low molecular weight water-soluble fraction is added to the phospholipid fraction to obtain 25 g of a complex lipid composition.
  • the complex lipids derived from biological tissues (including complex lipid compositions) and the phospholipids of PLs and their composition ratios have unique characteristics depending on the biological tissues. Below, the composition ratio in the case of a laying hen is demonstrated.
  • the complex lipids and PLs extracted from the living tissue used in the present invention have the following ethanol content PLs and choline PLs content as 1) to 2) in terms of dry mass.
  • the upper limit of the complex lipid is 50% by mass, preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, and 40% by mass or more. Is still preferred.
  • the mass ratio and content of ethanolamine PLs and choline PLs can be determined by analyzing complex lipids or plasmalogens extracted from biological tissues by high performance liquid chromatography (HPLC). Specifically, in HPLC, a chromatogram is obtained by evaporative light scattering detection (ELSD; Evaporating Light Scattering Detector), and a mass ratio is obtained by determining respective peak area ratios indicating ethanolamine PLs and choline PLs in the chromatogram. Can be calculated. Further, the content can be obtained by calculating what percentage of the peak area of the entire chromatogram the peak areas showing ethanolamine PLs and choline PLs correspond to.
  • ELSD evaporative light scattering detection
  • a mass ratio is obtained by determining respective peak area ratios indicating ethanolamine PLs and choline PLs in the chromatogram. Can be calculated.
  • the content can be obtained by calculating what percentage of the peak area of the entire chromatogram the peak areas showing ethanolamine PL
  • ⁇ -3HUFA is transferred with high selectivity to lipids, particularly PLs, of tissues, organs and parts thereof.
  • Transesterification of SN-2 conjugated fatty acid and transition ⁇ -3HUFA produces ⁇ -3HUFA-conjugated PLs-containing complex lipids and PLs. Examples of ⁇ -3HUFA-binding PLs suggest a relationship with cognitive dysfunction, which is exemplified below.
  • the emulsification may be a heavy load, for example, avoiding the use of a high-pressure homogenizer or the like, and simple and slow stirring is preferable. High load emulsification impairs the oxidation stability of PUFA.
  • LA linoleic acid
  • AA arachidonic acid
  • DHA were incorporated and oxidized, and in LA and AA addition systems, the amount of peroxide produced increased. There was no increase.
  • Non-patent Documents 11 and 12 The PLs content in the brain of AD patients is significantly reduced.
  • Serum PLs content of AD patients is significantly reduced (Non-patent Document 13).
  • the erythrocyte PLs content of AD patients is significantly reduced (Non-patent Document 14).
  • LPS intraperitoneal injection causes inflammation-induced cognitive impairment
  • PLs in the brain decrease (Non-patent Document 8).
  • Non-patent Document 8 Inhibition of central nervous system inflammation and A ⁇ accumulation in mice with central nervous system inflammation induced by LPS (intraperitoneal injection) (Non-patent Document 8).
  • Non-patent Document 9 In vitro suppression of neuronal cell death (Non-patent Document 9). 6) Other relations (1) Suppression of hyperglycemia and hyperlipidemia, which are risk factors for developing cognitive impairment (Non-patent Document 18). (2) Suppression of cognitive decline due to carnosine diet (Non-patent Document 19).
  • the above-mentioned DHA-bound PLs also has a markedly increased anti-cognitive dysfunction efficacy due to the combination of direct stabilization within the molecule and the synergistic effect on improvement / correction of cognitive dysfunction. It is considered a thing.
  • Procurability is remarkably superior due to the following factors.
  • Poultry farming is a global industry with high quality, uniform quality, low price and high concentration; * Broiler is a vertically integrated industry
  • Abandoned laying hens about 700 days old) (about 70% thinned annually; about 750 days old) is a dedicated slaughter and demolition site
  • the center (with 30 locations all over the country, with an average processing capacity of around 3 million a year and over 10 million) is characterized by high freshness, low cost, domestic production and safety.
  • Formd molting is an artificial means of regenerating laying hens whose egg-laying efficiency has dropped, and fasting old hens about 700 days old for about 10 days.
  • a poultry farming style in which the animals are bred again after being in condition. Although it is a single piece of paper with animal damage, it is acquiesced as an emergency measure when egg prices are sluggish or sales volume is sluggish. It is interesting as a specific individual for biofunctional regeneration, for example, as a chicken for transferring ⁇ -3HUFA derivative containing DHA. One of the peculiarities of poultry is that this type of measure can be realized on a large scale.
  • the egg yolk derived from the laying hen has a PLs composition ratio of PL-PC >> PL-PE (substantially zero) specifically in the gold crown of its precursor.
  • PLs are not included.
  • the following * was surprisingly found in the egg yolk of the laying hen.
  • PLs were detected * Most of them were DHA-PLs * However, the composition ratio was PL-PE >> PL-PC, as opposed to the gold crown of the precursor.
  • DHA produced PLs in the yolk as a result of enhancing the expression of the rate-limiting enzyme Far1 in the biosynthetic pathway of the PLs neoplasmic reticulum “peroxisome” in vivo. Furthermore, it is interpreted that the PLs specifically supplemented DHA in egg yolk to generate DHA-PLs.
  • ⁇ -3HUFA derivatives to be tested Meat derived from seafood, sardines, mackerel, sanma, tuna, bonito, scallops, squirts, krill, etc., and combinations of two or more of these, leftover seafood-derived meal by-products Examples include meals derived from reproductive tissues of seafood, by-product oil on the left, derived from fermentation medium of microorganisms, and the like. 4). ⁇ -3HUFA-containing feed and feeding conditions The following are exemplified.
  • Feeding conditions 1) Chicken species Julia species and / or Boris Brown species 2) Feed Corn 62%, ⁇ -3HUFA-containing feed 15% register, vegetable oil 15%, basic animal feed 6% and other grains 2% register 3) Feeding conditions ( 1) Feeding period is 1 to 5 weeks, preferably 1 to 3 weeks (2) Chickens are 40 weeks old (3) Feeding place is Kyushu poultry farm (4) The number of breeding birds is about 50 and 4 ) Slaughter and dismantlement primary processing storage Kyushu waste chicken processing center
  • Nano-emulsification step Add the above complex lipid into a degassed aqueous Quillaja saponin solution while stirring with a magnetic stirrer under a nitrogen gas atmosphere and stir until it is no longer cloudy to obtain a transparent solubilized solution. It is done. 3. Properties of nanoemulsified solution The prepared solution is diluted 10,100,1000 times, and the transparency is visually confirmed. 4). Stability test ([Patent Document 12]) For example, the prepared solution is diluted to 500 times with a transparent aqueous solution, adjusted to pH 4 using citric acid, visually checked for change, and heated at 95 ° C. for 30 minutes, and then returned to room temperature. Visually check for changes.
  • a hexane extract is obtained by a conventional method, and an unheated solubilized liquid is used as a control, and a peak area comparison analysis is performed on an HPLC / ELSD chart to test residual plasmalogen. .
  • Complex lipids according to the present invention compositions thereof and PLs and aqueous preparations thereof, protein / lipid composite compositions, complex lipids containing ⁇ -3HUFA-binding PLs, compositions thereof, PLs, and aqueous preparations thereof, Furthermore, protein-lipid complexes composition (hereinafter sometimes referred to as "various PLs such”.) the central nervous system inflammation, neurogenesis ataxia, brain apoptosis diseases and a beta and ⁇ in neurons accumulation It can be used in foods, cosmetics, pharmaceuticals or feeds as an active ingredient for alleviating, preventing, improving and treating symptom (hereinafter referred to as “cognitive dysfunction”).
  • the various foods may be various PLs preparations themselves, A material, a carrier, an additive acceptable in food hygiene, and other components and materials that can be used as food may be appropriately blended.
  • various food forms include, but are not limited to, liquid, powder, flake, granule, and paste foods.
  • the types of supplements and foods are not particularly limited, and include, for example, processed foods such as hamburger, meatballs, wieners, bird rags, chicken skin chips, etc., which are mixed with various PLs preparations, processed meat foods, etc.
  • Examples include health foods (functional nutritional foods, foods for specified health use), supplements, foods for the sick, and the like.
  • various PLs preparations for example, powdered, beverages (juice etc.), confectionery (eg gum, chocolate, candy, biscuits, cookies, rice crackers, rice crackers, pudding, jelly-like confectionery, Examples thereof include apricot tofu and the like, breads, soups (including powdered soups), and various foods and beverages such as processed foods.
  • granules, capsules, tablets (chewable agents) so as to facilitate continuous intake Etc.), beverages (drinks, etc.), etc. are preferably prepared.
  • capsules, tablets, tablets, jellies and the like are more preferable from the viewpoint of easy intake.
  • the form of granules, capsules, tablets, jelly and the like can be appropriately prepared according to a conventional method using a pharmaceutically and / or food hygienically acceptable carrier.
  • the blending amount of PLs in the food or drink according to the present invention is preferably 0.00005 to 100% by mass, more preferably 0.0005 to 75% by mass, and still more preferably 0.005 to 50% by mass.
  • the food / beverage products according to the present invention can be used for the prevention / mitigation / improvement of cognitive impairment.
  • the measurement of the intake amount, the intake target, the amount of contained PLs, and the like are the same as, for example, the pharmaceutical product according to the present invention described later.
  • the hospital food is a meal provided when hospitalized, the sick food is a meal for the sick, and the care food is a meal for the care recipient.
  • the food / beverage products according to the present invention can be used as hospital foods, sick foods or nursing foods for patients who are hospitalized, treated at home due to the above-exemplified diseases, or who are receiving nursing care.
  • a person who is highly likely to suffer from the above-illustrated diseases such as the elderly can be ingested prophylactically.
  • the preparation may be composed solely of PLs, or may be formulated with other components (ie, a pharmaceutical containing PLs).
  • a pharmaceutical containing PLs ie, a pharmaceutical containing PLs.
  • various PLs preparations which are active ingredients are optionally added to pharmaceutically acceptable bases, carriers, additives (for example, excipients, binders, disintegrants, Lubricants, solvents, sweeteners, colorants, flavoring agents, surfactants, humectants, preservatives, pH adjusters, thickeners, and the like can be blended.
  • it is prepared by a conventional method such as tablets, coated tablets, powders, granules, fine granules, capsules, pills, solutions, suspensions, emulsions, jellies, chewables, soft tablets, etc. be able to.
  • it may be prepared as a solution, suspension, emulsion, etc. and used as an injection or infusion, or as an oral preparation.
  • the amount of PLs in the pharmaceutical product according to the present invention is not particularly limited as long as the anticognitive dysfunction is exerted, and can be appropriately set according to the preferred daily intake of PLs.
  • the blending amount is preferably 0.0005 to 100% by mass, more preferably 0.005 to 90% by mass, and still more preferably 0.05 to 80% by mass.
  • the subject to which the pharmaceutical product according to the present invention is administered is preferably a subject suffering from cognitive dysfunction. Examples of such diseases include neurodegenerative diseases and mental diseases. Specific examples of neurodegenerative diseases include AD, Parkinson's disease, amyotrophic lateral sclerosis (ALS), and multiple sclerosis.
  • the pharmaceutical product according to the present invention may be administered to a subject who is likely to suffer from such a disease in the future.
  • it can be administered prophylactically to subjects who are genetically highly likely to suffer from the above exemplified diseases, elderly people (especially 60 years or older) and the like.
  • the subject to which the pharmaceutical product according to the present invention is administered is not limited to humans but may be other mammals for feed. Examples of such mammals include animals raised as livestock and pets, and examples include dogs, cats, cows, horses, pigs, sheep, goats, monkeys, rabbits, mice, rats, and hamsters. .
  • the administration time of the anticognitive dysfunction agent according to the present invention is required to be administered preferably 5 years ago, more preferably 10 years ago, and even more preferably 15 years before the onset of the cognitive dysfunction. It has been clarified that end-stage disease has been reached at the time of onset diagnosis ([Non-Patent Document 20]).
  • a preferred dosage form is oral administration in view of its long administration period.
  • the dosage of the anticognitive dysfunction agent according to the present invention is appropriately selected according to the age of the patient, the degree of symptoms of the patient, other conditions, and the like.
  • the amount of PLs in the agent is preferably within a range of 0.001 to 1000 mg, more preferably 0.01 to 100 mg per day for an adult.
  • the administration can be performed once or a plurality of times (preferably 2 to 3 times) a day.
  • the present invention also includes a method for treating cognitive dysfunction comprising a step of administering (in particular, oral administration or transvascular administration) an effective amount of the anticognitive dysfunction agent of the present invention to a subject suffering from cognitive dysfunction.
  • a step of administering in particular, oral administration or transvascular administration
  • the present invention administers an effective amount of the anticognitive dysfunction agent of the present invention to a subject suffering from or likely to suffer from a neurodegenerative disease or psychiatric disorder (particularly oral administration or transvascular administration).
  • a method for preventing or treating these diseases is carried out by administering the aforementioned anticognitive dysfunction agent of the present invention.
  • contrast and intake, in the said method is as above-mentioned.
  • the following 1) to 7) can be exemplified as unique clinical test methods for the predetermined efficacy (prevention and treatment of neurodegenerative diseases and psychiatric disorders) of PLs and their preparations according to the present invention.
  • the subject is an adult (healthy person) before the onset of dementia who is in a state where accumulation of physiologically innocuous amounts of A ⁇ and ⁇ is recognized in the brain. It is characterized by being a subject.
  • Non-Patent Document 20 brain accumulation of A beta and ⁇ protein than traditional onset diagnosis period, at least 10 years, usually accumulated from 15-20 years ago is started in As a result, a kind of “paradigm shift” has occurred.
  • safe, stable and inexpensive plasmalogen is an essential requirement for ingredients for prevention, alleviation, improvement and treatment of neurodegenerative diseases and psychiatric disorders, as compared with conventional ingredients It is said.
  • the administration period is at most 2 years, preferably 18 months, more preferably 12 months, and preferably 6 months or less, compared to 1 year or more of the usual clinical trial period for the disease subject. It is as short as more than a month, and can reduce the burden on the subject.
  • An innovative method for the prevention and treatment of neurodegenerative and psychiatric disorders characterized in that the main essential measurement efficacy includes three or more items selected from the following groups marked with *. .
  • Non-patent Document 17 Uchida / Kraepelin test * MMSE * Resting functional MRI (rs-fMRI) image analysis (Non-patent Document 17) * Measurement of PLs content in erythrocytes (Non-patent Document 24) * PSOL "Cognitive function self-diagnosis test" * RBANS ([Non-Patent Document 21]) * Cognitax ([Non-Patent Document 21]) * Wexler memory test ([Non-Patent Document 22])
  • the rs-fMRI image is useful for analysis and evaluation of the default mode network (DMN) of the brain.
  • DNN default mode network
  • the brain was also resting when conscious activity was not performed, but in recent years, a surprising fact has been revealed by functional brain imaging research, and important activities have been carried out even at rest. It is said that the energy consumed for the activity in the basal state of the brain reaches 20 times the brain energy used for the conscious reaction ([Non-Patent Document 17]).
  • DMN a network composed of a plurality of brain regions called DMN, which acts to synchronize with various neural activities in the brain.
  • DMN a network composed of a plurality of brain regions
  • the brain area where significant atrophy is observed in AD patients almost overlaps with the main brain area that constitutes DMN, which is a clue for understanding new neurological diseases by fMRI image analysis at rest. Is expected to be.
  • Non-patent Document 17 discloses the small-world nature and modularity of the resting brain functional network decrease with age, and these functional changes generally precede anatomical changes such as brain atrophy. Therefore, it has been announced that it may be a useful marker in the study of aging and dementia.
  • Non-patent Document 28 It is said that the sensitivity in the vicinity of the hippocampus has also been successfully improved (Non-patent Document 28). Further, in the orthotopic have became to be observed by [tau protein] also succeeded in developing a test agent [pBB3] for viewing by PET, [tau protein] with A beta also PET. The present inventor has performed the [DHA-PLs] vs. [PLs] efficacy evaluation [clinical study] in the cognitive improvement of concern using the [amyloid PET-PIB], and obtained extremely interesting results. .
  • Preparation Example 1 [Production of PLs-containing phospholipid for biological tissue extraction] [Production of biological tissue-extracted PLs-containing phospholipids] 1. Preparation of complex lipids from the skins of the laying hens The complex lipids were prepared from the freshly peeled pupae of the laying laying hens, which were the chicken tissues (the carcass from which the "thigh" had been removed). Skin peeled rice was procured from the waste chicken processing center to prepare 1 kg of minced meat of about 8 mm. The mince was stored frozen slowly. In use, it was dehydrated and deoiled by pressing after forced thawing with warm running water.
  • Preparation Example 2 [Preparation of purified PLs from complex lipids] 1. Preparation of Purified PLs from Waste Chicken Skin Lipid Complex Lipid 20 g of the above PLs-containing phospholipid (complex lipid) was added to 400 ml of phospholipase A1 (Mitsubishi Chemical Foods) solution (10 mg / ml 0.1 M citric acid-hydrochloric acid buffer). The mixture was dispersed and stirred at 50 ° C. for 2 hours under nitrogen gas filling. Under ice cooling, 2 volumes of hexane was added, and the mixture was stirred and distributed twice. The upper layer was collected and concentrated to dryness. Furthermore, the operation of adding 60 ml of acetone to the dried product, stirring and centrifuging, and collecting the precipitate was repeated twice.
  • phospholipase A1 Mitsubishi Chemical Foods
  • the liquid layer was concentrated to dryness, 240 ml of hexane / acetone (1: 1) was added and transferred to a separatory funnel, and 36 ml of water was added, stirred and distributed. The lower layer was discarded, and 96 ml of acetone / water (5: 3) was added to the upper layer and stirred and distributed. The upper layer was collected and quickly dried under reduced pressure to obtain purified PLs derived from raw chicken waste. [Assessment of Purity of Purified PLs from Waste Raw Chicken] Purity test was performed according to the method of Nana et al. The purity was 94.3% by mass.
  • the liquid layer was concentrated to dryness, 240 ml of hexane / acetone (1: 1) was added and transferred to a separatory funnel, and 36 ml of water was added, stirred and distributed. The lower layer was discarded, and 96 ml of acetone / water (5: 3) was added to the upper layer and stirred and distributed.
  • the upper layer was collected and quickly dried under reduced pressure to obtain purified PLs derived from waste chicken intestine. [Purification of purified plasmalogen derived from the intestines of waste chicken] Purity test was performed according to the method of Nana et al. The purity was 91% by mass.
  • the liquid layer was concentrated to dryness, 240 ml of hexane / acetone (1: 1) was added and transferred to a separatory funnel, and 36 ml of water was added, stirred and distributed. The lower layer was discarded, and 96 ml of acetone / water (5: 3) was added to the upper layer and stirred and distributed. The upper layer was collected and quickly dried under reduced pressure to obtain 3 g of purified plasmalogen derived from waste chicken sand liver. [Purification of purified PLs derived from chicken gizzards] Purity test was performed according to the method of Nana et al. The purity was 95.4% by mass.
  • the liquid layer was concentrated to dryness, 240 ml of hexane / acetone (1: 1) was added and transferred to a separatory funnel, and 36 ml of water was added, stirred and distributed. The lower layer was discarded, and 96 ml of acetone / water (5: 3) was added to the upper layer and stirred and distributed. The upper layer was collected and quickly dried under reduced pressure to obtain purified PLs derived from a waste chicken crown. [Purification of Purified Plasmalogen from Waste Chicken Gold Crown] Purity test was performed according to the method of Nana et al. The purity was 95.6% by mass.
  • Preparation Example 4 Extraction and separation of egg yolk-derived PLs-containing phospholipids (complex lipids)] 100 g of raw egg yolk is mixed with 20 g of ethanol and allowed to stand at room temperature for 10 minutes, and then 120 g of 20% aqueous ethanol is added and stirred. When this is centrifuged at 2000 rpm for 5 minutes, it is separated from the upper layer into three phases: a yellow transparent egg yolk oil phase, a yellow-white complex lipid emulsion phase, and an almost white egg yolk protein precipitate.
  • the gold crown oil phase and the emulsified phase are separated, the precipitated phase is extracted with 50 g of 20% aqueous ethanol, centrifuged in the same manner, and the supernatant is combined with the emulsified phase and concentrated under reduced pressure to give 12.2 g of yellow gold crown complex lipid ( Acetone insoluble part 80%) was obtained.
  • Preparation Example 5 Composition of two products made from waste chicken fillet.
  • Complex lipid composition mg / g PLs 6-60, non-plasmalogen phospholipids 9.6-84.3, anserine 0.4-3.6, carnosine 0.07-0.6, free amino acids 0.24-2.4, vitamin E0. 12-1.2, carnitine 0.3-3, coenzyme Q10 0.12 to 1.2 2.
  • Protein / lipid complex composition Protein content 87.1, complex lipid content 1.4, low molecular water soluble fraction 3.2
  • Verification example 1 Example of measurement (assay) of effects of chicken-derived PLs on cognitive function and related events
  • the PLs for measurement test were prepared as follows. [Chicken species and their parts] Skinned breast minced minced hens were procured from an abandoned chicken processing center. [Preparation of total lipids] The mince was externally freeze-dried and slowly extracted with ethanol in the usual manner to prepare breast-derived total lipids. [Preparation of complex lipid] The composite lipid was prepared by appropriately adding water to the total lipid ethanol solution and degumming (de-neutral lipid).
  • Non-patent Document 8 By increasing the PLs concentration in the brain of LPS-induced central nervous system inflammation model mice, the absorption of orally administered PLs from the brain blood barrier was confirmed (Non-patent Document 8). (3) The effectiveness of oral administration for humans, especially AD patients, was verified by increasing the blood PLs concentration in AD patients (Non-patent Document 16). 3. Example of suppression (prevention) and alleviation of treatment of cognitive dysfunction of breast chicken breast meat PLs and verification of therapeutic effects (1) Cognition by waste chicken breast PLs due to renewal of neurons in aging model rats (SAMP8) The possibility of alleviating dysfunction and its therapeutic effect was verified (Patent Document 7). (2) A suppressive effect expression of the spatial cognitive learning dysfunctions by waste chicken breast plasmalogen against either side injection model rat ⁇ is to demonstrate the potential therapeutic effects of cognitive dysfunction waste chicken breast PLs (Non-patent document 16).
  • Non-patent Document 8 Example of verification of the alleviation of inflammatory symptoms in LPS-induced central nervous system inflammation model mice (Non-patent Document 8) 1) Suppression of microglia activation by waste chicken fillet PLs demonstrates the possibility of alleviating and treating cognitive impairment through central nervous system inflammation. 2) Increase of TNF ⁇ m-RNA in brain cytokine and suppression of IL-2 ⁇ expression in brain by waste chicken fillet PLs alleviates and treats cognitive impairment through central nervous system inflammation by waste chicken fillet PLs This proves the possibility. 3) accumulation inhibition in A beta brain by waste chicken breast PLs is to demonstrate the possibility of alleviating or treating cognitive dysfunction through its central nervous system inflammation. 5).
  • Waste chicken fillet PLs demonstrates the possibility of an inhibitory effect on cognitive dysfunction through suppression of decrease in PLs caused by inflammation induced by intraperitoneal injection of LPS.
  • Waste chicken fillet PLs demonstrates the possibility of exerting an effect of directly treating cognitive impairment associated with nerve cell death through suppression of nerve cell death in a nerve cell culture system.
  • Non-patent document 9 5) Others (1) The composite lipid fraction derived from waste chicken fillet has the potential to exert an action to delay the onset of cognitive dysfunction through the suppression of hyperglycemia and hyperlipidemia, which are risk factors for the development of cognitive dysfunction It is proved.
  • the waste chicken fillet-derived complex lipid composition demonstrates the possibility of preventing and / or alleviating cognitive dysfunction through the suppression of cognitive decline caused by the carnosine diet.
  • Verification example 2 1. Verification example of whether or not the suppression effect of cognitive dysfunction of chicken-derived DHA-binding PLs corresponding to the suppression effect of cognitive dysfunction of waste chicken fillet PLs is increased.
  • PLs are the main phospholipids that store DHA ([Non-Patent Document 26]). 2) Verification of biochemical / physiological specificity of DHA-PLs (1) In the case of a single molecule (free), the aqueous system (emulsion) is more stable ([Non-Patent Document 1]). (2) In a complex system (lipid bilayer), since it is a main membrane constituent, it is far more stable than a monomolecular system.
  • Uchida-Kreppelin test (hereinafter referred to as “UK test”) A simple one-digit addition is continuously performed for a certain period of time, and the calculation ability test that determines "ability when a person calculates” and “characteristics when the calculation ability is demonstrated” by a curve expressed by the amount of calculation. It is. Usually, 2 sets of 1 minute ⁇ 15 times are performed. 4) PSOL cognitive function self-diagnosis test Refer to Fig. 3 in the form of answering a highly comprehensive question on cognitive function originally devised. 2 is the reference point (baseline) in a four-step evaluation from 0 to 4. It is good evaluation when it exceeds 2.
  • test sample 3 types of soft capsules
  • the evaluation was made in a daily report from the subjects.
  • Data analysis method In this test, it was carried out using all the analysis results without arranging the number of specimens. All statistically processed values are expressed in mean ⁇ SD. The difference between the measured values at 0, 6 and 12 weeks was statistically processed using the paired t test. The comparative evaluation of the measured values of the MMSE, UK test, and PSOL cognitive function self-diagnostic test within the same group was performed using the pair t test. Using the Student t test, intergroup comparisons were made between the measured values at 0, 6 and 12 weeks and the deviation from baseline ( ⁇ 0-6 weeks and ⁇ 0-12 weeks). Background comparison of subjects within the group was performed using unidirectional square deviation analysis. This was not adjusted for fluctuations associated with the implementation period. Mislisted subjects were completely excluded from statistical processing. Statistical processing was performed using Statcell 4 and Excel statistics. The test statistical processing result between two samples was judged to be significant at ⁇ 5%.
  • Test results 1 Statistical information of subjects The ingestion test started by dividing 81 people into 3 wards, but 6 people dropped out. The reason is that poor physical condition 2, sudden work convenience 3, housework convenience 1, and 75 people completed the test after all. The breakdown was test-1; 27, test-2; 23, placebo; 25, but there was no significant difference between age, sex and UK test (Table 3).
  • Table 4 shows the contents of statistical processing on subjects.
  • the composition of men and women is 5 men and 10 women.
  • the test agents of the A beta PET using PIB Non-Patent Document 31.
  • the amount of accumulation is an SUVR (Standardized Uptake Value Ratio) of PET images corresponding to the degree of progression of cognitive dysfunction. Tables 10 to 11 show the SUVR scores of the PET images.
  • Example 13 [Elucidation of changes in hippocampal volume reduction in comparison with -PLs derived from gold crowns of ⁇ -3HUFA derivative transfer females, breast-derived PLs derived from laying hens, and placebo settings] Single-blind open trial clinical trial ] 1) Specimen (1) DHA-PLs; 96.7% purity, DHA binding rate is 75 mol% According to Preparation Example 2 5.2) in [DHA migrating chicken female gold crown] (2) PLs; 92% by mass [derived from waste chicken fillet] 2) Men and women of 15 subjects and 5 wards (3 DHA-PLs x [0.25 mg, 0.5 mg], 3 PLs x [0.25 mg, 0.5 mg] and 3 placebo)) Selected at 60 ⁇ 5 years old.
  • the composition of men and women is 5 men and 10 women.
  • the present invention relates to a safe and stable plasmalogen and its preparation and use.
  • a safe and stable plasmalogen derived from a safe biological material more specifically, Provides a safe and stable plasmalogen-containing complex lipid formed by binding DHA (docosahexaenoic acid) to SN-2 of plasmalogen as an essential requirement.
  • DHA docosahexaenoic acid
  • aqueous preparations emulsions, jellies, granules, powders
  • aqueous preparations that are easily nano-emulsified (or solubilized) using 3) Specific to living tissue in the aqueous phase in the presence of saponins Complex lipid and ⁇ -3 HUFA-conjugated complex lipid having a structural composition ratio, and complex lipid and ⁇ -3 HUFA-binding wherein the complex lipid composition is nanoemulsified or solubilized Type complex lipids and aqueous preparations of these complex lipid compositions, 4) provide their use, 5) neurodegenerative diseases containing ⁇ -3HUFA-bound crude or high-purity plasmalogen, etc. as active ingredients, and Provided with various effects such as providing various processed products, supplements, preventive or therapeutic agents for the prevention or treatment of mental illness, 6) providing a method for determining the non-demented state of dementia, etc.
  • the present invention has industrial applicability.

Abstract

The invention provides a safe and stable plasmalogen, a formulation thereof, and a method for assessing presymptomatic dementia. More specifically, the invention comprises: a supplement or a foodstuff as a processed product for the mitigation, improvement, or prevention of dementia having as an active ingredient a plasmalogen with ω-3 highly unsaturated fatty acid (ω-3HUFA) bonds, etc.; a formulation for the treatment of neurodegenerative disease and/or mental illness; and a method for assessing presymptomatic dementia in a subject, where the subject is an adult who has not yet developed dementia (normal subject). The supplement or foodstuff comprises a plasmalogen-containing complex lipid, etc., that has been extracted and separated from the organs and specific sites in the living tissue of a chicken, and has a composition ratio unique to the living tissue in which a DHA-containing ω-3HUFA derivative is transferred to the living tissue of a chicken raised on feed containing the ω-3HUFA derivative.

Description

安全・安定なプラズマローゲンとその製剤及び認知症の未病状態の判定方法Safe and stable plasmalogens and their preparations, and methods for determining the unaffected state of dementia
 本発明は、安全な生物系素材に由来する、安全・安定なプラズマローゲンとその製剤及び認知症発症前の成人(健常者)を被験者とする認知症の未病状態の判定方法関するものである。更に詳しくは、本発明は、必須の要件としてプラズマローゲン(以下、「PLs」と言うことがある。)のSN-2位に、EPA(エイコサペンタエン酸;ω-3高度不飽和脂肪酸の一種)の混入を最少化(検出不能レベルで実質的にはゼロ)してDHA(ドコサヘキサエン酸;代表的なω-3高度不飽和脂肪酸)の結合割合を増加させて成る安全・安定なプラズマローゲンの製造と、当該PLsを安全な界面活性物質を用いて簡便にナノ乳化(又は可溶化)して成る安全・安定な水性製剤(乳液・ゼリー・粒体・粉体)の製造及びこれらをサプリメント又は食品として経口摂取することによる認知症の未病状態の判定方法、それによる認知症の長期に亘る抑制・緩和・予防等に資する新技術・新製品に関するものである。 The present invention relates to a safe and stable plasmalogen derived from a safe biological material, a preparation thereof, and a method for determining a non-demented state of dementia in an adult (healthy person) before the onset of dementia. . More specifically, in the present invention, EPA (eicosapentaenoic acid; a kind of ω-3 highly unsaturated fatty acid) is located at the SN-2 position of plasmalogen (hereinafter sometimes referred to as “PLs”) as an essential requirement. Production of safe and stable plasmalogen by minimizing contamination (substantially zero at undetectable level) and increasing the binding ratio of DHA (docosahexaenoic acid; typical ω-3 highly unsaturated fatty acid) And production of safe and stable aqueous preparations (emulsions, jellies, granules, powders) prepared by simply nano-emulsifying (or solubilizing) the PLs using a safe surfactant and supplements or foods The present invention relates to a method for determining the non-morbid state of dementia by ingestion as a new technology and a new product that contributes to long-term suppression, alleviation, and prevention of dementia.
 最近、家族性アルツハイマー病の原因遺伝子を持つ可能性が高い家族を、アルツハイマー病(以下、「ADと言う。」)を発症する前の状態から長期に追跡することによって、1)ADへと向かう変化が検出出来るか否か、2)症状が現れるどれくらい前から、脳に変化が現れるのか、を見つけるために、米国ワシントン大学を中心としたDIAN研究(ジョン・モリス教授統括)が実施された。
 *Dominantly Inherited Alzheimer Network(遺伝子アルツハイマー病ネットワーク)
Recently, a family who has a high possibility of having a causative gene for familial Alzheimer's disease has been followed for a long time from the state before onset of Alzheimer's disease (hereinafter referred to as "AD"). In order to find out whether changes can be detected or not, and 2) how long before symptoms appear, the DIAN * study (supervised by Professor John Morris) was conducted mainly by the University of Washington in the United States. .
* Dominantly Inherited Alzheimer Network
 モリス教授によれば、研究の主たるターゲットは、脳の画像解析と脳脊髄液の成分動態の解明の二つである。具体的には、PET(陽電子放射断層撮影)を用いてADの原因の一つとされるアミロイドβ(以下、「Aβ」と言う。)の脳内蓄積の検査と、脳脊髄液中のτ蛋白(以下、「τ」と言う。)とAβの変動の検定である。
 研究対象者の年齢と、その親がADを発症した年齢に基づいて、対象者の発症までの年数を予測して研究を開始した。Aβをはじめとする発症に関与する種々の物質、例えばτが、その予測年数までのあいだにどう変化してゆくかを捉え、得られたデータをキャリアとノンキャリアで比較した。その結果、発症より25年頃前から、キャリアの脳ではAβが溜まりはじめていることが明確に確認された。しかし、発症後はカーブを描いて減少に転じていた。τの場合、発症の15年前あたりから、キャリアのτが脳脊髄液内で増え始めていることが明らかになった。このことは、脳内の神経細胞が死にはじめていることを示している。更に、記憶を司る海馬が、ADを発症する15年前ほど前から徐々に、小さくなりはじめていた。発症の10年前になると、記憶力などの衰えが徐々に見られる様になった。しかし、物忘れがひどくなったり、親しい人の名前を忘れたり、人との約束を忘れたりと、日常生活に支障が出始めるのは、ADの発症後であった。
According to Professor Morris, there are two main research targets: brain image analysis and elucidation of cerebrospinal fluid component dynamics. Specifically, an examination of accumulation in the brain of amyloid β (hereinafter referred to as “A β ”), which is one of the causes of AD using PET (positron emission tomography), and τ in cerebrospinal fluid It is a test for fluctuations in protein (hereinafter referred to as “τ”) and .
Based on the age of the study subject and the age at which their parents developed AD, the study was started by predicting the number of years until the subject's onset. Various substances involved in the development, including A beta, for example τ is captured how slide into changes between up to the predicted life were compared and the resulting data carrier and non carrier. As a result, 25 around before the onset, in the brain of the carrier it was confirmed clearly that are beginning accumulate A beta. However, after the onset, the curve started to decrease. In the case of τ, it became clear that τ of carriers began to increase in the cerebrospinal fluid from about 15 years before the onset. This indicates that the nerve cells in the brain are starting to die. Furthermore, the hippocampus, which manages memory, began to gradually become smaller about 15 years before AD began. Ten years before the onset, the decline in memory and other factors gradually began to appear. However, it was only after the onset of AD that forgetfulness, forgetting the names of close people, and forgetting promises with people started to interfere with daily life.
 この画期的DIAN研究の成果は、従来の認知症に関する医科学的な対処戦略の抜本的変更を迫る、正に“パラダイムシフト”が強く求められるものである。即ち、従来の診断で認知症発症とされた場合、殆ど末期症を来たしており、その根治は絶望的であることを示している。このことは、逆に、認知症の制圧には早期予防が必須の要件になって来ていると共に、改めてAβとτの脳内蓄積がアルツハイマー病を含む認知症の病状進行に関する直接的な指標になり得ること、そして、それらの検定には低侵襲的で且つ可視化が可能なPETの活用が欠かせないこと、を実証するものである。 The result of this groundbreaking DIAN study is the strong demand for a “paradigm shift” that requires a radical change in the medical and medical coping strategies related to dementia. That is, when dementia develops in the conventional diagnosis, it has almost reached end-stage disease, indicating that its cure is hopeless. This, in turn, together with the suppression of dementia are coming early prevention becomes essential requirements, again A beta and accumulation in brain of τ is directly related to disease progression of dementia, including Alzheimer disease It demonstrates that it can be an indicator and that the use of PET that is minimally invasive and can be visualized is essential for these assays.
 近年、神経変性疾患及び精神疾患の治療及び/又は発症抑制並びに予防のための有効成分として、PLsが注目を集めて来ている(例えば、[特許文献1])。PLsは、生体内常在型の特殊なリン脂質であって、SN-1位にビニルエーテル結合を持ち、それ故に、還元性を示す特異性を有している。このPLsは、特異的でありながら、ヒト生体内全リン脂質の18質量%、就中、脳内全リン脂質の20質量%を占めている。その高い含有量からは、寧ろ汎用性リン脂質の1種と言っても過言ではない。 In recent years, PLs has attracted attention as an active ingredient for the treatment and / or prevention and prevention of neurodegenerative diseases and psychiatric disorders (for example, [Patent Document 1]). PLs are special phospholipids that are resident in vivo, have a vinyl ether bond at the SN-1 position, and therefore have specificity for reducing properties. Although specific, this PLs occupies 18% by mass of the total phospholipid in the human body, and in particular, 20% by mass of the total phospholipid in the brain. It is no exaggeration to say that it is a kind of general-purpose phospholipid because of its high content.
 このPLsは、機能的には、生体内で重要な還元作用を発揮する点で特殊でありながら、その存在位置が生体内では重要な膜に局在化して、各種の膜の酸化損耗を直接的に防御している。更に、PLsは、特に脳内において多面的な機能を発現していることが明らかにされるに至って、一層注目を集めている。しかるに、PLsは、その分子構造から明らかな様に、還元性の裏返しで酸化され易く(ラジカル捕捉感受性が高い)且つ酸性下で水和による加水分解性が高い(リン脂質のリゾ体と脂肪族アルデヒドに分解)。これが、PLsの実用的な有機合成を阻んでいる原因の一つと考えられる。 Although this PLs is functionally special in that it exerts an important reducing action in the living body, its existence position is localized in an important film in the living body, and oxidative wear of various films is directly affected. Is defending. Furthermore, PLs has attracted more attention as it has been revealed that it exhibits multifaceted functions particularly in the brain. However, as is apparent from its molecular structure, PLs is easily oxidized by reversible reversal (highly radical scavenging sensitivity) and highly hydrolyzable by hydration under acidic conditions (phospholipid lyso form and aliphatic form). Decomposition into aldehydes). This is considered to be one of the causes that prevent the practical organic synthesis of PLs.
 今迄の処、PLsは、専ら生体組織からの抽出精製に頼っている(例えば、[特許文献2]、[特許文献3]、[特許文献4]等)。生体内においては、その重要性に依って、合目的な各種の仕組みによって安定化が図られていると共に、生合成系、即ち、小胞体のペルオキシソームからの産生によって常時補給されている。 So far, PLs rely exclusively on extraction and purification from living tissues (for example, [Patent Document 2], [Patent Document 3], [Patent Document 4], etc.). In the living body, depending on its importance, stabilization is achieved by various appropriate mechanisms, and the biosynthetic system, that is, replenishment at all times by production from the peroxisome of the endoplasmic reticulum.
 上記パラダイムシフト以降、PLsに求められる課題は次の二つである。
(1)生体内においては、PLsの恒常性維持のための各種の保護修飾作用が働き自動的に安定化されているが、生体外においてはこれらの保護作用が欠落しているために、意図的な人工的な処方乃至は製剤化が必須である。これを具現化するPLsの安全で安価な安定化技術の開発。
(2)加齢と共に減少する生体内、就中、脳内のPLs量を普段に補い且つこれを維持させる技術の開発。
After the paradigm shift, there are the following two problems required for PLs.
(1) In vivo, various protective modification actions for maintaining PLs homeostasis work and are automatically stabilized. However, since these protective actions are lacking outside the body, It is essential to make an artificial prescription or formulation. Development of safe and inexpensive stabilization technology for PLs that embodies this.
(2) Development of a technology that normally compensates for and maintains the amount of PLs in the body, especially in the brain, which decreases with age.
[安全で安価な安定化技術]
 生体内常在性構造が細胞膜の最重要な構成成分として、その強力な抗酸化作用を生かした各種の細胞膜攻撃から防御して生命の恒常性維持に重要な役割を発揮していることに鑑みて、細胞膜の疑似化としての脂質二重膜(リポソーム)の普段の形成、換言すれば、その自己乳化性を活かした乳化分散、就中、ミクロ乳化乃至は可溶化型の処方製剤化が好適と判断される。更に、その分子構造において、強い抗酸化活性の発現根拠のビニルエーテル結合に隣接するSN-2位に如何なる分子種を導入するかが肝要で、その詳細は後述する、物理的保護作用としての“バルク効果”を発揮できる分子種、例えばDHAを例示することが出来る。DHAの他の化学的効果がその抗酸化性で、該物理的・化学的作用が相俟ってDHA結合型PLsは多重的自己安定型に改質される。
[Safe and inexpensive stabilization technology]
In view of the fact that the in-vivo resident structure is the most important component of the cell membrane, it plays an important role in maintaining homeostasis by protecting against various cell membrane attacks that take advantage of its strong antioxidant effect. The normal formation of lipid bilayer membranes (liposomes) as a simulation of cell membranes, in other words, emulsification and dispersion utilizing the self-emulsifying property, especially microemulsification or solubilization type formulation It is judged. Furthermore, in the molecular structure, what kind of molecular species should be introduced at the SN-2 position adjacent to the vinyl ether bond, which is the basis for the expression of strong antioxidant activity, is important. Molecular species capable of exhibiting “effect”, for example, DHA can be exemplified. Another chemical effect of DHA is its antioxidant properties, and the combined physical and chemical action modifies DHA-bound PLs into multiple self-stabilizing types.
[脳内のPLs量を普段に補い且つこれを維持させる技術]
 生体内PLsの恒常性維持の中核がその生合成系のペルオキシソームで、この合目的な活性化が肝要である。その多段階生合成系の中核を成す高級アルコールの合成が、後述する様に、その生合成律速酵素としてFar1(fatty
acyl-CoA reductase1)が同定されている。後述する様に、DHAリン脂質、就中、DHA型PLsが該律速酵素発現を亢進し、依ってペルオキシソームにおけるPls産生を促進すると報告されている。
[Technology to supplement and maintain the amount of PLs in the brain normally]
The core of maintaining the homeostasis of PLs in vivo is the peroxisome of its biosynthetic system, and this purposeful activation is essential. The synthesis of higher alcohols that form the core of the multi-stage biosynthetic system, as will be described later, is Far1 (fatty
acyl-CoA reductase1) has been identified. As will be described later, it has been reported that DHA phospholipid, especially DHA type PLs, enhances the rate-limiting enzyme expression and thus promotes Pls production in peroxisomes.
 PLsの抽出用原料は、家禽、特に産卵(採卵とも言う)成鶏が主流である(例えば、[特許文献1],[特許文献2],[特許文献3],[特許文献4]等)。更に、近年では、抽出用原料として、魚介類由来のホヤの内臓([特許文献5]等)や養殖ホタテの内臓類(例えば、[特許文献6])が使用され始めている。養殖二枚貝にあっては、環境中から蓄積されるその貝毒、特にカドミウムに対する懸念(安全性に対する危惧)が払拭し切れない。他方で、海産性PLsは、SN-2位にDNAとEPAを併せて結合しているのが特徴である。EPA結合型PLsは脳血液関門でブロックされるため脳内には取り込まれず、DHA結合型のみがその脳内機能性が注目されている。後述の本発明に係る[DHA飼料で鶏を飼養する方式]にあっては、選択性高くDHA結合型PLsのみが産生されるために効率が良く安全である。 The raw material for extracting PLs is mainly poultry, in particular spawning (also called egg collection) adult chickens (for example, [Patent Document 1], [Patent Document 2], [Patent Document 3], [Patent Document 4], etc.) . Furthermore, in recent years, seafood-derived sea squirt viscera ([Patent Document 5] and the like) and aquaculture scallop viscera (eg [Patent Document 6]) have begun to be used as raw materials for extraction. In the case of cultured bivalve molluscs, concerns about the venom accumulated from the environment, especially cadmium (safety concerns) cannot be wiped out. On the other hand, marine PLs are characterized in that DNA and EPA are bound together at the SN-2 position. Since EPA-bound PLs are blocked at the brain blood barrier, they are not taken into the brain, and only the DHA-bound type has attracted attention for its brain functionality. [Method for raising chickens with DHA feed] according to the present invention described later is efficient and safe because only DHA-bound PLs are produced with high selectivity.
 生体内におけるDHAの存在形態(結合分子)は、グリセロリン脂質で、特にエタノールアミン型が多い。DHAは殆どSN-2位(グリセロリン脂質で唯一の光学活性炭素)に結合している。生体由来の脂肪酸の中で、DHAは構造的な特異性が最も高い。DHAは、鎖長が長く、そのため、二重結合の数が6個と極めて多く、且つ複数のビスアリル型構造((-CH=CHCH-)CH-)が存在する。当該メチレン炭素は、酸化感受性が高く、DHAが酸化を受け易い主要原因になっている。ところが、これをO/W乳化(水中油型乳化)すると、下記の如く、酸化安定性の順列が真逆に一変する(カッコ内の数字は、二重結合の数を示す。)(例えば、[非特許文献1])。 The presence form (binding molecule) of DHA in the living body is glycerophospholipid, especially ethanolamine type. DHA is almost bound to the SN-2 position (the only optically active carbon in glycerophospholipid). Among the fatty acids derived from living organisms, DHA has the highest structural specificity. DHA has a long chain length. Therefore, the number of double bonds is as large as 6, and a plurality of bisallyl structures ((—CH═CHCH 2 —) 2 CH 2 —) exist. The methylene carbon is highly oxidatively sensitive and is a major cause of DHA being susceptible to oxidation. However, when this is O / W emulsified (oil-in-water emulsification), the permutation of oxidative stability changes completely as follows (the numbers in parentheses indicate the number of double bonds) (for example, [Non-Patent Document 1]).
* 通常の安定性順列;
 リノール酸(2)>リノレン酸(3)>アラキドン酸(4)>EPA(エイコサペンタエン酸)(5)>DHA(6)
* O/W乳化型(水中油型)の安定性順列;
 DHA(6)>EPA(5)>アラキドン酸(4)>リノレン酸(3)>リノール酸(2)
* Normal stability permutation;
Linoleic acid (2)> Linolenic acid (3)> Arachidonic acid (4)> EPA (Eicosapentaenoic acid) (5)> DHA (6)
* Stability permutation of O / W emulsion type (oil-in-water type);
DHA (6)> EPA (5)> arachidonic acid (4)> linolenic acid (3)> linoleic acid (2)
 生体内は水系が基本で、DHAは、グリセロリン脂質(両親媒性で界面活性能を内在している)に結合し、自己乳化状態で安定化していることが強く示唆される。更に、生体内、特に脳内において、DHAは、選択性高く、PLsのSN-2位に結合していると報告されており(例えば、[許文献2])、PLsのSN-1位のビニルエーテル結合が、SN-2位にDHAが結合することによって、以下の1)~2)により、二重に安定化されていると考えられる。即ち、
1)DHAのバルク立体構造が、立体障害効果を発現して、酸化活性種のSN-1位ビニルエーテル結合への接近を阻む。
2)DHA結合型PLsの自己乳化機能によって、分子が乳化状態に保持される結果、ミセルの微細カプセル内保持状態で存在するため、一層、酸化及び水和から保護される。
It is strongly suggested that DHA is stabilized in a self-emulsified state by binding to glycerophospholipid (amphiphilic and inherently having surface activity) in the living body based on water. Furthermore, in vivo, particularly in the brain, DHA has been reported to be highly selective and binds to the SN-2 position of PLs (eg, [Allower 2]). It is considered that the vinyl ether bond is double-stabilized by the following 1) to 2) by the DHA bonding at the SN-2 position. That is,
1) The bulk conformation of DHA develops a steric hindrance effect and prevents the oxidatively active species from approaching the SN-1 vinyl ether bond.
2) As a result of the molecules being held in the emulsified state by the self-emulsifying function of the DHA-bonded PLs, they are further protected from oxidation and hydration because they exist in the state of being held in the fine capsules of micelles.
 魚介類中のDHA等の多価不飽和脂肪酸(PUFA)は、食物連鎖の成せる業で、海中のα-リノレン酸を多く含む植物性プランクトンを食した動物プランクトンが、これをEPAとDHAに転化させ、小魚がこれを摂餌して食物連鎖が開始される(例えば、非特許文献3)。 Polyunsaturated fatty acids (PUFAs) such as DHA in fish and shellfish are food chains, and zooplankton that has eaten phytoplankton that contains a lot of α-linolenic acid in the ocean is used by EPA and DHA. Inverted and small fish feed on this to start the food chain (eg, Non-Patent Document 3).
 安全・安定なPLsを得る方法は、生体代謝を経るのが最も合理的と判断される。例えば、生体としては、既に、DHA鶏卵の実用化実績を有する産卵成鶏、就中、産卵鶏の廃鶏(産卵効率の低下で間引かれる産卵鶏)が、より好適には強制換羽(短期断食で脱落羽毛を再生させて産卵効率を向上させる養鶏法)による産卵廃鶏が例示される。なお、産卵鶏は、文字通り、産卵が目的の家禽で、同じ鶏でも採肉目的のブロイラーとは別異な家禽である。その鶏卵の流通の都合から、産卵鶏は、ブロイラー(飼養規模が1千万羽~数千万羽)に比べ概ね1/10見当の規模であると共に、消費地の近傍周辺部で飼養される。 It is judged that the most reasonable way to obtain safe and stable PLs is through biological metabolism. For example, as living organisms, adult spawning hens that have already been put to practical use for DHA eggs, and in particular, spawning hens (laying hens that are thinned out due to a decrease in spawning efficiency), more preferably forced molting (short term) Examples of such laying hens include a chicken raising method that regenerates fallen feathers by fasting to improve egg-laying efficiency. The egg-laying chicken is literally a poultry intended for egg-laying, and the same chicken is a different poultry from a broiler for meat-collecting purposes. Due to the distribution of eggs, laying hens are roughly 1/10 of the size of broilers (with a scale of 10 to tens of millions) and are raised in the vicinity of the area where they are consumed. .
 通常、この産卵鶏の一羽当たりの年間産卵量は300個以上である。日齢が700日程度で廃鶏として間引かれて、養鶏場の近傍に位置する半官半民の専用の廃鶏処理センター(全国に40箇所程度存在し、数百万羽~1千数百万羽の処理能力)で、屠殺解体採肉処理される。処理製品は食用に供されるが、一部を除くと、大部分はミンチ等の形態で加工用廉価鶏肉原料として流通される。産卵鶏は、バルク輸入冷凍鶏肉との価格競争にあって、廉価販売を余儀なくされて来た。処が近年の消費者の安全性志向に後押しされ、国産鶏肉として付加価値が付き、価格は上昇傾向にある。しかし、産卵鶏は、経済的には採肉専用種の数千万羽による垂直統合化養鶏に太刀打ちできず、且つ品質上も僅か50日齢という幼鳥(若鶏)の食感食味には対抗できず、産卵養鶏業の事業採算は低迷状態が続いている。 Usually, the annual egg-laying amount per bird of this laying hen is 300 or more. Dedicated chicken processing center for semi-governmental and semi-private people located in the vicinity of the poultry farm (about 40 places in the country, millions to 1 thousand) (Processing capacity of 1 million birds) The processed products are used for food, but most of them are distributed as low-cost chicken raw materials for processing in the form of mince etc., except for some. Laying hens have been forced to sell at low prices due to price competition with bulk imported frozen chicken. However, it has been boosted by consumer-oriented safety in recent years, adding value as domestic chicken, and prices are on the rise. However, laying hens are economically unable to compete with vertically integrated poultry farming with tens of millions of meat-only species, and the quality of the larvae is only 50 days old. However, the profitability of the egg-laying poultry industry has remained sluggish.
 上記の状況において、特筆すべきは、産卵廃鶏の年間発生平均羽数が9千万羽に上っていることと、その養鶏場渡し価格が、概ね、例えば、0円評価で、格安であることである。更に、その発生の集積度が高く、且つ廃鶏処理センターまで活鶏として搬入されるためにブロイラー並みの高鮮度処理製品が得られることが挙げられる。 In the above situation, it should be noted that the average annual number of spawning hens has risen to 90 million and that the price for delivery to the poultry farm is generally low, for example, at 0 yen. That is. Furthermore, the accumulation degree of the generation | occurrence | production is high, and since it is carried as a live chicken to a waste chicken processing center, it can be mentioned that a high freshness processing product equivalent to a broiler is obtained.
 一般論として、鶏は、人工育種産物ではあるが、遺伝子レベルでは鳥類に属する。更に、独特な呼吸器系である“気嚢式呼吸器官”([非特許文献4])を備え、6千5百万年前の巨大隕石の激突で殆ど絶滅した“気嚢式呼吸器官”を有する恐竜の末裔としての形質を受け継いでいる([非特許文献5])。その特異性は、気嚢式の特長である吸気と排気が別々に行われる結果、哺乳類対比で酸素の取り込みが遥かに多く、代謝速度が顕著に向上することである。これが如実に現れるのが、可食部1kgを獲得するに要する飼料量で、典型的な家畜の豚で9.1kg、肉牛が25.0kgに対して、僅かに4.5kgで足りる。これを凌ぐのは、嗜好性と汎用性に欠けるが、養殖コオロギの2.1kgだけであるとされている(FAO 2013公表)。 In general terms, chickens are artificial breeding products, but belong to birds at the genetic level. In addition, it has a unique “respiratory respiratory organ” ([Non-Patent Document 4]) that is a unique respiratory system, and has a “respiratory respiratory organ” that was almost extinct due to a huge meteorite crash 65 million years ago. It inherits the traits of dinosaur descendants ([Non-Patent Document 5]). Its peculiarity is that the intake and exhaust, which are the characteristics of the air sac type, are performed separately, resulting in a much higher oxygen uptake compared to mammals and a markedly improved metabolic rate. This clearly appears in the amount of feed required to obtain 1 kg of the edible portion, 9.1 kg for a typical domestic pig and 24.5 kg for a beef cattle, which is only 4.5 kg. It is said that only 2.1 kg of cultivated crickets is surpassed in this, although it lacks palatability and versatility (FAO 2013 publication).
 鶏の組織や部位及び臓器には、哺乳類の家畜とは別異のユニークなものが多い。砂肝、金冠(未成熟卵黄)、皮膚、羽毛、腸、肝臓、ガラ(生骨)、鶏冠等(概ね、産廃扱い)や胸肉(“心筋”様で、食用ミンチとして流通)、腿抜き骨付き胸肉(俗称「兜」)、卵黄、骨髄(生ガラに含有)等が例示される。産卵鶏にDHA入り飼料を数週間投与すれば、上記の組織や部位及び臓器等にDHAを移行させることができる。供試飼料に加えるDHA給源と形態としては、魚油とこれを微細乳化(可溶化が好ましい)して、飼料に添加することが例示される。 Many chicken tissues, parts and organs are unique and different from mammalian livestock. Sand liver, gold crown (immature egg yolk), skin, feathers, intestine, liver, gala (raw bone), chicken crown, etc. (generally treated as industrial waste) and breast meat (like "myocardium", distributed as edible mince), thigh removed Examples include breast with bone (popular name “兜”), egg yolk, bone marrow (contained in raw glass), and the like. If a DHA-containing feed is administered to a laying hen for several weeks, DHA can be transferred to the above tissues, parts, organs and the like. Examples of the DHA source and form added to the test feed include fish oil and finely emulsified (preferably solubilized) and added to the feed.
 当該DHA移行型PLs等を含有する組織等は、その特異性を減耗させることなく、目的物を得ることに留意した、独特な加工工程で処理されることが重要である。その処理生成物として、例えば、上記に列挙した原料特異的構成比を保持した、DHA結合型PLs含有複合脂質、これに水溶性低分子量画分(下記*を参照。)を加えた複合脂質組成物、更に、これらに特異的蛋白質画分(下記**を参照。)を戻した蛋白・脂質の複合化組成物、これらを微細乳化(可溶化)した各種の水性製剤が例示される。 It is important that the tissue or the like containing the DHA transition type PLs or the like is processed by a unique processing step in which attention is paid to obtaining a target product without deteriorating its specificity. As the processed product, for example, a DHA-bound PLs-containing complex lipid that retains the raw material-specific composition ratios listed above, and a complex lipid composition to which a water-soluble low molecular weight fraction (see * below) is added. In addition, there are exemplified protein / lipid complex compositions in which specific protein fractions (see ** below) are reconstituted, and various aqueous preparations obtained by finely emulsifying (solubilizing) these.
 *---遊離アミノ酸、アンセリンやカルノシン(認知機能低下抑制効果が示唆さている、例えば、[非特許文献19]等の還元性ジペプチド、コエンザイムQ10(電子の授受に関与)、カルニチン(脂質代謝亢進機能性を有し、認知症発症の危険因子活性が高い[高脂血・高血糖]の抑制改善に有効で、プラズマローゲンのアジュバンドになり得る)。
 **---例えば、[心筋]様の“胸肉”や骨髄のコラーゲン蛋白、皮膚のコラーゲン蛋白等。
* --- Free amino acids, anserine and carnosine (reducing diminished cognitive function, for example, reducing dipeptides such as [Non-patent Document 19], coenzyme Q10 (involved in electron transfer), carnitine (increased lipid metabolism) It is functional and effective in improving suppression of [hyperlipidemia / hyperglycemia] with high risk factor activity for developing dementia, and can be an adjuvant of plasmalogen).
** --- For example, [myocardial] -like "breast", bone marrow collagen protein, skin collagen protein, etc.
 上記した各種組成物及び水性製剤については、世界的汎用型難病とされ、その根治を目指すサミット([非特許文献6])まで開催される世界的喫緊な難題とされているADを含む認知症の征圧に一石を投じる可能性について報じられている。最近になって、AD、パーキンソン病、筋委縮性側索硬化症(以下、「ALS」と言うことがある。)、多発性硬化症等の慢性神経変性疾患の大部分、あるいは脳卒中や頭部外傷などの急性脳損傷においても、中枢神経(脳、脊髄等)の慢性炎症を伴うことが明らかになってきている。 Regarding the various compositions and aqueous preparations described above, dementia including AD, which is regarded as a worldwide general-purpose intractable disease, and is regarded as an urgent global challenge to be held up to the summit ([Non-patent Document 6]) aiming for its cure. It has been reported about the possibility of throwing a stone at the conquest of. Recently, most of chronic neurodegenerative diseases such as AD, Parkinson's disease, amyotrophic lateral sclerosis (hereinafter referred to as “ALS”), multiple sclerosis, or stroke or head It has become clear that acute brain injury such as trauma is accompanied by chronic inflammation of the central nervous system (brain, spinal cord, etc.).
 そして、これらの疾病が、中枢炎症によって引き起こされ、進行するのではないかと言う可能性も考えられている([非特許文献7])。例えば、中枢神経系炎症がAD等の神経変性疾患を発症させることや、疾病を進行させる可能性があることが報告されている(例えば、[非特許文献7])。また、炎症を引き起こす物質であるLPS(リポポリサッカライド)の腹腔内投与により作出した記憶障害モデルラットを解析した結果、脳にAβペプチドの蓄積が見られたこと、抗炎症剤であるsulindac sulfideにより症状が回復したこと、が報告されている([非特許文献8])。更に、中枢神経系炎症が、うつ病や自閉症等の精神疾患や発達障害、更には、正常な老化過程においても、高率に認められることも明らかとなって来ている。 And it is also considered that these diseases may be caused by central inflammation and progress ([Non-Patent Document 7]). For example, it has been reported that central nervous system inflammation may cause neurodegenerative diseases such as AD and cause disease progression (for example, [Non-patent Document 7]). As a result of analyzing the intraperitoneal memory impairment model rats produced by the administration of a substance that causes inflammation LPS (lipopolysaccharide), it was observed accumulation of A beta peptide in the brain, which is an anti-inflammatory agent Sulindac sulfide It has been reported that the symptoms recovered by (Non-patent Document 8). Furthermore, it has become clear that central nervous system inflammation is found at a high rate even in mental diseases and developmental disorders such as depression and autism, and in the normal aging process.
 以上のことから、中枢神経系炎症及び関連する、神経細胞死([非特許文献9])、神経細胞新生阻害([特許文献7])及びAβ脳内蓄積を予防又は治療することにより、感染による炎症により神経細胞が損傷されて発生する神経障害を防止したり、あるは、AD、パーキンソン病等の神経変性疾患の治療、又は統合失調症、うつ病、自閉症等の精神疾患や発達障害の治療を行うことができると期待されている([非特許文献8])。このような現況のもと、中枢神経系炎症等を効果的且つ副作用なく治療できる方法が以前にも増して望まれている。 From the above, by preventing or treating central nervous system inflammation and related neuronal cell death ([Non-Patent Document 9]), inhibition of neurogenesis ([Patent Document 7]), and accumulation in brain, Preventing neuropathy caused by damage to nerve cells due to inflammation caused by infection, treatment of neurodegenerative diseases such as AD and Parkinson's disease, or mental diseases such as schizophrenia, depression and autism It is expected that developmental disorders can be treated ([Non-Patent Document 8]). Under such circumstances, a method capable of treating central nervous system inflammation and the like effectively and without side effects is desired more than ever before.
 このような状況下にあって、本発明者は、革新的な臨床試験方法によって、鶏胸肉由来の独自のプラズマローゲン組成物を用いて、認知症発症前の成人(健常者)の認知機能を改善出来ることを立証することに成功し、本発明を完成するに至った。臨床試験の結果は、INPROVEMENT IN COGNITIVE FUNCTION BY SUPPLEMENT CONTAINED PLASMALOGEN FOR HEALTHY JAPANESE-A RAMDOMIZED, DOUBLE-BLIDED, PLASEBO-CONTROLED STUDY-のタイトルで、査読付きの「診療と新薬」第53巻12月号に掲載されている(非特許文献25)。この革新的成果によって、今後は、中枢神経系炎症等の予防及び/又は緩和用の打開策を手に出来ることになり、結果的に、中枢神経系炎症等の効率的な抑制に資する処多大であると考えられる。 Under such circumstances, the inventor of the present invention uses a unique plasmalogen composition derived from chicken breast by an innovative clinical test method, so that the cognitive function of an adult (on healthy person) before the onset of dementia The inventors have succeeded in demonstrating that the improvement can be improved, and have completed the present invention. The results of the clinical trials will be published in INPROVEMENT IN COGNITIVE FUNCTION BY BY SUPPLEMENT CONTINED PLASMALOGEN FOR HEALTHY JAPANESE-A RAMDOMIZED, DOUBLE-BLIDED, PULSEBO-COND. (Non-patent Document 25). With this innovative achievement, it will be possible to obtain measures to prevent and / or alleviate central nervous system inflammation in the future, and as a result, it will contribute to efficient suppression of central nervous system inflammation. It is thought that.
特許第5847086号公報Japanese Patent No. 5847086 特許第5062873号公報Japanese Patent No. 5062873 特許第5774816号公報Japanese Patent No. 5774816 特許第5430566号公報Japanese Patent No. 5430566 特開2007-262024号公報JP 2007-262024 A 特開2006-121957号公報JP 2006-121957 A 特許第6016363号公報Japanese Patent No. 6016363 特許第5540209号公報Japanese Patent No. 5540209 特許第5360454号公報Japanese Patent No. 5360454 特許第5704493号公報Japanese Patent No. 5704493 特許第5784486号公報Japanese Patent No. 5784486 特開昭60-51104号公報JP 60-51104 A 特開昭57-59629号公報JP-A-57-59629 特開昭60-64919号公報JP-A-60-64919 特許第6025568号公報Japanese Patent No. 6025568 特許第4047354号公報[ドコサヘキサエン酸の生産性の高い新規ラビリンチュラ類微生物およびその利用](北海道大学等)Japanese Patent No. 40473354 [New Labyrinthula microorganisms with high productivity of docosahexaenoic acid and their use] (Hokkaido University, etc.) 特願2007-148398号公報[微生物発酵によるDHA含有リン脂質の製造方法](北海道大学)Japanese Patent Application No. 2007-148398 [Method for producing DHA-containing phospholipids by microbial fermentation] (Hokkaido University)
 本発明は、安全・安定なPLsとその製剤、それらを含有する食品、化粧品、医薬品又は飼料としての用途及び認知症の未病状態の判定方法を提供することを課題としている。 The object of the present invention is to provide safe and stable PLs and preparations thereof, uses as foods, cosmetics, pharmaceuticals or feeds containing them, and a method for determining an unaffected state of dementia.
 本発明者は、驚くべきことに、PLs分子中のSN-2位にDHAを導入することによって、更には、PLsを簡便にナノ乳化(可溶化)して形状変換することによって、PLsを安全に安定化できるのみならず、神経変性疾患及び精神疾患の緩和と予防、及び改善効果が発現することを認めると共に、その統合的な費用対効果を顕著に改善することを見出して、更に研究開発を重ねて、本発明を完成するに至った。 The inventor has surprisingly found that PLs can be safely removed by introducing DHA at the SN-2 position in the PLs molecule, and also by simply emulsifying (solubilizing) PLs and transforming the shape. In addition to being able to stabilize, it has been found that the effects of alleviating and preventing neurodegenerative diseases and psychiatric disorders, as well as improving effects, as well as significantly improving their integrated cost-effectiveness, and further research and development As a result, the present invention has been completed.
 即ち、本発明は、以下の項に記載の技術的手段から構成される。
(1)生体組織由来の特定の部位又は臓器から抽出分別され、該抽出分別の工程で副生する蛋白質画分及び/又は水溶性低分子画分が精製除去されている総脂質の精製物から成る、生体組織特異的な構成比を有するプラズマローゲン含有リン脂質(以下、「複合脂質」と言う。)であって、
1)前記生体組織由来の特定の部位又は臓器が、鶏の生体組織由来の兜屠体、骨髄を含む生ガラ、鶏卵黄、腸、砂肝、卵巣と卵管を含む金冠、胸肉、皮の群から選択される少なくとも1種以上の特定の部位又は臓器から成り、
2)前記プラズマローゲン含有リン脂質が、ドコサヘキサエン酸(DHA)を含むω-3高度不飽和脂肪酸(以下、「ω-3HUFA」と言う。)誘導体(以下、「ω-3HUFA誘導体」と総称する。)を含有する飼料で飼養された鶏の生体組織に当該ω-3HUFA誘導体が移行した生体組織由来の特定の部位又は臓器から抽出分別される、前記ω-3HUFA誘導体が移行した生体組織特異的なω-3HUFA結合型の構成比を有するプラズマローゲン含有リン脂質であることを特徴とする前記複合脂質。
(2)ω-3HUFA誘導体が、下記の1)~9);
1)グリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
2)1-アルキルグリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
3)1-アルケニルグリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
4)1-アシルグリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
5)オキアミの脱殻剥き身及び/又は乾燥物に含有されている、前項1)~4)何れかに記載のグリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
6)ホールホタテ及び/又はその加工残、若しくはそのミール(乾燥物)に含有されている、前項1)~4)の何れかに記載のグリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
7)ホール海鞘(ホヤ)及び/又はその加工残、若しくはそのミール(乾燥物)に含有されている、前項1)~4)の何れかに記載のグリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
8)有機合成された、前項1)~4)の何れかに記載のグリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
9)発酵法で調製された、前項1)~4)の何れかに記載のグリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
から選択される何れか1種である、前記(1)記載の複合脂質。
(3)前記特定の部位又は臓器が、鶏卵黄であり、前記鶏の生体で生合成されたDHA-PLsを含有する鶏卵黄から抽出分別される総脂質の精製物から成る、前記(1)記載の複合脂質。
(4)有機合成された1-アルキルグリセロフォスファチジルリン脂質を含有する飼料で飼養された鶏の生体の特定の部位又は臓器から抽出分別される総脂質の精製物から成る、前記(1)記載の複合脂質。
(5)前記(1)記載の複合脂質が、前記(1)記載の抽出分別で副生する水溶性低分子画分を含有する、ω-3HUFA結合型の構成比を有することを特徴とする複合脂質組成物。
(6)サポニン類の存在下で、水性相に、前記(1)~(5)の何れかに記載のω-3HUFA結合型の構成比を有する複合脂質又は複合脂質組成物が、ナノ乳化又は可溶化されていることを特徴とする、複合脂質又はω-3HUFA結合型の構成比を有する複合脂質組成物の水性製剤。
(7)前記(1)~(4)の何れかに記載の複合脂質を、フォスフォリパーゼA1(PLA1)で酵素処理して、リゾ体を含むグリセロリン脂質類を除去し且つスフィンゴミエリンを抽出分別除去することを特徴とする、純度30~70%の粗製プラズマローゲン又はそれ以上の純度を有する高純度プラズマローゲンの製造方法。
(8)サポニン類の存在下で、水性相に、前記(7)記載の粗製プラズマローゲン又は高純度プラズマローゲンの、各々を基質として、ナノ乳化又は可溶化することを特徴とする、前記粗製プラズマローゲン又は高純度プラズマローゲンの水性製剤の製造方法。
(9)前記(1)~(8)の何れかに記載の複合脂質、複合脂質組成物、各プラズマローゲン、並びにそれらの水性製剤から選択される何れか1種以上を有効成分として含有することを特徴とする食品、化粧品、医薬品又は飼料。
(10)前記(1)~(8)の何れかに記載の複合脂質、複合脂質組成物、各プラズマローゲン、並びにそれらの各水性製剤の中から選択される少なくとも1種を有効成分として含有し、神経変性疾患の認知症、アルツハイマー病、パーキンソン病、うつ病、並びに統合失調症の群から選択される少なくとも1種の神経変性疾患の緩和と予防作用を有することを特徴とする前記神経変性疾患の緩和及び予防用サプリメント。
(11)前記(1)~(8)の何れかに記載の複合脂質、複合脂質組成物、各プラズマローゲン、並びにそれらの各水性製剤の中から選択される少なくとも1種を有効成分として含有し、神経変性疾患の認知症、アルツハイマー病、パーキンソン病、うつ病、並びに統合失調症の群から選択される少なくとも1種の神経変性疾患の緩和と予防又は治療作用を有することを特徴とする前記神経変性疾患の緩和と予防又は治療用の抗中枢神経系炎症製剤。
(12)前記(1)~(8)の何れかに記載の複合脂質、複合脂質組成物、各プラズマローゲン、並びにそれらの各水性製剤の中から選択される少なくとも1種を有効成分として含有することを特徴とする神経細胞新生剤。
(13)前記(1)~(8)の何れかに記載の複合脂質、複合脂質組成物、各プラズマローゲン、並びにそれらの 各水性製剤の中から選択される少なくとも1種を有効成分として含有することを特徴とする神経細胞のアポトーシス抑制剤。
(14)前記(1)~(8)の何れかに記載の複合脂質、複合脂質組成物、各プラズマローゲン、並びにそれらの各水性製剤の中から選択される少なくとも1種を有効成分として含有することを特徴とするAβ及び/又はτの脳内蓄積抑制剤。
(15)前記(1)~(8)の何れかに記載の複合脂質、複合脂質組成物、各プラズマローゲン、並びにそれらの各水性製剤の中から選択される少なくとも1種を有効成分として含有し、神経変性疾患及び/又は精神疾患の改善作用の抗中枢神経系炎症、神経細胞新生、神経細胞死の抑制並びにAβ脳内蓄積抑制の中から選択された少なくとも1種の作用を有することを特徴とする前記神経変性疾患及び/又は精神疾患改善用医薬品又は食品としての加工品。
(16)前記(1)~(4)の何れかに記載された抽出分別で副生する蛋白質画分と、前記(5)に記載の抽出分別で副生する水溶性低分子画分を含有する生体組織特異的な構成比を有する複合脂質組成物との混合物から成ることを特徴とする蛋白質・脂質の複合組成物。
(17)前項記載の蛋白質画分と複合脂質組成物との混合物から成る蛋白質・脂質の複合組成物が、鶏卵黄由来である、前記(16)に記載の蛋白質・脂質の複合組成物。
(18)前記(16)又は(17)記載の蛋白質・脂質の複合組成物を有効成分として含有し、神経変性疾患及び精神疾患の改善作用の抗中枢神経系炎症、 神経細胞新生、
神経細胞死の抑制、 並びにAβ脳内蓄積抑制の中から選択される少なくとも1種の作用を有することを特徴とする前記神経変性疾患及び/又は精神疾患改善用医薬品又は食品としての加工品。
(19)前記(1)~(8)の何れかに記載のプラズマローゲンを含有する複合脂質、複合脂質組成物、粗製プラズマローゲン又は高純度プラズマローゲン、並びにそれらの各水性製剤の中から選択される1種を用いて、生理的には無害な量のAβ及びτの脳内蓄積が認められる状態(以下、「認知症未病状態」と言う。)にある認知症発症前の成人(健常者)を被験者として、
(1)PETを用いてAβ及びτの脳内蓄積状態を検査して、被験者の認知症未病状態を判定するために、PET画像のSUVR値(スコア)に基いてAβ及びτの脳内蓄積状態のランク別の区分けを下記により実施する工程、
1)蓄積初期I期:1.0±0,2
2)蓄積中間期II期:1.2±0.2
3)蓄積後期III期:1.4±0.2
(2)前記ランク別に、プラズマローゲンの被験者に対するドースレスポンスを3~10か月の長期に亘り適宜な頻度で試験して、適切な日用量の範囲又は見当範囲を下記により設定する工程;
1)I期の被験者;「漸増」範囲:1.0±0.15
2)II期の被験者;「零増」見当範囲:1.2±0.15
3)III期の被験者;「漸減」見当範囲:1.4±0.15
(3)前記認知症発症前の成人(健常者)の被験者に、当該設定日用量のプラズマローゲンを有効成分として含有するサプリメント又は食品としての加工品を認知症発症前の段階から長期に亘り継続的に投与する工程、
(4)該長期投与の間に適宜な頻度でAβ及びτの前記所定の脳内蓄積状態の定期的検定をPET診断で実施する工程、
(5)定期的PET診断に併行して、該長期投与期間中に適宜な頻度で、海馬の減容状態の検定をMRI診断で実施する工程、
(6)前記(1)~(4)の工程又は前記(1)~(5)の工程を実行することにより被験者の認知症未病状態を判定することを特徴とする、前記被験者の認知症未病状態の判定方法。
That is, the present invention comprises the technical means described in the following section.
(1) From a purified product of total lipids that has been extracted and fractionated from a specific site or organ derived from a living tissue, and the protein fraction and / or water-soluble low-molecular fraction that have been by-produced in the extraction and fractionation step have been purified and removed. A plasmalogen-containing phospholipid (hereinafter referred to as “complex lipid”) having a composition ratio specific to a living tissue,
1) The specific part or organ derived from the biological tissue is a carcass carcass derived from a chicken biological tissue, raw rattle containing bone marrow, chicken yolk, intestine, sand liver, gold crown including ovary and fallopian tube, breast meat, skin Consisting of at least one or more specific parts or organs selected from the group of
2) The plasmalogen-containing phospholipid is generically called an ω-3 highly unsaturated fatty acid (hereinafter referred to as “ω-3HUFA”) derivative (hereinafter referred to as “ω-3HUFA derivative”) containing docosahexaenoic acid (DHA). ) Is extracted and fractionated from a specific part or organ derived from the living tissue to which the ω-3HUFA derivative has been transferred to the biological tissue of a chicken fed with a feed containing The complex lipid, wherein the complex lipid is a plasmalogen-containing phospholipid having a constitutional ratio of ω-3HUFA binding type.
(2) The ω-3HUFA derivative is the following 1) to 9):
1) ω-3HUFA derivative bound to SN-2 of glycerophosphatidyl phospholipid 2) ω-3HUFA derivative bound to SN-2 of 1-alkyl glycerophosphatidyl phospholipid 3) 1-alkenyl glycerophosphatidyl Ω-3HUFA derivative bound to phospholipid SN-2 4) 1-acylglycerophosphatidyl phospholipid SN-2 ω-3HUFA derivative 5) contained in krill shelled and / or dried product 6) ω-3HUFA derivative bound to SN-2 of glycerophosphatidyl phospholipid according to any one of 1) to 4) in the preceding paragraph 6) contained in whole scallop and / or processing residue thereof or meal (dry product) thereof The ω-3 bound to SN-2 of the glycerophosphatidyl phospholipid according to any one of 1) to 4) above UFA derivative 7) SN- of the glycerophosphatidyl phospholipid according to any one of the preceding items 1) to 4), which is contained in whole sea scabbard (sea squirt) and / or processing residue thereof or meal (dry product) thereof Ω-3HUFA derivative bound to 2 8) Organically synthesized ω-3HUFA derivative bound to SN-2 of the glycerophosphatidyl phospholipid according to any one of 1) to 4) above, prepared by fermentation method The composite according to (1), which is any one selected from ω-3HUFA derivatives bound to SN-2 of the glycerophosphatidyl phospholipid according to any one of 1) to 4) above Lipids.
(3) The specific site or organ is chicken egg yolk, and comprises a purified product of total lipids extracted and fractionated from chicken egg yolk containing DHA-PLs biosynthesized in the chicken's living body (1) The complex lipid described.
(4) The above-mentioned (1), comprising a purified product of total lipid extracted and fractionated from a specific part or organ of a living body of a chicken fed with a feed containing an organically synthesized 1-alkylglycerophosphatidylphospholipid The complex lipid described.
(5) The complex lipid described in (1) above has a ω-3HUFA-binding constitutional ratio containing a water-soluble low-molecular fraction produced as a by-product in the extraction fractionation described in (1). Complex lipid composition.
(6) In the presence of saponins, the complex lipid or complex lipid composition having the ω-3HUFA binding type composition ratio described in any one of (1) to (5) above in the aqueous phase is nano-emulsified or An aqueous preparation of a complex lipid composition having a constitutional ratio of complex lipid or ω-3HUFA binding type, characterized by being solubilized.
(7) The complex lipid described in any of (1) to (4) above is enzymatically treated with phospholipase A1 (PLA1) to remove glycerophospholipids including lyso form and extract and fractionate sphingomyelin A method for producing a crude plasmalogen having a purity of 30 to 70% or a high purity plasmalogen having a purity of 30 to 70%, wherein the plasmalogen is removed.
(8) The crude plasma, wherein the crude plasma or high-purity plasmalogen described in (7) above is nano-emulsified or solubilized in the presence of saponins as a substrate. A method for producing an aqueous preparation of rhogen or high-purity plasmalogen.
(9) As an active ingredient, any one or more selected from the complex lipid according to any one of (1) to (8), the complex lipid composition, each plasmalogen, and their aqueous preparations. Food, cosmetics, pharmaceuticals or feed characterized by
(10) The composite lipid according to any one of (1) to (8), the composite lipid composition, each plasmalogen, and at least one selected from each aqueous preparation thereof as an active ingredient. A neurodegenerative disease having a alleviating and preventing action on at least one neurodegenerative disease selected from the group consisting of dementia of neurodegenerative disease, Alzheimer's disease, Parkinson's disease, depression, and schizophrenia Mitigation and prevention supplements.
(11) The composite lipid according to any one of (1) to (8), the composite lipid composition, each plasmalogen, and at least one selected from each aqueous preparation thereof as an active ingredient. A neurodegenerative disease dementia, Alzheimer's disease, Parkinson's disease, depression, and at least one neurodegenerative disease selected from the group consisting of schizophrenia Anti-central nervous system inflammatory preparation for alleviation and prevention or treatment of degenerative diseases.
(12) The composite lipid according to any one of (1) to (8), the composite lipid composition, each plasmalogen, and at least one selected from each of these aqueous preparations is contained as an active ingredient. A neurogenesis agent characterized by the above.
(13) The composite lipid according to any one of (1) to (8), the composite lipid composition, each plasmalogen, and at least one selected from each of these aqueous preparations is contained as an active ingredient. A neuronal apoptosis inhibitor characterized by the above.
(14) The composite lipid according to any one of (1) to (8), the composite lipid composition, each plasmalogen, and at least one selected from each aqueous preparation thereof is contained as an active ingredient. cerebral accumulation inhibitor of a beta and / or τ, characterized in that.
(15) The composite lipid according to any one of (1) to (8), the composite lipid composition, each plasmalogen, and at least one selected from each aqueous preparation thereof as an active ingredient. , anti CNS inflammation improving action of neurodegenerative diseases and / or psychiatric disorder, neurogenesis, by having at least one action selected from among the suppression as well as a beta accumulation in brain inhibition of neuronal cell death A processed product as a pharmaceutical product or food for improving the neurodegenerative disease and / or psychiatric disease.
(16) Contains a protein fraction by-produced by the extraction fraction described in any one of (1) to (4) above and a water-soluble low-molecular-weight fraction by-produced by the extraction fraction described in (5) above A protein / lipid composite composition comprising a mixture with a composite lipid composition having a composition ratio specific to living tissue.
(17) The protein / lipid composite composition according to the above (16), wherein the protein / lipid composite composition comprising the mixture of the protein fraction and the composite lipid composition described in the above item is derived from chicken egg yolk.
(18) containing the protein / lipid composite composition according to (16) or (17) as an active ingredient, anti-central nervous system inflammation for improving neurodegenerative diseases and mental disorders, neuronal cell neogenesis,
The processed product as a pharmaceutical or food for ameliorating neurodegenerative disease and / or psychiatric disorder characterized by having at least one action selected from suppression of neuronal cell death and suppression of accumulation in brain.
(19) The complex lipid containing the plasmalogen according to any one of (1) to (8) above, a complex lipid composition, a crude plasmalogen or a high-purity plasmalogen, and their respective aqueous preparations An adult before the onset of dementia in a state in which accumulation of physiologically harmless amounts of and τ is observed in the brain (hereinafter referred to as “demented non-disease state”) ( Healthy subjects)
(1) using a PET examines the brain accumulation state of A beta and tau, to determine dementia non pathological condition of the subject, the A beta and tau on the basis of the SUVR values of the PET image (score) The process of performing the classification of brain accumulation status by rank according to the following:
1) Initial accumulation stage I: 1.0 ± 0,2
2) Intermediate period II: 1.2 ± 0.2
3) Late stage III: 1.4 ± 0.2
(2) Testing the dose response to plasmalogen subjects by said rank at an appropriate frequency over a long period of 3 to 10 months, and setting an appropriate daily dose range or register range as follows:
1) Stage I subjects; “gradual increase” range: 1.0 ± 0.15
2) Stage II subjects; “Zero increase” register range: 1.2 ± 0.15
3) Stage III subjects; “decreasing” register range: 1.4 ± 0.15
(3) Continuing a long-term treatment from the stage before the onset of dementia to the adult (healthy) subject before the onset of dementia, supplements containing the set daily dose of plasmalogen as an active ingredient or processed food products Administering step,
(4) A step of performing a periodic test of the predetermined brain accumulation state of and τ by PET diagnosis at an appropriate frequency during the long-term administration,
(5) In parallel with periodic PET diagnosis, performing a hippocampal volume reduction test with MRI diagnosis at an appropriate frequency during the long-term administration period,
(6) Dementia of the subject characterized by determining the non-demented state of the subject by performing the steps (1) to (4) or the steps (1) to (5) A method for determining an unaffected state.
 更に、本発明は、上記各発明に係る発明特定事項として、以下の態様を含むことが出来る。
(1)抽出分別方法として、前処理物の過剰な含水エタノールによる緩慢抽出になる3相(「蛋白無機質等の不溶固形分」(沈殿)と「中性脂質分」(上層)と「含水エタノール分(水溶性低分子類、極性脂質類)」)に分離(分別)すること。
(2)上記含水エタノール分の脱アルコール後にヘキサンを加えて水溶性低分子類を分別・分離し、ヘキサンを蒸発乾固して極性脂質分(複合脂質)を得ること。
(3)酵素処理工程として、分離含水エタノール相を蒸発乾固して得られるリン脂質画分をPLA1酵素処理してプラズマローゲンを精製すること。
(4)各プラズマローゲンに、エタノールアミンプラズマローゲン及びコリンプラズマローゲンが含有されること。
(5)各プラズマローゲンに含有されるエタノールアミンプラズマローゲンとコリンプラズマローゲンの質量比が[1:5]~[5:0.01]であること。
(6)DHA含有プラズマローゲンの経口による日用量が0.01mg~10mg、例えば、好適には0.25mg(内服薬以下)であること。
(7)Aβとτの脳内蓄積診断用に用いるPETが、頭部専用のヘルメット型PETであること。
(8)プラズマローゲンの投与時期が30代から、より好適には40代からであること。
Furthermore, this invention can include the following aspects as invention specific matter which concerns on each said invention.
(1) As an extraction fractionation method, three phases (“insoluble solid matter such as protein minerals” (precipitation), “neutral lipid content” (upper layer) and “hydrous ethanol” which are slowly extracted with excess hydrous ethanol of the pretreated product Separation (separation) into fractions (water-soluble small molecules, polar lipids) ”).
(2) After dealcoholization of the above water-containing ethanol, hexane is added to separate and separate water-soluble low-molecular compounds, and hexane is evaporated to dryness to obtain a polar lipid (complex lipid).
(3) As an enzyme treatment step, the plasma phosphogen is purified by subjecting the phospholipid fraction obtained by evaporating and drying the separated hydrous ethanol phase to PLA1 enzyme treatment.
(4) Each plasmalogen contains ethanolamine plasmalogen and choline plasmalogen.
(5) The mass ratio of ethanolamine plasmalogen and choline plasmalogen contained in each plasmalogen is [1: 5] to [5: 0.01].
(6) The daily oral dose of DHA-containing plasmalogen is 0.01 mg to 10 mg, for example, preferably 0.25 mg (or less than internal medicine).
(7) PET used for accumulation in brain diagnosis of A beta and τ is, it is a helmet-type PET head only.
(8) The administration time of plasmalogen is from the 30s, more preferably from the 40s.
 ここで、本発明について説明すると、生体内常在型リン脂質であるPLsは、該PLsを含有する生体組織が従来から食用とされて来た。従って、本発明に係る生体組織から抽出されたPLsは、副作用等の心配が殆どなく、安全性が極めて高いと考えられる。但し、PLsは、一旦、生体組織から抽出分離されてしまうと、途端に安定性が失われて、ビニルエーテル結合が分解の危機に曝されることになる。つまり、このことは、[強還元性]ビニルエーテル結合は、強[易酸化性](=“易”酸化分解性)であることを意味し、これを有効に活用するには何らかの然るべき防御措置を施すことが必須となる。 Here, to explain the present invention, PLs, which are resident phospholipids in the living body, have conventionally been edible for living tissues containing the PLs. Therefore, the PLs extracted from the living tissue according to the present invention are considered to have very high safety with little concern about side effects. However, once PLs is extracted and separated from a living tissue, stability is lost and the vinyl ether bond is exposed to the risk of decomposition. This means that the [strongly reducible] vinyl ether bond is strong [easily oxidizable] (= “easy” oxidatively degradable), and some appropriate defensive measures must be taken to make effective use of it. Application is essential.
 本発明者は、該“二律背反”性の合理的打破の方策を鋭意研究の結果、三つの方法が有効であることを見出した。一つは、PLsを合理的にナノ乳化することであり、二つ目は、PLsの分子内、即ち、SN-2にDHAを合理的に導入することである。この二つを統合化すること、つまり、DHA結合型PLsをナノ乳化することが、最強の合理的防御となる。此処でいう“合理的”とは、統合的な費用対効果比が顕著に高いと言うことで、“安全で実用的安定化”を実現することを意味している。 The present inventor has found that the three methods are effective as a result of earnest research on a method of rationally overcoming the “antagonism”. One is to rationally emulsify PLs, and the second is to rationally introduce DHA into the PLs molecule, ie, SN-2. Integrating the two, that is, nanoemulsifying DHA-bound PLs, is the strongest rational defense. Here, “reasonable” means that the integrated cost-effectiveness ratio is remarkably high, thereby realizing “safe and practical stabilization”.
 更に、三つ目は、名実共に“一石数鳥”の手法で、鶏に、飼料として、[alkylphospholipid]の分子構造を有する“エーテルリン脂質”を摂取させることである。これは、[原効果]と言われる原らの研究成果(非特許文献23)の、オキアミ由来のalkylphospholipid濃縮物1質量%をラットに8日間経口投与してその血清中のalkylphospholipidとPLsを顕著に増加させると同時に、それらのSN-2結合脂質クラス中のDHAとEPA比率を増加させることに依っている。即ち、本発明者は、該[原効果]を次の様に活用して、本発明を一層合理化・高品質化することに成功した。 Furthermore, the third is to feed chickens with “ether phospholipid” having a molecular structure of [alkylphospholipid] as a feed, using the technique of “several birds with one stone” in both name and reality. This is because 1% by mass of krill-derived alkylphospholipid concentrate, the original research result (Non-patent Document 23), which is said to be the [original effect], was orally administered to rats for 8 days, and alkylphospholipid and PLs in the serum were prominent. While increasing the ratio of DHA and EPA in their SN-2 binding lipid class. That is, the present inventor succeeded in further rationalizing and improving the quality of the present invention by utilizing the [original effect] as follows.
 適宜なalkylphospholipid含有素材、例えば、オキアミ脱殻肉、好適にはその乾燥物を飼料として成鶏、好適には産卵鶏に投与した処、その産卵の卵黄において、驚くべきことに1-alkenyl-2-docosahexenoyl-glycerophospholipid及び1-alkyl-2-docosahexenoyl-glyc-erophospholipidを選択性高く、即ち、EPA結合体を殆ど含まないで生成していることが認められた。
 更に、該卵黄の濃縮卵黄油をラットに投与した結果、血清中の1-alkenyl-2-docosahexenoyl-2-docosahexenoyl-glycerophospholipidが顕著に増加していることが認められた。
In an appropriate alkylphospholipid-containing material, for example, krill unshelled meat, preferably when the dried product is administered as a feed to an adult chicken, preferably a laying hen, the egg yolk of the laying egg is surprisingly 1-alkenyl-2- It was confirmed that docosahexenoyl-glycerophospholipid and 1-alkyl-2-docosahexenoyl-glycerophospholipid were produced with high selectivity, that is, containing almost no EPA conjugate.
Furthermore, as a result of administering the egg yolk concentrated egg yolk oil to rats, it was found that serum 1-alkenyl-2-docosahexenoyl-2-docosahexenoyl-glycerophospholipid was significantly increased.
 生体内PLs実量増加の[統合的な費用対効果比]向上における当該手法の有意性・優位性は、
(1)DHA-PLsとその前駆体の[DHA-エーテルリン脂質]の選択的且つ安全性の高い生合成法であること、
(2)合理性が高い有機合成体、例えば、エーテルリン脂質、アルキルグリセロリン脂質やそのDHA結合型[DHA-エーテルリン脂質]等の[安全性担保リスク]を略完全に払拭可能な、謂わば[生体由来型]への変換が、高い[費用体効果比]で実用化出来ること、
(3)[生体由来型への変換]においては、鶏は、前述の様に、スーパー人工飼育動物であって、その代謝回転の速度は他の追随を許さないこと、即ち、
[合理性は高いが安全性が低い[人工合成]]×[安全性は高いが生産性の低い[生合成]]で安全・安価な製品化が実現出来ること、にある。
The significance and superiority of this method in improving the [integrated cost-effectiveness ratio] of the increase in the actual amount of PLs in vivo is
(1) A selective and highly safe biosynthetic method for DHA-PLs and its precursor [DHA-ether phospholipid],
(2) A so-called so-called so-called so-called so-called so-called “safety-assurance risk” such as ether phospholipids, alkyl glycero phospholipids and their DHA-bound [DHA-ether phospholipids]. Conversion to [biological-derived type] can be put into practical use with a high [cost-effectiveness ratio]
(3) In [conversion to living body-derived type], the chicken is a super artificially reared animal as described above, and the rate of turnover is unacceptable.
[Highly rational but low safety [artificial synthesis]] x [Safety but low productivity [biosynthesis]] is a safe and inexpensive product.
 本発明は、上記構成を採用することにより、以下のような格別の効果を奏するものである。
(1)本発明は、生理的に無害な量のAβ及びτの脳内蓄積が認められる状態(認知症未病状態)にある認知症発症前の成人(健常者)を被験者として、該被験者の認知症未病状態を判定する方法として有用である。
(2)本発明は、認知症等の緩和と予防用サプリメント又は食品としての加工品を提供するものとして有用である。
(3)本発明の安全で安定化されたPLsを有効成分として含有する、神経変性疾患(認知症、AD、パーキンソン病、うつ病、及び統合失調症)の緩和と予防用のサプリメント([非特許文献16])、抗中枢神経系炎症製剤([非特許文献8]及び[特許文献1])、神経細胞新生製剤([特許文献7])、神経細胞のアポトーシス抑制製剤([非特許文献9])及びAβとτの脳内蓄積抑制製剤([非特許文献8])とすることにより、認知機能障害・不全全般の症状を予防・緩和・改善し、治療するためのサプリメント又は製剤を提供することができる。
(4)中枢神経系の炎症を惹起させる原因の一つとして、中枢神経系に存在する活性化グリア細胞が炎症性サイトカインを放出することが考えられているが、本発明の抗中枢神経系炎症製剤は、中枢神経の炎症発生に伴い増加及び活性化されるグリア細胞に対して増加抑制作用を有しており、当該作用により中枢神経系炎症を緩和・予防・改善し、治療することが実現できる。
By adopting the above configuration, the present invention has the following special effects.
(1) The present invention uses an adult (healthy person) before the onset of dementia in a state in which accumulation of physiologically harmless amounts of and τ is recognized in the brain (demented state). This is useful as a method for determining the non-demented state of a subject.
(2) The present invention is useful for providing a processed product as a supplement or food for alleviating and preventing dementia and the like.
(3) Supplements for mitigation and prevention of neurodegenerative diseases (dementia, AD, Parkinson's disease, depression, and schizophrenia) containing the safe and stabilized PLs of the present invention as active ingredients ([non- Patent Document 16]), anti-central nervous system inflammation preparation ([Non-Patent Document 8] and [Patent Document 1]), neuronal cell neoplasia preparation ([Patent Document 7]), neuronal apoptosis inhibitor preparation ([Non-Patent Document 8]). 9]) and and τ accumulation-inhibiting preparations in the brain ([Non-patent Document 8]) to prevent, alleviate and improve symptoms of cognitive dysfunction and dysfunction in general and supplements or preparations for treatment Can be provided.
(4) As one of the causes for causing inflammation of the central nervous system, it is considered that activated glial cells present in the central nervous system release inflammatory cytokines. The anti-central nervous system inflammation of the present invention The preparation has an inhibitory effect on the increase and activation of glial cells that accompany the development of inflammation in the central nervous system, and it is possible to alleviate, prevent, improve and treat central nervous system inflammation. it can.
(5)中枢神経の炎症が原因の一つと考えられている疾患、例えば、認知症(特にAD)、パーキンソン病、筋萎縮性側索硬化症(ALS)、多発性硬化症等の慢性神経変性疾患、並びに統合失調症、うつ病、自閉症等の精神疾患の治療のためにも、本発明の抗中枢神経系炎症性製剤を好適に用いることができる。
(6)PLsは、生体組織に多く含まれる成分であり、また、従来からPLsを含む生体組織が食用に供されて来ていることで安全性が実証されており、生体組織から抽出されたPLsを含む本発明の、脳機能障害の緩和と予防用のサプリメント、抗中枢神経系炎症製剤、神経細胞新生製剤、神経細胞のアポトーシス抑制製剤及びAβとτの脳内蓄積抑制製剤は、副作用等の心配が殆どなく、安全性が極めて高い。
(5) Diseases considered to be caused by inflammation of the central nervous system, for example, chronic neurodegeneration such as dementia (particularly AD), Parkinson's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis, etc. The anti-central nervous system inflammatory preparation of the present invention can also be suitably used for the treatment of diseases and mental disorders such as schizophrenia, depression, and autism.
(6) PLs is a component that is abundantly contained in living tissue, and the safety has been demonstrated since the living tissue containing PLs has been used for food, and has been extracted from living tissue. of the present invention including the PLs, supplements for mitigation and prevention of cerebral dysfunction, anti-CNS inflammatory preparations, neurogenesis formulation, cerebral accumulation inhibiting formulation apoptosis suppression formulations and a beta and τ in neurons, side effects The safety is extremely high.
認知機能に関する被験者の選抜用3段階の質問を示す。3 shows questions for selection of subjects regarding cognitive function. MMSE用シートを示す。An MMSE sheet is shown. 認知機能診断用質問集を示す。A collection of questions for cognitive function diagnosis. MMSEの試験結果を示す。The test result of MMSE is shown. U-Kテストの結果を示す。The result of the UK test is shown.
 以下に、本発明について更に詳細に説明する。
 本発明は、安全・安定なPLsとその製剤、並びに認知機能障害の緩和及び予防用のサプリメント、抗中枢神経系炎症製剤、神経細胞新生製剤、神経細胞のアポトーシス抑制製剤及びAβとτの脳内蓄積抑制製剤、及びそれらの経口摂取を介する認知症の発症阻止に資する認知症未病状態の判定方法に関するものである。
Hereinafter, the present invention will be described in more detail.
The present invention relates to safe and stable PLs and preparations thereof, as well as supplements for alleviating and preventing cognitive impairment, anti-central nervous system inflammation preparations, neuronal neoplasia preparations, neuronal apoptosis inhibitor preparations, and brains of and τ. The present invention relates to an internal accumulation-suppressing preparation and a method for determining an undemented state of dementia that contributes to prevention of onset of dementia through oral intake thereof.
 ここで、PLsについて更に説明すると、PLsとは、エーテルリン脂質の一種で、SN-1にビニルエーテル結合を介した長鎖アルケニル基を有するグリセロリン脂質を言う。加えて、PLsは、ヒトの生体内リン脂質の18質量%を占める汎用型でありながら、強い還元性を有する特殊なリン脂質の総称のことである。この特殊性が、PLsに顕著な酸化分解性と加水分解性を付与する原因になっている。このために、PLsの実用化に際しては、典型的な“二律背反”性の事象に直面させられ、その合理的打破が求められる。本発明者は、当該“二律背反”性の事象を、合理的に、即ち、PLsの本来的な機能性を最大限活かしつつ、その安定化を安価で安全な手段で達成することに成功し、本発明を確立した。 Here, PLs will be further described. PLs is a kind of ether phospholipid, and refers to glycerophospholipid having a long-chain alkenyl group via a vinyl ether bond in SN-1. In addition, PLs is a general term for special phospholipids having a strong reducing ability while being a general-purpose type accounting for 18% by mass of human phospholipids. This peculiarity is responsible for imparting remarkable oxidative and hydrolytic properties to PLs. For this reason, when PLs is put to practical use, a typical “twisting” phenomenon is confronted and its rational breakthrough is required. The present inventor has succeeded in achieving the stabilization of the “antiprotest” phenomenon rationally, that is, while making the most of the original functionality of PLs, by an inexpensive and safe means, The present invention has been established.
 本発明に用いるPLsは、鶏の生体組織から抽出分別されるものが好適である。生体組織とは、生物におけるPLsを含有する組織である。ここで、一般論として説明すると、当該生物としては、例えば動物及び微生物が挙げられる。微生物としては、嫌気性細菌が好適であり、例えば、腸内細菌のAcidaminococaceae科の細菌等が特に好ましい。細菌の場合、“生体組織”は細菌そのものである。動物としては、鳥類、哺乳類、魚類、オキアミ、貝類等が好適である。哺乳類では、その供給安定性と安全性の両面から家畜が好ましく、例えば、牛、豚、馬、羊、ヤギ等が挙げられる。 The PLs used in the present invention are preferably those extracted and fractionated from chicken biological tissues. A biological tissue is a tissue containing PLs in a living organism. Here, to explain in general terms, examples of the organism include animals and microorganisms. As the microorganism, an anaerobic bacterium is preferable, and for example, an enterobacteria acidaminococaceae bacterium is particularly preferable. In the case of bacteria, “living tissue” is bacteria itself. As animals, birds, mammals, fish, krill, shellfish and the like are suitable. For mammals, livestock is preferable from the viewpoint of both supply stability and safety, and examples thereof include cattle, pigs, horses, sheep, and goats.
 原料用哺乳類の主な組織としては、皮膚、脳、腸、心臓、生殖器、筋肉、脊椎骨、乳等が挙げられ、これらの組織(臓器、部位)からPLsを抽出することができる。また、鳥類としては、鶏、家鴨、鶉、鴨、雉、駝鳥、七面鳥等が挙げられる。調達性・コスト・豊富な食体験性から、鶏、就中、種鶏を含む産卵鶏が特に好適である。用いる組織には、特に制限はないが、例えば、胸肉、鶏皮、内臓(特に、腸、卵巣卵管金冠、砂肝、肝臓)、卵、ガラ(ミンチ調製副生物)、羽毛等を用いるのが好適である。 The main tissues of mammals for raw materials include skin, brain, intestine, heart, genital organs, muscles, vertebrae, milk, etc. PLs can be extracted from these tissues (organs, sites). Examples of birds include chicken, domestic duck, frog, duck, eagle, eagle bird and turkey. From the viewpoint of procurement, cost, and abundant eating experience, laying hens including chickens, especially chickens and breeding hens are particularly suitable. The tissue to be used is not particularly limited, but for example, breast, chicken skin, internal organs (especially, intestine, ovarian fallopian tube, sand liver, liver), egg, gala (minc preparation byproduct), feathers, etc. are used. Is preferred.
 本発明では、生体組織から抽出分別されるPLsとして、鶏組織から抽出分別されるPLsが用いられる。従来から食用とされて来た鶏は、安全性が確認されており、安定供給もし易いため、好適である。生体組織からPLsを抽出分別する方法としては、PLsが抽出(及び必要に応じて精製)できる限り特に制限されないが、簡便さ及びコスト等の点から、次に述べる様にして抽出及び精製することが好ましい。また、当該抽出及び精製方法によれば、ジアシル型グリセロリン脂質を分解・除去できるため、PLsの純度をより一層高めることができる点で、好ましい。 In the present invention, PLs extracted and separated from chicken tissue are used as PLs extracted and separated from living tissue. Conventionally edible chickens are suitable because their safety has been confirmed and stable supply is easy. The method for extracting and fractionating PLs from living tissue is not particularly limited as long as PLs can be extracted (and purified if necessary), but from the viewpoint of simplicity and cost, extraction and purification as described below. Is preferred. In addition, the extraction and purification method is preferable in that the diacyl glycerophospholipid can be decomposed and removed, and thus the purity of PLs can be further increased.
 PLsの抽出及び精製の工程としては、具体的には、例えば、以下の1)~5)の工程が挙げられる。
(1)生体組織からから総脂質画分(含、低分子量水溶性画分)と蛋白質画分及び中性脂質画分の3相に抽出分別する工程。
 具体的には、以下の工程が例示される。
1)生組織をミンチ化して緩慢凍結させる工程
2)凍結ミンチを強制解凍後圧搾脱水後に“過加熱水”(アクアガスRTM;[特許文献8]、[特許文献9]、[特許文献10]、[特許文献11])で高速調理殺菌し真空高速冷却(無酸素雰囲気下の冷却脱水)する工程
3)上記脱水処理後、3倍(V/W)量の脱気(脱酸素)エタノールを加えて、密封無酸素的雰囲気下で12時間緩慢撹拌して抽出を行う工程
4)上記を繰り返す工程
5)エタノールを合体後、無酸素雰囲気中でエタノール分を留去後、遠心して水層(水溶性低分子量画分)を分別して総脂質画分を得る工程(水溶性低分子量画分は別途凍結乾燥)
Specific examples of the process for extracting and purifying PLs include the following processes 1) to 5).
(1) A step of extracting and fractionating from a biological tissue into three phases of a total lipid fraction (including a low molecular weight water-soluble fraction), a protein fraction and a neutral lipid fraction.
Specifically, the following steps are exemplified.
1) Step of mincing and slowly freezing the live tissue 2) Forced thawing of frozen mince and subsequent dehydration of “overheated water” (Aquagas RTM ; [Patent Literature 8], [Patent Literature 9], [Patent Literature 10], [Patent Document 11]) High-speed cooking sterilization and vacuum high-speed cooling (cooling and dehydration in an oxygen-free atmosphere) 3) After the dehydration treatment, 3 times (V / W) amount of deaerated (deoxygenated) ethanol is added. Step 4) Repeat extraction for 12 hours in a sealed anoxic atmosphere 4) Repeat the above steps 5) Combine the ethanol, distill off the ethanol in an oxygen-free atmosphere, and centrifuge to remove the aqueous layer (water-soluble) To obtain a total lipid fraction (water-soluble low molecular weight fraction is lyophilized separately)
(2)総脂質画分から、組織特異的構成比を有する複合脂質を抽出分別する工程。
(3)上記工程中から水溶性低分子量画分を分別し、これを複合脂質画分に加えて複合脂質組成物を得る工程。
(4)上記工程中から蛋白質画分を分別し、これに前項の複合脂質組成物を加えて、蛋白質・脂質複合組成物を得る工程。
(5)複合脂質画分に酵素を加えてSN-1結合脂肪酸を加水分解し、混在するジアシルグリセロリン脂質をリゾ体に変換すると共に副生脂肪酸と共に親水系溶媒で抽出分別して、PLsを精製する工程。
(2) A step of extracting and fractionating complex lipids having a tissue-specific composition ratio from the total lipid fraction.
(3) A step of fractionating a water-soluble low molecular weight fraction from the above steps and adding this to the complex lipid fraction to obtain a complex lipid composition.
(4) A step of separating the protein fraction from the above steps and adding the complex lipid composition described in the previous section to obtain a protein / lipid complex composition.
(5) The enzyme is added to the complex lipid fraction to hydrolyze SN-1-linked fatty acid, and the mixed diacylglycerophospholipid is converted into a lyso form and extracted with a hydrophilic solvent together with by-product fatty acid to purify PLs. Process.
 抽出は、有機溶媒(例えば、エタノール、アセトン、ヘキサン等及びこれらから成る群より選択された少なくとも2種以上の混合溶媒等の食品適性を有するもの)あるいは含水有機溶媒による抽出を行うことが好ましい。また、抽出に供される鶏組織は、好適には、上記(1)及び(2)の工程で処理する方法が例示される。即ち、後工程のエタノールによる3相分別において用いるエタノール量をできるだけ少なくするために、生組織から無酸素雰囲気下低温・短時間でできるだけ脱油と脱水を行うことが求められる。 Extraction is preferably performed with an organic solvent (for example, ethanol, acetone, hexane, etc., and at least two kinds of mixed solvents selected from the group consisting of these and other food-compatible materials) or a water-containing organic solvent. Moreover, the chicken tissue to be subjected to extraction is preferably exemplified by a method of treating in the steps (1) and (2) above. That is, in order to minimize the amount of ethanol used in the subsequent three-phase fractionation with ethanol, it is required to perform deoiling and dehydration as much as possible from a living tissue in an oxygen-free atmosphere at low temperature and in a short time.
 抽出処理条件に付いては、肝心なことは、含有PLsの酸化分解と加水分解を最少化するために、密封下無酸素的雰囲気中で低温での短時間撹拌処理することである。好適な一例として、前記した前処理(1)及び(2)で処理済みの産卵成鶏の皮剥ぎ兜ミンチ肉にエタノールを加えて、30℃以上50℃以下で180分以上、静置又は緩慢撹拌を行う方法が例示される。当該胸肉1kgに対して、予め脱気(脱酸素)処理済みのエタノールを2~4Lを加えて、密封下静置又は緩慢撹拌を行う。 As for the extraction treatment conditions, the important thing is to perform a short stirring process at a low temperature in a sealed anoxic atmosphere in order to minimize the oxidative degradation and hydrolysis of the contained PLs. As a suitable example, ethanol is added to the peeled minced meat of the laying hen that has been treated in the above-mentioned pretreatments (1) and (2), and it is allowed to stand still or slowly at 30 ° C. or more and 50 ° C. or less for 180 minutes or more. The method of performing stirring is illustrated. Add 2 to 4 L of ethanol that has been degassed (deoxygenated) in advance to 1 kg of the breast meat, and leave it under sealing or slowly agitate.
 3相に分別された内で、含水エタノール相は、エタノールを蒸発濃縮して、水層を分離した後、予め脱気処理済みヘキサンを加えて、リン脂質画分を抽出する。分離した水層とヘキサン不溶層を合わせて脱気水を加えて、4℃に静置後、低温下で遠心分離して不溶部を除去して、凍結乾燥を行って、低分子水溶性画分18gを得る。他方、ヘキサン溶液を、常法によって蒸発乾固して、複合脂質画分7gが得られる。当該リン脂質画分に、該低分子水溶性画分を加えて、複合脂質組成物25gが得られる。 Among the three phases, the water-containing ethanol phase is obtained by evaporating and concentrating ethanol to separate the aqueous layer, and then adding degassed hexane in advance to extract the phospholipid fraction. Combine the separated water layer and hexane-insoluble layer, add deaerated water, leave at 4 ° C, centrifuge at low temperature to remove insoluble parts, freeze-dry, 18 g is obtained. On the other hand, the hexane solution is evaporated to dryness by a conventional method to obtain 7 g of a complex lipid fraction. The low molecular weight water-soluble fraction is added to the phospholipid fraction to obtain 25 g of a complex lipid composition.
 当該リン脂質画分を酵素加水分解処理工程に供し、ジアシル型リン脂質を加水分解してPLsを好ましく濃縮することができる。このような加水分解処理としては、例えば、ホスホリパーゼA1(以下、「PLA1」と言う。)による酵素処理が挙げられる([特許文献4])。PLA1で処理すれば、混在するジアシル型グリセロリン脂質は、遊離脂肪酸とリゾリン脂質に分解され、これらをアセトン及びヘキサンで抽出分配すれば、プラズマローゲンを精製することができる。遊離脂肪酸及びリゾリン脂質の除去は、例えば、アセトン及びヘキサンを用いた分配によって行うことができる。 The phospholipid fraction can be subjected to an enzymatic hydrolysis treatment step to hydrolyze the diacyl phospholipid, so that PLs can be preferably concentrated. Examples of such hydrolysis treatment include enzyme treatment with phospholipase A1 (hereinafter referred to as “PLA1”) ([Patent Document 4]). If treated with PLA1, the mixed diacyl glycerophospholipid is decomposed into free fatty acid and lysophospholipid, and if these are extracted and distributed with acetone and hexane, the plasmalogen can be purified. Removal of free fatty acids and lysophospholipids can be performed by partitioning with, for example, acetone and hexane.
 PLA1は、上記の効果が得られるものであれば、その由来等は特に制限されないが、例えば、アスペルギュース・オリゼ由来のPLA1が挙げられる。該PLA1は、例えば、三菱化学フーズ(株)等から購入可能である。その使用量は、得られる複合脂質量に応じて適宜に設定することができる。好ましくは、0.2~200unit/複合脂質1mgを使用でき、更に好ましくは、2~200unit/複合脂質1mgを使用できる。なお、1unitは、1分間当たり1μmolの基質(複合脂質)を変化させる量であり、1μmol/minを意味する。 The PLA1 is not particularly limited in its origin as long as the above-described effects can be obtained, and examples thereof include PLA1 derived from Aspergus oryzae. The PLA1 can be purchased from, for example, Mitsubishi Chemical Foods Corporation. The amount used can be appropriately set according to the amount of complex lipid obtained. Preferably, 0.2 to 200 units / mg of complex lipid can be used, and more preferably, 2 to 200 units / mg of complex lipid can be used. In addition, 1 unit is an amount that changes 1 μmol of substrate (complex lipid) per minute, and means 1 μmol / min.
 用いるバッファーも、PLA1に応じて適宜に選択できる。例えば、0.1Mクエン酸-塩酸バッファー(pH4.5)を、複合脂質1g当たり1~30ml、好ましくは5~15mlに複合脂質1gを溶解させ、所定量のPLA1を加えて、用いることができる。反応条件は、脱気済みのバッファーを用いて窒素ガス雰囲気中で、できるだけ短時間、好ましくは1時間、温度もできるだけ低温下、好ましくは50℃を上限として、撹拌して酵素反応を行う。 The buffer to be used can also be appropriately selected according to PLA1. For example, 0.1 M citrate-hydrochloric acid buffer (pH 4.5) can be used by dissolving 1 g of complex lipid in 1 to 30 ml, preferably 5 to 15 ml per 1 g of complex lipid, and adding a predetermined amount of PLA1. . The reaction is carried out in a nitrogen gas atmosphere using a degassed buffer for as short a time as possible, preferably for 1 hour, and at a temperature as low as possible, preferably at 50 ° C. with stirring as an enzyme reaction.
 加温による酵素失活処理は避けて、反応終了後、直ちに室温まで冷却後、予め脱気処理済みのヘキサンを反応液の2~3倍量を加えて遠心処理して上層のヘキサン層を回収することで、酵素バッファーと酵素蛋白質を除去する。該ヘキサン溶液をアセトン及び水を適宜に加えて分配を行い、更に、水又は水溶液により溶液分配することで、リゾリン脂質を除去してプラズマローゲンを精製する。即ち、アセトンによりリン脂質以外の中性脂質を除去し、水系溶液分配によりプラズマローゲンとリゾリン脂質を分離する。この様にして得られた生体組織由来のプラズマローゲンは、好ましくは、本発明の認知機能障害の緩和及び予防用のサプリメント、抗中枢神経系炎症性製剤、神経細胞新生性製剤、神経細胞のアポトーシス抑制性製剤及び/又はAβ脳内蓄積抑制性製剤の有効成分として用いることができる。 Avoid enzyme deactivation by warming. After the reaction is complete, immediately cool to room temperature, add 2 to 3 times the amount of hexane that has been degassed beforehand, and centrifuge to recover the upper hexane layer. To remove the enzyme buffer and the enzyme protein. The hexane solution is distributed by appropriately adding acetone and water, and further, the solution is distributed by water or an aqueous solution to remove lysophospholipid and purify the plasmalogen. That is, neutral lipids other than phospholipids are removed with acetone, and plasmalogen and lysophospholipid are separated by aqueous solution partition. The plasmalogen derived from a biological tissue thus obtained is preferably a supplement for alleviating and preventing cognitive dysfunction according to the present invention, an anti-central nervous system inflammatory preparation, a neuronal neoplastic preparation, and neuronal apoptosis. It can be used as an active ingredient of an inhibitory preparation and / or an Aβ brain accumulation inhibitory preparation.
 生体組織由来の複合脂質(複合脂質組成物を含む)及びPLsのリン脂質とその組成比には、生体組織による特有の特性が存在する。以下に、産卵成鶏の場合の組成比について説明する。 The complex lipids derived from biological tissues (including complex lipid compositions) and the phospholipids of PLs and their composition ratios have unique characteristics depending on the biological tissues. Below, the composition ratio in the case of a laying hen is demonstrated.
1.皮
(1)PLs;[エタノールアミン型]:[コリン型]=[1~10]:1
(2)ジアシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:[1.5~15]
(3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:[0.5~5]
(4)[総グリセロリン脂質]:[総スフィンゴミエリン]=[1.5~10]:1
1. Skin (1) PLs; [Ethanolamine type]: [Choline type] = [1-10]: 1
(2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: [1.5 to 15]
(3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: [0.5 to 5]
(4) [Total glycerophospholipid]: [Total sphingomyelin] = [1.5-10]: 1
2.兜屠体(皮剥ぎ)
(1)PLs;[エタノールアミン型]:[コリン型]=[0.5~5]:1
(2)ジアシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:[2~15]
(3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:[0.5~5]
(4)[総グリセロリン脂質]:[総スフィンゴミエリン]=[3~20]:1
2.兜 carcass (peeling)
(1) PLs; [ethanolamine type]: [choline type] = [0.5 to 5]: 1
(2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: [2-15]
(3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: [0.5 to 5]
(4) [Total glycerophospholipid]: [Total sphingomyelin] = [3-20]: 1
3.卵黄
(1)PLsン;[エタノールアミン型]:[コリン型]=1:[0.1~1.5]
(2)ジアシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:[2~20]
(3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:[10~50]
(4)[総グリセロリン脂質]:[総スフィンゴミエリン]=[40~350]:1
3. Egg yolk (1) PLs; [ethanolamine type]: [choline type] = 1: [0.1 to 1.5]
(2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: [2 to 20]
(3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: [10-50]
(4) [Total glycerophospholipid]: [Total sphingomyelin] = [40-350]: 1
4.砂肝
(1)PLs;[エタノールアミン型]:[コリン型]=[2~15]:1
(2)ジアシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:[1~10]
(3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:[0.5~6]
(4)[総グリセロリン脂質]:[総スフィンゴミエリン]=[1~10]:1
4). Gizzard (1) PLs; [Ethanolamine type]: [Choline type] = [2-15]: 1
(2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: [1 to 10]
(3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: [0.5-6]
(4) [Total glycerophospholipid]: [Total sphingomyelin] = [1-10]: 1
5.腸
(1)PLs;[エタノールアミン型]:[コリン型]=[2~15]:1
(2)ジアシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:[2~20]
(3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:[1~12]
(4)[総グリセロリン脂質]:[総スフィンゴミエリン]=[1~10]:1
5). Intestine (1) PLs; [ethanolamine type]: [choline type] = [2-15]: 1
(2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: [2 to 20]
(3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: [1-12]
(4) [Total glycerophospholipid]: [Total sphingomyelin] = [1-10]: 1
6.ガラ
(1)PLs;[エタノールアミン型]:[コリン型]=[1~10]:1
(2)ジアシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:[2~20]
(3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:[1~10]
(4)[総グリセロリン脂質]:[総スフィンゴミエリン]=[3~25]:1
6). Gala (1) PLs; [ethanolamine type]: [choline type] = [1 to 10]: 1
(2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: [2 to 20]
(3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: [1-10]
(4) [Total glycerophospholipid]: [Total sphingomyelin] = [3-25]: 1
7.金冠(含、卵巣)
(1)PLs;[エタノールアミン型]:[コリン型]=1:[0.0001~0.1]
(2)ジアシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:[1.5~15]
(3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:[15~130]
(4)[総グリセロリン脂質]:[総スフィンゴミエリン]=[20~200]:1
7). Gold crown (including ovary)
(1) PLs; [ethanolamine type]: [choline type] = 1: [0.0001 to 0.1]
(2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: [1.5 to 15]
(3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: [15 to 130]
(4) [Total glycerophospholipid]: [Total sphingomyelin] = [20-200]: 1
8.骨髄
(1)PLs;[エタノールアミン型]:[コリン型]=1:[0.0001~0.1]
(2)ジアシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:[1~10]
(3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:[0.5~6]
(4)[総グリセロリン脂質]:[総スフィンゴミエリン]=[30~3]:1
9.胸肉
(1)PLs;[エタノールアミン型]:[コリン型]=1:[0.5~5]
(2)ジアシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:[2~10]
(3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:[0.5~5]
(4)[総グリセロリン脂質]:[総スフィンゴミエリン]=[5~50]:1
8). Bone marrow (1) PLs; [ethanolamine type]: [choline type] = 1: [0.0001-0.1]
(2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: [1 to 10]
(3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: [0.5-6]
(4) [Total glycerophospholipid]: [Total sphingomyelin] = [30-3]: 1
9. Breast (1) PLs; [ethanolamine type]: [choline type] = 1: [0.5 to 5]
(2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: [2 to 10]
(3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: [0.5 to 5]
(4) [Total glycerophospholipid]: [Total sphingomyelin] = [5-50]: 1
 特異性が高いのが、以下の1)~4)である。
1)胸肉([PL-PE]<[PL-PC])で[心筋]様
2)金冠([PL-PE]>>>[PL-PC])で[PL-PC]が略ゼロ
3)生ガラ(発生率が高く、価格も産廃扱いでゼロ以下且つ組成が[胸肉]に近く、更に骨髄(脳の末梢組織を内在している)を含んでいることから、潜在的付加価値(脳機能改善機能)が期待され、統合的価格対性能比が顕著に高いと考えられる。
4)兜屠体([胸肉]+[骨髄])で、統合的な[価格対性能比]が高い[胸肉]相当と考えられる。
The following 1) to 4) have high specificity.
1) Breast ([PL-PE] <[PL-PC]) with [myocardium] 2) Gold crown ([PL-PE] >>>> [PL-PC]) with [PL-PC] almost zero 3 ) Raw Gala (High incidence, low price, zero or less, composition close to [breast], and also contains bone marrow (internal peripheral tissue of the brain), potential added value (Brain function improvement function) is expected, and the integrated price-to-performance ratio is considered to be remarkably high.
4) The carcass carcass ([breast] + [bone marrow]) is considered to be equivalent to [breast] with a high integrated [price to performance ratio].
 本発明に用いる生体組織から抽出した複合脂質及びPLsは、乾燥質量換算で、エタノールアミンPLs及びコリンPLsの含有量が、以下の1)~2)の通りである。
1)複合脂質では、上限が50質量%であって、10質量%以上のものが好ましく、20質量%以上のものがより好ましく、30質量%のもの以上が更に好ましく、40質量%以上のものがなお好ましい。
2)PLsでは、50質量%以上のもが好ましく、60質量%以上のもがより好ましく、70質量%以上のもが更に好ましく、80質量%以上のもがより更に好ましく、90質量%以上のもがなお好ましく、92質量%以上のもが特に好ましい。
The complex lipids and PLs extracted from the living tissue used in the present invention have the following ethanol content PLs and choline PLs content as 1) to 2) in terms of dry mass.
1) The upper limit of the complex lipid is 50% by mass, preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, and 40% by mass or more. Is still preferred.
2) In PLs, 50% by mass or more is preferable, 60% by mass or more is more preferable, 70% by mass or more is more preferable, 80% by mass or more is further more preferable, and 90% by mass or more. Even more preferred is that of 92% by weight or more.
 エタノールアミンPLs及びコリンPLsの質量比並びに含有量は、生体組織から抽出した複合脂質又はプラズマローゲンを高速液体クロマトグラフィー(HPLC)で解析して求めることができる。具体的には、HPLCにおいて、蒸発光散乱検出(ELSD;Evaporating Light Scattering Detector)によりクロマトグラムを得、当該クロマトグラムにおけるエタノールアミンPLs及びコリンPLsを示すそれぞれのピーク面積比を求めることで、質量比を算出できる。また、エタノールアミンPLs及びコリンPLsを示すピーク面積がクロマトグラム全体のピーク面積の何%に当たるかを算出すれば含有量を求めることができる。 The mass ratio and content of ethanolamine PLs and choline PLs can be determined by analyzing complex lipids or plasmalogens extracted from biological tissues by high performance liquid chromatography (HPLC). Specifically, in HPLC, a chromatogram is obtained by evaporative light scattering detection (ELSD; Evaporating Light Scattering Detector), and a mass ratio is obtained by determining respective peak area ratios indicating ethanolamine PLs and choline PLs in the chromatogram. Can be calculated. Further, the content can be obtained by calculating what percentage of the peak area of the entire chromatogram the peak areas showing ethanolamine PLs and choline PLs correspond to.
 本発明においては、用いる鶏の生体を合目的に改質することが重要である。即ち、本発明では、鶏をω-3HUFA誘導体含有飼料で飼養することによって、その組織や臓器及び部位等の脂質、就中、PLsに選択性高くω-3HUFAを移行させ、依って、PLsのSN-2結合脂肪酸と移行ω-3HUFAとをエステル交換させて(非特許文献26)、ω-3HUFA結合型PLs含有複合脂質及びPLsを生成させる。ω-3HUFA結合型のPLsについては、認知機能障害との関係があることを示唆する事例があり、以下にそのことを例示する。 In the present invention, it is important to modify the living body of the chicken used for the purpose. That is, in the present invention, by feeding a chicken with a ω-3HUFA derivative-containing feed, ω-3HUFA is transferred with high selectivity to lipids, particularly PLs, of tissues, organs and parts thereof. Transesterification of SN-2 conjugated fatty acid and transition ω-3HUFA (Non-patent Document 26) produces ω-3HUFA-conjugated PLs-containing complex lipids and PLs. Examples of ω-3HUFA-binding PLs suggest a relationship with cognitive dysfunction, which is exemplified below.
1.脳内DHA量とPLs量との相関関係
 脳内のDHAは、グリセロリン脂質、就中、PLs結合型として存在し(非特許文献26)、PLs産生小胞体であるペルオキシソームのPLsの生合成系の制限酵素fatty
acyl-CoA reductase1(Far1)(非特許文献27)の発現亢進に関与していることが知られている(非特許文献10)。
2.脳内DHA及びPLs濃度の減少と、神経変性疾患及び精神疾患の発症との相関関係(非特許文献10)。
1. Correlation between the amount of DHA in the brain and the amount of PLs DHA in the brain exists as a glycerophospholipid, especially as a PLs-binding type (Non-patent Document 26), and is a biosynthesis system of peroxisomal PLs that are PLs-producing endoplasmic reticulum. Restriction enzyme fatty
It is known to be involved in increased expression of acyl-CoA reductase1 (Far1) (Non-patent Document 27) (Non-patent Document 10).
2. Correlation between the decrease in brain DHA and PLs concentrations and the onset of neurodegenerative diseases and psychiatric disorders (Non-Patent Document 10).
1)脳内に[H]DHAを添加すると、DHAは大部分脳内の膜間に存在するPLsのSN-2に結合する。
2)該結合DHAは、PLs産生系をブロックしたセルラインでは大幅に減少する。
3)前記培養系にsir1-hexadecylglycerolを添加すると、PLs結合DHA量とPLsの産生量が回復する。
1) When [ 3 H] DHA is added into the brain, DHA binds to the SNs of PLs existing mostly between the membranes in the brain.
2) The bound DHA is greatly reduced in cell lines that block the PLs production system.
3) When sir1-hexadecylyglycol is added to the culture system, the amount of PLs-bound DHA and the amount of PLs produced are restored.
4)脳内DHA含量の低下と脳内PLs産生量の減少は、下記1)~7)の神経変性疾患及び精神疾患の発症に関係がある。
(1)ペルオキシソーム失調症
(2)AD
(3)鬱病
(4)ADHD(注意欠陥性多動性障害症)
(5)脳卒中
(6)活動亢進症
(7)精神分裂症
4) The decrease in brain DHA content and the decrease in brain PLs production are related to the onset of neurodegenerative diseases and psychiatric disorders 1) to 7) below.
(1) Peroxisome ataxia (2) AD
(3) Depression (4) ADHD (Attention Deficit Hyperactivity Disorder)
(5) Stroke (6) Hyperactivity (7) Schizophrenia
5)DHA強化食品の摂取は、上記の1)~7)に特有な行動異常や学習能力の低下、並びに精神状態の悪化に関わる情報伝達性を改善する可能性に関係することが示唆されている。
 更に、DHAは、その構造から酸化分解を受け易く、酸敗して悪臭を発するのが通例であるが、これを乳化(ナノ乳化)するだけで簡便に解決できることは意外に知られていない。以下に、これを例示的に説明する。
5) It has been suggested that the intake of DHA-enhanced foods is related to the possibility of improving information transmission related to behavioral abnormalities and decreased learning ability, as well as deterioration of mental status, which are characteristic of 1) to 7) above. Yes.
Furthermore, DHA is susceptible to oxidative decomposition due to its structure, and it is common to oxidize and give off malodor, but it is not surprisingly known that it can be simply solved by emulsifying (nano-emulsifying) it. Hereinafter, this will be described by way of example.
(1)高度不飽和脂肪酸(HUFA)及びそのエステル(含、グリセライド)を水溶液中に分散(乳化)させると、空気中に放置した場合とは全く逆に、不飽和度の高いもの程酸化されにくくなる。水中分散系では、DHAやEPAの酸化分解性が極めて低くなる([非特許文献1])。その理由は、乳化DHA等の立体構造が、酸化活性種の接近に対して障壁になって、謂わば“立体障害”効果で酸化ターゲット箇所(ビスアリル結合炭素原子)への活性種の衝突をブロックして酸化反応を阻止していると考えられる。その際に、水分子の存在が重要で、酸化ターゲット箇所近傍を覆う(カバーする)格好で間接的に保護していると考えられる。 (1) When a highly unsaturated fatty acid (HUFA) and its ester (including glyceride) are dispersed (emulsified) in an aqueous solution, the higher the degree of unsaturation, the more the one that is left in the air is oxidized. It becomes difficult. In an underwater dispersion system, the oxidative decomposability of DHA and EPA is extremely low ([Non-Patent Document 1]). The reason is that the three-dimensional structure such as emulsified DHA becomes a barrier against the approach of the oxidized active species, and the so-called “steric hindrance” effect blocks the collision of the active species with the oxidized target site (bisallyl-bonded carbon atom). It is thought that this prevents the oxidation reaction. At that time, the presence of water molecules is important, and it is considered that the water molecules are indirectly protected by covering (covering) the vicinity of the oxidation target portion.
(2)該乳化系のO/Wエマルジョンにおいて、そのミセル粒径が細かいほどDHA等のPUFAの酸化安定性が向上し、通常のミクロ乳化よりナノ乳化(可溶化)が好適である。なお、乳化は、大きな負荷が掛かる可能性のある、例えば、高圧ホモゲナイザー等の使用は避けて、簡便で緩慢な撹拌が好ましい。高負荷乳化は、PUFAの酸化安定性を損なう。
(3)細胞培養系にリノール酸(LA)、アラキドン酸(AA)、DHAを取り込ませて酸化処理を行った処、LAとAA添加系では過酸化物生成量が増大したが、DHAでは該増大は認められなかった。
(2) In the emulsified O / W emulsion, the smaller the micelle particle size, the better the oxidation stability of PUFA such as DHA, and nanoemulsification (solubilization) is more preferable than ordinary microemulsification. It should be noted that the emulsification may be a heavy load, for example, avoiding the use of a high-pressure homogenizer or the like, and simple and slow stirring is preferable. High load emulsification impairs the oxidation stability of PUFA.
(3) In the cell culture system, linoleic acid (LA), arachidonic acid (AA) and DHA were incorporated and oxidized, and in LA and AA addition systems, the amount of peroxide produced increased. There was no increase.
(4)LA-PC(フォスファチジルコリン)とAA-PC及びDHA-PCを培養細胞系に加えて、酸化処理したところ、上記と同様にDHA特異的に過酸化物生成量が、然もコントロールよりも少ない結果となった。以上の様に、DHAの培養細胞中での特徴的な酸化安定性は、空気中あるいは溶媒系とは全く異なるものであり、DHAは、従来考えられているほど生体内では酸化に対して不安定でないことを示している。
(5)ラットに魚油を投与した場合、魚油の投与量が極端に多くない限り、生体内の脂質過酸化レベルに変化が認められない。
(6)これにより、適切な量の魚油を摂取する限り、生体内の脂質過酸化の亢進とこれに伴う悪影響が殆どないことが示唆される。
(4) When LA-PC (phosphatidylcholine), AA-PC and DHA-PC were added to the cultured cell system and oxidized, the amount of peroxide generated specifically in DHA was similar to the above. Results were less than control. As described above, the characteristic oxidative stability of DHA in cultured cells is completely different from that in air or solvent systems. DHA is less susceptible to oxidation in vivo than previously considered. It is not stable.
(5) When fish oil is administered to rats, no change is observed in the lipid peroxidation level in the living body unless the fish oil dose is extremely large.
(6) This suggests that as long as an appropriate amount of fish oil is ingested, there is almost no increase in lipid peroxidation in the living body and any adverse effects associated therewith.
(7)以上から、PLsのSN-2に、合理的にDHAを結合させることに依って、下記の1)~2)のPLs分子内における直接的な安定化効果の発現が期待される。
1)生体外において、PLsのビニルエーテル結合に対する隣接結合DHAの立体障害が、酸化活性物質の攻撃を効率的にブロックするとともに、DHA結合分子、即ち、PLs自体も、結合DHAに特有なその乳化型特異的分子構造を介して、酸化安定性を獲得できると考えられる。
2)生体内(株化細胞培養系)、特に、脳内(細胞内)において、DHAは、リン脂質と、就中、エタノールアミン型PLsに結合して、PLs生合成小胞体「ペルオキシソーム」の膜内に局在化して、生合成の鍵酵素(制限酵素)の発現を亢進させてPLs産生を促進させていると考えられる。
(7) From the above, by directly binding DHA to SN-2 of PLs, it is expected that the following 1) to 2) of the direct stabilizing effect in the PLs molecule is expressed.
1) In vitro, the steric hindrance of the adjacent bond DHA to the vinyl ether bond of PLs effectively blocks the attack of the oxidatively active substance, and the DHA-binding molecule, ie, PLs itself, is also an emulsified form unique to the bonded DHA. It is thought that oxidative stability can be obtained through a specific molecular structure.
2) In vivo (established cell culture system), especially in the brain (intracellular), DHA binds to phospholipids and, in particular, ethanolamine-type PLs, and PLs biosynthetic endoplasmic reticulum "peroxisome" It is considered that localization in the membrane promotes the production of PLs by enhancing the expression of key biosynthetic enzymes (restriction enzymes).
 以上に加えて、以下にPLsと脳機能障害との相関を纏めて例示する。
1.ADとの相関
1)AD患者の脳内PLs含有量は有意に減少する(非特許文献11、非特許文献12)。
2)AD患者の血清PLs含有量は有意に減少している(非特許文献13)。
3)AD患者の赤血球PLs含有量は有意に減少する(非特許文献14)。
4)中枢神経系炎症モデルマウス(LPS腹腔注射で炎症惹起の認知機能障害)では脳内PLsが減少する(非特許文献8)。
In addition to the above, the correlation between PLs and brain dysfunction will be exemplified below.
1. Correlation with AD 1) The PLs content in the brain of AD patients is significantly reduced (Non-patent Documents 11 and 12).
2) Serum PLs content of AD patients is significantly reduced (Non-patent Document 13).
3) The erythrocyte PLs content of AD patients is significantly reduced (Non-patent Document 14).
4) In the central nervous system inflammation model mouse (LPS intraperitoneal injection causes inflammation-induced cognitive impairment), PLs in the brain decrease (Non-patent Document 8).
2.PLsの生体内動態
1)経口投与ラットの血中プラズマローゲンは増加する(非特許文献15)。
2)LPS誘発中枢神経系炎症モデルマウスの脳内PLs含量は増加する(非特許文献8)。
3)PLs経口投与AD患者の血中エタノールアミンPLsは増加する(非特許文献16)。
2. In vivo kinetics of PLs 1) Plasma plasmalogens in orally administered rats increase (Non-patent Document 15).
2) The PLs content in the brain of LPS-induced central nervous system inflammation model mice increases (Non-patent Document 8).
3) Blood ethanolamine PLs in AD patients with oral administration of PLs increases (Non-patent Document 16).
3.認知機能障害の予防と緩和及び治療効果
1)老化モデルラット(SAMP8)の神経新生を促進させる(特許文献7)。
2)Aβ両側注入ラットの空間認知学習機能障害を抑制する(非特許文献16)。
3)LPS誘発の中枢神経系炎症マウスの症状を緩和させる(非特許文献8)。
(1)ミクログリアの活性化を抑制。
(2)脳内サイトカイン、TNFα-mRNAの増加と脳内IL-2βの発現抑制。
(3)Aβの蓄積抑制。
3. Prevention, alleviation and therapeutic effects of cognitive dysfunction 1) Promote neurogenesis in aging model rats (SAMP8) (Patent Document 7).
2) A beta suppresses spatial perception learning dysfunctions bilateral injection rats (Non-Patent Document 16).
3) Relieve symptoms of LPS-induced central nervous system inflammation mice (Non-patent Document 8).
(1) Suppression of microglia activation.
(2) Increase in brain cytokine, TNFα-mRNA and suppression of brain IL-2β expression.
(3) A beta accumulation suppression.
4)LPS(腹腔内注射)誘発の中枢神経系炎症マウスの中枢神経系炎症とAβ蓄積の抑制(非特許文献8).
(1)グリア細胞の活性化抑制。
(2)前頭前野及び海馬へのAβ蓄積を抑制。
 LPSを腹腔内注射して誘発される炎症によるPLsの減少を抑制する(非特許文献8)。
4) Inhibition of central nervous system inflammation and accumulation in mice with central nervous system inflammation induced by LPS (intraperitoneal injection) (Non-patent Document 8).
(1) Inhibition of glial cell activation.
(2) Suppression of accumulation in the prefrontal cortex and hippocampus.
It suppresses the decrease in PLs due to inflammation induced by intraperitoneal injection of LPS (Non-patent Document 8).
5)神経細胞死のin vitro抑制(非特許文献9)。
6)その他の関連
(1)認知機能障害発症危険因子の高血糖及び高脂血の抑制(非特許文献18)。
(2)カルノシン食による認知機能低下の抑制(非特許文献19)。
 以上のPLs効能において、上述したDHA結合型PLsにおいても、その分子内の直接的安定化と認知機能障害の改善・是正に対する相乗効果が相俟って、抗認知機能障害効能が顕著に増大するものと考えられる。
5) In vitro suppression of neuronal cell death (Non-patent Document 9).
6) Other relations (1) Suppression of hyperglycemia and hyperlipidemia, which are risk factors for developing cognitive impairment (Non-patent Document 18).
(2) Suppression of cognitive decline due to carnosine diet (Non-patent Document 19).
In the above-described PLs efficacy, the above-mentioned DHA-bound PLs also has a markedly increased anti-cognitive dysfunction efficacy due to the combination of direct stabilization within the molecule and the synergistic effect on improvement / correction of cognitive dysfunction. It is considered a thing.
 鶏を、ω-3HUFA誘導体含有飼料で飼養して、その生体組織に効率的にω-3HUFAを移行させる方法について、以下に例示する。
1.生物種の選択
 鶏、特に、産卵鶏が好ましく、種鶏雌雄の廃鶏が更に好ましく、“強制換羽”産卵鶏を含む産卵廃鶏が特に好ましい。その根拠を以下に例示する。
1)動物で唯一“恐竜特異的呼吸系「気嚢式」”を受け継いでいるのが鳥類であり、動物と対比して、下記の顕著な特異性を有している。
(1)酸素の吸入量が2倍(吸気と排気が別系統のため)。
(2)上記によって、エネルギー関係代謝速度が2倍。
(3)上記により、可食部1kg製造に必要な飼料が、ブロイラーで4.5kg、一方家畜の豚の9.1kgと肉牛の25.0kgに比べ大幅に 効率が高く、食用動物でこれを凌ぐのが、汎用性に欠けるがコオロギの2.1kgだけとされている(FAO 2013公表)。
An example of a method in which chickens are fed with a ω-3HUFA derivative-containing feed and ω-3HUFA is efficiently transferred to the living tissue is shown below.
1. Selection of biological species Chickens, particularly laying hens are preferred, male and female laying hens are more preferred, and laying laid hens including “forced molting” laying hens are particularly preferred. The basis for this is illustrated below.
1) Birds are the only animals that have inherited the “dinosaur-specific respiratory system“ air sac type ””, and have the following remarkable specificity compared to animals.
(1) Oxygen intake is doubled (since intake and exhaust are separate systems).
(2) Due to the above, the energy-related metabolic rate is doubled.
(3) Based on the above, the feed required to produce 1 kg of edible portion is 4.5 kg for broilers, while 9.1 kg for domestic pigs and 25.0 kg for beef cattle are significantly more efficient. It is said that only 2.1 kg of crickets is surpassed, although it lacks versatility (FAO 2013 publication).
2)下記の要因で調達性(統合的価格対性能比)が顕著に優れている。
(1)養鶏はグローバル産業で、品質が均一で価格も安価定着で集約度が高い;
* ブロイラーは垂直統合型産業
* 産卵成鶏(700日齢程度)の廃鶏(年間7割程度が間引かれる;750日齢程度)は専用の屠殺解体場「半官半民の廃鶏処理センター(全国に30箇所見当が点在し、平均処理能力は年間3百万羽程度で1千万羽超もある)」は、高鮮度で安価且つ国産・安全が特長
* 卵価安定化国策の落とし子(日本特有)
(2)世界の年間累計飼育羽数が200億羽;中国で著増中
(3)グローバルに共通数品種で対応;ブロイラー(精肉)と産卵鶏(鶏卵)
(4)現在も伸長中
(5)鮮度が良く、廃鶏でも活状態で屠殺
(6)家畜では特異的に生育が早い;ブロイラーで50日、産卵鶏は年間を通じ毎日1個に近い卵を産む
2) Procurability (integrated price to performance ratio) is remarkably superior due to the following factors.
(1) Poultry farming is a global industry with high quality, uniform quality, low price and high concentration;
* Broiler is a vertically integrated industry * Abandoned laying hens (about 700 days old) (about 70% thinned annually; about 750 days old) is a dedicated slaughter and demolition site The center (with 30 locations all over the country, with an average processing capacity of around 3 million a year and over 10 million) is characterized by high freshness, low cost, domestic production and safety. * National policy for egg price stabilization No-tachiko (Japan-specific)
(2) Cumulative total annual number of wings in the world: 20 billion; growing in China (3) Globally compatible with several varieties; broilers and laying hens (chicken eggs)
(4) Currently growing (5) Good freshness, slaughtered even in abandoned chickens in an active state (6) Livestock grows specifically fast; Broiler 50 days, laying hens produce nearly 1 egg daily throughout the year Lay
(7)“強制換羽”は、産卵効率が落ちた産卵成鶏を再生させる人工的手段で、700日齢程度の老鶏を10日間程度絶食させ、結果的に羽毛(羽)が落ちて裸状態になってから、再度飼育する養鶏スタイル。動物虐待と紙一重であるが、卵価低迷や販売数量伸び悩み時の応急措置として黙認されている。生体機能性再生の特異的個体として、例えば、DHAを含むω-3HUFA誘導体移行用鶏として、興味深い。この種の措置を大規模に実現できるのも家禽の特異性の一つでもある。
(8)産卵鶏由来の卵黄には、その前駆体の金冠特異的にそのPLs組成率がPL-PC>>PL-PE(実質的にはゼロ)であるが、通常飼育産卵鶏の卵黄中に、PLsが含まれて居ないという極めて不可思議な現象がある。
 処が、今般のDHAを含むω-3HUFA誘導体移行飼育の結果、該産卵鶏の卵黄中には、驚くべきことに、以下の*が明らかとなった。
*PLsが検出された
*その大部分がDHA-PLsであった
*然も、前駆体の金冠とは真逆に、組成率がPL-PE>>PL-PCであった
 該結果は、後述の様に、DHAが生体内PLs新生小胞体「ペルオキシソーム」の生合成経路の律速酵素Far1の発現を亢進させる結果、卵黄中にPLsが産生したものと考えられる。更に、該PLsが特異的に卵黄中のDHAを補足してDHA-PLsを発生させたものと解釈される。
(7) “Forced molting” is an artificial means of regenerating laying hens whose egg-laying efficiency has dropped, and fasting old hens about 700 days old for about 10 days. A poultry farming style in which the animals are bred again after being in condition. Although it is a single piece of paper with animal cruelty, it is acquiesced as an emergency measure when egg prices are sluggish or sales volume is sluggish. It is interesting as a specific individual for biofunctional regeneration, for example, as a chicken for transferring ω-3HUFA derivative containing DHA. One of the peculiarities of poultry is that this type of measure can be realized on a large scale.
(8) The egg yolk derived from the laying hen has a PLs composition ratio of PL-PC >> PL-PE (substantially zero) specifically in the gold crown of its precursor. There is a very mysterious phenomenon that PLs are not included.
However, as a result of the transfer breeding of the ω-3HUFA derivative containing DHA, the following * was surprisingly found in the egg yolk of the laying hen.
* PLs were detected * Most of them were DHA-PLs * However, the composition ratio was PL-PE >> PL-PC, as opposed to the gold crown of the precursor. Thus, it is considered that DHA produced PLs in the yolk as a result of enhancing the expression of the rate-limiting enzyme Far1 in the biosynthetic pathway of the PLs neoplasmic reticulum “peroxisome” in vivo. Furthermore, it is interpreted that the PLs specifically supplemented DHA in egg yolk to generate DHA-PLs.
2.PLsの抽出用に好適な組織等の選定
 下記が例示される。
1)産卵鶏の卵黄(冷凍)
2)生ガラ(ミンチ凍結)
3)兜(ミンチ冷凍)
4)砂肝(ミンチ凍結)
5)腸(ミンチ凍結)
6)皮(ミンチ凍結)
7)金冠(冷凍)
8)胸肉(ミンチ凍結)
2. Selection of suitable tissue for extraction of PLs The following is exemplified.
1) Egg yolk of laying hen (frozen)
2) Raw glass (freeze mince)
3) Salmon (Frozen mince)
4) Gizzard (freeze mince)
5) Intestine (freezing mince)
6) Skin (freezing mince)
7) Gold crown (frozen)
8) Breast (freeze mince)
3.供試するω-3HUFA誘導体の選定
 魚介類由来のミール、イワシ・サバ・さんま・マグロ・カツオ・ホタテ・ホヤ・オキアミ等及びそれらの2種以上の組み合わせ、同左の魚介類由来のミール副生油脂、魚介類の生殖組織由来のミール、同左の副生オイル、微生物の発酵培地由来、等が例示される。
4.ω-3HUFA含有飼料と飼養条件
 下記が例示される。
1)鶏種
 ジュリア種、及び/又はボリスブラウン種
2)飼料
 コーン62%、ω-3HUFA含有飼料15%見当、植物油脂15%、動物基本飼料6%及びその他穀類2%見当
3)飼養条件
(1)飼養期間は1~5週間、好適には1~3週間
(2)鶏は40週齢見当
(3)飼養場所は九州の養鶏場
(4)飼育羽数は50羽程度で適宜に
4)屠殺解体分別一次処理保管
 九州の廃鶏処理センター
3. Selection of ω-3HUFA derivatives to be tested Meat derived from seafood, sardines, mackerel, sanma, tuna, bonito, scallops, squirts, krill, etc., and combinations of two or more of these, leftover seafood-derived meal by-products Examples include meals derived from reproductive tissues of seafood, by-product oil on the left, derived from fermentation medium of microorganisms, and the like.
4). ω-3HUFA-containing feed and feeding conditions The following are exemplified.
1) Chicken species Julia species and / or Boris Brown species 2) Feed Corn 62%, ω-3HUFA-containing feed 15% register, vegetable oil 15%, basic animal feed 6% and other grains 2% register 3) Feeding conditions ( 1) Feeding period is 1 to 5 weeks, preferably 1 to 3 weeks (2) Chickens are 40 weeks old (3) Feeding place is Kyushu poultry farm (4) The number of breeding birds is about 50 and 4 ) Slaughter and dismantlement primary processing storage Kyushu waste chicken processing center
 生体組織由来の複合脂質とその組成物及びPLsを基質とするナノ乳化の詳細は、以下に示される。
1.基本処方
 好適な処方を以下に例示する。
 上記複合脂質を、サポニン類の存在下で、ナノ乳化することにより、水性相に複合脂質又はPLsが可溶化されていることを特徴とする複合脂質又はPLs含有水性製剤が得られる。([特許文献12])
 その際に、サポニン、好ましくは、キラヤサポニンを必須成分として、脂肪酸モノグリセライド、炭素原子数が6~12の脂肪酸である脂肪酸モノグリセライド、ポリグリセロール脂肪酸エステル、ポリヒドロキシ化合物、水あめ等から選択される1種以上の補助成分を適宜に使用する。
Details of nanoemulsification using a complex lipid derived from a living tissue and its composition and PLs as a substrate are shown below.
1. Basic Formula A suitable formulation is illustrated below.
By nanoemulsifying the complex lipid in the presence of saponins, a complex lipid or PLs-containing aqueous preparation characterized in that the complex lipid or PLs is solubilized in the aqueous phase is obtained. ([Patent Document 12])
In that case, one kind selected from saponin, preferably Quillaja saponin as an essential component, fatty acid monoglyceride, fatty acid monoglyceride having 6 to 12 carbon atoms, polyglycerol fatty acid ester, polyhydroxy compound, syrup, etc. The above auxiliary components are used as appropriate.
2.ナノ乳化工程
 上記複合脂質を、予め脱気した、キラヤサポニン含有水溶液中にマグネチックスターラーで撹拌しながら窒素ガス雰囲気下で添加し、濁りがなくなるまで撹拌すると、透明性のある可溶化溶液が得られる。
3.ナノ乳化液の性状
 上記調製液を10,100,1000倍に希釈して、透明性を目視確認する。
4.安定性試験([特許文献12])
 上記調製液を、例えば、500倍に希釈した透明性のある水溶液に、クエン酸を用いてpH4にして、変化の有無を目視確認し、これを95℃で30分間加熱後に室温に戻して、変化の有無を目視で確認する。更に、該加熱液を蒸発乾固後、常法でヘキサン抽出液を得て、未加熱可溶化液を対照にして、HPLC/ELSDチャートでピーク面積比較解析を行って、残存プラズマローゲンを検定する。
2. Nano-emulsification step Add the above complex lipid into a degassed aqueous Quillaja saponin solution while stirring with a magnetic stirrer under a nitrogen gas atmosphere and stir until it is no longer cloudy to obtain a transparent solubilized solution. It is done.
3. Properties of nanoemulsified solution The prepared solution is diluted 10,100,1000 times, and the transparency is visually confirmed.
4). Stability test ([Patent Document 12])
For example, the prepared solution is diluted to 500 times with a transparent aqueous solution, adjusted to pH 4 using citric acid, visually checked for change, and heated at 95 ° C. for 30 minutes, and then returned to room temperature. Visually check for changes. Furthermore, after evaporating the heated liquid to dryness, a hexane extract is obtained by a conventional method, and an unheated solubilized liquid is used as a control, and a peak area comparison analysis is performed on an HPLC / ELSD chart to test residual plasmalogen. .
5.平均粒径測定試験([特許文献12])
 上記調製可溶化液中の油相粒子の平均粒径を、市販サブミクロンアナライザーで測定する。
6.粉末製剤の調製試験と成分の残存性([特許文献14])
 該可溶化液に賦形剤の澱粉加水分解物を溶解させた後、卓上ミニスプレイドライヤーを用いて、噴霧乾燥を行う。この粉末製剤の、例えば、水100倍希釈で溶液の透明性を目視でその透明性を判定し、可溶化を確認する。
 また、上述の様に、未加熱可溶化液を対照にして、HPLC/ELSDチャートでピーク面積比較解析を行って、PLsの残存量を確認する。
5). Average particle size measurement test ([Patent Document 12])
The average particle diameter of the oil phase particles in the prepared solubilized solution is measured with a commercially available submicron analyzer.
6). Preparation test of powder preparation and residual properties of ingredients ([Patent Document 14])
After the starch hydrolyzate of the excipient is dissolved in the solubilized solution, spray drying is performed using a desktop mini spray dryer. The transparency of the solution is visually determined by, for example, 100-fold dilution with water, and the solubilization is confirmed.
In addition, as described above, with the unheated solubilized solution as a control, a peak area comparative analysis is performed on an HPLC / ELSD chart to confirm the remaining amount of PLs.
7.可溶化ゼリーの調製試験([特許文献13])
1)グリセリンにカゼインナトリウムを加温溶解させ、これに、例えば、1%複合脂質δトコフェロール溶液を撹拌下添加し、透明感のあるゼリー状の可溶化物を得る。蒸発乾固後にヘキサンで抽出して、HPLC/ELSDで前項と同様にピーク面積比の対比解析からPLsの残存を確認する。また、当該ゼリーの、例えば、100倍水希釈液を調製して、市販サブミクロンアナライザーで平均粒径分布を測定する。
2)例えば、水8gに乾燥卵白2gを溶解し、これに上白糖を適宜に溶解させる。この液に窒素ガス雰囲気で撹拌下、例えば、PLsの0.5%δトコフェロール溶液を適量添加すれば、透明感のあるゼリー状の可溶化物が得られる。
7). Preparation test of solubilized jelly ([Patent Document 13])
1) Sodium caseinate is dissolved by heating in glycerin, and, for example, a 1% complex lipid δ tocopherol solution is added with stirring to obtain a transparent jelly-like lysate. After evaporating to dryness, extraction with hexane is performed, and the residual PLs is confirmed by HPLC / ELSD as in the previous section from a comparative analysis of the peak area ratio. Further, for example, a 100-fold water dilution of the jelly is prepared, and the average particle size distribution is measured with a commercially available submicron analyzer.
2) For example, 2 g of dried egg white is dissolved in 8 g of water, and upper white sugar is appropriately dissolved therein. If an appropriate amount of, for example, a 0.5% δ tocopherol solution of PLs is added to this solution under stirring in a nitrogen gas atmosphere, a transparent jelly-like solubilized product can be obtained.
 本発明に係る複合脂質とその組成物及びPLs並びにこれらの水性製剤、更に、蛋白質・脂質複合組成物、ω-3HUFA結合型PLsを含有する複合脂質とその組成物及びPLs並びにこれらの水性製剤、更に、蛋白質・脂質複合組成物(以下、「各種PLs類」と言うことがある。)を、中枢神経系炎症、神経細胞新生失調症、神経細胞のアポトーシス症及びAβとτの脳内蓄積症(以下、「「認知機能障害」と言う。」)の緩和・予防・改善、及び治療用の有効成分として、食品、化粧品、医薬品又は飼料に用いることができる。 Complex lipids according to the present invention, compositions thereof and PLs and aqueous preparations thereof, protein / lipid composite compositions, complex lipids containing ω-3HUFA-binding PLs, compositions thereof, PLs, and aqueous preparations thereof, Furthermore, protein-lipid complexes composition (hereinafter sometimes referred to as "various PLs such".) the central nervous system inflammation, neurogenesis ataxia, brain apoptosis diseases and a beta and τ in neurons accumulation It can be used in foods, cosmetics, pharmaceuticals or feeds as an active ingredient for alleviating, preventing, improving and treating symptom (hereinafter referred to as “cognitive dysfunction”).
 本発明に係るPLs製剤を、サプリメント及び/又は一般食品(以下、「各種食品」と言うことがある。)として用いる場合、当該各種食品は、各種PLs製剤そのものであっても良いし、これらと食品衛生学上許容される基材、担体、添加剤や、その他食品としてとして利用され得る成分・材料が適宜配合されたものでも良い。また、このような各種食品の形態としては、例えば、液状、粉末状、フレーク状、顆粒状、ペースト状の食品が挙げられるが、これらに限定されない。 When the PLs preparation according to the present invention is used as a supplement and / or a general food (hereinafter sometimes referred to as “various foods”), the various foods may be various PLs preparations themselves, A material, a carrier, an additive acceptable in food hygiene, and other components and materials that can be used as food may be appropriately blended. Examples of such various food forms include, but are not limited to, liquid, powder, flake, granule, and paste foods.
 本発明に係るPLs製剤を、飲食品として用いる場合、当該製剤は、PLs、及び食品衛生学上許容される基材、担体、添加剤や、その他食品としてとして利用され得る成分・材料が適宜配合されたもの(即ち、各種PLsを含む食品組成物)である。例えば、各種PLs製剤を含む、加工食品、飲料、健康食品(栄養機能食品、特定保健用食品等)、病者用食品(病院食、病人食又は介護食等)等が例示できる。 When the PLs preparation according to the present invention is used as a food or drink, the preparation is appropriately mixed with PLs and ingredients / materials that can be used as food hygiene-acceptable substrates, carriers, additives, and other foods. (Ie, a food composition containing various PLs). For example, processed foods, beverages, health foods (nutrient functional foods, foods for specified health use, etc.), foods for sick people (hospital foods, sick foods, nursing foods, etc.) and the like including various PLs preparations can be exemplified.
 サプリメント及び食品の種類は、特に制限されないが、例えば、各種PLs製剤が配合されたハンバーグ、ミートボール、ウインナー、鳥そぼろ、鶏皮チップ等の加工食品、及び加工された肉食品等を含んで成る健康食品(栄養機能食品、特定保健用食品等)、サプリメント、病者用食品等が例示される。また、各種PLs製剤を、例えば、粉末状にする等して、飲料類(ジュース等)、菓子類(例えば、ガム、チョコレート、キャンデー、ビスケット、クッキー、おかき、煎餅、プリン、ゼリー状お菓子、杏仁豆腐等)、パン類、スープ類(粉末スープを含む)、加工食品等の各種飲食品に含有させたものが例示される。 The types of supplements and foods are not particularly limited, and include, for example, processed foods such as hamburger, meatballs, wieners, bird rags, chicken skin chips, etc., which are mixed with various PLs preparations, processed meat foods, etc. Examples include health foods (functional nutritional foods, foods for specified health use), supplements, foods for the sick, and the like. In addition, various PLs preparations, for example, powdered, beverages (juice etc.), confectionery (eg gum, chocolate, candy, biscuits, cookies, rice crackers, rice crackers, pudding, jelly-like confectionery, Examples thereof include apricot tofu and the like, breads, soups (including powdered soups), and various foods and beverages such as processed foods.
 なお、健康食品(栄養機能食品、特定保健用食品等)、サプリメントとして、本発明に関わる飲食品を調製する場合は、継続的摂取が行いやすいように、例えば、顆粒、カプセル、錠剤(チュアラブル剤等を含む)、飲料(ドリンク剤等)等の形態に調製することが好ましく、中でも、摂取の簡便さの点からは、カプセル、タブレット、錠剤、ゼリー等の形態がより好ましい。顆粒、カプセル、錠剤、ゼリー等の形態は、薬学的及び/又は食品衛生学的に許容される担体等を用いて、常法に従って適宜調製することができる。 In addition, when preparing foods and drinks related to the present invention as health foods (nutrient functional foods, foods for specified health use, etc.) and supplements, for example, granules, capsules, tablets (chewable agents) so as to facilitate continuous intake Etc.), beverages (drinks, etc.), etc. are preferably prepared. Among them, capsules, tablets, tablets, jellies and the like are more preferable from the viewpoint of easy intake. The form of granules, capsules, tablets, jelly and the like can be appropriately prepared according to a conventional method using a pharmaceutically and / or food hygienically acceptable carrier.
 本発明に係る飲食品におけるPLsの配合量は、好ましくは、0.00005~100質量%、より好ましくは、0.0005~75質量%、更に好ましくは、0.005~50質量%である。本発明に係る飲食品は、認知機能障害の予防・緩和・改善のために用いることができる。また、摂取量、摂取対象、含有PLs量の測定等は、例えば、後述する本発明に係る医薬品と同様であることが好ましい。 The blending amount of PLs in the food or drink according to the present invention is preferably 0.00005 to 100% by mass, more preferably 0.0005 to 75% by mass, and still more preferably 0.005 to 50% by mass. The food / beverage products according to the present invention can be used for the prevention / mitigation / improvement of cognitive impairment. Moreover, it is preferable that the measurement of the intake amount, the intake target, the amount of contained PLs, and the like are the same as, for example, the pharmaceutical product according to the present invention described later.
 なお、病院食とは、病院に入院した際に供される食事であり、病人食は病人用の食事であり、介護食とは、被介護者用の食事である。本発明に係る飲食品は、特に上記例示の疾患で入院、自宅療養等している患者、あるいは、介護を受けている患者用の病院食、病人食又は介護食として用いることができる。また、高齢者等、上記例示の疾患を患う可能性が高い人が予防的に摂取することもできる。 The hospital food is a meal provided when hospitalized, the sick food is a meal for the sick, and the care food is a meal for the care recipient. The food / beverage products according to the present invention can be used as hospital foods, sick foods or nursing foods for patients who are hospitalized, treated at home due to the above-exemplified diseases, or who are receiving nursing care. In addition, a person who is highly likely to suffer from the above-illustrated diseases such as the elderly can be ingested prophylactically.
 本発明の抗認知機能障害剤を医薬分野で用いる場合、当該製剤は、PLsのみからなるものでも良いし、他の成分を配合したもの(即ち、PLsを含む医薬品)でも良い。例えば、本発明に係る医薬品においては、有効成分である各種PLs製剤に、必要に応じて、薬学的に許容される基材、担体、添加剤(例えば、賦形剤、結合剤、崩壊剤、滑沢剤、溶剤、甘味剤、着色剤、矯味剤、界面活性剤、保湿剤、保存剤、pH調整剤、粘調化剤等)等を配合することができる。また、常法により、例えば、錠剤、被覆錠剤、散剤、顆粒剤、細粒剤、カプセル剤、丸剤、液剤、懸濁剤、乳剤、ゼリー剤、チュアラブル剤、ソフト錠剤等の製剤に調製することができる。特に、液剤、懸濁剤、乳剤等に調製し、注射剤又は点滴剤として用いても良く、また、経口剤として用いても良い。 When the anti-cognitive dysfunction agent of the present invention is used in the pharmaceutical field, the preparation may be composed solely of PLs, or may be formulated with other components (ie, a pharmaceutical containing PLs). For example, in the pharmaceutical product according to the present invention, various PLs preparations which are active ingredients are optionally added to pharmaceutically acceptable bases, carriers, additives (for example, excipients, binders, disintegrants, Lubricants, solvents, sweeteners, colorants, flavoring agents, surfactants, humectants, preservatives, pH adjusters, thickeners, and the like can be blended. In addition, it is prepared by a conventional method such as tablets, coated tablets, powders, granules, fine granules, capsules, pills, solutions, suspensions, emulsions, jellies, chewables, soft tablets, etc. be able to. In particular, it may be prepared as a solution, suspension, emulsion, etc. and used as an injection or infusion, or as an oral preparation.
 本発明に係る医薬品におけるPLsの配合量は、抗認知機能障害作用が発揮される限り、特に制限されず、一日当たりの好ましいPLsの摂取量に応じて適宜に設定できる。その配合量は、好ましくは、0.0005~100質量%、より好ましくは、0.005~90質量%、更に好ましくは、0.05~80質量%である。本発明に係る医薬品を投与する対象としては、認知機能障害を患った対象が好ましい。この様な疾患としては、神経変性疾患及び精神疾患等を例示できる。神経変性疾患としては、具体的にはAD、パーキンソン病、筋委縮性側索硬化症(ALS)、多発性硬化症等を例示できる。 The amount of PLs in the pharmaceutical product according to the present invention is not particularly limited as long as the anticognitive dysfunction is exerted, and can be appropriately set according to the preferred daily intake of PLs. The blending amount is preferably 0.0005 to 100% by mass, more preferably 0.005 to 90% by mass, and still more preferably 0.05 to 80% by mass. The subject to which the pharmaceutical product according to the present invention is administered is preferably a subject suffering from cognitive dysfunction. Examples of such diseases include neurodegenerative diseases and mental diseases. Specific examples of neurodegenerative diseases include AD, Parkinson's disease, amyotrophic lateral sclerosis (ALS), and multiple sclerosis.
 また、精神疾患としては、具体的には、うつ病、躁病、躁うつ病、統合失調症、自閉症、接触障害等を例示できる。更には、このような疾患を将来患う可能性が高い対象に対し、本発明に係る医薬品を投与しても良い。例えば、遺伝学的に上記例示疾患を患う可能性が高い対象や、高齢者(特に60歳以上)等に予防的に投与することができる。また、本発明に係る医薬品を投与する対象としては、ヒトのみならず、飼料用として、その他の哺乳類であっても良い。このような哺乳類には、例えば、家畜やペットとして飼育されるものが想定でき、例えば、イヌ、ネコ、ウシ、ウマ、ブタ、ヒツジ、ヤギ、サル、ウサギ、マウス、ラット、ハムスター等が例示できる。 Specific examples of mental illness include depression, mania, manic depression, schizophrenia, autism, and contact disorder. Furthermore, the pharmaceutical product according to the present invention may be administered to a subject who is likely to suffer from such a disease in the future. For example, it can be administered prophylactically to subjects who are genetically highly likely to suffer from the above exemplified diseases, elderly people (especially 60 years or older) and the like. The subject to which the pharmaceutical product according to the present invention is administered is not limited to humans but may be other mammals for feed. Examples of such mammals include animals raised as livestock and pets, and examples include dogs, cats, cows, horses, pigs, sheep, goats, monkeys, rabbits, mice, rats, and hamsters. .
 本発明に係る抗認知機能障害剤の投与時期は、当該認知機能障害発症の、好ましくは5年前、より好ましくは10年前、更に好ましくは15年前から投与することが求められる。発症診断時点では、末期症を迎えていることが明らかにされている([非特許文献20])。好適な投与形態は、その投与期間が長期に渡ることに鑑み、経口投与が良い。本発明に係る抗認知機能障害剤の投与量は、患者の年齢、患者の症状の程度、その他の条件等に応じて適宜に選択される。通常、当該剤中のPLsの量が、好ましくは成人一日当たり0.001~1000mg、より好ましくは、0.01~100mgの範囲を目安とするのが望ましい。なお、1日1回又は複数回(好ましくは2~3回)に分けて投与することができる。 The administration time of the anticognitive dysfunction agent according to the present invention is required to be administered preferably 5 years ago, more preferably 10 years ago, and even more preferably 15 years before the onset of the cognitive dysfunction. It has been clarified that end-stage disease has been reached at the time of onset diagnosis ([Non-Patent Document 20]). A preferred dosage form is oral administration in view of its long administration period. The dosage of the anticognitive dysfunction agent according to the present invention is appropriately selected according to the age of the patient, the degree of symptoms of the patient, other conditions, and the like. Usually, the amount of PLs in the agent is preferably within a range of 0.001 to 1000 mg, more preferably 0.01 to 100 mg per day for an adult. The administration can be performed once or a plurality of times (preferably 2 to 3 times) a day.
 本発明は、認知機能障害を患った対象に対して、有効量の本発明の抗認知機能障害剤を投与(特に、経口投与又は経血管投与)する工程を含む認知機能障害の治療方法をも提供する。更に、本発明は、神経変性疾患又は精神疾患を患った対象又は患う可能性の高い対象に対して、有効量の本発明の抗認知機能障害剤を投与(特に、経口投与又は経血管投与)する工程を含む、これらの疾患の予防又は治療方法をも提供する。当該方法は、具体的には、前述の本発明の抗認知機能障害剤を投与することで実施される。なお、当該方法における、対照、摂取量等の各条件は、前述の通りである。 The present invention also includes a method for treating cognitive dysfunction comprising a step of administering (in particular, oral administration or transvascular administration) an effective amount of the anticognitive dysfunction agent of the present invention to a subject suffering from cognitive dysfunction. provide. Furthermore, the present invention administers an effective amount of the anticognitive dysfunction agent of the present invention to a subject suffering from or likely to suffer from a neurodegenerative disease or psychiatric disorder (particularly oral administration or transvascular administration). And a method for preventing or treating these diseases. Specifically, this method is carried out by administering the aforementioned anticognitive dysfunction agent of the present invention. In addition, each condition, such as a control | contrast and intake, in the said method is as above-mentioned.
 本発明に係るPLsとその製剤等の所定の効能(神経変性疾患と精神疾患の予防及び治療)の独自な臨床試験方法として、下記の1)~7)を例示できる。
1)対象者が、生理的には無害な量のAβ及びτの脳内蓄積が認められる状態にある認知症発症前の成人(健常者)、就中、「認知症未病状態」にある被験者であることを特徴とする。
 近年の米国における研究成果([非特許文献20])で、Aβとτ蛋白の脳内蓄積が従来の発症診断時期に比べ、少なくとも10年、通常では15~20年前から蓄積が開始されることが明らかにされ、一種の“パラダイムシフト”が起きている。早期予防が発症抑制の決め手で、認知症発症前の成人(健常者)~未病状態にある被験者における該効能発現如何が肝要である所以である。
2)安全・安定なPLs及び/又はその製剤を用いることを特徴とする。
The following 1) to 7) can be exemplified as unique clinical test methods for the predetermined efficacy (prevention and treatment of neurodegenerative diseases and psychiatric disorders) of PLs and their preparations according to the present invention.
1) The subject is an adult (healthy person) before the onset of dementia who is in a state where accumulation of physiologically innocuous amounts of and τ is recognized in the brain. It is characterized by being a subject.
In research in recent years in the United States (Non-Patent Document 20]), brain accumulation of A beta and τ protein than traditional onset diagnosis period, at least 10 years, usually accumulated from 15-20 years ago is started in As a result, a kind of “paradigm shift” has occurred. Early prevention is the decisive factor for suppression of the onset, and this is why it is important to show the efficacy in adults (determined healthy people) to non-disease subjects before the onset of dementia.
2) It is characterized by using safe and stable PLs and / or preparations thereof.
 上記に依って、神経変性疾患と精神疾患の予防・緩和・改善及び治療用の成分には、従来対比で遥かに長期間の摂取が求められるため、安全・安定且つ安価なプラズマローゲンが必須要件とされる。
3)より好適には、安全・安定なω-3HUFA結合型PLs及び/又はその製剤を用いることを特徴とする。
4)前記安全・安定なω-3HUFA結合型PLsが、安全なω-3HUFA給源を含む飼料で安全に飼養された鶏から安全に抽出されたことを特徴とする。
5)安全で簡便な経口投与であることを特徴とする。
Based on the above, safe, stable and inexpensive plasmalogen is an essential requirement for ingredients for prevention, alleviation, improvement and treatment of neurodegenerative diseases and psychiatric disorders, as compared with conventional ingredients It is said.
3) More preferably, safe and stable ω-3HUFA-binding PLs and / or preparations thereof are used.
4) The safe and stable ω-3HUFA-binding PLs are safely extracted from chickens safely fed with feed containing a safe ω-3HUFA source.
5) It is characterized by safe and simple oral administration.
6)投与期間は、通常の当該疾患対象の臨床試験期間の1年以上に比べ、長くても2年以下、好ましくは18カ月間、より好ましくは12か月間、好適には6か月間以下1か月間以上と短く、対象者に対する負担を軽減できることを特徴とする。
7)主要必須測定効能が、以下の*印の群から選択された3項目以上を含んでいることを特徴とする、革新的な神経変性疾患と精神疾患の予防及び治療効能の判定方法である。
* 内田・クレペリン検査
* MMSE
* 安静時機能性MRI(rs-fMRI)画像解析(非特許文献17)
* 赤血球中のPLs含量測定(非特許文献24)
* PSOL「認知機能自己診断テスト」
* RBANS([非特許文献21])
* Cognitrax([非特許文献21])
* ウエックスラー記憶力検査([非特許文献22])
6) The administration period is at most 2 years, preferably 18 months, more preferably 12 months, and preferably 6 months or less, compared to 1 year or more of the usual clinical trial period for the disease subject. It is as short as more than a month, and can reduce the burden on the subject.
7) An innovative method for the prevention and treatment of neurodegenerative and psychiatric disorders, characterized in that the main essential measurement efficacy includes three or more items selected from the following groups marked with *. .
* Uchida / Kraepelin test * MMSE
* Resting functional MRI (rs-fMRI) image analysis (Non-patent Document 17)
* Measurement of PLs content in erythrocytes (Non-patent Document 24)
* PSOL "Cognitive function self-diagnosis test"
* RBANS ([Non-Patent Document 21])
* Cognitax ([Non-Patent Document 21])
* Wexler memory test ([Non-Patent Document 22])
 なお、rs-fMRI画像は、脳のデフォルト・モード・ネットワーク(DMN)の解析・評価に有用である。即ち、従来は、意識的活動を行っていない時、脳もまた休すんでいると考えられて来たが、近年脳機能イメージング研究によって驚くべき事実が明らかされ、安静時でも重要な活動が営まれ、脳の基底状態における活動に費やされているエネルギーは意識的な反応に使われる脳エネルギーの20倍にも達するとされる([非特許文献17])。この脳活動の中心となっているのが、DMNと称される複数の脳領域で構成されるネットワークであり、脳内の様々な神経活動と同調させる作用がある。注目すべきは、AD患者で顕著な萎縮が認められる脳領域が、DMNを構成する主要な脳領域と殆ど重なっていることで、安静時のfMRI画像解析によって新たな神経疾患の理解の手掛かりになることが期待されている。 Note that the rs-fMRI image is useful for analysis and evaluation of the default mode network (DMN) of the brain. In other words, in the past, it was thought that the brain was also resting when conscious activity was not performed, but in recent years, a surprising fact has been revealed by functional brain imaging research, and important activities have been carried out even at rest. It is said that the energy consumed for the activity in the basal state of the brain reaches 20 times the brain energy used for the conscious reaction ([Non-Patent Document 17]). At the heart of this brain activity is a network composed of a plurality of brain regions called DMN, which acts to synchronize with various neural activities in the brain. It should be noted that the brain area where significant atrophy is observed in AD patients almost overlaps with the main brain area that constitutes DMN, which is a clue for understanding new neurological diseases by fMRI image analysis at rest. Is expected to be.
 最近、安静時脳機能ネットワークのスモールワールド性及びモジュラリティが加齢に伴って低下することが明らかにされ、これらの機能的変化が一般的に脳委縮などの解剖学的変化に先行して発生するため、加齢及び認知症の研究において有用なマーカーとなる可能性があると発表されている(非特許文献17)。 Recently, it has been clarified that the small-world nature and modularity of the resting brain functional network decrease with age, and these functional changes generally precede anatomical changes such as brain atrophy. Therefore, it has been announced that it may be a useful marker in the study of aging and dementia (Non-patent Document 17).
 本発明者らによる前述の基本コンセプトに基づいた最新のPLsの認知機能改善効果判定の下記要件を満たす臨床試験;
* 専門機関のJACTA(東京)に委託実施の、
* 無作為・二重盲検・プラセボ対照の、
* 革新的なPLs組成物の、認知機能改善性食品を用いた
* 厳選した健常被験者(機関登録者の書類選考135名⇒認知機能3階層問診選抜81
名⇒試験責任者の面接選抜75名⇒試験中に発覚した不適格者を排除71名)に対して、
* 極めて低日用量、0.25mgと0.5mg、
* 極めて短期間の12週間内、
で、然も、僅か6週目で、認知機能の有意且つ即効的な改善効果が確認され(非特許文献25)、驚くべき成果と評価される。
Clinical trials that meet the following requirements for judging the cognitive function improvement effect of the latest PLs based on the above-mentioned basic concept by the present inventors;
* Entrusted to JACTTA (Tokyo), a specialized organization,
* Random, double-blind, placebo-controlled,
* Innovative PLs composition using cognitive function-improving food * Carefully selected healthy subjects (135 applicants registered for institutional registrants ⇒ Cognitive function 3-level interview selection 81
⇒ 75 people selected for interview by the person in charge of the examination ⇒ 71 who excluded ineligible persons found during the examination)
* Extremely low daily doses, 0.25 mg and 0.5 mg,
* Within a very short 12 weeks,
However, in only 6 weeks, a significant and immediate improvement effect of cognitive function was confirmed (Non-patent Document 25), which is evaluated as a surprising result.
 従来の認知症に関わる[II相臨床試験]の実施方法は、対象が脳と言うこともあって、試験結果の合理的な客観化が困難であった。直接的な画像解析方法も装置が高額過ぎたり、画像解析に合理性が欠如したり再現性に問題があったり等々で、学術的認知が得られものが無かった。
 脳内Aβとτ蛋白の動態を直接的に検定するには「腰椎穿刺」を行う必要があるが、極めて侵襲性が高く、汎用性が無い。
 直近の報告によれば、PET(Positoron
Emission Tomography;陽電子放射断層撮影)を改良小型化して頭部専用PETが、量子科学技術研究開発機構・放射線医学総合研究所で開発され、従来PETに比べ装置のコストを1/3に、更に、海馬付近の感度を向上させることにも成功したとされている(非特許文献28)。
 また、同所では[τ蛋白]をPETで観察するための検査薬[PBB3]の開発にも成功し、Aβと共に[τ蛋白]もPETで観察できることになったとしている。
 本発明者は、当該[アミロイドPET-PIB]を駆使して、懸案の認知機能改善における[DHA-PLs]vs[PLs]の効能評価[臨床試験]を行って、極めて興味深い結果を得ている。
The conventional implementation method of [Phase II clinical trials] related to dementia has been difficult to rationalize the test results because the subject is the brain. As for the direct image analysis method, there has been no scientific recognition because the apparatus is too expensive, the rationality of image analysis is lacking, or there is a problem in reproducibility.
But to directly test the dynamics of the A β and τ protein brain, it is necessary to perform a "lumbar puncture", is high, there is no versatility extremely invasive.
According to a recent report, PET (Positoron
Emission Tomography (Positron Emission Tomography) has been improved and miniaturized, and a dedicated head PET has been developed at the National Institute of Radiological Sciences, Quantum Science and Technology Research and Development Organization. It is said that the sensitivity in the vicinity of the hippocampus has also been successfully improved (Non-patent Document 28).
Further, in the orthotopic have became to be observed by [tau protein] also succeeded in developing a test agent [pBB3] for viewing by PET, [tau protein] with A beta also PET.
The present inventor has performed the [DHA-PLs] vs. [PLs] efficacy evaluation [clinical study] in the cognitive improvement of concern using the [amyloid PET-PIB], and obtained extremely interesting results. .
 以下、検証例と調製例及び実施例に基づいて本発明を具体的に説明するが、本発明は下記の例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on verification examples, preparation examples, and examples, but the present invention is not limited to the following examples.
調製例1[生体組織抽出用PLs含有リン脂質の製造]
[生体組織抽出PLs含有リン脂質の製造]
1.廃鶏の皮剥ぎ兜から複合脂質の調製
 鶏組織である産卵廃鶏のフレッシュな皮剥ぎ兜(「中抜き屠体」から「腿」を抜いた屠体)から複合脂質を調製した。
 皮剥ぎ兜を廃鶏処理センターから調達し、約8mmのミンチ1kgを調製した。該ミンチを緩慢凍結して保存した。使用に際し、温流水で強制解凍後に圧搾して脱水・脱油を行った。これを[過加熱水](アクアガス;登録商標)で“無酸素的雰囲気”(酸素0.5容量%以下)で5分間クッキング後、真空冷却方式で急冷脱水を行った。得られた脱水・脱油・調理・殺菌済み胸肉を低温粉砕後にエタノール3相分離工程に供した。
Preparation Example 1 [Production of PLs-containing phospholipid for biological tissue extraction]
[Production of biological tissue-extracted PLs-containing phospholipids]
1. Preparation of complex lipids from the skins of the laying hens The complex lipids were prepared from the freshly peeled pupae of the laying laying hens, which were the chicken tissues (the carcass from which the "thigh" had been removed).
Skin peeled rice was procured from the waste chicken processing center to prepare 1 kg of minced meat of about 8 mm. The mince was stored frozen slowly. In use, it was dehydrated and deoiled by pressing after forced thawing with warm running water. This was cooked with [superheated water] (Aquagas; registered trademark) in an “oxygen-free atmosphere” (oxygen 0.5% by volume or less) for 5 minutes, and then subjected to rapid dehydration by vacuum cooling. The obtained dehydrated / deoiled / cooked / sterilized breast meat was subjected to a three-phase ethanol separation step after low-temperature grinding.
[3相分離工程]
 上記で得られた調理・殺菌済みの粉砕皮剥ぎ兜を容器に入れて脱気しておき、この容器に脱気済みの800mlのエタノールを加えて密封下、35℃で10時間緩慢撹拌を続けた後に氷冷下に静置して、上層の鶏油分と固形沈殿蛋白分等を分別して、含水エタノール画分(密封冷蔵保管)を得た。蛋白分等に脱気エタノール800mlを加えて、同様の抽出操作を繰り返し、遠心分離でエタノール相を分液し、密封下で氷冷して、併せて減圧濃縮した。水溶性低分子画分の固形分を濾別後、減圧蒸発乾固し、PLs含有リン脂質(複合脂質)7gを得た。
[Three-phase separation process]
Put the cooked and sterilized crushed skin peeled rice obtained in the above into a container and deaerate it. Add 800 ml of degassed ethanol to this container and keep it gently stirred at 35 ° C for 10 hours. Thereafter, the mixture was allowed to stand under ice cooling to separate the upper layer chicken oil and the solid precipitated protein, etc. to obtain a water-containing ethanol fraction (sealed refrigerated storage). 800 ml of degassed ethanol was added to the protein, etc., and the same extraction operation was repeated. The ethanol phase was separated by centrifugation, ice-cooled in a sealed state, and concentrated under reduced pressure. The solid content of the water-soluble low-molecular fraction was filtered off and evaporated to dryness under reduced pressure to obtain 7 g of PLs-containing phospholipid (complex lipid).
1)総脂質の分別
 Folch法で抽出・分配・分離した総脂質は26.5質量%であった。
2)リン脂質のプロファイル検定
 常法の名達らのHPLC/ELSD法で、測定した。
3)上記結果の[mg/100g皮剥ぎ兜]での一覧表記
 TL(総脂質):26.5質量%、TPL(総リン脂質):0.6質量%
PL-PE(エタノールアミン型PLs):104、PE(フォスファチジルエタノールアミン):43、PL-PC(コリン型PLs):49、PC(フォスファチジルコリン):327、SM(スフィンゴミエリン):74
1) Fractionation of total lipid The total lipid extracted, distributed and separated by the Folch method was 26.5% by mass.
2) Phospholipid profile assay The phospholipid profile assay was performed by the conventional method of HPLC / ELSD.
3) List notation of [mg / 100g skin peel] of the above results TL (total lipid): 26.5% by mass, TPL (total phospholipid): 0.6% by mass
PL-PE (ethanolamine type PLs): 104, PE (phosphatidylethanolamine): 43, PL-PC (choline type PLs): 49, PC (phosphatidylcholine): 327, SM (sphingomyelin): 74
4)皮剥ぎ兜特異的リン脂質の構成比
(1)PLs;[エタノールアミン型]:[コリン型]=2.1:1
(2)ジアシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:7.6
(3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:2.4
(4)[総グリセロリン脂質]:[総スフィンゴミエリン]=7:1
4) Composition ratio of skin peel-specific phospholipids (1) PLs; [ethanolamine type]: [choline type] = 2.1: 1
(2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: 7.6
(3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: 2.4
(4) [Total glycerophospholipid]: [Total sphingomyelin] = 7: 1
2.廃鶏の生ガラから複合脂質の調製
  兜に倣って処理した。
1)脂質の分別
 Folch法で抽出分配分離した総脂質は14質量%であった。
2)リン脂質のプロファイル検定
 常法の名達らのHPLC/ELSD法で、測定した。
3)上記結果の[mg/100g生ガラ]での一覧表記
 TL(総脂質):14質量%、TPL(総リン脂質):0.73%
PL-PE(エタノールアミン型PLs):149、PE(フォスファチジルエタノールアミン):119、PL-PC(コリン型PLs):42、PC(フォスファチジルコリン):283、SM(スフィンゴミエリン):60
2. Preparation of complex lipids from raw chicken waste.
1) Separation of lipids Total lipids extracted and distributed by the Folch method were 14% by mass.
2) Phospholipid profile assay The phospholipid profile assay was performed by the conventional method of HPLC / ELSD.
3) List notation of [mg / 100g raw glass] of the above results TL (total lipid): 14% by mass, TPL (total phospholipid): 0.73%
PL-PE (ethanolamine type PLs): 149, PE (phosphatidylethanolamine): 119, PL-PC (choline type PLs): 42, PC (phosphatidylcholine): 283, SM (sphingomyelin): 60
4)生ガラ特異的リン脂質の構成比
(1)PLs;[エタノールアミン型]:[コリン型]=3.5:1
(2)アシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:2.4
(3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:2.1
(4)[総グリセロリン脂質]:[総スフィンゴミエリン]=10:1
4) Composition ratio of raw arabe specific phospholipid (1) PLs; [ethanolamine type]: [choline type] = 3.5: 1
(2) Acylglycerophospholipid; [ethanolamine type]: [choline type] = 1: 2.4
(3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: 2.1
(4) [Total glycerophospholipid]: [Total sphingomyelin] = 10: 1
3.廃鶏の腸から複合脂質の調製
   兜に倣って処理した。
1)脂質の分別
 Folch法で抽出分配分離した総脂質は32質量%であった。
2)リン脂質のプロファイル検定
 常法の名達らのHPLC/ELSD法で、測定した。
3)上記結果の[mg/100g生ガラ]での一覧表記
 TL(総脂質):32質量%、TPL(総リン脂質):1質量%
PL-PE(エタノールアミン型PLs):169、PE(フォスファチジルエタノールアミン):88、PL-PC(コリン型PLs):14、PC(フォスファチジルコリン):379、SM(スフィンゴミエリン):86
3. Preparation of complex lipids from the intestines of slaughtered chickens.
1) Separation of lipids Total lipids extracted and distributed by the Folch method were 32% by mass.
2) Phospholipid profile assay The phospholipid profile assay was performed by the conventional method of HPLC / ELSD.
3) List notation of [mg / 100g raw glass] of the above results TL (total lipid): 32% by mass, TPL (total phospholipid): 1% by mass
PL-PE (ethanolamine type PLs): 169, PE (phosphatidylethanolamine): 88, PL-PC (choline type PLs): 14, PC (phosphatidylcholine): 379, SM (sphingomyelin): 86
4)腸特異的総脂質の構成比
(1)PLs;[エタノールアミン型]:[コリン型]=12:1
(2)ジアシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:4.3
(3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:2.6
(4)[総グリセロリン脂質]:[総スフィンゴミエリン]=7,6:1
4) Composition ratio of intestinal specific total lipid (1) PLs; [ethanolamine type]: [choline type] = 12: 1
(2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: 4.3
(3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: 2.6
(4) [Total glycerophospholipid]: [Total sphingomyelin] = 7, 6: 1
4.廃鶏の砂肝から複合脂質の調製
   兜に倣って処理した。
1)脂質の分別
 Folch法で抽出分配分離した総脂質は7.9質量%であった。
2)リン脂質のプロファイル検定
 常法の名達らのHPLC/ELSD法で、測定した。
3)上記結果の[mg/100g砂肝]での一覧表記
 TL(総脂質):7.9質量%、TPL(総リン脂質):0.88質量%
PL-PE(エタノールアミン型PLs):111、PE(フォスファチジルエタノールアミン):91、PL-PC(コリン型PLs):23、PC(フォスファチジルコリン):255、SM(スフィンゴミエリン):118
4). Preparation of complex lipids from gizzards of waste chickens was processed according to the same method.
1) Separation of lipids Total lipids extracted and distributed by the Folch method were 7.9% by mass.
2) Phospholipid profile assay The phospholipid profile assay was performed by the conventional method of HPLC / ELSD.
3) List notation in [mg / 100 g gizzard] of the above results TL (total lipid): 7.9% by mass, TPL (total phospholipid): 0.88% by mass
PL-PE (ethanolamine type PLs): 111, PE (phosphatidylethanolamine): 91, PL-PC (choline type PLs): 23, PC (phosphatidylcholine): 255, SM (sphingomyelin): 118
4)砂肝特異的構成比
(1)PLs;[エタノールアミン型]:[コリン型]=4.8:1
(2)ジアシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:2.8
(3)エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:2.6
(4)[総グリセロリン脂質]:[総スフィンゴミエリン]=4.1:1
4) Specific composition ratio of sand liver (1) PLs; [ethanolamine type]: [choline type] = 4.8: 1
(2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: 2.8
(3) Ether glycerophospholipid]: [diacylglycerophospholipid] = 1: 2.6
(4) [Total glycerophospholipid]: [Total sphingomyelin] = 4.1: 1
5.金冠から複合脂質の調製
1)産卵廃鶏の金冠
  兜に倣って処理した。
(1)脂質の分別
 Folch法で抽出分配分離した総脂質は31質量%であった。
(2)リン脂質のプロファイル検定
 常法の名達らのHPLC/ELSD法で、測定した。
(3)上記結果の[mg/100g金冠]での一覧表記
 TL(総脂質):31質量%、TPL(総リン脂質):9.5質量%
PL-PE(エタノールアミン型PLs):200、PE(フォスファチジルエタノールアミン):1,574、PL-PC(コリン型PLs):0、PC(フォスファチジルコリン):7,542、SM(スフィンゴミエリン):145
5). Preparation of complex lipids from gold crowns 1) Treated according to the gold crown of spawning hens.
(1) Separation of lipids Total lipids extracted and distributed by the Folch method were 31% by mass.
(2) Phospholipid profile assay The phospholipid profile assay was performed by a conventional method of HPLC / ELSD.
(3) List notation in [mg / 100 g gold crown] of the above results TL (total lipid): 31% by mass, TPL (total phospholipid): 9.5% by mass
PL-PE (ethanolamine type PLs): 200, PE (phosphatidylethanolamine): 1,574, PL-PC (choline type PLs): 0, PC (phosphatidylcholine): 7,542, SM ( Sphingomyelin): 145
(4)金冠特異的リン脂質の構成比
1)PLs;[エタノールアミン型]:[コリン型]=200:0
2)ジアシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:4.8
3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:45
4)[総グリセロリン脂質]:[総スフィンゴミエリン]=64:1
(4) Composition ratio of gold crown-specific phospholipid 1) PLs; [ethanolamine type]: [choline type] = 200: 0
2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: 4.8
3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: 45
4) [Total glycerophospholipid]: [Total sphingomyelin] = 64: 1
2)種鶏雌の金冠
(1)脂質の分別
Folch法で抽出分配分離した総脂質は39.3質量%であった。
(2)リン脂質のプロファイル検定
 常法の名達らのHPLC/ELSD法で、測定した。
(3)上記結果の[mg/100g金冠]での一覧表記
 TL(総脂質):39.3質量%、TPL(総リン脂質):12.2質量%
PL-PE(エタノールアミン型PLs):551、PE(フォスファチジルエタノールアミン):2、236、PL-PC(コリン型PLs):0、PC(フォスファチジルコリン):10,592、SM(スフィンゴミエリン):339
2) Golden crown of seed chicken female (1) Separation of lipid Total lipid extracted and distributed by the Folch method was 39.3% by mass.
(2) Phospholipid profile assay The phospholipid profile assay was performed by a conventional method of HPLC / ELSD.
(3) List notation in [mg / 100 g gold crown] of the above results TL (total lipid): 39.3 mass%, TPL (total phospholipid): 12.2 mass%
PL-PE (ethanolamine-type PLs): 551, PE (phosphatidylethanolamine): 2, 236, PL-PC (choline-type PLs): 0, PC (phosphatidylcholine): 10,592, SM ( Sphingomyelin): 339
(4)金冠特異的リン脂質の構成比
1)PLs;[エタノールアミン型]:[コリン型]=551:0
2)ジアシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:4.7
3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:23.3
4)[総グリセロリン脂質]:[総スフィンゴミエリン]=40:1
(4) Composition ratio of gold crown-specific phospholipid 1) PLs; [ethanolamine type]: [choline type] = 551: 0
2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: 4.7
3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: 23.3
4) [Total glycerophospholipid]: [Total sphingomyelin] = 40: 1
6.廃鶏の表皮から複合脂質の調製
  兜に倣って処理した。
1)脂質の分別
 Folch法で抽出分配分離した総脂質は46質量%であった。
2)リン脂質のプロファイル検定
 常法の名達らのHPLC/ELSD法で、測定した。
3)上記結果の[mg/100g皮]での一覧表記
 TL(総脂質):46質量%、TPL(総リン脂質):0.72質量%
PL-PE(エタノールアミン型PLs):58、PE(フォスファチジルエタノールアミン):21、PL-PC(コリン型PLs):17、PC(フォスファチジルコリン):95、SM(スフィンゴミエリン):55
6). Preparation of complex lipids from the skins of slaughtered chickens.
1) Fractionation of lipid The total lipid extracted and distributed by the Folch method was 46% by mass.
2) Phospholipid profile assay The phospholipid profile assay was performed by the conventional method of HPLC / ELSD.
3) List of the above results in [mg / 100g skin] TL (total lipid): 46% by mass, TPL (total phospholipid): 0.72% by mass
PL-PE (ethanolamine type PLs): 58, PE (phosphatidylethanolamine): 21, PL-PC (choline type PLs): 17, PC (phosphatidylcholine): 95, SM (sphingomyelin): 55
4)皮特異的リン脂質の構成比
(1)PLs;[エタノールアミン型]:[コリン型]=3.4:1
(2)ジアシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:4.5
(3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:1.5
(4)[総グリセロリン脂質]:[総スフィンゴミエリン]=3.5:1
4) Composition ratio of skin-specific phospholipid (1) PLs; [ethanolamine type]: [choline type] = 3.4: 1
(2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: 4.5
(3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: 1.5
(4) [Total glycerophospholipid]: [Total sphingomyelin] = 3.5: 1
7.廃鶏の胸肉から複合脂質の調製
 鶏組織である産卵廃鶏のフレッシュな皮剥ぎ胸肉を廃鶏処理センターから調達し、約8mmのミンチ1kgを調製した。該ミンチを緩慢凍結して保存した。使用に際し、温流水で強制解凍後に圧搾して脱水・脱油を行った。これを[過加熱水](アクアガス;RTM)で“無酸素的雰囲気”(酸素0.5容量%以下)で5分間クッキング後、真空冷却方式で急冷脱水を行った。得られた脱水・脱油・調理・殺菌済み胸肉を低温粉砕後にエタノール3相分離工程に供した。
[3相分離工程]
 上記で得られた調理・殺菌済みの粉砕胸肉を容器に入れて脱気しておき、この容器に脱気済みの800mlのエタノールを加えて密封下、35℃で10時間緩慢撹拌を続けた後に氷冷下に静置して、上層の鶏油分と固形沈殿蛋白分を分別して、含水エタノール画分(密封冷蔵保管)を得た。蛋白分に脱気エタノール800mlを加えて、同様の抽出操作を繰り返し、遠心分離でエタノール相を分液し、密封下で氷冷して、併せて減圧濃縮した。水溶性低分子画分の固形分を濾別後、減圧蒸発乾固し、PLs含有リン脂質(複合脂質)7gを得た。
7). Preparation of complex lipid from waste chicken breast Freshly peeled chicken breast of egg-laying chicken which is a chicken tissue was procured from a waste chicken processing center to prepare 1 kg of minced meat of about 8 mm. The mince was stored frozen slowly. In use, it was dehydrated and deoiled by pressing after forced thawing with warm running water. This was cooked with [superheated water] (Aqua gas; RTM) in an “anoxic atmosphere” (oxygen 0.5% by volume or less) for 5 minutes, and then subjected to rapid dehydration by a vacuum cooling method. The obtained dehydrated / deoiled / cooked / sterilized breast meat was subjected to a three-phase ethanol separation step after low-temperature grinding.
[Three-phase separation process]
The cooked and sterilized crushed breast meat obtained above is put in a container and degassed, and 800 ml of degassed ethanol is added to the container and sealed, and the mixture is slowly stirred at 35 ° C. for 10 hours. Thereafter, the mixture was allowed to stand under ice cooling to separate the upper layer chicken oil and the solid precipitated protein, thereby obtaining a water-containing ethanol fraction (sealed refrigerated storage). 800 ml of degassed ethanol was added to the protein, and the same extraction operation was repeated. The ethanol phase was separated by centrifugation, ice-cooled under sealing, and concentrated under reduced pressure. The solid content of the water-soluble low-molecular fraction was filtered off and evaporated to dryness under reduced pressure to obtain 7 g of PLs-containing phospholipid (complex lipid).
(1)総脂質の分別
 Folch法で抽出・分配・分離した総脂質は1.8質量%であった。
(2)リン脂質のプロファイル検定
 常法の名達らのHPLC/ELSD法で、測定した[特許文献1]。
(3)上記結果の[mg/100g胸肉]での一覧表記
 TL(総脂質):1.8質量%、TPL(総リン脂質):0.7質量%
PL-PE(エタノールアミン型PLs):61、PE(フォスファチジルエタノールアミン):44、PL-PC(コリン型PLs):124、PC(フォスファチジルコリン):276、SM(スフィンゴミエリン):32
(4)胸肉特異的リン脂質の構成比
1)PLs;[エタノールアミン型]:[コリン型]=1:2
2)ジアシルグリセロリン脂質;[エタノールアミン型]:[コリン型]=1:6.3
3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:1.7
4)[総グリセロリン脂質]:[総スフィンゴミエリン]=16:1
(1) Fractionation of total lipid The total lipid extracted, distributed and separated by the Folch method was 1.8% by mass.
(2) Phospholipid profile assay Measurement was carried out by HPLC / ELSD method of Nana et al.
(3) List of the above results in [mg / 100 g breast] TL (total lipid): 1.8% by mass, TPL (total phospholipid): 0.7% by mass
PL-PE (ethanolamine type PLs): 61, PE (phosphatidylethanolamine): 44, PL-PC (choline type PLs): 124, PC (phosphatidylcholine): 276, SM (sphingomyelin): 32
(4) Composition ratio of breast-specific phospholipid 1) PLs; [ethanolamine type]: [choline type] = 1: 2
2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: 6.3
3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: 1.7
4) [Total glycerophospholipid]: [Total sphingomyelin] = 16: 1
調製例2
[複合脂質から精製PLsの調製]
1.廃鶏皮剥ぎ兜の複合脂質から精製PLsの調製
 上記のPLs含有リン脂質(複合脂質)20gを、ホスホリパーゼA1(三菱化学フーズ)溶液400ml(10mg/ml 0.1Mクエン酸-塩酸バッファー)中に分散させ、窒素ガス充填下50℃で2時間撹拌した。氷冷下、2倍容量のヘキサンを加えて2回撹拌、分配し、上層を回収して濃縮乾固した。更に、乾固物にアセトンを60ml加えて撹拌、遠心し、沈殿を回収する操作を2回繰り返した。
Preparation Example 2
[Preparation of purified PLs from complex lipids]
1. Preparation of Purified PLs from Waste Chicken Skin Lipid Complex Lipid 20 g of the above PLs-containing phospholipid (complex lipid) was added to 400 ml of phospholipase A1 (Mitsubishi Chemical Foods) solution (10 mg / ml 0.1 M citric acid-hydrochloric acid buffer). The mixture was dispersed and stirred at 50 ° C. for 2 hours under nitrogen gas filling. Under ice cooling, 2 volumes of hexane was added, and the mixture was stirred and distributed twice. The upper layer was collected and concentrated to dryness. Furthermore, the operation of adding 60 ml of acetone to the dried product, stirring and centrifuging, and collecting the precipitate was repeated twice.
 更に、該沈殿にヘキサン/アセトン(7:3)60mlを加えて撹拌、遠心し、液層を回収した。この液層を濃縮乾固した後、ヘキサン/アセトン(1:1)240mlを加えて分液ロートに移し、水36mlを添加して撹拌、分配した。下層を捨て、上層にアセトン/水(5:3)96mlを加えて撹拌・分配した。上層を回収し、速やかに減圧乾燥して鶏皮剥ぎ兜由来の精製PLsを得た。
[廃鶏皮剥ぎ兜由来の精製PLsの純度の検定]
 名達らの手法([特許文献1])に準じて純度検定を行った。純度は93.6質量%であった。
Furthermore, 60 ml of hexane / acetone (7: 3) was added to the precipitate, followed by stirring and centrifugation, and the liquid layer was recovered. The liquid layer was concentrated to dryness, 240 ml of hexane / acetone (1: 1) was added and transferred to a separatory funnel, and 36 ml of water was added, stirred and distributed. The lower layer was discarded, and 96 ml of acetone / water (5: 3) was added to the upper layer and stirred and distributed. The upper layer was collected and quickly dried under reduced pressure to obtain purified PLs derived from chicken skin peeler.
[Assessment of purity of purified PLs from waste chicken skin peeler]
Purity test was performed according to the technique of Nana et al. ([Patent Document 1]). The purity was 93.6% by mass.
2.廃鶏生ガラの複合脂質から精製PLsの調製
 上記のプラズマローゲン含有リン脂質20gを、ホスホリパーゼA1(三菱化学フーズ)溶液400ml(10mg/ml 0.1Mクエン酸-塩酸バッファー)中に分散させ、窒素ガス充填下50℃で2時間撹拌した。氷冷下、2倍容量のヘキサンを加えて2回撹拌、分配し、上層を回収して濃縮乾固した。更に、乾固物にアセトンを60ml加えて撹拌、遠心し、沈殿を回収する操作を2回繰り返した。更に、該沈殿にヘキサン/アセトン(7:3)60mlを加えて撹拌、遠心し、液層を回収した。
2. Preparation of purified PLs from waste chicken gull complex lipid 20 g of the above plasmalogen-containing phospholipid was dispersed in 400 ml of phospholipase A1 (Mitsubishi Chemical Foods) solution (10 mg / ml 0.1 M citric acid-hydrochloric acid buffer), and nitrogen was added. It stirred at 50 degreeC under gas filling for 2 hours. Under ice cooling, 2 volumes of hexane was added, and the mixture was stirred and distributed twice. The upper layer was collected and concentrated to dryness. Furthermore, the operation of adding 60 ml of acetone to the dried product, stirring and centrifuging, and collecting the precipitate was repeated twice. Furthermore, 60 ml of hexane / acetone (7: 3) was added to the precipitate, followed by stirring and centrifugation, and the liquid layer was recovered.
 この液層を濃縮乾固した後、ヘキサン/アセトン(1:1)240mlを加えて分液ロートに移し、水36mlを添加して撹拌、分配した。下層を捨て、上層にアセトン/水(5:3)96mlを加えて撹拌・分配した。上層を回収し、速やかに減圧乾燥して廃鶏生ガラ由来の精製PLsを得た。
[廃鶏生ガラ由来の精製PLsの純度の検定]
 名達らの手法に準じて純度検定を行った。純度は94.3質量%であった。
The liquid layer was concentrated to dryness, 240 ml of hexane / acetone (1: 1) was added and transferred to a separatory funnel, and 36 ml of water was added, stirred and distributed. The lower layer was discarded, and 96 ml of acetone / water (5: 3) was added to the upper layer and stirred and distributed. The upper layer was collected and quickly dried under reduced pressure to obtain purified PLs derived from raw chicken waste.
[Assessment of Purity of Purified PLs from Waste Raw Chicken]
Purity test was performed according to the method of Nana et al. The purity was 94.3% by mass.
3.廃鶏腸の複合脂質から精製PLsの調製
 上記のPLs含有リン脂質20gを、ホスホリパーゼA1(三菱化学フーズ)溶液400ml(10mg/ml 0.1Mクエン酸-塩酸バッファー)中に分散させ、窒素ガス充填下50℃で2時間撹拌した。氷冷下、2倍容量のヘキサンを加えて2回撹拌、分配し、上層を回収して濃縮乾固した。更に、乾固物にアセトンを60ml加えて撹拌、遠心し、沈殿を回収する操作を2回繰り返した。更に、該沈殿にヘキサン/アセトン(7:3)60mlを加えて撹拌、遠心し、液層を回収した。
3. Preparation of purified PLs from waste chicken intestinal complex lipid 20 g of the above-mentioned PLs-containing phospholipid was dispersed in 400 ml of phospholipase A1 (Mitsubishi Chemical Foods) solution (10 mg / ml 0.1 M citric acid-hydrochloric acid buffer) and filled with nitrogen gas The mixture was stirred at 50 ° C. for 2 hours. Under ice cooling, 2 volumes of hexane was added, and the mixture was stirred and distributed twice. The upper layer was collected and concentrated to dryness. Furthermore, the operation of adding 60 ml of acetone to the dried product, stirring and centrifuging, and collecting the precipitate was repeated twice. Furthermore, 60 ml of hexane / acetone (7: 3) was added to the precipitate, followed by stirring and centrifugation, and the liquid layer was recovered.
 この液層を濃縮乾固した後、ヘキサン/アセトン(1:1)240mlを加えて分液ロートに移し、水36mlを添加して撹拌、分配した。下層を捨て、上層にアセトン/水(5:3)96mlを加えて撹拌・分配した。上層を回収し、速やかに減圧乾燥して廃鶏腸由来の精製PLsを得た。
[廃鶏の腸由来の精製プラズマローゲンの純度の検定]
 名達らの手法に準じて純度検定を行った。純度は91質量%であった。
The liquid layer was concentrated to dryness, 240 ml of hexane / acetone (1: 1) was added and transferred to a separatory funnel, and 36 ml of water was added, stirred and distributed. The lower layer was discarded, and 96 ml of acetone / water (5: 3) was added to the upper layer and stirred and distributed. The upper layer was collected and quickly dried under reduced pressure to obtain purified PLs derived from waste chicken intestine.
[Purification of purified plasmalogen derived from the intestines of waste chicken]
Purity test was performed according to the method of Nana et al. The purity was 91% by mass.
4.廃鶏砂肝の複合脂質から精製プラズマローゲンの調製
 上記のPLs含有リン脂質20gを、ホスホリパーゼA1(三菱化学フーズ)溶液400ml(10mg/ml 0.1Mクエン酸-塩酸バッファー)中に分散させ、窒素ガス充填下50℃で2時間撹拌した。氷冷下、2倍容量のヘキサンを加えて2回撹拌、分配し、上層を回収して濃縮乾固した。更に、乾固物にアセトンを60ml加えて撹拌、遠心し、沈殿を回収する操作を2回繰り返した。更に、該沈殿にヘキサン/アセトン(7:3)60mlを加えて撹拌、遠心し、液層を回収した。
4). Preparation of purified plasmalogen from complex lipids of waste chicken sand liver Disperse 20 g of the above-mentioned phospholipid containing PLs in 400 ml of phospholipase A1 (Mitsubishi Chemical Foods) solution (10 mg / ml 0.1 M citric acid-hydrochloric acid buffer), and nitrogen It stirred at 50 degreeC under gas filling for 2 hours. Under ice cooling, 2 volumes of hexane was added, and the mixture was stirred and distributed twice. The upper layer was collected and concentrated to dryness. Furthermore, the operation of adding 60 ml of acetone to the dried product, stirring and centrifuging, and collecting the precipitate was repeated twice. Furthermore, 60 ml of hexane / acetone (7: 3) was added to the precipitate, followed by stirring and centrifugation, and the liquid layer was recovered.
 この液層を濃縮乾固した後、ヘキサン/アセトン(1:1)240mlを加えて分液ロートに移し、水36mlを添加して撹拌、分配した。下層を捨て、上層にアセトン/水(5:3)96mlを加えて撹拌・分配した。上層を回収し、速やかに減圧乾燥して廃鶏砂肝由来の精製プラズマローゲン3gを得た。
[鶏砂肝由来の精製PLsの純度の検定]
 名達らの手法に準じて純度検定を行った。純度は95.4質量%であった。
The liquid layer was concentrated to dryness, 240 ml of hexane / acetone (1: 1) was added and transferred to a separatory funnel, and 36 ml of water was added, stirred and distributed. The lower layer was discarded, and 96 ml of acetone / water (5: 3) was added to the upper layer and stirred and distributed. The upper layer was collected and quickly dried under reduced pressure to obtain 3 g of purified plasmalogen derived from waste chicken sand liver.
[Purification of purified PLs derived from chicken gizzards]
Purity test was performed according to the method of Nana et al. The purity was 95.4% by mass.
5.鶏金冠の複合脂質から精製PLsの調製
1)廃鶏由来金冠
 上記のPLs含有リン脂質20gを、ホスホリパーゼA1(三菱化学フーズ)溶液400ml(10mg/ml 0.1Mクエン酸-塩酸バッファー)中に分散させ、窒素ガス充填下50℃で2時間撹拌した。氷冷下、2倍容量のヘキサンを加えて2回撹拌、分配し、上層を回収して濃縮乾固した。更に、乾固物にアセトンを60ml加えて撹拌、遠心し、沈殿を回収する操作を2回繰り返した。更に、該沈殿にヘキサン/アセトン(7:3)60mlを加えて撹拌、遠心し、液層を回収した。
5). Preparation of purified PLs from chicken gold crown complex lipids 1) Gold hen derived from waste chickens 20 g of the above-mentioned PLs-containing phospholipids are dispersed in 400 ml of phospholipase A1 (Mitsubishi Chemical Foods) solution (10 mg / ml 0.1 M citric acid-hydrochloric acid buffer). The mixture was stirred at 50 ° C. for 2 hours under nitrogen gas filling. Under ice cooling, 2 volumes of hexane was added, and the mixture was stirred and distributed twice. The upper layer was collected and concentrated to dryness. Furthermore, the operation of adding 60 ml of acetone to the dried product, stirring and centrifuging, and collecting the precipitate was repeated twice. Furthermore, 60 ml of hexane / acetone (7: 3) was added to the precipitate, followed by stirring and centrifugation, and the liquid layer was recovered.
 この液層を濃縮乾固した後、ヘキサン/アセトン(1:1)240mlを加えて分液ロートに移し、水36mlを添加して撹拌、分配した。下層を捨て、上層にアセトン/水(5:3)96mlを加えて撹拌・分配した。上層を回収し、速やかに減圧乾燥して廃鶏金冠由来の精製PLsを得た。
[廃鶏金冠由来の精製プラズマローゲンの純度の検定]
 名達らの手法に準じて純度検定を行った。純度は95.6質量%であった。
The liquid layer was concentrated to dryness, 240 ml of hexane / acetone (1: 1) was added and transferred to a separatory funnel, and 36 ml of water was added, stirred and distributed. The lower layer was discarded, and 96 ml of acetone / water (5: 3) was added to the upper layer and stirred and distributed. The upper layer was collected and quickly dried under reduced pressure to obtain purified PLs derived from a waste chicken crown.
[Purification of Purified Plasmalogen from Waste Chicken Gold Crown]
Purity test was performed according to the method of Nana et al. The purity was 95.6% by mass.
2)種鶏雌の金冠
 上記に準拠して、種鶏雌金冠由来の精製PLsを調製した。
[廃鶏金冠由来の精製PLsの純度の検定]
 名達らの手法に準じて純度検定を行った。純度は96.7質量%であった。
2) Seedling female gold crown Based on the above, purified PLs derived from seeded chicken female crown was prepared.
[Purity test of purified PLs derived from abandoned chicken crown]
Purity test was performed according to the method of Nana et al. The purity was 96.7% by mass.
6.廃鶏皮の複合脂質から精製PLsの調製
 上記のPLs含有リン脂質20gを、ホスホリパーゼA1(三菱化学フーズ)溶液400ml(10mg/ml 0.1Mクエン酸-塩酸バッファー)中に分散させ、窒素ガス充填下50℃で2時間撹拌した。氷冷下、2倍容量のヘキサンを加えて2回撹拌、分配し、上層を回収して濃縮乾固した。更に、乾固物にアセトンを60ml加えて撹拌、遠心し、沈殿を回収する操作を2回繰り返した。更に、該沈殿にヘキサン/アセトン(7:3)60mlを加えて撹拌、遠心し、液層を回収した。
 この液層を濃縮乾固した後、ヘキサン/アセトン(1:1)240mlを加えて分液ロートに移し、水36mlを添加して撹拌、分配した。下層を捨て、上層にアセトン/水(5:3)96mlを加えて撹拌・分配した。上層を回収し、速やかに減圧乾燥して廃鶏皮由来の精製PLsを得た。
[廃鶏皮由来の精製PLsの純度の検定]
 名達らの手法に準じて純度検定を行った。純度は96.7質量%であった。
6). Preparation of purified PLs from waste chicken skin complex lipids Disperse 20 g of the above PLs-containing phospholipids in 400 ml of phospholipase A1 (Mitsubishi Chemical Foods) solution (10 mg / ml 0.1 M citric acid-hydrochloric acid buffer) and fill with nitrogen gas The mixture was stirred at 50 ° C. for 2 hours. Under ice cooling, 2 volumes of hexane was added, and the mixture was stirred and distributed twice. The upper layer was collected and concentrated to dryness. Furthermore, the operation of adding 60 ml of acetone to the dried product, stirring and centrifuging, and collecting the precipitate was repeated twice. Furthermore, 60 ml of hexane / acetone (7: 3) was added to the precipitate, followed by stirring and centrifugation, and the liquid layer was recovered.
The liquid layer was concentrated to dryness, 240 ml of hexane / acetone (1: 1) was added and transferred to a separatory funnel, and 36 ml of water was added, stirred and distributed. The lower layer was discarded, and 96 ml of acetone / water (5: 3) was added to the upper layer and stirred and distributed. The upper layer was collected and quickly dried under reduced pressure to obtain purified PLs derived from waste chicken skin.
[Assessment of Purity of Purified PLs from Waste Chicken Skin]
Purity test was performed according to the method of Nana et al. The purity was 96.7% by mass.
7.廃鶏ムネ肉の複合脂質から精製PLsの調製
上記のPLs含有リン脂質(複合脂質)20gを、ホスホリパーゼA1(三菱化学フーズ)溶液400ml(10mg/ml 0.1Mクエン酸-塩酸バッファー)中に分散させ、窒素ガス充填下50℃で2時間撹拌した。氷冷下、2倍容量のヘキサンを加えて2回撹拌、分配し、上層を回収して濃縮乾固した。更に、乾固物にアセトンを60ml加えて撹拌、遠心し、沈殿を回収する操作を2回繰り返した。
 更に、該沈殿にヘキサン/アセトン(7:3)60mlを加えて撹拌、遠心し、液層を回収した。この液層を濃縮乾固した後、ヘキサン/アセトン(1:1)240mlを加えて分液ロートに移し、水36mlを添加して撹拌、分配した。下層を捨て、上層にアセトン/水(5:3)96mlを加えて撹拌・分配した。上層を回収し、速やかに減圧乾燥して鶏ムネ肉由来の精製PLsを得た。
[廃鶏ムネ肉由来の精製プラズマローゲンの純度の検定]
 名達らの手法([特許文献1])に準じて純度検定を行った。純度は94質量%であった。
7). Preparation of purified PLs from waste chicken breast complex lipid Disperse 20 g of the above PLs-containing phospholipid (complex lipid) in 400 ml of phospholipase A1 (Mitsubishi Chemical Foods) solution (10 mg / ml 0.1 M citric acid-hydrochloric acid buffer). The mixture was stirred at 50 ° C. for 2 hours under nitrogen gas filling. Under ice cooling, 2 volumes of hexane was added, and the mixture was stirred and distributed twice. The upper layer was collected and concentrated to dryness. Furthermore, the operation of adding 60 ml of acetone to the dried product, stirring and centrifuging, and collecting the precipitate was repeated twice.
Furthermore, 60 ml of hexane / acetone (7: 3) was added to the precipitate, followed by stirring and centrifugation, and the liquid layer was recovered. The liquid layer was concentrated to dryness, 240 ml of hexane / acetone (1: 1) was added and transferred to a separatory funnel, and 36 ml of water was added, stirred and distributed. The lower layer was discarded, and 96 ml of acetone / water (5: 3) was added to the upper layer and stirred and distributed. The upper layer was collected and quickly dried under reduced pressure to obtain purified PLs derived from chicken fillet.
[Purification of purified plasmalogen derived from waste chicken fillet]
Purity test was performed according to the technique of Nana et al. ([Patent Document 1]). The purity was 94% by mass.
調製例3
[ω-3HUFA誘導体含有飼料で飼養された産卵成鶏の作出とその部位特異的な構成比を有し且つω-3HUFA結合型のPLsを含有するリン脂質(複合脂質)の調製]
~飼養条件~
a.産卵鶏種と飼養羽数;ジュリア30羽
b.同上の日齢;700日齢
c.同上の平均体重;1.8kg
d.ω-3HUFA誘導体含有飼料;DHA-TG25%(EPA-TG6%)含有カツオ油5%添加の市販産卵鶏用飼料(コーン62%,植物油20%,動物基本飼料6%,その他12%)
e.同上投与期間;4週間
f.飼育環境;ケージ飼育
g.屠殺日齢;735日齢
h.飼養終了後の結果;
 [ω-3HUFA移行組織・部位の複合脂質のリン脂質のプロファイル解析とその精製PLs結合DHA比率の検定]
Preparation Example 3
Production of laying hens fed with ω-3HUFA derivative-containing feed and preparation of phospholipids (composite lipids) having site-specific composition ratios and containing ω-3HUFA-binding PLs
-Feeding conditions-
a. Laying hen species and number of flocks; 30 Julia b. Same as above; 700 days old c. Average weight as above; 1.8kg
d. ω-3HUFA derivative-containing feed; DHA-TG 25% (EPA-TG 6%)-containing bonito oil 5% commercial egg-laying chicken feed (corn 62%, vegetable oil 20%, animal basic feed 6%, others 12%)
e. Administration period as above; 4 weeks f. Rearing environment; cage rearing g. Slaughter day; 735 days h. Results after breeding;
[Profile analysis of phospholipids of complex lipids in ω-3HUFA transitioning tissue / site and assay of its purified PLs-bound DHA ratio]
1.皮剥ぎ兜
1)各脂質の分別; 総脂質:26.5質量%  総リン脂質:0.6質量%
2)リン脂質のプロファイル
(1)HPLC/ELSD法に依った。
(2)プロファイルをmg/100g(兜)として下記に記載した。
 PL-PE:114、PE:43、PL-PC:54、PC:276、SM:74
1. Skin peeling 1) Separation of each lipid; Total lipid: 26.5% by mass Total phospholipid: 0.6% by mass
2) Phospholipid profile (1) Relyed on HPLC / ELSD method.
(2) The profile is described below as mg / 100 g (兜).
PL-PE: 114, PE: 43, PL-PC: 54, PC: 276, SM: 74
3)皮剥ぎ兜のPLsの結合DHAの検定
(1)PLsの調製
 名達らの手法に倣って調製し、得られたPLsの純度は94.6質量%(内訳、PL-PC:30.4%、PL-PE:64.2%)であった。
(2)PLsの脂肪酸組成解析
 上記PLsを常法でメチルエステル化し、脂肪酸組成分析を実施した。PLsのSN-2結合脂肪酸中のDHAの構成比は64%であった。
3) PHA binding DHA assay (1) Preparation of PLs The purity of PLs obtained by following the technique of Nana et al. Was 94.6% by mass (breakdown, PL-PC: 30. 4%, PL-PE: 64.2%).
(2) Fatty acid composition analysis of PLs The PLs were methyl esterified by a conventional method, and fatty acid composition analysis was performed. The composition ratio of DHA in the SN-2-binding fatty acid of PLs was 64%.
2.生ガラ
1)各脂質の分別; 総脂質:14質量%  総リン脂質:0.73質量%
2)リン脂質のプロファイル
(1)HPLC/ELSD法に依った。
(2)プロファイルをmg/100g(生ガラ)として下記に記載した。
 PL-PE:164、PE:119、PL-PC:46、PC:283、SM:60
3)生ガラのPLsの結合DHAの検定
(1)プラズマローゲンの調製
 名達らの手法に倣って調製し、得られたPLsの純度は94.4質量%(内訳、PL-PC:20.8%、PL-PE:73.6%)であった。
(2)PLsの脂肪酸組成解析
 上記PLsを常法でメチルエステル化し、脂肪酸組成分析を実施した。PLsのSN-2結合脂肪酸中のDHAの構成比は69%であった。
2. Raw Gala 1) Separation of each lipid; Total lipid: 14% by mass Total phospholipid: 0.73% by mass
2) Phospholipid profile (1) Relyed on HPLC / ELSD method.
(2) The profile is described below as mg / 100 g (raw glass).
PL-PE: 164, PE: 119, PL-PC: 46, PC: 283, SM: 60
3) Assay of bound DHA of raw rat PLs (1) Preparation of plasmalogen The purity of PLs obtained by following the method of Nara et al. Was 94.4% by mass (breakdown, PL-PC: 20. 8%, PL-PE: 73.6%).
(2) Fatty acid composition analysis of PLs The PLs were methyl esterified by a conventional method, and fatty acid composition analysis was performed. The composition ratio of DHA in the SN-2-binding fatty acid of PLs was 69%.
3.腸
1)各脂質の分別; TL:32%  TPL:1%
2)リン脂質のプロファイル
(1)HPLC/ELSD法に依った。
(2)プロファイルをmg/100g(腸)として下記に記載した。
 PL-PE:186、PE:88、PL-PC:16、PC:379、SM:86
3)腸のPLsの結合DHAの検定
(1)PLsの調製
 名達らの手法に倣って調製し、得られたPLsの純度は92.4質量%(内訳、PL-PC:7.3%、PL-PE:85.1%)であった。
(2)PLsの脂肪酸組成解析
 上記PLsを常法でメチルエステル化し、脂肪酸組成分析を実施した。PLsのSN-2結合脂肪酸中のDHAの構成比は70%であった。
3. Intestine 1) Separation of each lipid; TL: 32% TPL: 1%
2) Phospholipid profile (1) Relyed on HPLC / ELSD method.
(2) The profile is described below as mg / 100 g (intestine).
PL-PE: 186, PE: 88, PL-PC: 16, PC: 379, SM: 86
3) Assay of bound DHA of intestinal PLs (1) Preparation of PLs The purity of PLs obtained by following the method of Nara et al. Was 92.4% by mass (breakdown, PL-PC: 7.3% , PL-PE: 85.1%).
(2) Fatty acid composition analysis of PLs The PLs were methyl esterified by a conventional method, and fatty acid composition analysis was performed. The composition ratio of DHA in the SN-2-binding fatty acid of PLs was 70%.
4.砂肝
1)各脂質の分別; 総脂質:7.9質量%  総リン脂質:0.9質量%
2)リン脂質のプロファイル
(1)HPLC/ELSD法に依った。
(2)プロファイルをmg/100g(砂肝)として下記に記載した。
 PL-PE:122、PE:91、PL-PC:25、PC:255、SM:118
3)砂肝のPLsの結合DHAの検定
(1)プラズマローゲンの調製
 名達らの手法に倣って調製し、得られたPLsの純度は95質量%(内訳、PL-PC:16.2%、PL-PE:78.8%)であった。
(2)PLsの脂肪酸組成解析
 上記PLsを常法でメチルエステル化し、脂肪酸組成分析を実施した。PLsのSN-2結合脂肪酸中のDHAの構成比は69%であった。
4). Sand liver 1) Separation of each lipid; Total lipid: 7.9% by mass Total phospholipid: 0.9% by mass
2) Phospholipid profile (1) Relyed on HPLC / ELSD method.
(2) The profile was described below as mg / 100 g (gizzard).
PL-PE: 122, PE: 91, PL-PC: 25, PC: 255, SM: 118
3) Assay of bound DHA of PLs in sand liver (1) Preparation of plasmalogen The purity of PLs obtained by following the method of Nana et al. Was 95% by mass (breakdown, PL-PC: 16.2% , PL-PE: 78.8%).
(2) Fatty acid composition analysis of PLs The PLs were methyl esterified by a conventional method, and fatty acid composition analysis was performed. The composition ratio of DHA in the SN-2-binding fatty acid of PLs was 69%.
5.金冠
[産卵成鶏]
1)各脂質の分別; 総脂質:31質量%  総リン脂質:9.5質量%
2)リン脂質のプロファイル
(1)HPLC/ELSD法に依った。
(2)プロファイルをmg/100g(金冠)として下記に記載した。
 PL-PE:220、PE:1574、PL-PC:0、PC:7,542、SM:145
3)金冠のPLsの結合DHAの検定
(1)PLsの調製
 名達らの手法に倣って調製し、得られたPLsの純度は96質量%(内訳、PL-PC:0%、PL-PE:96%)であった。
(2)PLsの脂肪酸組成解析
 上記PLsを常法でメチルエステル化し、脂肪酸組成分析を実施した。PLsのSN-2結合脂肪酸中のDHAの構成比は69%であった。
5). Gold crown [Growing chicken]
1) Separation of each lipid; Total lipid: 31% by mass Total phospholipid: 9.5% by mass
2) Phospholipid profile (1) Relyed on HPLC / ELSD method.
(2) The profile is described below as mg / 100 g (gold crown).
PL-PE: 220, PE: 1574, PL-PC: 0, PC: 7,542, SM: 145
3) Assay for binding DHA of PLs in gold crown (1) Preparation of PLs The purity of PLs obtained by following the method of Nana et al. Was 96% by mass (breakdown, PL-PC: 0%, PL-PE : 96%).
(2) Fatty acid composition analysis of PLs The PLs were methyl esterified by a conventional method, and fatty acid composition analysis was performed. The composition ratio of DHA in the SN-2-binding fatty acid of PLs was 69%.
[種鶏雌]
1)各脂質の分別; 総脂質:39質量%  総リン脂質:12.2質量%
2)リン脂質のプロファイル
(1)HPLC/ELSD法に依った。
(2)プロファイルをmg/100g(金冠)として下記に記載した。
 PL-PE:551、PE:2、238、PL-PC:0、PC:10,592、SM:339
3)金冠のPLsの結合DHAの検定
(1)PLsの調製
 名達らの手法に倣って調製し、得られたPLsの純度は97質量%(内訳、PL-PC:0%、PL-PE:97%)であった。
(2)PLsの脂肪酸組成解析
 上記PLsを常法でメチルエステル化し、脂肪酸組成分析を実施した。PLsのSN-2結合脂肪酸中のDHAの構成比は70%であった。
[Seedling female]
1) Separation of each lipid; Total lipid: 39% by mass Total phospholipid: 12.2% by mass
2) Phospholipid profile (1) Relyed on HPLC / ELSD method.
(2) The profile is described below as mg / 100 g (gold crown).
PL-PE: 551, PE: 2, 238, PL-PC: 0, PC: 10, 592, SM: 339
3) Binding DHA assay of gold crown PLs (1) Preparation of PLs The purity of PLs obtained by following the method of Nana et al. Was 97% by mass (breakdown, PL-PC: 0%, PL-PE : 97%).
(2) Fatty acid composition analysis of PLs The PLs were methyl esterified by a conventional method, and fatty acid composition analysis was performed. The composition ratio of DHA in the SN-2-binding fatty acid of PLs was 70%.
6.皮(表皮)
1)各脂質の分別; 総脂質:31質量%  総リン脂質:9.5質量%
2)リン脂質のプロファイル
(1)HPLC/ELSD法に依った。
(2)プロファイルをmg/100g(皮)として下記に記載した。
 PL-PE:58、PE:21、PL-PC:17、PC:95、SM:55
3)皮のPLsの結合DHAの検定
(1)PLsの調製
 名達らの手法に倣って調製し、得られたPLsの純度は96質量%(内訳、PL-PC:21.8%、PL-PE:74.2%)であった。
(2)PLsの脂肪酸組成解析
 上記PLsを常法でメチルエステル化し、脂肪酸組成分析を実施した。PLsのSN-2結合脂肪酸中のDHAの構成比は67%であった。
6). Skin (skin)
1) Separation of each lipid; Total lipid: 31% by mass Total phospholipid: 9.5% by mass
2) Phospholipid profile (1) Relyed on HPLC / ELSD method.
(2) The profile is described below as mg / 100 g (skin).
PL-PE: 58, PE: 21, PL-PC: 17, PC: 95, SM: 55
3) Assay for binding DHA of skin PLs (1) Preparation of PLs The purity of PLs obtained by following the method of Nara et al. Was 96% by mass (breakdown, PL-PC: 21.8%, PL -PE: 74.2%).
(2) Fatty acid composition analysis of PLs The PLs were methyl esterified by a conventional method, and fatty acid composition analysis was performed. The composition ratio of DHA in the SN-2-binding fatty acid of PLs was 67%.
7.胸肉
(1)各脂質の分別; TL:1.9%、TPL:0.8%
(2)リン脂質のプロファイル
1)HPLC/ELSD法に依った。
2)プロファイルをmg/100g(胸肉)として下記に記載した。
 PL-PE:67、PE:44、PL-PC:136、PC:276、SM:32
(3)胸肉のPLsの結合DHAの検定
1)精製PLsの調製
 名達らの手法に倣って調製し、得られたPLsの純度は95.4質量%(内訳、PL-PC:36.8%、PL-PE:58.6%)であった。
2)PLsの脂肪酸組成解析
 上記PLsを常法でメチルエステル化し、脂肪酸組成分析を実施した。PLsのSN-2結合脂肪酸中のDHAの構成比は65%であった。
7). Breast (1) Fractionation of each lipid; TL: 1.9%, TPL: 0.8%
(2) Phospholipid profile 1) Dependent on HPLC / ELSD method.
2) The profile was described below as mg / 100 g (breast).
PL-PE: 67, PE: 44, PL-PC: 136, PC: 276, SM: 32
(3) Assay for Bind DHA of PLs of Breast 1) Preparation of Purified PLs The purity of PLs prepared by following the method of Nara et al. Was 95.4% by mass (breakdown, PL-PC: 36. 8%, PL-PE: 58.6%).
2) Fatty acid composition analysis of PLs The above PLs was methyl esterified by a conventional method, and fatty acid composition analysis was performed. The composition ratio of DHA in the SN-2-binding fatty acid of PLs was 65%.
8.鶏卵の卵黄
1)各脂質の分別; 総脂質:32.1質量% 総リン脂質:9.8質量%
2)リン脂質のプロファイル
(1)HPLC/ELSD法に依った。
(2)プロファイルをmg/100g(金冠)として下記に記載した。
 PL-PE:100、PE:1,624、PL-PC:5、PC:7,942、SM:133
3)金冠のPLsの結合DHAの検定
(1)PLsの調製
 名達らの手法に倣って調製し、得られたPLsの純度は97質量%(内訳、PL-PC:5%、PL-PE:92%)であった。
(2)PLsの脂肪酸組成解析
 上記PLsを常法でメチルエステル化し、脂肪酸組成分析を実施した。PLsのSN-2結合脂肪酸中のDHAの構成比は75%であった。
8). Egg yolk of chicken egg 1) Separation of each lipid; Total lipid: 32.1% by mass Total phospholipid: 9.8% by mass
2) Phospholipid profile (1) Relyed on HPLC / ELSD method.
(2) The profile is described below as mg / 100 g (gold crown).
PL-PE: 100, PE: 1,624, PL-PC: 5, PC: 7, 942, SM: 133
3) Assay for binding DHA of PLs in gold crown (1) Preparation of PLs The purity of PLs obtained by following the method of Nara et al. Was 97% by mass (breakdown, PL-PC: 5%, PL-PE : 92%).
(2) Fatty acid composition analysis of PLs The PLs were methyl esterified by a conventional method, and fatty acid composition analysis was performed. The composition ratio of DHA in the SN-2-binding fatty acid of PLs was 75%.
調製例4
[卵黄由来のPLs含有リン脂質(複合脂質)の抽出分離]
 生卵黄100gにエタノール20gを混合して室温に10分間放置後、更に、20%含水エタノール120gを加えて撹拌する。これを2000rpm、5分間遠心分離すると、上層から黄色透明な卵黄油相、黄白色の複合脂質乳化相、殆ど白色の卵黄蛋白沈殿の3相に分離する。卵黄油相と乳化相を分け、沈殿相を20%含水エタノール50gで抽出し、同様に遠心分離して、上澄を前記乳化相と合わせて減圧下濃縮すると黄色の卵黄複合脂質11.5g(アセトン不溶部80%)が得られた。
Preparation Example 4
[Extraction and separation of egg yolk-derived PLs-containing phospholipids (complex lipids)]
100 g of raw egg yolk is mixed with 20 g of ethanol and allowed to stand at room temperature for 10 minutes, and then 120 g of 20% aqueous ethanol is added and stirred. When this is centrifuged at 2000 rpm for 5 minutes, it is separated from the upper layer into three phases: a yellow transparent egg yolk oil phase, a yellow-white complex lipid emulsion phase, and an almost white egg yolk protein precipitate. The egg yolk oil phase and the emulsified phase are separated, the precipitated phase is extracted with 50 g of 20% aqueous ethanol, centrifuged in the same way, and the supernatant is combined with the emulsified phase and concentrated under reduced pressure to give 11.5 g of yellow egg yolk complex lipid ( Acetone insoluble part 80%) was obtained.
1)脂質の分別
 Folch法で抽出分配分離した総脂質は33.5質量%であった。
2)リン脂質のプロファイル検定
 常法の名達らの手法のHPLC/ELSD法で測定した。
3)上記結果の[mg/100g卵黄]での一覧表記
 TL(総脂質):33.5%  
 TPL(総リン脂質):9.5%  
PLs([PL-PE]+[PL-PC](エタノールアミン型PLs+コリン型PLs)):0
 PE(フォスファチジルエタノールアミン):1,574  
 PC(フォスファチジルコリン):7,542
 SM(スフィンゴミエリン):145
1) Separation of lipids Total lipids extracted and distributed by the Folch method were 33.5% by mass.
2) Phospholipid profile assay The phospholipid profile was measured by the HPLC / ELSD method of Nana et al.
3) List of the above results in [mg / 100g egg yolk] TL (total lipid): 33.5%
TPL (total phospholipid): 9.5%
PLs ([PL-PE] + [PL-PC] (ethanolamine type PLs + choline type PLs)): 0
PE (phosphatidylethanolamine): 1,574
PC (phosphatidylcholine): 7,542
SM (Sphingomyelin): 145
4)卵黄の複合脂質に特異的なリン脂質の構成比
(1)PLs; [エタノールアミン型]:[コリン型]= -
(2)ジアシルグリセロリン脂質; [エタノールアミン型]:[コリン型]=1:4.8
(3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]= -
(4)[総グリセロリン脂質]:[総スフィンゴミエリン]=62.9:1
4) Composition ratio of phospholipids specific to egg yolk complex lipid (1) PLs; [ethanolamine type]: [choline type] =-
(2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: 4.8
(3) [ether glycerophospholipid]: [diacylglycerophospholipid] = −
(4) [Total glycerophospholipid]: [Total sphingomyelin] = 62.9: 1
[種鶏雌の金冠由来のPLs含有リン脂質(複合脂質)の抽出分離]
 金冠100gにエタノール20gを混合して室温に10分間放置後、更に、20%含水エタノール120gを加えて撹拌する。これを2000rpm、5分間遠心分離すると、上層から黄色透明なっ金冠油相、黄白色の複合脂質乳化相、殆ど白色の卵黄蛋白沈殿の3相に分離する。金冠油相と乳化相を分け、沈殿相を20%含水エタノール50gで抽出し、同様に遠心分離して、上澄を前記乳化相と合わせて減圧下濃縮すると黄色の金冠複合脂質12.2g(アセトン不溶部80%)が得られた。
[Extraction and separation of PLs-containing phospholipids (composite lipids) derived from female gold crowns]
After mixing 20 g of ethanol with 100 g of the gold crown and allowing to stand at room temperature for 10 minutes, 120 g of 20% aqueous ethanol is further added and stirred. When this is centrifuged at 2000 rpm for 5 minutes, it is separated from the upper layer into three phases of yellow transparent gold crown oil phase, yellowish white complex lipid emulsion phase, and almost white egg yolk protein precipitate. The gold crown oil phase and the emulsified phase are separated, the precipitated phase is extracted with 50 g of 20% aqueous ethanol, centrifuged in the same manner, and the supernatant is combined with the emulsified phase and concentrated under reduced pressure to give 12.2 g of yellow gold crown complex lipid ( Acetone insoluble part 80%) was obtained.
1)脂質の分別
 Folch法で抽出分配分離した総脂質は39.3質量%であった。
2)リン脂質のプロファイル検定
 常法の名達らの手法のHPLC/ELSD法で測定した。
3)上記結果の[mg/100g卵黄]での一覧表記
 TL(総脂質):39.3%  
 TPL(総リン脂質):12.2%  
PLs([PL-PE]+[PL-PC](エタノールアミン型PLs+コリン型PLs)):551
 PE(フォスファチジルエタノールアミン):2、233  
 PC(フォスファチジルコリン):10,592
 SM(スフィンゴミエリン):339
1) Separation of lipid The total lipid extracted and distributed by the Folch method was 39.3% by mass.
2) Phospholipid profile assay The phospholipid profile was measured by the HPLC / ELSD method of Nana et al.
3) List of the above results in [mg / 100 g egg yolk] TL (total lipid): 39.3%
TPL (total phospholipid): 12.2%
PLs ([PL-PE] + [PL-PC] (ethanolamine type PLs + choline type PLs)): 551
PE (phosphatidylethanolamine): 2, 233
PC (phosphatidylcholine): 10,592
SM (Sphingomyelin): 339
4)金冠の複合脂質に特異的なリン脂質の構成比
(1)PLs; [エタノールアミン型]:[コリン型]=1:[~0.1]
(2)ジアシルグリセロリン脂質; [エタノールアミン型]:[コリン型]=1:4.7
(3)[エーテルグリセロリン脂質]:[ジアシルグリセロリン脂質]=1:23
(4)[総グリセロリン脂質]:[総スフィンゴミエリン]=40:1
4) Composition ratio of phospholipids specific to complex lipid of gold crown (1) PLs; [ethanolamine type]: [choline type] = 1: [˜0.1]
(2) Diacylglycerophospholipid; [ethanolamine type]: [choline type] = 1: 4.7
(3) [ether glycerophospholipid]: [diacylglycerophospholipid] = 1: 23
(4) [Total glycerophospholipid]: [Total sphingomyelin] = 40: 1
調製例5
[廃鶏ムネ肉を原料とする2種の生成物の組成]
1.複合脂質組成物;mg/g
  PLs類6~60、非プラズマローゲンリン脂質9.6~84.3、アンセリン0.4~3.6、カルノシン0.07~0.6、遊離アミノ酸0.24~2.4、ビタミンE0.12~1.2、カルニチン0.3~3、コエンザイムQ10
0.12~1.2
2.蛋白・脂質複合化組成物
  蛋白分87.1、複合脂質分1.4、低分子水溶性画分3.2
Preparation Example 5
[Composition of two products made from waste chicken fillet]
1. Complex lipid composition; mg / g
PLs 6-60, non-plasmalogen phospholipids 9.6-84.3, anserine 0.4-3.6, carnosine 0.07-0.6, free amino acids 0.24-2.4, vitamin E0. 12-1.2, carnitine 0.3-3, coenzyme Q10
0.12 to 1.2
2. Protein / lipid complex composition Protein content 87.1, complex lipid content 1.4, low molecular water soluble fraction 3.2
検証例1
1.認知機能及び関連事象に対する鶏由来PLsの及ぼす効果等の測定(検定)例
 当該測定試験用PLsは、下記の様に調製された。
[鶏種とその部位]
  廃鶏処理センターから産卵廃鶏の皮剥ぎ胸肉ミンチを調達した。
[総脂質の調製]
 上記ミンチを外注凍結乾燥し、これをエタノールで常法通り緩慢抽出して胸肉由来総脂質を調製した。
[複合脂質の調製]
 上記総脂質のエタノール溶液に適宜に加水して脱ガム(脱中性脂質)して、複合資質を調製した。
[グリセロリン脂質の調製]
 該複合脂質を常法通りヘキサン/アセトン(7:3)で処理して脱スフィンゴミエリン、精製グリセロリン脂質を調製した。
[高純度PLsの調製]
 常法通り、PLA1酵素でジアシルグリセロリン脂質をリゾ体に変換して、純度90質量%程度のPLsを調製した。
2.経口投与された廃鶏ムネ肉PLsの消化吸収性の検証例

(1)ラットの血中PLsが増加したことに依って、経口投与の有効性が確認された(非特許文献15)。
(2)LPS誘発性中枢神経系炎症モデルマウスの脳内PLs濃度を増加させることに依って、経口投与PLsの脳血液関門からの脳内吸収が確認された(非特許文献8)。
(3)AD患者の血中PLs濃度が増加したことにより、ヒト、就中AD患者に対する経口投与の有効性が検証された(非特許文献16)。
3.廃鶏胸肉PLs認知機能障害の発症抑制(予防)と緩和及び治療効果の検証例
(1)老化モデルラット(SAMP8)の神経細胞が新生されることに依って、廃鶏ムネ肉PLsによる認知機能障害の緩和とその治療効果の可能性が検証された(特許文献7)。
(2)Aβの両側注入モデルラットに対する廃鶏ムネ肉プラズマローゲンによる空間認知学習機能障害の抑制作用発現は、廃鶏ムネ肉PLsの認知機能障害の治療効果の可能性を立証するものである(非特許文献16)。
Verification example 1
1. Example of measurement (assay) of effects of chicken-derived PLs on cognitive function and related events The PLs for measurement test were prepared as follows.
[Chicken species and their parts]
Skinned breast minced minced hens were procured from an abandoned chicken processing center.
[Preparation of total lipids]
The mince was externally freeze-dried and slowly extracted with ethanol in the usual manner to prepare breast-derived total lipids.
[Preparation of complex lipid]
The composite lipid was prepared by appropriately adding water to the total lipid ethanol solution and degumming (de-neutral lipid).
[Preparation of glycerophospholipid]
The complex lipid was treated with hexane / acetone (7: 3) as usual to prepare de-sphingomyelin and purified glycerophospholipid.
[Preparation of high purity PLs]
As usual, diacylglycerophospholipid was converted to a lyso form with PLA1 enzyme to prepare PLs having a purity of about 90% by mass.
2. Example of verification of digestibility and absorption of orally administered waste chicken fillet PLs

(1) The effectiveness of oral administration was confirmed by the increase in blood PLs in rats (Non-patent Document 15).
(2) By increasing the PLs concentration in the brain of LPS-induced central nervous system inflammation model mice, the absorption of orally administered PLs from the brain blood barrier was confirmed (Non-patent Document 8).
(3) The effectiveness of oral administration for humans, especially AD patients, was verified by increasing the blood PLs concentration in AD patients (Non-patent Document 16).
3. Example of suppression (prevention) and alleviation of treatment of cognitive dysfunction of breast chicken breast meat PLs and verification of therapeutic effects (1) Cognition by waste chicken breast PLs due to renewal of neurons in aging model rats (SAMP8) The possibility of alleviating dysfunction and its therapeutic effect was verified (Patent Document 7).
(2) A suppressive effect expression of the spatial cognitive learning dysfunctions by waste chicken breast plasmalogen against either side injection model rat β is to demonstrate the potential therapeutic effects of cognitive dysfunction waste chicken breast PLs (Non-patent document 16).
4.LPS誘発性中枢神経系炎症モデルマウスの炎症症状の緩和作用の検証例(非特許文献8)
1)廃鶏ムネ肉PLsによるミクログリアの活性化抑制は、その中枢神経系炎症を介する認知機能障害の緩和・治療の可能性を立証するものである。
2)廃鶏ムネ肉PLsによる脳内サイトカインのTNFαのm-RNAの増加と脳内IL-2βの発現抑制作用は、廃鶏ムネ肉PLsによる中枢神経系炎症を介する認知機能障害の緩和と治療の可能性を立証するものである。
3)廃鶏ムネ肉PLsによる脳内Aβの蓄積抑制作用は、その中枢神経系炎症を介する認知機能障害の緩和・治療の可能性を立証するものである。
5.腹腔内注射LPS誘発性の中枢神経系炎症モデルマウスの中枢神経系炎症とAβ蓄積の抑制作用の検定([非特許文献8])
1)廃鶏ムネ肉PLsによる中枢神経系グリア細胞の活性化抑制を介する中枢神経系炎症の消炎は、廃鶏ムネ肉PLsの認知機能障害の予防と緩和作用の可能性を立証するものである。
2)廃鶏ムネ肉PLsによる前頭前野及び海馬へのAβ蓄積の抑制作用は、廃鶏ムネ肉PLsのAβ蓄積の抑制作用を介した認知機能障害の抑制効果の可能性を立証するものである。
3)廃鶏ムネ肉PLsはLPSを腹腔内注射して誘発される炎症で惹起するPLsの減少の抑制を介した認知機能障害の抑制効果の可能性を立証するものである。
4)廃鶏ムネ肉PLsは、神経細胞培養系における神経細胞死の抑制を介して、神経細胞死に伴う認知機能障害を直接的に治療する作用を発揮する可能性を立証するものである。(非特許文献9)
5)その他
(1)廃鶏ムネ肉由来複合脂質画分は、その認知機能障害発症危険因子の高血糖及び高脂血の抑制を介して、認知機能障害の発症を遅延させる作用発現の可能性を立証するものである。([非特許文献18])
(2)廃鶏ムネ肉由来複合脂質組成物は、カルノシン食による認知機能低下の抑制を介して認知機能障害を予防及び又は緩和作用発現の可能性を立証するものである。(非特許文献19)
4). Example of verification of the alleviation of inflammatory symptoms in LPS-induced central nervous system inflammation model mice (Non-patent Document 8)
1) Suppression of microglia activation by waste chicken fillet PLs demonstrates the possibility of alleviating and treating cognitive impairment through central nervous system inflammation.
2) Increase of TNFα m-RNA in brain cytokine and suppression of IL-2β expression in brain by waste chicken fillet PLs alleviates and treats cognitive impairment through central nervous system inflammation by waste chicken fillet PLs This proves the possibility.
3) accumulation inhibition in A beta brain by waste chicken breast PLs is to demonstrate the possibility of alleviating or treating cognitive dysfunction through its central nervous system inflammation.
5). Inhibition of central nervous system inflammation and accumulation in a mouse model of central nervous system inflammation induced by intraperitoneal LPS ([Non-patent Document 8])
1) The extinction of central nervous system inflammation through suppression of central nervous system glial cell activation by waste chicken fillet PLs demonstrates the possibility of preventing and alleviating cognitive dysfunction of waste chicken fillet PLs. .
2) inhibitory effect of A beta accumulation in the waste chicken breast PLs according prefrontal and hippocampus, which demonstrates the possibility of inhibiting the effect of cognitive disorders through the inhibitory effect of A beta accumulation of waste chicken breast PLs It is.
3) Waste chicken fillet PLs demonstrates the possibility of an inhibitory effect on cognitive dysfunction through suppression of decrease in PLs caused by inflammation induced by intraperitoneal injection of LPS.
4) Waste chicken fillet PLs demonstrates the possibility of exerting an effect of directly treating cognitive impairment associated with nerve cell death through suppression of nerve cell death in a nerve cell culture system. (Non-patent document 9)
5) Others (1) The composite lipid fraction derived from waste chicken fillet has the potential to exert an action to delay the onset of cognitive dysfunction through the suppression of hyperglycemia and hyperlipidemia, which are risk factors for the development of cognitive dysfunction It is proved. ([Non-Patent Document 18])
(2) The waste chicken fillet-derived complex lipid composition demonstrates the possibility of preventing and / or alleviating cognitive dysfunction through the suppression of cognitive decline caused by the carnosine diet. (Non-patent document 19)
検証例2
1.廃鶏ムネ肉PLsの認知機能障害抑制効能に対応する、鶏由来DHA結合型PLsの認知機能障害の抑制効能が顕著に増大するか否かの検証例
1)PLsのDHAとの結合適性の検証
 PLsはDHAを貯蔵する主要なリン脂質である([非特許文献26])。
2)DHA-PLsの生化学・生理学的特異性の検証
(1)単分子(遊離)では、水系(乳濁)の方がより安定である([非特許文献1])。
(2)複合系(脂質二重層)では、主要な膜構成成分であるため、単分子系より遥かに安定化している。
(3)DHA-PLsは、不安定なビニルエーテル結合に隣接して結合しているバルクな脂肪酸であるDHAによって、ラジカルや活性酸性水等のビニルエーテル結合箇所へのアプローチが立体障害的にブロックされる結果、安定化されると考えられる([非特許文献1])。
(4)グリセロリン脂質のSN-2位に結合している脂肪酸残基は、最も加水分解を受けにくく、消化吸収系も分解を受けずに上手く通過して吸収され、且つPLsも血中に取り込まれることも相俟って、DHA-PLsは効率的に血中に移行するものと判断される。
Verification example 2
1. Verification example of whether or not the suppression effect of cognitive dysfunction of chicken-derived DHA-binding PLs corresponding to the suppression effect of cognitive dysfunction of waste chicken fillet PLs is increased. PLs are the main phospholipids that store DHA ([Non-Patent Document 26]).
2) Verification of biochemical / physiological specificity of DHA-PLs (1) In the case of a single molecule (free), the aqueous system (emulsion) is more stable ([Non-Patent Document 1]).
(2) In a complex system (lipid bilayer), since it is a main membrane constituent, it is far more stable than a monomolecular system.
(3) DHA-PLs sterically hinder the approach to vinyl ether bond sites such as radicals and active acidic water by DHA, which is a bulk fatty acid bonded adjacent to an unstable vinyl ether bond. As a result, it is considered to be stabilized ([Non-Patent Document 1]).
(4) The fatty acid residue bonded to the SN-2 position of glycerophospholipid is the least susceptible to hydrolysis, the digestion absorption system passes well without being decomposed and is absorbed, and PLs are also taken into the blood Therefore, it is determined that DHA-PLs efficiently migrate into the blood.
(5)脳血液関門からの脳内移行性については、DHAはグリセライド構造体では脳内には移行出来ず、リン脂質構造が必須と考えられており、且つPLsはDHAとの結合選択性が大きく(上述)、DHA-PLs構造は脳血液関門通過の最敵分子種形態と言っても過言ではない。
(6)脳内に移行後は、PLs産生系の神経細胞内小胞体ペルオキシソームにアプローチして、DHAがPLs生合成系の律速酵素Far1(fatty
acyl-CoA reductase1)の発現を促進することによって、PLs産生を亢進させる([非特許文献10])。
(7)脳内PLsの濃度増加は、主として中枢神経系炎症の抑制を介して、認知機能障害の発現抑制とその緩和及び治療を促進させる(非特許文献7、非特許文献8、非特許文献10、及び特許文献1)。
以上、その分子内の直接的安定化と認知機能障害の改善・是正に対する相乗効果が相俟って、DHA-PLsは、認知機能の改善・維持・向上に最適な分子種と言うことができる。
(5) Regarding the ability of the brain blood barrier to enter the brain, DHA cannot be transferred into the brain with a glyceride structure, phospholipid structure is considered to be essential, and PLs have binding selectivity with DHA. Largely (described above), it is no exaggeration to say that the DHA-PLs structure is the most likely molecular species form that passes through the blood-brain barrier.
(6) After moving into the brain, DHA is the PLs biosynthetic rate-limiting enzyme Far1 (fatty)
By promoting the expression of acyl-CoA reductase 1), PLs production is enhanced ([Non-Patent Document 10]).
(7) Increase in the concentration of PLs in the brain promotes suppression of cognitive dysfunction expression, mitigation and treatment mainly through suppression of central nervous system inflammation (Non-Patent Document 7, Non-Patent Document 8, Non-Patent Document) 10 and Patent Document 1).
As mentioned above, DHA-PLs can be said to be the most suitable molecular species for improvement, maintenance and improvement of cognitive function due to the combination of direct stabilization within the molecule and the synergistic effect on improvement / correction of cognitive dysfunction. .
検証例3
(1)成年期から予防が必要
1)米国ワシントン大のモリス教授が統括したDIAN研究プロジェクトの画期的成果として、40歳代からAβ及びτ蛋白の脳内蓄積が起こっていることが明らかにされた結果、認知症発症診断時に於いては“末期状態”を来たしているため、該認知症患者に対する治療法が殆ど無いことが明らかされた。
* Dominantly Inherited Alzheimer Network(遺伝性アルツハイマー病ネットワーク):家族性ADの原因遺伝子を持つ可能性が高い家族(100名強)を、AD発症前の状態から長期に追跡することによって、ADへと向かう変化が検出できるか否か、そして症状が現われるどれくらい前から、脳に変化が現れるのを見つけることを目指すもので、2005年にスタートし7年後の2012年に上記の画期的成果が得られた(非特許文献30 Morris, JC. et, al. Clinical and biomarker changes in dominantly Inherited Alzheimer’s disease. N Engl J Med. 2012 Aug 30;367(9)795-804、[非特許文献20][アルツハイマー病を治せ!]
NHKスペシャル取材班著(主婦と生活社 2014))
2)先ずは、AD発症の先駆的症状であるAβの蓄積を抑制することが先決で、該[Aβの蓄積]に連動して起こるτ蛋白のニューロン内凝集([τの縺れ];ニューロン死を誘発)も抑制することが求められる。
3)以上の症状発症は、ミクログリア細胞を“戦闘モード”へと活性化させ、放出された強酸化性因子やサイトカインの攻撃に依り結果的にニューロンを死に至らしめることになり、依って、“ミクログリア活性化”を抑制することが求められる。
Verification example 3
(1) as a breakthrough of DIAN * research project that prevention is necessary 1) Morris professor of Washington University was responsible from adulthood, it is that the brain accumulation of A β and τ protein is happening from 40 years of age As a result, it has been clarified that there is almost no treatment for the patient with dementia because the “terminal state” has been reached at the time of dementia diagnosis.
* Dominantly Inherited Alzheimer Network (heritable Alzheimer's disease network): Going to AD by tracking family members who are likely to have a causative gene of familial AD (over 100 people) from the pre-AD state in the long term The goal is to find out if changes can be detected and how long before the symptoms appear, the change will appear in the brain. Starting in 2005, the above breakthrough results were obtained in 2012 seven years later. (Non-Patent Document 30 Morris, JC. Et, al. Clinical and biomarkers changes in dominant Alzheimer's disease. N Engl J Med. Non-Patent Document 20] [Naose Alzheimer's disease!]
NHK Special Coverage Group (Housewife and Seikatsusha 2014))
2) First, with top priority to suppress the accumulation of a pioneering symptoms of AD onset A beta, said interlock to happen tau in neurons of protein aggregation [A beta accumulation] ([tau tangling]; Inhibition of neuronal death) is also required.
3) The onset of the above symptoms activates microglial cells into the “combat mode” and results in the death of neurons due to the attack of the released strong oxidizing factors and cytokines. It is required to suppress “microglia activation”.
(2)上記脳内異常の是正に寄与する産卵成鶏胸肉PLs(以下、「胸肉PLs」と言う。)の各種作用
1)胸肉PLsは[脳内Aβの蓄積]を抑制する(特許文献第1)。
2)胸肉PLsは脳内ミクログリアの活性化を抑制する(非特許文献8)。
3)胸肉PLsはニューロンアポトーシスを抑制する(非特許文献9)。
4)胸肉PLsは脳内サイトカインのTNFα-mRNA亢進及びIL-2βの発現を抑制することに依ってニューロンの損耗を抑制する(非特許文献8)。
5)胸肉PLsはニューロン新生を促進する(特許文献7)。
 胸肉PLsの上記諸々の作用は、[Aβの蓄積]抑制及びニューロン内凝集[τ蛋白]誘発性細胞死のニューロン新生による補強、の各々を介して、40歳代からの長期間PPLs摂取は有効な予防方法になり得る。
(2) contributes spawning correction of the brain abnormalities adult chickens breast PLs (hereinafter, referred to as "breast PLs".) Various effects 1) breast PLs of suppressing the accumulation in the brain A beta] (Patent Document No. 1).
2) Breast PLs suppress the activation of brain microglia (Non-patent Document 8).
3) Breast PLs suppresses neuronal apoptosis (Non-patent Document 9).
4) Breast PLs suppresses neuronal wear by suppressing TNFα-mRNA up-regulation of brain cytokine and IL-2β expression (Non-patent Document 8).
5) Breast PLs promotes neurogenesis (Patent Document 7).
The various effects of breast PLs are as follows: [A β accumulation] suppression and intraneuronal aggregation [τ protein] -induced cell death augmentation by neurogenesis, long-term PPLs intake from the 40s Can be an effective prevention method.
(3)胸肉PLsの“四安”に付いて;*安心・安全・安定・安価
1)安心
i)胸肉の人類による食経験は永く且つその消費量も著量。
ii)飛翔時に長時間の活動が求められる胸肉は、哺乳類の心筋に相当すると考えられる。
 故に、エネルギー多消費器官であるため、副生高酸化性物質も多く、これを適切に防御する抗酸化系の構築が必然である。この中核を成すのが細胞膜構成成分の強還元性PLsであって、そのために含有量が多いものと考えられる。
iii)上記に依って、PLsは生体内細胞膜構成の重要成分であって、ヒト全リン脂質の実に18%を占める“汎用性”リン脂質である。
iv)PLsは通常、細胞内小胞体[ペルオキシソーム]で産生されるが、加齢とともにその生合成能が低下するので、その補給が求められる。
2)安全
i)胸肉PLsの製造では、一切の化学処理を排し、安全で温和な抽出処理とその精製時に含まれて居る同類のリン脂質群を天然由来の酵素で分解するに留めている。
ii)原料胸肉は、新鮮な産卵成鶏中抜き屠体から分割され、皮剥ぎを施して製造される食用精肉で鶏種・鶏舎・摂取飼料・日齢の記録及び残留農薬と抗生物質・重金属が検定記録されている。
iii)産卵成鶏は国産品。
3)安定
i)食用グレードのトコフェロール中に溶解させて安定化・抗酸化を図り、
ii)これを腸溶性ソフトカプセル化して外販、乃至は、
iii)これを、天然食用成分のみで温和にナノ乳化、
iv)ナノ乳化液を、
(i)ソフトカプセル化、
(ii)所定量を既存食品等に添加、
(iii)賦形剤を加えて噴霧乾燥して粒剤・粉剤化し、
(iv)これを、錠剤化、又は
(v)固形食品等とのドライブレンド。
4)安価
i)日用量が0.5mgと極少量で済むため妥当な原価で提供出来る
ii)上記の安定化で保存安定性が良好であり、原単位の水増しが不要
iii)原料産卵成鶏(国産)は家禽では最も廉価
iv)胸肉は鶏精肉中で最も廉価で、通常は加工用のバルクミンチとして流通
v)胸肉は鶏精肉用部位中で最大の比率で調達性に優れている
(3) Attached to “Yan * ” of breast meat PLs; * Reliable, safe, stable and inexpensive 1) Reliable
i) The human experience of breast meat is long and the consumption is also significant.
ii) Breast meat that requires long-term activity during flight is considered to be equivalent to mammalian myocardium.
Therefore, since it is an energy consuming organ, there are many by-product highly oxidizing substances, and it is inevitable to construct an antioxidant system that appropriately protects them. The core is this strongly reducing PLs, which is a cell membrane component, and is therefore considered to have a high content.
iii) Based on the above, PLs are important components of the cell membrane structure in vivo, and are “generic” phospholipids that account for 18% of all human phospholipids.
iv) PLs are usually produced in the intracellular endoplasmic reticulum [peroxisome], but their biosynthetic ability decreases with age, so their supplementation is required.
2) Safety
i) In the production of breast PLs, all chemical treatments are eliminated, and a safe and mild extraction treatment and similar phospholipid groups contained in the purification are only decomposed with naturally occurring enzymes.
ii) Raw breast meat is edible meat that is divided from freshly laid egg-laying carcasses, and is peeled and manufactured. Heavy metal has been recorded for certification.
iii) Laying eggs are domestic products.
3) Stable
i) Stabilize and antioxidant by dissolving in edible grade tocopherol
ii) Enteric-coated soft capsules for external sales or
iii) This is gently emulsified with only natural edible ingredients,
iv) Nanoemulsion
(I) soft encapsulation,
(Ii) Add predetermined amount to existing foods,
(Iii) Add excipients and spray dry to form granules and powders.
(Iv) Tableting this, or (v) Dry blending with a solid food or the like.
4) Inexpensive
i) Since the daily dose is 0.5 mg, it can be provided at a reasonable cost.
ii) With the above stabilization, the storage stability is good, and it is not necessary to add water to the basic unit
iii) Raw laying hens (domestic) are the cheapest in poultry
iv) Breast is the cheapest chicken meat, usually distributed as bulk minced for processing
v) Breast meat has the highest ratio among chicken meat parts and has excellent procurement
検証例4
[ラビンチュラ類微生物のDHAリン脂質の生産性]
1)沖縄のマングローブ汽水域で採取された微細藻類から分離されたラビンチュラ類微生物12B株含有DHA量は何と21g(全DHA)/100gと桁違いに高く(下記の魚類データ参照)、その全脂肪酸中には、実に50%を超えるDHAが含有されていることが北海道大学の奥山准教授らによって明らかにされた(特許文献16、許文献17)。
(1)魚類の含有DHA(g/可食部100g)(非特許文献29)
1)クロマグロ・トロ;3.2
2)サバ(大西洋産);2.3
3)シロサケ・イクラ;2.0
4)ブリ;1.6
5)サンマ;1.6
Verification example 4
[Productivity of DHA phospholipid of Rabinchura microorganisms]
1) The amount of DHA contained in 12B (total DHA) / 100g of Rabinchura microorganisms isolated from microalgae collected from mangrove brackish waters in Okinawa is an extremely high 21g (total DHA) / 100g (see fish data below) Associate professor Okuyama and others of Hokkaido University revealed that the DHA content actually exceeds 50% (Patent Literature 16, Permissible Literature 17).
(1) Fish-containing DHA (g / edible part 100 g) (Non-patent Document 29)
1) Bluefin tuna Toro; 3.2
2) Mackerel (Atlantic); 2.3
3) White salmon salmon roe; 2.0
4) Yellowtail; 1.6
5) Saury; 1.6
(2)新技術「ブドウ糖飢餓発酵法」によりリン脂質が飛躍的向上、DHA含量は更に増加
 ラビンチュラ類微生物12B株はブドウ糖存在下で発酵すると大量の脂肪を蓄積する。次いで、ブドウ糖飢餓にすることにより蓄積脂肪がリン脂質に変換(13%⇒67%)する結果、DHA含量も増大する。
2)DHAリン脂質の実用化目標
(1)現状(ベンチレベル)DHAリン脂質;培養液(1g/L)の乾燥重量中11%
(2)目標DHAリン脂質;培養液(5-10g/L)の乾燥重量中20%
3)上記発酵培養液及び又はその乾燥物は、ω-3HUFA誘導体として非常に好適
(1)生体内プラズマローゲン産生系のペルオキシソームの活性化
(2)脳血液関門から脳内に容易に移行
(3)脳内DHAの常在型構造
 次に、実施例に基づいて、本発明を具体的に説明する。
(2) Phospholipids are dramatically improved and DHA content is further increased by the new technology “Glucose-starved fermentation method”. The Rabinchura microorganism 12B strain accumulates a large amount of fat when fermented in the presence of glucose. Then, as a result of glucose starvation, the accumulated fat is converted to phospholipid (13% ⇒67%), resulting in an increase in DHA content.
2) Targets for practical use of DHA phospholipid (1) Current status (bench level) DHA phospholipid; 11% of dry weight of culture solution (1 g / L)
(2) Target DHA phospholipid; 20% of the dry weight of the culture solution (5-10 g / L)
3) The fermentation broth and / or its dried product is very suitable as a ω-3HUFA derivative (1) Activation of peroxisomes in the in vivo plasmalogen production system (2) Easily transferred from the brain blood barrier to the brain (3 ) In-situ DHA structure in the brain Next, the present invention will be specifically described based on examples.
実施例1
[産卵廃鶏の卵黄由来の精製プラズマローゲンの調製]
 名達らの方法([特許文献4])に準拠して、95.6質量%純度のプラズマローゲン(PLs)を調製した。
[種鶏雌の卵黄由来の精製PLsの調製]
名達らの方法([特許文献4])に準拠して、96.7質量%純度のPLsを調製した。
Example 1
[Preparation of purified plasmalogen derived from egg yolk of laying hens]
Based on the method of Nana et al. ([Patent Document 4]), plasmalogen (PLs) having a purity of 95.6% by mass was prepared.
[Preparation of purified PLs derived from egg yolk of breeder female]
In accordance with the method of Nana et al. ([Patent Document 4]), PL of 96.7% by mass purity was prepared.
実施例2
[卵黄由来の精製PLsのナノ乳化とその安定性の検定]
 95.6質量%PLsの10質量%δトコフェロール溶液5gを、キラヤサポニン15gを含む水溶液95g中にマグネチックスターラーで撹拌しながら滴下し、濁りがなくなるまで撹拌を続けるとナノ乳化液が得られた。サブミクロンアナライザーで当該ナノ乳化液中の油相粒子の平均粒径を測定した結果、58nmであった。該ナノ乳化液を水で500倍に希釈したものは、透明で、クエン酸を用いてpH4にしても全く変化がなく、95℃で30分間加熱後室温に戻しても、濁りの発生が無く、透明性に変化がなかった。該ナノ乳化希釈液を低温で蒸発乾固させて、上記特許の手法(HPLC/ELSD)でPLsの純度検定を行った結果、94質量%であることが確認された。
Example 2
[Nano-emulsification of purified egg yolk-derived PLs and its stability test]
A nano-emulsion was obtained by adding 5 g of a 10 mass% δ tocopherol solution of 95.6 mass% PLs to 95 g of an aqueous solution containing 15 g of Quillaja saponin while stirring with a magnetic stirrer and continuing stirring until no turbidity occurred. . It was 58 nm as a result of measuring the average particle diameter of the oil phase particle | grains in the said nano emulsion liquid with a submicron analyzer. A solution obtained by diluting the nano-emulsion solution 500 times with water is transparent and has no change even when adjusted to pH 4 with citric acid. There was no change in transparency. The nanoemulsion diluted solution was evaporated to dryness at a low temperature, and the purity of PLs was tested by the method of the above patent (HPLC / ELSD). As a result, it was confirmed to be 94% by mass.
実施例3
[卵黄由来の精製PLsのナノ乳化液の形状変換とその安定性]
1)実施例1で調製した92質量%PLsの0.5質量%ナノ乳化液の噴霧乾燥該ナノ乳化液100gに澱粉加水分解物(例えば、日澱科学(株)製のアミコール6H)30gを溶解させた後、卓上ミニスプレイドライヤー(例えば、ヤマト科学(株)製)を用いて、入口熱風温度110℃、出口温度60℃で噴霧乾燥を行い、92質量%PL-PEを1質量%含有する粉末状製剤が得られた。この粉末状製剤の水100倍希釈液は多少青みを呈するが、透明であった。この水希釈液中の油相粒子の粒度を測定した結果、平均粒径が61nmであった。更に、該水希釈液はクエン酸を用いてpH4にしても全く変化がなく、また、95℃で30分間加熱後、室温に戻しても混濁等の変化がなかった。このナノ乳化希釈液を低温で蒸発乾固させて、上記特許の手法(HPLC/ELSD)でPLsの純度検定を行った結果、90質量%であることが確認された。
Example 3
[Shape conversion and stability of nano-emulsified purified egg yolk derived PLs]
1) Spray drying of 0.5 mass% nanoemulsified liquid of 92 mass% PLs prepared in Example 1 30 g of starch hydrolyzate (for example, Amikol 6H manufactured by Nissho Kagaku Co., Ltd.) was added to 100 g of the nanoemulsified liquid. After dissolving, spray drying using a desktop mini spray dryer (for example, manufactured by Yamato Scientific Co., Ltd.) at an inlet hot air temperature of 110 ° C. and an outlet temperature of 60 ° C. to contain 92% by mass of PL-PE 1% by mass A powdery formulation was obtained. The 100-fold diluted solution of this powdery preparation was slightly bluish but transparent. As a result of measuring the particle size of the oil phase particles in this water dilution, the average particle size was 61 nm. Furthermore, the aqueous dilution did not change at all to pH 4 using citric acid, and did not change such as turbidity when heated to 95 ° C. for 30 minutes and then returned to room temperature. This nanoemulsion diluted solution was evaporated to dryness at a low temperature, and the purity of PLs was tested by the method of the above patent (HPLC / ELSD). As a result, it was confirmed to be 90% by mass.
2)卵黄由来のPL-PE含有ゼリーの調製とその性状
 水8gに乾燥卵白を溶解し、これに上白糖14gを加えて溶解させた。この液に撹拌下、95%PLsの10質量%δトコフェロール溶液120gを添加して均一化させると半透明なゼリー状の可溶化物が得られた。このものを水中に入れると略透明な水溶液が得られた。
2) Preparation and properties of egg yolk-derived PL-PE-containing jelly Dry egg white was dissolved in 8 g of water, and 14 g of super white sugar was added thereto and dissolved. While stirring, 120 g of a 10% by mass δ tocopherol solution of 95% PLs was added and homogenized to obtain a translucent jelly-like solubilized product. When this was put into water, a substantially transparent aqueous solution was obtained.
実施例4
[調製例3で調製した産卵成鶏が生んだ鶏卵から得られたDHA移行卵黄からPLsのDHA結合型PLsの抽出・精製]
 調製例3と同様にして、DHAが移行した卵黄複合脂質を調製した。
Example 4
[Extraction and purification of DHA-bound PLs of PLs from DHA-transferred yolk obtained from eggs laid by laying hens prepared in Preparation Example 3]
In the same manner as in Preparation Example 3, an egg yolk complex lipid to which DHA was transferred was prepared.
実施例5
[DHAが移行した卵黄由来の精製PLsの調製]
 名達らの方法のHPLC/ELSD法([特許文献4])に準拠して、96%純度のDHA結合PLsを含有するPLsを調製した。
Example 5
[Preparation of Purified PLs Derived from Egg Yolk Transferred DHA]
PLs containing 96% pure DHA-bound PLs were prepared based on the HPLC / ELSD method ([Patent Document 4]) of Nana et al.
実施例6
[前項のPLsのDHA結合割合の測定]
 常法に従って、該PLsをメチルエステル化して、脂肪酸組成を測定した。その結果、PLsのSN-2結合脂肪酸中のDHA結合割合(mol%)は75%であることが判明した。
Example 6
[Measurement of DHA binding ratio of PLs in previous paragraph]
According to a conventional method, the PLs was methyl esterified, and the fatty acid composition was measured. As a result, it was found that the DHA binding ratio (mol%) in the SN-2-bound fatty acid of PLs was 75%.
実施例7
[96%純度のDHA結合(75%)型PLsのナノ乳化とその安定性の検定]
 実施例2と同様に行って、ナノ乳化液が得られた。サブミクロンアナライザーで当該ナノ乳化液中の油相粒子の平均粒径を測定した結果、37nmであった。
 該ナノ乳化液を水で500倍に希釈したものは、透明で、クエン酸を用いてpH4にしても全く変化がなく、95℃で30分間加熱後室温に戻しても、濁りの発生がなく、透明性に変化がなかった。該ナノ乳化希釈液を低温で蒸発乾固させて、上記特許の手法(HPLC/ELSD)でPLsの純度検定を行った結果、95質量%であることが確認された。
Example 7
[Nanoemulsification of 96% pure DHA-bound (75%) PLs and its stability test]
In the same manner as in Example 2, a nanoemulsion was obtained. It was 37 nm as a result of measuring the average particle diameter of the oil phase particle in the said nano emulsion liquid with a submicron analyzer.
A solution obtained by diluting the nanoemulsion solution 500 times with water is transparent, and there is no change even when it is adjusted to pH 4 with citric acid. There was no change in transparency. The nanoemulsion diluted solution was evaporated to dryness at a low temperature, and the purity of PLs was tested by the method of the above patent (HPLC / ELSD). As a result, it was confirmed to be 95% by mass.
実施例8
[ナノ乳化液の形状変換とその安定性]
 実施例3に倣って、以下の通り実施した。
1)実施例1で調製した96質量%PLsの0.5質量%ナノ乳化液の噴霧乾燥
 該ナノ乳化液100gに澱粉加水分解物(例えば、日澱科学(株)製のアミコール6H)30gを溶解させた後、卓上ミニスプレイドライヤー(例えば、ヤマト科学(株)製)を用いて、入口熱風温度110℃、出口温度60℃で噴霧乾燥を行い、96質量%PLsを1質量%含有する粉末状製剤が得られた。この粉末状製剤の水100倍希釈液は多少青みを呈するが、透明であった。この水希釈液中の油相粒子の粒度を測定した結果、平均粒径が40nmであった。更に、該水希釈液はクエン酸を用いてpH4にしても全く変化がなく、また、95℃で30分間加熱後、室温に戻しても混濁等の変化がなかった。このナノ乳化希釈液を低温で蒸発乾固させて、上記特許の手法(HPLC/ELSD)でPLsの純度検定を行った結果、94質量%であることが確認された。
Example 8
[Shape conversion of nanoemulsion and its stability]
Following Example 3, it implemented as follows.
1) Spray drying of a 0.5% by mass nanoemulsion solution of 96% by mass PLs prepared in Example 1 To 100 g of the nanoemulsion solution, 30 g of starch hydrolyzate (for example, Amycol 6H manufactured by Nissho Kagaku Co., Ltd.) After dissolving, spray drying using a desktop mini spray dryer (for example, manufactured by Yamato Scientific Co., Ltd.) at an inlet hot air temperature of 110 ° C. and an outlet temperature of 60 ° C., and a powder containing 1% by mass of 96% by mass PLs A shaped formulation was obtained. The 100-fold diluted solution of this powdery preparation was slightly bluish but transparent. As a result of measuring the particle size of the oil phase particles in the diluted water, the average particle size was 40 nm. Furthermore, the aqueous dilution did not change at all to pH 4 using citric acid, and did not change such as turbidity when heated to 95 ° C. for 30 minutes and then returned to room temperature. This nanoemulsion diluted solution was evaporated to dryness at a low temperature, and the purity of PLs was tested by the method of the above patent (HPLC / ELSD). As a result, it was confirmed to be 94% by mass.
2)DHA結合型PLs含有ゼリーの調製とその性状
 水8gに乾燥卵白を溶解し、これに上白糖14gを加えて溶解させた。この液に撹拌下、96%PLsの10質量%δトコフェロール溶液120gを添加して均一化させると半透明なゼリー状の可溶化物が得られた。このものの水100倍希釈液は略透明で、クエン酸を用いてpH4にしても全く変化がなく、また、95℃で30分間加熱後、室温に戻しても混濁等の変化がなかった。このナノ乳化希釈液を低温で蒸発乾固させて、上記特許の手法(HPLC/ELSD)でPLsの純度検定を行った結果、95質量%であることが確認された。
2) Preparation and properties of DHA-bound PLs-containing jelly Dry egg white was dissolved in 8 g of water, and 14 g of sucrose was added thereto and dissolved. When 120 g of a 10% by mass δ tocopherol solution of 96% PLs was added to the solution while stirring, a translucent jelly-like solubilized product was obtained. This 100-fold diluted solution of water was almost transparent, and there was no change even at pH 4 using citric acid, and there was no change in turbidity even after heating at 95 ° C. for 30 minutes and then returning to room temperature. This nanoemulsion diluted solution was evaporated to dryness at a low temperature, and the purity of PLs was tested by the method of the above patent (HPLC / ELSD). As a result, it was confirmed to be 95% by mass.
実施例9
[92質量%PLsとDHA結合割合75mol%の96質量%PLsの安定性比較試験]
1)10質量%δトコフェロール溶液の遮光下密封での50℃放置試験
 含量の半減期比較で、92質量%PLsが平均1週間で半減したのに対し、DHA結合の96質量%PLsは、4週間でも減耗がなかった。
2)10質量%δトコフェロール溶液の0.1質量%ナノ乳化液の遮光下密封で60℃放置試験
 含量の半減期比較で、92質量%PLsが平均5日間で半減したのに対し、DHA結合の96質量%PLsは4週間で殆ど減耗がなかった。
Example 9
[Stability comparison test of 92% by mass PLs and 96% by mass PLs with a DHA bond ratio of 75 mol%]
1) Test at 50 ° C. with 10% by weight δ tocopherol solution sealed under light shielding Compared to half life of content, 92% by weight PLs halved in one week on average, whereas 96% by weight PLs of DHA bond was 4% There was no wear even during the week.
2) 10% δ Tocopherol solution 0.1% by weight nanoemulsion solution sealed under light shielding at 60 ° C standing test Compared with the half-life of content, 92% by weight PLs were halved in an average of 5 days, whereas DHA binding 96% by mass of PLs showed almost no wear after 4 weeks.
実施例10
[脱殻オキアミミールの卵黄改質効果の検討]
 ~試験条件~
・産卵鶏種;ボリスブラウン42週齢56羽、28羽/区
・試験区 ;対照区・試験区
・飼 料 ;市販飼料(2,850kcal/kg,CP17.0%)
      
  試験区 市販飼料85質量% +脱殻オキアミミール15質量%
・飼養期間;1週間
~検体処理と検定~
・産生鶏卵の処理;割卵後、卵黄を分別し、これを凍結乾燥した。エタノールで抽出して脂質画分を分取した。
・脂質画分の脂質検定;ガスクロマトグラフィー及びHPLC/ELSD
 検定項目;EPA、DHA、PLs
~検定結果~
 表1に、検討結果を示した。
Example 10
[Examination of egg yolk modification effect of unshelled krill meal]
~ Test conditions ~
・ Bird bred species; Boris Brown 42-week-old 56 birds, 28 birds / district / test group; control group / test group / feeding;

Test plot 85% by mass of commercial feed + 15% by mass of unshelled krill meal
・ Culture period: 1 week
-Processing of produced egg: After egg breaking, the yolk was separated and freeze-dried. The lipid fraction was separated by extraction with ethanol.
-Lipid assay for lipid fractions; gas chromatography and HPLC / ELSD
Test items: EPA, DHA, PLs
~ Test results ~
Table 1 shows the results of the study.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
~脱殻オキアミミールの添加効果;対照対比~
(1) EPA;0
(2) DHA;3.3倍アップ
(3) PLs;2.5倍アップ
以上、脱殻オキアミミールに依る卵黄の顕著な改質効果が認められた。
-Additive effect of unshelled krill meal; contrast with control-
(1) EPA; 0
(2) DHA: 3.3 times up
(3) PLs: A significant improvement effect of egg yolk by unshelled krill meal was observed by 2.5 times or more.
実施例11
 [廃鶏胸肉由来PLsの認知機能改善効果に関わる臨床試験]
[廃鶏皮剥ぎ胸肉から抽出したPLs含有リン脂質の製造]
1.廃鶏皮剥ぎムネ肉から複合脂質の調製
 調製例1-7に倣って胸肉由来の食用[複合脂質]を調製した。
[複合脂質から精製PLsの調製]
2.廃鶏皮剥ぎムネ肉の食用[複合脂質]から精製PLsの調製
 調製例2-7に倣って精製PLsを調製した。
[臨床試験用の食用[PLs検体]の調製]
 上記調製の[複合脂質]と[精製PLs]を適宜に混合して供試用の食用[PLs検体]を調製した。
[臨床試験]
 厳選した健常日本人を被験者とする食用PLs検体を添加して成るサプリメントの投与による認知機能改善―無作為・二重盲検・プラセボ対照試験―(詳細は、非特許文献21参照)の効果検討臨床試験の実施。
 本試験は、当該臨床試験分野の専門機関である一般財団法人日本臨床試験協会(JACTA;Japan ClicalTrial Association
東京)に委託して実施した。実施期間は2016年4月5日~6月29日の12週間で、ヘルシンキ宣言に基づく倫理的原則を遵守して実施された。年齢40~79歳の健常男性及び健常女性135名を候補として全例から本試験に対する同意書を取得した。
Example 11
[Clinical study on the improvement effect of cognitive function of PLs derived from chicken breast waste]
[Production of PLs-containing phospholipids extracted from waste chicken skins]
1. Preparation of complex lipid from waste chicken skinned meat In accordance with Preparation Example 1-7, an edible [complex lipid] derived from breast meat was prepared.
[Preparation of purified PLs from complex lipids]
2. Preparation of purified PLs from edible [composite lipid] of scraped chicken skin fillet Purified PLs was prepared according to Preparation Example 2-7.
[Preparation of edible [PLs specimen] for clinical trials]
[Compound lipid] and [purified PLs] prepared above were appropriately mixed to prepare a edible [PLs sample] for testing.
[Clinical trial]
Improvement of cognitive function by administration of supplements containing edible PLs specimens selected from healthy Japanese subjects-Randomized, double-blind, placebo-controlled trial (for details, see Non-patent document 21) Conduct clinical trials.
This study is based on the Japan Clinical Trial Association (JACTA), which is a specialized organization in the field of clinical trials.
(Tokyo) The implementation period was 12 weeks from April 5 to June 29, 2016, and was conducted in compliance with ethical principles based on the Declaration of Helsinki. Consents for this study were obtained from all healthy subjects and 135 healthy women aged 40-79 years.
I.供試試料の調製
1)供試食用[PLs検体]の調製
 上記の通り。
2)食用[PLs検体]の添加に依るPLs0.25mg含有ソフトカプセル(以下、「プラズマローゲンEX」と言う。)及びPLs0.50mg含有ソフトカプセル(以下、「プラズマローゲンES」と言う。)用原液の調製
 表1記載の処方に基づきプラズマローゲンEX及びプラズマローゲンESのソフトカプセル用原液を作成した。
3)プラセボのソフトカプセル用原液の調製
 表1記載の処方に基づきプラズマローゲンEX原液から食用[PLs検体]を抜き、澱粉を加えて重量を調整して、プラセボソフトカプセル用原液を作成した。
4)各々の原液のソフトカプセル化
 試験用2種とプラセボ用のソフトカプセルは、各々の外観から区別がつかないカラメル着色した食品用標準ゼラチンを被膜とする楕円球型ソフトカプセルを外部専門メーカーで委託製造作成した。表2に、供試カプセルの仕様を示した。
I. Preparation of test sample 1) Preparation of sample food [PLs specimen] As described above.
2) Preparation of stock solutions for soft capsules containing 0.25 mg of PLs (hereinafter referred to as “plasmalogen EX”) and soft capsules containing 0.50 mg of PLs (hereinafter referred to as “plasmalogen ES”) depending on the addition of edible [PLs specimen]. Based on the formulation shown in Table 1, plasmalogen EX and plasmalogen ES soft capsule stock solutions were prepared.
3) Preparation of placebo soft capsule stock solution Based on the formulation shown in Table 1, edible [PLs sample] was extracted from the plasmalogen EX stock solution, starch was added to adjust the weight, and a placebo soft capsule stock solution was prepared.
4) Soft encapsulation of each undiluted solution Two types of test capsules and placebo soft capsules are produced by consignment manufacturing of oval spherical soft capsules coated with caramel-colored standard gelatin for foods that are indistinguishable from their appearance. did. Table 2 shows the specifications of the test capsules.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
II.被験者の選定
 総勢135名を、モニターバンクのCROee
Inc.(東京)の2016年3月~4月間の自発的登録者の中から書類選考により選別した。
1)選抜基準;
(1)年齢40~79歳の一般的健常日本人男女
(2)認知機能上、完全に正常とは言えなくとも過去に然るべき薬の服用経験がないことが図1の認知機能問診によって明らかにされた者
2)除外基準;54名を除
(1)認知機能疾病の治療中の者
(2)漢方薬を含む薬を服用中の者
(3)妊産婦及び本試験期間中に妊産婦になる恐れのある女性
(4)本試験の被験者として不適格と本試験実行責任者が判断した者
II. Selection of test subjects A total of 135 people, CROee of the monitor bank
Inc. (Tokyo) selected from voluntary registrants between March and April 2016 by document screening.
1) Selection criteria;
(1) General healthy Japanese men and women aged 40 to 79 years (2) Cognitive function interviews in Figure 1 reveal that there is no experience of taking appropriate drugs in the past even though it is not completely normal 2) Exclusion criteria; excluding 54 people (1) Those who are being treated for cognitive dysfunction (2) Those who are taking Chinese medicines (3) Pregnant women and fear of becoming pregnant during this study A woman (4) Person who was judged by the person in charge of this study to be ineligible as a subject of this study
 上記によって、135名から54名が除外された結果、被験者は81名となった。
結果的に、グループA(n=26)、グループB(n=28)、グループC(n=27)の3群に無作為に割り振られた。この際、性別や年齢が片寄らない様に考慮した。
*グループAはプラセボ区
*グループBはテスト-1(0.25mg)区
*グループCはテスト-2(0.5mg)区
 区分けは上記の通りで、被験者は、毎日2粒(朝夕食後1粒ずつ)のソフトカプセルを、暴飲暴食を控えて通常通りの生活を送りながら12週間摂取し、身体的及び物忘れの状態を記載した日記を本試験の監督者に提出した。
As a result of the above, 54 subjects were excluded from 135 people, resulting in 81 subjects.
As a result, they were randomly assigned to three groups, group A (n = 26), group B (n = 28), and group C (n = 27). At this time, consideration was given so that the gender and age were not offset.
* Group A is the placebo group * Group B is the test-1 (0.25 mg) group * Group C is the test-2 (0.5 mg) group Soft capsules) were taken for 12 weeks while living a normal life in preparation for overdrinking and eating, and a diary describing the physical and forgetfulness status was submitted to the supervisor of this study.
III.試験概要
1)試験のスケジュール
 表3に、試験のスケジュールを示した。
III. Test Outline 1) Test Schedule Table 3 shows the test schedule.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
2)MMSE
 図2を参照。最高スコアは30。
3)内田・クレッペリン試験(以下、「U-Kテスト」と言う。)
 簡単な一桁の足し算を一定時間連続して行い、その計算量によって表れた曲線によって「人が計算するときの能力」、「その計算力を発揮するときの特徴」を判定する計算力の検査である。通常、1分間×15回の2セットで行う。
4)PSOL認知機能自己診断テスト
 独自に考案された認知機能性に関する網羅性の高い設問に答える様式で、図3を参照。0から4までの4段階評価で2が基準点(ベースライン)。2を超えると良評価。
5)供試試料(3種ソフトカプセル)の安全性評価
 被験者からの日報告書に記載させて評価した。
6)データ解析法
 本試験では、標本の数を揃えずに、全ての解析結果を用いて実施された。
統計処理値は全てmean±SDで表記した。
 0、6及び12週の測定値の差をペアt検定に用いて統計処理した。同一群内のMMSE,U-Kテスト、及びPSOL認知機能自己診断テストの測定値の比較評価は、ペアt検定を用いて行った。
 スチューデントt検定を用いて、0、6及び12週の測定値とベースライン(Δ0-6週とΔ0-12週)からの乖離値との群間比較を行った。群内被験者のバックグラウンド比較は一方向性平方偏差解析を用いて行った。
 実施時期に伴う変動に付いては、これを調整しなかった。誤記載した被験者は統計処理から完全に除外した。統計処理はスタットセル(Statcel)4とエクセル(Excel)統計を用いたて行った。2標本間の検定統計処理結果は<5%で有意と判定した。
2) MMSE
See FIG. The highest score is 30.
3) Uchida-Kreppelin test (hereinafter referred to as “UK test”)
A simple one-digit addition is continuously performed for a certain period of time, and the calculation ability test that determines "ability when a person calculates" and "characteristics when the calculation ability is demonstrated" by a curve expressed by the amount of calculation. It is. Usually, 2 sets of 1 minute × 15 times are performed.
4) PSOL cognitive function self-diagnosis test Refer to Fig. 3 in the form of answering a highly comprehensive question on cognitive function originally devised. 2 is the reference point (baseline) in a four-step evaluation from 0 to 4. It is good evaluation when it exceeds 2.
5) Safety evaluation of test sample (3 types of soft capsules) The evaluation was made in a daily report from the subjects.
6) Data analysis method In this test, it was carried out using all the analysis results without arranging the number of specimens.
All statistically processed values are expressed in mean ± SD.
The difference between the measured values at 0, 6 and 12 weeks was statistically processed using the paired t test. The comparative evaluation of the measured values of the MMSE, UK test, and PSOL cognitive function self-diagnostic test within the same group was performed using the pair t test.
Using the Student t test, intergroup comparisons were made between the measured values at 0, 6 and 12 weeks and the deviation from baseline (Δ0-6 weeks and Δ0-12 weeks). Background comparison of subjects within the group was performed using unidirectional square deviation analysis.
This was not adjusted for fluctuations associated with the implementation period. Mislisted subjects were completely excluded from statistical processing. Statistical processing was performed using Statcell 4 and Excel statistics. The test statistical processing result between two samples was judged to be significant at <5%.
IV.試験結果
1)被験者の統計情報
 81名を3区に分けで摂取試験がスタートしたが、6名が脱落した。その理由内訳は
体調不良2、突発的仕事都合3、家事都合1で、結局75名が試験を全うした。その内訳は、テストー1;27名、テストー2;23名、プラセボ;25名であるが、年齢と性別及びU-Kテストで有意差はなかった(表3)。
IV. Test results 1) Statistical information of subjects The ingestion test started by dividing 81 people into 3 wards, but 6 people dropped out. The reason is that poor physical condition 2, sudden work convenience 3, housework convenience 1, and 75 people completed the test after all. The breakdown was test-1; 27, test-2; 23, placebo; 25, but there was no significant difference between age, sex and UK test (Table 3).
 表4に、被験者に関する統計処理の内容を示した。 Table 4 shows the contents of statistical processing on subjects.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
2)MMSE
  結果を図1及び表4に示した。12週目におけるテスト-1とテスト-2の群内比較で有意差が認められた。尚、6週目において、プラセボ区の群内比較で有意差が認められた。しかしながら群間比較の、テスト-1対プラセボ、とテスト-2対プラセボ、何れにおいても有意差が認められなかった。
2) MMSE
The results are shown in FIG. A significant difference was observed in the group comparison between Test-1 and Test-2 at 12 weeks. In addition, at the 6th week, a significant difference was recognized in the group comparison in the placebo group. However, there was no significant difference between the groups, test-1 vs. placebo and test-2 vs. placebo.
3)U-Kテスト
 結果を図2及び表4に示した。3群内では何れも有意差が認められなかった。但し、群間対比においては、6週目のテスト-1とプラセボ間で有意差傾向が認められた。
3) UK test The results are shown in FIG. There was no significant difference among the three groups. However, in the comparison between groups, a trend of significant difference was observed between Test-1 at 6 weeks and placebo.
4)認知機能自己診断
 結果を表5に示した。
4) Cognitive function self-diagnosis The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5において、群間の変化量対比解析で、テスト-1とプラセボ, 又、テスト-2とプラセボ,において
以下の項目間で有意差が認められた;
 6週目における #1 (テスト-1,テスト-2), #5 (テスト-1),
#7 (テスト-1,テスト-2), #8 (テスト-1), #12 (テスト-1), #13 (テスト-1), #17 (テスト-1,テスト-2), #18
(テスト-1), #25 (テスト-1), #26 (テスト-2),及び #27(テスト-1,テスト-2)が 、
他方12週目においては、#1 (テスト-1), #2 (テスト-1,テスト-2),
#4 (テスト-1,テスト-2), #5 (テスト-1,テスト-2), #8 (テスト-1,テスト-2), #12 (テスト-1), #15 (テスト-2),
#16 (テスト-2), #17 (テスト-2), #20 (テスト-2), #21 (テスト-2), #23 (テスト-2), #24 (テスト-1,テスト-2),
#26(テスト-2),そして #27 (テスト-1,テスト-2)、の各々に有意差が認められた。
 テスト-1対プラセボでは,6週目の有意差アイテム数10が 12週目で6アイテムに減少したが,
テスト-2対プラセボでは、6週目の有意差アイテム数4が12週目の有意差アイテム数14へと著増している。
In Table 5, a significant difference was observed between the following items in test 1 and placebo, and in test 2 and placebo in the change contrast analysis between groups:
# 1 (Test-1, Test-2), # 5 (Test-1) at 6th week,
# 7 (Test-1, Test-2), # 8 (Test-1), # 12 (Test-1), # 13 (Test-1), # 17 (Test-1, Test-2), # 18
(Test-1), # 25 (Test-1), # 26 (Test-2), and # 27 (Test-1, Test-2)
On the other hand, in the 12th week, # 1 (test-1), # 2 (test-1, test-2),
# 4 (Test-1, Test-2), # 5 (Test-1, Test-2), # 8 (Test-1, Test-2), # 12 (Test-1), # 15 (Test-2 ),
# 16 (Test-2), # 17 (Test-2), # 20 (Test-2), # 21 (Test-2), # 23 (Test-2), # 24 (Test-1, Test-2 ),
There was a significant difference between # 26 (test-2) and # 27 (test-1, test-2).
In test-1 vs. placebo, the number of significantly different items at week 6 decreased to 6 at week 12,
In Test-2 vs. placebo, the number of significant difference items at 6 weeks increased significantly to 14 at 12 weeks.
5)認知機能自己診断結果とその解析
 結果を表6~9に示した。
5) The cognitive function self-diagnosis results and the analysis results are shown in Tables 6-9.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
6)安全性評価
  日報で見る限り、供試試料の安全性に疑義を示唆するものは皆無であり、安全性に問題はなかった。
6) Safety evaluation As far as we can see in the daily report, there were no questions that suggested any doubt in the safety of the test samples, and there was no problem with safety.
V.試験結果の評価
1)総論
 プラズマローゲン含有サプリメントを12週間摂取した健常被験者の言語と状況に関連した認知機能の改善に有効であることが認められた。更に、供試ソフトカプセルは、12週間の試験期間中安全面で支障を来すことはなかった。
 U-Kテストの結果には、有意差が認められなかったが、6週目の高用量摂取群とプラセボ群間には有意差傾向が認められた。
高用量群と低用量群間に用量依存性が、そしてそれらとプラセボ群間に有意傾向が示唆される結果が得られた。
 食品、就中、サプリメントとしては用量が極めて低く、内服薬以下とも考えられる“ミクロン”オーダーで、然も1粒当たりで0.5mg以下であることと併せて、健常者対象で且つ投与期間が3カ月間と短く且つ6週間目で計算力の即効的向上が示唆される結果が得られたことは、驚くべき発見である。
V. Evaluation of test results 1) General remarks It was confirmed that it was effective in improving cognitive functions related to language and status of healthy subjects who took plasmalogen-containing supplements for 12 weeks. Furthermore, the soft capsules under test did not cause any safety problems during the 12-week test period.
Although no significant difference was observed in the results of the UK test, a significant difference tendency was observed between the high-dose intake group and the placebo group at 6 weeks.
Results suggested a dose dependence between the high and low dose groups and a significant trend between them and the placebo group.
The dosage is very low as a food, especially as a supplement, and it is considered to be less than an internal medicine. It is considered to be less than 0.5 mg per tablet, and it is healthy for 3 months. It is a surprising discovery that results were obtained in a short time and at 6 weeks suggesting an immediate improvement in computing power.
2)各論
(1)MMSE
 0.5mg群と0.25mg群、各々において12週目で群内有意差が認められた。但し、プラセボ群でも6週目に群内有意差が見出された。
(2)U-Kテスト
 即効的に6週目の高用量群とプラセボ群間に有意差傾向が認められ、且つ、高用量群と低用量群間に用量依存性傾向が認められたことは注目に値する。
(3)PSOL認知機能自己診断テスト
 12週目と即効的に6週目から、高・低両用量群内及び群間並びにプラセボ群間で有意差が認められた。高・低両用量群間では、入り乱れた有意差が認められたものの、用量依存性に欠ける結果であった。
3)総括評価
* 無作為・二重盲検・プラセボ対照試験であって、
* 革新的な食用プラズマローゲン組成物を用いた、
* 厳選した健常被験者(機関登録者の書類選考135名⇒認知機能3階層問診選抜81名⇒試験責任者の面接選抜75名⇒試験中に発覚した不適格者を排除71名)に対する、
* 極めて低日用量、0.25mgと0,5mg、且つ、
* 極めて短期間の12週間内で、
 僅か6週目で認知機能の有意且つ即効的な改善効果が確認され、驚くべき成果と評価される。
2) Detailed discussion (1) MMSE
Within the 0.5 mg group and the 0.25 mg group, a significant difference within the group was observed at 12 weeks. However, a significant difference within the group was found at 6 weeks in the placebo group.
(2) UK test Immediately, there was a significant difference between the high-dose group and the placebo group at 6 weeks, and there was a dose-dependent trend between the high-dose group and the low-dose group. It is worth noting.
(3) PSOL cognitive function self-diagnostic test From the 12th week and the 6th week, significant differences were observed within the high and low dose groups, between the groups, and between the placebo groups. There were significant differences between the high and low dose groups, but the results were not dose-dependent.
3) Summary evaluation * Random, double-blind, placebo-controlled trial,
* Using an innovative edible plasmalogen composition,
* For carefully selected healthy subjects (135 institutional registrants' document screening 135 ⇒ Cognitive function 3 level interview selection 81 ⇒ Examiner's interview selection 75 ⇒ Excludes ineligible persons found during the study 71)
* Extremely low daily doses, 0.25 mg and 0.5 mg, and
* Within an extremely short period of 12 weeks,
In only 6 weeks, a significant and immediate improvement effect of cognitive function was confirmed, which is evaluated as a surprising result.
実施例12
[ω-3HUFA誘導体移行種鶏雌の金冠由来の-PLsと産卵廃鶏の胸肉由来PLs及びプラセボ区設定との対比で「Aβ及びτの脳内蓄積推移解明]の単盲検オープントライアル臨床試験]
1)検体
(1)DHA-PLs;96.7%純度で、DHA結合率が75mol%
[DHA移行種鶏雌の金冠]で調製例2 5.2)に準拠
(2)PLs;92質量%[廃鶏ムネ肉由来]
2)対象とn数
 15名5区(DHA-PLs3名×[0.25mg区と0.5mg区]、PLs3名×[0.25mg区と0.5mg区]及びプラセボ区3名)の男女の認知症未病者で、60±5歳で選抜した。男女の構成は、男性5名と女性10名である。
3)条件
(1)日用量;0.25mg(朝)と0.5mg(0.25mg×朝夕2回)
(2)剤型;ソフトカプセル
(3)期間;40週
(4)検査間隔;0、20週、40週
4)評価法
 Aβ蛋白のPET画像解析に依った。尚、AβPETの検査薬にはPIB(非特許文献31)を用いた。
 蓄積量は、認知機能障害の進行度に呼応するPET画像のSUVR(Standardized Uptake Value Ratio)。表10~11に、PET画像のSUVRのスコアを示した。
5)結果
<0.25mg区>
(1)開始時のPET画像の所見概要
 [Aβ画像]
 被験者が認知症未病者であるため、青一色は認められず、「青」をバックにした僅かに「赤」を含む「黄色+緑」の展開が認められた。
(4)総括評価
1)[DHA-PLs]及び[PLs]は、何れも、低日量の経口摂取で認知症未病状態の被験者のAβに対する蓄積抑制作用が示唆された。蓄積Aβに対する低減化に付いては、何れも40週目で低減作用が示唆された。
2)[PLs]対比で[DHA-PLs]は、上記において同等の傾向を示した。 
Example 12
Single-blind open trial of [ω-3HUFA "A β and accumulation in brain transition elucidation of τ in comparison with -PLs derived from the gold crown of derivatives transition species chicken female and the breast meat derived from PLs and placebo-ku set of laying waste chicken] Clinical trial]
1) Specimen (1) DHA-PLs; 96.7% purity, DHA binding rate is 75 mol%
According to Preparation Example 2 5.2) in [DHA migrating chicken female gold crown] (2) PLs; 92% by mass [derived from waste chicken fillet]
2) Subjects and n number 15 men and women (3 DHA-PLs x [0.25 mg and 0.5 mg], 3 PLs x [0.25 mg and 0.5 mg] and 3 placebo)) Selected at 60 ± 5 years old. The composition of men and women is 5 men and 10 women.
3) Condition (1) Daily dose: 0.25 mg (morning) and 0.5 mg (0.25 mg × twice morning and evening)
(2) Dosage form: Soft capsule (3) Period: 40 weeks (4) Examination interval: 0, 20 weeks, 40 weeks 4) Evaluation method A It depends on PET image analysis of β protein. Incidentally, the test agents of the A beta PET using PIB (Non-Patent Document 31).
The amount of accumulation is an SUVR (Standardized Uptake Value Ratio) of PET images corresponding to the degree of progression of cognitive dysfunction. Tables 10 to 11 show the SUVR scores of the PET images.
5) Results <0.25 mg section>
(1) Outline of findings of PET image at the start [A β image]
Since the test subject was not afflicted with dementia, no blue color was observed, and a development of “yellow + green” including “red” slightly with “blue” in the background was observed.
(4) Summary Evaluation 1) [DHA-PLs] and [PLs] are both accumulation inhibitory effect on A beta in the subjects of dementia non-pathological condition ingestion of low daily dose has been suggested. Regarding the reduction of accumulated , all of these suggested a reduction effect at 40 weeks.
2) In contrast to [PLs], [DHA-PLs] showed the same tendency in the above.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
<0.5mg区>
(1)開始時のPET画像の所見概要
[Aβ画像]
 被験者がMCIであるため、青一色は認められず、「青」をバックにした僅かに「赤」を含む「黄色+緑」の展開が認められた。
(2)評価
1)[PLs]及び[DHA-PLs]は、低日量の経口摂取で認知症未病者のAβの蓄積抑制及び蓄積低減効果が示唆された。
2)[PLs]対比で[DHA-PLs]は、上記において効能が高い傾向が示唆された。
(3)総括評価
 以上に依って、[PLs]及び[DHA-PLs]、就中は、[DHA-PLs]は、0.25mgの経口極低日用量においても、認知症未病者のAβの蓄積抑制及び蓄積低減効果を有することが示唆された。
<0.5mg ward>
(1) Observation outline of PET image at the start [A β image]
Since the test subject was MCI, a single blue color was not recognized, and the development of “yellow + green” including “red” slightly with “blue” in the background was observed.
(2) Evaluation 1) [PLs] and [DHA-PLs] is, A beta accumulation-inhibiting and accumulation reducing effect of dementia non-sick ingestion of low daily dose has been suggested.
2) In comparison with [PLs], [DHA-PLs] was suggested to have a higher efficacy in the above.
(3) Overall evaluation Based on the above, [PLs] and [DHA-PLs], especially [DHA-PLs], are A in a person with no dementia even at an oral very low daily dose of 0.25 mg. It was suggested that β has accumulation suppression and accumulation reduction effects.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
実施例13
[ω-3HUFA誘導体移行種鶏雌の金冠由来の-PLsと産卵廃鶏の胸肉由来PLs及びプラセボ区設定との対比での「海馬の減容状態推移の解明」単盲検オープントライアル臨床試験]
1)検体
(1)DHA-PLs;96.7%純度で、DHA結合率が75mol%
[DHA移行種鶏雌の金冠]で調製例2 5.2)に準拠
(2)PLs;92質量%[廃鶏ムネ肉由来]
2)対象とn数
 15名5区(DHA-PLs3名×[0.25mg区、0.5mg区]、PLs3名×[0.25mg区、0.5mg区]及びプラセボ区3名)の男女の認知症未病者で、60±5歳で選抜した。男女の構成は男性5名と女性10名である。
3)条件
(1)日用量;0.25mg(朝)及び0.5mg(0.25mg×朝夕2回)
(2)剤型;ソフトカプセル
(3)期間;40週
(4)検査間隔;0、20週、40週
4)評価法
  被験者の脳MRI画像における「海馬」の減容状態を検査した。
5)結果
 その結果を、表12~13に示した。
(1)0.25mg区
1)[PLs]及び[DHA-PLs]共に、低日量の経口摂取で認知症未病状態の被験者の海馬の減容に対する抑制作用は低いことが示唆された。
Example 13
[Elucidation of changes in hippocampal volume reduction in comparison with -PLs derived from gold crowns of ω-3HUFA derivative transfer females, breast-derived PLs derived from laying hens, and placebo settings] Single-blind open trial clinical trial ]
1) Specimen (1) DHA-PLs; 96.7% purity, DHA binding rate is 75 mol%
According to Preparation Example 2 5.2) in [DHA migrating chicken female gold crown] (2) PLs; 92% by mass [derived from waste chicken fillet]
2) Men and women of 15 subjects and 5 wards (3 DHA-PLs x [0.25 mg, 0.5 mg], 3 PLs x [0.25 mg, 0.5 mg] and 3 placebo)) Selected at 60 ± 5 years old. The composition of men and women is 5 men and 10 women.
3) Condition (1) Daily dose: 0.25 mg (morning) and 0.5 mg (0.25 mg × twice morning and evening)
(2) Dosage form: Soft capsule (3) Period: 40 weeks (4) Examination interval: 0, 20 weeks, 40 weeks 4) Evaluation method The volume reduction state of “hippocampus” in the brain MRI image of the subject was examined.
5) Results The results are shown in Tables 12-13.
(1) 0.25 mg section 1) It was suggested that both [PLs] and [DHA-PLs] have low inhibitory effects on hippocampal volume reduction in subjects who are not demented by oral intake at a low daily dose.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(2)0.5mg区の評価結果
1)[PLs]及び[DHA-PLs]は何れも、低日用量の40週間の経口摂取で認知症未病状態の被験者の脳MRIにおける海馬の減容を抑制する傾向が示唆された。
(3)総括評価
 [PLs]及び[DHA-PLs]は何れも、低日用量の40週間の経口摂取で認知症未病状態の被験者の脳MRIにおける海馬の減容を抑制する傾向が示唆された。
(2) Evaluation result of 0.5 mg section 1) Both [PLs] and [DHA-PLs] are hippocampal volume reductions in brain MRI of subjects with no dementia by oral ingestion at low daily dose for 40 weeks This suggests a tendency to suppress
(3) Overall evaluation Both [PLs] and [DHA-PLs] suggest a tendency to suppress hippocampal volume reduction in brain MRI of subjects with no dementia by oral intake at low daily doses for 40 weeks. It was.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 以上詳述した通り、本発明は、安全・安定なプラズマローゲンとその製剤及び用途に係るものであり、本発明により、1)安全な生物系素材由来の、安全・安定なプラズマローゲン、より詳しくは、必須の要件としてプラズマローゲンのSN-2にDHA(ドコサヘキサエン酸)を結合して成る安全・安定なプラズマローゲン含有複合脂質を提供する、2)当該プラズマローゲン複合脂質を安全な界面活性物質を用いて簡便にナノ乳化(又は可溶化)して成る安全・安定な水性製剤(乳液・ゼリー・粒体・粉体)を提供する、3)サポニン類の存在下で、水性相に生体組織特異的構成比を有する複合脂質及びω-3HUFA結合型複合脂質並びにそれらの複合脂質組成物が、ナノ乳化乃至は可溶化されている複合脂質及びω-3HUFA結合型複合脂質並びにそれらの複合脂質組成物の水性製剤を提供する、4)それらの用途を提供する、5)ω-3HUFA結合型の粗製又は高純度プラズマローゲン等を有効成分とする神経変性疾患及び/又は精神疾患の予防又は治療用の各種加工品、サプリメント、予防又は治療用剤等を提供する、6)認知症未病状態の判定方法を提供する、等の格別の効果が得られる点で、本発明は、産業上の利用可能性を有する。 As described above in detail, the present invention relates to a safe and stable plasmalogen and its preparation and use. According to the present invention, 1) a safe and stable plasmalogen derived from a safe biological material, more specifically, Provides a safe and stable plasmalogen-containing complex lipid formed by binding DHA (docosahexaenoic acid) to SN-2 of plasmalogen as an essential requirement. 2) Uses a safe surfactant for the plasmalogen complex lipid. Provides safe and stable aqueous preparations (emulsions, jellies, granules, powders) that are easily nano-emulsified (or solubilized) using 3) Specific to living tissue in the aqueous phase in the presence of saponins Complex lipid and ω-3 HUFA-conjugated complex lipid having a structural composition ratio, and complex lipid and ω-3 HUFA-binding wherein the complex lipid composition is nanoemulsified or solubilized Type complex lipids and aqueous preparations of these complex lipid compositions, 4) provide their use, 5) neurodegenerative diseases containing ω-3HUFA-bound crude or high-purity plasmalogen, etc. as active ingredients, and Provided with various effects such as providing various processed products, supplements, preventive or therapeutic agents for the prevention or treatment of mental illness, 6) providing a method for determining the non-demented state of dementia, etc. The present invention has industrial applicability.

Claims (19)

  1.  生体組織由来の特定の部位又は臓器から抽出分別され、該抽出分別の工程で副生する蛋白質画分及び/又は水溶性低分子画分が精製除去されている総脂質の精製物から成る、生体組織特異的な構成比を有するプラズマローゲン含有リン脂質(以下、「複合脂質」と言う。)であって、
    1)前記生体組織由来の特定の部位又は臓器が、鶏の生体組織由来の兜屠体、骨髄を含む生ガラ、鶏卵黄、腸、砂肝、卵巣と卵管を含む金冠、胸肉、皮の群から選択される少なくとも1種以上の特定の部位又は臓器から成り、
    2)前記プラズマローゲン含有リン脂質が、ドコサヘキサエン酸(DHA)を含むω-3高度不飽和脂肪酸(以下、「ω-3HUFA」と言う。)誘導体(以下、「ω-3HUFA誘導体」と総称する。)を含有する飼料で飼養された鶏の生体組織に当該ω-3HUFA誘導体が移行した生体組織由来の特定の部位又は臓器から抽出分別される、前記ω-3HUFA誘導体が移行した生体組織特異的なω-3HUFA結合型の構成比を有するプラズマローゲン含有リン脂質であることを特徴とする前記複合脂質。
    A living body comprising a purified product of a total lipid that is extracted and fractionated from a specific site or organ derived from a living tissue and from which a protein fraction and / or a water-soluble low-molecular fraction that are by-produced in the extraction and fractionation step are purified and removed. A plasmalogen-containing phospholipid (hereinafter referred to as “complex lipid”) having a tissue-specific composition ratio,
    1) The specific part or organ derived from the biological tissue is a carcass carcass derived from a chicken biological tissue, raw rattle containing bone marrow, chicken yolk, intestine, sand liver, gold crown including ovary and fallopian tube, breast meat, skin Consisting of at least one or more specific parts or organs selected from the group of
    2) The plasmalogen-containing phospholipid is generically called an ω-3 highly unsaturated fatty acid (hereinafter referred to as “ω-3HUFA”) derivative (hereinafter referred to as “ω-3HUFA derivative”) containing docosahexaenoic acid (DHA). ) Is extracted and fractionated from a specific part or organ derived from the living tissue to which the ω-3HUFA derivative has been transferred to the biological tissue of a chicken fed with a feed containing The complex lipid, wherein the complex lipid is a plasmalogen-containing phospholipid having a constitutional ratio of ω-3HUFA binding type.
  2.  ω-3HUFA誘導体が、下記の1)~9);
    1)グリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
    2)1-アルキルグリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
    3)1-アルケニルグリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
    4)1-アシルグリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
    5)オキアミの脱殻剥き身及び/又は乾燥物に含有されている、前項1)~4)何れかに記載のグリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
    6)ホールホタテ及び/又はその加工残、若しくはそのミール(乾燥物)に含有されている、前項1)~4)の何れかに記載のグリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
    7)ホール海鞘(ホヤ)及び/又はその加工残、若しくはそのミール(乾燥物)に含有されている、前項1)~4)の何れかに記載のグリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
    8)有機合成された、前項1)~4)の何れかに記載のグリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
    9)発酵法で調製された、前項1)~4)の何れかに記載のグリセロフォスファチジルリン脂質のSN-2に結合したω-3HUFA誘導体
    から選択される何れか1種である、請求項1記載の複合脂質。
    ω-3HUFA derivatives are the following 1) to 9);
    1) ω-3HUFA derivative bound to SN-2 of glycerophosphatidyl phospholipid 2) ω-3HUFA derivative bound to SN-2 of 1-alkyl glycerophosphatidyl phospholipid 3) 1-alkenyl glycerophosphatidyl Ω-3HUFA derivative bound to phospholipid SN-2 4) 1-acylglycerophosphatidyl phospholipid SN-2 ω-3HUFA derivative 5) contained in krill shelled and / or dried product 6) ω-3HUFA derivative bound to SN-2 of glycerophosphatidyl phospholipid according to any one of 1) to 4) in the preceding paragraph 6) contained in whole scallop and / or processing residue thereof or meal (dry product) thereof The ω-3 bound to SN-2 of the glycerophosphatidyl phospholipid according to any one of 1) to 4) above UFA derivative 7) SN- of the glycerophosphatidyl phospholipid according to any one of the preceding items 1) to 4), which is contained in whole sea scabbard (sea squirt) and / or processing residue thereof or meal (dry product) thereof Ω-3HUFA derivative bound to 2 8) Organically synthesized ω-3HUFA derivative bound to SN-2 of the glycerophosphatidyl phospholipid according to any one of 1) to 4) above, prepared by fermentation method The complex lipid according to claim 1, which is any one selected from ω-3HUFA derivatives bound to SN-2 of the glycerophosphatidyl phospholipid according to any one of 1) to 4) above .
  3.  前記特定の部位又は臓器が、鶏卵黄であり、前記鶏の生体で生合成されたDHA-PLsを含有する鶏卵黄から抽出分別される総脂質の精製物から成る、請求項1記載の複合脂質。 2. The complex lipid according to claim 1, wherein the specific site or organ is chicken egg yolk and consists of a purified product of total lipid extracted and fractionated from chicken egg yolk containing DHA-PLs biosynthesized in the chicken's living body. .
  4.  有機合成された1-アルキルグリセロフォスファチジルリン脂質を含有する飼料で飼養された鶏の生体の特定の部位又は臓器から抽出分別される総脂質の精製物から成る、請求項1記載の複合脂質。 The complex lipid according to claim 1, comprising a purified product of a total lipid extracted and fractionated from a specific part or organ of a living body of a chicken fed with a feed containing an organically synthesized 1-alkylglycerophosphatidylphospholipid. .
  5.  請求項1記載の複合脂質が、請求項1記載の抽出分別で副生する水溶性低分子画分を含有する、ω-3HUFA結合型の構成比を有することを特徴とする複合脂質組成物。 A complex lipid composition characterized in that the complex lipid according to claim 1 contains a water-soluble low-molecular-weight fraction by-produced by the extraction fractionation according to claim 1 and has a constitutional ratio of ω-3HUFA binding type.
  6.  サポニン類の存在下で、水性相に、請求項1~5の何れかに記載のω-3HUFA結合型の構成比を有する複合脂質又は複合脂質組成物が、ナノ乳化又は可溶化されていることを特徴とする、複合脂質又はω-3HUFA結合型の構成比を有する複合脂質組成物の水性製剤。 The complex lipid or complex lipid composition having the ω-3HUFA-binding composition ratio according to any one of claims 1 to 5 is nanoemulsified or solubilized in the aqueous phase in the presence of saponins. An aqueous preparation of a complex lipid composition having a constitutional ratio of complex lipid or ω-3HUFA binding type, characterized in that
  7.  請求項1~4の何れかに記載の複合脂質を、フォスフォリパーゼA1(PLA1)で酵素処理して、リゾ体を含むグリセロリン脂質類を除去し且つスフィンゴミエリンを抽出分別除去することを特徴とする、純度30~70%の粗製プラズマローゲン又はそれ以上の純度を有する高純度プラズマローゲンの製造方法。 The complex lipid according to any one of claims 1 to 4 is treated with phospholipase A1 (PLA1) to remove glycerophospholipids including lyso form and extract and remove sphingomyelin. A method for producing a high-purity plasmalogen having a purity of 30 to 70% or more.
  8.  サポニン類の存在下で、水性相に、請求項7記載の粗製プラズマローゲン又は高純度プラズマローゲンの、各々を基質として、ナノ乳化又は可溶化することを特徴とする、前記粗製プラズマローゲン又は高純度プラズマローゲンの水性製剤の製造方法。 The crude plasmalogen or high purity, characterized in that, in the presence of saponins, nanoemulsification or solubilization is carried out in the aqueous phase using the crude plasmalogen or high purity plasmalogen according to claim 7 as a substrate, respectively. A method for producing an aqueous preparation of plasmalogen.
  9.  請求項1~8の何れかに記載の複合脂質、複合脂質組成物、各プラズマローゲン、並びにそれらの水性製剤から選択される何れか1種以上を有効成分として含有することを特徴とする食品、化粧品、医薬品又は飼料。 9. A food comprising as an active ingredient any one or more selected from the complex lipid according to any one of claims 1 to 8, the complex lipid composition, each plasmalogen, and their aqueous preparations, Cosmetics, pharmaceuticals or feed.
  10.  請求項1~8の何れかに記載の複合脂質、複合脂質組成物、各プラズマローゲン、並びにそれらの各水性製剤の中から選択される少なくとも1種を有効成分として含有し、神経変性疾患の認知症、アルツハイマー病、パーキンソン病、うつ病、並びに統合失調症の群から選択される少なくとも1種の神経変性疾患の緩和と予防作用を有することを特徴とする前記神経変性疾患の緩和及び予防用サプリメント。 Cognitive of neurodegenerative diseases, comprising as an active ingredient at least one selected from the complex lipid according to any one of claims 1 to 8, the complex lipid composition, each plasmalogen, and their respective aqueous preparations A supplement for alleviating and preventing neurodegenerative diseases characterized by having an alleviating and preventing action on at least one neurodegenerative disease selected from the group of Alzheimer's disease, Alzheimer's disease, Parkinson's disease, depression, and schizophrenia .
  11.  請求項1~8の何れかに記載の複合脂質、複合脂質組成物、各プラズマローゲン、並びにそれらの各水性製剤の中から選択される少なくとも1種を有効成分として含有し、神経変性疾患の認知症、アルツハイマー病、パーキンソン病、うつ病、並びに統合失調症の群から選択される少なくとも1種の神経変性疾患の緩和と予防又は治療作用を有することを特徴とする前記神経変性疾患の緩和と予防又は治療用の抗中枢神経系炎症製剤。 Cognitive of neurodegenerative diseases, comprising as an active ingredient at least one selected from the complex lipid according to any one of claims 1 to 8, the complex lipid composition, each plasmalogen, and their respective aqueous preparations Alleviation and prevention of said neurodegenerative disease characterized by having at least one neurodegenerative disease alleviation and prevention or treatment action selected from the group of Alzheimer's disease, Parkinson's disease, depression and schizophrenia Or an anti-central nervous system inflammation preparation for treatment.
  12.  請求項1~8の何れかに記載の複合脂質、複合脂質組成物、各プラズマローゲン、並びにそれらの各水性製剤の中から選択される少なくとも1種を有効成分として含有することを特徴とする神経細胞新生剤。 A nerve comprising at least one selected from the complex lipid according to any one of claims 1 to 8, the complex lipid composition, each plasmalogen, and each of their aqueous preparations as an active ingredient Cytogenic agent.
  13.  請求項1~8の何れかに記載の複合脂質、複合脂質組成物、各プラズマローゲン、並びにそれらの 各水性製剤の中から選択される少なくとも1種を有効成分として含有することを特徴とする神経細胞のアポトーシス抑制剤。 A nerve comprising at least one selected from the complex lipid according to any one of claims 1 to 8, the complex lipid composition, each plasmalogen, and their aqueous preparations as an active ingredient Cell apoptosis inhibitor.
  14.  請求項1~8の何れかに記載の複合脂質、複合脂質組成物、各プラズマローゲン、並びにそれらの各水性製剤の中から選択される少なくとも1種を有効成分として含有することを特徴とするAβ及び/又はτの脳内蓄積抑制剤。 A compound comprising at least one selected from the complex lipid according to any one of claims 1 to 8, the complex lipid composition, each plasmalogen, and their respective aqueous preparations as an active ingredient A β and / or τ brain accumulation inhibitor.
  15.  請求項1~8の何れかに記載の複合脂質、複合脂質組成物、各プラズマローゲン、並びにそれらの各水性製剤の中から選択される少なくとも1種を有効成分として含有し、神経変性疾患及び/又は精神疾患の改善作用の抗中枢神経系炎症、神経細胞新生、神経細胞死の抑制並びにAβ脳内蓄積抑制の中から選択された少なくとも1種の作用を有することを特徴とする前記神経変性疾患及び/又は精神疾患改善用医薬品又は食品としての加工品。 A complex lipid according to any one of claims 1 to 8, a complex lipid composition, each plasmalogen, and at least one selected from their respective aqueous preparations as an active ingredient, comprising a neurodegenerative disease and / or or anti CNS inflammation improving action of psychiatric disorders, neurogenesis, said neurodegenerative, characterized in that it comprises at least one action selected from among the suppression as well as a beta accumulation in brain inhibition of neuronal cell death Processed products as drugs or foods for improving diseases and / or mental disorders.
  16.  請求項1~4の何れかに記載された抽出分別で副生する蛋白質画分と、請求項5に記載の抽出分別で副生する水溶性低分子画分を含有する生体組織特異的な構成比を有する複合脂質組成物との混合物から成ることを特徴とする蛋白質・脂質の複合組成物。 A tissue-specific composition comprising the protein fraction by-produced by the extraction fraction according to any one of claims 1 to 4 and the water-soluble low-molecular fraction by-produced by the extraction fraction according to claim 5. A protein / lipid composite composition comprising a mixture with a composite lipid composition having a ratio.
  17.  前項記載の蛋白質画分と複合脂質組成物との混合物から成る蛋白質・脂質の複合組成物が、鶏卵黄由来である、請求項16に記載の蛋白質・脂質の複合組成物。 17. The protein / lipid composite composition according to claim 16, wherein the protein / lipid composite composition comprising the mixture of the protein fraction and the composite lipid composition described in the preceding paragraph is derived from chicken egg yolk.
  18.  請求項16又は17記載の蛋白質・脂質の複合組成物を有効成分として含有し、神経変性疾患及び精神疾患の改善作用の抗中枢神経系炎症、 神経細胞新生、
    神経細胞死の抑制、 並びにAβ脳内蓄積抑制の中から選択される少なくとも1種の作用を有することを特徴とする前記神経変性疾患及び/又は精神疾患改善用医薬品又は食品としての加工品。
    18. A protein / lipid composite composition according to claim 16 or 17, comprising as an active ingredient, an anti-central nervous system inflammation for improving neurodegenerative diseases and psychiatric disorders;
    The processed product as a pharmaceutical or food for ameliorating neurodegenerative disease and / or psychiatric disorder characterized by having at least one action selected from suppression of neuronal cell death and suppression of accumulation in brain.
  19.  請求項1~8の何れかに記載のプラズマローゲンを含有する複合脂質、複合脂質組成物、粗製プラズマローゲン又は高純度プラズマローゲン、並びにそれらの各水性製剤の中から選択される1種を用いて、生理的には無害な量のAβ及びτの脳内蓄積が認められる状態(以下、「認知症未病状態」と言う。)にある認知症発症前の成人(健常者)を被験者として、
    (1)PETを用いてAβ及びτの脳内蓄積状態を検査して、被験者の認知症未病状態を判定するために、PET画像のSUVR値(スコア)に基いてAβ及びτの脳内蓄積状態のランク別の区分けを下記により実施する工程、
    1)蓄積初期I期:1.0±0,2
    2)蓄積中間期II期:1.2±0.2
    3)蓄積後期III期:1.4±0.2
    (2)前記ランク別に、プラズマローゲンの被験者に対するドースレスポンスを3~10か月の長期に亘り適宜な頻度で試験して、適切な日用量の範囲又は見当範囲を下記により設定する工程;
    1)I期の被験者;「漸増」範囲:1.0±0.15
    2)II期の被験者;「零増」見当範囲:1.2±0.15
    3)III期の被験者;「漸減」見当範囲:1.4±0.15
    (3)前記認知症発症前の成人(健常者)の被験者に、当該設定日用量のプラズマローゲンを有効成分として含有するサプリメント又は食品としての加工品を認知症発症前の段階から長期に亘り継続的に投与する工程、
    (4)該長期投与の間に適宜な頻度でAβ及びτの前記所定の脳内蓄積状態の定期的検定をPET診断で実施する工程、
    (5)定期的PET診断に併行して、該長期投与期間中に適宜な頻度で、海馬の減容状態の検定をMRI診断で実施する工程、
    (6)前記(1)~(4)の工程又は前記(1)~(5)の工程を実行することにより被験者の認知症未病状態を判定することを特徴とする、前記被験者の認知症未病状態の判定方法。
     
    A complex lipid containing the plasmalogen according to any one of claims 1 to 8, a complex lipid composition, a crude plasmalogen or a high-purity plasmalogen, and one selected from these aqueous preparations An adult (healthy person) before the onset of dementia who is in a state where accumulation of physiologically harmless amounts of and τ is recognized in the brain (hereinafter referred to as “non-demented condition”) ,
    (1) using a PET examines the brain accumulation state of A beta and tau, to determine dementia non pathological condition of the subject, the A beta and tau on the basis of the SUVR values of the PET image (score) The process of performing the classification of brain accumulation status by rank according to the following:
    1) Initial accumulation stage I: 1.0 ± 0,2
    2) Intermediate period II: 1.2 ± 0.2
    3) Late stage III: 1.4 ± 0.2
    (2) Testing the dose response to plasmalogen subjects for each rank at an appropriate frequency over a long period of 3 to 10 months, and setting an appropriate daily dose range or register range as follows:
    1) Stage I subjects; “gradual increase” range: 1.0 ± 0.15
    2) Stage II subjects; “Zero increase” register range: 1.2 ± 0.15
    3) Stage III subjects; “decreasing” register range: 1.4 ± 0.15
    (3) Continuing for a long period from the stage before the onset of dementia to the adult (healthy person) subjects before the onset of dementia, supplements containing the plasmalogen of the set daily dose as an active ingredient or processed products as food Administering step,
    (4) performing a periodic test of the predetermined brain accumulation state of and τ by PET diagnosis at an appropriate frequency during the long-term administration;
    (5) In parallel with periodic PET diagnosis, performing a hippocampal volume reduction test with MRI diagnosis at an appropriate frequency during the long-term administration period,
    (6) Dementia of the subject characterized by determining the non-demented state of the subject by performing the steps (1) to (4) or the steps (1) to (5) A method for determining an unaffected state.
PCT/JP2017/017210 2016-05-02 2017-05-01 Safe and stable plasmalogen, formulation thereof, and method for assessing presymptomatic state of dementia WO2017191838A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780027579.2A CN109153693B (en) 2016-05-02 2017-05-01 Safe and stable plasmalogen, preparation thereof, and method for determining non-diseased state of cognitive disorder
KR1020187032946A KR20190003570A (en) 2016-05-02 2017-05-01 Methods for Determining Infectious Conditions of Safe, Stable Plasma Genogens, Agents and Dyslipidemia

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016092597 2016-05-02
JP2016-092597 2016-05-02
JP2016254188 2016-12-27
JP2016-254188 2016-12-27
JP2016-254187 2016-12-27
JP2016254187A JP6603923B2 (en) 2016-05-02 2016-12-27 A chicken breast-derived plasmalogen composition having an effect of improving cognitive function, and a food composition or supplement for improving and / or improving cognitive function comprising the composition

Publications (1)

Publication Number Publication Date
WO2017191838A1 true WO2017191838A1 (en) 2017-11-09

Family

ID=60203065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017210 WO2017191838A1 (en) 2016-05-02 2017-05-01 Safe and stable plasmalogen, formulation thereof, and method for assessing presymptomatic state of dementia

Country Status (1)

Country Link
WO (1) WO2017191838A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163856A1 (en) * 2018-02-21 2019-08-29 丸大食品株式会社 Method for producing phospholipid concentrate
WO2020040291A1 (en) * 2018-08-24 2020-02-27 日本薬品株式会社 Plasmalogen-containing composition for increasing memorization ability
US11142537B2 (en) 2018-02-21 2021-10-12 Marudai Food Co., Ltd. Phospholipid concentrate manufacturing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279781A (en) * 1993-03-29 1994-10-04 Nippon Suisan Kaisha Ltd Separation and recovery of highly unsaturated fatty acid by emulsion liquid film method
JP2003012520A (en) * 2001-06-25 2003-01-15 Yaizu Suisankagaku Industry Co Ltd Antioxidant and food and drink containing the same
JP2003533199A (en) * 2000-05-18 2003-11-11 ベロヴォ エッグ サイエンス アンド テクノロジー Eggs with a balanced lipid composition
JP2004026803A (en) * 2002-03-29 2004-01-29 Nof Corp Neurocyte death-preventing agent
WO2008093709A1 (en) * 2007-01-30 2008-08-07 Tohoku University Composition for prevention or treatment of disease associated with amyloidosis through inhibition of aggregation amyloid protein and through promotion of degradation of amyloid protein
WO2008146942A1 (en) * 2007-05-28 2008-12-04 Umeda Jimusho Ltd. Method for production of phospholipid-containing functional material, and method for production of plasmalogen-type glycerophospholipid
WO2009154309A1 (en) * 2008-06-20 2009-12-23 有限会社梅田事務所 Method for production of highly pure phospholipid, and highly pure sphingomyelin and plasmalogen-type glycerophospholipid produced by the method
JP2010065167A (en) * 2008-09-11 2010-03-25 Marudai Food Co Ltd Method for preparing plasmalogen-type phospholipid and sphingolipid
WO2011083827A1 (en) * 2010-01-06 2011-07-14 株式会社レオロジー機能食品研究所 Cerebral nerve cell neogenesis agent
WO2012039472A1 (en) * 2010-09-24 2012-03-29 医療法人社団ブックス Drug against central nervous system inflammation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279781A (en) * 1993-03-29 1994-10-04 Nippon Suisan Kaisha Ltd Separation and recovery of highly unsaturated fatty acid by emulsion liquid film method
JP2003533199A (en) * 2000-05-18 2003-11-11 ベロヴォ エッグ サイエンス アンド テクノロジー Eggs with a balanced lipid composition
JP2003012520A (en) * 2001-06-25 2003-01-15 Yaizu Suisankagaku Industry Co Ltd Antioxidant and food and drink containing the same
JP2004026803A (en) * 2002-03-29 2004-01-29 Nof Corp Neurocyte death-preventing agent
WO2008093709A1 (en) * 2007-01-30 2008-08-07 Tohoku University Composition for prevention or treatment of disease associated with amyloidosis through inhibition of aggregation amyloid protein and through promotion of degradation of amyloid protein
WO2008146942A1 (en) * 2007-05-28 2008-12-04 Umeda Jimusho Ltd. Method for production of phospholipid-containing functional material, and method for production of plasmalogen-type glycerophospholipid
WO2009154309A1 (en) * 2008-06-20 2009-12-23 有限会社梅田事務所 Method for production of highly pure phospholipid, and highly pure sphingomyelin and plasmalogen-type glycerophospholipid produced by the method
JP2010065167A (en) * 2008-09-11 2010-03-25 Marudai Food Co Ltd Method for preparing plasmalogen-type phospholipid and sphingolipid
WO2011083827A1 (en) * 2010-01-06 2011-07-14 株式会社レオロジー機能食品研究所 Cerebral nerve cell neogenesis agent
WO2012039472A1 (en) * 2010-09-24 2012-03-29 医療法人社団ブックス Drug against central nervous system inflammation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FARRELL, D., PROC OF AUSTRALIAN POULTRY SCIENCE SYMPOSIUM, vol. 7, 1995, pages 16 - 22 *
VAN ELSWYCK, M. E., WORLD'S POULTRY SCIENCE JOURNAL, vol. 53, no. 3, 1997, pages 253 - 305 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163856A1 (en) * 2018-02-21 2019-08-29 丸大食品株式会社 Method for producing phospholipid concentrate
US11091720B2 (en) 2018-02-21 2021-08-17 Marudai Food Co., Ltd. Method for producing phospholipid concentrate
US11142537B2 (en) 2018-02-21 2021-10-12 Marudai Food Co., Ltd. Phospholipid concentrate manufacturing method
WO2020040291A1 (en) * 2018-08-24 2020-02-27 日本薬品株式会社 Plasmalogen-containing composition for increasing memorization ability

Similar Documents

Publication Publication Date Title
Larsen et al. Health benefits of marine foods and ingredients
Pravst et al. Coenzyme Q10 contents in foods and fortification strategies
JP6016363B2 (en) Cranial nerve cell neoplasia
KR101344053B1 (en) Compositions for ameliorating a reduced higher brain function resulting from organic brain lesions
JP5847086B2 (en) Anti-central nervous system inflammatory agent
Kundam et al. Bioactive compounds in fish and their health benefits
WO2008149177A2 (en) Marine lipid compositions and uses thereof
JP6207545B2 (en) Learning and memory capacity enhancer
JP6754394B2 (en) An edible PLs composition and a food composition containing the same to ensure that there is no forgetfulness related to the language and situation of healthy subjects.
JP6609555B2 (en) Brain function improving agent and preventive or therapeutic agent for cognitive impairment
WO2017191838A1 (en) Safe and stable plasmalogen, formulation thereof, and method for assessing presymptomatic state of dementia
US10376485B2 (en) Metabolic syndrome ameliorating agent
US20170035721A1 (en) Composition for preventing or improving peripheral neuropathy
WO2014184655A1 (en) Methods for using crustacean phospholipid-peptide-protein complexes
US9808437B2 (en) Monounsaturated fatty acid compositions and use for treating atherosclerosis
JP2010105946A (en) Muscle protein enhancer and drug or food containing the same
JP7016093B2 (en) Safe and stable plasmalogen and its preparations and method for determining the pre-illness state of dementia
JP2022081599A (en) Method for increasing omega-3 polyunsaturated fatty acid level in human plasma
JP6842093B2 (en) Learning memory enhancer
WO2010131718A1 (en) Anti-hyperglycemic and/or anti-hyperlipidemic agent comprising material containing avian skin-derived sphingomyelin as active ingredient
JPWO2013002404A1 (en) How to reduce fear memory
Abdelmaged et al. Influence of Thyme Oil Nano-Encapsulated Chitosan on Productivity, Growth Performance, and Meat Quality of Japanese Quails
WO2011083853A1 (en) Anti-atopic dermatitis agent
US20180110748A1 (en) Composition for reducing or suppressing increase in neutral fat level containing n-3 unsaturated fatty acid, and use of n-3 unsaturated fatty acid in production of same composition
JP4118128B2 (en) Conjugated fatty acid-containing feed

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187032946

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792770

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792770

Country of ref document: EP

Kind code of ref document: A1