US9546235B2 - Peptide-hydrogel composite - Google Patents
Peptide-hydrogel composite Download PDFInfo
- Publication number
- US9546235B2 US9546235B2 US14/366,663 US201214366663A US9546235B2 US 9546235 B2 US9546235 B2 US 9546235B2 US 201214366663 A US201214366663 A US 201214366663A US 9546235 B2 US9546235 B2 US 9546235B2
- Authority
- US
- United States
- Prior art keywords
- polymer
- hydrogel
- pnpho
- monomer
- hydrogels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000000017 hydrogel Substances 0.000 title claims abstract description 270
- 239000002131 composite material Substances 0.000 title description 6
- 229920000642 polymer Polymers 0.000 claims abstract description 187
- 239000000178 monomer Substances 0.000 claims abstract description 130
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 claims abstract description 71
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 claims abstract description 71
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 55
- 210000001519 tissue Anatomy 0.000 claims abstract description 46
- 230000008439 repair process Effects 0.000 claims abstract description 33
- 210000004027 cell Anatomy 0.000 claims description 103
- 239000000203 mixture Substances 0.000 claims description 84
- 102000008186 Collagen Human genes 0.000 claims description 41
- 108010035532 Collagen Proteins 0.000 claims description 41
- 229920001436 collagen Polymers 0.000 claims description 41
- 108090000623 proteins and genes Proteins 0.000 claims description 41
- 102000004169 proteins and genes Human genes 0.000 claims description 40
- -1 polyethylene Polymers 0.000 claims description 38
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical group CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims description 22
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 claims description 21
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 20
- YXMISKNUHHOXFT-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) prop-2-enoate Chemical compound C=CC(=O)ON1C(=O)CCC1=O YXMISKNUHHOXFT-UHFFFAOYSA-N 0.000 claims description 17
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 15
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 claims description 14
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims description 9
- 229920001223 polyethylene glycol Polymers 0.000 claims description 7
- 229920005604 random copolymer Polymers 0.000 claims description 7
- 239000002202 Polyethylene glycol Substances 0.000 claims description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 5
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 5
- 229920000728 polyester Chemical group 0.000 claims description 5
- 229920000570 polyether Polymers 0.000 claims description 5
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical group CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- 229920006210 poly(glycolide-co-caprolactone) Polymers 0.000 claims description 3
- 229920001610 polycaprolactone Polymers 0.000 claims description 3
- GVJXGCIPWAVXJP-UHFFFAOYSA-N 2,5-dioxo-1-oxoniopyrrolidine-3-sulfonate Chemical group ON1C(=O)CC(S(O)(=O)=O)C1=O GVJXGCIPWAVXJP-UHFFFAOYSA-N 0.000 claims description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical group ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 210000000845 cartilage Anatomy 0.000 abstract description 29
- 210000001188 articular cartilage Anatomy 0.000 abstract description 21
- 238000004132 cross linking Methods 0.000 abstract description 20
- 108050001049 Extracellular proteins Proteins 0.000 abstract 2
- 229920001577 copolymer Polymers 0.000 description 118
- 108010014258 Elastin Proteins 0.000 description 70
- 102000016942 Elastin Human genes 0.000 description 67
- 229920002549 elastin Polymers 0.000 description 67
- 230000021615 conjugation Effects 0.000 description 52
- 239000000243 solution Substances 0.000 description 46
- 238000000034 method Methods 0.000 description 42
- 230000015572 biosynthetic process Effects 0.000 description 37
- 235000018102 proteins Nutrition 0.000 description 37
- 230000000694 effects Effects 0.000 description 26
- 230000001965 increasing effect Effects 0.000 description 24
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 20
- 125000000524 functional group Chemical group 0.000 description 20
- 230000002209 hydrophobic effect Effects 0.000 description 18
- 239000000126 substance Substances 0.000 description 16
- 230000014759 maintenance of location Effects 0.000 description 15
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 14
- 230000006399 behavior Effects 0.000 description 14
- 239000003814 drug Substances 0.000 description 14
- 238000001879 gelation Methods 0.000 description 14
- 239000000499 gel Substances 0.000 description 13
- 230000036760 body temperature Effects 0.000 description 12
- 230000015556 catabolic process Effects 0.000 description 12
- 238000006731 degradation reaction Methods 0.000 description 12
- 238000001727 in vivo Methods 0.000 description 12
- 239000004626 polylactic acid Substances 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 210000001612 chondrocyte Anatomy 0.000 description 11
- 239000012071 phase Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 10
- 210000002744 extracellular matrix Anatomy 0.000 description 10
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 230000007704 transition Effects 0.000 description 9
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 229920001222 biopolymer Polymers 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 8
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000546 pharmaceutical excipient Substances 0.000 description 7
- 238000004483 ATR-FTIR spectroscopy Methods 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000003833 cell viability Effects 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 210000002950 fibroblast Anatomy 0.000 description 6
- 238000011534 incubation Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000017423 tissue regeneration Effects 0.000 description 6
- 239000004480 active ingredient Substances 0.000 description 5
- 239000013543 active substance Substances 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 5
- 229920001059 synthetic polymer Polymers 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 230000004580 weight loss Effects 0.000 description 5
- VFXXTYGQYWRHJP-UHFFFAOYSA-N 4,4'-azobis(4-cyanopentanoic acid) Chemical compound OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N VFXXTYGQYWRHJP-UHFFFAOYSA-N 0.000 description 4
- 239000004971 Cross linker Substances 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000371 Esterases Proteins 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 235000001014 amino acid Nutrition 0.000 description 4
- 239000012736 aqueous medium Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 239000006143 cell culture medium Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 210000001671 embryonic stem cell Anatomy 0.000 description 4
- 210000002919 epithelial cell Anatomy 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000000269 nucleophilic effect Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 230000004962 physiological condition Effects 0.000 description 4
- 229920003213 poly(N-isopropyl acrylamide) Polymers 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 229960002317 succinimide Drugs 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 230000008467 tissue growth Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000009010 Bradford assay Methods 0.000 description 3
- 0 C.C.C.C.C.C.C*BCC Chemical compound C.C.C.C.C.C.C*BCC 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 102100033167 Elastin Human genes 0.000 description 3
- 101100490446 Penicillium chrysogenum PCBAB gene Proteins 0.000 description 3
- 102000016611 Proteoglycans Human genes 0.000 description 3
- 108010067787 Proteoglycans Proteins 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000012620 biological material Substances 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 230000003028 elevating effect Effects 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 239000003102 growth factor Substances 0.000 description 3
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000009878 intermolecular interaction Effects 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 150000003141 primary amines Chemical class 0.000 description 3
- 238000010526 radical polymerization reaction Methods 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 238000002054 transplantation Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 description 2
- OBSKBLVBVOHLEI-UHFFFAOYSA-N C.C.C.C.C.C.C.C.CCC(C)(CC(C)(CC(CC(C)C(=O)NC(C)C)C(=O)ON1C(=O)CCC1=O)C(=O)OCCOC(=O)C(C)OC)C(=O)OCCOC Chemical compound C.C.C.C.C.C.C.C.CCC(C)(CC(C)(CC(CC(C)C(=O)NC(C)C)C(=O)ON1C(=O)CCC1=O)C(=O)OCCOC(=O)C(C)OC)C(=O)OCCOC OBSKBLVBVOHLEI-UHFFFAOYSA-N 0.000 description 2
- DQLYLESATXKPDV-UHFFFAOYSA-N C.C.C.C.C.C.CCC(C)(CC(C)(CC(C)C(=O)ON1C(=O)CCC1=O)C(=O)OCCOC(=O)C(C)OC)C(=O)OCCOC Chemical compound C.C.C.C.C.C.CCC(C)(CC(C)(CC(C)C(=O)ON1C(=O)CCC1=O)C(=O)OCCOC(=O)C(C)OC)C(=O)OCCOC DQLYLESATXKPDV-UHFFFAOYSA-N 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 102000009123 Fibrin Human genes 0.000 description 2
- 108010073385 Fibrin Proteins 0.000 description 2
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 2
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 2
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical group C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 2
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 2
- 241001082241 Lythrum hyssopifolia Species 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- 210000002808 connective tissue Anatomy 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- RXRHXOLQBOFMDI-UHFFFAOYSA-N methoxymethane;2-methylprop-2-enoic acid Chemical compound COC.CC(=C)C(O)=O RXRHXOLQBOFMDI-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- INAAIJLSXJJHOZ-UHFFFAOYSA-N pibenzimol Chemical compound C1CN(C)CCN1C1=CC=C(N=C(N2)C=3C=C4NC(=NC4=CC=3)C=3C=CC(O)=CC=3)C2=C1 INAAIJLSXJJHOZ-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001308 poly(aminoacid) Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000012460 protein solution Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 210000001626 skin fibroblast Anatomy 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- VPVXHAANQNHFSF-UHFFFAOYSA-N 1,4-dioxan-2-one Chemical compound O=C1COCCO1 VPVXHAANQNHFSF-UHFFFAOYSA-N 0.000 description 1
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 1
- BGWLYQZDNFIFRX-UHFFFAOYSA-N 5-[3-[2-[3-(3,8-diamino-6-phenylphenanthridin-5-ium-5-yl)propylamino]ethylamino]propyl]-6-phenylphenanthridin-5-ium-3,8-diamine;dichloride Chemical compound [Cl-].[Cl-].C=1C(N)=CC=C(C2=CC=C(N)C=C2[N+]=2CCCNCCNCCC[N+]=3C4=CC(N)=CC=C4C4=CC=C(N)C=C4C=3C=3C=CC=CC=3)C=1C=2C1=CC=CC=C1 BGWLYQZDNFIFRX-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 102000016284 Aggrecans Human genes 0.000 description 1
- 108010067219 Aggrecans Proteins 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- HVRXKMDQLZWRLK-UHFFFAOYSA-N C=C(C)C(=O)OCCO.C=C(C)C(=O)OCCOC(=O)C(C)OC.CC1OC(=O)C(C)OC1=O Chemical compound C=C(C)C(=O)OCCO.C=C(C)C(=O)OCCOC(=O)C(C)OC.CC1OC(=O)C(C)OC1=O HVRXKMDQLZWRLK-UHFFFAOYSA-N 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002567 Chondroitin Polymers 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 102000012422 Collagen Type I Human genes 0.000 description 1
- 108010022452 Collagen Type I Proteins 0.000 description 1
- 102000000503 Collagen Type II Human genes 0.000 description 1
- 108010041390 Collagen Type II Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000004150 EU approved colour Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 239000007760 Iscove's Modified Dulbecco's Medium Substances 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 102000007547 Laminin Human genes 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- NPPQSCRMBWNHMW-UHFFFAOYSA-N Meprobamate Chemical compound NC(=O)OCC(C)(CCC)COC(N)=O NPPQSCRMBWNHMW-UHFFFAOYSA-N 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 101100058191 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) bcp-1 gene Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 208000013201 Stress fracture Diseases 0.000 description 1
- 229920006328 Styrofoam Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 210000004504 adult stem cell Anatomy 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000003275 alpha amino acid group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 210000001053 ameloblast Anatomy 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 210000001130 astrocyte Anatomy 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- BQRGNLJZBFXNCZ-UHFFFAOYSA-N calcein am Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(CN(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O)=C(OC(C)=O)C=C1OC1=C2C=C(CN(CC(=O)OCOC(C)=O)CC(=O)OCOC(=O)C)C(OC(C)=O)=C1 BQRGNLJZBFXNCZ-UHFFFAOYSA-N 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 230000022159 cartilage development Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- DLGJWSVWTWEWBJ-HGGSSLSASA-N chondroitin Chemical compound CC(O)=N[C@@H]1[C@H](O)O[C@H](CO)[C@H](O)[C@@H]1OC1[C@H](O)[C@H](O)C=C(C(O)=O)O1 DLGJWSVWTWEWBJ-HGGSSLSASA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000000512 collagen gel Substances 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000011557 critical solution Substances 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 239000003979 granulating agent Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 210000004754 hybrid cell Anatomy 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000010874 maintenance of protein location Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000002020 noncytotoxic effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000007344 nucleophilic reaction Methods 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 235000021232 nutrient availability Nutrition 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 229940006093 opthalmologic coloring agent diagnostic Drugs 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 210000002997 osteoclast Anatomy 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 125000005702 oxyalkylene group Chemical group 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229940065514 poly(lactide) Drugs 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229940001470 psychoactive drug Drugs 0.000 description 1
- 239000004089 psychotropic agent Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 239000004017 serum-free culture medium Substances 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 229940094938 stannous 2-ethylhexanoate Drugs 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical group [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 150000003573 thiols Chemical group 0.000 description 1
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- YFHICDDUDORKJB-UHFFFAOYSA-N trimethylene carbonate Chemical compound O=C1OCCCO1 YFHICDDUDORKJB-UHFFFAOYSA-N 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003501 vero cell Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/52—Amides or imides
- C08F220/54—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
-
- A61K47/48223—
-
- A61K47/48784—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/605—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the macromolecule containing phosphorus in the main chain, e.g. poly-phosphazene
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6903—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being semi-solid, e.g. an ointment, a gel, a hydrogel or a solidifying gel
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/34—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
- C08F220/36—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
- C08F220/282—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing two or more oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
- C08F220/283—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
-
- C08F2220/283—
-
- C08F2220/286—
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/10—Copolymer characterised by the proportions of the comonomers expressed as molar percentages
Definitions
- the invention relates to polymers, especially polymers useful as hydrogels, and to the use of hydrogels for repair or restoration of tissue, in particular, for repair or restoration of cartilage, especially articular cartilage.
- Articular cartilage is a highly specialized tissue that reduces joint friction at the extremities of long bones. It is predominantly avascular, aneural and alymphatic and it consists essentially of chondrocytes, some progenitor cells and an extracellular matrix (ECM).
- ECM extracellular matrix
- the ECM is composed of a network of collagens, in particular type II collagen, which gives the tissue its shape and strength, and proteoglycans, which give resistance to mechanical stress. Elastin fibres are also found, predominatly in the superficial zone.
- ACT autologous chondrocyte transplantation
- microfracture microfracture
- mosaicplasty mosaicplasty
- osteochondral allograft transplantation common treatments for cartilage repair.
- ACT has been used for almost three decades to treat full-thickness chondral defects worldwide.
- inherent limitations of ACT include the low efficacy of cells due primarily to poor numbers obtained through biopsy and structural dissimilarity between the repaired tissue and native cartilage.
- Other drawbacks of these treatments include donor site morbidity, complicated surgical procedures, risks of infection, and graft rejection. 3
- cartilage Due to its limited ability for self repair, cartilage is an ideal candidate for tissue engineering. Since collagen itself is a natural three-dimensional scaffold for cells in vivo, collagen isolated from animals has been used for a number of tissue engineering scaffolds in vitro, both in gel or solid forms. For example, type I collagen gel, when used as a three-dimensional scaffold for cell encapsulation, enhances the stability and differentiation of encapsulated cells.
- collagen One problem with collagen is that it alone cannot provide the compressive resilience required in articular cartilage that is normally provided by proteoglycan, especially aggrecan and other water binding connective tissue molecules. Further, when crosslinked, collagen may be difficult to inject at room temperature.
- hydrogels offer better control of the matrix architecture and chemical composition.
- a number of limitations apply to the use of hydrogels that consist of synthetic molecules.
- Second, hydrogels are formed from polymers that must initially be crosslinked before the hydrogel can form. Crosslinking is an additional manufacture step that increases likelihood of contamination of the hydrogel, particularly with toxic components, or otherwise decreases the likelihood of biocompatibility with tissue.
- synthetic hydrogels have low biological activities and therefore are limited in the extent to which they can provide a substrate for interaction with biological elements.
- Lee et al. 4 describes a composite in which UV-crosslinked polymer is chemically linked to collagen modified protein (CMP).
- CMP collagen modified protein
- the composite forms a substrate on which cells may grow and lay down collagen.
- the collagen then binds to the CMP through non-covalent interactions, thereby forming a biosynthetic hydrogel composite in vivo.
- the problem with this approach is that it relies on cells existing in cartilage tissue to provide collagen. This either requires endogenous cells to infiltrate through articular cartilage, which is unlikely given that cartilage is essentially acellular, or the transplantation of chondrocytes or related cells. Further, the approach requires prior crosslinking of polymers to form the hydrogel.
- hydrogels that bind to growth factors, drugs and the like, and that are a useful substrate for growth of cells thereon.
- compositions for repair of articular cartilage that are injectable at room temperature and that form a hydrogel at body temperature.
- the invention seeks to address, or at least to provide an improvement to, one or more of the above mentioned limitations, needs or problems and in one embodiment provides a polymer for forming a hydrogel.
- the polymer includes:
- the polymer further includes:
- composition for forming a hydrogel includes:
- the polymer further includes:
- This third monomer enables the polymer to contribute additional mechanical properties (such as strength and resilience) to the hydrogel.
- the polymer further includes:
- the polymer further includes:
- this enables the polymer to contribute additional mechanical properties (such as strength and resilience) to the hydrogel.
- the polymer further includes:
- FIG. 1 Different methods for conjugation of protein and PNPHO for formation of protein-PNPHO hydrogels.
- FIG. 2 1 H NMR spectrum of PNPHO.
- FIG. 3 Solubility of copolymers synthesized at different mole fraction of HEMA-PLA in aqueous solution at 4° C. for lactate number of 3 (a) and 6 (b), (*, **, and *** represent p ⁇ 0.05, ⁇ 0.01, and ⁇ 0.001, respectively).
- FIG. 4 Bioconjugation of elastin and PNPHO copolymer in PBS (a), biopolymer hydrogel formation at 37° C. (b), FTIR spectra of PNPHO copolymer and biopolymer hydrogel (c) and stability test of PNPHO and elastin-PNPHO hydrogels in physiological environment (d).
- FIG. 5 ATR-FTIR spectra of polymer (red) and hydrogel (black),
- FIG. 6 Macroscopic image of the hydrogel (polymer and collagen) formed at 37° C.
- FIG. 7 Effect of temperature on elastic modulus of different composition of copolymer (a) elastic modulus of different copolymer composition over time at 37° C. (e). Gelling temperature ((b) and (c)) and gelling time ((e) and (f)) of different compositions of copolymer synthesized with lactate numbers of 3 ((b) and (e)) and 6 in HEMA-PLA ((c) and (f)).
- FIG. 8 Elastin conjugation efficiency to different copolymers. Elastin concentration was measured after 24 hr incubation in PBS at 37° C. HEMA-PLA with lactate number of 3 (a) and 6 (b).
- FIG. 9 Gelling temperature of biopolymer precursors formed with copolymer before and after degradation (a) and weight loss of different biopolymer hydrogels over time in PBS at 37° C. (b).
- FIG. 10 Structural retention of protein-PNPHO hydrogels with different degrees of conjugation (a), and the effect of conjugation level on volume variances of hydrogels (b).
- FIG. 11 Light microscopy image of fibroblast growing on tissue engineering flask after 24 hours (a) and 48 hours (b) at the vicinity of elastin-PNPHO 8(6)5 hydrogels.
- FIG. 12 Hoechst 33258 nucleolus staining of fibroblasts, encapsulated within elastin-PNPHO hydrogel after 24 hours (a) and 72 hours ((b)-(d)).
- FIG. 13 Cryosection showing primary ovine chondrocytes (some dividing) in lacunae in an elastin hydrogel (a), and adjacent hematoxylin-stained section confirming viable chondrocytes (b).
- Scale bar is 100 ⁇ m.
- the inventors have designed a new polymer that enables formation of a hydrogel useful for repair of articular cartilage.
- Key considerations in the design of the polymer have been to ensure that (i) all components of the hydrogel can be delivered from external sources and without reliance on cell or tissue machinery; (ii) the components, in particular synthetic polymer and extra-cellular matrix protein (ECMP) are bound so that they do not dissociate in vivo; (iii) chemical and UV crosslinking is not required; (iv) the hydrogel is injectable at room temperature; (v) the hydrogel is a compatible substrate for cells and tissue.
- ECMP extra-cellular matrix protein
- the inventors have recognised that an as yet unexploited potential of protein-based polymers such as collagen as a crosslinker of synthetic polymers could be realised by incorporating a monomer having a functional group for binding to collagen or other ECMPs into a synthetic polymer, thereby enabling the ECMP to crosslink the polymer for formation of hydrogel scaffolds that can be used for tissue engineering, and in particular in cartilage repair and regeneration.
- the hydrogels of the present invention are formed by simply combining an ECMP (e.g. collagen) with a hydrophilic polymer that is capable of binding to the ECMP. Therefore, the hydrogels of the present invention can be formed without the use of any additional agents (e.g.
- the hydrogel of the present invention also has the added advantage of being easily administrable (e.g. via injection) directly to the desired site, due to its phase-transition properties.
- the advantageous properties of the hydrogels of the present invention can be attributed to the combination of ECMPs and the particular components of the polymers of the present invention.
- the polymers of the present invention possess the required water-binding capacity and crosslinking ability (which can also be referred to as conjugation ability), such that they are able to bind to ECMPs and form hydrogels containing the ECMPs, in addition to having, in some embodiments, particular components that contribute to the strength, shape, resilience and phase-transfer properties of the hydrogel, once formed.
- the ECMPs in addition to providing an environment that mimics, to some extent, the natural environment of the tissue to be replaced and/or repaired, also provide the requisite strength and shape to the hydrogels of the present invention. This is particularly important in applications such as cartilage repair and replacement, where hydrogels need to withstand the stresses commonly placed on cartilage-bearing regions, such as joints.
- the present inventors have developed polymers having the desired characteristics for use in hydrogels intended for tissue repair, and in particular those hydrogels intended for repair and/or replacement of cartilage, by combining components that either inherently possess some of these characteristics, or that can provide such characteristics to the hydrogel once it is formed.
- the polymers of the present invention include, within their structure, particular units (e.g. monomers, macromonomers, and the like) that have been chosen based on their ability to convey the desired water-binding, crosslinking, strength, resilience and phase-transfer properties to the polymers of the present invention, and subsequently to the hydrogels formed from such polymers.
- the properties of these polymers (and therefore the hydrogels formed from these polymers) can be tuned, in the sense that different monomers, as well as different proportions of these monomers, can be selectively incorporated into the polymers
- hydrogels of the present invention are discussed throughout the present specification, and in particular, are exhibited in the Examples, which show that hydrogels of the present invention can be made in a simple manner using a simple combination of the polymers of the present invention with ECMPs, and that the hydrogels thus formed possess the required properties of strength, resilience and shape, that enables them to be used in tissue engineering applications.
- polymer refers to a large molecule (macromolecule) composed of repeating structural units (monomers). These subunits are typically connected by covalent chemical bonds.
- Polymers can be linear or branched polymers.
- the polymers of the present invention are copolymers comprising three or more different monomers.
- the polymer of the present invention includes a first water-binding monomer, a second monomer that is capable of imparting mechanical properties to a hydrogel, and a third monomer that has a functional group for binding to an ECMP.
- monomer refers to a structural unit that can be combined to form a polymer, but that itself may also be a polymer, or a derivative of a monomer or polymer. Monomers of this type are herein also referred to as “macromonomers”.
- the advantageous properties of the hydrogels of the present invention can be attributed to the combination of ECMPs and the particular components of the polymers of the present invention.
- One particular advantageous property of the polymers of the present invention is their water-binding capacity. The presence of water in the hydrogels of the present invention provides both an environment that resembles the natural environment of the damaged tissue (which assists in tissue regeneration), and the required compression resistance to the hydrogel.
- the polymers of the present invention should include monomers or units that are able to bind water to such a capacity that a hydrogel is able to form when the polymer is contacted with an ECMP and water.
- the hydrogel thus formed should have the required compression resistance and resilience. This is important for applications such as cartilage repair and restoration, because, as discussed above, cartilage is commonly subjected to significant mechanical stresses.
- water-binding monomers need to be present in the polymers of the present invention in proportions that are sufficient to produce a polymer that fulfils these requirements.
- the proportion of water-binding monomers in the polymer is about 10:1, about 5:1, about 4:1, about 3:1, about 2:1, about 1:1, about 1:2, about 1:3, about 1:4, about 1:5 molar ratio of water binding:mechanical strength monomers.
- the water-binding monomers need to make the polymer not only hydrophilic, but impart much more significant water-binding capacities to the polymer.
- polymers in accordance with the present invention will have water-binding capacities of between about 70% and about 500%, between about 80% and about 400%, between about 90% and 300% or between about 100% and 200%.
- the water-binding capacity of the polymers of the present invention is about 70%, about 80%, about 90%, about 100%, about 110%, about 120%, about 130%, about 140%, about 150%, about 160%, about 170%, about 180%, about 190%, about 200%, about 210%, about 220%, about 230%, about 240%, about 250%, about 260%, about 270%, about 280%, about 290%, about 300%, about 310%, about 320%, about 330%, about 340%, about 350%, about 360%, about 370%, about 380%, about 390%, about 400%, about 410%, about 420%, about 430%, about 440%, about 450%, about 460%, about 470%, about 480%, about 490%, or about 500%.
- Suitable examples of water-binding monomers include those that can be synthesised into polymers such as polyethers (e.g., alkylene polyoxides such as polyethylene glycol (PEG), oligo(ethylene glycol) (OEG), polyethylene oxide (PEO), polyethylene oxide-co-propylene oxide (PPO), co-polyethylene oxide block or random copolymers, polyvinyl alcohol (PVA)), poly(vinyl pyrrolidinone) (PVP), poly(amino acids) and dextran.
- polyethers e.g., alkylene polyoxides such as polyethylene glycol (PEG), oligo(ethylene glycol) (OEG), polyethylene oxide (PEO), polyethylene oxide-co-propylene oxide (PPO), co-polyethylene oxide block or random copolymers, polyvinyl alcohol (PVA)), poly(vinyl pyrrolidinone) (PVP), poly(amino acids) and dextran.
- PEG polyethylene
- OEG are especially preferred, because they have the requisite water-binding capacity, are simple to synthesise and/or purchase, and are inert, in the sense that they illicit minimal or no immune response from the tissues into which they are placed.
- any of a variety of hydrophilic functionalities can be used to make a monomer (and therefore a polymer formed from such a monomer) water soluble.
- functional groups like phosphate, sulphate, quaternary amine, hydroxyl, amine, sulfonate and carboxylate, which are water soluble, may be incorporated into a monomer to make it water soluble.
- the advantageous properties of the hydrogels of the present invention can be attributed, in part, to the particular components that make up the polymers of the present invention.
- the polymers of the present invention are able to contribute additional mechanical properties to the hydrogels of the present invention, which produces hydrogels that, due to their strength and resilience, can be used in the repair and restoration of tissues (e.g. cartilage) that reside in high-stress environments, such as joints.
- the polymers of the present invention may include monomers or units that are able to provide strength and resilience required in articular cartilage. This is important for applications such as cartilage repair and restoration, because, as discussed above, cartilage is commonly subjected to significant mechanical stresses.
- monomers capable of imparting mechanical properties to a hydrogel need to be present in the polymers of the present invention in proportions that are sufficient to produce a hydrogel having the desired mechanical properties.
- the proportion of “mechanical” monomers in the polymer is about 10:1, about 5:1, about 4:1, about 3:1, about 2:1, about 1:1, about 1:2, about 1:3, about 1:4, about 1:5 molar ratio of water binding:mechanical strength monomers.
- Suitable examples of monomers that are capable of imparting mechanical properties (e.g. compression resistance) to a hydrogel include acrylates such as hydroxyethyl methacrylate (HEMA), polyesters such as poly(lactic acid), poly(caprolactone), poly(glycolide), and their random co-polymers (e.g. poly(glycolide-co-lactide) and poly(glycolide-co-caprolactone)).
- HEMA hydroxyethyl methacrylate
- polyesters such as poly(lactic acid), poly(caprolactone), poly(glycolide), and their random co-polymers (e.g. poly(glycolide-co-lactide) and poly(glycolide-co-caprolactone)).
- the hydrogels of the present invention form by combining a polymer of the present invention with an ECMP, in the presence of water.
- the inventors have included, in the polymers of the present invention, monomers or units that have a crosslinking ability.
- This crosslinking ability means that the polymers are able to bind to ECMPs (as discussed further below) and, by doing so, crosslink the ECMPs to form hydrogels containing the ECMPs.
- the ECMPs act as the crosslinker, thereby crosslinking the polymer to form a hydrogel.
- the ECMP is more effectively retained in the hydrogel network, which means that, once the hydrogel is administered to the repair site, the ECMP is not able to migrate easily away from the site. This means that the structural integrity of the gel at the repair site is maintained (due to the mechanical properties of ECMPs, as mentioned above), and assists in providing an environment at the repair site that closely mimics the natural environment of the tissue.
- the proportion of “crosslinking” monomers in the polymer is at least about 1:1 molar ratio of crosslinking monomer:water binding monomer. This ratio can increase to, for example, about 2:1, about 3:1, about 4:1, about 5:1, about 6:1, about 7:1, about 8:1, about 9:1 and about 10:1.
- Monomers that are capable of binding to ECMPs generally have either electrophilic or nucleophilic functional groups, such that a nucleophilic functional group on, for example, an ECMP may react with an electrophilic functional group on the monomer, to form a covalent bond.
- the polymer comprises more than two ECMP-binding monomers, so that, as a result of electrophilic-nucleophilic reactions, the polymer combines with the ECMP to form crosslinked polymeric products. Such reactions are referred to as “crosslinking reactions”.
- the polymer may have electrophilic functional groups such as N-hydroxysuccinimides (NHS).
- electrophilic functional groups such as N-hydroxysuccinimides (NHS).
- Other electrophilic functional groups that are suitable for use in the present invention are N-hydroxysulfosuccinimide (SNHS) and N-hydroxyethoxylated succinimide (ENHS).
- An example of a monomer of this type is N-acryloxysuccinimide (NAS).
- NAS N-acryloxysuccinimide
- the polymer may have nucleophilic functional groups such as amines or thiols.
- the polymer may further include a fourth monomer that is capable of imparting phase transition characteristics to the hydrogel, thereby enabling the composite to be in an injectable form at room temperature, and in a hydrogel form at body temperature.
- phase-transition characteristics allow the polymers of the present invention to form hydrogels, of which various properties (such as viscosity) can be varied by altering factors such as pH and temperature.
- Thermo-responsive injectable hydrogels are designed such that the lower critical solution temperature (LOST) is below body temperature. Therefore, gelation can be achieved simply by increasing the temperature of the hydrogel by, for example, letting it warm up to body temperature (which occurs when the hydrogel is administered into the body).
- LOST lower critical solution temperature
- thermo-responsive and injectable polymers including poly(ethylene oxide)/poly(propylene oxide) and poly(N-isopropylacrylamide) (PNIPAAm) copolymers are suitable for use in the present invention.
- PNIPAAm is particularly suitable, as it has a LCST of 32° C., allowing it to be in the gel form at body temperature.
- phase-transition monomers need to be present in the polymers of the present invention in proportions that are sufficient to enable the viscosity of a hydrogel including the polymer to be varied by exposure of the hydrogel to different conditions of temperature and pH.
- proportion of “phase-transition” monomers in the polymer is at least about 9:1 molar ratio of phase-transition monomer:water binding monomer.
- This ratio can increase to, for example, about 10:1, about 11:1, about 12:1, about 13:1, about 14:1, about 15:1, about 16:1, about 17:1, about 18:1, about 19:1, about 20:1, about 21:1, about 22:1, about 23:1, about 24:1, about 25:1, about 26:1, about 27:1, about 28:1, about 29:1 and about 30:1 molar ratio of phase-transition monomer:water binding monomer.
- the viscosity of the hydrogels of the present invention is such that the hydrogel is injectable.
- the hydrogel then becomes more viscous as the temperature increases, forming a gel having the desired viscosity at a temperature of about 37° C.
- the hydrogel of the present invention at cooler temperatures, can be administered easily to the site of repair by, for example, injection.
- the hydrogel is then transformed, by warming in the body to the body's natural temperature, into a more viscous gel, which has the desired strength and elasticity properties.
- polymers can be produced that have a range of different properties.
- properties of the polymer can be modified. For example, co-polymerization of HEMA monomers with other monomers (such as methyl methacrylate) can be used to modify properties such as swelling and mechanical properties.
- Monomers may also be reacted with other compounds to form “macromonomers” (mentioned above) that are then included in the polymers of the present invention.
- HEMA can be reacted with lactide to form a HEMA-poly-lactic acid polymer (HEMA-PLA), which itself can be used as a monomer in the polymers of the present invention.
- HEMA-PLA HEMA-poly-lactic acid polymer
- the monomers themselves may be combinations of monomer units, which are then incorporated into the polymer.
- An example of this type of monomer is oligo(ethylene glycol) monomethyl ether methacrylate (OEGMA), which is a hydrophilic monomer composed of two hydrophilic monomers: ethylene glycol and methacrylate.
- polymers of the present invention may be further modified with one or more moieties and/or functional groups. Any moiety or functional group can be used in accordance with the present invention.
- polymers may be modified with polyethylene glycol (PEG), with a carbohydrate, and/or with acyclic polyacetals derived from polysaccharides.
- PEG polyethylene glycol
- hydrophilic groups can be incorporated into monomers (and therefore polymers) to increase a polymer's water-binding capacity.
- copolymers may be block copolymers, graft copolymers, random copolymers, blends, mixtures, and/or adducts of any of the foregoing and other polymers.
- polymers in accordance with the present invention are organic polymers.
- the polymers of the present invention are biocompatible.
- the polymers are biodegradable.
- the polymers are both biocompatible and biodegradable.
- the polymers of the present invention may also include other monomers in their structure.
- the monomers may be polymers such as poly(vinyl alcohol) (PVA), polyesters, acrylic polymers and ionic polymers, or monomers of these.
- the polymer be biodegradable or absorbable
- one or more monomers having biodegradable linkages may be used.
- the monomers may be chosen such that the product of the reaction between them results in a biodegradable linkage.
- monomers and/or linkages may be chosen such that the resulting biodegradable polymer will degrade or be absorbed in a desired period of time.
- the monomers and/or linkages are selected such that, when the polymer degrades under physiological conditions, the resulting products are non-toxic.
- the biodegradable linkage may be chemically or enzymatically hydrolyzable or absorbable.
- Illustrative chemically-hydrolysable biodegradable linkages include polymers, copolymers and oligomers of glycolide, lactide, caprolactone, dioxanone, and trimethylene carbonate.
- Illustrative enzymatically-hydrolysable biodegradable linkages include peptidic linkages cleavable by metalloproteinases and collagenases.
- Additional illustrative biodegradable linkages include polymers and copolymers of poly(hydroxy acid)s, poly(orthocarbonate)s, poly(anhydride)s, poly(lactone)s, poly(aminoacid)s, poly(carbonate)s, and poly(phosphonate)s.
- the polymer of the present invention is a polymer of formula (I):
- A is a water-binding monomer
- B is a monomer that is capable of imparting mechanical properties to a hydrogel
- C is a monomer that has a functional group for binding to an ECMP
- m is an integer from 1 to 10
- n is an integer from 1 to 10
- p is an integer from 1 to 10.
- the polymer of the present invention may accordingly be a polymer of formula (Ia):
- A is the water-binding monomer OEGMA
- B is the strengthening monomer HEMA-PLA
- C is the crosslinker NAS
- m, n and p are as defined above
- x is an integer from 1 to 1000
- y is an integer from 1 to 1000.
- the polymer of the present invention includes a fourth monomer that is capable of imparting phase transition characteristics to the hydrogel
- the polymer may be a polymer of the formula (II):
- A, B, C, m, n, and p are as defined above, D is a monomer that is capable of imparting phase transition characteristics to the hydrogel, and q is an integer from 1 to 10.
- An example of such a polymer is a polymer of formula (IIa):
- A is the water-binding monomer OEGMA
- B is the strengthening monomer HEMA-PLA
- C is the crosslinker NAS
- D is the phase-transition monomer NIPAAm
- m, n, p, q, x and y are as defined above.
- polymers of the present invention may be designed so as to be biodegradable in vivo.
- the monomers A, B, C and D may be present in the polymer in any order, provided that the required water-binding, strengthening and/or cross-linking capabilities are achieved.
- the overall size of the polymer of the present invention may differ, depending on factors, such as the types of monomers that are incorporated into the polymer, the type of ECMP that is sought to be used to form the hydrogel, and the conditions under which the protein is to be coupled to the polymer.
- the polymer of the present invention may be a molecule of about 1 to about 100 kDa, about 5 to about 60 kDa, or about 30 kDa.
- a wording defining the limits of a range or length such as, for example, “from 1 to 5” means any integer from 1 to 5, i.e. 1, 2, 3, 4 and 5.
- any range defined by two integers explicitly mentioned is meant to comprise and disclose any integer defining said limits and any integer comprised in said range.
- the present invention also relates to a composition for forming a hydrogel, the composition including an extra-cellular matrix protein and a polymer, the polymer including:
- composition refers to a solid or liquid composition containing the components mentioned above.
- other components such as pharmaceutically-acceptable excipients and biologically active agents (e.g. drugs, vitamins and minerals), to assist in repair and/or re-generation of the target tissue, and/or to provide a method of achieving targeted delivery of biologically active compounds, may also be included in the compositions of the present invention.
- pharmaceutically-acceptable excipients and biologically active agents e.g. drugs, vitamins and minerals
- the amount of polymer in the composition of the present invention is an amount that allows for the formation of hydrogels in accordance with the present invention.
- the amount of polymer in the composition of the present invention ranges between about 1% w/w and about 90% w/w, between about 2% w/w and about 80% w/w, between about 4% w/w and about 70% w/w, between about 5% w/w and about 60% w/w, between about 5% w/w and about 50% w/w, between about 6% w/w and about 40% w/w, between about 7% w/w and about 30% w/w or between about 8% w/w and about 20% w/w.
- the amount of polymer is about 1% w/w, about 2% w/w, about 3% w/w, about 4% w/w, about 5% w/w, about 6% w/w, about 7% w/w, about 8% w/w, about 9% w/w, about 10% w/w, about 15% w/w, about 20% w/w, about 25% w/w, about, 30% w/w, about 35% w/w, about 40% w/w, about 45% w/w, about 50% w/w, about 55% w/w, about 60% w/w, about 65% w/w, about 70% w/w, about 75% w/w, about 80% w/w or more. In some embodiments, the amount of polymer is approximately 85% w/w. As a general rule, the solidity of the hydrogel increases with higher polymer concentrations in the composition.
- compositions and/or hydrogels of the present invention may be included in the compositions and/or hydrogels of the present invention, and include any and all solvents, dispersion media, inert diluents, or other liquid vehicles, dispersion or suspension aids, granulating agents, surface active agents, disintegrating agents, isotonic agents, thickening or emulsifying agents, preservatives, binding agents, lubricants, buffering agents, oils, and the like, as suited to the particular dosage form desired.
- Remington 5 discloses various excipients used in formulating pharmaceutical compositions and known techniques for the preparation thereof.
- Excipients such as colouring agents, coating agents, sweetening, flavouring, and perfuming agents can be present in the composition, according to the judgment of the formulator.
- Biologically active agents or drug compounds that may be added to the composition and/or hydrogel of the present invention include proteins, glycosaminoglycans, carbohydrates, nucleic acids and inorganic and organic biologically active compounds, such as enzymes, antibiotics, anti-neoplastic agents, local anesthetics, hormones, angiogenic agents, anti-angiogenic agents, growth factors (e.g. insulin-like growth factor-1 (IGF-1), basic fibroblast growth factor (bFGF) and transforming growth factor-b (TGFb)), antibodies, neurotransmitters, psychoactive drugs, anticancer drugs, chemotherapeutic drugs, drugs affecting reproductive organs, genes, and oligonucleotides.
- IGF-1 insulin-like growth factor-1
- bFGF basic fibroblast growth factor
- TGFb transforming growth factor-b
- a composition containing components such excipients and/or biologically active agents can be produced by combining a polymer of the present invention with an ECMP, drying the resulting composition, and then combining this with one or more other components.
- the resulting composition may be in the form of a powder or other particulate form, to which water is then added to form a hydrogel, in accordance with the present invention.
- a hydrogel containing these components can therefore be produced simply by adding the desired aqueous solvent to the composition.
- the amount of polymer, ECMP and biologically active agent present in the composition will necessarily depend upon the particular drug and the condition to be treated. A person skilled in the art will be aware of appropriate agents and amounts to use to treat the condition.
- extra-cellular matrix protein refers to proteins that are naturally present in the extracellular part of animal tissue that provides structural support to the animal cells (in addition to performing various other important functions).
- the extracellular matrix (or ECM) is the defining feature of connective tissue in animals. Proteins commonly found in the ECM include collagen, elastin, fibrin, fibronectin, and laminin (and isoforms thereof).
- ECMP is important because, as discussed above, it crosslinks polymers, which enables the polymers to form a hydrogel.
- the hydrogels of the present invention may be formed by, for example, exposing collagen or elastin to a polymer of formula (I).
- ECMP is also important because it provides additional mechanical properties (such as strength and resilience) to the hydrogel, as well as providing, at the repair site, an environment that mimics the natural environment, thereby assisting in tissue repair and re-generation.
- the ECMP may be in the form of a monomer.
- An example is tropoelastin.
- the ECMP may be in the form of crosslinked monomers.
- An example is elastin.
- the ECMP may be a combination of a range of different isoforms, for example, collagen type 1, 2, 3, 4, or a range of different proteins, for example, collagen and elastin etc.
- the ECMP contains side chains or other functional groups that are exposed to enable reaction with the functional group of the ECMP-binding monomer(s), thereby binding the ECMP to the polymer through the ECMP-binding monomer(s).
- suitable side chains include glutamic acid or lysyl side chains.
- the present invention also includes variants of the ECMPs, for example species variants or polymorphic variants.
- the present invention is intended to cover all functionally active variants of the ECMPs that exhibit the same activity. This also includes apo- and holo-forms of the ECMPs, post-translationally modified forms, as well as glycosylated or de-glycosylated derivatives. Such functionally active fragments and variants include, for example, those having conservative amino acid substitutions.
- the amount of ECMP in the composition of the present invention is an amount that allows for the formation of hydrogels in accordance with the present invention.
- the amount of ECMP in the composition of the present invention ranges between about 1% w/w and about 60% w/w, between about 1% w/w and about 50% w/w, between about 1% w/w and about 40% w/w, between about 5% w/w and about 30% w/w, between about 5% w/w and about 20% w/w, or between about 5% w/w and about 10% w/w.
- the percent of ECMP is about 1% w/w, about 2% w/w, about 3% w/w, about 4% w/w, about 5% w/w, about 6% w/w, about 7% w/w, about 8% w/w, about 9% w/w, about 10% w/w, about 20% w/w, about 30% w/w, about 40% w/w, about 50% w/w, or more.
- the ECMPs for use in the present invention will be obtained from recombinant sources, although they can also be extracted from natural sources or synthesised.
- the present invention also relates to a hydrogel including water, an extra-cellular matrix protein and a polymer, the polymer including:
- the hydrogel includes a polymer having a monomer described above for enabling phase transition of the hydrogel from liquid state at lower temperature to gel state at body temperature.
- a monomer useful for this purpose is NIPAAM. It is a particularly surprising finding that an otherwise insoluble molecule, such as elastin or collagen, can be made to transition from liquid to gel state according to temperature profile by use of this monomer. Therefore, the advantage is that hydrogel of the present invention, at cooler temperatures, can be administered easily by, for example, injection. The hydrogel is then transformed into a more viscous gel, which has the desired strength and elasticity properties, following warming in the body to the natural body temperature.
- the hydrogel may be formed by adding water to the composition in any way known to a person skilled in the art.
- one advantage of the present invention is that the polymer does not need to be crosslinked in any way prior to contact with the ECMP, in order for a hydrogel to form.
- the hydrogel of the present invention may also include cells to assist in repair and/or re-generation of the target tissue.
- cells to be used in accordance with the present invention are any types of cells.
- the cells should be viable when encapsulated within the hydrogels of the present invention.
- cells that can be encapsulated within hydrogels in accordance with the present invention include, but are not limited to, mammalian cells (e.g. human cells, primate cells, mammalian cells, rodent cells, etc.), avian cells, fish cells, insect cells, plant cells, fungal cells, bacterial cells, and hybrid cells.
- exemplary cells that can be encapsulated within hydrogels include stem cells, totipotent cells, pluripotent cells, and/or embryonic stem cells.
- exemplary cells that can be encapsulated within hydrogels in accordance with the present invention include, but are not limited to, primary cells and/or cell lines from any tissue.
- primary cells and/or cell lines from any tissue.
- cardiomyocytes myocytes, hepatocytes, keratinocytes, melanocytes, neurons, astrocytes, embryonic stem cells, adult stem cells, hematopoietic stem cells, hematopoietic cells (e.g.
- ameloblasts fibroblasts, chondrocytes, osteoblasts, osteoclasts, neurons, sperm cells, egg cells, liver cells, epithelial cells from lung, epithelial cells from gut, epithelial cells from intestine, liver, epithelial cells from skin, etc, and/or hybrids thereof, may be encapsulated within hydrogels in accordance with the present invention.
- Exemplary mammalian cells that can be encapsulated within hydrogels in accordance with the present invention include, but are not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, Madin-Darby canine kidney (MDCK) cells, baby hamster kidney (BHK cells), NSO cells, MCF-7 cells, MDA-MB-438 cells, U87 cells, A172 cells, HL60 cells, A549 cells, SP10 cells, DOX cells, DG44 cells, HEK 293 cells, SHSY5Y, Jurkat cells, BCP-1 cells, COS cells, Vero cells, GH3 cells, 9L cells, 3T3 cells, MC3T3 cells, C3H-10T1/2 cells, NIH-3T3 cells, and C6/36 cells.
- CHO Chinese hamster ovary
- MDCK Madin-Darby canine kidney
- BHK cells baby hamster kidney
- NSO cells NSO cells
- MCF-7 cells MDA-MB-438 cells
- cells are evenly distributed throughout a hydrogel. Even distribution can help provide more uniform tissue-like hydrogels that provide a more uniform environment for encapsulated cells.
- cells are located on the surface of a hydrogel. In some embodiments, cells are located in the interior of a hydrogel. In some embodiments, cells are layered within a hydrogel. In some embodiments, the hydrogel contains different cell types.
- the conditions under which cells are encapsulated within hydrogels are altered in order to maximize cell viability.
- cell viability increases with lower polymer concentrations.
- cells located at the periphery of a hydrogel tend to have decreased viability relative to cells that are fully-encapsulated within the hydrogel.
- conditions e.g. pH, ionic strength, nutrient availability, temperature, oxygen availability, osmolarity, etc
- cell viability can be measured by monitoring one of many indicators of cell viability.
- indicators of cell viability include, but are not limited to, intracellular esterase activity, plasma membrane integrity, metabolic activity, gene expression, and protein expression.
- a fluorogenic esterase substrate e.g. calcein AM
- live cells fluoresce green as a result of intracellular esterase activity that hydrolyzes the esterase substrate to a green fluorescent product.
- a fluorescent nucleic acid stain e.g. ethidium homodimer-1
- dead cells fluoresce red because their plasma membranes are compromised and, therefore, permeable to the high-affinity nucleic acid stain.
- the amount of cells in a composition is an amount that allows for the formation of hydrogels in accordance with the present invention.
- the amount of cells that is suitable for forming hydrogels in accordance with the present invention ranges between about 0.1% w/w and about 80% w/w, between about 1.0% w/w and about 50% w/w, between about 1.0% w/w and about 40% w/w, between about 1.0% w/w and about 30% w/w, between about 1.0% w/w and about 20% w/w, between about 1.0% w/w and about 10% w/w, between about 5.0% w/w and about 20% w/w, or between about 5.0% w/w and about 10% w/w.
- the amount of cells in a composition that is suitable for forming hydrogels in accordance with the present invention is approximately 5% w/w.
- the concentration of cells in a precursor solution that is suitable for forming hydrogels in accordance with the invention ranges between about 10 and about 1 ⁇ 10 8 cells/mL, between about 100 and about 1 ⁇ 10 7 cells/mL, between about 1 ⁇ 10 3 and about 1 ⁇ 10 6 cells/mL, or between about 1 ⁇ 10 4 and about 1 ⁇ 10 5 cells/mL.
- a single hydrogel comprises a population of identical cells and/or cell types. In some embodiments, a single hydrogel comprises a population of cells and/or cell types that are not identical.
- a single hydrogel may comprise at least two different types of cells. In some embodiments, a single hydrogel may comprise 3, 4, 5, 10, or more types of cells. To give but one example, in some embodiments, a single hydrogel may comprise only embryonic stem cells. In some embodiments, a single hydrogel may comprise both embryonic stem cells and hematopoietic stem cells.
- a cell culture medium contains a buffer, salts, energy source, amino acids (e.g., natural amino acids, non-natural amino acids, etc), vitamins, and/or trace elements.
- Cell culture media may optionally contain a variety of other ingredients, including but not limited to, carbon sources (e.g., natural sugars, non-natural sugars, etc), cofactors, lipids, sugars, nucleosides, animal-derived components, hydrolysates, hormones, growth factors, surfactants, indicators, minerals, activators of specific enzymes, activators inhibitors of specific enzymes, enzymes, organics, and/or small molecule metabolites.
- Cell culture media suitable for use in accordance with the present invention are commercially available from a variety of sources, e.g., ATCC (Manassas, Va.).
- one or more of the following media are used to grow cells: RPMI-1640 Medium, Dulbecco's Modified Eagle's Medium, Minimum Essential Medium Eagle, F-12K Medium, Iscove's Modified Dulbecco's Medium.
- cells listed herein represent an exemplary, not comprehensive, list of cells that can be encapsulated within a precursor solution (and, therefore, eventually in a hydrogel) in accordance with the present invention.
- a therapeutically effective amount of a hydrogel of the present invention may be delivered to a patient and/or organism prior to, simultaneously with, and/or after diagnosis with a disease, disorder, and/or condition.
- a therapeutically-effective amount of a hydrogel of the present invention is delivered to a patient and/or organism prior to, simultaneously with, and/or after onset of symptoms of a disease, disorder, and/or condition.
- the present invention relates to a method of repairing biological tissue, comprising administration of a therapeutically effective amount of a hydrogel of the present invention.
- the present invention also relates to the use of a therapeutically effective amount of a composition of the present invention or a hydrogel of the present invention for repairing biological tissue.
- the present invention also provides a composition of the present invention or a hydrogel of the present invention for use in the repair of biological tissue, in any of the embodiments described in the specification.
- the present invention also relates to the use of a therapeutically effective amount of a hydrogel of the present invention or a composition of the present invention for the manufacture of a medicament for repairing biological tissue.
- the present invention also relates to a composition of the present invention or a hydrogel of the present invention when used in a method of repairing biological tissue.
- the present invention also relates to a composition having an active ingredient for use in repairing biological tissue, wherein the active ingredient is a hydrogel of the present invention.
- the present invention also relates to the use of a composition of the present invention or a hydrogel of the present invention in repairing biological tissue, such as described above.
- the biological tissue is cartilage.
- the cartilage is articular cartilage.
- a “therapeutically-effective amount” refers to an amount of the hydrogel of the present invention that is sufficient to treat, alleviate, ameliorate, relieve, delay onset of, inhibit progression of, reduce severity of, and/or reduce incidence of one or more symptoms or features of the disease, disorder, and/or condition.
- a “therapeutically-effective amount” is an amount sufficient to repair biological tissue, such as cartilage (and in particular articular cartilage).
- repair refers to the replacement or restoration of damaged biological tissue, preferably such that the original functionality of the damaged tissue is restored. A person skilled in the art will understand that the restoration may be complete, such that 100% of the original functionality has been restored, or may be partial, such that only a portion of the original functionality has been restored.
- the hydrogels of the present invention may be administered using any amount and any route of administration effective for treatment.
- the exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the infection, the particular hydrogel, its mode of administration, its mode of activity, and the like.
- compositions and hydrogels of the present invention are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the hydrogels and/or hydrogel assemblies of the present invention will be decided by the attending physician within the scope of sound medical judgment.
- the specific therapeutically effective dose level for any particular subject or organism will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific active ingredient employed; the specific polymer and/or cells employed; the age, body weight, general health, sex and diet of the subject; the time of administration, route of administration, and rate of excretion of the specific active ingredient employed; the duration of the treatment; drugs used in combination or coincidental with the specific active ingredient employed; and like factors well known in the medical arts.
- hydrogels of the present invention may be administered by any route.
- the hydrogels of the present invention are administered by a variety of routes, including direct administration to an affected site.
- hydrogels may be administered locally near a site which is in need of tissue regeneration. Local administration may be achieved via injection of the cooled hydrogel directly to a site in need of tissue regrowth and/or repair.
- the hydrogels of the present invention may be administered such that encapsulated cells and/or therapeutic agents to be delivered are released at concentrations ranging from about 0.001 mg/kg to about 100 mg/kg, from about 0.01 mg/kg to about 50 mg/kg, from about 0.1 mg/kg to about 40 mg/kg, from about 0.5 mg/kg to about 30 mg/kg, from about 0.01 mg/kg to about 10 mg/kg, from about 0.1 mg/kg to about 10 mg/kg, or from about 1 mg/kg to about 25 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired therapeutic effect.
- the desired dosage may be delivered, for example, three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, or every four weeks.
- the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations).
- the present invention encompasses “therapeutic cocktails” comprising the hydrogels of the present invention.
- hydrogels comprise a single cell type and, optionally, a therapeutic agent.
- hydrogels comprise multiple different cell types and, optionally, a therapeutic agent.
- cell-laden hydrogels in accordance with the present invention can be employed in combination therapies.
- the particular combination of therapies (therapeutics or procedures) to employ in a combination regimen will take into account compatibility of the desired therapeutics and/or procedures and the desired therapeutic effect to be achieved.
- the therapies employed may achieve a desired effect for the same purpose (for example, a hydrogel comprising a certain cell type to be used to promote tissue growth may be administered concurrently with another therapeutic agent used to stimulate growth of the same tissue), or they may achieve different effects (e.g., control of any adverse effects, such as inflammation, infection, etc).
- kits comprising one or more of the hydrogels and/or compositions of the present invention.
- the invention provides a kit comprising a hydrogel and/or composition and instructions for use.
- a kit may comprise multiple different hydrogels and/or compositions.
- a kit may optionally comprise polymers, cells, ECMPs, biologically-active compounds, and the like.
- a kit may comprise any of a number of additional components or reagents in any combination. All of the various combinations are not set forth explicitly but each combination is included in the scope of the invention.
- a few exemplary kits that are provided in accordance with the present invention are described in the following paragraphs.
- a kit may include, for example, (i) a solution comprising a polymer, a solution comprising ECMP; and (ii) instructions for forming a hydrogel from the solution.
- a kit may include, for example, (i) a composition comprising a polymer and ECMP; and (ii) instructions for forming a hydrogel from the composition.
- Kits may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
- Kits typically include instructions for use of the hydrogels of the present invention. Instructions may, for example, comprise protocols and/or describe conditions for production of hydrogels, administration of hydrogels to a subject in need thereof, production of hydrogel assemblies, etc. Kits will generally include one or more vessels or containers so that some or all of the individual components and reagents may be separately housed. Kits may also include a means for enclosing individual containers in relatively close confinement for commercial sale, e.g., a plastic box, in which instructions, packaging materials such as styrofoam, etc, may be enclosed.
- the kit or “article of manufacture” may comprise a container and a label or package insert on or associated with the container.
- Suitable containers include, for example, bottles, vials, syringes, blister packs, etc.
- the containers may be formed from a variety of materials such as glass or plastic.
- the container holds the hydrogel or composition which is effective for treating the condition and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle).
- the label or package insert indicates that the hydrogel or composition is used for treating the condition of choice.
- the label or package insert includes instructions for use and indicates that the therapeutic composition can be used to repair or regenerate tissue.
- HEMA-PLA macromonomer was synthesized by ring-opening polymerization of LA with the hydroxyl group of HEMA as the initiator and Sn(OCt) 2 as the catalyst (Scheme 1). 6
- LA and HEMA were mixed in a three-neck flask at 110° C. under a nitrogen atmosphere for 15 min. Subsequently, a mixture of 1 mol % of Sn(OCt) 2 (with respect to the HEMA feed) in 1 mL of anhydrous toluene was added to the LA/HEMA solution. The resulting mixture was stirred at 300 rpm and 110° C. for 1 h under a nitrogen atmosphere. After the reaction, the mixture was dissolved in tetrahydrofuran and precipitated in cold distilled water at 1° C. The formed precipitate was separated by centrifugation at 3000 rpm for 5 min. The centrifugation cycle was repeated three times to remove all unreacted monomers and by-products (mainly salts).
- the precipitate was then dissolved in ethyl acetate.
- the suspended solid particles were removed from the solution with centrifugation at 6000 rpm for 5 min and the supernatant was dried with MgSO 4 for 12 hr.
- the dried supernatant was filtered to remove the MgSO 4 particles.
- the polymeric solution was then dried at 60° C. under reduced pressure and the residue of solvent was further removed under vacuum at 40° C. for 24 hr.
- the resultant viscous oil was stored in a fridge for further use.
- the feed ratio of HEMA:LA was varied from 1:1.5 and 1:2.5 to obtain PLA/HEMA macromer with different lactate lengths.
- Two PLA/HEMA macromonomers with lactate lengths of 3 and 6 were synthesized by using 1:1.5 and 1:2.5 mol ratio of HEMA to LA monomers, respectively.
- PLA/HEMA macromer The synthesis of PLA/HEMA macromer was confirmed, using 1 H NMR spectra with evidence of proton peaks from both HEMA and LA.
- the molar ratio of LA to HEMA in PLA/HEMA macromer was calculated from 1 H NMR spectra using the peaks at 5.2 ppm for methine in lactate, and total integrations at 5.7 ppm and 6.0 ppm peaks for HEMA.
- PNPHO was synthesised using either method (1) or (2) as described below (Scheme 2).
- PNPHO was synthesized by free radical polymerization using AIBN as the initiator.
- a Schlenk flask with a magnetic stir bar and a rubber septum was charged with NIPAAm (12 mmol), NAS (1.0 mmol), HEMA-PLA (0.57 mmol), OEGMA (0.56 mmol), AIBN (0.07 mmol) and anhydrous N,N′-dimethylformamide (DMF).
- the flask was deoxygenated by three freeze-pump-thaw cycles, and then sealed followed by immersing the flask into an oil bath preheated at 70° C. to start the polymerisation.
- reaction mixture was cooled to room temperature, precipitated in diethyl ether, filtered, and then dried under vacuum.
- the polymer was purified twice by redissolving/re-precipitating with THF/ethyl ether and finally dried under vacuum for 2 days.
- PNPHO was synthesized by free radical polymerization, using ACVA as the initiator.
- Composition of copolymer was changed by varying the lactate length (3 and 6 in HEMA-PLA), molar ratios of HEMA-PLA (6, 8, and 11 mol %) and OEGMA (3, 5, and 8 mol %).
- Known amounts of NIPAAm, NAS, HEMA-PLA, OEGMA, ACVA 7.0 ⁇ 10 ⁇ 5 mol
- the system was then deoxygenated by at least three freeze-pump-thaw cycles, using liquid nitrogen as the coolant.
- copolymer is denoted as PNPHO and the subscript is added that corresponds to HEMA-PLA (lactate length) to OEGMA molar ratios.
- PNPHO 8(6)3 stands for the copolymer synthesized with 8 mol % HEMA-PLA with lactate length of 6, and 3 mol % OEGMA.
- the monomer ratios of PNPHO were modified to acquire a range of compositions that were dissolved in aqueous media, such as PBS for the development of injectable formulations.
- NIPAAm-based copolymers are soluble in aqueous solutions below their LCST due to the formation of hydrogen bonds between the copolymer polar groups and water molecules.
- lactate length HEMA-PLA and OEGMA contents on the solubility of PNPHO were studied by measuring the saturation concentration of different compositions of PNPHO in PBS.
- the solubility of PNPHO in PBS can be tuned by changing both hydrophobic and hydrophilic contents.
- the PLA segment is the main hydrophobic backbone, while both NAS and HEMA monomers exhibit relatively limited hydrophilic properties.
- OEGMA was therefore included in the synthesis of PNPHO to promote the hydrophilic properties of the copolymer.
- HEMA-PLA i.e. the hydrophobic content
- Increasing HEMA-PLA (i.e. the hydrophobic content) in copolymers from 6 to 8 and 11 mol % decreased the solubility of PNPHO in PBS by 30% and 50%, respectively.
- saturation concentration of PNPHO 6(6)3 was significantly (p ⁇ 0.001) decreased from 250 ⁇ 17 mg/mL to 190 ⁇ 10 mg/mL and 164 ⁇ 6 mg/mL in PNPHO 3(6)3 and PNPHO 11(6)3 , respectively.
- This solubility reduction was also due to decreasing the concentration of the relatively hydrophilic segment NIPAAm in the copolymer (p ⁇ 0.05). Therefore, decreasing NIPAAm content in PNPHO substantially affected the hydration of the copolymer.
- OEGMA concentration had little effect on the solubility of PNPHO. This behavior was attributed to formation of copolymers with longer chains and higher MW, which impeded the hydration and solubility of the copolymer in aqueous solution.
- the molecular weight of PNPHO 11(3)8 was significantly (p ⁇ 0.01) higher than PNPHO 11(3)5 (27K compared to 26K), which compromised the effect of its higher hydrophilic content, and therefore the saturation concentration for both compounds was approximately 300 mg/mL.
- method (a) PNPHO copolymer was dissolved in PBS for 24 hr. Protein solution was added to PNPHO solution and incubated at 4° C. for another 24 hr.
- method (b) dissolution of PNPHO and protein conjugation were conducted at the same time.
- method (c) PNPHO was dissolved and conjugated with naturally derived protein on a shaker.
- method (d) PNPHO-protein conjugate powder was formed by freeze drying PNPHO-protein solution. The conjugate powder was dissolved in PBS on a shaker to form the final polymeric solution: The protein-PNPHO solutions formed with different techniques were converted to hydrogels by increasing the temperature to 37° C.
- method (d) protein (such as elastin) and copolymer were conjugated.
- the conjugate solution was then freeze dried, forming elastin-PNPHO powder.
- This powder was dissolved in PBS in 6 hr and can be delivered as the final product.
- the preparation time was decreased from 48 hr to 6 hr, which has been deemed to be a clinically acceptable preparation time.
- Method (d) was used for the preparation of different protein-PNPHO hydrogels.
- the structure of the thermally responsive PNPHO copolymer consists of hydrophilic amide bonds and hydrophobic isopropyl groups.
- There is a strong hydrogen bond between water and both proteins and copolymer which resulted in formation of a conjugate hydrogel at above LSCT, as shown in FIG. 4( b ) .
- ATR-FTIR was used to confirm the formation of covalent bonds between elastin and PNPHO.
- the results in FIG. 4( c ) show that the key peaks for PNPHO include N ⁇ H and C ⁇ O stretches from NIPAAm at 1540 cm ⁇ 1 , and 1645 cm ⁇ 1 and three characteristic peaks from succinimide ester group at 1740 cm ⁇ 1 , 1763 cm ⁇ 1 , and 1795 cm ⁇ 1 .
- elastin within the structure of the conjugate hydrogel was also confirmed by the characteristic ATR-FTIR peaks of elastin.
- the amide bonds are presented within 1600 cm ⁇ 1 to 1700 cm ⁇ 1 . This region is from the C ⁇ O stretching vibration and confirms the secondary structure of the protein backbone.
- the peaks between 1600 cm ⁇ 1 and 1640 cm ⁇ 1 correspond to the intermolecular interaction and beta-sheet bands.
- the elastin-PNPHO hydrogel exhibited a peak at 1640 cm ⁇ 1 , confirming the presence of intermolecular interaction and formation of stable protein structure.
- the peaks between 1640 cm 1 and 1660 cm ⁇ 1 demonstrate the contribution from random coils and alpha-helices in elastin.
- the conjugated copolymer-elastin also exhibited a peak at 1640 cm ⁇ 1 due to the presence of ⁇ -helices in elastin.
- the remaining peaks in Amide I region from 1660 cm ⁇ 1 to 1690 cm ⁇ 1 dominated by vibrations from beta-turn structures, with some small peaks from other structures, denoted as turn points.
- the polymer exhibited a characteristic peak at 1812 cm ⁇ 1 associated with the succinimide group. After the conjugation of elastin, this peak disappeared completely, indicating the participation of elastin in the condensation reaction with the succinimide group.
- a significant attenuation of ester group absorption (1735 cm ⁇ 1 ) and a dramatic increase of amide group absorption (1630 and 1545 cm ⁇ 1 ) was observed, which resulted from the conversion of the ester bond to an amide linkage in the course of the crosslinking. This resulted in the observed corresponding relative intensity variation of these characteristic peaks.
- PNPHO PNPHO
- PNPHO hydrogel was fully dissolved in PBS after 4 days in PBS (which was used to mimic the physiological environment) as shown in FIG. 4( c ) .
- Conjugation of PNPHO with protein led to formation of covalent bonds that maintained the integrity of the hydrogel for a longer period of time. This chemical conjugation therefore provides sufficient stability to hydrogels for different biomedical applications.
- succinimide linker exhibits high reactivity and optimized accessibility towards compounds containing amino groups, it is reasonable to postulate that the polymer can be applied to other types of natural polymers with amino groups for the fabrication of injectable hydrogels. To confirm this assumption the feasibility of a reaction between the polymer and collagen was examined.
- a collagen solution (OVICOLL®CLEAR, 1%, pH 2.5-3.5) was neutralized with small aliquots of 1 M NaOH solution. 250 ⁇ L of the resulting neutralized collagen solution was thoroughly mixed with 500 ⁇ L of 250 mg/1 mL polymer/PBS solution. The mixture was then transferred to a refrigerator. After preservation at 4° C. for 24 h, the mixture was then allowed to gel at 37° C. followed by washing with distilled water to remove any impurities.
- this composition of copolymer may not be a favourable candidate for biomedical applications.
- the high LCST in PNPHO 6(3)8 was due to high hydrophilic to hydrophobic content ratio in this copolymer.
- PNPHO 11(3)3 and PNPHO 11(6)3 lack of hydrophilic sites inhibited the rehydration of biopolymer after condensation phase. This effect led to precipitation of conjugate in the powder form with weak structural integrity.
- lactate, OEGMA and HEMA-PLA molar ratio on gelling temperature of different conjugates is presented in FIGS. 7( b ) and ( c ) .
- the gelling temperature of the elastin-PNPHO conjugate was elevated from 17 ⁇ 2° C. to 24 ⁇ 1° C. and 27 ⁇ 2° C. when increasing OEGMA content from 3 mol % (PNPHO 8(6)3 ) to 5 (PNPHO 8(6)5 ) and 8 mol % (PNPHO 8(6)8 ), respectively (p ⁇ 0.01).
- HEMA-PLA concentration as a hydrophobic segment on gelling temperature of the PNPHO copolymer was also studied. Increasing the HEMA-PLA content from 6 mol % to 8 mol % and 11 mol % significantly (p ⁇ 0.001) decreased the gelling temperature of conjugated copolymer by approximately 20% and 30%, respectively. These data demonstrate that the gelling temperature of protein-PNPHO conjugated is tunable within the range of 11° C. to 40° C. by manipulating the hydrophobic and hydrophilic contents.
- the PNPHO copolymer was designed for conjugation to protein based biopolymers with potential application in delivery of encapsulated biofactors to the required site and in vivo tissue regeneration. It may be viable to use this concept for conjugating of a therapeutic protein to PNPHO copolymer for injectable administrations and controlled release.
- incorporation of naturally derived protein within the structure of copolymer enhances the biological activity of the synthetic copolymer.
- the conjugation capacity of different compositions of copolymers was assessed by evaluating the retention ratio of elastin within the structure of the copolymer. For this analysis, the Bradford technique was used. The effects of lactate length, HEMA-PLA and OEGMA contents on conjugation capacity of copolymers were assessed.
- the results of the Bradford protein assay demonstrate that elastin conjugation was more than 65 wt % and up to 90%.
- the conjugation capacity of PNPHO copolymer is superior to previous synthesized copolymers for conjugation to proteins.
- the high stability of conjugated elastin in the structure of PNPHO may be attributed to the formation of covalent bonds between elastin and the copolymer, as confirmed by FTIR results (discussed above).
- FTIR results discussed above.
- the copolymer compositions selected for further characterization are PNPHO 11(3)5 , PNPHO 11(3)8 , PHPHO 8(6)5 , and PNPHO 8(6)8 , which all displayed conjugation efficiency above 80 wt %.
- PNPHO was designed with degradable hydrophobic domain (HEMA-PLA)—its gradual cleavage along with the retention of hydrophilic backbone (OEGMA) from the copolymer molecular structure may lead to dissolution of hydrogel in physiological environment.
- HEMA-PLA degradable hydrophobic domain
- OEGMA hydrophilic backbone
- the rate of bioresorption is an important factor in the utility of hydrogels for biomedical applications.
- the bioresorbable properties of conjugated hydrogels by hydrolysis of the PLA segment and the rate of bioresorption of different elastin-PNPHO hydrogels in physiological environments were assessed.
- HEMA-PLA hydrophobic domains
- OEGMA hydrophilic segments
- the accelerated hydrolysis was conducted by immersing the sample in a sodium hydroxide solution (1 M) for a period of three weeks at 4° C. After this period, the suspension was neutralized with 10 M hydrochloride solution.
- the effect of PLA hydrolysis on the stability of the protein-PNPHO conjugate in physiological conditions was examined.
- Four different copolymers with the highest conjugation efficiencies PNPHO 11(3)5 , PNPHO 11(3)8 , PNPHO 8(6)5 , and PNPHO 8(6)8 were selected for this study (as mentioned above). After hydrolysis, the characteristic peak of PLA at 5.1 ppm in 1 H NMR spectra of these copolymers disappeared, confirming the cleavage of PLA.
- the hydrolyzed copolymers were then conjugated with elastin.
- the elastin-copolymer hydrogels formed with the optimum compositions of copolymer could retain 85% of their initial weight after 30 days of incubation in PBS.
- Guan et al. reported approximately 90% of weight loss for hydrogels formed by conjugation of collagen and poly(NIPAAm-co-AAc-co-NAS-co-HEMA-PLA) after 21 days.
- the higher stability of the hydrogels of the present invention was due to the high conjugation capacity of PNPHO copolymer. High stability of PNPHO in the physiological environment was comparable with other synthetic based injectable copolymers such as poly(NIPAAm-co-HEMA-co-methacrylate-polylactide (MAPLA)).
- MAPLA poly(NIPAAm-co-HEMA-co-methacrylate-polylactide
- This copolymer exhibited approximately 80% weight retention after 30 days of incubation in PBS at 37° C. However, this copolymer however had no functional group that can bond to proteins.
- the presence of facial active sites in PNPHO imparts protein conjugation capacity to this injectable system. This property of PNPHO copolymer may pass on superior biological properties to the injectable system and make it more favourable for different biomedical applications such as biofactor delivery and in vivo tissue growth.
- tissue glues based on fibrins
- fibrins are the current gold standard for surgical applications due to their non-cytotoxic properties. Their application, however, is limited due to the very high degradation rate. In particular, presence of chondrogenesis cells dramatically increases the degradation rate of these types of tissue glues. More recently, chondroitin sulphate-based glues were synthesized to covalently bond cartilage with hydrogels. This approach promoted the structural stability of hydrogels. However, it requires invasive implantation techniques involving cartilage digestion and UV crosslinking.
- chondroitin sulphate-PEG gels were designed to covalently bind with primary amines of collagen by formation of amide bonds in a physiological environment. These hydrogels, however, were not permissive for chondrocyte ingrowth and cartilage remodeling.
- hydrogels The ability of hydrogels to retain their structural integrity at the implanted sites is important in developing a suitable biomaterial for tissue repair.
- the structural integrity of protein-PNPHO hydrogels in a physiological environment was studied. Results showed that the chemical conjugation between protein and copolymer plays an important role in achieving structural integrity of hydrogels.
- the degree of chemical conjugation between protein and copolymer was enhanced by having two-stage elastin-PNPHO conjugation, increasing facial active sites in copolymer, or using recombinant tropoelastin (rTE) to conjugate with PNPHO.
- rTE recombinant tropoelastin
- PNPHO 8(6)5 was used.
- elastin-PNPHO 8(6)5 powder was dissolved in elastin solution instead of PBS to increase the conjugation ratio between elastin and copolymer (elastin(2 ⁇ )-PNPHO 8(6)5 ).
- protein active site in the PNPHO copolymer was increased from 7 to 14 mol % by increasing NAS feed ratio in the synthesis of the copolymer, forming PNPHO 8(6)5-14 .
- elastin was replaced with rTE with higher primary amine groups (35 lysine residues per molecule compared to ⁇ -elastin with less than 1%) to form a conjugate protein-PNPHO 8(6)5 system with a higher degree of conjugation.
- Hydrogels were soaked in PBS at 37° C. and their volume variations in different time intervals were recorded as shown in FIG. 10 .
- Elastin-PNPHO 8(6)5-14 exhibited significantly higher structural integrity in physiological condition compared to elastin-PNPHO 8(6)5 .
- rTE which possesses a higher number of primary amine groups
- the conjugation of protein and copolymer was also increased and the rTE-PNPHO 865 hydrogel possessed the highest structural integrity in a physiological environment after 14 days. This hydrogel exhibited less than 20% of volume variance within this period.
- Human skin fibroblast cells (GM3348) were cultured in the vicinity of a conjugated hydrogel to assess the cytocompatibility of elastin-PNPHO hydrogels.
- An elastin and PNPHO solution was formed by using sterilized PBS. Following gelation, hydrogels were washed with pre-warmed PBS for three times to remove all unreacted proteins and copolymer. The hydrogels (without any further sterilization) were then equilibrated in media (DMED, 10% FBS, and pen-strep) overnight at 37° C. The cells were then cultured at 2 ⁇ 10 5 cell/well in 6 well-plate at the vicinity of conjugated hydrogels.
- DMED 10% FBS
- pen-strep pen-strep
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
-
- a first monomer for binding water;
- a second monomer for imparting mechanical properties to a hydrogel; and
- a third monomer for binding to an extra-cellular matrix protein.
-
- a fourth monomer for imparting phase transition characteristics to a hydrogel enabling injection at room temperature, and gel formation at body temperature.
-
- an extra-cellular matrix protein; and
- a polymer;
wherein the polymer includes: - a first monomer for binding water; and
- a second monomer that is bound to the extra-cellular matrix protein;
wherein the binding of the extra-cellular matrix protein to the second monomer crosslinks the polymer, thereby enabling formation of a hydrogel when the composition is contacted with water.
-
- a third monomer for imparting mechanical properties to a hydrogel.
-
- a fourth monomer for imparting phase transition characteristics to a hydrogel enabling injection at room temperature, and gel formation at body temperature.
-
- water;
- an extra-cellular matrix protein; and
- a polymer;
wherein the polymer includes: - a first monomer for binding water; and
- a second monomer that is bound to the extra-cellular matrix protein;
wherein the binding of the extra-cellular matrix protein to the second monomer crosslinks the polymer, thereby forming the hydrogel.
-
- a third monomer for imparting mechanical properties to a hydrogel.
-
- a fourth monomer for imparting phase transition characteristics to a hydrogel enabling injection at room temperature, and gel formation at body temperature.
wherein A is a water-binding monomer, B is a monomer that is capable of imparting mechanical properties to a hydrogel, C is a monomer that has a functional group for binding to an ECMP, m is an integer from 1 to 10, n is an integer from 1 to 10, and p is an integer from 1 to 10.
wherein A is the water-binding monomer OEGMA, B is the strengthening monomer HEMA-PLA, C is the crosslinker NAS, m, n and p are as defined above, x is an integer from 1 to 1000, and y is an integer from 1 to 1000.
wherein A, B, C, m, n, and p are as defined above, D is a monomer that is capable of imparting phase transition characteristics to the hydrogel, and q is an integer from 1 to 10. An example of such a polymer is a polymer of formula (IIa):
wherein A is the water-binding monomer OEGMA, B is the strengthening monomer HEMA-PLA, C is the crosslinker NAS, D is the phase-transition monomer NIPAAm, and m, n, p, q, x and y are as defined above.
-
- a first water-binding monomer; and
- a second monomer that has a functional group that is bound to the extra-cellular matrix protein;
wherein the binding of the extra-cellular matrix protein to the second monomer crosslinks the polymer, thereby enabling formation of a hydrogel when the composition is contacted with water.
-
- a first water-binding monomer; and
- a second monomer that is bound to the extra-cellular matrix protein;
wherein the binding of the extra-cellular matrix protein to the second monomer crosslinks the polymer, thereby forming a hydrogel, with the water contained therein.
TABLE 1 |
Feed ratio, final composition and molecular weight of |
PNPHO synthesized with different compositions. |
Monomers molar ratio1 | Final composition of copolymer1 | Mw |
6(3)/3/7/84 | 8.7(3)/3.4/7.9/80 | 21,212 |
8(3)/3/7182 | 10.9(3)/3.9/8.2/77 | 21,451 |
11(3)/3/7/79 | 11(3)/3/8/78 | 22,444 |
6(3)/5/7/82 | 7.8(6)/5/8.2/79 | 22,551 |
8(3)/5/7/80 | 9.1(6)/6.5/8.4/76 | 23,544 |
11(3)/5/7/77 | 9.1(6)/7/7.9/76 | 23,001 |
6(3)/8/7/79 | 8.2(6)/7/7/77.8 | 25,541 |
8(3)/8/7/77 | 8.8(6)/8.1/8.1/75 | 25,550 |
11(3)/8/7/74 | 11.8(6)/8/8.2/72 | 27,002 |
6(6)/3/7/84 | 6.8(6)/3/8.5/81.5 | 23,211 |
8(6)/3/7/82 | 9.1(6)/3/8/79.9 | 22,551 |
11(6)/3/7/79 | 12.2(6)/3.2/8.6/76 | 24,555 |
6(6)/5/7/82 | 6(6)/5.6/8.4/80 | 27,521 |
8(6)/5/7/80 | 6(6)/8.1/5.5/8.4/77 | 25,521 |
11(6)/5/7/77 | 11.1(6)/5.6/8/75.3 | 26,555 |
6(6)/8/7/79 | 9(6)/8.5/8/74.5 | 28,452 |
8(6)/8/7/77 | 10(6)/9/8.3/72.6 | 28,881 |
11(6)/8/7/74 | 11(6)/8/7/74 | 27,885 |
1PLA-HEMA(lactate length):OEGMA:NAS:NIPAAm |
TABLE 2 |
The effect of preparation method on elastin retention |
Preparation technique1 | Preparation time | Elastin Retention (wt %) |
Method a | 48 hours | 51 ± 4 |
Method b | 24 hours | 78 ± 3 |
|
10 |
77 ± 3 |
|
6 hours | |
1Please refer to FIG. 1 for schematic overview of preparation techniques. |
- 1. Vinatier, C. et al (2009) “Cartilage engineering: a crucial combination of cells, biomaterials and biofactors”, Trends in Biotechnology 27(5):307-314.
- 2. van Donkelaar, C. C. and Schulz, R. M. (2008) “Review on patents for mechanical stimulation of articular cartilage tissue engineering”, Recent Patents on Biomedical Engineering 1(1): 1-12.
- 3. Chung, C. and Burdick, J. A. (2008) “Engineering cartilage tissue”, Advanced Drug Delivery Reviews 60: 243-262.
- 4. Lee, H. J., of al (2006) “Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel”, Biomaterials 27: 5268-5276.
- 5. Gennaro, A. R., Remington: The Science and Practice of Pharmacy, 21st ed. (2006), Lippincott Williams & Wilkins.
- 6. Dijk-Wolthuls, W. van et al. (1997) “A new class of polymerizable dextrans with hydrolyzable groups: hydroxyethyl methacrylated dextran with and without oligolactate spacer”, Polymer 38(25):6235-6242.
- 7. Mercado, A. E. et al: (2009) “Release characteristics and osteogenic activity of recombinant human bone morphogenetic protein-2 grafted to novel self-assembled poly(lactide-co-glycolide fumarate) nanoparticles”, Journal of Controlled Release 140(2):148-156.
- 8. Bradford, M. M. (1976) “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding”, Analytical Biochemistry 72(1-2):248-254.
- 9. Guan, J. et al. (2008) “Protein-Reactive, Thermoresponsive Copolymers with High Flexibility and Biodegradability”, Biomacromolecules 9: 1283-1292.
Claims (13)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2011905293A AU2011905293A0 (en) | 2011-12-19 | A peptide-hydrogel composite | |
AU2011905293 | 2011-12-19 | ||
PCT/AU2012/001566 WO2013091001A1 (en) | 2011-12-19 | 2012-12-19 | A peptide-hydrogel composite |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140357823A1 US20140357823A1 (en) | 2014-12-04 |
US9546235B2 true US9546235B2 (en) | 2017-01-17 |
Family
ID=48667506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/366,663 Active 2033-01-30 US9546235B2 (en) | 2011-12-19 | 2012-12-19 | Peptide-hydrogel composite |
Country Status (4)
Country | Link |
---|---|
US (1) | US9546235B2 (en) |
EP (1) | EP2794701B1 (en) |
ES (1) | ES2627856T3 (en) |
WO (1) | WO2013091001A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180243469A1 (en) * | 2015-09-01 | 2018-08-30 | The University Of Sydney | Bioactive polymer for bone regeneration |
US20220125828A1 (en) * | 2015-07-24 | 2022-04-28 | Trimph Ip Pty Limited | Antiseptic polymer and synthesis thereof |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2600901B1 (en) | 2010-08-06 | 2019-03-27 | ModernaTX, Inc. | A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof |
HRP20220796T1 (en) | 2010-10-01 | 2022-10-14 | ModernaTX, Inc. | Ribonucleic acids containing n1-methyl-pseudouracils and uses thereof |
CA2831613A1 (en) | 2011-03-31 | 2012-10-04 | Moderna Therapeutics, Inc. | Delivery and formulation of engineered nucleic acids |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
EP3492109B1 (en) | 2011-10-03 | 2020-03-04 | ModernaTX, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
RS63244B1 (en) | 2011-12-16 | 2022-06-30 | Modernatx Inc | Modified mrna compositions |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
WO2013151664A1 (en) | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | Modified polynucleotides for the production of proteins |
US9303079B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
PL2922554T3 (en) | 2012-11-26 | 2022-06-20 | Modernatx, Inc. | Terminally modified rna |
WO2014152211A1 (en) | 2013-03-14 | 2014-09-25 | Moderna Therapeutics, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
CA2923029A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
US20160194368A1 (en) | 2013-09-03 | 2016-07-07 | Moderna Therapeutics, Inc. | Circular polynucleotides |
SG11201602503TA (en) | 2013-10-03 | 2016-04-28 | Moderna Therapeutics Inc | Polynucleotides encoding low density lipoprotein receptor |
US20170210788A1 (en) | 2014-07-23 | 2017-07-27 | Modernatx, Inc. | Modified polynucleotides for the production of intrabodies |
CN108486034B (en) * | 2018-02-11 | 2021-05-28 | 华东理工大学 | High-temperature-resistant temperature-sensitive cell culture medium material and preparation method thereof |
JP6873436B2 (en) * | 2019-05-17 | 2021-05-19 | 学校法人大阪医科薬科大学 | Pharmaceutical composition for the treatment of joint diseases and its manufacturing method |
WO2023201397A1 (en) * | 2022-04-21 | 2023-10-26 | Trimph Ip Pty Ltd | A tissue conductive scaffolding material |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001036000A1 (en) | 1999-11-15 | 2001-05-25 | Bio Syntech Canada, Inc. | Temperature-controlled and ph-dependant self-gelling biopolymeric aqueous solution |
WO2001070288A2 (en) | 2000-03-23 | 2001-09-27 | Genetics Institute, Inc. | Thermoreversible polymers for delivery and retention of osteoinductive proteins |
US20060115457A1 (en) | 2004-09-23 | 2006-06-01 | Olexander Hnojewyj | Biocompatible hydrogel compositions |
WO2008045904A2 (en) | 2006-10-10 | 2008-04-17 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Thermoresponsive, biodegradable, elastomeric material |
US20090226519A1 (en) | 2005-04-19 | 2009-09-10 | Charles Claude | Hydrogel bioscaffoldings and biomedical device coatings |
US20100159008A1 (en) | 2008-11-22 | 2010-06-24 | Barron Annelise E | Hydrogels, methods of making hydrogels, methods of using hydrogels, and methods of isolating, trapping, attracting, and/or killing cancer cells |
WO2010127254A2 (en) * | 2009-04-30 | 2010-11-04 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Thermoresponsive, biodegradable, elastomeric material and uses therefor |
US20110223230A1 (en) | 2004-07-05 | 2011-09-15 | Ascendis Pharma A/S | Hydrogel formulations |
US20110275154A1 (en) * | 2009-05-21 | 2011-11-10 | Martin Arthur W | Derivatized peptide-conjugated (meth) acrylate cell culture surface and methods of making |
US20120220691A1 (en) | 2010-09-29 | 2012-08-30 | Rutgers, The State University Of New Jersey | Process for the synthesis of methacrylate-derivatized type-1 collagen and derivatives thereof |
-
2012
- 2012-12-19 ES ES12859961.0T patent/ES2627856T3/en active Active
- 2012-12-19 WO PCT/AU2012/001566 patent/WO2013091001A1/en active Application Filing
- 2012-12-19 EP EP12859961.0A patent/EP2794701B1/en active Active
- 2012-12-19 US US14/366,663 patent/US9546235B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001036000A1 (en) | 1999-11-15 | 2001-05-25 | Bio Syntech Canada, Inc. | Temperature-controlled and ph-dependant self-gelling biopolymeric aqueous solution |
WO2001070288A2 (en) | 2000-03-23 | 2001-09-27 | Genetics Institute, Inc. | Thermoreversible polymers for delivery and retention of osteoinductive proteins |
US20110223230A1 (en) | 2004-07-05 | 2011-09-15 | Ascendis Pharma A/S | Hydrogel formulations |
US20060115457A1 (en) | 2004-09-23 | 2006-06-01 | Olexander Hnojewyj | Biocompatible hydrogel compositions |
US20090226519A1 (en) | 2005-04-19 | 2009-09-10 | Charles Claude | Hydrogel bioscaffoldings and biomedical device coatings |
WO2008045904A2 (en) | 2006-10-10 | 2008-04-17 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Thermoresponsive, biodegradable, elastomeric material |
US20080096975A1 (en) * | 2006-10-10 | 2008-04-24 | Jianjun Guan | Thermoresponsive, biodegradable, elastomeric material |
US20100159008A1 (en) | 2008-11-22 | 2010-06-24 | Barron Annelise E | Hydrogels, methods of making hydrogels, methods of using hydrogels, and methods of isolating, trapping, attracting, and/or killing cancer cells |
WO2010127254A2 (en) * | 2009-04-30 | 2010-11-04 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Thermoresponsive, biodegradable, elastomeric material and uses therefor |
US20120156176A1 (en) * | 2009-04-30 | 2012-06-21 | University of Pittsburgh-Of the Commonwealth Syste | Thermoresponsive, biodegradable, elastomeric material and uses therefor |
US20110275154A1 (en) * | 2009-05-21 | 2011-11-10 | Martin Arthur W | Derivatized peptide-conjugated (meth) acrylate cell culture surface and methods of making |
US20120220691A1 (en) | 2010-09-29 | 2012-08-30 | Rutgers, The State University Of New Jersey | Process for the synthesis of methacrylate-derivatized type-1 collagen and derivatives thereof |
Non-Patent Citations (15)
Title |
---|
Angel E. Mercado et al., "Release characteristics and osteogenic activity of recombinant human bone morphogenetic protein-2 grafted to novel self-assembled poly(lactide-co-glycolide fumarate) nanoparticles," Journal of Controlled Release, 140, 2009, pp. 148-156. |
Cindy Chung et al., "Engineering cartilage tissue," Advanced Drug Delivery Reviews, 60, 2008, pp. 243-262. |
Claire Vinatier et al., "Cartilage engineering: a crucial combination of cells, biomaterials and biofactors," Trends in Biology, vol. 27, No. 5, Mar. 2009, pp. 307-314. |
Corrinus C. van Donkelaar et al., "Review on Patents for Mechanical Stimulation of Articular Carnage Tissue Engineering," Recent Patents on Biomedical Engineering, 2008, vol. 1, No. 1, pp. 1-12. |
Dirk Schmaljohann et al., "Thermo-Responsive PNiPAAm-g-PEG Films for Controlled Cell Detachment," Biomacromolecules, vol. 4, No. 6, Nov. 1, 2003, pp. 1733-1739, XP055211143, ISSN: 1525-7797, DOI: 10.1021/bm034160p. |
Eastoe, J.E. "The Amino Acide Composition of Mammalian Collagen and Gelatin", Biochemical Journal, 1955, 61, 589-600. Tables 2-3, 5. |
Extended European Search Report mailed Sep. 10, 2015 in European Patent Application No. 12859961.0. |
H. Janice Lee et al., "Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel," Biomaterials, 27, 2006, pp. 5268-5276. |
International Search Report and Written Opinion Issued in Appl. No. PCT/AU2012/001566 on Feb. 22, 2013. |
Jianjun Guan et al., "Protein-Reactive, Thermoresponsive Copolymers with High Flexibility and Biodegradability," Biomacromolecules, vol. 9, No. 4, 2008, pp. 1283-1292. |
Jin R. et al. "Synthesis and Characterisation of Hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: An Injectable Biomaterial for Cartilage Repair", Acta Biomaterialia 2010, 6, 1968-1977. Abstract, sections 2, 3.1-3.2. |
Marion M. Bradford, "A Rapid and Sensitive method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding," Analytical Biochemistry, 72, 1976, pp. 248-254. |
Moon et al. "Preparation of Biodegradable Thermo-Responsive Polyaspartamides with N-isopropylamine Pendant Groups (I)", Bulletin of the Korean Chemical Society, 2006, 27, 1981-1984. |
W. N. E. van Dijk-Wolthuis et al., "A new class of polymerizable dextrans with hydrolysable groups: hydroxyethyl methacrylated dextran with and without oligolactate spacer," Polymer, vol. 38, No. 25, 1997, pp. 6235-6242. |
Ward et al. "Thermoresponsive Polymers for Biomedical Applications," Polymers, Aug. 2011, 3, 1215-1242, Section 3.1. |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220125828A1 (en) * | 2015-07-24 | 2022-04-28 | Trimph Ip Pty Limited | Antiseptic polymer and synthesis thereof |
US11872245B2 (en) * | 2015-07-24 | 2024-01-16 | Trimph Ip Pty Limited | Antiseptic polymer and synthesis thereof |
US20180243469A1 (en) * | 2015-09-01 | 2018-08-30 | The University Of Sydney | Bioactive polymer for bone regeneration |
Also Published As
Publication number | Publication date |
---|---|
US20140357823A1 (en) | 2014-12-04 |
ES2627856T3 (en) | 2017-07-31 |
WO2013091001A1 (en) | 2013-06-27 |
EP2794701B1 (en) | 2017-03-08 |
WO2013091001A9 (en) | 2014-07-17 |
EP2794701A4 (en) | 2015-10-14 |
EP2794701A1 (en) | 2014-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9546235B2 (en) | Peptide-hydrogel composite | |
Gao et al. | Covalently Crosslinked hydrogels via step‐growth reactions: crosslinking chemistries, polymers, and clinical impact | |
Ziadlou et al. | Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs | |
ES2672510T3 (en) | Compositions and procedures for scaffolding | |
Yan et al. | Injectable in situ forming poly (l-glutamic acid) hydrogels for cartilage tissue engineering | |
Shu et al. | In situ crosslinkable hyaluronan hydrogels for tissue engineering | |
US20210093749A1 (en) | Bioactive polymer for bone regeneration | |
Bermejo-Velasco et al. | First aldol cross-linked hyaluronic acid hydrogel: fast and hydrolytically stable hydrogel with tissue adhesive properties | |
Jeong et al. | Supramolecular injectable hyaluronate hydrogels for cartilage tissue regeneration | |
Wei et al. | Biomimetic joint paint for efficient cartilage repair by simultaneously regulating cartilage degeneration and regeneration in pigs | |
CA3175014A1 (en) | Dynamic covalent hydrogels, precursors thereof and uses thereof | |
Zong et al. | Biodegradable high-strength hydrogels with injectable performance based on poly (l-glutamic acid) and gellan gum | |
Li et al. | Injectable, in situ self-cross-linking, self-healing poly (l-glutamic acid)/polyethylene glycol hydrogels for cartilage tissue engineering | |
Dvořáková et al. | Enzymatically cross-linked hydrogels based on synthetic poly (α-amino acid) s functionalized with RGD peptide for 3D mesenchymal stem cell culture | |
CN112812329A (en) | Hydrogel of sulfhydryl modified macromolecular compound and preparation method and application thereof | |
Li et al. | Effect of Polymer Topology and Residue Chirality on Biodegradability of Polypeptide Hydrogels | |
Xiao et al. | Customization of an Ultrafast Thiol–Norbornene Photo-Cross-Linkable Hyaluronic Acid–Gelatin Bioink for Extrusion-Based 3D Bioprinting | |
JP2023508917A (en) | biocompatible material | |
Paul | Gelatin-methacryloyl-chitosan (GelMA-CS) hydrogel: a novel orthopaedic bioadhesive | |
Arif | Hyaluronic acid-based hydrogel for tissue engineering | |
Holmes | Development of Biomimetic Hydrogels as Cell-Laden Devices for Muscle Regeneration | |
Campbell | Injectable biomimetic hydrogels for soft tissue repair | |
Kuang et al. | Polymeric hydrogels via click chemistry for regenerative engineering | |
Pande et al. | Harnessing Peptide-Based Hydrogels for Enhanced Cartilage Tissue Engineering | |
WO2023201397A1 (en) | A tissue conductive scaffolding material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE UNIVERSITY OF SYDNEY, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DEHGHANI, FARIBA;WEISS, ANTHONY;WEI, HUA;AND OTHERS;SIGNING DATES FROM 20130305 TO 20130306;REEL/FRAME:033146/0796 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: TRIMPH TECHNOLOGY PTY LIMITED, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE UNIVERSITY OF SYDNEY;REEL/FRAME:050164/0052 Effective date: 20190116 |
|
AS | Assignment |
Owner name: TRIMPH IP PTY LTD, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TRIMPH TECHNOLOGY PTY LIMITED;REEL/FRAME:049481/0625 Effective date: 20190612 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |