WO2017191827A1 - Internally degradable polyrotaxane and synthesis method therefor - Google Patents

Internally degradable polyrotaxane and synthesis method therefor Download PDF

Info

Publication number
WO2017191827A1
WO2017191827A1 PCT/JP2017/017133 JP2017017133W WO2017191827A1 WO 2017191827 A1 WO2017191827 A1 WO 2017191827A1 JP 2017017133 W JP2017017133 W JP 2017017133W WO 2017191827 A1 WO2017191827 A1 WO 2017191827A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
linear polymer
polyrotaxane
degradable
linear
Prior art date
Application number
PCT/JP2017/017133
Other languages
French (fr)
Japanese (ja)
Inventor
由井 伸彦
篤志 田村
慶紀 有坂
麻由 伏見
Original Assignee
国立大学法人 東京医科歯科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京医科歯科大学 filed Critical 国立大学法人 東京医科歯科大学
Priority to JP2018515730A priority Critical patent/JPWO2017191827A1/en
Publication of WO2017191827A1 publication Critical patent/WO2017191827A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds

Definitions

  • the present invention relates to a degradable polyrotaxane compound having at least one degradable bond inside a linear polymer, and a synthesis method thereof.
  • Polyrotaxane is a supramolecule having a skeleton in which a linear polymer penetrates a plurality of cyclic molecular cavities.
  • PEG polyethylene glycol
  • CD cyclodextrin
  • a polyrotaxane can be prepared by modifying a bulky functional group (blocking group) at the end of the linear polymer of the inclusion complex.
  • Patent Document 1 a polyrotaxane in which a functional group containing a biodegradable bond is arranged between both ends of a linear polymer and a blocking group is synthesized. It has been shown that the degradation of the entire polyrotaxane is induced with dissociation.
  • Conventional degradable polymers have the property that only a part modified with a degradable group is sequentially decomposed to lower the molecular weight over time (Non-patent Documents 1 and 2), but degradable polyrotaxanes are produced by dissociation of blocking groups.
  • An object of the present invention is to provide a degradable polyrotaxane compound having at least one decomposable bond inside a linear polymer.
  • Another object of the present invention is to provide a method for producing a degradable polyrotaxane compound having at least one degradable bond inside a linear polymer. All of the degradable polyrotaxane compounds reported so far have degradable bonds at both ends of the linear polymer chain, and two degradable bonds must be arranged for one molecule of polyrotaxane. Therefore, the synthesis method required 6 to 7 steps or more.
  • Another object of the present invention is to provide a composition for various uses, which contains a degradable polyrotaxane compound having at least one degradable bond inside a linear polymer.
  • the present inventors have synthesized a linear polymer in which a functional group containing a bond that can be decomposed in an in vivo environment is arranged in the main chain away from the terminal site, and this linear polymer is a large number of cyclic molecules.
  • polyrotaxane a supramolecule penetrating through the cavity of (for example, cyclodextrin) with high purity and high yield.
  • This polyrotaxane has a new dissociation mechanism in which all cyclic molecules are released from the linear polymer as the degradable part (degradable bond) in the linear polymer is decomposed by an external stimulus.
  • the type of degradable bond can be selected to be decomposed as needed for treatment or diagnosis at any site / environment such as tissue or intracellular location, various stimuli in specific organelles (specific enzymes, etc.) It is possible to precisely prepare an intracellular degradable polyrotaxane that dissociates in response to.
  • a wide variety of biodegradable three-dimensional cross-linked bodies having a polyrotaxane skeleton can be prepared based on modifications such as polymerizable groups to cyclodextrin (CD), so that they can be cross-linked when applied to tissue regeneration or dental treatment. Physical properties of the body (mechanical strength, tissue adhesion, cell differentiation / proliferation, etc.) can be freely reduced according to the healing process and therapeutic purpose of the application site.
  • the linear polymer has the following formula: X 1 -Y 0 (-Z i -Y i) i -X 2 Wherein X 1 and X 2 are the same or different end groups, Y 0 and Y i are the same or different linear polymer moieties, and Z i is a degradable moiety , (-Z i -Y i ) i indicates that there are i repeating units composed of a degradable portion Y and a linear polymer portion Z, and each Z i and Y i in the linear polymer is the same However, the polyrotaxane compound according to [1], wherein i is an integer of 1 to 500.
  • the linear polymer has the following formula: X 1 -Y 0 -Z 1 -Y 1 -X 2 Has a structure shown in, wherein, X 1 and X 2 are the same or different terminal group, Y 0 and Y 1 are identical or different linear polymeric moiety, Z 1 is a degradable moiety
  • the decomposable moiety includes at least one decomposable group, and the decomposable group includes a p-methoxyphenacyl group, a 2-nitrobenzyl group, a 2-nitrobenzyloxycarbonyl group, and 2-nitrophenylethylene.
  • Glycol group benzyloxycarbonyl group, 3,5-dimethoxybenzyloxycarbonyl group, ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyloxycarbonyl group, 3-nitrophenyl group, 3-nitrophenoxy group, 3,5- Dinitrophenoxy group, 3-nitrophenoxycarbonyl group, phenacyl group, 4-methoxyphenacyl group, ⁇ -methylphenacyl group, 3,5-dimethoxybenzoinyl group, 2,4-dinitrobenzenesulfenyl group, (coumarin -4-yl) methyl group, 7-nitroindolinyl group, arylazophosphate, [1] to [5] selected from the group consisting of a tellurium bond, a Schiff base bond, a carbamate bond, a peptide bond, an ether bond, an acetal bond, a hemiacetal bond, a disulfide bond, an organic peroxide, and an acylhydrazine
  • the polyrotaxane compound according to any one of the above [7] The polyrotaxane compound according to any one of [1] to [6], wherein the cyclic molecule is selected from the group consisting of ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin. [8] The polyrotaxane compound according to any one of [1] to [7], wherein the cyclic molecule has one or more substituents.
  • the substituent is 2-hydroxyethoxyethyl (HEE), hydroxyethyl, hydroxypropyl, hydroxybutyl, hydroxyethoxyethyl, N, N-dimethylaminoethyl, carboxyl, methyl, sulfo Group, primary amino group, polyethylene glycol, collagen, transferrin, RGD peptide, oligoarginine, (meth) acryloyl group, (meth) acryloyloxy group, (meth) acryloylamino group, (meth) acryloylthio group, vinyl group, aryl group
  • the polyrotaxane compound according to [8] which is selected from the group consisting of a group, a styryl group, and a (meth) acrylamide group.
  • the linear polymer portion is selected from the group consisting of polyethylene glycol, polypropylene glycol, a copolymer of polyethylene glycol and polypropylene glycol, polyethyleneimine, polyamino acid, and polymethyl vinyl ether, [1] to [9] ]
  • the terminal groups are 2,4-dinitrophenyl group, 3,5-dinitrophenyl group, cyclodextrin, adamantane group, O-triphenylmethyl (O-Trt) group, S-triphenylmethyl (S-Trt) ) Group, N-triphenylmethyl (N-Trt) group, N-tritylglycine, benzyloxycarbonyl (Z) group, 9-fluorenylmethyloxycarbonyl (Fmoc) group, benzyl ester (OBz) group, third group Butylcarbonyl (Boc) group, amino acid tertiary butyl ester (OBu group), trityl group, fluorescein, pyrene, substituted benzene, optionally substituted polynuclear aromatic, MPC (2-methacryloyloxyethyl phosphorylcholine), BMA (n -Butyl methacrylate), a combination of
  • [12] comprising at least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion.
  • An adhesive composition containing a polyrotaxane compound. comprising at least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion.
  • [14] comprising at least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion.
  • a surface coating agent containing a polyrotaxane compound comprising at least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion.
  • An anti-adhesion agent comprising a polyrotaxane compound.
  • At least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion.
  • a body implant containing a polyrotaxane compound comprising at least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion.
  • At least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion.
  • a tissue regeneration device containing a polyrotaxane compound.
  • [18] comprising at least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion.
  • a pharmaceutical composition for use in treating or preventing a disease comprising a polyrotaxane compound.
  • a subject preferably for a human, comprising a plurality of cyclic molecules and one linear polymer having a terminal group, the linear polymer via at least one degradable moiety
  • a method for the treatment or prophylaxis of a disease comprising the step of administering a pharmaceutical composition comprising a polyrotaxane compound comprising at least two linear polymer moieties linked.
  • a pharmaceutical composition comprising a polyrotaxane compound comprising at least two linear polymer moieties linked.
  • the manufacture of a medicament for the treatment or prevention of a disease it comprises a plurality of cyclic molecules and one linear polymer having a terminal group, and the linear polymer passes through at least one degradable moiety.
  • a polyrotaxane compound comprising at least two linear polymer moieties linked together.
  • the pharmaceutical composition according to [18], wherein the disease is a disease caused by an abnormal cell metabolic function, a disease caused by intracellular cholesterol accumulation, or a disease caused by a dysfunction of autophagy, [19] Or the use according to [20].
  • the diseases are Gaucher disease (Gaucher disease), Niemann-Pick disease type A (Niemann-Pick disease type A), Niemann-Pick disease type B (Niemann-Pick disease type B), Niemann-Pick disease type C (Niemann-Pick disease type C), GM1 gangliosidosis, GM2 gangliosidosis, Krabbe disease (Krabbe disease), metachromatic leukodystrophy, multiple sulfatase deficiency, Farber disease (Farber disease) Disease), mucopolysaccharidosis type I, mucopolysaccharidosis type II, mucopolysaccharidosis type III, mucopolysaccharidosis type IV, mucopolysaccharidosis type VI, mucopolysaccharidosis type VII, mucopolysaccharidosis type IX, sialidosis, galactosialidosis , I-cell disease / mucolipidosis type III
  • At least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion.
  • a method for producing a polyrotaxane compound comprising: a) adding a reactive group to both ends of a linear polymer portion; b) decomposing a linear polymer portion having a reactive group added to both ends; A linear polymer comprising at least two linear polymer moieties linked via at least one degradable moiety, c) reacting the linear polymer with a cyclic molecule A process for obtaining a pseudopolyrotaxane, and d) a step of adding end groups to both ends of the pseudopolyrotaxane.
  • the reactive group added to both ends of the linear polymer portion is selected from the group consisting of an amino group, a carboxyl group, an aldehyde group, a sulfanyl group, an azide group, an alkynyl group, a tosyl group, and an active ester group.
  • At least two lines comprising a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable moiety.
  • Polyrotaxane compound including a linear polymer portion in other words, a polyrotaxane compound including a plurality of cyclic molecules and one linear polymer having a terminal group, and having at least one decomposable portion inside the linear polymer Is provided.
  • the degradable polyrotaxane compound according to the present invention has a degradable portion inside the linear polymer main chain, it is decomposed compared to a conventional degradable polyrotaxane compound having degradable bonds at both ends. Larger changes in molecular weight can occur at times, which can dramatically change the basic physical properties of polymers such as viscosity, solubility, and glass transition point. In addition, it is fundamentally different from conventional double-end-decomposable polyrotaxanes, and molecules with a bulky structure such as enzymes are arranged because degradable bonds are placed inside the linear polymer main chain at the end away from the terminal site.
  • the degradable functional polyrotaxane introduces degradable bonds at both ends of the linear polymer chain, it is necessary to arrange two degradable bonds with respect to one molecule of polyrotaxane. Required more than 6-7 steps.
  • the degradable bond is arranged only near the center of the linear polymer, so that the synthesis method is simplified within 4 steps, and the production time is shortened. There is also an advantage that an improvement in the recovery amount can be achieved.
  • FIG. 3 is a diagram showing a 1 H-NMR spectrum of polyrotaxane A having a decomposable group. It is the figure which showed the GPC chart of the polyrotaxane A after ultraviolet irradiation.
  • FIG. 3 is a diagram showing a 1 H-NMR spectrum of polyrotaxane B having a methacryloyl group as a polymerizable group. It is the figure which showed the result of the tension test of the Bis-GMA containing hardening body which does not contain a polyrotaxane. It is the figure which showed the result of the tensile test of the hardening body containing polyrotaxane B.
  • Polyrotaxane, 2-dimethylaminoethyl methacrylate, camphorquinone, 2-hydroxyethyl methacrylate are mixed in a silicone mold (thickness 1 mm, length 15 mm, dumbbell shape with a center width 1 mm, end width 2 mm). It is the figure shown about producing a hardening body by adding the photopolymerization type adhesive agent prepared in this way. It is the graph which showed the micro tensile strength of the non-UV irradiation group and the UV irradiation group about the polyrotaxane of a different mass part.
  • One aspect of the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, and the linear polymer is linked via at least one degradable moiety.
  • a polyrotaxane compound containing a linear polymer portion in other words, a plurality of cyclic molecules and one linear polymer having a terminal group, and at least one decomposable inside the linear polymer away from the terminal.
  • the present invention relates to a polyrotaxane compound having a moiety. The present invention is described in detail below.
  • Polyrotaxane (PRX) compound Rotaxane is a macromolecule that is penetrated by a macromolecule and bonds bulky sites to both ends of the macromolecule so that the ring cannot be removed from the shaft due to steric hindrance. .
  • PRX Polyrotaxane
  • one linear polymer penetrates the ring of a plurality of macrocyclic molecules.
  • known molecules can be used, and are not particularly limited.
  • the linear polymer contained in the polyrotaxane has a structure represented by the following formula: X 1 -Y 0 (-Z i -Y i ) i -X 2
  • X 1 and X 2 are the same or different terminal group
  • Y 0 and Y i are identical or different linear polymeric moiety
  • Z i is an exploded moiety
  • (- Z i -Y i I) i indicates that there are i repeating units composed of a decomposable portion Y and a linear polymer portion Z
  • each Z i and Y i in the linear polymer may be the same or different.
  • i is not particularly limited, i is preferably an integer of 1 to 500, more preferably 1 to 10, for example 1 or 2.
  • the linear polymer has a structure in which two linear polymer parts are linked via one degradable part as shown in the following formula: X 1 -Y 0 -Z 1 -Y 1 -X 2
  • X 1 and X 2 are the same or different end groups
  • Y 0 and Y 1 are the same or different linear polymer moieties
  • Z 1 is a degradable moiety.
  • the linear polymer has a structure in which three linear polymer parts are connected via two degradable parts as shown in the following formula: X 1 -Y 0 -Z 1 -Y 1 -Z 2 -Y 2 -X 2
  • X 1 and X 2 are the same or different end groups
  • Y 0 , Y 1 and Y 2 are the same or different linear polymer moieties
  • Z 1 and Z 2 are the same or different degradable moieties. is there.
  • a known polyrotaxane can be appropriately selected.
  • the average molecular weight of the linear polymer is not particularly limited, but is preferably 1000 to 100,000, particularly 2000 to 40000 or 5000 to 20000. Two or more linear polymer portions contained in one linear polymer may be the same as or different from each other.
  • the average molecular weight of the linear polymer portion is not particularly limited, but is preferably 100 to 100,000, particularly 200 to 40,000 or 500 to 20,000.
  • cyclic molecule a conventionally known cyclic molecule can be used.
  • ⁇ , ⁇ or ⁇ -cyclodextrin is preferred, but it may have a cyclic structure similar to this, and examples of such cyclic structure include cyclic polyether, cyclic polyester, cyclic polyetheramine, cyclic Polyamine, cyclophane, crown ether and the like can be mentioned.
  • a preferable cyclic molecule from the viewpoint of the ability to form pseudopolyrotaxane is ⁇ , ⁇ or ⁇ -cyclodextrin, and ⁇ -cyclodextrin is particularly preferable.
  • the cyclic molecule contained in the polyrotaxane according to the present invention may have one or a plurality of substituents.
  • a substituent can be introduced into the hydroxyl group of cyclodextrin.
  • the substituent include 2-hydroxyethoxyethyl (HEE) group, hydroxyethyl group, hydroxypropyl group, hydroxybutyl group, hydroxyethoxyethyl group, N, N-dimethylaminoethyl group (sometimes referred to as DMAE group).
  • the cyclic molecule may contain multiple types of substituents. Examples of the polymerizable group include (meth) acryloyl group, (meth) acryloyloxy group, (meth) acryloylamino group, (meth) acryloyl group derivative group such as (meth) acryloylthio group, vinyl group, aryl group, styryl.
  • the polyrotaxane compound according to the present invention may contain a plurality of types of polymerizable groups. These groups may be directly bonded to the cyclic molecule or may be bonded via a linker.
  • the linker is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the linker may be a carbamate ester bond (—O—CO—NH—), an ester bond (—O—CO—), a carbonate bond (— O-CO-O-), ether bond (-O-) and the like.
  • the combination of the linear polymer and the cyclic molecule a combination of ⁇ -cyclodextrin and polyethylene glycol, a combination of ⁇ -cyclodextrin and poloxamer, or the like is preferable.
  • the synthesis of polyrotaxane by a combination of ⁇ -cyclodextrin and poloxamer is also disclosed in Patent Document 1 described above, the contents of which are also incorporated herein by reference.
  • the ratio between the number of molecules of the linear polymer and the number of molecules of the cyclic molecule is not particularly limited, but is preferably 1: 1 to 1: 500, more preferably 1: 5 to 1: 200. A ratio of 1:10 to 1: 100 is used. That is, preferably 1 to 500 cyclic molecules are contained in one molecule of the linear polymer, more preferably 5 to 200 cyclic molecules, for example, 10 to 100 cyclic molecules may be contained.
  • terminal group also referred to as bulky substituent
  • examples of the terminal group (also referred to as bulky substituent) used in the present invention include 2,4-dinitrophenyl group, 3,5-dinitrophenyl group, cyclodextrin, adamantane group, O-triphenylmethyl (O— Trt) group, S-triphenylmethyl (S-Trt) group, N-triphenylmethyl (N-Trt) group, N-tritylglycine, benzyloxycarbonyl (Z) group, 9-fluorenylmethyloxycarbonyl ( Fmoc) group, benzyl ester (OBz) group, tertiary butylcarbonyl (Boc) group, amino acid tertiary butyl ester (OBu group), trityl group, fluorescein, pyrene, substituted benzene (as substituents, alkyl, alkyloxy, hydroxy) , Hal
  • a polynuclear aromatic which may be substituted (but not limited to these), and may be the same as those described above, but is not limited thereto.
  • One or more substituents may be present. May be selected from the group consisting of, but not limited to, MPC (2-methacryloyloxyethyl phosphorylcholine), BMA (n-butyl methacrylate), a combination of MPC and BMA, and steroids.
  • One preferred end group is an adamantane group.
  • the end group need not be directly linked to the linear polymer moiety, but via a linker moiety known to those skilled in the art (eg, a moiety containing a peptide bond, carbamate bond, ester bond, or ether bond). It may be connected.
  • the polyrotaxane compound according to the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, and has at least one decomposable portion inside the linear polymer away from the terminal.
  • the degradable moiety of the polyrotaxane compound according to the present invention includes at least one degradable group.
  • decomposable group examples include p-methoxyphenacyl group, 2-nitrobenzyl group, 2-nitrobenzyloxycarbonyl group, 2-nitrophenylethylene glycol group, benzyloxycarbonyl group, 3,5-dimethoxybenzyloxy Carbonyl group, ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyloxycarbonyl group, 3-nitrophenyl group, 3-nitrophenoxy group, 3,5-dinitrophenoxy group, 3-nitrophenoxycarbonyl group, phenacyl group, 4 -Methoxyphenacyl group, ⁇ -methylphenacyl group, 3,5-dimethoxybenzoinyl group, 2,4-dinitrobenzenesulfenyl group, (coumarin-4-yl) methyl group, 7-nitroindolinyl group, Photocleavable groups such as arylazophosphate ester units; ester bonds, Schiff bases Various hydrolyzable bonds such as carbamate bonds, peptide bonds, ether bonds,
  • Preferable degradable groups include, for example, a photocleavable group, a disulfide group, and a peptide consisting of 2 to 30 amino acid residues.
  • Peptides may have specific sequences that are recognized and cleaved by enzymes such as specific proteases and peptidases.
  • the position is preferably near the center of the linear polymer, in other words, two linear shapes connected to the degradable portion.
  • the length ratio of the polymer portion is preferably 1: 1, but the position is not limited.
  • the ratio of the lengths of the two linear polymer portions linked to the degradable portion can be any ratio included, for example, from 1: 1 to 1: 4.
  • the degradable part is located in the center of the linear polymer, two linear polymer parts having a length half that of the linear polymer are generated along with the decomposition of the decomposable part. Cyclic molecules are released from the non-existing ends.
  • the ratio of the lengths of the linear polymer portions connected to each degradable portion is also preferably 1: 1, but there is no particular limitation. It can be any ratio comprised between 1: 1 and 1: 4.
  • the number average molecular weight of the polyrotaxane according to the present invention is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably about 10,000 to 500,000.
  • the polyrotaxane compound according to the present invention can be used as a dental adhesive. Since the photodegradable polyrotaxane having a polymerizable functional group introduced into a plurality of cyclodextrins (CD) functions as a crosslinking agent, a three-dimensional structure can be easily produced by copolymerizing with other monomers. Furthermore, the three-dimensional structure can be decomposed by irradiation with ultraviolet rays to reduce the mechanical strength.
  • CD cyclodextrins
  • a photodegradable polyrotaxane crosslinking agent when used as a resin monomer in a dental material, it can be developed into a dental adhesive that is cured by irradiation with visible light and decomposed by irradiation with ultraviolet light.
  • a photodegradable polyrotaxane crosslinking agent when used as a resin monomer in a dental material, it can be developed into a dental adhesive that is cured by irradiation with visible light and decomposed by irradiation with ultraviolet light.
  • Seo et al. Reported the construction of a three-dimensional structure using a photodegradable polyrotaxane in which nitrobenzyl, which is photolyzed by ultraviolet irradiation, is arranged between both ends of a linear polymer and a blocking group (Seo). et al., ACS Macro Lett., 4, 1154, 2015).
  • one embodiment of the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, and the linear polymer is linked via at least one degradable moiety.
  • the present invention relates to an adhesive composition containing a polyrotaxane compound containing at least two linear polymer moieties.
  • Another embodiment of the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymer is linked via at least one degradable moiety.
  • the present invention relates to a dental material composition containing a polyrotaxane compound containing two linear polymer parts.
  • the above composition according to the present invention may further contain a polymerizable monomer.
  • the polyrotaxane compound contained in the composition according to the present invention is preferably soluble in a solution of a polymerizable monomer.
  • the polymerizable monomer for example, those having at least one polymerizable group in the molecule such as a polymerizable unsaturated group, a ring-opening polymerizable group, and a polycondensable group can be used.
  • Conventionally known polymerizable monomers used in known adhesive compositions can be used without limitation. These polymerizable monomers cause a polymerization initiation reaction by the action of heat, a polymerization initiator, gamma rays, electrolysis, plasma, and the like.
  • polymerizable monomer examples include 2-ethylhexyl (meth) acrylate, glycidyl (meth) acrylate, benzyl (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di ( And (meth) acrylate, methyl (meth) acrylate, 4-methacryloxyethyl trimellitate anhydride and the like.
  • the composition according to the present invention may further contain a polymerization initiator.
  • a polymerization initiator conventionally known polymerization initiators used for conventionally known radical polymerization, anionic polymerization, cationic polymerization, polyaddition reaction, polycondensation reaction, coupling reaction, inorganic synthetic polymer synthesis and the like can be used.
  • radical polymerization initiators used for photopolymerization include benzoin methyl ether, benzyl dimethyl ketal, benzophenone, 4,4′-dimethylbenzophenone, diacetyl, 2,3-pentadione benzyl, camphorquinone, 9,10-phenone. Examples thereof include nantraquinone and 9,10-anthraquinone.
  • the polyrotaxane compound according to the present invention can be used as a coating agent on the surface of a material.
  • a coating agent on the surface of a material.
  • various functional groups and cell-adhesive oligopeptides to CD
  • Seo et al. Can control protein-level and cell-level biointerfaces such as inactive surface adsorption of proteins and rapid cell adhesion. (J. Am. Chem. Soc., 2013, 135, 5513).
  • Seo et al. Analyzed, for example, the adsorption of fibrinogen that activates platelets using a polyrotaxane surface obtained by methylating CD.
  • fibrinogen adsorbed on the surface has a suppressed conformational change and is in an inactive state. It has also been reported (Soft Matter, 2012, 8, 5477). It is known that a three-dimensional structure produced using a polyrotaxane has mechanical properties such as collagen fibers constituting skin and blood vessels. That is, it exhibits flexibility for small deformations and high rigidity for large deformations (see, for example, Ito, Polym. J., 2007, 39, 489). Materials with such properties can follow the movements of the body, such as stretching and contracting of muscles and tendons, contraction of the stomach and heart beat, and adhere to tissue composed of cells and extracellular matrix.
  • one embodiment of the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, and the linear polymer is linked via at least one degradable moiety.
  • the present invention relates to a surface coating agent containing a polyrotaxane compound containing at least two linear polymer moieties.
  • Another embodiment of the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymer is linked via at least one degradable moiety.
  • the present invention relates to an anti-adhesion agent containing a polyrotaxane compound containing two linear polymer moieties.
  • the polyrotaxane compound according to the present invention can be used as an in-vivo implant or tissue regenerative device by using a three-dimensional structure produced by crosslinking or the like.
  • Seo et al. Can regulate the formation of cytoskeletal proteins by controlling the number of cyclodextrin (CD) penetrations, and surface with low surface molecular mobility.
  • CD cyclodextrin
  • the upper mesenchymal stem cells promote the formation of actin fibers, which are cytoskeletal proteins, and differentiate into osteoblasts. On surfaces with high surface molecular mobility, the formation of actin fibers is inhibited and differentiates into adipocytes.
  • hESC human embryonic stem cells
  • pluripotent stem cells are cultured using incubators with polyrotaxane block copolymer surfaces with different molecular motility. It is possible to maintain the undifferentiated state by culturing or to induce differentiation into specific cells.
  • the implant material and cell culture device can be produced by crosslinking a degradable polyrotaxane.
  • a decomposable polyrotaxane is prepared by introducing a functional group that forms a crosslinking point into a linear polymer terminal or in the vicinity of the terminal, or in a cyclic molecule, and can be prepared by crosslinking it alone or with other reactive molecules.
  • the crosslinkable functional group include a vinyl group, an aldehyde group, and a carboxyl group.
  • the reactive molecule used for the crosslinking reaction include vinyl polymerizable monomers, polysaccharides, proteins (polypeptides) and the like.
  • Scaffolds composed of degradable polyrotaxanes are capable of degrading and disappearing after a certain period of time when cell differentiation and proliferation were promoted in vivo by the molecular mobility of polyrotaxanes, and cells or tissues can be integrated with surrounding tissues.
  • one embodiment of the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, and the linear polymer is linked via at least one degradable moiety.
  • the present invention relates to an in vivo implant containing a polyrotaxane compound containing at least two linear polymer moieties.
  • Another embodiment of the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymer is linked via at least one degradable moiety.
  • the present invention relates to a tissue regeneration device containing a polyrotaxane compound containing two linear polymer portions. These implants and tissue regenerators may contain other materials such as collagen and gelatin, preferably bioabsorbable materials.
  • the polyrotaxane compound according to the present invention is used for the treatment of diseases caused by abnormal cell metabolic functions such as lysosomal disease, diseases caused by intracellular cholesterol accumulation, or diseases caused by dysfunction of autophagy. It can be used as an active ingredient of a pharmaceutical composition.
  • a degradable portion of the polyrotaxane compound according to the present invention a degradable group capable of degrading in an acidic environment within a cell and in an acidic environment at pH 4.0 to 6.0 can be employed.
  • Such a polyrotaxane compound is decomposed in an acidic environment, the polyrotaxane skeleton is collapsed, and a cyclic molecule such as ⁇ -CD is released.
  • vesicles such as lysosomes and late endosomes exist in eukaryotic cells including humans, and the lumens of these vesicles are acidified.
  • the pH of the lysosomal lumen is around 5. Therefore, the polyrotaxane compound according to the present invention can be decomposed by being taken into these vesicles.
  • the polyrotaxane compound according to the present invention releases a cyclic molecule such as ⁇ -CD upon decomposition.
  • ⁇ -cyclodextrin when ⁇ -cyclodextrin is released in lysosomes, it can include cholesterol present in lysosomes, thereby causing Niemann-Pick disease type C, which is caused by excessive accumulation of cholesterol in lysosomes. Lysosomal disease can be treated or prevented (see, eg, Tamura and Yui, Sci. Rep., 2014, 4, 4356).
  • one embodiment of the present invention relates to a pharmaceutical composition for treating a disease caused by intracellular cholesterol accumulation.
  • one embodiment of the present invention relates to a method for treating or preventing Niemann-Pick disease type C (NPC).
  • one aspect of the present invention also relates to the use of a polyrotaxane compound in the manufacture of a medicament for treating or preventing Niemann-Pick disease type C (NPC).
  • Preferred acid-decomposable polyrotaxane compounds as pharmaceutical compositions include, for example, compounds having a disulfide bond in the interior of the linear polymer, preferably the central portion, and an N-triphenylmethyl (N-Trt) group at the terminal. included.
  • lysosomal disease more specifically Gaucher disease (Gaucher disease), Neimann-Pick disease type A (Niemann-Pick disease type A), Neiman-Pick disease. B type (Niemann-Pick disease type B), Niemann-Pick disease type C (Niemann-Pick disease type C), GM1 gangliosidosis, GM2 gangliosidosis ("Tay-Sachs Sandhoff type AB").
  • one embodiment of the present invention relates to a pharmaceutical composition for treating or preventing Niemann-Pick disease type C (NPC).
  • one embodiment of the present invention relates to a method for treating or preventing Niemann-Pick disease type C (NPC).
  • one aspect of the present invention also relates to the use of a polyrotaxane compound in the manufacture of a medicament for treating or preventing Niemann-Pick disease type C (NPC).
  • the polyrotaxane compound according to the present invention can be used as an active ingredient of a composition for use in inducing autophagy in cells. Accordingly, one embodiment of the present invention relates to a composition for inducing autophagy in a cell. In another aspect, one embodiment of the present invention relates to a method for inducing autophagy in a cell. Furthermore, one aspect of the present invention also relates to the use of a polyrotaxane compound in the manufacture of a medicament for inducing autophagy in a cell.
  • the methylated polyrotaxane according to the present invention can induce autophagic cell death in cells. It is known to those skilled in the art that autophagic cell death can be used to induce cell death in cancer cells.
  • one aspect of the present invention relates to a pharmaceutical composition for treating cancer, preferably a pharmaceutical composition for treating cancer resistant to apoptosis.
  • one embodiment of the present invention relates to a method for treating cancer, particularly for treating cancer resistant to apoptosis.
  • one aspect of the present invention pertains to the use of polyrotaxane compounds in the manufacture of a medicament for treating cancer.
  • one embodiment of the present invention relates to a pharmaceutical composition for treating or preventing a disease caused by autophagy dysfunction.
  • one embodiment of the present invention relates to a method for treating or preventing a disease caused by a dysfunction of autophagy.
  • one aspect of the present invention also relates to the use of a polyrotaxane compound in the manufacture of a medicament for treating or preventing a disease resulting from autophagy dysfunction.
  • diseases caused by autophagy dysfunction include the above-mentioned lysosomal diseases, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease.
  • the polyrotaxane compound according to the present invention can be used as an active ingredient in a pharmaceutical composition used for the treatment or prevention of the above-mentioned diseases. Therefore, one embodiment of the present invention relates to a pharmaceutical composition used for treatment or prevention of diseases.
  • the other components in the pharmaceutical composition according to the present invention are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include pharmaceutically acceptable carriers. There is no restriction
  • the pharmaceutical composition according to the present invention is water-soluble at around body temperature, for example, 34 ° C to 42 ° C, more preferably 35 ° C to 38 ° C or 37 ° C.
  • an injection Solution, suspension, solid agent for use, etc.
  • inhaled powders for example, a pH regulator, a buffer, a stabilizer, a tonicity agent, a local anesthetic, etc. are added to the polyrotaxane compound according to the present invention, and subcutaneous, intramuscular, intravenous, etc. are added by a conventional method.
  • An injection for internal use can be produced.
  • the pH adjusting agent and the buffering agent include sodium citrate, sodium acetate, sodium phosphate and the like.
  • Examples of the stabilizer include sodium pyrosulfite, EDTA, thioglycolic acid, thiolactic acid and the like.
  • Examples of the isotonic agent include sodium chloride and glucose.
  • Examples of the local anesthetic include procaine hydrochloride and lidocaine hydrochloride.
  • the administration method of the pharmaceutical composition according to the present invention is not particularly limited, and for example, either local administration or systemic administration can be selected according to the dosage form of the pharmaceutical composition, the patient's condition, and the like.
  • local administration includes intracerebroventricular administration.
  • the subject of administration of the pharmaceutical composition according to the present invention is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include humans, mice, rats, cows, pigs, monkeys, dogs, cats and the like. However, it is preferably a human.
  • the dosage of the pharmaceutical composition according to the present invention is not particularly limited, and can be appropriately selected depending on the dosage form, the age and weight of the administration subject, the degree of desired effect, and the like.
  • the administration time of the pharmaceutical composition according to the present invention is not particularly limited and may be appropriately selected depending on the purpose. For example, it may be administered prophylactically to a patient susceptible to the above-mentioned diseases, It may be administered therapeutically to patients presenting with symptoms. Moreover, there is no restriction
  • the degradable polyrotaxane compound according to the present invention can be synthesized more easily and in a shorter time than a conventional degradable polyrotaxane compound having degradable groups at both ends.
  • One embodiment of the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, and the linear polymer is connected via at least one degradable moiety.
  • a method for producing a polyrotaxane compound comprising a polymer portion wherein a) a step of adding a reactive group to both ends of the linear polymer portion, b) a linear polymer portion having reactive groups added to both ends To obtain a linear polymer comprising at least two linear polymer moieties linked via at least one degradable moiety, and c) the linear polymer as a cyclic molecule. To a pseudopolyrotaxane, and d) adding a terminal group to both ends of the pseudopolyrotaxane.
  • the reactive group added to both ends of the linear polymer portion is, for example, a leaving group such as an amino group, a carboxyl group, an aldehyde group, a sulfanyl group, an azido group, an alkynyl group, a tosyl group, It may be an active ester group such as a carboxylic acid succinimide ester.
  • the linear polymer may be selected based on the length of the linear polymer.
  • a linear polymer in which two linear polymer parts are connected via one degradable part is selected.
  • reaction solution was dropped into diethyl ether, and the precipitate was collected.
  • the resulting precipitate was dialyzed against ultrapure water using a dialysis membrane (fractionated molecular weight 3,500) for 5 days, and then freeze-dried and recovered as a solid (recovered amount 7.4 g).
  • a solution obtained by dissolving 4.0 g of BOP reagent, 2.2 g of 1-adamantanecarboxylic acid and 2.1 mL of N, N-diisopropylethylamine in 120 mL of N, N-dimethylformamide and the recovered inclusion complex were mixed at room temperature. The reaction was performed for 24 hours.
  • the precipitate formed by dropping the reaction solution into methanol was collected by centrifugation.
  • the operation of dissolving the collected precipitate in dimethyl sulfoxide and precipitating with methanol was repeated several times.
  • the operation of dissolving the collected precipitate in dimethyl sulfoxide and precipitating with water was repeated several times.
  • lyophilization yielded a purified polyrotaxane (polyrotaxane A having a degradable group) (recovery amount 9.2 g).
  • polyrotaxane A having a decomposable group was identified by 1 H-NMR and GPC, and it was confirmed that unencapsulated CD was not contained.
  • FIG. 1 shows the 1 H-NMR spectrum of Polyrotaxane A. Further, when the number of penetrations of ⁇ -CD with respect to PEG was calculated, the number of penetrations of ⁇ -CD was 28.1 molecules.
  • FIG. 2 shows a GPC chart of Polyrotaxane A after ultraviolet irradiation. This result indicates that the axial polymer chain is cleaved by cleavage of nitrobenzene having photodegradability, and a part or all of ⁇ -CD is released from the inclusion state to the non-inclusion state. That is, it was confirmed that the supramolecular structure of polyrotaxane A was decomposed and collapsed by irradiation with ultraviolet rays (254 nm, 2.5 mW / cm 2 ).
  • 1,4-diazabicyclo [2.2.2] octane 500 mg was added, and the mixture was reacted at room temperature for 24 hours. After the reaction, dialysis was carried out for 2 days against dimethyl sulfoxide using a dialysis membrane (fraction molecular weight 3,500). Subsequently, dialysis was performed for 2 days against water using the same dialysis membrane (fraction molecular weight 3,500).
  • FIG. 3 shows the 1H-NMR spectrum of Polyrotaxane B. The molecular weight was confirmed by GPC. Moreover, as a result of confirming an absorption spectrum, it confirmed that polyrotaxane B had the absorption derived from a nitrobenzyl group.
  • polyrotaxane B was a predetermined polyrotaxane B having a nitrobenzyl group as a photocleavable group as a decomposable group and a methacryloyl group as a polymerizable group.
  • a solution obtained by dissolving 4.0 g of BOP reagent, 2.2 g of 1-adamantanecarboxylic acid and 2.1 mL of N, N-diisopropylethylamine in 120 mL of N, N-dimethylformamide and the recovered inclusion complex were mixed at room temperature. The reaction was performed for 24 hours.
  • a precipitate formed by dropping the reaction solution into methanol was collected by centrifugation.
  • the operation of dissolving the collected precipitate in dimethyl sulfoxide and precipitating with methanol was repeated several times.
  • the operation of dissolving the collected precipitate in dimethyl sulfoxide and precipitating with water was repeated several times.
  • lyophilization yielded a purified polyrotaxane (polyrotaxane X having no degradable group) (recovered amount 10.1 g).
  • the obtained polyrotaxane (polyrotaxane X having no decomposable group) was identified by 1 H-NMR and GPC, and it was confirmed that unencapsulated CD was not contained.
  • the number of penetrating ⁇ -CD to PEG was 28.8 molecules.
  • Polyrotaxane X was dissolved in 1 mL of dimethyl sulfoxide. Thereafter, ultraviolet rays (254 nm, 2.5 mW / cm 2 ) were irradiated for 1, 5 and 10 minutes, and it was confirmed by gel permeation chromatography (GPC) that there was no change in molecular weight. This result indicates that the axial polymer chain not containing photodegradable nitrobenzene did not respond to ultraviolet irradiation, and ⁇ -CD maintained the inclusion state.
  • GPC gel permeation chromatography
  • 1,4-diazabicyclo [2.2.2] octane 500 mg was added, and the mixture was reacted at room temperature for 24 hours. After the reaction, dialysis was carried out for 2 days against dimethyl sulfoxide using a dialysis membrane (fraction molecular weight 3,500). Subsequently, dialysis was performed for 2 days against water using the same dialysis membrane (fraction molecular weight 3,500).
  • Example 2 Effect of Reducing Maximum Tensile Strength on Photoinduced Degradation of Cured Product Prepared Using Polyrotaxane B Having Hydrophobic and Polymerizable Groups 29.5 parts by mass of polyrotaxane B synthesized in Synthesis Example 2, 2-hydroxy 69.5 parts by mass of ethyl methacrylate, 0.3 part by mass of 2-dimethylaminoethyl methacrylate, and 0.7 parts by mass of camphorquinone were mixed and used as a solution-type photopolymerizable adhesive B.
  • Photopolymerizable adhesive B was added to a dumbbell mold made of silicone, and light was irradiated for 180 seconds with a dental visible light irradiator (700 mW / cm 2 ) to prepare a cured body.
  • the cured product is obtained by adding a photopolymerizable adhesive B to a silicone mold (thickness 1 mm, length 15 mm, center width 1 mm, end width 2 mm) and then applying a visible light irradiator (wavelength (400 to 450 nm, 700 mW / cm 2 ) for 180 minutes to produce a cured product.
  • a comparative cured product was prepared using the same method as described above. 29.5 parts by mass of polyrotaxane Y synthesized in Comparative Synthesis Example 2, 69.5 parts by mass of 2-hydroxyethyl methacrylate, 0.3 parts by mass of 2-dimethylaminoethyl methacrylate, 0.7 parts by mass of camphorquinone These were mixed and used as a solution-type photopolymerizable adhesive Y.
  • the photopolymerizable adhesive Y was added to a silicone dumbbell mold, and light was irradiated for 180 seconds with a dental visible light irradiator (700 mW / cm 2 ) to prepare a cured body.
  • the cured product was obtained by adding a photopolymerizable adhesive Y to a silicone mold (dumb shape having a thickness of 1 mm, a length of 15 mm, a center width of 1 mm, and an end width of 2 mm), and then a visible light irradiator (wavelength). (400 to 450 nm, 700 mW / cm 2 ) for 180 minutes to produce a cured product.
  • the micro tensile strength of the non-UV irradiation group was 45.7 MPa (standard deviation 2.4 MPa), whereas the micro tensile strength of the UV irradiation group was 24.1 MPa.
  • the standard deviation was as low as 4.7 MPa (FIG. 5).
  • the microtensile strength was significantly reduced by the decomposition of polyrotaxane B accompanying the cleavage of the photocleavable group (nitrobenzyl group) by UV irradiation.
  • the micro tensile strength could be greatly reduced by a simple treatment of UV irradiation for a relatively short time.
  • the micro tensile strength of the non-UV irradiation group was 41.3 MPa (standard deviation 4.6 MPa), whereas the micro tensile strength of the UV irradiation group was 38. .2 MPa (standard deviation 4.9 MPa).
  • the photopolymerizable adhesive B prepared using a polyrotaxane B having a nitrobenzyl group that is a photocleavable group as a decomposable group and a methacryloyl group as a polymerizable group It was confirmed that the effect of greatly reducing the micro tensile strength of the prepared cured product was obtained by applying a specific wavelength UV light that acts to cleave a certain nitrobenzyl. For example, it is shown that the adhesiveness can be greatly lowered even in a short operation time by performing a simple operation of irradiating the cured product of the photopolymerizable adhesive B with light that acts to break the degradable bond of polyrotaxane B. It was done.
  • Example 3 Maximum Tensile Strength Reduction Effect on Photo-Induced Decomposition of Cured Product Made by Changing Content of Polyrotaxane B
  • the mass part of polyrotaxane B synthesized in Synthesis Example 2 and polyrotaxane Y synthesized in Comparative Synthesis Example 2 is 9. 5, 29.5, 49.5, 0.3 parts by mass of 2-dimethylaminoethyl methacrylate and 0.7 parts by mass of camphorquinone were fixed, and the total of parts by mass of 2-hydroxyethyl methacrylate was 100 parts by mass. It mixed so that it might become, and was used as a photopolymerization type adhesive agent (FIG. 6).
  • Example 2 is a case where the mass part of the polyrotaxane Y is 29.5, and is described together with Example 3.
  • a photopolymerization adhesive was added to a silicone mold (dumb shape having a thickness of 1 mm, a length of 15 mm, a center width of 1 mm, and an end width of 2 mm), and then a visible light irradiator ( A cured product was produced by irradiation with light at a wavelength of 400 to 450 nm, 700 mW / cm 2 ) for 180 minutes.
  • the photopolymerizable adhesive B prepared using polyrotaxane B having a nitrobenzyl group which is a UV-cleavable group has a small amount of cured product prepared by applying UV light. It was confirmed that the effect of greatly reducing the tensile strength was obtained. It is shown that the adhesiveness can be greatly reduced even in a short working time by a simple operation of irradiating the cured product of the photopolymerizable adhesive B with light that acts to break the degradable bond of polyrotaxane B. It was.
  • the centrally decomposable functional polyrotaxane according to the present invention can be used in various applications by replacing a conventional polyrotaxane having degradable linkers at both ends.
  • Such centrally-resolved functional polyrotaxane has fewer synthetic steps than both-end-resolved type, so there are advantages in manufacturing, and it is also possible to use functional molecules such as peptides that are difficult to introduce at both ends. It becomes.
  • Possible uses include use as a resin monomer in dental materials and use as a therapeutic agent for Niemann-Pick disease type C (NPC), as described above.
  • NPC Niemann-Pick disease type C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polyethers (AREA)

Abstract

The present invention provides a degradable polyrotaxane compound that is easily produced and has large changes in physical properties during degradation. More specifically, said polyrotaxane compound is provided as a result of synthesizing a polyrotaxane compound including at least two linear polymer moieties wherein linear polymers are linked via at least one degradable section. This kind of polyrotaxane compound has a degradable section inside a linear polymer main chain and, as a result, is capable of having a greater change in molecular weight during degradation, compared to conventional degradable polyrotaxane compounds having degradable bonds at both terminals thereof, and is capable of dramatically changing basic physical properties of the polymer such as viscosity, solubility, and glass transition point.

Description

内部分解型ポリロタキサンおよびその合成方法Internally decomposed polyrotaxane and method for synthesizing the same 関連出願の相互参照Cross-reference of related applications
 本願は、特願2016-92550号(出願日:2016年5月2日)の優先権の利益を享受する出願であり、これは引用することによりその全体が本明細書に取り込まれる。 This application is an application that enjoys the benefit of the priority of Japanese Patent Application No. 2016-92550 (filing date: May 2, 2016), which is incorporated herein by reference in its entirety.
 本発明は、線状高分子の内部に少なくとも1つの分解性結合を有する分解性のポリロタキサン化合物、およびその合成方法に関する。 The present invention relates to a degradable polyrotaxane compound having at least one degradable bond inside a linear polymer, and a synthesis method thereof.
 ポリロタキサンは、線状高分子が複数の環状分子空洞部を貫通した骨格を有する超分子である。たとえば、生体適合性の高いポリエチレングリコール(PEG)(線状高分子)と医薬や食品に使用されているシクロデキストリン(CD)(環状分子)を水溶液中で混合した場合、自発的にPEGがCDの空洞部を貫通した包接錯体を沈殿として回収できることが知られている。また、この包接錯体の線状高分子末端に嵩高い官能基(封鎖基)を修飾することによってポリロタキサンを調製することができる。 Polyrotaxane is a supramolecule having a skeleton in which a linear polymer penetrates a plurality of cyclic molecular cavities. For example, when polyethylene glycol (PEG) (linear polymer) with high biocompatibility and cyclodextrin (CD) (cyclic molecule) used in medicine and food are mixed in an aqueous solution, PEG spontaneously becomes CD. It is known that the inclusion complex penetrating through the cavity can be recovered as a precipitate. Moreover, a polyrotaxane can be prepared by modifying a bulky functional group (blocking group) at the end of the linear polymer of the inclusion complex.
 国際公開パンフレットWO2015/025815(特許文献1)では、線状高分子の両末端と封鎖基の間に生体内分解性結合を含む官能基団を配置したポリロタキサンが合成され、末端分解による封鎖基の解離に伴ってポリロタキサン全体の分解消失が誘起されることが示されている。従来の分解型高分子は分解性基を修飾した一部分のみが順次分解して経時的に低分子量化していく性質をもっているが(非特許文献1および2)、分解型ポリロタキサンは封鎖基の解離によって線状高分子から環状分子が遊離する大きな分子量変化を伴う分解特性を有している。このような分解型ポリロタキサンの分解性官能基団を目的に応じて選択することによって、この分解型ポリロタキサンを生体内など様々な環境下で活用することが可能である。更にグルコースがα-1,4結合で環状に結合したCDは多数の水酸基を有するため様々な官能基をポリロタキサンに修飾することが可能であり、ポリロタキサンを容易に機能化することができる。 In International Publication Pamphlet WO2015 / 025815 (Patent Document 1), a polyrotaxane in which a functional group containing a biodegradable bond is arranged between both ends of a linear polymer and a blocking group is synthesized. It has been shown that the degradation of the entire polyrotaxane is induced with dissociation. Conventional degradable polymers have the property that only a part modified with a degradable group is sequentially decomposed to lower the molecular weight over time (Non-patent Documents 1 and 2), but degradable polyrotaxanes are produced by dissociation of blocking groups. It has a decomposition characteristic accompanied by a large molecular weight change in which a cyclic molecule is liberated from a linear polymer. By selecting such a degradable polyrotaxane degradable functional group depending on the purpose, it is possible to utilize this degradable polyrotaxane in various environments such as in vivo. Further, CD in which glucose is cyclically bonded with α-1,4 bonds has a large number of hydroxyl groups, so that various functional groups can be modified to polyrotaxane, and the polyrotaxane can be easily functionalized.
国際公開第2015/025815号International Publication No. 2015/025815
 本発明は、線状高分子の内部に少なくとも1つの分解性結合を有する分解性のポリロタキサン化合物を提供することを目的の一つとする。また、本発明は、線状高分子の内部に少なくとも1つの分解性結合を有する分解性のポリロタキサン化合物の製造方法を提供することを目的の一つとする。これまでに報告された分解性のポリロタキサン化合物は、いずれも、線状高分子鎖の両末端に分解性結合を有しており、1分子のポリロタキサンに対して分解性結合を2箇所配置する必要があり、そのために合成方法は6~7工程以上を要していた。さらに、本発明は、線状高分子の内部に少なくとも1つの分解性結合を有する分解性のポリロタキサン化合物を含有する、さまざまな用途の組成物を提供することを別の目的の一つとする。 An object of the present invention is to provide a degradable polyrotaxane compound having at least one decomposable bond inside a linear polymer. Another object of the present invention is to provide a method for producing a degradable polyrotaxane compound having at least one degradable bond inside a linear polymer. All of the degradable polyrotaxane compounds reported so far have degradable bonds at both ends of the linear polymer chain, and two degradable bonds must be arranged for one molecule of polyrotaxane. Therefore, the synthesis method required 6 to 7 steps or more. Another object of the present invention is to provide a composition for various uses, which contains a degradable polyrotaxane compound having at least one degradable bond inside a linear polymer.
 本発明者らは、生体内環境下で分解しうる結合を含む官能基団を末端部位から離れた主鎖内部に配置した線状高分子を合成し、この線状高分子が多数の環状分子(例えば、シクロデキストリン)の空洞部を貫通した超分子であるポリロタキサンを高純度・高収量で得ることに成功した。このポリロタキサンは、外部刺激による線状高分子内の分解性部分(分解性結合)の分解に伴って全ての環状分子が線状高分子から放出される新たな解離機構を有している。分解性結合の種類を組織内や細胞内局所など任意な部位・環境で治療や診断などの必要に応じて分解するよう選択できるので、たとえば細胞小器官内の様々な刺激(特異的酵素など)に応答して解離する細胞内分解性ポリロタキサンを精密に調製できる。またシクロデキストリン(CD)への重合性基などの修飾をもとにポリロタキサン骨格を有する生体内分解性3次元架橋体が多種多様に調製できるので、組織再生や歯科治療などへ応用する際に架橋体の物性(機械的強度、組織接着性、細胞分化増殖性など)を適用部位の治癒過程や治療目的に沿って自在に低下させることができる。 The present inventors have synthesized a linear polymer in which a functional group containing a bond that can be decomposed in an in vivo environment is arranged in the main chain away from the terminal site, and this linear polymer is a large number of cyclic molecules. We succeeded in obtaining polyrotaxane, a supramolecule penetrating through the cavity of (for example, cyclodextrin) with high purity and high yield. This polyrotaxane has a new dissociation mechanism in which all cyclic molecules are released from the linear polymer as the degradable part (degradable bond) in the linear polymer is decomposed by an external stimulus. Since the type of degradable bond can be selected to be decomposed as needed for treatment or diagnosis at any site / environment such as tissue or intracellular location, various stimuli in specific organelles (specific enzymes, etc.) It is possible to precisely prepare an intracellular degradable polyrotaxane that dissociates in response to. In addition, a wide variety of biodegradable three-dimensional cross-linked bodies having a polyrotaxane skeleton can be prepared based on modifications such as polymerizable groups to cyclodextrin (CD), so that they can be cross-linked when applied to tissue regeneration or dental treatment. Physical properties of the body (mechanical strength, tissue adhesion, cell differentiation / proliferation, etc.) can be freely reduced according to the healing process and therapeutic purpose of the application site.
 本発明の態様は、以下の事項に関する。
[1]複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物。
[2]前記線状高分子が以下の式:
 X-Y(-Z-Y-X
に示される構造を有し、ここで、XおよびXは同一もしくは異なる末端基であり、YおよびYは同一もしくは異なる線状高分子部分であり、Zは分解性部分であり、(-Z-Yは、分解性部分Yと線状高分子部分Zから成る繰り返し単位がi個存在することを示し、線状高分子中の各ZおよびYは同一でも異なっていてもよく、iは1~500の整数である、[1]記載のポリロタキサン化合物。
[3]前記線状高分子が以下の式:
 X-Y-Z-Y-X
に示される構造を有し、ここで、XおよびXは同一もしくは異なる末端基であり、YおよびYは同一もしくは異なる線状高分子部分であり、Zは分解性部分である、[1]記載のポリロタキサン化合物。
[4]前記分解性部分に連結された2つの線状高分子部分の長さの比が1:1~1:4に含まれる、[1]~[3]のいずれか一項記載のポリロタキサン化合物。
[5]前記分解性部分が、酸分解性、酵素分解性、熱分解性、または光分解性である、[1]~[4]のいずれか一項記載のポリロタキサン化合物。
[6]前記分解性部分が、少なくとも一つの分解性基を含み、該分解性基が、p-メトキシフェナシル基、2-ニトロベンジル基、2-ニトロベンジルオキシカルボニル基、2-ニトロフェニルエチレングリコール基、ベンジルオキシカルボニル基、3,5-ジメトキシベンジルオキシカルボニル基、α,α-ジメチル-3,5-ジメトキシベンジルオキシカルボニル基、3-ニトロフェニル基、3-ニトロフェノキシ基、3,5-ジニトロフェノキシ基、3-ニトロフェノキシカルボニル基、フェナシル基、4-メトキシフェナシル基、α-メチルフェナシル基、3,5-ジメトキシベンゾイニル基、2,4-ジニトロベンゼンスルフェニル基、(クマリン-4-イル)メチル基、7-ニトロインドリニル基、アリールアゾ燐酸エステル、エステル結合、シッフ塩基結合、カーバメート結合、ペプチド結合、エーテル結合、アセタール結合、ヘミアセタール結合、ジスルフィド結合、有機過酸化物、およびアシルヒドラジン結合から成る群より選択される、[1]~[5]のいずれか一項記載のポリロタキサン化合物。
[7]環状分子が、α-シクロデキストリン、β-シクロデキストリン、およびγ-シクロデキストリンから成る群より選択される、[1]~[6]のいずれか一項記載のポリロタキサン化合物。
[8]環状分子が1つ又は複数の置換基を有する、[1]~[7]のいずれか一項記載のポリロタキサン化合物。
[9]置換基が、2-ヒドロキシエトキシエチル(HEE)基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基、ヒドロキシエトキシエチル基、N,N-ジメチルアミノエチル基、カルボキシル基、メチル基、スルホ基、一級アミノ基、ポリエチレングリコール、コラーゲン、トランスフェリン、RGDペプチド、オリゴアルギニン、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、(メタ)アクリロイルチオ基、ビニル基、アリール基、スチリル基、および(メタ)アクリルアミド基から成る群より選択される、[8]記載のポリロタキサン化合物。
[10]線状高分子部分が、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールとポリプロピレングリコールとの共重合体、ポリエチレンイミン、ポリアミノ酸、およびポリメチルビニルエーテルから成る群より選ばれる、[1]~[9]のいずれか一項記載のポリロタキサン化合物。
[11]末端基が、2,4-ジニトロフェニル基、3,5-ジニトロフェニル基、シクロデキストリン、アダマンタン基、O-トリフェニルメチル(O-Trt)基、S-トリフェニルメチル(S-Trt)基、N-トリフェニルメチル(N-Trt)基、N-トリチルグリシン、ベンジルオキシカルボニル(Z)基、9-フレオレニルメチルオキシカルボニル(Fmoc)基、ベンジルエステル(OBz)基、第三ブチルカルボニル(Boc)基、アミノ酸第三ブチルエステル(OBu基)、トリチル基、フルオレセイン、ピレン、置換ベンゼン、置換されていてもよい多核芳香族、MPC(2-メタクリロイルオキシエチルホスホリルコリン)、BMA(n-ブチルメタクリレート)、MPCとBMAとの組み合わせ、およびステロイドから成る群より選択される、[1]~[10]のいずれか一項記載のポリロタキサン化合物。
[12]複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、接着用組成物。
[13]複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、歯科材料組成物。
[14]複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、表面コーティング剤。
[15]複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、癒着防止剤。
[16]複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、体内埋植剤。
[17]複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、組織再生器材。
[18]複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、疾患の治療または予防に用いるための医薬組成物。
[19]対象に対して、好ましくはヒトに対して、複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する医薬組成物を投与する工程を含む、疾患の治療または予防のための方法。
[20]疾患の治療または予防のための薬剤の製造における、複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物の使用。
[21]前記疾患が、細胞代謝機能の異常に起因する疾患、細胞内コレステロール蓄積に起因する疾患、またはオートファジーの機能障害に起因する疾患である、[18]記載の医薬組成物、[19]記載の方法、または[20]記載の使用。
[22]前記疾患が、ライソゾーム病、神経変性疾患、および癌から成る群より選択される、[18]記載の医薬組成物、[19]記載の方法、または[20]記載の使用。
[23]前記疾患が、ゴーシェ病(Gaucher病)、ニーマン・ピック病A型(Niemann-Pick病A型)、ニーマン・ピック病B型(Niemann-Pick病B型)、ニーマン・ピック病C型(Niemann-Pick病C型)、GM1ガングリオシドーシス、GM2ガングリオシドーシス、クラッベ病(Krabbe病)、異染性白質変性症、マルチプルサルタファーゼ欠損症(Multiple sulfatese欠損症)、ファーバー病(Farber病)、ムコ多糖症I型、ムコ多糖症II型、ムコ多糖症III型、ムコ多糖症IV型、ムコ多糖症VI型、ムコ多糖症VII型、ムコ多糖症IX型、シアリドーシス、ガラクトシアリドーシス、I-cell病/ムコリピドーシスIII型、α-マンノシドーシス、β-マンノシドーシス、フコシドーシス、アスパルチルグルコサミン尿症、シンドラー/神崎病(Schindler/神崎病)、ウォルマン病(Wolman病)、ダノン病(Danon病)、遊離シアル酸蓄積症、セロイドリポフスチノーシス、ファブリー病、アルツハイマー病、パーキンソン病、ハンチントン病、およびアポトーシス耐性の癌から成る群より選択される、[18]記載の医薬組成物、[19]記載の方法、または[20]記載の使用。
[24]複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物の製造方法であって、a)線状高分子部分の両末端に反応性基を付加する工程、b)両末端に反応性基を付加した線状高分子部分を分解性部分を介して連結させて、少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む線状高分子を得る工程、c)線状高分子を環状分子と反応させて、擬ポリロタキサンを得る工程、およびd)擬ポリロタキサンの両末端に末端基を付加する工程を含む、製造方法。
[25]線状高分子部分の両末端に付加する反応性基が、アミノ基、カルボキシル基、アルデヒド基、スルファニル基、アジド基、アルキニル基、トシル基、および活性エステル基から成る群より選択される、[24]記載の製造方法。
Aspects of the present invention relate to the following matters.
[1] comprising at least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion. A polyrotaxane compound.
[2] The linear polymer has the following formula:
X 1 -Y 0 (-Z i -Y i) i -X 2
Wherein X 1 and X 2 are the same or different end groups, Y 0 and Y i are the same or different linear polymer moieties, and Z i is a degradable moiety , (-Z i -Y i ) i indicates that there are i repeating units composed of a degradable portion Y and a linear polymer portion Z, and each Z i and Y i in the linear polymer is the same However, the polyrotaxane compound according to [1], wherein i is an integer of 1 to 500.
[3] The linear polymer has the following formula:
X 1 -Y 0 -Z 1 -Y 1 -X 2
Has a structure shown in, wherein, X 1 and X 2 are the same or different terminal group, Y 0 and Y 1 are identical or different linear polymeric moiety, Z 1 is a degradable moiety The polyrotaxane compound according to [1].
[4] The polyrotaxane according to any one of [1] to [3], wherein the ratio of the lengths of two linear polymer moieties linked to the degradable moiety is included in 1: 1 to 1: 4. Compound.
[5] The polyrotaxane compound according to any one of [1] to [4], wherein the degradable moiety is acid decomposable, enzymatic degradable, thermally degradable, or photodegradable.
[6] The decomposable moiety includes at least one decomposable group, and the decomposable group includes a p-methoxyphenacyl group, a 2-nitrobenzyl group, a 2-nitrobenzyloxycarbonyl group, and 2-nitrophenylethylene. Glycol group, benzyloxycarbonyl group, 3,5-dimethoxybenzyloxycarbonyl group, α, α-dimethyl-3,5-dimethoxybenzyloxycarbonyl group, 3-nitrophenyl group, 3-nitrophenoxy group, 3,5- Dinitrophenoxy group, 3-nitrophenoxycarbonyl group, phenacyl group, 4-methoxyphenacyl group, α-methylphenacyl group, 3,5-dimethoxybenzoinyl group, 2,4-dinitrobenzenesulfenyl group, (coumarin -4-yl) methyl group, 7-nitroindolinyl group, arylazophosphate, [1] to [5] selected from the group consisting of a tellurium bond, a Schiff base bond, a carbamate bond, a peptide bond, an ether bond, an acetal bond, a hemiacetal bond, a disulfide bond, an organic peroxide, and an acylhydrazine bond. The polyrotaxane compound according to any one of the above.
[7] The polyrotaxane compound according to any one of [1] to [6], wherein the cyclic molecule is selected from the group consisting of α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin.
[8] The polyrotaxane compound according to any one of [1] to [7], wherein the cyclic molecule has one or more substituents.
[9] The substituent is 2-hydroxyethoxyethyl (HEE), hydroxyethyl, hydroxypropyl, hydroxybutyl, hydroxyethoxyethyl, N, N-dimethylaminoethyl, carboxyl, methyl, sulfo Group, primary amino group, polyethylene glycol, collagen, transferrin, RGD peptide, oligoarginine, (meth) acryloyl group, (meth) acryloyloxy group, (meth) acryloylamino group, (meth) acryloylthio group, vinyl group, aryl group The polyrotaxane compound according to [8], which is selected from the group consisting of a group, a styryl group, and a (meth) acrylamide group.
[10] The linear polymer portion is selected from the group consisting of polyethylene glycol, polypropylene glycol, a copolymer of polyethylene glycol and polypropylene glycol, polyethyleneimine, polyamino acid, and polymethyl vinyl ether, [1] to [9] ] The polyrotaxane compound as described in any one of.
[11] The terminal groups are 2,4-dinitrophenyl group, 3,5-dinitrophenyl group, cyclodextrin, adamantane group, O-triphenylmethyl (O-Trt) group, S-triphenylmethyl (S-Trt) ) Group, N-triphenylmethyl (N-Trt) group, N-tritylglycine, benzyloxycarbonyl (Z) group, 9-fluorenylmethyloxycarbonyl (Fmoc) group, benzyl ester (OBz) group, third group Butylcarbonyl (Boc) group, amino acid tertiary butyl ester (OBu group), trityl group, fluorescein, pyrene, substituted benzene, optionally substituted polynuclear aromatic, MPC (2-methacryloyloxyethyl phosphorylcholine), BMA (n -Butyl methacrylate), a combination of MPC and BMA, and steroids Is selected from the al group consisting, [1] ~ polyrotaxane compound according to any one claim of [10].
[12] comprising at least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion. An adhesive composition containing a polyrotaxane compound.
[13] comprising at least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion. A dental material composition containing a polyrotaxane compound.
[14] comprising at least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion. A surface coating agent containing a polyrotaxane compound.
[15] comprising at least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion. An anti-adhesion agent comprising a polyrotaxane compound.
[16] At least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion. A body implant containing a polyrotaxane compound.
[17] At least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion. A tissue regeneration device containing a polyrotaxane compound.
[18] comprising at least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion. A pharmaceutical composition for use in treating or preventing a disease, comprising a polyrotaxane compound.
[19] For a subject, preferably for a human, comprising a plurality of cyclic molecules and one linear polymer having a terminal group, the linear polymer via at least one degradable moiety A method for the treatment or prophylaxis of a disease comprising the step of administering a pharmaceutical composition comprising a polyrotaxane compound comprising at least two linear polymer moieties linked.
[20] In the manufacture of a medicament for the treatment or prevention of a disease, it comprises a plurality of cyclic molecules and one linear polymer having a terminal group, and the linear polymer passes through at least one degradable moiety. Use of a polyrotaxane compound comprising at least two linear polymer moieties linked together.
[21] The pharmaceutical composition according to [18], wherein the disease is a disease caused by an abnormal cell metabolic function, a disease caused by intracellular cholesterol accumulation, or a disease caused by a dysfunction of autophagy, [19] Or the use according to [20].
[22] The pharmaceutical composition according to [18], the method according to [19], or the use according to [20], wherein the disease is selected from the group consisting of lysosomal disease, neurodegenerative disease, and cancer.
[23] The diseases are Gaucher disease (Gaucher disease), Niemann-Pick disease type A (Niemann-Pick disease type A), Niemann-Pick disease type B (Niemann-Pick disease type B), Niemann-Pick disease type C (Niemann-Pick disease type C), GM1 gangliosidosis, GM2 gangliosidosis, Krabbe disease (Krabbe disease), metachromatic leukodystrophy, multiple sulfatase deficiency, Farber disease (Farber disease) Disease), mucopolysaccharidosis type I, mucopolysaccharidosis type II, mucopolysaccharidosis type III, mucopolysaccharidosis type IV, mucopolysaccharidosis type VI, mucopolysaccharidosis type VII, mucopolysaccharidosis type IX, sialidosis, galactosialidosis , I-cell disease / mucolipidosis type III, α-mannosidosis , Β-mannosidosis, fucosidosis, aspartylglucosamineuria, Schindler / Kanzaki disease (Schindler / Kanzaki disease), Wolman disease (Wolman disease), Danone disease (Danon disease), free sialic acid storage disease, ceroid lipofus The pharmaceutical composition according to [18], the method according to [19], or the method according to [20], selected from the group consisting of sclerosis, Fabry disease, Alzheimer's disease, Parkinson's disease, Huntington's disease, and apoptosis-resistant cancer use.
[24] At least two linear polymer portions each including a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable portion. A method for producing a polyrotaxane compound comprising: a) adding a reactive group to both ends of a linear polymer portion; b) decomposing a linear polymer portion having a reactive group added to both ends; A linear polymer comprising at least two linear polymer moieties linked via at least one degradable moiety, c) reacting the linear polymer with a cyclic molecule A process for obtaining a pseudopolyrotaxane, and d) a step of adding end groups to both ends of the pseudopolyrotaxane.
[25] The reactive group added to both ends of the linear polymer portion is selected from the group consisting of an amino group, a carboxyl group, an aldehyde group, a sulfanyl group, an azide group, an alkynyl group, a tosyl group, and an active ester group. The method according to [24].
 本発明の一態様によると、複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含むポリロタキサン化合物、言い換えれば、複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子の内部に少なくとも1つの分解性部分を有するポリロタキサン化合物が提供される。 According to one aspect of the present invention, at least two lines comprising a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymers are linked via at least one degradable moiety. Polyrotaxane compound including a linear polymer portion, in other words, a polyrotaxane compound including a plurality of cyclic molecules and one linear polymer having a terminal group, and having at least one decomposable portion inside the linear polymer Is provided.
 本発明に係る分解性ポリロタキサン化合物は、線状高分子主鎖の内部に分解性部分を有していることから、両末端に分解性結合を有する従来的な分解性ポリロタキサン化合物に比べて、分解時により大きな分子量変化を生じることが可能であり、粘度・溶解性・ガラス転移点などの高分子の基本的物性を劇的に変化させうる。また、これまでの両末端分解型ポリロタキサンとは根本的に設計が異なり、線状高分子主鎖の末端部位より離れた内部に分解性結合を配置するため酵素などの嵩高い構造をもった分子の分解性部位への接近も容易となり、広範な分解応答性の設計や分解効率の向上が期待できる。さらに、従来の分解型機能性ポリロタキサンは線状高分子鎖の両末端に分解性結合を導入するため、1分子のポリロタキサンに対して分解性結合を2箇所配置する必要があり、そのために合成方法は6~7工程以上を要した。一方で本発明に係る分解型機能性ポリロタキサンは、線状高分子の中央付近にのみ分解性結合が配置されており、そのため合成方法が4工程以内に簡素化され、作製時間の短縮化の実現と回収量の向上が達成できるという利点もある。 Since the degradable polyrotaxane compound according to the present invention has a degradable portion inside the linear polymer main chain, it is decomposed compared to a conventional degradable polyrotaxane compound having degradable bonds at both ends. Larger changes in molecular weight can occur at times, which can dramatically change the basic physical properties of polymers such as viscosity, solubility, and glass transition point. In addition, it is fundamentally different from conventional double-end-decomposable polyrotaxanes, and molecules with a bulky structure such as enzymes are arranged because degradable bonds are placed inside the linear polymer main chain at the end away from the terminal site. It is easy to access the degradable part of the material, and it can be expected to design a wide range of decomposition responsiveness and improve the decomposition efficiency. Furthermore, since the conventional degradable functional polyrotaxane introduces degradable bonds at both ends of the linear polymer chain, it is necessary to arrange two degradable bonds with respect to one molecule of polyrotaxane. Required more than 6-7 steps. On the other hand, in the degradable functional polyrotaxane according to the present invention, the degradable bond is arranged only near the center of the linear polymer, so that the synthesis method is simplified within 4 steps, and the production time is shortened. There is also an advantage that an improvement in the recovery amount can be achieved.
分解性基を有するポリロタキサンAのH-NMRスペクトルを示した図である。FIG. 3 is a diagram showing a 1 H-NMR spectrum of polyrotaxane A having a decomposable group. 紫外線照射後のポリロタキサンAのGPCチャートを示した図である。It is the figure which showed the GPC chart of the polyrotaxane A after ultraviolet irradiation. 重合性基としてのメタクリロイル基を有するポリロタキサンBのH-NMRスペクトルを示した図である。FIG. 3 is a diagram showing a 1 H-NMR spectrum of polyrotaxane B having a methacryloyl group as a polymerizable group. ポリロタキサンを含まないBis-GMA含有硬化体の引張試験の結果を示した図である。It is the figure which showed the result of the tension test of the Bis-GMA containing hardening body which does not contain a polyrotaxane. ポリロタキサンBを含む硬化体の引張試験の結果を示した図である。It is the figure which showed the result of the tensile test of the hardening body containing polyrotaxane B. シリコーン製のモールド(厚さ1mm、長さ15mm、中心部の幅1mm、端部の幅2mmのダンベル状)に、ポリロタキサン、2-ジメチルアミノエチルメタクリレート、カンファーキノン、2-ヒドロキシエチルメタクリレートを混合して調製した光重合型接着剤を添加することによって、硬化体を作製することについて示した図である。Polyrotaxane, 2-dimethylaminoethyl methacrylate, camphorquinone, 2-hydroxyethyl methacrylate are mixed in a silicone mold (thickness 1 mm, length 15 mm, dumbbell shape with a center width 1 mm, end width 2 mm). It is the figure shown about producing a hardening body by adding the photopolymerization type adhesive agent prepared in this way. 異なる質量部のポリロタキサンについて、非UV照射群とUV照射群の微小引張強さを示したグラフである。It is the graph which showed the micro tensile strength of the non-UV irradiation group and the UV irradiation group about the polyrotaxane of a different mass part.
 本発明の態様の一つは、複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含むポリロタキサン化合物、言い換えれば、複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子の末端から離れた内部に少なくとも1つの分解性部分を有するポリロタキサン化合物に関する。以下に、本発明を詳細に説明する。 One aspect of the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, and the linear polymer is linked via at least one degradable moiety. A polyrotaxane compound containing a linear polymer portion, in other words, a plurality of cyclic molecules and one linear polymer having a terminal group, and at least one decomposable inside the linear polymer away from the terminal The present invention relates to a polyrotaxane compound having a moiety. The present invention is described in detail below.
ポリロタキサン(PRX)化合物
 ロタキサンは、大環状分子を線状高分子が貫通し、線状高分子の両末端に嵩高い部位を結合させることで、立体障害でリングが軸から抜けなくなったものである。ポリロタキサンでは、複数の大環状分子の環内を1本の線状高分子が貫いている。本発明において用いられる線状高分子や環状分子としては、公知の分子を使用でき、特に限定はされない。
Polyrotaxane (PRX) compound Rotaxane is a macromolecule that is penetrated by a macromolecule and bonds bulky sites to both ends of the macromolecule so that the ring cannot be removed from the shaft due to steric hindrance. . In polyrotaxane, one linear polymer penetrates the ring of a plurality of macrocyclic molecules. As the linear polymer and cyclic molecule used in the present invention, known molecules can be used, and are not particularly limited.
 本発明の一態様に係るポリロタキサンに含まれる線状高分子は、以下の式で示される構造を有する:
 X-Y(-Z-Y-X
ここで、XおよびXは同一もしくは異なる末端基であり、YおよびYは同一もしくは異なる線状高分子部分であり、Zは分解性部分であり、(-Z-Yは、分解性部分Yと線状高分子部分Zから成る繰り返し単位がi個存在することを示し、線状高分子中の各ZおよびYは同一でも異なっていてもよい。iは特に限定はされないが、好ましくは1~500の整数であり、より好ましくは1~10、例えば1もしくは2である。
The linear polymer contained in the polyrotaxane according to one embodiment of the present invention has a structure represented by the following formula:
X 1 -Y 0 (-Z i -Y i ) i -X 2
Here, X 1 and X 2 are the same or different terminal group, Y 0 and Y i are identical or different linear polymeric moiety, Z i is an exploded moiety, (- Z i -Y i I) i indicates that there are i repeating units composed of a decomposable portion Y and a linear polymer portion Z, and each Z i and Y i in the linear polymer may be the same or different. Although i is not particularly limited, i is preferably an integer of 1 to 500, more preferably 1 to 10, for example 1 or 2.
 例えば、i=1の場合、線状高分子は、以下の式に示されるように、2つの線状高分子部分が1つの分解性部分を介して連結された構造となる:
 X-Y-Z-Y-X
ここで、XおよびXは同一もしくは異なる末端基であり、YおよびYは同一もしくは異なる線状高分子部分であり、Zは分解性部分である。
For example, when i = 1, the linear polymer has a structure in which two linear polymer parts are linked via one degradable part as shown in the following formula:
X 1 -Y 0 -Z 1 -Y 1 -X 2
Here, X 1 and X 2 are the same or different end groups, Y 0 and Y 1 are the same or different linear polymer moieties, and Z 1 is a degradable moiety.
 例えば、i=2の場合、線状高分子は、以下の式に示されるように、3つの線状高分子部分が2つの分解性部分を介して連結された構造となる:
 X-Y-Z-Y-Z-Y-X
ここで、XおよびXは同一もしくは異なる末端基であり、Y、YおよびYは同一もしくは異なる線状高分子部分であり、ZおよびZは同一もしくは異なる分解性部分である。
For example, when i = 2, the linear polymer has a structure in which three linear polymer parts are connected via two degradable parts as shown in the following formula:
X 1 -Y 0 -Z 1 -Y 1 -Z 2 -Y 2 -X 2
Here, X 1 and X 2 are the same or different end groups, Y 0 , Y 1 and Y 2 are the same or different linear polymer moieties, and Z 1 and Z 2 are the same or different degradable moieties. is there.
 線状高分子または線状高分子部分としては、公知のポリロタキサンの構成を適宜選択することができ、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールとポリプロピレングリコールとの共重合体(ポロキサマー)、ポリイソプレン、ポリイソブチレン、ポリイソブテン、ポリブタジエン、ポリテトラヒドロフラン、ポリアクリル酸エステル、ポリジメチルシロキサン、ポリエチレン、ポリメチルビニルエーテル、ポリプロピレン、ポリペルフルオロオキシプロピレン、オリゴテトラフルオロエチレン、ポリカプロラクタム、ポリエチレンイミン、ポリアミノ酸、及びポリメチルビニルエーテルからなる群より選ばれることが好ましい。また、線状高分子の平均分子量は特に限定はないが、1000~100000、特に2000~40000あるいは5000~20000であることが好ましい。1つの線状高分子に含まれる2以上の線状高分子部分は互いに同一でも、異なっていてもよい。また、線状高分子部分の平均分子量も特に限定はないが、100~100000、特に200~40000あるいは500~20000であることが好ましい。 As the linear polymer or the linear polymer portion, a known polyrotaxane can be appropriately selected. For example, polyethylene glycol, polypropylene glycol, a copolymer of polyethylene glycol and polypropylene glycol (poloxamer), polyisoprene. , Polyisobutylene, polyisobutene, polybutadiene, polytetrahydrofuran, polyacrylic ester, polydimethylsiloxane, polyethylene, polymethyl vinyl ether, polypropylene, polyperfluorooxypropylene, oligotetrafluoroethylene, polycaprolactam, polyethyleneimine, polyamino acid, and polymethyl It is preferably selected from the group consisting of vinyl ethers. The average molecular weight of the linear polymer is not particularly limited, but is preferably 1000 to 100,000, particularly 2000 to 40000 or 5000 to 20000. Two or more linear polymer portions contained in one linear polymer may be the same as or different from each other. The average molecular weight of the linear polymer portion is not particularly limited, but is preferably 100 to 100,000, particularly 200 to 40,000 or 500 to 20,000.
 環状分子としては、従来公知の環状分子を使用することができる。α、β又はγ-シクロデキストリンであることが好ましいが、これと類似の環状構造を持つものであってもよく、そのような環状構造としては環状ポリエーテル、環状ポリエステル、環状ポリエーテルアミン、環状ポリアミン、シクロファン、クラウンエーテル等が挙げられる。例えば、擬ポリロタキサンの形成能という観点から好ましい環状分子は、α、β又はγ-シクロデキストリンであり、α-シクロデキストリンが特に好ましい。 As the cyclic molecule, a conventionally known cyclic molecule can be used. α, β or γ-cyclodextrin is preferred, but it may have a cyclic structure similar to this, and examples of such cyclic structure include cyclic polyether, cyclic polyester, cyclic polyetheramine, cyclic Polyamine, cyclophane, crown ether and the like can be mentioned. For example, a preferable cyclic molecule from the viewpoint of the ability to form pseudopolyrotaxane is α, β or γ-cyclodextrin, and α-cyclodextrin is particularly preferable.
 本発明に係るポリロタキサンに含まれる環状分子は、1または複数の置換基を有していてもよい。環状分子としてシクロデキストリンを使用する場合、シクロデキストリンの水酸基に置換基を導入することができる。置換基としては、例えば、2-ヒドロキシエトキシエチル(HEE)基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基、ヒドロキシエトキシエチル基、N,N-ジメチルアミノエチル基(DMAE基と称することもある)、カルボキシル基、メチル基、硫酸基(スルホ基)、一級アミノ基、若しくはポリエチレングリコールなどの水溶性高分子や、コラーゲンやトランスフェリンなどのタンパク質分子、RGDモチーフを含むペプチドやオリゴアルギニンなどのペプチド分子、および分子間の架橋に用いられる重合性基などが挙げられる。環状分子は複数種の置換基を含んでいてもよい。重合性基としては、(メタ)アクリロイル基および(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、(メタ)アクリロイルチオ基などの(メタ)アクリロイル基の誘導体基;ビニル基;アリール基;スチリル基や、(メタ)アクリルアミド基などを好適に使用できる。好ましい重合性基は、メタクリロイル基である。本発明に係るポリロタキサン化合物は、複数種の重合性基を含んでいても良い。これらの基は、環状分子に直接結合していても、リンカーを介して結合していても良い。リンカーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルバミン酸エステル結合(-O-CO-NH-)、エステル結合(-O-CO-)、カルボネート結合(-O-CO-O-)、エーテル結合(-O-)などが挙げられる。 The cyclic molecule contained in the polyrotaxane according to the present invention may have one or a plurality of substituents. When cyclodextrin is used as the cyclic molecule, a substituent can be introduced into the hydroxyl group of cyclodextrin. Examples of the substituent include 2-hydroxyethoxyethyl (HEE) group, hydroxyethyl group, hydroxypropyl group, hydroxybutyl group, hydroxyethoxyethyl group, N, N-dimethylaminoethyl group (sometimes referred to as DMAE group). ), Carboxyl group, methyl group, sulfate group (sulfo group), primary amino group, or water-soluble polymer such as polyethylene glycol, protein molecule such as collagen or transferrin, peptide molecule including RGD motif or peptide molecule such as oligoarginine And polymerizable groups used for cross-linking between molecules. The cyclic molecule may contain multiple types of substituents. Examples of the polymerizable group include (meth) acryloyl group, (meth) acryloyloxy group, (meth) acryloylamino group, (meth) acryloyl group derivative group such as (meth) acryloylthio group, vinyl group, aryl group, styryl. Group, (meth) acrylamide group, etc. can be used suitably. A preferred polymerizable group is a methacryloyl group. The polyrotaxane compound according to the present invention may contain a plurality of types of polymerizable groups. These groups may be directly bonded to the cyclic molecule or may be bonded via a linker. The linker is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the linker may be a carbamate ester bond (—O—CO—NH—), an ester bond (—O—CO—), a carbonate bond (— O-CO-O-), ether bond (-O-) and the like.
 線状高分子と環状分子の組み合わせとしては、α-シクロデキストリンとポリエチレングリコールの組み合わせ、β-シクロデキストリンとポロキサマーとの組合せなどが好ましい。なお、β-シクロデキストリンとポロキサマーとの組合せによるポリロタキサンの合成は、上記の特許文献1にも開示されており、その内容は参照により本明細書にも取り込まれる。線状高分子の分子数と環状分子の分子数との比率は、特に限定はないが、好ましくは1:1~1:500であり、1:5~1:200の比率がより好ましく、例えば、1:10~1:100の比率が用いられる。すなわち、好ましくは線状高分子1分子に1~500個の環状分子が含まれ、より好ましくは5~200個の環状分子が含まれ、例えば、10~100個の環状分子が含まれうる。 As the combination of the linear polymer and the cyclic molecule, a combination of α-cyclodextrin and polyethylene glycol, a combination of β-cyclodextrin and poloxamer, or the like is preferable. The synthesis of polyrotaxane by a combination of β-cyclodextrin and poloxamer is also disclosed in Patent Document 1 described above, the contents of which are also incorporated herein by reference. The ratio between the number of molecules of the linear polymer and the number of molecules of the cyclic molecule is not particularly limited, but is preferably 1: 1 to 1: 500, more preferably 1: 5 to 1: 200. A ratio of 1:10 to 1: 100 is used. That is, preferably 1 to 500 cyclic molecules are contained in one molecule of the linear polymer, more preferably 5 to 200 cyclic molecules, for example, 10 to 100 cyclic molecules may be contained.
 本発明において用いられる末端基(嵩高い置換基とも言う)としては、例えば、2,4-ジニトロフェニル基、3,5-ジニトロフェニル基、シクロデキストリン、アダマンタン基、O-トリフェニルメチル(O-Trt)基、S-トリフェニルメチル(S-Trt)基、N-トリフェニルメチル(N-Trt)基、N-トリチルグリシン、ベンジルオキシカルボニル(Z)基、9-フレオレニルメチルオキシカルボニル(Fmoc)基、ベンジルエステル(OBz)基、第三ブチルカルボニル(Boc)基、アミノ酸第三ブチルエステル(OBu基)、トリチル基、フルオレセイン、ピレン、置換ベンゼン(置換基として、アルキル、アルキルオキシ、ヒドロキシ、ハロゲン、シアノ、スルホニル、カルボキシル、アミノ、フェニルなどを挙げることができるがこれらに限定されない)、置換されていてもよい多核芳香族(置換基として、上記と同じものを挙げることができるがこれらに限定されない。置換基は1つまたは複数存在してもよい)、MPC(2-メタクリロイルオキシエチルホスホリルコリン)、BMA(n-ブチルメタクリレート)、MPCとBMAとの組み合わせ、およびステロイドから成る群より選択されるものを使用できるが、これらに限定はされない。好ましい末端基の一つは、アダマンタン基である。末端基は、線状高分子部分に直接的に連結されている必要はなく、当業者に公知のリンカー部分(例えば、ペプチド結合、カーバメート結合、エステル結合、またはエーテル結合を含む部分)を介して連結されていてもよい。 Examples of the terminal group (also referred to as bulky substituent) used in the present invention include 2,4-dinitrophenyl group, 3,5-dinitrophenyl group, cyclodextrin, adamantane group, O-triphenylmethyl (O— Trt) group, S-triphenylmethyl (S-Trt) group, N-triphenylmethyl (N-Trt) group, N-tritylglycine, benzyloxycarbonyl (Z) group, 9-fluorenylmethyloxycarbonyl ( Fmoc) group, benzyl ester (OBz) group, tertiary butylcarbonyl (Boc) group, amino acid tertiary butyl ester (OBu group), trityl group, fluorescein, pyrene, substituted benzene (as substituents, alkyl, alkyloxy, hydroxy) , Halogen, cyano, sulfonyl, carboxyl, amino, phenyl, etc. A polynuclear aromatic which may be substituted (but not limited to these), and may be the same as those described above, but is not limited thereto. One or more substituents may be present. May be selected from the group consisting of, but not limited to, MPC (2-methacryloyloxyethyl phosphorylcholine), BMA (n-butyl methacrylate), a combination of MPC and BMA, and steroids. One preferred end group is an adamantane group. The end group need not be directly linked to the linear polymer moiety, but via a linker moiety known to those skilled in the art (eg, a moiety containing a peptide bond, carbamate bond, ester bond, or ether bond). It may be connected.
 本発明に係るポリロタキサン化合物は、複数の環状分子と、末端基を有する1つの線状高分子とを含み、線状高分子の末端から離れた内部に少なくとも1つの分解性部分を有する。本発明に係るポリロタキサン化合物が有する分解性部分は、少なくとも1つの分解性基を含む。分解性基の具体例としては、p-メトキシフェナシル基、2-ニトロベンジル基、2-ニトロベンジルオキシカルボニル基、2-ニトロフェニルエチレングリコール基、ベンジルオキシカルボニル基、3,5-ジメトキシベンジルオキシカルボニル基、α,α-ジメチル-3,5-ジメトキシベンジルオキシカルボニル基、3-ニトロフェニル基、3-ニトロフェノキシ基、3,5-ジニトロフェノキシ基、3-ニトロフェノキシカルボニル基、フェナシル基、4-メトキシフェナシル基、α-メチルフェナシル基、3,5-ジメトキシベンゾイニル基、2,4-ジニトロベンゼンスルフェニル基、(クマリン-4-イル)メチル基、7-ニトロインドリニル基、アリールアゾ燐酸エステルユニット等の光開裂性基;エステル結合、シッフ塩基結合、カーバメート結合、ペプチド結合、エーテル結合、アセタール結合、ヘミアセタール結合等の種々の加水分解性の結合;ジスルフィド結合等の還元剤によって分解可能な結合;有機過酸化物などの熱分解性基、アシルヒドラジン結合等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。好ましい分解性基としては、例えば、光開裂性基、ジスルフィド基、2~30アミノ酸残基からなるペプチドが挙げられる。ペプチドは特定のプロテアーゼやペプチダーゼなどの酵素によって認識され、切断される特定の配列を有していてもよい。 The polyrotaxane compound according to the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, and has at least one decomposable portion inside the linear polymer away from the terminal. The degradable moiety of the polyrotaxane compound according to the present invention includes at least one degradable group. Specific examples of the decomposable group include p-methoxyphenacyl group, 2-nitrobenzyl group, 2-nitrobenzyloxycarbonyl group, 2-nitrophenylethylene glycol group, benzyloxycarbonyl group, 3,5-dimethoxybenzyloxy Carbonyl group, α, α-dimethyl-3,5-dimethoxybenzyloxycarbonyl group, 3-nitrophenyl group, 3-nitrophenoxy group, 3,5-dinitrophenoxy group, 3-nitrophenoxycarbonyl group, phenacyl group, 4 -Methoxyphenacyl group, α-methylphenacyl group, 3,5-dimethoxybenzoinyl group, 2,4-dinitrobenzenesulfenyl group, (coumarin-4-yl) methyl group, 7-nitroindolinyl group, Photocleavable groups such as arylazophosphate ester units; ester bonds, Schiff bases Various hydrolyzable bonds such as carbamate bonds, peptide bonds, ether bonds, acetal bonds and hemiacetal bonds; bonds decomposable by reducing agents such as disulfide bonds; thermal decomposable groups such as organic peroxides; An acyl hydrazine bond etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together. Preferable degradable groups include, for example, a photocleavable group, a disulfide group, and a peptide consisting of 2 to 30 amino acid residues. Peptides may have specific sequences that are recognized and cleaved by enzymes such as specific proteases and peptidases.
 線状高分子が分解性部分を1つのみ有する場合、その位置は、線状高分子の中央付近であることが好ましく、別の言い方をすれば、分解性部分に連結された2つの線状高分子部分の長さの比が1:1であることが好ましいが、この位置に限定はされない。分解性部分に連結された2つの線状高分子部分の長さの比は、例えば、1:1~1:4に含まれる任意の比でありうる。例えば、分解性部分が線状高分子内の中央に位置する場合、分解性部分の分解に伴い、線状高分子の半分の長さの2本の線状高分子部分が生じ、末端基の存在しない末端から環状分子が放出される。線状高分子が複数の分解性部分を有する場合、各分解性部分に連結された線状高分子部分の長さの比も、1:1であることが好ましいが、特に限定はなく、例えば、1:1~1:4に含まれる任意の比でありうる。 When the linear polymer has only one degradable portion, the position is preferably near the center of the linear polymer, in other words, two linear shapes connected to the degradable portion. The length ratio of the polymer portion is preferably 1: 1, but the position is not limited. The ratio of the lengths of the two linear polymer portions linked to the degradable portion can be any ratio included, for example, from 1: 1 to 1: 4. For example, when the degradable part is located in the center of the linear polymer, two linear polymer parts having a length half that of the linear polymer are generated along with the decomposition of the decomposable part. Cyclic molecules are released from the non-existing ends. When the linear polymer has a plurality of degradable portions, the ratio of the lengths of the linear polymer portions connected to each degradable portion is also preferably 1: 1, but there is no particular limitation. It can be any ratio comprised between 1: 1 and 1: 4.
 本発明に係るポリロタキサンの数平均分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、1万~50万程度とすることが好ましい。 The number average molecular weight of the polyrotaxane according to the present invention is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably about 10,000 to 500,000.
歯科材料組成物/接着用組成物
 本発明に係るポリロタキサン化合物は、歯科用接着材として使用されうる。複数のシクロデキストリン(CD)に重合性官能基を導入した光分解型ポリロタキサンは、架橋剤として働くため、他のモノマーと共重合することによって、簡便に三次元構造体を作製することができる。更にその三次元構造体は紫外線照射によって分解し、機械的強度を減少させることができる。たとえば、歯科材料におけるレジンモノマーとして、このような光分解型ポリロタキサン架橋剤を用いれば、可視光照射によって硬化し、紫外光照射によって分解する歯科用接着材への展開が可能となる。たとえば、Seoらは、紫外線照射によって光分解するニトロベンジルを線状高分子の両末端と封鎖基の間に配置した光分解型ポリロタキサンを用いた三次元構造体の構築を報告している(Seo et al.,ACS Macro Lett.,4,1154,2015)。よって、本発明の実施態様の一つは、複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、接着用組成物に関する。また、本発明の別の実施態様は、複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、歯科材料組成物に関する。
Dental Material Composition / Adhesive Composition The polyrotaxane compound according to the present invention can be used as a dental adhesive. Since the photodegradable polyrotaxane having a polymerizable functional group introduced into a plurality of cyclodextrins (CD) functions as a crosslinking agent, a three-dimensional structure can be easily produced by copolymerizing with other monomers. Furthermore, the three-dimensional structure can be decomposed by irradiation with ultraviolet rays to reduce the mechanical strength. For example, when such a photodegradable polyrotaxane crosslinking agent is used as a resin monomer in a dental material, it can be developed into a dental adhesive that is cured by irradiation with visible light and decomposed by irradiation with ultraviolet light. For example, Seo et al. Reported the construction of a three-dimensional structure using a photodegradable polyrotaxane in which nitrobenzyl, which is photolyzed by ultraviolet irradiation, is arranged between both ends of a linear polymer and a blocking group (Seo). et al., ACS Macro Lett., 4, 1154, 2015). Therefore, one embodiment of the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, and the linear polymer is linked via at least one degradable moiety. The present invention relates to an adhesive composition containing a polyrotaxane compound containing at least two linear polymer moieties. Another embodiment of the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymer is linked via at least one degradable moiety. The present invention relates to a dental material composition containing a polyrotaxane compound containing two linear polymer parts.
 本発明に係る上記組成物は、重合性単量体をさらに含みうる。本発明に係る組成物に含まれるポリロタキサン化合物は、好ましくは重合性単量体の溶液に溶解性である。重合性単量体は、例えば、重合性不飽和基、開環重合性基、重縮合性基等の従来公知の重合性基を分子中に少なくとも一つ有するものを使用することができ、従来公知の接着性組成物において使用されている従来公知の重合性単量体が制限なく使用できる。これら重合性単量体は、熱、重合開始剤、ガンマ線、電解、プラズマ等の作用により重合開始反応を生じる。重合性単量体としては、例えば、2-エチルヘキシル(メタ)アクリレート、グリシジル(メタ)アクリレート、ベンジル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、メチル(メタ)アクリレート、4-メタクリロキシエチルトリメリテートアンハイドライド等が挙げられる。 The above composition according to the present invention may further contain a polymerizable monomer. The polyrotaxane compound contained in the composition according to the present invention is preferably soluble in a solution of a polymerizable monomer. As the polymerizable monomer, for example, those having at least one polymerizable group in the molecule such as a polymerizable unsaturated group, a ring-opening polymerizable group, and a polycondensable group can be used. Conventionally known polymerizable monomers used in known adhesive compositions can be used without limitation. These polymerizable monomers cause a polymerization initiation reaction by the action of heat, a polymerization initiator, gamma rays, electrolysis, plasma, and the like. Examples of the polymerizable monomer include 2-ethylhexyl (meth) acrylate, glycidyl (meth) acrylate, benzyl (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di ( And (meth) acrylate, methyl (meth) acrylate, 4-methacryloxyethyl trimellitate anhydride and the like.
 本発明に係る上記組成物は、重合開始剤をさらに含みうる。重合開始剤としては、従来公知のラジカル重合、アニオン重合、カチオン重合、重付加反応、重縮合反応、カップリング反応、無機合成ポリマー合成等に使用される従来公知の重合開始剤を使用できる。例えば、光重合に用いられるラジカル重合開始剤としては、ベンゾインメチルエーテル、ベンジルジメチルケタール、ベンゾフェノン、4,4'-ジメチルベンゾフェノン、ジアセチル、2,3-ペンタジオンベンジル、カンファーキノン、9,10-フェナントラキノン、9,10-アントラキノン等が挙げられる。 The composition according to the present invention may further contain a polymerization initiator. As the polymerization initiator, conventionally known polymerization initiators used for conventionally known radical polymerization, anionic polymerization, cationic polymerization, polyaddition reaction, polycondensation reaction, coupling reaction, inorganic synthetic polymer synthesis and the like can be used. For example, radical polymerization initiators used for photopolymerization include benzoin methyl ether, benzyl dimethyl ketal, benzophenone, 4,4′-dimethylbenzophenone, diacetyl, 2,3-pentadione benzyl, camphorquinone, 9,10-phenone. Examples thereof include nantraquinone and 9,10-anthraquinone.
表面コーティング剤/癒着防止剤
 本発明に係るポリロタキサン化合物は、材料表面のコーティング剤として使用されうる。例えば、Seoらは、様々な官能基や細胞接着性オリゴペプチドをCDに修飾することにより、タンパク質の不活性な表面吸着や細胞の迅速な接着などタンパク質レベル、細胞レベルのバイオ界面制御が可能となることが報告している(J.Am.Chem.Soc.,2013,135,5513)。さらに、Seoらは、たとえば、CDをメチル化したポリロタキサン表面を用いて血小板を活性化するフィブリノーゲンの吸着について解析した結果、表面に吸着したフィブリノーゲンは、コンフォメーション変化が抑えられ、不活性な状態であることも報告している(Soft Matter, 2012, 8, 5477)。ポリロタキサンを用いて作製した三次元構造体は、皮膚や血管を構成するコラーゲン線維のような機械特性をもっていることが知られている。すなわち、小さな変形に対しては柔軟性を示し、大きな変形に対しては高い剛性を示す(例えば、Ito,Polym.J.,2007,39,489を参照)。このような性質を有した材料は、筋肉や腱の伸縮もしくは胃の収縮や心臓の拍動などの生体の運動を追従しうる上に、細胞や細胞外マトリックスから構成される組織との接着を制御しうるため、ウェアラブルデバイスや創傷治癒材料、癒着防止剤としての展開が可能である。よって、本発明の実施態様の一つは、複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、表面コーティング剤に関する。また、本発明の別の実施態様は、複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、癒着防止剤に関する。
Surface Coating Agent / Adhesion Prevention Agent The polyrotaxane compound according to the present invention can be used as a coating agent on the surface of a material. For example, by modifying various functional groups and cell-adhesive oligopeptides to CD, Seo et al. Can control protein-level and cell-level biointerfaces such as inactive surface adsorption of proteins and rapid cell adhesion. (J. Am. Chem. Soc., 2013, 135, 5513). Furthermore, Seo et al. Analyzed, for example, the adsorption of fibrinogen that activates platelets using a polyrotaxane surface obtained by methylating CD. As a result, fibrinogen adsorbed on the surface has a suppressed conformational change and is in an inactive state. It has also been reported (Soft Matter, 2012, 8, 5477). It is known that a three-dimensional structure produced using a polyrotaxane has mechanical properties such as collagen fibers constituting skin and blood vessels. That is, it exhibits flexibility for small deformations and high rigidity for large deformations (see, for example, Ito, Polym. J., 2007, 39, 489). Materials with such properties can follow the movements of the body, such as stretching and contracting of muscles and tendons, contraction of the stomach and heart beat, and adhere to tissue composed of cells and extracellular matrix. Since it can be controlled, it can be developed as a wearable device, a wound healing material, or an anti-adhesion agent. Therefore, one embodiment of the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, and the linear polymer is linked via at least one degradable moiety. The present invention relates to a surface coating agent containing a polyrotaxane compound containing at least two linear polymer moieties. Another embodiment of the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymer is linked via at least one degradable moiety. The present invention relates to an anti-adhesion agent containing a polyrotaxane compound containing two linear polymer moieties.
体内埋植剤/組織再生器材
 本発明に係るポリロタキサン化合物は、その架橋などによって作製した三次元構造体が体内埋植剤や組織再生器材として使用されうる。例えば、Seoらは、ポリロタキサンを基盤とした先行研究において、シクロデキストリン(CD)貫通数を制御することによって、細胞骨格系タンパク質の形成を調節することが可能であり、表面分子運動性の低い表面上の間葉系幹細胞は、細胞骨格系タンパク質であるアクチン繊維の形成が促進され骨芽細胞に分化し、表面分子運動性の高い表面では、アクチン繊維の形成が阻害され、脂肪細胞に分化することを報告している(Adv. Healthcare Mater.,2015,4,215)。このような性質を有した材料は、生体内で細胞の分化や増殖を促進あるいは抑制した一定期間後に速やかに分解消失させることが可能であることから、各種埋植型医療デバイスの表面加工、体内埋植剤、組織再生を目的として生体内あるいは生体外で使用する細胞培養用の各種器材としての展開が可能である。
In-vivo implant / tissue regenerator The polyrotaxane compound according to the present invention can be used as an in-vivo implant or tissue regenerative device by using a three-dimensional structure produced by crosslinking or the like. For example, in a previous study based on polyrotaxane, Seo et al. Can regulate the formation of cytoskeletal proteins by controlling the number of cyclodextrin (CD) penetrations, and surface with low surface molecular mobility. The upper mesenchymal stem cells promote the formation of actin fibers, which are cytoskeletal proteins, and differentiate into osteoblasts. On surfaces with high surface molecular mobility, the formation of actin fibers is inhibited and differentiates into adipocytes. (Adv. Healthcare Mater., 2015, 4, 215). Since materials having such properties can be rapidly decomposed and lost after a certain period of time when cell differentiation and proliferation are promoted or suppressed in vivo, surface treatment of various implantable medical devices, It can be developed as various devices for cell culture used in vivo or in vitro for the purpose of implants and tissue regeneration.
 培養器材に接着した細胞では、器材の物理化学的特性を反映して生理活性シグナルが細胞内へ伝達され、それによって細胞の増殖、分化、死滅など代謝活動が調節されることが知られている。そのため、材料表面の物理化学的因子を制御し、それに従った細胞機能制御に関する研究がここ十年ほど活発に行われてきた。例えば、種々の弾力性を有するエラストマー表面上での間葉系幹細胞の分化特性は、接着しているエラストマーのヤング率が低くなることにより神経及び脂肪細胞への分化が促進され、高くなることにより骨芽細胞への分化が促進されることなどが知られている。 In cells that adhere to culture equipment, it is known that a physiological activity signal is transmitted into the cells reflecting the physicochemical characteristics of the equipment, thereby regulating metabolic activities such as cell proliferation, differentiation, and death. . For this reason, research on physicochemical factors on the surface of materials and control of cell functions according to them has been actively conducted for the past decade. For example, the differentiation characteristics of mesenchymal stem cells on elastomeric surfaces with various elasticity are enhanced by the differentiation of nerves and adipocytes being promoted by lowering the Young's modulus of the adhered elastomer. It is known that differentiation into osteoblasts is promoted.
 また、ヒト胚性幹細胞(hESC)は物理刺激感受性であり、培養器上のマイクロポストアレイのマトリクス剛性が高まると、細胞骨格の収縮性が増加し、硬い基質によってhESCの多能性の維持が促進されることが知られている。 In addition, human embryonic stem cells (hESC) are sensitive to physical stimuli. When the matrix stiffness of the micropost array on the incubator increases, the cytoskeletal contractility increases, and the rigid substrate maintains hESC pluripotency. It is known to be promoted.
 このような器材の物理化学的特性を調整することで幹細胞の分化もしくは未分化維持を制御する技術として、分子運動性の異なるポリロタキサンブロック共重合体表面を有する培養器を用いて多能性幹細胞を培養して、その未分化性を維持すること、あるいは特定の細胞への分化を誘導することが可能である。 As a technology to control the differentiation or undifferentiation maintenance of stem cells by adjusting the physicochemical properties of such equipment, pluripotent stem cells are cultured using incubators with polyrotaxane block copolymer surfaces with different molecular motility. It is possible to maintain the undifferentiated state by culturing or to induce differentiation into specific cells.
 上述のように器材の物理化学的特性を調整することによって細胞の分化もしくは未分化維持の制御を生体なもしくは生体外で実現しても、それら細胞もしくは形成された組織を生体内で使用するには、それら器材の除去が必要である。また、生体内での組織欠損部位での再生の場合には、スカホールドの埋植使用によって欠損部位の空間を維持しつつ当該部位の組織を再生する特性が必要であることから、スカホールドの生体内分解が必須である(非特許文献1,2)。 Even if control of cell differentiation or undifferentiation maintenance is achieved in vivo or in vitro by adjusting the physicochemical characteristics of the equipment as described above, the cells or formed tissue can be used in vivo. Need to be removed. In addition, in the case of regeneration at a tissue defect site in a living body, since it is necessary to regenerate the tissue of the site while maintaining the space of the defect site by using scaffold implantation, Biodegradation is essential (Non-Patent Documents 1 and 2).
 本発明に係る埋植材や細胞培養器材は、分解型ポリロタキサンの架橋などによって作製することができる。線状高分子末端もしくは末端近傍、あるいは環状分子に架橋点を形成する官能基を導入して分解性ポリロタキサンを調製し、それを単独もしくは他の反応性分子とともに架橋することによって作製できる。架橋性官能基としては、例えばビニル基、アルデヒド基、カルボキシル基などがあげられる。架橋反応に用いる反応性分子としては、例えばビニル重合性モノマー、多糖類、タンパク質(ポリペプチド)などがあげられる。 The implant material and cell culture device according to the present invention can be produced by crosslinking a degradable polyrotaxane. A decomposable polyrotaxane is prepared by introducing a functional group that forms a crosslinking point into a linear polymer terminal or in the vicinity of the terminal, or in a cyclic molecule, and can be prepared by crosslinking it alone or with other reactive molecules. Examples of the crosslinkable functional group include a vinyl group, an aldehyde group, and a carboxyl group. Examples of the reactive molecule used for the crosslinking reaction include vinyl polymerizable monomers, polysaccharides, proteins (polypeptides) and the like.
 分解性ポリロタキサンからなるスカホールドでは、ポリロタキサンの分子運動性によって生体内で細胞の分化増殖を促進した一定期間後に分解消失して細胞もしくは組織が周囲組織と一体化することが可能であり、生体内での欠損部位の空間確保、欠損部位における組織再生、再生後のスカホールド除去のいずれもが可能となる。 Scaffolds composed of degradable polyrotaxanes are capable of degrading and disappearing after a certain period of time when cell differentiation and proliferation were promoted in vivo by the molecular mobility of polyrotaxanes, and cells or tissues can be integrated with surrounding tissues. Thus, it is possible to secure the space of the defect site at 1), to regenerate the tissue at the defect site, and to remove the scaffold after regeneration.
 よって、本発明の実施態様の一つは、複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、体内埋植剤に関する。また、本発明の別の実施態様は、複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、組織再生器材に関する。これらの体内埋植剤および組織再生器材は、コラーゲンやゼラチンなどの他の材料、好ましくは生体吸収性の材料を含んでいてもよい。 Therefore, one embodiment of the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, and the linear polymer is linked via at least one degradable moiety. The present invention relates to an in vivo implant containing a polyrotaxane compound containing at least two linear polymer moieties. Another embodiment of the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymer is linked via at least one degradable moiety. The present invention relates to a tissue regeneration device containing a polyrotaxane compound containing two linear polymer portions. These implants and tissue regenerators may contain other materials such as collagen and gelatin, preferably bioabsorbable materials.
医薬組成物
 本発明に係るポリロタキサン化合物は、ライソゾーム病などの細胞代謝機能の異常に起因する疾患、細胞内コレステロール蓄積に起因する疾患、またはオートファジーの機能障害に起因する疾患の治療に用いるための医薬組成物の有効成分として使用されうる。本発明に係るポリロタキサン化合物の分解性部分として、細胞内の酸性環境下、pH4.0~6.0の酸性環境下で分解する分解性基を採用することができる。このようなポリロタキサン化合物は、酸性環境下において分解され、ポリロタキサン骨格が崩壊し、β-CDなどの環状分子がリリースされる。
Pharmaceutical composition The polyrotaxane compound according to the present invention is used for the treatment of diseases caused by abnormal cell metabolic functions such as lysosomal disease, diseases caused by intracellular cholesterol accumulation, or diseases caused by dysfunction of autophagy. It can be used as an active ingredient of a pharmaceutical composition. As the degradable portion of the polyrotaxane compound according to the present invention, a degradable group capable of degrading in an acidic environment within a cell and in an acidic environment at pH 4.0 to 6.0 can be employed. Such a polyrotaxane compound is decomposed in an acidic environment, the polyrotaxane skeleton is collapsed, and a cyclic molecule such as β-CD is released.
 ヒトを含む真核生物の細胞内には、リソソームや後期エンドソームといった小胞が存在しており、これらの小胞の内腔は酸性化されていることが知られている。例えば、リソソームの内腔のpHは5前後である。よって、本発明に係るポリロタキサン化合物は、これらの小胞に取り込まれることにより分解されうる。本発明に係るポリロタキサン化合物は、分解に伴い、β-CDなどの環状分子をリリースする。例えば、リソソーム内でβ-シクロデキストリンが放出された場合、リソソーム内に存在するコレステロールを包接することができ、それにより、リソソーム内のコレステロールの過剰蓄積を原因とするニーマン・ピック病C型などのライソゾーム病が治療もしくは予防されうる(例えば、Tamura and Yui,Sci.Rep., 2014,4, 4356を参照)。 It is known that vesicles such as lysosomes and late endosomes exist in eukaryotic cells including humans, and the lumens of these vesicles are acidified. For example, the pH of the lysosomal lumen is around 5. Therefore, the polyrotaxane compound according to the present invention can be decomposed by being taken into these vesicles. The polyrotaxane compound according to the present invention releases a cyclic molecule such as β-CD upon decomposition. For example, when β-cyclodextrin is released in lysosomes, it can include cholesterol present in lysosomes, thereby causing Niemann-Pick disease type C, which is caused by excessive accumulation of cholesterol in lysosomes. Lysosomal disease can be treated or prevented (see, eg, Tamura and Yui, Sci. Rep., 2014, 4, 4356).
 細胞内のコレステロールをβ-シクロデキストリンが包接することで、細胞内の過剰なコレステロールが引き起こす疾患の治療が可能であることが当業者には理解される。よって、本発明の一態様は、細胞内のコレステロール蓄積に起因する疾患を治療するための医薬組成物に関する。また、別の観点からは、本発明の一態様は、ニーマンピック病C型(NPC)を治療または予防するための方法に関する。さらに、本発明の一態様は、ニーマンピック病C型(NPC)を治療または予防するための薬剤の製造における、ポリロタキサン化合物の使用にも関する。医薬組成物として好ましい酸分解性ポリロタキサン化合物には、例えば、線状高分子の内部、好ましくは中央部にジスルフィド結合を有し、末端にN-トリフェニルメチル(N-Trt)基を有する化合物が含まれる。 It will be understood by those skilled in the art that inclusion of β-cyclodextrin in intracellular cholesterol enables treatment of diseases caused by excessive intracellular cholesterol. Therefore, one embodiment of the present invention relates to a pharmaceutical composition for treating a disease caused by intracellular cholesterol accumulation. In another aspect, one embodiment of the present invention relates to a method for treating or preventing Niemann-Pick disease type C (NPC). Furthermore, one aspect of the present invention also relates to the use of a polyrotaxane compound in the manufacture of a medicament for treating or preventing Niemann-Pick disease type C (NPC). Preferred acid-decomposable polyrotaxane compounds as pharmaceutical compositions include, for example, compounds having a disulfide bond in the interior of the linear polymer, preferably the central portion, and an N-triphenylmethyl (N-Trt) group at the terminal. included.
 代謝物がリソソームに蓄積することに起因する疾患としては、ライソゾーム病、より具体的には、ゴーシェ病(Gaucher病)、ニーマン・ピック病A型(Niemann-Pick病A型)、ニーマン・ピック病B型(Niemann-Pick病B型)、ニーマン・ピック病C型(Niemann-Pick病C型)、GM1ガングリオシドーシス、GM2ガングリオシドーシス(「Tay-Sachs Sandhoff AB型」と称することもある。)、クラッベ病(Krabbe病)、異染性白質変性症、マルチプルサルタファーゼ欠損症(Multiple sulfatese欠損症)、ファーバー病(Farber病)、ムコ多糖症I型、ムコ多糖症II型(「ハンター病」と称することもある。)、ムコ多糖症III型(「サンフィリポ病」と称することもある。)、ムコ多糖症IV型、ムコ多糖症VI型(「マロトー・ラミー病」と称することもある。)、ムコ多糖症VII型(「スライ病」と称することもある。)、ムコ多糖症IX型(「Hyaluronidase欠損症」と称することもある。)、シアリドーシス、ガラクトシアリドーシス、I-cell病/ムコリピドーシスIII型、α-マンノシドーシス、β-マンノシドーシス、フコシドーシス、アスパルチルグルコサミン尿症、シンドラー/神崎病(Schindler/神崎病)、ウォルマン病(Wolman病)、ダノン病(Danon病)、遊離シアル酸蓄積症、セロイドリポフスチノーシス、ファブリー病が挙げられる。なお、前記ライソゾーム病は、オートファゴソームの蓄積を生じる、オートファジー機能異常に起因する疾患でもある。 Diseases resulting from accumulation of metabolites in lysosomes include lysosomal disease, more specifically Gaucher disease (Gaucher disease), Neimann-Pick disease type A (Niemann-Pick disease type A), Neiman-Pick disease. B type (Niemann-Pick disease type B), Niemann-Pick disease type C (Niemann-Pick disease type C), GM1 gangliosidosis, GM2 gangliosidosis ("Tay-Sachs Sandhoff type AB"). ), Krabbe disease (Krabe disease), metachromatic leukodystrophy, multiple sulphafase deficiency (Multisulfatese deficiency), Faber disease (Farber disease), mucopolysaccharidosis type I, mucopolysaccharidosis type II ("Hunter Sometimes referred to as "disease"), mucopolysaccharidosis I Type I (sometimes referred to as “Sanfiliposis”), mucopolysaccharidosis type IV, mucopolysaccharidosis type VI (sometimes referred to as “Maloto Lamy disease”), mucopolysaccharidosis type VII (“Sly disease”) ), Mucopolysaccharidosis type IX (sometimes referred to as “Hyaluronidase deficiency”), sialidosis, galactosialidosis, I-cell disease / mucolipidosis type III, α-mannosidosis, β-mannosidosis, fucosidosis, aspartylglucosamineuria, Schindler / Kanzaki disease (Schindler / Kanzaki disease), Wolman disease (Wolman disease), Danone disease (Danon disease), free sialic acid storage disease, ceroid lipofusti Examples include nosis and Fabry disease. The lysosomal disease is also a disease caused by autophagy dysfunction causing autophagosome accumulation.
 よって、本発明の一態様は、ニーマンピック病C型(NPC)を治療または予防するための医薬組成物に関する。また、別の観点からは、本発明の一態様は、ニーマンピック病C型(NPC)を治療または予防するための方法に関する。さらに、本発明の一態様は、ニーマンピック病C型(NPC)を治療または予防するための薬剤の製造における、ポリロタキサン化合物の使用にも関する。 Therefore, one embodiment of the present invention relates to a pharmaceutical composition for treating or preventing Niemann-Pick disease type C (NPC). In another aspect, one embodiment of the present invention relates to a method for treating or preventing Niemann-Pick disease type C (NPC). Furthermore, one aspect of the present invention also relates to the use of a polyrotaxane compound in the manufacture of a medicament for treating or preventing Niemann-Pick disease type C (NPC).
 本発明に係るポリロタキサン化合物は、細胞におけるオートファジーの誘導に用いるための組成物の有効成分として使用されうる。よって、本発明の一態様は、細胞においてオートファジーを誘導するための組成物に関する。また、別の観点からは、本発明の一態様は、細胞においてオートファジーを誘導するための方法に関する。さらに、本発明の一態様は、細胞においてオートファジーを誘導するための薬剤の製造における、ポリロタキサン化合物の使用にも関する。 The polyrotaxane compound according to the present invention can be used as an active ingredient of a composition for use in inducing autophagy in cells. Accordingly, one embodiment of the present invention relates to a composition for inducing autophagy in a cell. In another aspect, one embodiment of the present invention relates to a method for inducing autophagy in a cell. Furthermore, one aspect of the present invention also relates to the use of a polyrotaxane compound in the manufacture of a medicament for inducing autophagy in a cell.
 また、本発明に係るメチル化ポリロタキサンは、細胞にオートファジー性細胞死を誘発しうる。オートファジー性細胞死を利用して、癌細胞に細胞死を誘導できることが当業者には知られている。よって、本発明の一態様は、癌を治療するための医薬組成物、好ましくはアポトーシス耐性の癌を治療するための医薬組成物に関する。また、別の観点からは、本発明の一態様は、癌を治療するため、特にアポトーシス耐性の癌を治療するための方法に関する。さらに、本発明の一態様は、癌を治療するための薬剤の製造における、ポリロタキサン化合物の使用にも関する。 The methylated polyrotaxane according to the present invention can induce autophagic cell death in cells. It is known to those skilled in the art that autophagic cell death can be used to induce cell death in cancer cells. Thus, one aspect of the present invention relates to a pharmaceutical composition for treating cancer, preferably a pharmaceutical composition for treating cancer resistant to apoptosis. From another aspect, one embodiment of the present invention relates to a method for treating cancer, particularly for treating cancer resistant to apoptosis. Furthermore, one aspect of the present invention pertains to the use of polyrotaxane compounds in the manufacture of a medicament for treating cancer.
 また、本発明の一態様は、オートファジーの機能障害に起因する疾患を治療または予防するための医薬組成物に関する。また、別の観点からは、本発明の一態様は、オートファジーの機能障害に起因する疾患を治療または予防するための方法に関する。さらに、本発明の一態様は、オートファジーの機能障害に起因する疾患を治療または予防するための薬剤の製造における、ポリロタキサン化合物の使用にも関する。オートファジーの機能障害に起因する疾患としては、例えば、上述のライソゾーム病や、アルツハイマー病、パーキンソン病、ハンチントン病などの神経変性疾患が挙げられる。 Further, one embodiment of the present invention relates to a pharmaceutical composition for treating or preventing a disease caused by autophagy dysfunction. In another aspect, one embodiment of the present invention relates to a method for treating or preventing a disease caused by a dysfunction of autophagy. Furthermore, one aspect of the present invention also relates to the use of a polyrotaxane compound in the manufacture of a medicament for treating or preventing a disease resulting from autophagy dysfunction. Examples of diseases caused by autophagy dysfunction include the above-mentioned lysosomal diseases, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease.
 本発明に係るポリロタキサン化合物は、上記のような疾患の治療または予防に用いる医薬組成物中の有効成分として利用することができる。よって、本発明の一つの態様は、疾患の治療または予防に用いる医薬組成物に関する。本発明に係る医薬組成物中のその他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、医薬的に許容され得る担体などが挙げられる。担体にも、特に制限はなく、例えば、剤形等に応じて適宜選択することができる。本発明に係る医薬組成物における含有量についても、特に制限はなく、目的に応じて適宜選択することができる。好ましくは、本発明に係る医薬組成物は、体温付近、例えば、34℃~42℃、より好ましくは35℃~38℃あるいは37℃において水溶性である。 The polyrotaxane compound according to the present invention can be used as an active ingredient in a pharmaceutical composition used for the treatment or prevention of the above-mentioned diseases. Therefore, one embodiment of the present invention relates to a pharmaceutical composition used for treatment or prevention of diseases. The other components in the pharmaceutical composition according to the present invention are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include pharmaceutically acceptable carriers. There is no restriction | limiting in particular also in a support | carrier, For example, it can select suitably according to a dosage form etc. There is no restriction | limiting in particular also about content in the pharmaceutical composition based on this invention, According to the objective, it can select suitably. Preferably, the pharmaceutical composition according to the present invention is water-soluble at around body temperature, for example, 34 ° C to 42 ° C, more preferably 35 ° C to 38 ° C or 37 ° C.
 本発明に係る医薬組成物の剤形としては、特に制限はなく、所望の投与方法に応じて適宜選択することができ、例えば、注射剤(溶液、懸濁液、用事溶解用固形剤等)、吸入散剤などが挙げられる。注射剤としては、例えば、本発明に係るポリロタキサン化合物に、pH調節剤、緩衝剤、安定化剤、等張化剤、局所麻酔剤等を添加し、常法により皮下用、筋肉内用、静脈内用等の注射剤を製造することができる。pH調節剤及び前記緩衝剤としては、例えば、クエン酸ナトリウム、酢酸ナトリウム、リン酸ナトリウムなどが挙げられる。安定化剤としては、例えば、ピロ亜硫酸ナトリウム、EDTA、チオグリコール酸、チオ乳酸などが挙げられる。等張化剤としては、例えば、塩化ナトリウム、ブドウ糖などが挙げられる。局所麻酔剤としては、例えば、塩酸プロカイン、塩酸リドカインなどが挙げられる。 There is no restriction | limiting in particular as a dosage form of the pharmaceutical composition based on this invention, According to the desired administration method, it can select suitably, For example, an injection (Solution, suspension, solid agent for use, etc.) And inhaled powders. As an injection, for example, a pH regulator, a buffer, a stabilizer, a tonicity agent, a local anesthetic, etc. are added to the polyrotaxane compound according to the present invention, and subcutaneous, intramuscular, intravenous, etc. are added by a conventional method. An injection for internal use can be produced. Examples of the pH adjusting agent and the buffering agent include sodium citrate, sodium acetate, sodium phosphate and the like. Examples of the stabilizer include sodium pyrosulfite, EDTA, thioglycolic acid, thiolactic acid and the like. Examples of the isotonic agent include sodium chloride and glucose. Examples of the local anesthetic include procaine hydrochloride and lidocaine hydrochloride.
 本発明に係る医薬組成物の投与方法としては、特に制限はなく、例えば、医薬組成物の剤形、患者の状態等に応じて、局所投与、全身投与のいずれかを選択することができる。例えば、局所投与としては、脳室内投与などが挙げられる。 The administration method of the pharmaceutical composition according to the present invention is not particularly limited, and for example, either local administration or systemic administration can be selected according to the dosage form of the pharmaceutical composition, the patient's condition, and the like. For example, local administration includes intracerebroventricular administration.
 本発明に係る医薬組成物の投与対象としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒト、マウス、ラット、ウシ、ブタ、サル、イヌ、ネコなどが挙げられるが、好ましくはヒトである。 The subject of administration of the pharmaceutical composition according to the present invention is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include humans, mice, rats, cows, pigs, monkeys, dogs, cats and the like. However, it is preferably a human.
 本発明に係る医薬組成物の投与量としては、特に制限はなく、投与形態や、投与対象の年齢、体重、所望の効果の程度等に応じて適宜選択することができる。 The dosage of the pharmaceutical composition according to the present invention is not particularly limited, and can be appropriately selected depending on the dosage form, the age and weight of the administration subject, the degree of desired effect, and the like.
 本発明に係る医薬組成物の投与時期としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、上記疾患に感受性の患者に対して予防的に投与されてもよいし、症状を呈する患者に治療的に投与されてもよい。また、投与回数としても、特に制限はなく、投与対象の年齢、体重、所望の効果の程度等に応じて、適宜選択することができる。 The administration time of the pharmaceutical composition according to the present invention is not particularly limited and may be appropriately selected depending on the purpose. For example, it may be administered prophylactically to a patient susceptible to the above-mentioned diseases, It may be administered therapeutically to patients presenting with symptoms. Moreover, there is no restriction | limiting in particular as frequency of administration, According to the age of an administration subject, a body weight, the grade of a desired effect, etc., it can select suitably.
製造方法
 本発明に係る分解性ポリロタキサン化合物は、両末端に分解性基を有する従来的な分解性ポリロタキサン化合物に比べて、より簡便に、短い時間で合成することができる。本発明の一態様は、複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物の製造方法であって、a)線状高分子部分の両末端に反応性基を付加する工程、b)両末端に反応性基を付加した線状高分子部分を分解性部分を介して連結させて、少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む線状高分子を得る工程、c)線状高分子を環状分子と反応させて、擬ポリロタキサンを得る工程、およびd)擬ポリロタキサンの両末端に末端基を付加する工程を含む製造方法に関する。
Production Method The degradable polyrotaxane compound according to the present invention can be synthesized more easily and in a shorter time than a conventional degradable polyrotaxane compound having degradable groups at both ends. One embodiment of the present invention includes a plurality of cyclic molecules and one linear polymer having a terminal group, and the linear polymer is connected via at least one degradable moiety. A method for producing a polyrotaxane compound comprising a polymer portion, wherein a) a step of adding a reactive group to both ends of the linear polymer portion, b) a linear polymer portion having reactive groups added to both ends To obtain a linear polymer comprising at least two linear polymer moieties linked via at least one degradable moiety, and c) the linear polymer as a cyclic molecule. To a pseudopolyrotaxane, and d) adding a terminal group to both ends of the pseudopolyrotaxane.
 上記の工程aにおいて、線状高分子部分の両末端に付加する反応性基は、例えば、アミノ基、カルボキシル基、アルデヒド基、スルファニル基、アジド基、アルキニル基、トシル基等の脱離基、カルボン酸スクシンイミドエステル等の活性エステル基でありうる。 In the above step a, the reactive group added to both ends of the linear polymer portion is, for example, a leaving group such as an amino group, a carboxyl group, an aldehyde group, a sulfanyl group, an azido group, an alkynyl group, a tosyl group, It may be an active ester group such as a carboxylic acid succinimide ester.
 上記の工程bの後に、線状高分子の長さに基づいて、線状高分子を選別してもよい。好ましくは、2つの線状高分子部分が1つの分解性部分を介して連結された線状高分子を選別する。 After the step b, the linear polymer may be selected based on the length of the linear polymer. Preferably, a linear polymer in which two linear polymer parts are connected via one degradable part is selected.
 以下に、実施例を示して本発明を具体的に説明するが、これらにより本発明は何ら制限を受けるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples.
 以下に、実施例を示して本発明を具体的に説明するが、これらにより本発明は何ら制限を受けるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples.
実施例1:中央分解型ポリロタキサン架橋剤の合成
〔合成例1〕
<線状軸ポリマーの分子内に分解性基を有するポリロタキサンAの合成>
(1)ポリエチレングリコール両末端のカルボジイミダゾールによる活性化(PEG5k-CDIの調製)
 1,1-カルボニルジイミダゾール(CDI)10.8gに、テトラヒドロフラン240mLにポリエチレングリコール(PEG5k-OH)(重量平均分子量:4,400-4,800)20.0gを溶解させた溶液を窒素雰囲気下室温にてゆっくりと滴下した。滴下終了後、窒素雰囲気下室温にて24時間撹拌した。反応溶液を濃縮した後ジエチルエーテル中に滴下して、析出物を回収し乾燥した(回収量19.9g)。
Figure JPOXMLDOC01-appb-C000003
 
Example 1 Synthesis of Centrally Decomposable Polyrotaxane Crosslinking Agent [Synthesis Example 1]
<Synthesis of polyrotaxane A having a decomposable group in the molecule of the linear shaft polymer>
(1) Activation of both ends of polyethylene glycol with carbodiimidazole (Preparation of PEG5k-CDI)
A solution obtained by dissolving 20.0 g of polyethylene glycol (PEG5k-OH) (weight average molecular weight: 4,400-4,800) in 240 mL of tetrahydrofuran in 10.8 g of 1,1-carbonyldiimidazole (CDI) under a nitrogen atmosphere The solution was slowly added dropwise at room temperature. After completion of the dropwise addition, the mixture was stirred at room temperature for 24 hours under a nitrogen atmosphere. The reaction solution was concentrated and then added dropwise to diethyl ether to collect the precipitate, which was dried (collected amount 19.9 g).
Figure JPOXMLDOC01-appb-C000003

(2)ポリエチレングリコール両末端のアミノ化(PEG5k-NHの調製)
 上記(1)で得られたPEG5k-CDI19.9gを、テトラヒドロフラン240mLに完全に溶解させた後、エチレンジアミン28.5mLに窒素雰囲気下、室温にてゆっくりと滴下した。滴下終了後、室温下窒素雰囲気下にて24時間撹拌した。反応溶液を濃縮した後ジエチルエーテル中に滴下して、析出物を回収した。得られた析出物は透析膜(分画分子量500)を用いて超純水に対して2日間透析を行った後、凍結乾燥を行い固体として回収した(回収量16.42g)。
Figure JPOXMLDOC01-appb-C000004
 
(2) Amination of both ends of polyethylene glycol (Preparation of PEG5k-NH 2 )
19.9 g of PEG5k-CDI obtained in (1) above was completely dissolved in 240 mL of tetrahydrofuran, and then slowly added dropwise to 28.5 mL of ethylenediamine at room temperature in a nitrogen atmosphere. After completion of the dropwise addition, the mixture was stirred at room temperature under a nitrogen atmosphere for 24 hours. The reaction solution was concentrated and then dropped into diethyl ether to collect the precipitate. The obtained precipitate was dialyzed against ultrapure water for 2 days using a dialysis membrane (molecular weight cut off: 500), and then freeze-dried and recovered as a solid (recovered amount 16.42 g).
Figure JPOXMLDOC01-appb-C000004

(3)アミノ化ポリエチレングリコールへの分解性基の導入(cNBPEG10k-NHの調製)
 上記(2)で得られたPEG5k-NH15.0gをテトラヒドロフラン45mLに完全に溶解させた。また別のガラス容器を用いてCDIおよび2-ニトロ-p-キシレングリコール137.4mgをテトラヒドロフラン10mLに溶解し室温で2時間反応させた後、この反応溶液をPEG5k-NH/テロラヒドロフラン溶液に滴下した。滴下終了後、室温下窒素雰囲気下にて24時間撹拌した。反応溶液をジエチルエーテル中に滴下して、析出物を回収した。得られた析出物は透析膜(分画分子量3,500)を用いて超純水に対して5日間透析を行った後、凍結乾燥を行い固体として回収した(回収量7.4g)。
Figure JPOXMLDOC01-appb-C000005
 
(3) Introduction of degradable group into aminated polyethylene glycol (Preparation of cNBPEG10k-NH 2 )
15.0 g of PEG5k-NH 2 obtained in the above (2) was completely dissolved in 45 mL of tetrahydrofuran. Also, using another glass container, 137.4 mg of CDI and 2-nitro-p-xylene glycol were dissolved in 10 mL of tetrahydrofuran and reacted at room temperature for 2 hours, and then this reaction solution was converted into a PEG5k-NH 2 / terolahydrofuran solution. It was dripped. After completion of the dropwise addition, the mixture was stirred at room temperature under a nitrogen atmosphere for 24 hours. The reaction solution was dropped into diethyl ether, and the precipitate was collected. The resulting precipitate was dialyzed against ultrapure water using a dialysis membrane (fractionated molecular weight 3,500) for 5 days, and then freeze-dried and recovered as a solid (recovered amount 7.4 g).
Figure JPOXMLDOC01-appb-C000005

(4)cNBPEG10k-NHとα-シクロデキストリンを用いた包接錯体の調製および包接錯体の封鎖(線状軸ポリマーの分子内に分解性基を有するポリロタキサンAの調製)
 α-シクロデキストリン(α-CD)15gを超純水103mLに溶解させ、そこに上記(3)で得られたcNBPEG10k-NH3gを12mLの超純水に溶解した溶液を滴下した。室温で24時間撹拌させた後、白濁析出した包接錯体を凍結乾燥して回収した。
(4) cNBPEG10k-NH 2 and of Inclusion Complex by using α- cyclodextrin preparation and blockade of inclusion complexes (prepared polyrotaxane A having decomposable group in the molecule of the linear axes polymers)
15 g of α-cyclodextrin (α-CD) was dissolved in 103 mL of ultrapure water, and a solution of 3 g of cNBPEG10k-NH 2 obtained in (3) above was dissolved in 12 mL of ultrapure water. After stirring for 24 hours at room temperature, the clathrate complex precipitated as turbid was lyophilized and recovered.
 BOP試薬4.0gおよび1-アダマンタンカルボン酸2.2g、N,N-ジイソプロピルエチルアミン2.1mLをN,N-ジメチルホルムアミド120mLに溶解させた溶液と回収した包接錯体を混合し、室温にて24時間反応させた。 A solution obtained by dissolving 4.0 g of BOP reagent, 2.2 g of 1-adamantanecarboxylic acid and 2.1 mL of N, N-diisopropylethylamine in 120 mL of N, N-dimethylformamide and the recovered inclusion complex were mixed at room temperature. The reaction was performed for 24 hours.
 反応溶液をメタノールに滴下して生成した析出物を遠心分離により回収した。回収した析出物をジメチルスルホキシドに溶解し、メタノールにて析出させる操作を数回繰り返した。つぎに回収した析出物をジメチルスルホキシドに溶解し、水にて析出させる操作を数回繰り返した。遠心分離で回収後、凍結乾燥することで精製したポリロタキサン(分解性基を有するポリロタキサンA)(回収量9.2g)を得た。 The precipitate formed by dropping the reaction solution into methanol was collected by centrifugation. The operation of dissolving the collected precipitate in dimethyl sulfoxide and precipitating with methanol was repeated several times. Next, the operation of dissolving the collected precipitate in dimethyl sulfoxide and precipitating with water was repeated several times. After recovery by centrifugation, lyophilization yielded a purified polyrotaxane (polyrotaxane A having a degradable group) (recovery amount 9.2 g).
 得られたポリロタキサン(分解性基を有するポリロタキサンA)は、H-NMRおよびGPCで同定し、未包接のCDが含まれないことを確認した。図1にPolyrotaxaneAのH-NMRスペクトルを示す。また、PEGに対するα-CDの貫通数を計算したところ、α-CDの貫通数は28.1分子であった。
Figure JPOXMLDOC01-appb-C000006
 
The obtained polyrotaxane (polyrotaxane A having a decomposable group) was identified by 1 H-NMR and GPC, and it was confirmed that unencapsulated CD was not contained. FIG. 1 shows the 1 H-NMR spectrum of Polyrotaxane A. Further, when the number of penetrations of α-CD with respect to PEG was calculated, the number of penetrations of α-CD was 28.1 molecules.
Figure JPOXMLDOC01-appb-C000006

 ポリロタキサンAをジメチルスルホキシド1mLに溶解した。その後1、5、10分間紫外線(254nm、2.5mW/cm)照射を行い、ゲルパーミテーションクロマトグラフィー(GPC)により低分子量化したことを確認した。図2に紫外線照射後のPolyrotaxaneAのGPCチャートを示す。この結果は光分解性を有するニトロベンゼンの開裂により切断され軸高分子鎖が分解し、一部または全部のα-CDが包接状態から非包接状態に遊離したことを示す。すなわち、ポリロタキサンAの超分子構造は紫外線(254nm、2.5mW/cm)照射によって分解・崩壊することが確認された。 Polyrotaxane A was dissolved in 1 mL of dimethyl sulfoxide. Thereafter, ultraviolet rays (254 nm, 2.5 mW / cm 2 ) were irradiated for 1, 5 and 10 minutes, and it was confirmed that the molecular weight was reduced by gel permeation chromatography (GPC). FIG. 2 shows a GPC chart of Polyrotaxane A after ultraviolet irradiation. This result indicates that the axial polymer chain is cleaved by cleavage of nitrobenzene having photodegradability, and a part or all of α-CD is released from the inclusion state to the non-inclusion state. That is, it was confirmed that the supramolecular structure of polyrotaxane A was decomposed and collapsed by irradiation with ultraviolet rays (254 nm, 2.5 mW / cm 2 ).
〔合成例2〕
<疎水性基および重合性基としてのメタクリロイル基を有するポリロタキサンAの合成(ポリロタキサンBの調製)>
(5)分解性基を有するポリロタキサンAの重合性の賦与および疎水化(ポリロタキサンBの調製)
 上記(4)で合成した1gの「分解性基を有するポリロタキサンA」を15mLの脱水ジメチルスルホキシドに溶解し、2-イソシアナートエチルメタクリレート209.9μLおよびブチルイソシアナート1.3mLを加えた。1,4-ジアザビシクロ[2.2.2]オクタン500mgを加え、室温下24時間反応させた。反応後、透析膜(分画分子量3,500)を用いてジメチルスルホキシドに対して2日間の透析を行った。続いて同透析膜(分画分子量3,500)を用いて水に対して2日間の透析を行った。1H-NMR測定結果よりα-CD由来のピーク、アミノブチル基由来のピーク、メタクリロイル基由来のピークから包接したα-CD1分子当り1.2分子のメタクリロイル基と8.5分子のブチルイソシアナート基が導入されたことを確認した。図3にPolyrotaxaneBの1H-NMRスペクトルを示す。GPCにより分子量を確認した。また、吸収スペクトルを確認した結果、ポリロタキサンBがニトロベンジル基に由来する吸収を有すことを確認した。即ち、ポリロタキサンBは、分解性基として光開裂性基であるニトロベンジル基、および重合性基としてのメタクリロイル基を有する所定のポリロタキサンBであることを確認した。
Figure JPOXMLDOC01-appb-C000007
 
[Synthesis Example 2]
<Synthesis of Polyrotaxane A Having Methacryloyl Group as Hydrophobic Group and Polymerizable Group (Preparation of Polyrotaxane B)>
(5) Polymerization and hydrophobization of polyrotaxane A having a decomposable group (Preparation of polyrotaxane B)
1 g of “polyrotaxane A having a decomposable group” synthesized in the above (4) was dissolved in 15 mL of dehydrated dimethyl sulfoxide, and 209.9 μL of 2-isocyanatoethyl methacrylate and 1.3 mL of butyl isocyanate were added. 1,4-diazabicyclo [2.2.2] octane (500 mg) was added, and the mixture was reacted at room temperature for 24 hours. After the reaction, dialysis was carried out for 2 days against dimethyl sulfoxide using a dialysis membrane (fraction molecular weight 3,500). Subsequently, dialysis was performed for 2 days against water using the same dialysis membrane (fraction molecular weight 3,500). From the results of 1H-NMR measurement, 1.2 molecules of methacryloyl group and 8.5 molecules of butyl isocyanate per α-CD molecule included from the peak derived from α-CD, the peak derived from aminobutyl group, and the peak derived from methacryloyl group It was confirmed that the group was introduced. FIG. 3 shows the 1H-NMR spectrum of Polyrotaxane B. The molecular weight was confirmed by GPC. Moreover, as a result of confirming an absorption spectrum, it confirmed that polyrotaxane B had the absorption derived from a nitrobenzyl group. That is, it was confirmed that polyrotaxane B was a predetermined polyrotaxane B having a nitrobenzyl group as a photocleavable group as a decomposable group and a methacryloyl group as a polymerizable group.
Figure JPOXMLDOC01-appb-C000007

〔比較合成例1〕
<分解性基を有さないポリロタキサンの合成>
(6)ポリエチレングリコール両末端のカルボジイミダゾールによる活性化(PEG5k-CDIの調製)
 1,1-カルボニルジイミダゾール(CDI)2.4gに、テトラヒドロフラン100mLにポリエチレングリコール(PEG10k-OH)(重量平均分子量:10,000)10.0gを溶解させた溶液を窒素雰囲気下室温にてゆっくりと滴下した。滴下終了後、窒素雰囲気下室温にて24時間撹拌した。反応溶液を濃縮した後ジエチルエーテル中に滴下して、析出物を回収し乾燥した(回収量9.6g)。
(7)ポリエチレングリコール両末端のアミノ化(PEG10k-NHの調製)
 上記(6)で得られたPEG10k-CDI9.5gを、テトラヒドロフラン100mLに完全に溶解させた後、エチレンジアミン6.3mLに窒素雰囲気下室温にてゆっくりと滴下した。滴下終了後、室温下窒素雰囲気下にて24時間撹拌した。反応溶液を濃縮した後ジエチルエーテル中に滴下して、析出物を回収した。得られた析出物は透析膜(分画分子量3,500)を用いて超純水に対して2日間透析を行った後、凍結乾燥を行い固体として回収した(回収量7.5g)。
[Comparative Synthesis Example 1]
<Synthesis of polyrotaxane having no degradable group>
(6) Activation of both ends of polyethylene glycol with carbodiimidazole (Preparation of PEG5k-CDI)
A solution prepared by dissolving 10.0 g of polyethylene glycol (PEG10k-OH) (weight average molecular weight: 10,000) in 2.4 mL of 1,1-carbonyldiimidazole (CDI) and 100 mL of tetrahydrofuran was slowly added at room temperature under a nitrogen atmosphere. And dripped. After completion of the dropwise addition, the mixture was stirred at room temperature for 24 hours under a nitrogen atmosphere. The reaction solution was concentrated and then dropped into diethyl ether, and the precipitate was collected and dried (collected amount 9.6 g).
(7) Amination of both ends of polyethylene glycol (Preparation of PEG10k-NH 2 )
After 9.5 g of PEG10k-CDI obtained in (6) above was completely dissolved in 100 mL of tetrahydrofuran, it was slowly added dropwise to 6.3 mL of ethylenediamine at room temperature under a nitrogen atmosphere. After completion of the dropwise addition, the mixture was stirred at room temperature under a nitrogen atmosphere for 24 hours. The reaction solution was concentrated and then dropped into diethyl ether to collect the precipitate. The obtained precipitate was dialyzed against ultrapure water using a dialysis membrane (fractionated molecular weight 3,500) for 2 days, and then freeze-dried and recovered as a solid (recovered amount 7.5 g).
(8)PEG10k-NHとα-シクロデキストリンを用いた包接錯体の調製および包接錯体の封鎖(線状軸ポリマーの分子内に分解性基を有さないポリロタキサンXの調製)
 α-シクロデキストリン(α-CD)15gを超純水103mLに溶解させ、そこに上記(7)で得られたPEG10k-NH、3gを12mLの超純水に溶解した溶液を滴下した。室温で24時間撹拌させた後、白濁析出した包接錯体を凍結乾燥して回収した。BOP試薬4.0gおよび1-アダマンタンカルボン酸2.2g、N,N-ジイソプロピルエチルアミン2.1mLをN,N-ジメチルホルムアミド120mLに溶解させた溶液と回収した包接錯体を混合し、室温にて24時間反応させた。
(8) Preparation of inclusion complex using PEG10k-NH 2 and α-cyclodextrin and blocking of the inclusion complex (preparation of polyrotaxane X having no decomposable group in the molecule of the linear shaft polymer)
15 g of α-cyclodextrin (α-CD) was dissolved in 103 mL of ultrapure water, and a solution prepared by dissolving 3 g of PEG10k-NH 2 obtained in (7) above in 12 mL of ultrapure water was added dropwise thereto. After stirring for 24 hours at room temperature, the clathrate complex precipitated as turbid was lyophilized and recovered. A solution obtained by dissolving 4.0 g of BOP reagent, 2.2 g of 1-adamantanecarboxylic acid and 2.1 mL of N, N-diisopropylethylamine in 120 mL of N, N-dimethylformamide and the recovered inclusion complex were mixed at room temperature. The reaction was performed for 24 hours.
 反応溶液をメタノールに滴下して生成した析出物を遠心分離により回収した。回収した析出物をジメチルスルホキシドに溶解し、メタノールにて析出させる操作を数回繰り返した。回収した析出物をジメチルスルホキシドに溶解し、水にて析出させる操作を数回繰り返した。遠心分離で回収後、凍結乾燥することで精製したポリロタキサン(分解性基を有さないポリロタキサンX)(回収量10.1g)を得た。得られたポリロタキサン(分解性基を有さないポリロタキサンX)は、H-NMRおよびGPCで同定し、未包接のCDが含まれないことを確認した。またPEGに対するα-CDの貫通数を計算したところα-CDの貫通数は28.8分子であった。ポリロタキサンXをジメチルスルホキシド1mLに溶解した。その後1、5、10分間紫外線(254nm、2.5mW/cm)照射を行い、ゲルパーミテーションクロマトグラフィー(GPC)により分子量変化がないことを確認した。この結果は、光分解性を有するニトロベンゼンを含まない軸高分子鎖は紫外線照射に応答せず、α-CDが包接状態を維持したことを示す。 A precipitate formed by dropping the reaction solution into methanol was collected by centrifugation. The operation of dissolving the collected precipitate in dimethyl sulfoxide and precipitating with methanol was repeated several times. The operation of dissolving the collected precipitate in dimethyl sulfoxide and precipitating with water was repeated several times. After recovery by centrifugation, lyophilization yielded a purified polyrotaxane (polyrotaxane X having no degradable group) (recovered amount 10.1 g). The obtained polyrotaxane (polyrotaxane X having no decomposable group) was identified by 1 H-NMR and GPC, and it was confirmed that unencapsulated CD was not contained. Further, when the number of penetrating α-CD to PEG was calculated, the number of penetrating α-CD was 28.8 molecules. Polyrotaxane X was dissolved in 1 mL of dimethyl sulfoxide. Thereafter, ultraviolet rays (254 nm, 2.5 mW / cm 2 ) were irradiated for 1, 5 and 10 minutes, and it was confirmed by gel permeation chromatography (GPC) that there was no change in molecular weight. This result indicates that the axial polymer chain not containing photodegradable nitrobenzene did not respond to ultraviolet irradiation, and α-CD maintained the inclusion state.
〔比較合成例2〕
<疎水性基および重合性基としてのメタクリロイル基を有するポリロタキサンXの合成(ポリロタキサンYの調製)>
(9)分解性基を有さないポリロタキサンXの重合性の賦与および疎水化(ポリロタキサンYの調製)
 上記(8)で合成した1gのポリロタキサンXを15mLの脱水ジメチルスルホキシドに溶解し、2-イソシアナートエチルメタクリレート209.9μLおよびブチルイソシアナート1.3mLを加えた。1,4-ジアザビシクロ[2.2.2]オクタン500mgを加え、室温下24時間反応させた。反応後、透析膜(分画分子量3,500)を用いてジメチルスルホキシドに対して2日間の透析を行った。続いて同透析膜(分画分子量3,500)を用いて水に対して2日間の透析を行った。
[Comparative Synthesis Example 2]
<Synthesis of polyrotaxane X having methacryloyl group as hydrophobic group and polymerizable group (preparation of polyrotaxane Y)>
(9) Addition of polymerizability and hydrophobization of polyrotaxane X having no degradable group (Preparation of polyrotaxane Y)
1 g of polyrotaxane X synthesized in (8) above was dissolved in 15 mL of dehydrated dimethyl sulfoxide, and 209.9 μL of 2-isocyanatoethyl methacrylate and 1.3 mL of butyl isocyanate were added. 1,4-diazabicyclo [2.2.2] octane (500 mg) was added, and the mixture was reacted at room temperature for 24 hours. After the reaction, dialysis was carried out for 2 days against dimethyl sulfoxide using a dialysis membrane (fraction molecular weight 3,500). Subsequently, dialysis was performed for 2 days against water using the same dialysis membrane (fraction molecular weight 3,500).
実施例2:疎水性基および重合性基を有するポリロタキサンBを用いて作製した硬化体の光誘起分解に対する最大引張強度低減効果
 合成例2で合成したポリロタキサンBの29.5質量部、2-ヒドロキシエチルメタクリレートの69.5質量部、2-ジメチルアミノエチルメタクリレートの0.3質量部、カンファーキノンの0.7質量部を混合し、これを溶液型の光重合型接着剤Bとして使用した。シリコーン製のダンベル型モールドに光重合型接着剤Bを添加し、歯科用可視光線照射器(700mW/cm)で180秒間光照射し硬化体を作製した。硬化体は、シリコーン製のモールド(厚さ1mm、長さ15mm、中心部の幅1mm、端部の幅2mmのダンベル状)に光重合型接着剤Bを添加した後、可視光線照射器(波長400~450nm、700mW/cm)で180分間光照射し硬化体を作製した。尚、波長400~450nmにおける今回の光照射条件下ではポリロタキサンBのニトロベンジル基は開裂しないことを確認した。硬化体の一つはそのまま遮光下で静置した(非UV照射群、n=4)。硬化体の別の一つはUV照射(254nm、2.5mW/cm)を2分間行い、遮光下で静置した(UV照射群、n=4)。
Example 2 Effect of Reducing Maximum Tensile Strength on Photoinduced Degradation of Cured Product Prepared Using Polyrotaxane B Having Hydrophobic and Polymerizable Groups 29.5 parts by mass of polyrotaxane B synthesized in Synthesis Example 2, 2-hydroxy 69.5 parts by mass of ethyl methacrylate, 0.3 part by mass of 2-dimethylaminoethyl methacrylate, and 0.7 parts by mass of camphorquinone were mixed and used as a solution-type photopolymerizable adhesive B. Photopolymerizable adhesive B was added to a dumbbell mold made of silicone, and light was irradiated for 180 seconds with a dental visible light irradiator (700 mW / cm 2 ) to prepare a cured body. The cured product is obtained by adding a photopolymerizable adhesive B to a silicone mold (thickness 1 mm, length 15 mm, center width 1 mm, end width 2 mm) and then applying a visible light irradiator (wavelength (400 to 450 nm, 700 mW / cm 2 ) for 180 minutes to produce a cured product. It was confirmed that the nitrobenzyl group of polyrotaxane B was not cleaved under the present light irradiation conditions at wavelengths of 400 to 450 nm. One of the cured bodies was left as it was under shading (non-UV irradiation group, n = 4). One alternative of the cured product is UV irradiation (254nm, 2.5mW / cm 2) for 2 minutes, was allowed to stand under shading (UV irradiated group, n = 4).
 光重合型接着剤Bの分解性について評価するために、上記と同様な方法を用いて比較硬化体を作製した。比較合成例2で合成したポリロタキサンYの29.5質量部、2-ヒドロキシエチルメタクリレートの69.5質量部、2-ジメチルアミノエチルメタクリレートの0.3質量部、カンファーキノンの0.7質量部を混合し、これを溶液型の光重合型接着剤Yとして使用した。シリコーン製のダンベル型モールドに光重合型接着剤Yを添加し、歯科用可視光線照射器(700mW/cm)で180秒間光照射し硬化体を作製した。硬化体は、シリコーン製のモールド(厚さ1mm、長さ15mm、中心部の幅1mm、端部の幅2mmのダンベル状)に光重合型接着剤Yを添加した後、可視光線照射器(波長400~450nm、700mW/cm)で180分間光照射し硬化体を作製した。尚、波長400~450nmにおける今回の光照射条件下ではポリロタキサンYのニトロベンジル基は開裂しないことを確認した。硬化体の一つはそのまま遮光下で静置した(非UV照射群、n=4)。硬化体の別の一つはUV照射(254nm、2.5mW/cm)を2分間行い、遮光下で静置した(UV照射群、n=4)。またポリロタキサンを含まない硬化体として、架橋剤であるBis-GMAを用いて硬化体を作製した。Bis-GMAの29.5質量部、2-ヒドロキシエチルメタクリレートの69.5質量部、2-ジメチルアミノエチルメタクリレートの0.3質量部、カンファーキノンの0.7質量部を混合し、この溶液を上記と同様な方法で硬化した。これら作製した硬化体を用いて引張試験を行い、得られた応力-歪み曲線から微小引張強度を算出した。尚、クロスヘッドスピードは、1mm/minにて測定した(島津製作所製、オートグラフ EZ Test)。 In order to evaluate the decomposability of the photopolymerizable adhesive B, a comparative cured product was prepared using the same method as described above. 29.5 parts by mass of polyrotaxane Y synthesized in Comparative Synthesis Example 2, 69.5 parts by mass of 2-hydroxyethyl methacrylate, 0.3 parts by mass of 2-dimethylaminoethyl methacrylate, 0.7 parts by mass of camphorquinone These were mixed and used as a solution-type photopolymerizable adhesive Y. The photopolymerizable adhesive Y was added to a silicone dumbbell mold, and light was irradiated for 180 seconds with a dental visible light irradiator (700 mW / cm 2 ) to prepare a cured body. The cured product was obtained by adding a photopolymerizable adhesive Y to a silicone mold (dumb shape having a thickness of 1 mm, a length of 15 mm, a center width of 1 mm, and an end width of 2 mm), and then a visible light irradiator (wavelength). (400 to 450 nm, 700 mW / cm 2 ) for 180 minutes to produce a cured product. It was confirmed that the nitrobenzyl group of polyrotaxane Y was not cleaved under the present light irradiation conditions at wavelengths of 400 to 450 nm. One of the cured bodies was left as it was under shading (non-UV irradiation group, n = 4). One alternative of the cured product is UV irradiation (254nm, 2.5mW / cm 2) for 2 minutes, was allowed to stand under shading (UV irradiated group, n = 4). In addition, as a cured product not containing polyrotaxane, a cured product was prepared using Bis-GMA as a crosslinking agent. 29.5 parts by mass of Bis-GMA, 69.5 parts by mass of 2-hydroxyethyl methacrylate, 0.3 parts by mass of 2-dimethylaminoethyl methacrylate, and 0.7 parts by mass of camphorquinone were mixed. Cured in the same manner as above. Tensile tests were conducted using these prepared cured bodies, and the micro tensile strength was calculated from the obtained stress-strain curve. The crosshead speed was measured at 1 mm / min (manufactured by Shimadzu Corp., Autograph EZ Test).
 Bis-GMA含有硬化体は、弾性域において応力と歪みは線形に増加し、約60MPaで破断した(図4)。しかしながらポリロタキサンBを含む硬化体は、小さな変形に対して応力がほとんど変わらず大きな変形に対して応力が線形相関関係にあった。また非UV照射群では塑性域で材料が伸長した後破断したが、UV照射群では塑性域での硬化体の変形は認められず破断した。また光重合型接着剤Bおよび光重合型接着剤YにおけるUV照射前後の微小引張強さにも大きな違いが認められた。光重合型接着剤Bを使用した場合、非UV照射群の微小引張強さは45.7MPa(標準偏差2.4MPa)であったのに対し、UV照射群の微小引張強さは24.1MPa(標準偏差4.7MPa)と低かった(図5)。UV照射群においては、UV照射による光開裂性基(ニトロベンジル基)の開裂に伴うポリロタキサンBの分解により、微小引張強度が大幅に低減したことが考えられた。特に、比較的短時間のUV照射という簡便な処理により、微小引張強度を大幅に低減することができた。一方で光重合型接着剤Yを使用した場合、非UV照射群の微小引張強さは41.3MPa(標準偏差4.6MPa)であったのに対し、UV照射群の微小引張強さは38.2MPa(標準偏差4.9MPa)と低かった。即ち、分解性基として光開裂性基であるニトロベンジル基、および重合性基としてのメタクリロイル基を有するポリロタキサンBを使用して調製した光重合型接着剤Bにおいては、ポリロタキサンBの分解性結合であるニトロベンジルを開裂するように作用する特定波長UV光を作用させることで、調製した硬化体の微小引張強度を大幅に低減する効果が得られることを確認した。例えば光重合型接着剤Bの硬化体にポリロタキサンBの分解性結合を切断するように作用する光照射を行うという簡単な操作により、短時間の作用時間においても大幅に接着性を低下できることが示された。 In the Bis-GMA-containing cured product, stress and strain increased linearly in the elastic region, and fractured at about 60 MPa (FIG. 4). However, in the cured product containing polyrotaxane B, the stress hardly changed with respect to the small deformation, and the stress had a linear correlation with the large deformation. In the non-UV irradiation group, the material stretched in the plastic region and then fractured. However, in the UV irradiation group, the cured body was not deformed in the plastic region, and fractured. Further, a large difference was observed in the micro tensile strength before and after UV irradiation in the photopolymerizable adhesive B and the photopolymerizable adhesive Y. When the photopolymerizable adhesive B was used, the micro tensile strength of the non-UV irradiation group was 45.7 MPa (standard deviation 2.4 MPa), whereas the micro tensile strength of the UV irradiation group was 24.1 MPa. The standard deviation was as low as 4.7 MPa (FIG. 5). In the UV irradiation group, it was considered that the microtensile strength was significantly reduced by the decomposition of polyrotaxane B accompanying the cleavage of the photocleavable group (nitrobenzyl group) by UV irradiation. In particular, the micro tensile strength could be greatly reduced by a simple treatment of UV irradiation for a relatively short time. On the other hand, when the photopolymerizable adhesive Y was used, the micro tensile strength of the non-UV irradiation group was 41.3 MPa (standard deviation 4.6 MPa), whereas the micro tensile strength of the UV irradiation group was 38. .2 MPa (standard deviation 4.9 MPa). That is, in the photopolymerizable adhesive B prepared using a polyrotaxane B having a nitrobenzyl group that is a photocleavable group as a decomposable group and a methacryloyl group as a polymerizable group, It was confirmed that the effect of greatly reducing the micro tensile strength of the prepared cured product was obtained by applying a specific wavelength UV light that acts to cleave a certain nitrobenzyl. For example, it is shown that the adhesiveness can be greatly lowered even in a short operation time by performing a simple operation of irradiating the cured product of the photopolymerizable adhesive B with light that acts to break the degradable bond of polyrotaxane B. It was done.
実施例3:ポリロタキサンBの含有量を変えて作製した硬化体の光誘起分解に対する最大引張強度低減効果
 合成例2で合成したポリロタキサンB及び比較合成例2で合成したポリロタキサンYの質量部を9.5、29.5、49.5とし2-ジメチルアミノエチルメタクリレートの0.3質量部、カンファーキノンの0.7質量部を固定し、2-ヒドロキシエチルメタクリレートの質量部を質量部の合計が100となるように混合し、光重合型接着剤として使用した(図6)。実施例2は、ポリロタキサンYの質量部を29.5とした場合であり、本実施例3に合わせて記載している。実施例2と同様にシリコーン製のモールド(厚さ1mm、長さ15mm、中心部の幅1mm、端部の幅2mmのダンベル状)に光重合型接着剤を添加した後、可視光線照射器(波長400~450nm、700mW/cm)で180分間光照射し硬化体を作製した。尚、波長400~450nmにおける今回の光照射条件下ではポリロタキサンBのニトロベンジル基は開裂しないことを確認した。硬化体の一つはそのまま遮光下で静置した(非UV照射群、n=4)。硬化体の別の一つはUV照射(254nm、2.5mW/cm)を2分間行い、遮光下で静置した(UV照射群、n=4)。UV分解型でない重合型接着剤Yの場合、ポリロタキサンYのいずれの質量部でも非UV照射群とUV照射群の微小引張強さは差がなかった(表1および図7)。一方、UV分解型の重合型接着剤Bの場合、質量部が29.5と49.5の場合は、非UV照射群に比べてUV照射群の微小引張強さは各々47%、20%の減少が見られ(図7)、UV裂性基であるニトロベンジル基を有するポリロタキサンBを使用して調製した光重合型接着剤BにおいてはUV光を作用させることで調製した硬化体の微小引張強度を大幅に低減する効果が得られることを確認した。光重合型接着剤Bの硬化体にポリロタキサンBの分解性結合を切断するように作用する光照射を行うという簡単な操作により、短時間の作用時間においても大幅に接着性を低下できることが示された。
Example 3: Maximum Tensile Strength Reduction Effect on Photo-Induced Decomposition of Cured Product Made by Changing Content of Polyrotaxane B The mass part of polyrotaxane B synthesized in Synthesis Example 2 and polyrotaxane Y synthesized in Comparative Synthesis Example 2 is 9. 5, 29.5, 49.5, 0.3 parts by mass of 2-dimethylaminoethyl methacrylate and 0.7 parts by mass of camphorquinone were fixed, and the total of parts by mass of 2-hydroxyethyl methacrylate was 100 parts by mass. It mixed so that it might become, and was used as a photopolymerization type adhesive agent (FIG. 6). Example 2 is a case where the mass part of the polyrotaxane Y is 29.5, and is described together with Example 3. In the same manner as in Example 2, a photopolymerization adhesive was added to a silicone mold (dumb shape having a thickness of 1 mm, a length of 15 mm, a center width of 1 mm, and an end width of 2 mm), and then a visible light irradiator ( A cured product was produced by irradiation with light at a wavelength of 400 to 450 nm, 700 mW / cm 2 ) for 180 minutes. It was confirmed that the nitrobenzyl group of polyrotaxane B was not cleaved under the present light irradiation conditions at wavelengths of 400 to 450 nm. One of the cured bodies was left as it was under shading (non-UV irradiation group, n = 4). Another one of the cured bodies was subjected to UV irradiation (254 nm, 2.5 mW / cm 2 ) for 2 minutes and allowed to stand under light shielding (UV irradiation group, n = 4). In the case of the polymerizable adhesive Y that is not UV-decomposable, there was no difference in the microtensile strength between the non-UV irradiation group and the UV irradiation group at any mass part of the polyrotaxane Y (Table 1 and FIG. 7). On the other hand, in the case of the UV-decomposable polymerization adhesive B, when the mass parts are 29.5 and 49.5, the micro tensile strength of the UV irradiation group is 47% and 20%, respectively, compared to the non-UV irradiation group. (Fig. 7), the photopolymerizable adhesive B prepared using polyrotaxane B having a nitrobenzyl group which is a UV-cleavable group has a small amount of cured product prepared by applying UV light. It was confirmed that the effect of greatly reducing the tensile strength was obtained. It is shown that the adhesiveness can be greatly reduced even in a short working time by a simple operation of irradiating the cured product of the photopolymerizable adhesive B with light that acts to break the degradable bond of polyrotaxane B. It was.
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 本発明に係る中央分解型の機能性ポリロタキサンは、両端に分解性リンカーを有する従来的なポリロタキサンを置き換える形で、さまざまな用途に利用することができる。このような中央分解型の機能性ポリロタキサンは、合成ステップが両端分解型よりも少ないので、製造上も利点があり、また、両端への導入が難しいペプチドなどの機能性分子を利用することも可能となる。可能な用途としては、上述のように、歯科材料におけるレジンモノマーとしての利用や、ニーマンピック病C型(NPC)の治療薬としての使用などが挙げられる。 The centrally decomposable functional polyrotaxane according to the present invention can be used in various applications by replacing a conventional polyrotaxane having degradable linkers at both ends. Such centrally-resolved functional polyrotaxane has fewer synthetic steps than both-end-resolved type, so there are advantages in manufacturing, and it is also possible to use functional molecules such as peptides that are difficult to introduce at both ends. It becomes. Possible uses include use as a resin monomer in dental materials and use as a therapeutic agent for Niemann-Pick disease type C (NPC), as described above.

Claims (25)

  1.  複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物。 A polyrotaxane comprising a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymer comprises at least two linear polymer moieties linked via at least one degradable moiety Compound.
  2.  前記線状高分子が以下の式:
     X-Y(-Z-Y-X
    に示される構造を有し、ここで、XおよびXは同一もしくは異なる末端基であり、YおよびYは同一もしくは異なる線状高分子部分であり、Zは分解性部分であり、(-Z-Yは、分解性部分Yと線状高分子部分Zから成る繰り返し単位がi個存在することを示し、線状高分子中の各ZおよびYは同一でも異なっていてもよく、iは1~500の整数である、請求項1記載のポリロタキサン化合物。
    The linear polymer is represented by the following formula:
    X 1 -Y 0 (-Z i -Y i ) i -X 2
    Wherein X 1 and X 2 are the same or different end groups, Y 0 and Y i are the same or different linear polymer moieties, and Z i is a degradable moiety , (-Z i -Y i ) i indicates that there are i repeating units composed of a degradable portion Y and a linear polymer portion Z, and each Z i and Y i in the linear polymer is the same The polyrotaxane compound according to claim 1, wherein i is an integer of 1 to 500.
  3.  前記線状高分子が以下の式:
     X-Y-Z-Y-X
    に示される構造を有し、ここで、XおよびXは同一もしくは異なる末端基であり、YおよびYは同一もしくは異なる線状高分子部分であり、Zは分解性部分である、請求項1記載のポリロタキサン化合物。
    The linear polymer is represented by the following formula:
    X 1 -Y 0 -Z 1 -Y 1 -X 2
    Wherein X 1 and X 2 are the same or different end groups, Y 0 and Y 1 are the same or different linear polymer moieties, and Z 1 is a degradable moiety. The polyrotaxane compound according to claim 1.
  4.  前記分解性部分に連結された2つの線状高分子部分の長さの比が1:1~1:4に含まれる、請求項1~3のいずれか一項記載のポリロタキサン化合物。 The polyrotaxane compound according to any one of claims 1 to 3, wherein the ratio of the lengths of the two linear polymer portions linked to the degradable portion is contained in 1: 1 to 1: 4.
  5.  前記分解性部分が、酸分解性、酵素分解性、熱分解性、または光分解性である、請求項1~4のいずれか一項記載のポリロタキサン化合物。 The polyrotaxane compound according to any one of claims 1 to 4, wherein the degradable moiety is acid decomposable, enzymatic degradable, thermally degradable, or photodegradable.
  6.  前記分解性部分が、少なくとも一つの分解性基を含み、該分解性基が、p-メトキシフェナシル基、2-ニトロベンジル基、2-ニトロベンジルオキシカルボニル基、2-ニトロフェニルエチレングリコール基、ベンジルオキシカルボニル基、3,5-ジメトキシベンジルオキシカルボニル基、α,α-ジメチル-3,5-ジメトキシベンジルオキシカルボニル基、3-ニトロフェニル基、3-ニトロフェノキシ基、3,5-ジニトロフェノキシ基、3-ニトロフェノキシカルボニル基、フェナシル基、4-メトキシフェナシル基、α-メチルフェナシル基、3,5-ジメトキシベンゾイニル基、2,4-ジニトロベンゼンスルフェニル基、(クマリン-4-イル)メチル基、7-ニトロインドリニル基、アリールアゾ燐酸エステル、エステル結合、シッフ塩基結合、カーバメート結合、ペプチド結合、エーテル結合、アセタール結合、ヘミアセタール結合、ジスルフィド結合、有機過酸化物、およびアシルヒドラジン結合から成る群より選択される、請求項1~5のいずれか一項記載のポリロタキサン化合物。 The degradable moiety includes at least one degradable group, and the degradable group includes a p-methoxyphenacyl group, a 2-nitrobenzyl group, a 2-nitrobenzyloxycarbonyl group, a 2-nitrophenylethylene glycol group, Benzyloxycarbonyl group, 3,5-dimethoxybenzyloxycarbonyl group, α, α-dimethyl-3,5-dimethoxybenzyloxycarbonyl group, 3-nitrophenyl group, 3-nitrophenoxy group, 3,5-dinitrophenoxy group 3-nitrophenoxycarbonyl group, phenacyl group, 4-methoxyphenacyl group, α-methylphenacyl group, 3,5-dimethoxybenzoinyl group, 2,4-dinitrobenzenesulfenyl group, (coumarin-4- Yl) methyl group, 7-nitroindolinyl group, arylazophosphate ester, esthetic Any one of claims 1 to 5, selected from the group consisting of a bond, a Schiff base bond, a carbamate bond, a peptide bond, an ether bond, an acetal bond, a hemiacetal bond, a disulfide bond, an organic peroxide, and an acyl hydrazine bond. The polyrotaxane compound according to one item.
  7.  環状分子が、α-シクロデキストリン、β-シクロデキストリン、およびγ-シクロデキストリンから成る群より選択される、請求項1~6のいずれか一項記載のポリロタキサン化合物。 The polyrotaxane compound according to any one of claims 1 to 6, wherein the cyclic molecule is selected from the group consisting of α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin.
  8.  環状分子が1つ又は複数の置換基を有する、請求項1~7のいずれか一項記載のポリロタキサン化合物。 The polyrotaxane compound according to any one of claims 1 to 7, wherein the cyclic molecule has one or more substituents.
  9.  置換基が、2-ヒドロキシエトキシエチル(HEE)基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基、ヒドロキシエトキシエチル基、N,N-ジメチルアミノエチル基、カルボキシル基、メチル基、スルホ基、一級アミノ基、ポリエチレングリコール、コラーゲン、トランスフェリン、RGDペプチド、オリゴアルギニン、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、(メタ)アクリロイルチオ基、ビニル基、アリール基、スチリル基、および(メタ)アクリルアミド基から成る群より選択される、請求項8記載のポリロタキサン化合物。 Substituents are 2-hydroxyethoxyethyl (HEE), hydroxyethyl, hydroxypropyl, hydroxybutyl, hydroxyethoxyethyl, N, N-dimethylaminoethyl, carboxyl, methyl, sulfo, primary Amino group, polyethylene glycol, collagen, transferrin, RGD peptide, oligoarginine, (meth) acryloyl group, (meth) acryloyloxy group, (meth) acryloylamino group, (meth) acryloylthio group, vinyl group, aryl group, styryl The polyrotaxane compound according to claim 8, which is selected from the group consisting of a group and a (meth) acrylamide group.
  10.  線状高分子部分が、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールとポリプロピレングリコールとの共重合体、ポリエチレンイミン、ポリアミノ酸、およびポリメチルビニルエーテルから成る群より選ばれる、請求項1~9のいずれか一項記載のポリロタキサン化合物。 The linear polymer portion is selected from the group consisting of polyethylene glycol, polypropylene glycol, a copolymer of polyethylene glycol and polypropylene glycol, polyethyleneimine, polyamino acid, and polymethyl vinyl ether. The polyrotaxane compound according to Item.
  11.  末端基が、2,4-ジニトロフェニル基、3,5-ジニトロフェニル基、シクロデキストリン、アダマンタン基、O-トリフェニルメチル(O-Trt)基、S-トリフェニルメチル(S-Trt)基、N-トリフェニルメチル(N-Trt)基、N-トリチルグリシン、ベンジルオキシカルボニル(Z)基、9-フレオレニルメチルオキシカルボニル(Fmoc)基、ベンジルエステル(OBz)基、第三ブチルカルボニル(Boc)基、アミノ酸第三ブチルエステル(OBu基)、トリチル基、フルオレセイン、ピレン、置換ベンゼン、置換されていてもよい多核芳香族、MPC(2-メタクリロイルオキシエチルホスホリルコリン)、BMA(n-ブチルメタクリレート)、MPCとBMAとの組み合わせ、およびステロイドから成る群より選択される、請求項1~10のいずれか一項記載のポリロタキサン化合物。 Terminal groups are 2,4-dinitrophenyl group, 3,5-dinitrophenyl group, cyclodextrin, adamantane group, O-triphenylmethyl (O-Trt) group, S-triphenylmethyl (S-Trt) group, N-triphenylmethyl (N-Trt) group, N-tritylglycine, benzyloxycarbonyl (Z) group, 9-fluorenylmethyloxycarbonyl (Fmoc) group, benzyl ester (OBz) group, tert-butylcarbonyl ( Boc) group, amino acid tertiary butyl ester (OBu group), trityl group, fluorescein, pyrene, substituted benzene, optionally substituted polynuclear aromatic, MPC (2-methacryloyloxyethyl phosphorylcholine), BMA (n-butyl methacrylate) ), A combination of MPC and BMA, and a steroid It is selected from the group, the polyrotaxane compound of any one of claims 1 to 10.
  12.  下記構造式を有する、α-シクロデキストリンと直鎖状分子を含むポリロタキサン化合物であって、
    Figure JPOXMLDOC01-appb-C000001
     
     ここで、nはポリエチレングリコールの繰返し単位の数を示す整数であり、
     直鎖状分子がポリエチレングリコールであり、α-シクロデキストリンの数が20~40であり、末端基がアダマンタン基から成り、分解性基が2-ニトロベンジル基であるポリロタキサン化合物。
    A polyrotaxane compound comprising α-cyclodextrin and a linear molecule having the following structural formula,
    Figure JPOXMLDOC01-appb-C000001

    Here, n is an integer indicating the number of repeating units of polyethylene glycol,
    A polyrotaxane compound in which the linear molecule is polyethylene glycol, the number of α-cyclodextrins is 20 to 40, the terminal group is an adamantane group, and the decomposable group is a 2-nitrobenzyl group.
  13.  下記構造式を有する、メタクリロイル基とブチルイソシアナート基が結合したα-シクロデキストリンと直鎖状分子を含むポリロタキサン化合物であって、
    Figure JPOXMLDOC01-appb-C000002
     
     ここで、nはポリエチレングリコールの繰返し単位の数を示す整数であり、
     α-シクロデキストリン1分子あたり1~10個のメタクリロイル基と5~20個のブチルイソシアナート基を有し、直鎖状分子がポリエチレングリコールであり、α-シクロデキストリンの数が20~40であり、末端基がアダマンタン基から成り、分解性基が2-ニトロベンジル基であるポリロタキサン化合物。
    A polyrotaxane compound comprising α-cyclodextrin having a methacryloyl group and a butyl isocyanate group bonded to each other and a linear molecule having the following structural formula:
    Figure JPOXMLDOC01-appb-C000002

    Here, n is an integer indicating the number of repeating units of polyethylene glycol,
    It has 1 to 10 methacryloyl groups and 5 to 20 butyl isocyanate groups per molecule of α-cyclodextrin, the linear molecule is polyethylene glycol, and the number of α-cyclodextrins is 20 to 40 , A polyrotaxane compound wherein the terminal group is an adamantane group and the decomposable group is a 2-nitrobenzyl group.
  14.  複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、接着用組成物。 A polyrotaxane comprising a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymer comprises at least two linear polymer moieties linked via at least one degradable moiety An adhesive composition containing a compound.
  15.  複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、歯科材料組成物。 A polyrotaxane comprising a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymer comprises at least two linear polymer moieties linked via at least one degradable moiety A dental material composition comprising a compound.
  16.  複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、表面コーティング剤。 A polyrotaxane comprising a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymer comprises at least two linear polymer moieties linked via at least one degradable moiety A surface coating agent containing a compound.
  17.  複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、癒着防止剤。 A polyrotaxane comprising a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymer comprises at least two linear polymer moieties linked via at least one degradable moiety An anti-adhesion agent comprising a compound.
  18.  複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、体内埋植剤。 A polyrotaxane comprising a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymer comprises at least two linear polymer moieties linked via at least one degradable moiety An implant that contains a compound.
  19.  複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、組織再生器材。 A polyrotaxane comprising a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymer comprises at least two linear polymer moieties linked via at least one degradable moiety A tissue regeneration device containing a compound.
  20.  複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物を含有する、疾患の治療または予防に用いるための医薬組成物。 A polyrotaxane comprising a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymer comprises at least two linear polymer moieties linked via at least one degradable moiety A pharmaceutical composition comprising a compound for use in the treatment or prevention of a disease.
  21.  請求項12または請求項13に記載のポリロタキサン化合物を含有する、接着用組成物、歯科材料組成物、表面コーティング剤、癒着防止剤、体内埋植剤、組織再生器材、または疾患の治療もしくは予防に用いるための医薬組成物。 An adhesive composition, a dental material composition, a surface coating agent, an anti-adhesion agent, an implant, a tissue regeneration device, or a treatment or prevention of a disease comprising the polyrotaxane compound according to claim 12 or 13. A pharmaceutical composition for use.
  22.  複数の環状分子と、末端基を有する1つの線状高分子とを含み、該線状高分子が少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む、ポリロタキサン化合物の製造方法であって、a)線状高分子部分の両末端に反応性基を付加する工程、b)両末端に反応性基を付加した線状高分子部分を分解性部分を介して連結させて、少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む線状高分子を得る工程、c)線状高分子を環状分子と反応させて、擬ポリロタキサンを得る工程、およびd)擬ポリロタキサンの両末端に末端基を付加する工程を含む、製造方法。 A polyrotaxane comprising a plurality of cyclic molecules and one linear polymer having a terminal group, wherein the linear polymer comprises at least two linear polymer moieties linked via at least one degradable moiety A method for producing a compound comprising: a) a step of adding a reactive group to both ends of a linear polymer portion; b) a linear polymer portion having a reactive group added to both ends via a degradable portion. Linking to obtain a linear polymer comprising at least two linear polymer moieties linked via at least one degradable moiety; c) reacting the linear polymer with a cyclic molecule to produce a pseudopolyrotaxane And d) adding end groups to both ends of the pseudopolyrotaxane.
  23.  線状高分子部分の両末端に付加する反応性基が、アミノ基、カルボキシル基、アルデヒド基、スルファニル基、アジド基、アルキニル基、トシル基、および活性エステル基から成る群より選択される、請求項22記載の製造方法。  The reactive group added to both ends of the linear polymer portion is selected from the group consisting of an amino group, a carboxyl group, an aldehyde group, a sulfanyl group, an azide group, an alkynyl group, a tosyl group, and an active ester group. Item 23. The production method according to Item 22.
  24.  請求項12または請求項13に記載のポリロタキサン化合物の製造方法であって、a)線状高分子部分の両末端に反応性基を付加する工程、b)両末端に反応性基を付加した線状高分子部分を分解性部分を介して連結させて、少なくとも1つの分解性部分を介して連結された少なくとも2つの線状高分子部分を含む線状高分子を得る工程、c)線状高分子を環状分子と反応させて、擬ポリロタキサンを得る工程、およびd)擬ポリロタキサンの両末端に末端基を付加する工程を含む、製造方法。 14. The method for producing a polyrotaxane compound according to claim 12 or 13, wherein a) a step of adding reactive groups to both ends of the linear polymer portion, b) a line having reactive groups added to both ends. Connecting linear polymer parts via a degradable part to obtain a linear polymer comprising at least two linear polymer parts connected via at least one degradable part, c) linear height A process comprising: reacting a molecule with a cyclic molecule to obtain a pseudopolyrotaxane; and d) adding end groups to both ends of the pseudopolyrotaxane.
  25.  線状高分子部分の両末端に付加する反応性基が、アミノ基、カルボキシル基、アルデヒド基、スルファニル基、アジド基、アルキニル基、トシル基、および活性エステル基から成る群より選択される、請求項24記載の製造方法。  The reactive group added to both ends of the linear polymer portion is selected from the group consisting of an amino group, a carboxyl group, an aldehyde group, a sulfanyl group, an azide group, an alkynyl group, a tosyl group, and an active ester group. Item 25. The production method according to Item 24.
PCT/JP2017/017133 2016-05-02 2017-05-01 Internally degradable polyrotaxane and synthesis method therefor WO2017191827A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018515730A JPWO2017191827A1 (en) 2016-05-02 2017-05-01 Internally decomposed polyrotaxane and method for synthesizing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-092550 2016-05-02
JP2016092550 2016-05-02

Publications (1)

Publication Number Publication Date
WO2017191827A1 true WO2017191827A1 (en) 2017-11-09

Family

ID=60203677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017133 WO2017191827A1 (en) 2016-05-02 2017-05-01 Internally degradable polyrotaxane and synthesis method therefor

Country Status (2)

Country Link
JP (1) JPWO2017191827A1 (en)
WO (1) WO2017191827A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176887A1 (en) * 2021-02-18 2022-08-25 国立大学法人九州大学 Easily dismantlable bonding material, bonded body, and dismantling method
WO2023100862A1 (en) * 2021-11-30 2023-06-08 日東電工株式会社 Pressure-sensitive adhesive and/or adhesive
WO2023100863A1 (en) * 2021-11-30 2023-06-08 日東電工株式会社 Pressure-sensitive adhesive layer and/or adhesive layer
WO2023100864A1 (en) * 2021-11-30 2023-06-08 日東電工株式会社 Adhesive layer and/or bonding agent layer
CN116239708A (en) * 2023-03-20 2023-06-09 山东滨州智源生物科技有限公司 End-capped polyrotaxane and preparation method and application thereof
EP4253535A4 (en) * 2020-11-26 2024-05-15 Denka Company Limited Polyrotaxane having hydroxy group or sulfo group
EP4253446A4 (en) * 2020-11-26 2024-05-15 Denka Company Limited Polyrotaxane having amino group

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089175A (en) * 2014-11-04 2016-05-23 国立大学法人 東京医科歯科大学 Adhesive composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089175A (en) * 2014-11-04 2016-05-23 国立大学法人 東京医科歯科大学 Adhesive composition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LUO, PING ET AL.: "Incorporation of camptothecin into reduction-degradable supramolecular micelles for enhancing its stability", COLLOIDS AND SURFACES B: BIOINTERFACES, vol. 109, 8 April 2013 (2013-04-08), pages 167 - 175, XP028553667, ISSN: 0927-7765, DOI: doi:10.1016/j.colsurfb.2013.03.048 *
SEO, JI-HUN ET AL.: "UV-Cleavable Polyrotaxane Cross-Linker for Modulating Mechanical Strength of Photocurable Resin Plastics", ACS MACRO LETTERS, vol. 4, no. 10, 25 September 2015 (2015-09-25), pages 1154 - 1157, XP055601098, ISSN: 2161-1653, DOI: 10.1021/acsmacrolett.5b00619 *
TARDY, B. L. ET AL.: "Self-Assembled Stimuli-Responsive Polyrotaxane Core-Shell Particles", BIOMACROMOLECULES, vol. 15, no. 1, 13 December 2013 (2013-12-13), pages 53 - 59, XP055601085, ISSN: 1525-7797, DOI: 10.1021/bm401244a *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4253535A4 (en) * 2020-11-26 2024-05-15 Denka Company Limited Polyrotaxane having hydroxy group or sulfo group
EP4253446A4 (en) * 2020-11-26 2024-05-15 Denka Company Limited Polyrotaxane having amino group
WO2022176887A1 (en) * 2021-02-18 2022-08-25 国立大学法人九州大学 Easily dismantlable bonding material, bonded body, and dismantling method
JP2022126154A (en) * 2021-02-18 2022-08-30 国立大学法人九州大学 Easily dismantling adhesive material, joined body, and dismantling method
JP7248328B2 (en) 2021-02-18 2023-03-29 国立大学法人九州大学 Adhesive material that can be easily dismantled, joined body and dismantling method
WO2023100862A1 (en) * 2021-11-30 2023-06-08 日東電工株式会社 Pressure-sensitive adhesive and/or adhesive
WO2023100863A1 (en) * 2021-11-30 2023-06-08 日東電工株式会社 Pressure-sensitive adhesive layer and/or adhesive layer
WO2023100864A1 (en) * 2021-11-30 2023-06-08 日東電工株式会社 Adhesive layer and/or bonding agent layer
CN116239708A (en) * 2023-03-20 2023-06-09 山东滨州智源生物科技有限公司 End-capped polyrotaxane and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2017191827A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
WO2017191827A1 (en) Internally degradable polyrotaxane and synthesis method therefor
Nezhad-Mokhtari et al. Chemical gelling of hydrogels-based biological macromolecules for tissue engineering: Photo-and enzymatic-crosslinking methods
Pertici et al. Degradable and injectable hydrogel for drug delivery in soft tissues
Wang et al. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering
Zhang et al. Hydrogels based on pH-responsive reversible carbon–nitrogen double-bond linkages for biomedical applications
US8178663B2 (en) Ester derivatives of hyaluronic acid for the preparation of hydrogel materials by photocuring
US8877243B2 (en) Cross-linked polysaccharide composition
Villiou et al. Photodegradable hydrogels for cell encapsulation and tissue adhesion
US9546235B2 (en) Peptide-hydrogel composite
Beninatto et al. Photocrosslinked hydrogels from coumarin derivatives of hyaluronic acid for tissue engineering applications
KR101966555B1 (en) Biocompatible hydrogel and method for preparing the same
Li et al. Click chemistry-based biopolymeric hydrogels for regenerative medicine
JP2009537549A (en) Novel hydrophilic polymers as medical lubricants and gels
US20110097406A1 (en) Methods and compositions for retaining ecm materials in hydrogels
Jeong et al. Supramolecular injectable hyaluronate hydrogels for cartilage tissue regeneration
US10172938B2 (en) Multimode degradable hydrogels for controlled release of cargo substances
Tang et al. Rapidly assembling pentapeptides for injectable delivery (RAPID) hydrogels as cytoprotective cell carriers
US20230021037A1 (en) Hydrogel of mercapto-modified macromolecular compound, and preparation method therefor and use thereof
Liu et al. Injectable smart stimuli-responsive hydrogels: pioneering advancements in biomedical applications
US20220370679A1 (en) Injectable and moldable tissue-mimetic elastomers and methods related thereto
KR101003687B1 (en) Hyaluronic compound, its synthesis and use
WO2017057824A1 (en) Polyethylene glycol hydrogel injection
Teotia et al. Light-mediated thermoset polymers
EP4400125A1 (en) Sol-gel transition of 6-arm peg hydrogel over time
US20230133656A1 (en) Hydrogel compositions and uses thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018515730

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792759

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792759

Country of ref document: EP

Kind code of ref document: A1