WO2017191810A1 - Flight altitude correction system and method for unmanned air vehicle - Google Patents

Flight altitude correction system and method for unmanned air vehicle Download PDF

Info

Publication number
WO2017191810A1
WO2017191810A1 PCT/JP2017/016895 JP2017016895W WO2017191810A1 WO 2017191810 A1 WO2017191810 A1 WO 2017191810A1 JP 2017016895 W JP2017016895 W JP 2017016895W WO 2017191810 A1 WO2017191810 A1 WO 2017191810A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
altitude
flight
flight altitude
increase
Prior art date
Application number
PCT/JP2017/016895
Other languages
French (fr)
Japanese (ja)
Inventor
和雄 市原
Original Assignee
株式会社プロドローン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロドローン filed Critical 株式会社プロドローン
Publication of WO2017191810A1 publication Critical patent/WO2017191810A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/06Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels by using barometric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports

Definitions

  • the present invention relates to a flight altitude correction system and method for an unmanned aerial vehicle.
  • a barometric sensor is generally used to detect the flight altitude.
  • the unmanned aircraft converts the output value of the barometric sensor into a barometric altitude, and controls the flight altitude of the aircraft based on it.
  • altitude detection means for example, distance sensors using lasers, infrared rays, or ultrasonic waves can be used, but these distance sensors measure the relative distance between the ground surface and the aircraft, and are uneven on the ground surface. If there is, it is easily affected. For this reason, in order to fly the sky above the uneven ground surface while maintaining a certain altitude on an unmanned aircraft using these distance sensors, it is necessary to separately provide a mechanism for offsetting the disturbance in the measured altitude due to the unevenness of the ground surface.
  • the atmospheric pressure detected by the barometric sensor is not always constant with respect to altitude, and changes due to changes in weather conditions, topography, or atmospheric tides.
  • the effect is small in a relatively short time flight or a visual flight by manual control, the error in flight altitude due to the change in atmospheric pressure becomes more prominent as the flight distance and flight time become longer.
  • the problem to be solved by the present invention is that when an unmanned aerial vehicle controls its flight altitude based on the output value of a barometric pressure sensor, a flight capable of suppressing a disturbance in the flight altitude of the unmanned aircraft due to a change in atmospheric pressure.
  • An altitude correction system and a flight altitude correction method are provided.
  • an unmanned aerial vehicle flight altitude correction system includes an unmanned aerial vehicle including a rotor blade and a barometric pressure sensor, a reference unit including a barometric pressure sensor and installed at a fixed position, and a barometric pressure sensor of the reference unit
  • the reference value storage means for storing the atmospheric pressure value or the atmospheric pressure altitude calculated from the atmospheric pressure value as the reference value, and the initial value that is the reference value at the time of takeoff of the unmanned aircraft is acquired from the reference value storage means
  • An increase / decrease value acquisition means for calculating an increase / decrease value that is a difference between the current value and the current reference value, and a barometric pressure value of the unmanned aircraft pressure sensor or a barometric altitude calculated from the barometric pressure value
  • a correction value acquisition means for calculating a correction value that is a value obtained by adding the increase / decrease value calculated by the increase / decrease value acquisition means to the actual machine value.
  • a reference device for detecting changes in atmospheric pressure is installed in the landing port of the unmanned aircraft and in the flight area to detect changes (increase / decrease) in atmospheric pressure since the unmanned aircraft took off. It becomes possible to do.
  • the pressure value and pressure altitude (actual aircraft value) recognized by the unmanned aircraft based on this increase / decrease value, the increase / decrease in the actual aircraft value at the same altitude can be offset and the flight altitude of the unmanned aircraft can be kept constant. It becomes possible.
  • the reference value storage means includes the reference value, the acquisition time of the reference value, and the reference device that has acquired the reference value.
  • the increase / decrease value acquisition unit further calculates an adjustment increase / decrease value that is a value obtained by leveling the increase / decrease value of each reference device, and the correction value acquisition unit, The correction value may be calculated in consideration of the adjustment increase / decrease value calculated by the increase / decrease value acquisition unit.
  • the conditions for changing atmospheric pressure are different between the takeoff point of an unmanned aerial vehicle and a location far away from it. Therefore, as the unmanned aircraft moves away from the reference device, the difference between the atmospheric pressure increase / decrease value of the area where the unmanned aircraft actually flies and the atmospheric pressure increase / decrease value of the area where the reference device is installed are different. The flight altitude may be disturbed.
  • multiple reference units are installed at appropriate intervals, and an adjusted increase / decrease value obtained by averaging the increase / decrease values of the atmospheric pressure in each reference unit (for example, based on the simple average of these increase / decrease values or the distance between the unmanned aircraft and each reference unit)
  • an adjusted increase / decrease value obtained by averaging the increase / decrease values of the atmospheric pressure in each reference unit (for example, based on the simple average of these increase / decrease values or the distance between the unmanned aircraft and each reference unit)
  • the server device further includes a server device capable of communicating with the unmanned aircraft and the reference devices, and the server device includes an installation coordinate storage unit that stores latitude and longitude of an installation position of each reference device, and the reference value storage unit.
  • the increase / decrease value acquisition means the unmanned aircraft is capable of acquiring flight coordinates that are the latitude and longitude of its own aircraft, the correction value acquisition means, and the flight altitude adjustment
  • the server device is capable of acquiring the flight coordinates from the unmanned aerial vehicle and calculating a distance between the unmanned aircraft and each reference device, and the increase / decrease value acquiring unit is configured to adjust the adjustment.
  • the increase / decrease value may be weighted according to the distance between the unmanned aircraft and each reference device.
  • a server device that can communicate with each reference device and unmanned aircraft is installed.
  • the server device collects the increase / decrease values of each reference device and calculates the adjustment increase / decrease value.
  • the flight altitude correction system can be centrally managed with the server device as the center. This also makes it possible to minimize the functions of each reference device and unmanned aerial vehicle, and facilitate the expansion of the scale and number of systems.
  • the increase / decrease value acquisition means calculates the adjustment increase / decrease value, the actual change in atmospheric pressure and the adjustment increase / decrease value are obtained by weighting each increase / decrease value according to the distance between each reference device and the unmanned aircraft. Can be more accurately matched.
  • an unmanned aircraft flight altitude correction system includes an unmanned aerial vehicle including a rotary wing and an atmospheric pressure sensor, a reference device including an atmospheric pressure sensor and installed at a fixed position,
  • the altitude value storage means for storing the altitude of the installation position or the value obtained by converting the altitude into an atmospheric pressure value as the altitude value, and the atmospheric pressure value calculated from the atmospheric pressure value of the atmospheric pressure sensor of the reference device or the atmospheric pressure value as a reference value
  • altitude error acquisition means for acquiring the altitude value of the reference device from the altitude value storage means and calculating an altitude error which is a difference between the altitude value and the reference value of the reference device, and the unmanned aircraft
  • the barometric pressure value of the barometric pressure sensor or the barometric altitude calculated from the barometric pressure value is used as an actual machine value, a correction value that is a value obtained by adding the altitude error calculated by the altitude error acquisition means to the actual machine value is obtained.
  • a reference device for detecting the error between the actual altitude (true altitude) and the barometric altitude is provided at the landing port of the unmanned aircraft and in the flight area. By adjusting based on this, the error between the true altitude of the unmanned aircraft and the actual aircraft value can be eliminated. As a result, the flight altitude of the unmanned aircraft can be kept constant based on the true altitude.
  • the above-mentioned correction of the flight altitude using the increase / decrease value of the atmospheric pressure from the time of take-off of the unmanned aircraft is intended to cancel the relative and temporal change relative to the atmospheric pressure at the time of take-off,
  • the altitude (actual altitude) at the installation position of the reference device is registered in advance in the altitude value storage means, so that the unmanned aerial vehicle has a mechanism similar to that described above and is based on the true altitude. Can be maintained at a constant flight altitude.
  • the elevation value storage means stores the individual identification information of the reference device that acquired the elevation value together with the elevation value, and the altitude error
  • the acquisition unit further calculates an adjustment altitude error that is a value obtained by leveling the altitude error of each reference device, and the flight altitude adjustment unit calculates the adjustment calculated by the altitude error acquisition unit with respect to the actual aircraft value. It is preferable to calculate the correction value in consideration of altitude error.
  • the conditions for changing atmospheric pressure are different between the takeoff point of an unmanned aerial vehicle and a location far away from it. Therefore, as the unmanned aerial vehicle moves away from the reference unit, the altitude error of the area where the unmanned aircraft actually flies and the altitude error of the area where the reference unit is installed will differ, and the flight altitude of the unmanned aircraft will be disturbed. May occur.
  • multiple reference units are installed at appropriate intervals, and an adjustment altitude error obtained by leveling the altitude error of each reference unit (for example, a simple average of these adjustment altitude errors or a weighted average based on the distance between the unmanned aircraft and each reference unit) )
  • an adjustment altitude error obtained by leveling the altitude error of each reference unit for example, a simple average of these adjustment altitude errors or a weighted average based on the distance between the unmanned aircraft and each reference unit
  • the server device further includes a server device capable of communicating with the unmanned aircraft and each reference device, the server device having an installation coordinate storage unit storing latitude and longitude of an installation position of each reference device, and obtaining the altitude error.
  • the unmanned aircraft includes flight coordinate detection means capable of acquiring flight coordinates that are the latitude and longitude of the own aircraft, the correction value acquisition means, and the flight altitude adjustment means,
  • the server device can acquire the flight coordinates from the unmanned aircraft and calculate a distance between the unmanned aircraft and each reference device, and the increase / decrease value acquisition unit can calculate the adjustment altitude error.
  • the altitude error may be weighted according to the distance between the unmanned aircraft and each reference device.
  • a server device capable of communicating with each reference device and the unmanned aircraft is provided.
  • the server device collects the altitude error of each reference device and calculates the adjusted altitude error.
  • the unmanned aircraft obtains the adjusted altitude obtained from the server device.
  • the flight altitude correction system can be centrally managed with the server device as the center. This also makes it possible to minimize the functions of each reference device and unmanned aerial vehicle, and facilitate the expansion of the scale and number of systems.
  • the altitude error acquisition means calculates the adjusted altitude error
  • the altitude error is weighted according to the distance between each reference device and the unmanned aircraft, thereby changing the actual atmospheric pressure change and the adjusted altitude error. Can be more accurately matched.
  • the unmanned aircraft flight altitude correction method of the present invention includes an unmanned aircraft including a rotor blade and an atmospheric pressure sensor, and an unmanned aircraft using an atmospheric pressure sensor and a reference device installed at a fixed position.
  • An aircraft flight altitude correction method wherein an initial value that is the reference value at the time of take-off of the unmanned aircraft when the pressure value of the pressure sensor of the reference device or the pressure height calculated from the pressure value is used as a reference value
  • an increase / decrease value acquisition process for calculating an increase / decrease value that is a difference between the initial value and the current reference value, and the increase / decrease with respect to the atmospheric pressure value of the atmospheric pressure sensor of the unmanned aircraft or the atmospheric pressure altitude calculated from the atmospheric pressure value.
  • a flight altitude adjustment process for controlling the flight altitude of the unmanned aircraft based on a value including the value.
  • the unmanned aircraft flight altitude correction method of the present invention includes an unmanned aircraft including a rotor blade and an atmospheric pressure sensor, and an unmanned aircraft using an atmospheric pressure sensor and a reference device installed at a fixed position.
  • An aircraft flight altitude correction method comprising: an altitude of an installation position of the reference device or a value obtained by converting the altitude into an atmospheric pressure value, and an atmospheric pressure value of the reference sensor or an atmospheric pressure altitude calculated from the atmospheric pressure value.
  • Altitude error acquisition processing for calculating an altitude error as a difference, and a flight altitude of the unmanned aircraft based on a pressure value of the pressure sensor of the unmanned aircraft or a pressure altitude calculated from the atmospheric pressure value and the altitude error And a flight altitude adjustment process for controlling the aircraft.
  • a reference device for detecting the error between the actual altitude (true altitude) and the barometric altitude is provided at the landing port of the unmanned aircraft and in the flight area.
  • the flight altitude correction system and method of the unmanned aircraft when the unmanned aircraft controls the flight altitude based on the output value of the atmospheric pressure sensor, the flight altitude of the unmanned aircraft due to the change in atmospheric pressure. It becomes possible to suppress the disturbance.
  • the unmanned aircraft flight altitude correction system and the unmanned aircraft flight altitude correction method according to the following embodiments are examples in which a multicopter flies outdoors at a constant flight altitude.
  • FIG. 1 is a schematic diagram showing an overall configuration of a flight altitude correction system S1 according to the first embodiment.
  • FIG. 2 is a block diagram showing a functional configuration of the flight altitude correction system S1.
  • the flight altitude correction system S1 of the present embodiment includes a multicopter 11 that is an unmanned aerial vehicle, a reference device 60 installed on the ground in the vicinity of a landing port of the multicopter 11, and a control terminal that transmits an operator's instruction to the multicopter 11. 91.
  • the aircraft of the multicopter 11 performs wireless communication with the flight controller 20, the rotor R that is a plurality of rotor blades, the ESC 43 (Electric Speed Controller) that controls the rotation of the rotor R, the operator's control terminal 91, and the reference device 60.
  • a wireless transceiver 33 and a battery 51 as a power supply source are mounted.
  • Each rotor R is composed of a motor 41 which is a DC motor and a blade 42 attached to its output shaft.
  • the ESC 43 is connected to the motor 41 of the rotor R and is a device that rotates the motor 41 at a speed instructed by the flight controller FC.
  • the multicopter 11 in this embodiment is a quadcopter on which four rotors R are mounted.
  • the number of rotors R is not limited to four, and required flight stability, allowable cost, etc.
  • the rotor R can be appropriately changed from a helicopter having two rotors (one rotor R if the tail rotor is excluded) to a rotor R having eight octocopters, or more.
  • the flight controller FC includes a control device 20 that is a microcontroller.
  • the control device 20 includes a CPU 21 that is a central processing unit, a memory 22 that is a storage device such as a ROM and a RAM, and an ESC 43, and the rotational speed and rotational speed of each motor 41 (hereinafter collectively referred to simply as “rotation”). It includes a PWM controller 23 that controls the number.
  • the flight controller FC further includes a flight control sensor group 31 and a GPS receiver 32 (hereinafter also referred to as “sensor or the like”), which are connected to the control device 20.
  • the flight control sensor group 31 of the multicopter 11 in this embodiment includes an acceleration sensor, an angular velocity sensor, a geomagnetic sensor (orientation sensor), and the like.
  • the control device 20 can acquire position information of the own aircraft including the latitude and longitude of the flight, the flight altitude, and the azimuth angle of the nose, in addition to the tilt and rotation of the aircraft, using these sensors and the like.
  • the memory 22 of the control device 20 stores a flight control program FCP, which is a program in which a flight control algorithm for controlling the attitude and basic flight operation of the multicopter 11 during flight is installed.
  • the flight control program FCP adjusts the number of rotations of each rotor R based on the current position acquired from a sensor or the like according to an instruction from an operator (control terminal 91), and corrects the attitude and position disturbance of the fuselage. 11 is made to fly.
  • the operation of the multicopter 11 in the present embodiment is basically performed by the operator using the operation terminal 91. For example, parameters such as latitude / longitude, flight altitude, and flight route are previously stored in the flight control program FCP. It is also possible to register and fly autonomously to the destination (hereinafter referred to as “autopilot”).
  • the multicopter 11 in this embodiment has an advanced flight control function.
  • the unmanned aircraft according to the present invention may be any aircraft that includes a barometric sensor and can perform general flight operation using a rotary wing and autonomous adjustment of the flight altitude of the aircraft.
  • Other configurations and functions are only added. Is something.
  • an unmanned aerial vehicle of the present invention includes an airframe that does not include a geomagnetic sensor or GPS 32 and does not have an autopilot function.
  • the reference device 60 is a beacon that includes an atmospheric pressure sensor 61 and a wireless transmitter / receiver 62 and detects and transmits an atmospheric pressure value at the place where the reference device 60 is disposed.
  • the reference device 60 transmits the acquired atmospheric pressure value to the multicopter 11 using a short-range wireless communication protocol such as BLE (Bluetooth Low Energy) (registered trademark).
  • BLE Bluetooth Low Energy
  • the power supply to the atmospheric pressure sensor 61 and the wireless transmitter / receiver 62 may be performed using a battery (not shown) or by wired power feeding.
  • the reference device 60 in the present embodiment is configured to transmit the detected atmospheric pressure value to the multicopter 11 in a cycle of, for example, once every several seconds to several tens of seconds.
  • the reference device 60 can store the atmospheric pressure value transmitted to the multicopter 11 last time, and the atmospheric pressure value may be transmitted only when a change of a predetermined threshold value or more occurs with respect to the atmospheric pressure value. Or it is good also as a structure which transmits an atmospheric
  • the detected atmospheric pressure value may be converted into the atmospheric pressure altitude based on the international standard atmosphere or the like and then transmitted to the multicopter 11.
  • the reference device 60 in the present embodiment is fixed to the ground surface in the vicinity of the landing port of the multicopter 11.
  • the installation position of the reference device 60 is not strictly limited, it is desirable that the reference apparatus 60 be installed in a place that is affected by an atmospheric pressure change equivalent to the atmospheric pressure change at the flight position of the multicopter 11.
  • the reference object 60 need not always be on the ground surface, and may be attached to a natural object such as a house, a building, a utility pole, a fence, or a tree provided on the ground, or a tree.
  • the control terminal 91 in the present embodiment is a so-called propo that transmits an operator's instruction to the multicopter 11.
  • the multicopter 11 has a reference value storage area VS (reference value storage means) that stores a reference value v that is an atmospheric pressure value detected by the atmospheric pressure sensor 61 of the reference device 60.
  • the reference value v at the time of takeoff of the multicopter 11 is registered as the initial value i in the reference value storage area VS.
  • the flight control program FCP of the multicopter 11 has a flight altitude adjustment program FAP (flight altitude adjusting means) as a subprogram for managing the flight altitude of the multicopter 11. Further, the flight altitude adjustment program FAP has, as its subprograms, an increase / decrease value acquisition program DP (increase / decrease value acquisition means) and a correction value acquisition program CP (correction value acquisition means).
  • the increase / decrease value acquisition program DP acquires the initial value i from the reference value storage area VS, compares the initial value i with the current value p, which is the current reference value v of the reference device 60, and determines these values. An increase / decrease value d which is a difference is calculated.
  • the correction value acquisition program CP calculates a correction value c that is a value obtained by adding or subtracting the increase / decrease value d calculated by the increase / decrease value acquisition program DP to the actual machine value m that is the atmospheric pressure value detected by the atmospheric pressure sensor 311 of the multicopter 11.
  • the correction value c is an actual machine value m that offsets the change in atmospheric pressure that has occurred since the multicopter 11 took off. That is, the present barometric altitude of the multicopter 11 with reference to the atmospheric pressure at the time of takeoff of the multicopter 11.
  • the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c calculated by the correction value acquisition program CP.
  • the flight altitude adjustment program FAP has a maintenance altitude storage area KS in which a maintenance altitude kh that is an atmospheric pressure value that the multicopter 11 should reach and maintain is stored.
  • the maintenance altitude storage area KS in this embodiment is defined as a variable of the flight altitude adjustment program FAP.
  • the correction value c when the flight altitude change instruction from the operator's control terminal 91 is stopped is stored as the maintenance altitude kh.
  • the multicopter 11 when the multicopter 11 is caused to fly by an autopilot, a value obtained by converting a predetermined flight altitude at that point into an atmospheric pressure value is stored.
  • the flight altitude adjustment program FAP cooperates with the flight control program FCP to control the flight altitude of the multicopter 11 so that the correction value c of the multicopter 11 matches the maintenance altitude kh.
  • FIG. 3 is a flowchart showing the procedure of the flight altitude correction method of the multicopter 11.
  • the flight altitude correction method of the multicopter 11 using the flight altitude correction system S1 is roughly composed of an initial value setting process S1, an increase / decrease value acquisition process S2, a correction value calculation process S3, and a flight altitude adjustment process S4.
  • the multicopter 11 acquires the reference value v of the reference device 60 at the time of takeoff, and stores the reference value v as the initial value i in the reference value storage area VS.
  • the value acquisition program DP acquires the current value p from the reference device 60, and calculates the increase / decrease value d, which is the difference between the increase / decrease initial value i and the current value p.
  • the correction value acquisition program CP calculates a correction value c that is a value obtained by adding / subtracting the increase / decrease value d to / from the actual machine value m.
  • the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c.
  • flight altitude change instruction when an instruction to raise or lower the flight altitude of the multicopter 11 is given from the operator's control terminal 91 or autopilot processing (hereinafter, such instruction is referred to as “flight altitude change instruction”).
  • the flight altitude adjustment program FAP changes the flight altitude of the multicopter 11 using the correction value c as the current flight altitude.
  • the flight altitude adjustment program FAP updates the maintenance altitude storage area KS with the correction value c at that time as the maintenance altitude ka.
  • the flight altitude change instruction from the autopilot process is a value obtained by the flight altitude adjustment program FAP converting a pre-designated flight altitude at that point into a barometric pressure value as the maintenance altitude ka in the maintenance altitude storage area KS.
  • the flight altitude of the multicopter 11 is adjusted so that the maintenance altitude ka is reached and maintained. After taking off, the multicopter 11 repeats these increase / decrease value acquisition processing S2 to flight altitude adjustment processing S4 until landing.
  • FIG. 4 is an explanatory diagram showing how the flight altitude of the multicopter 11 is maintained by the flight altitude correction system S1.
  • the reference value v that is the atmospheric pressure value detected by the atmospheric pressure sensor 61 of the reference device 60 was 1013.0 hPa when the multicopter 11 took off.
  • the multicopter 11 stores the reference value v as an initial value i in the reference value storage area VS (initial value setting process S1).
  • the atmospheric pressure altitude difference of 1 hPa is simply set to 10 m, and similarly, the atmospheric pressure altitude difference of 0.1 hPa is set to 1 m.
  • the operator manually raises the multicopter 11 as it is for 10 m, and instructs the multicopter 11 to autonomously hover at that position (the instruction from the operator's control terminal 91 is stopped).
  • the actual machine value m which is the atmospheric pressure value detected by the atmospheric pressure sensor 311 of the multicopter 11, was 1012.0 hPa.
  • the current value p which is the reference value v of the reference device 60 at this time, is the same as the initial value i. It remained 1013.0 hPa.
  • the multicopter 11 is the difference between the initial value i (1013.0 hPa) and the current value p (1013.0 hPa) at that time (current value p ⁇ initial value i) by the increase / decrease value acquisition program DP after takeoff.
  • Increase / decrease value d (0 hPa) is calculated (increase / decrease value acquisition process S2)
  • correction value c is a value obtained by adding increase / decrease value d (0 hPa) to actual machine value m (1012.0 hPa) by correction value acquisition program CP.
  • (1012.0 hPa) is calculated (correction value calculation processing S3).
  • the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c (1012.0 hPa) (flight altitude adjustment process S4).
  • the multicopter 11 flies while repeating these increase / decrease value acquisition processing S2 to flight altitude adjustment processing S4.
  • the increase / decrease value d remains 0 hPa. Therefore, at this time, the actual machine value m and the correction value c are both the same value (1012.0 hPa).
  • the flight altitude adjustment program FAP When the flight altitude change instruction from the operator's control terminal 91 is stopped (when hovering is started), the flight altitude adjustment program FAP maintains the correction altitude c (1012.0 hPa) as the maintenance altitude ka. Store in the storage area KS. Thereafter, in the flight altitude adjustment process S4, the flight altitude adjustment program FAP operates to maintain this maintenance altitude ka until an instruction to change the flight altitude is given from the operator's control terminal 91 or the autopilot process.
  • the multicopter 11 calculates an increase / decrease value d (-1 hPa) between the initial value i (1013.0 hPa) and the current value p (1012.0 hPa) at that time by the increase / decrease value acquisition program DP (current value).
  • p-initial value i) increase / decrease value acquisition processing S2.
  • the correction value acquisition program CP corrects the actual machine value m (1011.0 hPa) by adding / subtracting the increase / decrease value d (-1 hPa) (adding the value obtained by inverting the sign of the increase / decrease value d to the actual machine value m).
  • a value c (1012.0 hPa) is calculated (correction value calculation processing S3). Then, the flight altitude of the multicopter 11 is adjusted by the flight altitude adjustment program FAP based on the correction value c (1012.0 hPa) (flight altitude adjustment processing S4). However, since the correction value c (1012.0 hPa) coincides with the maintenance altitude ka (1012.0 hPa) at this time, the flight altitude adjustment program FAP does not change the actual flight altitude of the multicopter 11 until then. Maintain the flight altitude.
  • the flight altitude adjustment program FAP uses the correction value c (1012.0 hPa) as a reference for the multicopter 11. Change flight altitude.
  • the correction value acquisition program CP of this embodiment simply adds or subtracts the increase / decrease value d with respect to the actual machine value m when calculating the correction value c, but the method of calculating the correction value c is not limited to this. .
  • “adding an increase / decrease value to an actual machine value” means that, when calculating the correction value c, the disturbance of the actual machine value m due to a change in atmospheric pressure is removed or reduced by a mathematical method using the increase / decrease value d. That means.
  • each value (initial value i, current value p, increase / decrease value d, actual machine value m, correction value c, and maintenance altitude ka) is acquired and calculated in the form of atmospheric pressure value. It is also possible to convert each of these values into a barometric altitude format for handling.
  • the flight altitude correction system S1 in the present embodiment is provided with the reference device 60 for detecting the change in atmospheric pressure separately from the multicopter 11, so that the atmospheric pressure from the time when the multicopter 11 takes off can be detected. It is possible to detect changes. Then, by adjusting the atmospheric pressure value recognized by the multicopter 11 based on the change in the atmospheric pressure, it is possible to cancel the increase and decrease of the atmospheric pressure value at the same altitude and keep the flight altitude of the multicopter 11 constant. ing.
  • FIG. 5 is a schematic diagram showing an overall configuration of a flight altitude correction system S2 according to the second embodiment of the present invention.
  • FIG. 6 is a block diagram showing a functional configuration of the flight altitude correction system S2.
  • components having the same or similar functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
  • the flight altitude correction system S2 can communicate with the multicopter 11 which is an unmanned aerial vehicle, two reference devices 60 (A, B) installed on the ground at a distance from each other, and the multicopter 11 and these reference devices 60.
  • the server device 70 is configured.
  • the aircraft of the multicopter 11 is equipped with a flight controller 20, a rotor R that is a plurality of rotor blades, a wireless transceiver 33 that performs wireless communication with the server device 70, and a battery 51 that is a power supply source.
  • the flight control program FCP in the present embodiment adjusts the rotational speed of each rotor R based on the current position acquired from a sensor or the like in accordance with autopilot processing or an instruction from the server device 70, and corrects the attitude and position disturbance of the aircraft.
  • the multicopter 11 is allowed to fly while flying.
  • the multicopter 11 includes a GPS receiver 32 that is a flight coordinate detection means capable of acquiring flight coordinates that are the latitude and longitude of the aircraft.
  • Each of the plurality of reference devices 60 includes a barometric pressure sensor 61 and a wireless transmitter / receiver 62, and is a beacon that detects a barometric pressure value at a place where the barometer is disposed and transmits the detected barometric pressure value.
  • the reference unit 60 converts the acquired atmospheric pressure value to the server device 70 via the Internet via a mobile communication network such as 3G / HSPA (High Speed Packet Access), LTE (Long Term Evolution), or Wimax (Worldwide Interoperability for Microwave Access). Send to.
  • the communication method between the server device and the reference device 60 is not particularly limited.
  • the atmospheric pressure value may be transmitted by FTTH (Fiber To The Home) using the ADSL or ADSL (Asymmetric Digital Subscriber Line) using the public switched telephone network.
  • the reference device 60 in the present embodiment is configured to transmit the detected atmospheric pressure value to the server device 70 in a cycle of, for example, once every several seconds to several tens of seconds.
  • the reference device 60 can store the atmospheric pressure value transmitted to the server device 70 last time, and a new atmospheric pressure value is transmitted only when a change of a predetermined threshold value or more occurs with respect to the atmospheric pressure value.
  • the detected atmospheric pressure value may be converted to atmospheric pressure altitude based on the international standard atmosphere or the like and then transmitted to the server device 70.
  • the server device 70 is a general-purpose computer including a CPU 71 that is a central processing unit, a memory 22 that includes a RAM that is a main storage device, an HDD that is an auxiliary storage device, and the like.
  • the server device 70 has an installation coordinate storage area LS (installation coordinate storage means) in which the latitude and longitude of the installation position of each reference device 60 are stored in advance in the memory 72.
  • the server device 70 can acquire the flight coordinates detected by the GPS receiver 32 of the multicopter 11 and specify the distance between the multicopter 11 and each reference device 60.
  • the server device 70 also has a reference value storage area VS (reference value storage means) that stores a reference value v that is an atmospheric pressure value detected by the atmospheric pressure sensor 61 of each reference device 60.
  • the reference value storage area VS of the present embodiment stores the reference value v, the acquisition time of the reference value v, and the individual identification information of the reference device 60 that has detected the reference value v.
  • the memory 72 further stores an increase / decrease value acquisition program DP (increase / decrease value acquisition means).
  • the increase / decrease value acquisition program DP acquires the initial value i, which is the reference value v of each reference device 60 at the takeoff time of the multicopter 11, from the reference value storage area VS, and the initial value i and the current value of each reference device 60.
  • the current value p that is the reference value v is compared, and an increase / decrease value d that is the difference between these values is calculated for each reference device 60.
  • the increase / decrease value acquisition program DP in the present embodiment further calculates an adjustment increase / decrease value ad that is a value obtained by weighted average of these increase / decrease values d according to the distance between each reference device 60 and the multicopter 11.
  • the flight control program FCP of the multicopter 11 has a flight altitude adjustment program FAP (flight altitude adjusting means) as a subprogram for managing the flight altitude of the multicopter 11. Further, the flight altitude adjustment program FAP has a correction value acquisition program CP (correction value acquisition means) as its subprogram.
  • the correction value acquisition program CP calculates a correction value c that is a value obtained by adding or subtracting the adjustment increase / decrease value ad to the actual machine value m that is the atmospheric pressure value detected by the atmospheric pressure sensor 311 of the multicopter 11. That is, the correction value c is an actual machine value m that offsets the change in atmospheric pressure that has occurred since the multicopter 11 took off. That is, the present barometric altitude of the multicopter 11 with reference to the atmospheric pressure at the time of takeoff of the multicopter 11.
  • the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c calculated by the correction value acquisition program CP.
  • the memory 22 of the multicopter 11 has a maintenance altitude storage area KS in which a maintenance altitude kh, which is an atmospheric pressure value that the multicopter 11 should reach and maintain, is stored.
  • a maintenance altitude kh which is an atmospheric pressure value that the multicopter 11 should reach and maintain
  • the flight altitude adjustment program FAP cooperates with the flight control program FCP to control the flight altitude of the multicopter 11 so that the correction value c of the multicopter 11 matches the maintenance altitude kh.
  • FIG. 7 is a flowchart showing the procedure of the flight altitude correction method of the multicopter 11.
  • the flight altitude correction method in the present embodiment is roughly composed of a take-off process S0, a reference value acquisition process S1, an adjustment increase / decrease value acquisition process S2, a correction value calculation process S3, and a flight altitude adjustment process S4.
  • the multicopter 11 takes off from the departure / arrival port in accordance with an autopilot process or an instruction from the server device 70.
  • the server device 70 acquires the reference value v from each reference device 60, and together with these reference values v, the acquisition time and the individual identification information of the reference device 60 that has detected the reference value v are used as reference values. Accumulate in the storage area VS.
  • the increase / decrease value acquisition process S ⁇ b> 2 the increase / decrease value acquisition program DP of the server device 70 uses the initial value i, which is the reference value v of each reference device 60 at the takeoff time of the multicopter 11, and the current atmospheric pressure value of each reference device 60.
  • a certain current value p is acquired, and an increase / decrease value d, which is the difference between the initial value i and the current value p, is calculated for each reference device 60. Further, the increase / decrease value acquisition program DP acquires the current flight coordinates from the multicopter 11 and adjusts the increase / decrease value ad which is a value obtained by weighted averaging the increase / decrease values d according to the distance between each reference device 60 and the multicopter 11. Is calculated.
  • the correction value acquisition program CP of the multicopter 11 acquires the adjustment increase / decrease value ad from the server device 70, and calculates a correction value c that is a value obtained by adding / subtracting the adjustment increase / decrease value ad to the actual machine value m. calculate.
  • the flight altitude adjustment program FAP of the multicopter 11 adjusts the flight altitude of the multicopter 11 based on the correction value c.
  • the flight altitude adjustment program FAP controls the flight altitude of the multicopter 11 so that the correction value c calculated by the correction value acquisition program CP matches the maintenance altitude kh in cooperation with the flight control program FCP.
  • the multicopter 11 repeats these reference value acquisition processing S1 to flight altitude adjustment processing S4 after taking off until landing.
  • FIGS. 8 and 9 are diagrams illustrating a method of calculating the adjustment increase / decrease value.
  • FIG. 8 shows an example in which two reference devices are installed
  • FIG. 9 shows a case in which three reference devices are installed. It is an example.
  • two reference devices A and B are installed in the vicinity of the flight coordinates of the multicopter.
  • the ratio of the distance la from the reference device A to the distance lb from the reference device B is 1: 2. It is in the position to become.
  • the increase / decrease values A and B of these reference devices A and B have an increase / decrease value A of ⁇ 0.6 hPa and an increase / decrease value B of 0.6 hPa.
  • an adjusted increase / decrease value D AB which is a weighted average of the increase / decrease values A and B is calculated using the following equation.
  • three reference devices A, B, and C are installed in the vicinity of the flight coordinates of the multicopter. These three reference devices A, B, and C need to be arranged so as to surround the multicopter. Adjusted increase / decrease values D AB , D of D AB , D Bc , D Ac , which are intersections of the perpendiculars taken from the flight coordinates of the multicopter, with respect to the straight lines connecting these three reference devices A, B, C to each other bc, D Ac is adjusted decrease value D AB is 0.6HPa adjustment change amount D bc is 0.3HPa, adjustment variate D Ac is -0.3HPa.
  • 0.15 hPa is derived as the adjustment increase / decrease value D ABc by the above equation 2.
  • the adjustment increase / decrease value for each combination of these reference devices is obtained, and the adjustment increase / decrease value is obtained by regarding each adjustment increase / decrease value as the increase / decrease value.
  • An example adjustment increase / decrease value is derived.
  • the increase / decrease value acquisition program DP calculates the adjusted increase / decrease value ad using the above Equation 1.
  • the method of calculating the adjustment increase / decrease value ad is not limited to Equation 1 and Equation 2.
  • “equalizing the increase / decrease value” means that one increase / decrease value from the increase / decrease value d of the plurality of base stations 60 so that the error between the increase / decrease of the adjustment increase / decrease value ad and the actual change in atmospheric pressure becomes as small as possible. This refers to obtaining (adjusted increase / decrease value ad), and for example, simple averaging, more complicated regression calculation, and other mathematical methods can be used.
  • FIG. 10 is an explanatory diagram showing how the flight altitude of the multicopter 11 is maintained by the flight altitude correction system S2.
  • the multicopter 11 is set to the maintenance altitude ka (1012 hPa (10 m)) by the autopilot process or the server device 70, and takes off from the departure / arrival port (takeoff process S0).
  • the reference value v which is the atmospheric pressure value detected by the atmospheric pressure sensor 61 of each reference device 60, was 1013.0 hPa.
  • the server device 70 accumulates the reference value v at the time of take-off of the multicopter 11 in the reference value storage area VS together with the acquisition time and the individual identification information of each reference device 60 (reference value acquisition processing S1).
  • the multicopter 11 rises 10m as it is and starts hovering at that position. At this time, the actual machine value m of the multicopter 11 was 1012.0 hPa. In addition, there is no change in atmospheric pressure between the time when the multicopter 11 takes off and the start of hovering, and the current value p of each reference device 60 at this time is the time at which the multicopter 11 takes off. It remained the same 1013.0 hPa as the reference value v (initial value i).
  • the increase / decrease value acquisition program DP of the server device 70 sets the initial value i (1013.0 hPa, 1013.0 hPa) and the current value p (1013.0 hPa, 1013) for each reference device 60 after the multicopter 11 takes off. .0 hPa), an increase / decrease value d (0 hPa, 0 hPa), which is a difference (current value p ⁇ initial value i), is calculated, and the current flight coordinates are obtained from the multicopter 11. An adjustment increase / decrease value ad (0 hPa) of d is calculated (increase / decrease value acquisition processing S2).
  • the correction value acquisition program CP of the multicopter 11 acquires the adjustment increase / decrease value ad (0 hPa) from the server device 70, and is a correction that is a value obtained by adding the adjustment increase / decrease value ad (0 hPa) to the actual machine value m (1012.0 hPa).
  • a value c (1012.0 hPa) is calculated (correction value calculation processing S3).
  • the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 so that the correction value c (1012.0 hPa) matches the maintenance altitude ka (flight altitude adjustment processing S4).
  • the flight altitude correction system S2 causes the multicopter 11 to fly while repeating these reference value acquisition processing S1 to flight altitude adjustment processing S4.
  • the atmospheric pressure has not changed so far, and the adjusted increase / decrease value ad remains at 0 hPa. Therefore, at this time, the actual machine value m and the correction value c are both the same value (1012.0 hPa).
  • the server device 70 increases or decreases between the initial value i (1013.0 hPa, 1013.0 hPa) of each reference device 60 and the current value p (1012.4 hPa, 1013.6 hPa) after the change in atmospheric pressure by the increase / decrease value acquisition program DP.
  • the value d ( ⁇ 0.6 hPa, 0.6 hPa) is calculated (current value p—initial value i), and further, the adjusted increase / decrease value ad ( ⁇ 0.2 hPa) of these increase / decrease values d is calculated according to Equation 1 (increase / decrease). Value acquisition process S2).
  • the correction value acquisition program CP of the multicopter 11 acquires the adjustment increase / decrease value ad ( ⁇ 0.2 hPa) from the server device 70, and adjusts this adjustment increase / decrease value ad ( ⁇ 0. 2hPa) is added or subtracted (a value obtained by inverting the sign of the adjustment increase / decrease value ad is added to the actual machine value m) to calculate a correction value c (1012.0 hPa) (correction value calculation processing S3). Then, the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 with reference to the correction value c (1012.0 hPa) (flight altitude adjustment processing S4).
  • the flight altitude adjustment program FAP does not change the actual flight altitude of the multicopter 11 until then. Maintain the flight altitude.
  • the flight altitude adjustment program FAP uses the correction value c (1012.0 hPa). Is used as a reference to change the flight altitude of the multicopter 11.
  • each value (initial value i, current value p, increase / decrease value d, adjustment increase / decrease value ad, actual machine value m, correction value c, and maintenance altitude ka) is acquired and calculated in the form of an atmospheric pressure value.
  • the flight altitude correction system S2 includes the server device 70 that can communicate with each reference device 60 and the multicopter 11, and the server device 70 increases or decreases the value of each reference device 60. d is collected to calculate the adjustment increase / decrease value ad, and the multicopter 11 is configured to control the flight altitude based on the adjustment increase / decrease value ad acquired from the server device 70, so that the server device 70 is the center.
  • the flight altitude correction system S2 can be managed in an integrated manner. This also minimizes the functions of each reference device 60 and the multicopter 11 and facilitates expansion of the scale and number of systems.
  • the increase / decrease value acquisition program DP calculates the adjusted increase / decrease value ad
  • the actual change in atmospheric pressure is obtained by weighting each increase / decrease value d according to the distance between each reference device 60 and the multicopter 11. And the adjustment increase / decrease value ad can be more accurately matched.
  • the atmospheric pressure change conditions are different between the departure and arrival port of the multicopter 11 and a place far away from the departure and arrival port. Therefore, as the multicopter 11 moves away from the reference device 60, a difference occurs between the increase / decrease value d of the area where the multicopter 11 actually flies and the increase / decrease value d of the area where the reference device 60 is installed. There is a risk that the flight altitude of 11 may be disturbed.
  • a plurality of reference devices 60 are installed at appropriate intervals, and the actual machine value m of the multicopter 11 is adjusted based on an adjustment increase / decrease value ad obtained by weighted average of the increase / decrease values d of these reference devices 60. By doing so, it is possible to suppress the disturbance of the flight altitude of the multicopter 11 over a wide area.
  • the server device 70 always calculates an adjustment increase / decrease value ad from these two increase / decrease values d.
  • the server device 70 acquires the flight coordinates of the multicopter 11 to identify the nearest two to three reference devices 60, and sets the adjustment increase / decrease value ad from only the increase / decrease value d of these nearest reference devices 60. It is good also as a structure to calculate.
  • FIG. 11 is a schematic diagram showing an overall configuration of a flight altitude correction system S3 according to the third embodiment.
  • FIG. 12 is a block diagram showing a functional configuration of the flight altitude correction system S3.
  • components having the same or similar functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
  • the basic configurations of the multicopter 11, the reference device 60, and the control terminal 91 of the flight altitude correction system S3 are the same as the flight altitude correction system S1 of the first embodiment.
  • the multicopter 11 has an elevation value storage area ES (elevation value storage means) that stores an elevation value a that is an elevation at the installation position of the reference device 60.
  • ES elevation value storage means
  • the flight control program FCP of the multicopter 11 has a flight altitude adjustment program FAP (flight altitude adjusting means) as a subprogram for managing the flight altitude of the multicopter 11. Furthermore, the flight altitude adjustment program FAP has an altitude error acquisition program EP (altitude error acquisition means) and a correction value acquisition program CP (correction value acquisition means) as its subprograms.
  • the altitude error acquisition program EP compares the altitude value a of the reference device 60 with the current value p, which is a value obtained by converting the atmospheric pressure value detected by the atmospheric pressure sensor 61 of the reference device 60 into the atmospheric pressure altitude, and calculates these values. An altitude error e which is a difference is calculated.
  • the correction value acquisition program CP calculates a correction value c that is a value obtained by adding or subtracting an altitude error e to an actual machine value m that is a value obtained by converting the atmospheric pressure value detected by the atmospheric pressure sensor 311 of the multicopter 11 into an atmospheric pressure altitude.
  • the correction value c is an actual machine value m that offsets an error between the actual altitude (hereinafter, such altitude is also referred to as “true altitude”) and the atmospheric pressure altitude. That is, the current flight altitude of the multicopter 11 with reference to the true altitude.
  • the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c calculated by the correction value acquisition program CP.
  • the flight altitude adjustment program FAP has a maintenance altitude storage area KS in which a maintenance altitude kh that is a flight altitude to be reached and maintained by the multicopter 11 is stored.
  • a correction value c when the flight altitude change instruction from the operator's control terminal 91 is stopped is stored as the maintenance altitude kh.
  • the flight altitude previously designated at that point is stored.
  • the flight altitude adjustment program FAP cooperates with the flight control program FCP to control the flight altitude of the multicopter 11 so that the correction value c of the multicopter 11 matches the maintenance altitude kh.
  • FIG. 13 is a flowchart showing the procedure of the flight altitude correction method of the multicopter 11.
  • the flight altitude correction method of the multicopter 11 using the flight altitude correction system S3 is roughly composed of a takeoff process S1, an altitude error acquisition process S2, a correction value calculation process S3, and a flight altitude adjustment process S4.
  • the multicopter 11 takes off from the departure / arrival port according to an instruction from the operator's control terminal 91 or an autopilot process.
  • the altitude error acquisition program EP acquires the current value p from the reference device 60, and calculates an altitude error e that is the difference between the altitude value a and the current value p.
  • the correction value acquisition program CP calculates a correction value c that is a value obtained by adding or subtracting the altitude error e to the actual machine value m.
  • the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c.
  • the flight altitude adjustment program FAP follows the instruction to set the correction value c to the current flight altitude.
  • the flight altitude of the multicopter 11 is changed.
  • the flight altitude adjustment program FAP updates the maintenance altitude storage area KS with the correction value c at that time as the maintenance altitude ka.
  • the flight altitude change instruction from the autopilot process means that the flight altitude adjustment program FAP sets the flight altitude specified in advance at the point as the maintenance altitude ka in the maintenance altitude storage area KS, and sets the altitude to the maintenance altitude ka. It means adjusting the flight altitude of the multicopter 11 to reach and maintain this.
  • the multicopter 11 repeats these altitude error acquisition processing S2 to flight altitude adjustment processing S4 after taking off until landing.
  • FIG. 14 is an explanatory diagram showing how the flight altitude of the multicopter 11 is maintained by the flight altitude correction system S3.
  • the reference value v which is a value obtained by converting the atmospheric pressure value detected by the atmospheric pressure sensor 61 of the reference device 60 into an atmospheric pressure altitude, was 0 m when the multicopter 11 took off (takeoff processing). S1).
  • the operator manually raises the multicopter 11 as it is for 10 m, and instructs the multicopter 11 to autonomously hover at that position (the instruction from the operator's control terminal 91 is stopped).
  • the actual machine value m detected by the atmospheric pressure sensor 311 of the multicopter 11 was 10 m.
  • the current value p which is the reference value v of the reference device 60 at this time, is the same as the altitude value a. It remained at 0 m.
  • the multicopter 11 uses the altitude error acquisition program EP to obtain an altitude error e () which is the difference between the altitude value a (0 m) and the current value p (0 m) at that time (current value p ⁇ altitude value a). 0m) is calculated (altitude error acquisition process S2), and the correction value c (10m), which is a value obtained by adding the altitude error e (0m) to the actual machine value m (10m), is calculated by the correction value acquisition program CP. (Correction value calculation process S3). Then, the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c (10 m) (flight altitude adjustment processing S4).
  • the multicopter 11 flies while repeating these altitude error acquisition processing S2 to flight altitude adjustment processing S4. However, since the multicopter 11 has taken off, the atmospheric pressure has not changed so far, and the altitude error e remains at 0 m. Therefore, at this time, the actual machine value m and the correction value c are both the same value (10 m).
  • the flight altitude adjustment program FAP When the flight altitude change instruction from the operator's control terminal 91 is stopped (when the hovering is started), the flight altitude adjustment program FAP maintains the correction altitude c (10 m) at that time as the maintenance altitude ka. Store in KS. Thereafter, in the flight altitude adjustment process S4, the flight altitude adjustment program FAP operates to maintain this maintenance altitude ka until an instruction to change the flight altitude is given from the operator's control terminal 91 or the autopilot process.
  • the atmospheric pressure decreased by 1 hPa
  • the current value p of the reference device 60 increased to 10 m
  • the actual aircraft value m increased to 20 m (the actual flight altitude of the multicopter 11 is the actual aircraft value m. The same as when 10 m was 10 m).
  • the multicopter 11 calculates an altitude error e (10 m) between the altitude value a (0 m) and the current value p (10 m) at that time by the altitude error acquisition program EP (current value p-elevation value a (Altitude error acquisition process S2). Then, the altitude error e (10 m) is added to or subtracted from the actual machine value m (20 m) by the correction value acquisition program CP (a value obtained by inverting the sign of the altitude error e is added to the actual machine value m). 10m) is calculated (correction value calculation processing S3).
  • the flight altitude of the multicopter 11 is adjusted by the flight altitude adjustment program FAP based on the correction value c (10 m) (flight altitude adjustment processing S4).
  • the correction value c (10 m) coincides with the maintenance altitude ka (10 m) at this time
  • the flight altitude adjustment program FAP does not change the actual flight altitude of the multicopter 11 and the previous flight altitude is changed. maintain.
  • the flight altitude adjustment program FAP uses the correction value c (10 m) as a reference for the flight altitude of the multicopter 11. To change.
  • the correction value acquisition program CP of this embodiment simply adds or subtracts the altitude error e from the actual machine value m when calculating the correction value c, but the method of calculating the correction value c is not limited to this. .
  • “adding an altitude error to the actual machine value” means that when calculating the correction value c, the disturbance of the actual machine value m due to a change in atmospheric pressure is removed or reduced by a mathematical method using the altitude error e. That means.
  • each value (elevation value a, reference value v, current value p, altitude error e, actual machine value m, correction value c, and maintenance altitude ka) is acquired and calculated in the form of atmospheric pressure altitude.
  • each of these values can also be handled in the form of an atmospheric pressure value.
  • the flight altitude correction system S3 in the present embodiment is provided with the reference device 60 for detecting the altitude error e, which is an error between the true altitude and the barometric altitude, in addition to the multicopter 11.
  • the altitude error e which is an error between the true altitude and the barometric altitude
  • the flight altitude of the multicopter 11 can be kept constant based on the true altitude.
  • the correction of the flight altitude using the increase / decrease value d in the previous embodiment is only for the purpose of canceling the change in atmospheric pressure relative to the atmospheric pressure at the time of takeoff.
  • the altitude (true altitude) at the installation position of the reference device 60 is registered in advance in the altitude value storage area ES, so that the same mechanism as in the previous embodiment is used and the true altitude is used as a reference. It is possible to keep the multicopter 11 at a constant flight altitude.
  • FIG. 15 is a schematic diagram showing an overall configuration of a flight altitude correction system S4 according to the fourth embodiment of the present invention.
  • FIG. 16 is a block diagram showing a functional configuration of the flight altitude correction system S4.
  • components having the same or similar functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
  • the basic configurations of the multicopter 11, the reference device 60, and the server device 70 of the flight altitude correction system S4 are the same as those of the flight altitude correction system S2 of the second embodiment.
  • the reference device 60 of the present embodiment converts the atmospheric pressure value detected by the atmospheric pressure sensor 61 into an atmospheric pressure altitude based on the international standard atmosphere or the like, and transmits the converted atmospheric pressure altitude to the server device 70 as a reference value v.
  • the server device 70 has an installation coordinate storage area LS (installation coordinate storage means) in which the latitude and longitude of the installation position of each reference device 60 are stored in advance in the memory 72.
  • the server device 70 can acquire the flight coordinates detected by the GPS receiver 32 of the multicopter 11 and specify the distance between the multicopter 11 and each reference device 60.
  • the memory 72 has an altitude value storage area ES (elevation value storage means) in which an altitude value a which is an altitude at the installation position of each reference device 60 is stored in advance.
  • ES elevation value storage means
  • the memory 72 further stores an altitude error acquisition program EP (altitude error acquisition means).
  • the altitude error acquisition program EP compares the altitude value a of each reference device 60 with the current value p, which is the current reference value v of the reference device 60, and calculates an altitude error e that is the difference between these values. .
  • the altitude error acquisition program EP in the present embodiment further calculates an adjusted altitude error ae that is a value obtained by weighted averaging the altitude errors e in accordance with the distance between each reference device 60 and the multicopter 11.
  • the adjustment altitude error ae is calculated in the same manner as the adjustment increase / decrease value ad in the second embodiment.
  • the altitude error acquisition program EP calculates the adjusted altitude error ae using Equation 1 above.
  • the method of calculating the adjustment altitude error ae is not limited to Equation 1 and Equation 2.
  • “leveling the altitude error” means that the altitude error from the altitude errors e of the plurality of base stations 60 is reduced so that the error between the increase / decrease in the adjustment altitude error ae and the actual change in atmospheric pressure becomes as small as possible. This refers to obtaining (adjusted altitude error ae), and for example, simple averaging, more complicated regression calculation, and other mathematical methods can be used.
  • the flight control program FCP of the multicopter 11 has a flight altitude adjustment program FAP (flight altitude adjusting means) as a subprogram for managing the flight altitude of the multicopter 11. Further, the flight altitude adjustment program FAP has a correction value acquisition program CP (correction value acquisition means) as its subprogram.
  • the correction value acquisition program CP calculates the correction value c by adding / subtracting the adjustment altitude error ae to / from the actual machine value m that is a value obtained by converting the atmospheric pressure value detected by the atmospheric pressure sensor 311 of the multicopter 11 into the atmospheric pressure altitude.
  • the correction value c is an actual machine value m that offsets an error between the actual altitude (hereinafter, such altitude is also referred to as “true altitude”) and the atmospheric pressure altitude. That is, the current flight altitude of the multicopter 11 with reference to the true altitude.
  • the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c calculated by the correction value acquisition program CP.
  • the memory 22 of the multicopter 11 has a maintenance altitude storage area KS in which a maintenance altitude kh that is a barometric altitude to be reached and maintained by the multicopter 11 is stored.
  • a maintenance altitude storage area KS In the maintenance altitude storage area KS, a specified altitude at that point on the flight path of the autopilot or an altitude interactively instructed from the server device 70 is stored as the maintenance altitude kh.
  • the flight altitude adjustment program FAP cooperates with the flight control program FCP to control the flight altitude of the multicopter 11 so that the correction value c of the multicopter 11 matches the maintenance altitude kh.
  • FIG. 17 is a flowchart showing the procedure of the flight altitude correction method of the multicopter 11.
  • the flight altitude correction method in the present embodiment is roughly composed of a takeoff process S1, an adjustment altitude error acquisition process S2, a correction value calculation process S3, and a flight altitude adjustment process S4.
  • the multicopter 11 takes off from the departure / arrival port according to an autopilot process or an instruction from the server device 70.
  • the altitude error acquisition program EP of the server device 70 acquires the current value p of each reference device 60, and calculates the altitude error e which is the difference between the current value p and the altitude value a. Further, the altitude error acquisition program EP acquires the current flight coordinates from the multicopter 11, and adjusts the altitude error ae, which is a value obtained by weighted averaging the altitude errors e according to the distance between each reference device 60 and the multicopter 11. Is calculated.
  • the correction value acquisition program CP of the multicopter 11 acquires the adjustment altitude error ae from the server device 70, and calculates a correction value c that is a value obtained by adding or subtracting the adjustment altitude error ae to the actual machine value m. calculate.
  • the flight altitude adjustment program FAP of the multicopter 11 adjusts the flight altitude of the multicopter 11 based on the correction value c.
  • the flight altitude adjustment program FAP controls the flight altitude of the multicopter 11 so that the correction value c calculated by the correction value acquisition program CP matches the maintenance altitude kh in cooperation with the flight control program FCP.
  • the multicopter 11 repeats these increase / decrease value acquisition processing S2 to flight altitude adjustment processing S4 until landing.
  • FIG. 18 is an explanatory diagram showing how the flight altitude of the multicopter 11 is maintained by the flight altitude correction system S4.
  • the multicopter 11 takes off from the departure / arrival port with the maintenance altitude ka set to 10 m by the autopilot process or the server device 70 (takeoff process S1).
  • the multicopter 11 rises 10m as it is and starts hovering at that position. No change in atmospheric pressure occurred between the take-off of the multicopter 11 and the start of hovering, and the current value p of each reference device 60 at this time was 0 m, which is the same as the altitude value a. .
  • the altitude error acquisition program EP of the server device 70 determines the difference between the altitude value a (0 m, 0 m) and the current value p (0 m, 0 m) at that time (currently) for each reference device 60 after the multicopter 11 takes off.
  • the altitude error e (0m, 0m) which is the value p ⁇ the altitude value a), is calculated, and the current flight coordinates are obtained from the multicopter 11, and the adjusted altitude error ae (0m ) Is calculated (altitude error acquisition process S2).
  • the correction value acquisition program CP of the multicopter 11 acquires the adjustment altitude error ae (0 m) from the server device 70, and the correction value c is a value obtained by adding the adjustment increase / decrease value ad (0 m) to the actual machine value m (10 m). (10 m) is calculated (correction value calculation processing S3). Then, the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 so that the correction value c (10 m) matches the maintenance altitude ka (flight altitude adjustment processing S4).
  • the flight altitude correction system S4 causes the multicopter 11 to fly while repeating these altitude error acquisition processing S2 to flight altitude adjustment processing S4. However, since the multicopter 11 has taken off, the atmospheric pressure has not changed so far, and the adjustment altitude error ae remains 0 m. Therefore, at this time, the actual machine value m and the correction value c are both the same value (10 m).
  • the server device 70 uses the altitude error acquisition program EP to obtain an altitude error e () between the altitude value a (0 m, 0 m) of each reference device 60 and the current value p (0.6 m, ⁇ 0.6 m) after the change in atmospheric pressure. 0.6m, ⁇ 0.6m) (current value p ⁇ initial value i), and further, an adjustment altitude error ae (0.2m) of these increase / decrease values d is calculated by the above equation 1 (altitude error acquisition process S2). ).
  • the correction value acquisition program CP of the multicopter 11 acquires the adjusted altitude error ae (0.2 m) from the server device 70, and this adjusted altitude error ae (0.2 m) with respect to the actual machine value m (10.2 m).
  • a correction value c (10 m) that is a value obtained by adding and subtracting (adding a value obtained by inverting the sign of the adjustment altitude error ae to the actual machine value m) is calculated (correction value calculation process S3).
  • the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c (10 m) (flight altitude adjustment processing S4).
  • the flight altitude adjustment program FAP does not change the actual flight altitude of the multicopter 11 and the previous flight altitude is changed. maintain.
  • the flight altitude adjustment program FAP uses the correction value c (10 m) as a reference. The flight altitude of the multicopter 11 is changed.
  • each value (elevation value a, reference value v, current value p, altitude error e, adjustment altitude error ae, actual machine value m, correction value c, and maintenance altitude ka) is converted into a barometric altitude format.
  • each of these values can be handled in the form of atmospheric pressure values.
  • the effect of using the altitude value a for calculating the leveling altitude error ae is the same as that of the third embodiment.
  • the height error e is weighted according to the distance between each reference device 60 and the multicopter 11. The effect is the same as in the second embodiment.
  • the server device 70 always calculates the adjusted height error ae from these two height errors e.
  • the server device 70 acquires the flight coordinates of the multicopter 11 and identifies the two to three reference devices 60 nearest to it, and the adjustment height error ae is determined from only the height error e of these nearest reference devices 60. It is good also as a structure to calculate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The present invention addresses the problem of providing a flight altitude correction system and a flight altitude correction method with which turbulence in the flight altitude of an unmanned air vehicle due to air pressure changes can be minimized when the unmanned air vehicle controls the flight altitude on the basis of an output value of an air pressure sensor. This problem is solved by an unmanned air vehicle provided with an air pressure sensor, a flight altitude correction system for said unmanned air vehicle, and a method in which said flight altitude correction system is used, said flight altitude correction system being characterized by being provided with: a reference device; a reference value storage means that stores reference values including, e.g., an air pressure value of the reference device; an increasing/decreasing value acquisition means that compares the reference value during takeoff of the unmanned air vehicle and the current reference value, and calculates an increasing/decreasing value; a correction value acquisition means that calculates a correction value that accounts for the increasing/decreasing value and that is applied to, e.g., the air pressure value of the unmanned air vehicle; and a flight altitude regulation means that controls the flight altitude of the unmanned air vehicle on the basis of the correction value.

Description

無人航空機の飛行高度補正システムおよび方法Flight altitude correction system and method for unmanned aerial vehicles
 本発明は、無人航空機の飛行高度補正システムおよび方法に関する。 The present invention relates to a flight altitude correction system and method for an unmanned aerial vehicle.
 従来、産業用無人ヘリコプターに代表される小型の無人航空機は、機体が高価で入手困難なうえ、安定して飛行させるためには操作に熟練が必要とされるものであった。しかし近年、無人航空機の姿勢制御や自律飛行に用いられるセンサ類およびソフトウェアの改良が大きく進んだことで、無人航空機の操作性が著しく向上し、また、高性能な機体を安価に入手できるようになった。こうした背景から現在、特に小型のマルチコプターについては、趣味目的だけでなく、広範な分野における種々のミッションへの応用が試行されている。 Conventionally, small unmanned aerial vehicles represented by industrial unmanned helicopters have been expensive and difficult to obtain and require skill to operate in order to fly stably. However, recent improvements in sensors and software used for attitude control and autonomous flight of unmanned aerial vehicles have greatly improved the operability of unmanned aerial vehicles and made it possible to obtain high-performance aircraft at low cost. became. From such a background, the application of a small multi-copter to various missions in a wide range of fields is now being tried, not only for hobby purposes.
特開2014-021036号公報JP 2014-021036 A 特開2011-210148号公報JP 2011-210148 A 特開2011-117818号公報JP 2011-117818 A 特開2013-212832号公報JP 2013-212832 A
 このような無人航空機では、その飛行高度を検知するために気圧センサが一般に用いられている。無人航空機は気圧センサの出力値を気圧高度に換算し、それに基づいて機体の飛行高度を制御する。その他の高度検知手段としては、例えばレーザーや赤外線、または超音波を用いた距離センサも利用可能であるが、これら距離センサは地表と機体との相対的な距離を測るものであり、地表に凹凸がある場合にはその影響を受けやすい。そのため、これら距離センサを用いて、平坦でない地表の上空を無人航空機に一定の高度を保たせつつ飛行させるためには、地表の凹凸による測定高度の乱れを相殺する仕組みを別途備える必要がある。 In such unmanned aerial vehicles, a barometric sensor is generally used to detect the flight altitude. The unmanned aircraft converts the output value of the barometric sensor into a barometric altitude, and controls the flight altitude of the aircraft based on it. As other altitude detection means, for example, distance sensors using lasers, infrared rays, or ultrasonic waves can be used, but these distance sensors measure the relative distance between the ground surface and the aircraft, and are uneven on the ground surface. If there is, it is easily affected. For this reason, in order to fly the sky above the uneven ground surface while maintaining a certain altitude on an unmanned aircraft using these distance sensors, it is necessary to separately provide a mechanism for offsetting the disturbance in the measured altitude due to the unevenness of the ground surface.
 一方、気圧センサを用いた場合でも、気圧センサが検知する大気圧は高度に対して常に一定ではなく、気象条件の変化や、地形、または大気潮汐などにより変化する。比較的短時間のフライトや手動操縦による有視界飛行ではその影響は小さいが、飛行距離・飛行時間が長くなるにつれ、この気圧変化による飛行高度の誤差は顕著となる。 On the other hand, even when a barometric sensor is used, the atmospheric pressure detected by the barometric sensor is not always constant with respect to altitude, and changes due to changes in weather conditions, topography, or atmospheric tides. Although the effect is small in a relatively short time flight or a visual flight by manual control, the error in flight altitude due to the change in atmospheric pressure becomes more prominent as the flight distance and flight time become longer.
 上記問題に鑑み、本発明が解決しようとする課題は、無人航空機が気圧センサの出力値に基づいてその飛行高度を制御するときに、気圧変化による無人航空機の飛行高度の乱れを抑制可能な飛行高度補正システム、および、飛行高度補正方法を提供することにある。 In view of the above problems, the problem to be solved by the present invention is that when an unmanned aerial vehicle controls its flight altitude based on the output value of a barometric pressure sensor, a flight capable of suppressing a disturbance in the flight altitude of the unmanned aircraft due to a change in atmospheric pressure. An altitude correction system and a flight altitude correction method are provided.
 上記課題を解決するため、本発明の無人航空機の飛行高度補正システムは、回転翼および気圧センサを備える無人航空機と、気圧センサを備え固定位置に設置された基準器と、前記基準器の気圧センサの気圧値または該気圧値から算出した気圧高度を基準値として記憶する基準値記憶手段と、前記無人航空機の離陸時における前記基準値である初期値を前記基準値記憶手段から取得し、該初期値と現在の前記基準値である現在値とを比較してこれらの差である増減値を算出する増減値取得手段と、前記無人航空機の気圧センサの気圧値または該気圧値から算出した気圧高度を実機値としたときに、該実機値に対して、前記増減値取得手段が算出した前記増減値を加味した値である補正値を算出する補正値取得手段と、前記補正値に基づいて前記無人航空機の飛行高度を制御する飛行高度調節手段と、を備えることを特徴とする。 In order to solve the above problems, an unmanned aerial vehicle flight altitude correction system according to the present invention includes an unmanned aerial vehicle including a rotor blade and a barometric pressure sensor, a reference unit including a barometric pressure sensor and installed at a fixed position, and a barometric pressure sensor of the reference unit The reference value storage means for storing the atmospheric pressure value or the atmospheric pressure altitude calculated from the atmospheric pressure value as the reference value, and the initial value that is the reference value at the time of takeoff of the unmanned aircraft is acquired from the reference value storage means, An increase / decrease value acquisition means for calculating an increase / decrease value that is a difference between the current value and the current reference value, and a barometric pressure value of the unmanned aircraft pressure sensor or a barometric altitude calculated from the barometric pressure value Based on the correction value, a correction value acquisition means for calculating a correction value that is a value obtained by adding the increase / decrease value calculated by the increase / decrease value acquisition means to the actual machine value. A flight altitude adjusting means for controlling the serial flight altitude unmanned aircraft, characterized in that it comprises a.
 無人航空機とは別に、大気圧の変化を検知するための基準器を無人航空機の発着ポートや飛行エリア内などに設けることにより、無人航空機の離陸時からの大気圧の変化(増減値)を検知することが可能となる。そして、無人航空機が認識する気圧値や気圧高度(実機値)をこの増減値に基づいて調整することにより、同一高度における実機値の増減を相殺し、無人航空機の飛行高度を一定に保つことが可能となる。 Separate from unmanned aerial vehicles, a reference device for detecting changes in atmospheric pressure is installed in the landing port of the unmanned aircraft and in the flight area to detect changes (increase / decrease) in atmospheric pressure since the unmanned aircraft took off. It becomes possible to do. By adjusting the pressure value and pressure altitude (actual aircraft value) recognized by the unmanned aircraft based on this increase / decrease value, the increase / decrease in the actual aircraft value at the same altitude can be offset and the flight altitude of the unmanned aircraft can be kept constant. It becomes possible.
 また、前記基準器は、互いに距離を空けて複数設置されており、前記基準値記憶手段には、前記基準値とともに、該基準値の取得時刻、および、該基準値を取得した前記基準器の個体識別情報が記憶され、前記増減値取得手段はさらに、前記各基準器の前記増減値を均した値である調整増減値を算出し、前記補正値取得手段は、前記実機値に対して、前記増減値取得手段が算出した前記調整増減値を加味して前記補正値を算出する構成としてもよい。 In addition, a plurality of the reference devices are installed at a distance from each other, and the reference value storage means includes the reference value, the acquisition time of the reference value, and the reference device that has acquired the reference value. Individual identification information is stored, the increase / decrease value acquisition unit further calculates an adjustment increase / decrease value that is a value obtained by leveling the increase / decrease value of each reference device, and the correction value acquisition unit, The correction value may be calculated in consideration of the adjustment increase / decrease value calculated by the increase / decrease value acquisition unit.
 無人航空機の離陸地点と、そこから遠く離れた場所とでは、互いに大気圧の変化条件が異なっている。そのため、無人航空機が基準器から遠ざかるにつれて、実際に無人航空機が飛行しているエリアの大気圧の増減値と、基準器が設置されたエリアの大気圧の増減値とに違いが生じ、無人航空機の飛行高度に乱れが生じるおそれがある。そこで、基準器を適当な間隔で複数設置し、これら各基準器における大気圧の増減値を均した調整増減値(例えばこれら増減値の単純平均や、無人航空機と各基準器との距離に基づく加重平均)に基づいて無人航空機の実機値に調整することにより、無人航空機の飛行高度の乱れを広範なエリアにわたって抑えることが可能となる。 The conditions for changing atmospheric pressure are different between the takeoff point of an unmanned aerial vehicle and a location far away from it. Therefore, as the unmanned aircraft moves away from the reference device, the difference between the atmospheric pressure increase / decrease value of the area where the unmanned aircraft actually flies and the atmospheric pressure increase / decrease value of the area where the reference device is installed are different. The flight altitude may be disturbed. Therefore, multiple reference units are installed at appropriate intervals, and an adjusted increase / decrease value obtained by averaging the increase / decrease values of the atmospheric pressure in each reference unit (for example, based on the simple average of these increase / decrease values or the distance between the unmanned aircraft and each reference unit) By adjusting to the actual value of the unmanned aircraft based on the weighted average), it is possible to suppress the flight altitude disturbance of the unmanned aircraft over a wide area.
 また、前記無人航空機および前記各基準器と通信可能なサーバ装置をさらに備え、前記サーバ装置は、前記各基準器の設置位置の緯度および経度が記憶された設置座標記憶手段、前記基準値記憶手段、および、前記増減値取得手段を有しており、前記無人航空機は、自機の緯度および経度である飛行座標を取得可能な飛行座標取得手段、前記補正値取得手段、および、前記飛行高度調節手段を有しており、前記サーバ装置は、前記無人航空機から前記飛行座標を取得して、前記無人航空機と前記各基準器との距離を算出可能であり、前記増減値取得手段は、前記調整増減値を算出するときに、前記無人航空機と前記各基準器との距離に応じて前記各増減値に重み付けをする構成としてもよい。 The server device further includes a server device capable of communicating with the unmanned aircraft and the reference devices, and the server device includes an installation coordinate storage unit that stores latitude and longitude of an installation position of each reference device, and the reference value storage unit. And the increase / decrease value acquisition means, the unmanned aircraft is capable of acquiring flight coordinates that are the latitude and longitude of its own aircraft, the correction value acquisition means, and the flight altitude adjustment The server device is capable of acquiring the flight coordinates from the unmanned aerial vehicle and calculating a distance between the unmanned aircraft and each reference device, and the increase / decrease value acquiring unit is configured to adjust the adjustment. When calculating the increase / decrease value, the increase / decrease value may be weighted according to the distance between the unmanned aircraft and each reference device.
 各基準器と無人航空機との間にこれらと通信可能なサーバ装置を設け、サーバ装置が各基準器の増減値を収集して調整増減値を算出し、無人航空機はサーバ装置から取得した調整増減値に基づいてその飛行高度を制御する構成とすることにより、サーバ装置を中心として飛行高度補正システムを一元的に管理することが可能となる。またこれにより、各基準器と無人航空機が備える機能を最小限に抑えることができ、システムの規模や数の拡張が容易となる。さらに、増減値取得手段が調整増減値を算出するときに、各基準器と無人航空機との距離に応じて各増減値に重みづけを行うことにより、実際の大気圧の変化と調整増減値とをより正確に一致させることが可能となる。 A server device that can communicate with each reference device and unmanned aircraft is installed. The server device collects the increase / decrease values of each reference device and calculates the adjustment increase / decrease value. By adopting a configuration in which the flight altitude is controlled based on the value, the flight altitude correction system can be centrally managed with the server device as the center. This also makes it possible to minimize the functions of each reference device and unmanned aerial vehicle, and facilitate the expansion of the scale and number of systems. Further, when the increase / decrease value acquisition means calculates the adjustment increase / decrease value, the actual change in atmospheric pressure and the adjustment increase / decrease value are obtained by weighting each increase / decrease value according to the distance between each reference device and the unmanned aircraft. Can be more accurately matched.
 また、上記課題を解決するため、本発明の無人航空機の飛行高度補正システムは、回転翼および気圧センサを備える無人航空機と、気圧センサを備え固定位置に設置された基準器と、前記基準器の設置位置の標高または該標高を気圧値に変換した値を標高値として記憶する標高値記憶手段と、前記基準器の気圧センサの気圧値または該気圧値から算出した気圧高度を基準値としたときに、前記基準器の前記標高値を前記標高値記憶手段から取得し、該標高値と、該基準器の前記基準値との差である高度誤差を算出する高度誤差取得手段と、前記無人航空機の気圧センサの気圧値または該気圧値から算出した気圧高度を実機値としたときに、該実機値に対して、前記高度誤差取得手段が算出した前記高度誤差を加味した値である補正値を算出する補正値取得手段と、前記補正値に基づいて該無人航空機の飛行高度を制御する飛行高度調節手段と、を備えることを特徴とする。 In order to solve the above problems, an unmanned aircraft flight altitude correction system according to the present invention includes an unmanned aerial vehicle including a rotary wing and an atmospheric pressure sensor, a reference device including an atmospheric pressure sensor and installed at a fixed position, When the altitude value storage means for storing the altitude of the installation position or the value obtained by converting the altitude into an atmospheric pressure value as the altitude value, and the atmospheric pressure value calculated from the atmospheric pressure value of the atmospheric pressure sensor of the reference device or the atmospheric pressure value as a reference value And altitude error acquisition means for acquiring the altitude value of the reference device from the altitude value storage means and calculating an altitude error which is a difference between the altitude value and the reference value of the reference device, and the unmanned aircraft When the barometric pressure value of the barometric pressure sensor or the barometric altitude calculated from the barometric pressure value is used as an actual machine value, a correction value that is a value obtained by adding the altitude error calculated by the altitude error acquisition means to the actual machine value is obtained. Calculation That a correction value acquisition means, characterized in that it comprises a flight altitude adjusting means for controlling the altitude of the wireless human aircraft based on the correction value.
 無人航空機とは別に、実際の高度(真高度)と気圧高度との誤差を検知するための基準器を無人航空機の発着ポートや飛行エリア内などに設け、無人航空機の実機値をこの高度誤差に基づいて調整することにより、無人航空機の真高度と実機値との誤差を解消させることができる。そして、これにより、無人航空機の飛行高度を真高度に基づいて一定に保つことが可能となる。上述の、無人航空機の離陸時からの大気圧の増減値を使用した飛行高度の補正は、あくまで離陸時の大気圧に対する相対的かつ経時的な変化を相殺することを目的としたものであり、真高度を基準として無人航空機を一定の飛行高度に維持するためには、真高度を認識するための仕組みを別途備える必要がある。本発明では、基準器の設置位置における標高(実際の高度)を予め標高値記憶手段に登録しておくことにより、上で述べた構成と同様の仕組みで、かつ、真高度を基準として無人航空機を一定の飛行高度に保つことが可能となる。 Aside from the unmanned aircraft, a reference device for detecting the error between the actual altitude (true altitude) and the barometric altitude is provided at the landing port of the unmanned aircraft and in the flight area. By adjusting based on this, the error between the true altitude of the unmanned aircraft and the actual aircraft value can be eliminated. As a result, the flight altitude of the unmanned aircraft can be kept constant based on the true altitude. The above-mentioned correction of the flight altitude using the increase / decrease value of the atmospheric pressure from the time of take-off of the unmanned aircraft is intended to cancel the relative and temporal change relative to the atmospheric pressure at the time of take-off, In order to maintain the unmanned aircraft at a constant flight altitude based on the true altitude, it is necessary to provide a mechanism for recognizing the true altitude. In the present invention, the altitude (actual altitude) at the installation position of the reference device is registered in advance in the altitude value storage means, so that the unmanned aerial vehicle has a mechanism similar to that described above and is based on the true altitude. Can be maintained at a constant flight altitude.
 また、前記基準器は、互いに距離を空けて複数設置されており、前記標高値記憶手段には、前記標高値とともに該標高値を取得した前記基準器の個体識別情報が記憶され、前記高度誤差取得手段はさらに、前記各基準器の前記高度誤差を均した値である調整高度誤差を算出し、前記飛行高度調節手段は、前記実機値に対して、前記高度誤差取得手段が算出した前記調整高度誤差を加味して前記補正値を算出することが好ましい。 In addition, a plurality of the reference devices are installed at a distance from each other, and the elevation value storage means stores the individual identification information of the reference device that acquired the elevation value together with the elevation value, and the altitude error The acquisition unit further calculates an adjustment altitude error that is a value obtained by leveling the altitude error of each reference device, and the flight altitude adjustment unit calculates the adjustment calculated by the altitude error acquisition unit with respect to the actual aircraft value. It is preferable to calculate the correction value in consideration of altitude error.
 無人航空機の離陸地点と、そこから遠く離れた場所とでは、互いに大気圧の変化条件が異なっている。そのため、無人航空機が基準器から遠ざかるにつれて、実際に無人航空機が飛行しているエリアの高度誤差と、基準器が設置されたエリアの高度誤差とに違いが生じ、無人航空機の飛行高度に乱れが生じるおそれがある。そこで、基準器を適当な間隔で複数設置し、これら各基準器における高度誤差を均した調整高度誤差(例えばこれら調整高度誤差の単純平均や、無人航空機と各基準器との距離に基づく加重平均)に基づいて無人航空機の実機値を調整することにより、無人航空機の飛行高度の乱れを広範なエリアにわたって抑えることが可能となる。 The conditions for changing atmospheric pressure are different between the takeoff point of an unmanned aerial vehicle and a location far away from it. Therefore, as the unmanned aerial vehicle moves away from the reference unit, the altitude error of the area where the unmanned aircraft actually flies and the altitude error of the area where the reference unit is installed will differ, and the flight altitude of the unmanned aircraft will be disturbed. May occur. Therefore, multiple reference units are installed at appropriate intervals, and an adjustment altitude error obtained by leveling the altitude error of each reference unit (for example, a simple average of these adjustment altitude errors or a weighted average based on the distance between the unmanned aircraft and each reference unit) ) To adjust the actual aircraft value of the unmanned aerial vehicle, it is possible to suppress the flight altitude disturbance of the unmanned aircraft over a wide area.
 また、前記無人航空機および前記各基準器と通信可能なサーバ装置をさらに備え、前記サーバ装置は、前記各基準器の設置位置の緯度および経度が記憶された設置座標記憶手段、および前記高度誤差取得手段を有しており、前記無人航空機は、自機の緯度および経度である飛行座標を取得可能な飛行座標検出手段、前記補正値取得手段、および、前記飛行高度調節手段を有しており、前記サーバ装置は、前記無人航空機から前記飛行座標を取得して、前記無人航空機と前記各基準器との距離を算出可能であり、前記増減値取得手段は、前記調整高度誤差を算出するときに、前記無人航空機と前記各基準器との距離に応じて前記各高度誤差に重み付けをする構成としてもよい。 In addition, the server device further includes a server device capable of communicating with the unmanned aircraft and each reference device, the server device having an installation coordinate storage unit storing latitude and longitude of an installation position of each reference device, and obtaining the altitude error. The unmanned aircraft includes flight coordinate detection means capable of acquiring flight coordinates that are the latitude and longitude of the own aircraft, the correction value acquisition means, and the flight altitude adjustment means, The server device can acquire the flight coordinates from the unmanned aircraft and calculate a distance between the unmanned aircraft and each reference device, and the increase / decrease value acquisition unit can calculate the adjustment altitude error. The altitude error may be weighted according to the distance between the unmanned aircraft and each reference device.
 各基準器と無人航空機との間にこれらと通信可能なサーバ装置を設け、サーバ装置が各基準器の高度誤差を収集して調整高度誤差を算出し、無人航空機はサーバ装置から取得した調整高度誤差に基づいてその飛行高度を制御する構成とすることにより、サーバ装置を中心として飛行高度補正システムを一元的に管理することが可能となる。またこれにより、各基準器と無人航空機が備える機能を最小限に抑えることができ、システムの規模や数の拡張が容易となる。さらに、高度誤差取得手段が調整高度誤差を算出するときに、各基準器と無人航空機との距離に応じて各高度誤差に重みづけを行うことにより、実際の大気圧の変化と調整高度誤差とをより正確に一致させることが可能となる。 A server device capable of communicating with each reference device and the unmanned aircraft is provided. The server device collects the altitude error of each reference device and calculates the adjusted altitude error. The unmanned aircraft obtains the adjusted altitude obtained from the server device. By adopting a configuration in which the flight altitude is controlled based on the error, the flight altitude correction system can be centrally managed with the server device as the center. This also makes it possible to minimize the functions of each reference device and unmanned aerial vehicle, and facilitate the expansion of the scale and number of systems. Furthermore, when the altitude error acquisition means calculates the adjusted altitude error, the altitude error is weighted according to the distance between each reference device and the unmanned aircraft, thereby changing the actual atmospheric pressure change and the adjusted altitude error. Can be more accurately matched.
 また、上記課題を解決するため、本発明の無人航空機の飛行高度補正方法は、回転翼および気圧センサを備える無人航空機と、気圧センサを備え固定位置に設置された基準器と、を用いた無人航空機の飛行高度補正方法であって、前記基準器の気圧センサの気圧値または該気圧値から算出した気圧高度を基準値としたときに、前記無人航空機の離陸時における該基準値である初期値と、該初期値と現在の前記基準値との差である増減値を算出する増減値取得処理と、前記無人航空機の気圧センサの気圧値または該気圧値から算出した気圧高度に対して前記増減値を加味した値に基づいて該無人航空機の飛行高度を制御する飛行高度調節処理と、を含むことを特徴とする。 In order to solve the above-mentioned problem, the unmanned aircraft flight altitude correction method of the present invention includes an unmanned aircraft including a rotor blade and an atmospheric pressure sensor, and an unmanned aircraft using an atmospheric pressure sensor and a reference device installed at a fixed position. An aircraft flight altitude correction method, wherein an initial value that is the reference value at the time of take-off of the unmanned aircraft when the pressure value of the pressure sensor of the reference device or the pressure height calculated from the pressure value is used as a reference value And an increase / decrease value acquisition process for calculating an increase / decrease value that is a difference between the initial value and the current reference value, and the increase / decrease with respect to the atmospheric pressure value of the atmospheric pressure sensor of the unmanned aircraft or the atmospheric pressure altitude calculated from the atmospheric pressure value. And a flight altitude adjustment process for controlling the flight altitude of the unmanned aircraft based on a value including the value.
 無人航空機とは別に、大気圧の変化を検知するための基準器を無人航空機の発着ポートや飛行エリア内などに設けることにより、無人航空機の離陸時からの大気圧の変化(増減値)を取得することが可能となる。そして、無人航空機が認識する気圧値や気圧高度(実機値)をこの増減値に基づいて調整することにより、同一高度における実機値の増減を相殺し、無人航空機の飛行高度を一定に保つことが可能となる。 Separate from unmanned aerial vehicles, obtain a change (increase / decrease) in atmospheric pressure from the time of unmanned aircraft take-off by providing a reference device for detecting changes in atmospheric pressure at the departure and arrival ports and flight areas of unmanned aircraft. It becomes possible to do. By adjusting the pressure value and pressure altitude (actual aircraft value) recognized by the unmanned aircraft based on this increase / decrease value, the increase / decrease in the actual aircraft value at the same altitude can be offset and the flight altitude of the unmanned aircraft can be kept constant. It becomes possible.
 また、上記課題を解決するため、本発明の無人航空機の飛行高度補正方法は、回転翼および気圧センサを備える無人航空機と、気圧センサを備え固定位置に設置された基準器と、を用いた無人航空機の飛行高度補正方法であって、前記基準器の設置位置の標高または該標高を気圧値に変換した値と、該基準器の気圧センサの気圧値または該気圧値から算出した気圧高度との差である高度誤差を算出する高度誤差取得処理と、前記無人航空機の気圧センサの気圧値または該気圧値から算出した気圧高度に、前記高度誤差を加味した値に基づいて該無人航空機の飛行高度を制御する飛行高度調節処理と、を含むことを特徴とする。 In order to solve the above-mentioned problem, the unmanned aircraft flight altitude correction method of the present invention includes an unmanned aircraft including a rotor blade and an atmospheric pressure sensor, and an unmanned aircraft using an atmospheric pressure sensor and a reference device installed at a fixed position. An aircraft flight altitude correction method, comprising: an altitude of an installation position of the reference device or a value obtained by converting the altitude into an atmospheric pressure value, and an atmospheric pressure value of the reference sensor or an atmospheric pressure altitude calculated from the atmospheric pressure value. Altitude error acquisition processing for calculating an altitude error as a difference, and a flight altitude of the unmanned aircraft based on a pressure value of the pressure sensor of the unmanned aircraft or a pressure altitude calculated from the atmospheric pressure value and the altitude error And a flight altitude adjustment process for controlling the aircraft.
 無人航空機とは別に、実際の高度(真高度)と気圧高度との誤差を検知するための基準器を無人航空機の発着ポートや飛行エリア内などに設け、無人航空機の実機値をこの高度誤差に基づいて調整することにより、無人航空機の真高度と実機値との誤差を解消することができ、無人航空機の飛行高度を真高度に基づいて一定に保つことが可能となる。 Aside from the unmanned aircraft, a reference device for detecting the error between the actual altitude (true altitude) and the barometric altitude is provided at the landing port of the unmanned aircraft and in the flight area. By adjusting based on this, an error between the true altitude of the unmanned aircraft and the actual aircraft value can be eliminated, and the flight altitude of the unmanned aircraft can be kept constant based on the true altitude.
 以上のように、本発明にかかる無人航空機の飛行高度補正システムおよび方法によれば、無人航空機が気圧センサの出力値に基づいてその飛行高度を制御するときに、気圧変化による無人航空機の飛行高度の乱れを抑えることが可能となる。 As described above, according to the flight altitude correction system and method of the unmanned aircraft according to the present invention, when the unmanned aircraft controls the flight altitude based on the output value of the atmospheric pressure sensor, the flight altitude of the unmanned aircraft due to the change in atmospheric pressure. It becomes possible to suppress the disturbance.
第1実施形態の飛行高度補正システムの全体構成を示す模式図である。It is a mimetic diagram showing the whole flight altitude correction system composition of a 1st embodiment. 第1実施形態の飛行高度補正システムの機能構成を示すブロック図である。It is a block diagram which shows the function structure of the flight altitude correction system of 1st Embodiment. 第1実施形態の飛行高度補正方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the flight altitude correction method of 1st Embodiment. 第1実施形態の飛行高度補正システムによりマルチコプターの飛行高度が維持される様子について具体値を用いて説明する図である。It is a figure explaining a mode that the flight altitude of a multicopter is maintained by the flight altitude correction system of a 1st embodiment using a concrete value. 第2実施形態の飛行高度補正システムの全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the flight altitude correction system of 2nd Embodiment. 第2実施形態の飛行高度補正システムの機能構成を示すブロック図である。It is a block diagram which shows the function structure of the flight altitude correction system of 2nd Embodiment. 第2実施形態の飛行高度補正方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the flight altitude correction method of 2nd Embodiment. 調整増減値の算出方法について基準器が2基設置されている場合の例である。This is an example in which two reference devices are installed for the method of calculating the adjustment increase / decrease value. 調整増減値の算出方法について基準器が3基設置されている場合の例である。This is an example in which three reference devices are installed for the method of calculating the adjustment increase / decrease value. 第2実施形態の飛行高度補正システムによりマルチコプターの飛行高度が維持される様子について具体値を用いて説明する図である。It is a figure explaining a mode that the flight altitude of a multicopter is maintained by the flight altitude correction system of a 2nd embodiment using a concrete value. 第3実施形態の飛行高度補正システムの全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the flight altitude correction system of 3rd Embodiment. 第3実施形態の飛行高度補正システムの機能構成を示すブロック図である。It is a block diagram which shows the function structure of the flight altitude correction system of 3rd Embodiment. 第3実施形態の飛行高度補正方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the flight altitude correction method of 3rd Embodiment. 第4実施形態の飛行高度補正システムによりマルチコプターの飛行高度が維持される様子について具体値を用いて説明する図である。It is a figure explaining a mode that the flight altitude of a multicopter is maintained by the flight altitude correction system of a 4th embodiment using a concrete value. 第4実施形態の飛行高度補正システムの全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the flight altitude correction system of 4th Embodiment. 第4実施形態の飛行高度補正システムの機能構成を示すブロック図である。It is a block diagram which shows the function structure of the flight altitude correction system of 4th Embodiment. 第4実施形態の飛行高度補正方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the flight altitude correction method of 4th Embodiment. 第4実施形態の飛行高度補正システムによりマルチコプターの飛行高度が維持される様子について具体値を用いて説明する図である。It is a figure explaining a mode that the flight altitude of a multicopter is maintained by the flight altitude correction system of a 4th embodiment using a concrete value.
 以下、本発明の実施形態について図面を用いて詳細に説明する。以下の実施形態にかかる無人航空機の飛行高度補正システム、および、無人航空機の飛行高度補正方法は、屋外においてマルチコプターを一定の飛行高度で飛行させる例である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The unmanned aircraft flight altitude correction system and the unmanned aircraft flight altitude correction method according to the following embodiments are examples in which a multicopter flies outdoors at a constant flight altitude.
<第1実施形態>
[全体構成]
 図1は、第1実施形態にかかる飛行高度補正システムS1の全体構成を示す模式図である。図2は、飛行高度補正システムS1の機能構成を示すブロック図である。本実施形態の飛行高度補正システムS1は、無人航空機であるマルチコプター11、マルチコプター11の発着ポート近傍の地面に設置された基準器60、および、マルチコプター11へオペレータの指示を送信する操縦端末91により構成されている。
<First Embodiment>
[overall structure]
FIG. 1 is a schematic diagram showing an overall configuration of a flight altitude correction system S1 according to the first embodiment. FIG. 2 is a block diagram showing a functional configuration of the flight altitude correction system S1. The flight altitude correction system S1 of the present embodiment includes a multicopter 11 that is an unmanned aerial vehicle, a reference device 60 installed on the ground in the vicinity of a landing port of the multicopter 11, and a control terminal that transmits an operator's instruction to the multicopter 11. 91.
[マルチコプターの構成]
 マルチコプター11の機体には、フライトコントローラ20、複数の回転翼であるローターRおよびこれらローターRの回転を制御するESC43(Electric Speed Controller)、オペレータの操縦端末91や基準器60と無線通信を行う無線送受信器33、および、電力供給源であるバッテリー51が搭載されている。
[Configuration of multicopter]
The aircraft of the multicopter 11 performs wireless communication with the flight controller 20, the rotor R that is a plurality of rotor blades, the ESC 43 (Electric Speed Controller) that controls the rotation of the rotor R, the operator's control terminal 91, and the reference device 60. A wireless transceiver 33 and a battery 51 as a power supply source are mounted.
 各ローターRは、DCモータであるモータ41、およびその出力軸に取り付けられたブレード42により構成されている。ESC43はローターRのモータ41に接続されており、フライトコントローラFCから指示された速度でモータ41を回転させる装置である。尚、本実施形態におけるマルチコプター11は、4基のローターRが搭載されたクアッドコプターであるが、ローターRの数は4基には限定されず、求められる飛行安定性や許容されるコスト等に応じて、ローターRが2基のヘリコプター(テールローターを除外するとローターRが1基)からローターRが8基のオクトコプター、さらにそれ以上のローター数を備えるものまで適宜変更可能である。 Each rotor R is composed of a motor 41 which is a DC motor and a blade 42 attached to its output shaft. The ESC 43 is connected to the motor 41 of the rotor R and is a device that rotates the motor 41 at a speed instructed by the flight controller FC. The multicopter 11 in this embodiment is a quadcopter on which four rotors R are mounted. However, the number of rotors R is not limited to four, and required flight stability, allowable cost, etc. The rotor R can be appropriately changed from a helicopter having two rotors (one rotor R if the tail rotor is excluded) to a rotor R having eight octocopters, or more.
 フライトコントローラFCは、マイクロコントローラである制御装置20を備えている。制御装置20は、中央処理装置であるCPU21、ROMやRAMなどの記憶装置であるメモリ22、および、ESC43を介して各モータ41の回転数および回転速度(以下、これらを総称して単に「回転数」という。)を制御するPWMコントローラ23を備えている。 The flight controller FC includes a control device 20 that is a microcontroller. The control device 20 includes a CPU 21 that is a central processing unit, a memory 22 that is a storage device such as a ROM and a RAM, and an ESC 43, and the rotational speed and rotational speed of each motor 41 (hereinafter collectively referred to simply as “rotation”). It includes a PWM controller 23 that controls the number.
 フライトコントローラFCはさらに、飛行制御センサ群31およびGPS受信器32(以下、「センサ等」ともいう。)を備えており、これらは制御装置20に接続されている。本実施形態におけるマルチコプター11の飛行制御センサ群31には、気圧センサ311のほか、加速度センサ、角速度センサ、地磁気センサ(方位センサ)などが含まれている。制御装置20は、これらセンサ等により、機体の傾きや回転のほか、飛行中の緯度経度、飛行高度、および機首の方位角を含む自機の位置情報を取得可能とされている。 The flight controller FC further includes a flight control sensor group 31 and a GPS receiver 32 (hereinafter also referred to as “sensor or the like”), which are connected to the control device 20. In addition to the atmospheric pressure sensor 311, the flight control sensor group 31 of the multicopter 11 in this embodiment includes an acceleration sensor, an angular velocity sensor, a geomagnetic sensor (orientation sensor), and the like. The control device 20 can acquire position information of the own aircraft including the latitude and longitude of the flight, the flight altitude, and the azimuth angle of the nose, in addition to the tilt and rotation of the aircraft, using these sensors and the like.
 制御装置20のメモリ22には、マルチコプター11の飛行時における姿勢や基本的な飛行動作を制御する飛行制御アルゴリズムが実装されたプログラムである飛行制御プログラムFCPが記憶されている。飛行制御プログラムFCPは、オペレータ(操縦端末91)からの指示に従い、センサ等から取得した現在位置を基に各ローターRの回転数を調節し、機体の姿勢や位置の乱れを補正しながらマルチコプター11を飛行させる。尚、本実施形態におけるマルチコプター11の操縦は、基本的にオペレータが操縦端末91を用いて行うこととしているが、例えば、緯度経度、飛行高度、飛行ルートなどのパラメータを飛行制御プログラムFCPに予め登録しておき、目的地へ自律的に飛行させることも可能である(以下、このような自律飛行のことを「オートパイロット」という。)。 The memory 22 of the control device 20 stores a flight control program FCP, which is a program in which a flight control algorithm for controlling the attitude and basic flight operation of the multicopter 11 during flight is installed. The flight control program FCP adjusts the number of rotations of each rotor R based on the current position acquired from a sensor or the like according to an instruction from an operator (control terminal 91), and corrects the attitude and position disturbance of the fuselage. 11 is made to fly. Note that the operation of the multicopter 11 in the present embodiment is basically performed by the operator using the operation terminal 91. For example, parameters such as latitude / longitude, flight altitude, and flight route are previously stored in the flight control program FCP. It is also possible to register and fly autonomously to the destination (hereinafter referred to as “autopilot”).
 このように、本実施形態におけるマルチコプター11は高度な飛行制御機能を備えている。ただし、本発明における無人航空機は、気圧センサを備え、回転翼による一般的な飛行動作と、機体の飛行高度の自律的な調節が可能な機体であればよく、他の構成や機能はあくまで追加的なものである。例えば、地磁気センサやGPS32が省略され、オートパイロット機能を備えない機体も本発明の無人航空機に含まれる。 Thus, the multicopter 11 in this embodiment has an advanced flight control function. However, the unmanned aircraft according to the present invention may be any aircraft that includes a barometric sensor and can perform general flight operation using a rotary wing and autonomous adjustment of the flight altitude of the aircraft. Other configurations and functions are only added. Is something. For example, an unmanned aerial vehicle of the present invention includes an airframe that does not include a geomagnetic sensor or GPS 32 and does not have an autopilot function.
[基準器の構成]
 基準器60は、気圧センサ61と無線送受信器62とを備え、その配置された場所における気圧値を検知して発信するビーコンである。基準器60は、取得した気圧値をBLE(Bluetooth Low Energy)(登録商標)などの近距離無線通信プロトコルを用いてマルチコプター11へ送信する。尚、これら気圧センサ61や無線送受信器62への電力の供給は、図示しないバッテリーを用いてもよく、有線給電により行ってもよい。
[Configuration of reference device]
The reference device 60 is a beacon that includes an atmospheric pressure sensor 61 and a wireless transmitter / receiver 62 and detects and transmits an atmospheric pressure value at the place where the reference device 60 is disposed. The reference device 60 transmits the acquired atmospheric pressure value to the multicopter 11 using a short-range wireless communication protocol such as BLE (Bluetooth Low Energy) (registered trademark). The power supply to the atmospheric pressure sensor 61 and the wireless transmitter / receiver 62 may be performed using a battery (not shown) or by wired power feeding.
 本実施形態における基準器60は、検知した気圧値を例えば数秒~数十秒に一回のサイクルでマルチコプター11へ送信する構成とされている。その他、例えば、マルチコプター11に前回送信した気圧値を基準器60が記憶可能であり、その値に対して所定の閾値以上の変化が生じた場合にのみ気圧値を送信する構成としてもよい。または、マルチコプター11からの送信指示があったときにだけ気圧値を送信する構成としてもよい。さらに、検知した気圧値を国際標準大気などに基づいて気圧高度に変換したうえでマルチコプター11に送信してもよい。 The reference device 60 in the present embodiment is configured to transmit the detected atmospheric pressure value to the multicopter 11 in a cycle of, for example, once every several seconds to several tens of seconds. In addition, for example, the reference device 60 can store the atmospheric pressure value transmitted to the multicopter 11 last time, and the atmospheric pressure value may be transmitted only when a change of a predetermined threshold value or more occurs with respect to the atmospheric pressure value. Or it is good also as a structure which transmits an atmospheric | air pressure value only when there exists the transmission instruction | indication from the multicopter 11. FIG. Further, the detected atmospheric pressure value may be converted into the atmospheric pressure altitude based on the international standard atmosphere or the like and then transmitted to the multicopter 11.
 上でも述べたように、本実施形態における基準器60はマルチコプター11の発着ポート近傍の地表に固定されている。基準器60の設置位置は厳密には制限されないが、マルチコプター11の飛行位置における気圧変化と同等の気圧変化の影響をうける場所に設置することが望ましい。また、基準器60の設置対象も常に地表である必要はなく、例えば地上に設けられた家屋、ビル、電柱、フェンスなどの工作物、または樹木などの自然物に取り付けてもよい。尚、本発明の基準器の配置場所についての定義である「固定位置に設置」とは、例えば移動不能かつ変形不能な工作物や自然物に対して、基準器をねじ止めなどで強固に固着させた場合のみを指すのではなく、基準器をその位置があまり変わらない場所におく、という程度の意味である。よって、例えば地表やビルの屋上に基準器60を単に置いただけの場合や、さらには、マルチコプター11のオペレータが基準器60を身につけ、一定の場所からマルチコプター11を操縦するような場合も含まれる。 As described above, the reference device 60 in the present embodiment is fixed to the ground surface in the vicinity of the landing port of the multicopter 11. Although the installation position of the reference device 60 is not strictly limited, it is desirable that the reference apparatus 60 be installed in a place that is affected by an atmospheric pressure change equivalent to the atmospheric pressure change at the flight position of the multicopter 11. Further, the reference object 60 need not always be on the ground surface, and may be attached to a natural object such as a house, a building, a utility pole, a fence, or a tree provided on the ground, or a tree. The term “installation at a fixed position”, which is a definition of the location of the reference device according to the present invention, means that, for example, a reference device is firmly fixed by screwing or the like to an unmovable and non-deformable workpiece or natural object. This means that the reference device is not placed in a place where the position changes so much. Therefore, for example, when the reference device 60 is simply placed on the ground surface or the roof of the building, or even when the operator of the multicopter 11 wears the reference device 60 and steers the multicopter 11 from a certain place. included.
[操縦端末の構成]
 本実施形態における操縦端末91は、マルチコプター11に対してオペレータの指示を送信するいわゆるプロポである。
[Configuration of control terminal]
The control terminal 91 in the present embodiment is a so-called propo that transmits an operator's instruction to the multicopter 11.
[飛行高度補正機能および方法]
 図2に示すように、マルチコプター11は、基準器60の気圧センサ61が検知した気圧値である基準値vを記憶する基準値記憶領域VS(基準値記憶手段)を有している。本実施形態においては、基準値記憶領域VSには、マルチコプター11の離陸時における基準値vが初期値iとして登録される。
[Flight altitude correction function and method]
As shown in FIG. 2, the multicopter 11 has a reference value storage area VS (reference value storage means) that stores a reference value v that is an atmospheric pressure value detected by the atmospheric pressure sensor 61 of the reference device 60. In the present embodiment, the reference value v at the time of takeoff of the multicopter 11 is registered as the initial value i in the reference value storage area VS.
 マルチコプター11の飛行制御プログラムFCPは、マルチコプター11の飛行高度を管理するサブプログラムとして、飛行高度調節プログラムFAP(飛行高度調節手段)を有している。さらに飛行高度調節プログラムFAPは、そのサブプログラムとして、増減値取得プログラムDP(増減値取得手段)、および、補正値取得プログラムCP(補正値取得手段)を有している。増減値取得プログラムDPは、初期値iを基準値記憶領域VSから取得し、この初期値iと、基準器60の現在の基準値vである現在値pとを比較して、これらの値の差である増減値dを算出する。補正値取得プログラムCPは、マルチコプター11の気圧センサ311が検知した気圧値である実機値mに対して、増減値取得プログラムDPが算出した増減値dを加減算した値である補正値cを算出する。つまり、補正値cは、マルチコプター11の離陸以降に生じた大気圧の変化を相殺した実機値mである。すなわち、マルチコプター11の離陸時点における大気圧を基準としたマルチコプター11の現在の気圧高度である。 The flight control program FCP of the multicopter 11 has a flight altitude adjustment program FAP (flight altitude adjusting means) as a subprogram for managing the flight altitude of the multicopter 11. Further, the flight altitude adjustment program FAP has, as its subprograms, an increase / decrease value acquisition program DP (increase / decrease value acquisition means) and a correction value acquisition program CP (correction value acquisition means). The increase / decrease value acquisition program DP acquires the initial value i from the reference value storage area VS, compares the initial value i with the current value p, which is the current reference value v of the reference device 60, and determines these values. An increase / decrease value d which is a difference is calculated. The correction value acquisition program CP calculates a correction value c that is a value obtained by adding or subtracting the increase / decrease value d calculated by the increase / decrease value acquisition program DP to the actual machine value m that is the atmospheric pressure value detected by the atmospheric pressure sensor 311 of the multicopter 11. To do. That is, the correction value c is an actual machine value m that offsets the change in atmospheric pressure that has occurred since the multicopter 11 took off. That is, the present barometric altitude of the multicopter 11 with reference to the atmospheric pressure at the time of takeoff of the multicopter 11.
 飛行高度調節プログラムFAPは、補正値取得プログラムCPが算出した補正値cに基づいてマルチコプター11の飛行高度を調節する。ここで、飛行高度調節プログラムFAPは、マルチコプター11が到達および維持すべき気圧値である維持高度khが記憶される維持高度記憶領域KSを有している。本実施形態における維持高度記憶領域KSは、飛行高度調節プログラムFAPの変数として定義されている。この維持高度記憶領域KSには、オペレータの操縦端末91からの飛行高度変更指示が停止したときの補正値cが維持高度khとして記憶される。または、マルチコプター11をオートパイロットで飛行させる場合には、その地点における予め指定された飛行高度を気圧値に変換した値が記憶される。飛行高度調節プログラムFAPは、飛行制御プログラムFCPと協働し、マルチコプター11の補正値cが維持高度khと一致するようにマルチコプター11の飛行高度を制御する。 The flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c calculated by the correction value acquisition program CP. Here, the flight altitude adjustment program FAP has a maintenance altitude storage area KS in which a maintenance altitude kh that is an atmospheric pressure value that the multicopter 11 should reach and maintain is stored. The maintenance altitude storage area KS in this embodiment is defined as a variable of the flight altitude adjustment program FAP. In the maintenance altitude storage area KS, the correction value c when the flight altitude change instruction from the operator's control terminal 91 is stopped is stored as the maintenance altitude kh. Alternatively, when the multicopter 11 is caused to fly by an autopilot, a value obtained by converting a predetermined flight altitude at that point into an atmospheric pressure value is stored. The flight altitude adjustment program FAP cooperates with the flight control program FCP to control the flight altitude of the multicopter 11 so that the correction value c of the multicopter 11 matches the maintenance altitude kh.
 以下に、図3を参照し、飛行高度補正システムS1を用いたマルチコプター11の飛行高度補正方法について説明する。図3はマルチコプター11の飛行高度補正方法の手順を示すフローチャートである。飛行高度補正システムS1を用いたマルチコプター11の飛行高度補正方法は、大きく、初期値設定処理S1、増減値取得処理S2、補正値算出処理S3、および飛行高度調節処理S4からなる。 Hereinafter, a method for correcting the flight altitude of the multicopter 11 using the flight altitude correction system S1 will be described with reference to FIG. FIG. 3 is a flowchart showing the procedure of the flight altitude correction method of the multicopter 11. The flight altitude correction method of the multicopter 11 using the flight altitude correction system S1 is roughly composed of an initial value setting process S1, an increase / decrease value acquisition process S2, a correction value calculation process S3, and a flight altitude adjustment process S4.
 初期値設定処理S1では、マルチコプター11が、その離陸時における基準器60の基準値vを取得し、その基準値vを初期値iとして基準値記憶領域VSに記憶する。増減値取得処理S2では、値取得プログラムDPが、基準器60から現在値pを取得し、増減初期値iと現在値pとの差である増減値dを算出する。補正値算出処理S3では、補正値取得プログラムCPが、実機値mに対して増減値dを加減算した値である補正値cを算出する。飛行高度調節処理S4では、飛行高度調節プログラムFAPが、補正値cに基づいてマルチコプター11の飛行高度を調節する。このとき、オペレータの操縦端末91やオートパイロット処理から、マルチコプター11の飛行高度を上昇または下降させる指示(以下、このような指示を「飛行高度変更指示」という。)が与えられている場合には、飛行高度調節プログラムFAPは、その指示に従い、補正値cを現在の飛行高度としてマルチコプター11の飛行高度を変更する。飛行高度調節プログラムFAPはさらに、操縦端末91からの飛行高度変更指示が停止したときには、そのときの補正値cを維持高度kaとして維持高度記憶領域KSを更新する。尚、オートパイロット処理からの飛行高度変更指示とは、飛行高度調節プログラムFAPが、その地点における予め指定された飛行高度を気圧値に変換した値を、維持高度記憶領域KSに維持高度kaとして設定し、その維持高度kaに到達およびこれを維持するようにマルチコプター11の飛行高度を調節することをいう。マルチコプター11は、離陸後、着陸するまでこれら増減値取得処理S2~飛行高度調節処理S4を繰り返す。 In the initial value setting process S1, the multicopter 11 acquires the reference value v of the reference device 60 at the time of takeoff, and stores the reference value v as the initial value i in the reference value storage area VS. In the increase / decrease value acquisition process S2, the value acquisition program DP acquires the current value p from the reference device 60, and calculates the increase / decrease value d, which is the difference between the increase / decrease initial value i and the current value p. In the correction value calculation process S3, the correction value acquisition program CP calculates a correction value c that is a value obtained by adding / subtracting the increase / decrease value d to / from the actual machine value m. In the flight altitude adjustment process S4, the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c. At this time, when an instruction to raise or lower the flight altitude of the multicopter 11 is given from the operator's control terminal 91 or autopilot processing (hereinafter, such instruction is referred to as “flight altitude change instruction”). In accordance with the instruction, the flight altitude adjustment program FAP changes the flight altitude of the multicopter 11 using the correction value c as the current flight altitude. Further, when the flight altitude change instruction from the control terminal 91 is stopped, the flight altitude adjustment program FAP updates the maintenance altitude storage area KS with the correction value c at that time as the maintenance altitude ka. Note that the flight altitude change instruction from the autopilot process is a value obtained by the flight altitude adjustment program FAP converting a pre-designated flight altitude at that point into a barometric pressure value as the maintenance altitude ka in the maintenance altitude storage area KS. The flight altitude of the multicopter 11 is adjusted so that the maintenance altitude ka is reached and maintained. After taking off, the multicopter 11 repeats these increase / decrease value acquisition processing S2 to flight altitude adjustment processing S4 until landing.
 以下に、図4を参照し、具体値を用いてマルチコプター11の飛行高度補正方法について説明する。図4は、飛行高度補正システムS1によりマルチコプター11の飛行高度が維持される様子を示す説明図である。図4(a)に示すように、基準器60の気圧センサ61が検知した気圧値である基準値vは、マルチコプター11の離陸時において1013.0hPaであった。マルチコプター11は離陸時にその基準値vを初期値iとして基準値記憶領域VSに記憶する(初期値設定処理S1)。尚、本実施形態および以降の実施形態では、説明の便宜上、1hPaの気圧高度差を単純に10mとし、同様に、0.1hPaの気圧高度差を1mとしている。 Hereinafter, a method for correcting the flight altitude of the multicopter 11 will be described using specific values with reference to FIG. FIG. 4 is an explanatory diagram showing how the flight altitude of the multicopter 11 is maintained by the flight altitude correction system S1. As shown in FIG. 4A, the reference value v that is the atmospheric pressure value detected by the atmospheric pressure sensor 61 of the reference device 60 was 1013.0 hPa when the multicopter 11 took off. At the time of takeoff, the multicopter 11 stores the reference value v as an initial value i in the reference value storage area VS (initial value setting process S1). In this embodiment and the following embodiments, for convenience of explanation, the atmospheric pressure altitude difference of 1 hPa is simply set to 10 m, and similarly, the atmospheric pressure altitude difference of 0.1 hPa is set to 1 m.
 そしてこの例では、オペレータはマルチコプター11をそのまま手動で10m上昇させ、その位置で自律的にホバリングするようマルチコプター11に指示をした(オペレータの操縦端末91からの指示を停止した)。このとき、マルチコプター11の気圧センサ311が検知した気圧値である実機値mは1012.0hPaであった。また、マルチコプター11が離陸してからホバリングを開始するまでの間に大気圧の変化は生じておらず、このときの基準器60の基準値vである現在値pは、初期値iと同じ1013.0hPaのままであった。 In this example, the operator manually raises the multicopter 11 as it is for 10 m, and instructs the multicopter 11 to autonomously hover at that position (the instruction from the operator's control terminal 91 is stopped). At this time, the actual machine value m, which is the atmospheric pressure value detected by the atmospheric pressure sensor 311 of the multicopter 11, was 1012.0 hPa. Further, there is no change in atmospheric pressure between the take-off of the multicopter 11 and the start of hovering, and the current value p, which is the reference value v of the reference device 60 at this time, is the same as the initial value i. It remained 1013.0 hPa.
 マルチコプター11は、離陸後、増減値取得プログラムDPにより、初期値i(1013.0hPa)と、そのときの現在値p(1013.0hPa)との差(現在値p-初期値i)である増減値d(0hPa)を算出し(増減値取得処理S2)、補正値取得プログラムCPにより、実機値m(1012.0hPa)に対して増減値d(0hPa)を加算した値である補正値c(1012.0hPa)を算出する(補正値算出処理S3)。そして、飛行高度調節プログラムFAPにより、補正値c(1012.0hPa)を基準としてマルチコプター11の飛行高度を調節する(飛行高度調節処理S4)。マルチコプター11は、これら増減値取得処理S2~飛行高度調節処理S4を繰り返しながら飛行する。しかし、マルチコプター11が離陸してからこれまでに大気圧の変化はなく、増減値dは0hPaのままである。よって、この時点では実機値mと補正値cはどちらも同じ値(1012.0hPa)を示している。 The multicopter 11 is the difference between the initial value i (1013.0 hPa) and the current value p (1013.0 hPa) at that time (current value p−initial value i) by the increase / decrease value acquisition program DP after takeoff. Increase / decrease value d (0 hPa) is calculated (increase / decrease value acquisition process S2), and correction value c is a value obtained by adding increase / decrease value d (0 hPa) to actual machine value m (1012.0 hPa) by correction value acquisition program CP. (1012.0 hPa) is calculated (correction value calculation processing S3). Then, the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c (1012.0 hPa) (flight altitude adjustment process S4). The multicopter 11 flies while repeating these increase / decrease value acquisition processing S2 to flight altitude adjustment processing S4. However, there has been no change in atmospheric pressure since the multicopter 11 took off, and the increase / decrease value d remains 0 hPa. Therefore, at this time, the actual machine value m and the correction value c are both the same value (1012.0 hPa).
 飛行高度調節プログラムFAPは、オペレータの操縦端末91からの飛行高度変更指示が停止したときに(ホバリングを開始したときに)、そのときの補正値c(1012.0hPa)を維持高度kaとして維持高度記憶領域KSに記憶する。以降、飛行高度調節処理S4では、飛行高度調節プログラムFAPは、オペレータの操縦端末91やオートパイロット処理から飛行高度変更指示が与えられるまで、この維持高度kaを維持するように動作する。 When the flight altitude change instruction from the operator's control terminal 91 is stopped (when hovering is started), the flight altitude adjustment program FAP maintains the correction altitude c (1012.0 hPa) as the maintenance altitude ka. Store in the storage area KS. Thereafter, in the flight altitude adjustment process S4, the flight altitude adjustment program FAP operates to maintain this maintenance altitude ka until an instruction to change the flight altitude is given from the operator's control terminal 91 or the autopilot process.
 その後、図4(b)に示すように、大気圧が1hPa下がり、基準器60の基準値vが1012.0hPaに、実機値mが1011.0hPaに下がった(マルチコプター11の実際の飛行高度は実機値mが1012.0hPaであったときと同じ10m)。 After that, as shown in FIG. 4B, the atmospheric pressure dropped by 1 hPa, the reference value v of the reference device 60 dropped to 1012.0 hPa, and the actual aircraft value m dropped to 1011.0 hPa (actual flight altitude of the multicopter 11). Is the same as when the actual machine value m was 1012.0 hPa).
 このとき、マルチコプター11は、増減値取得プログラムDPにより初期値i(1013.0hPa)と、そのときの現在値p(1012.0hPa)との増減値d(-1hPa)を算出する(現在値p-初期値i)(増減値取得処理S2)。そして、補正値取得プログラムCPにより、実機値m(1011.0hPa)に対して増減値d(-1hPa)を加減算(増減値dの符号を反転させた値を実機値mに加算)して補正値c(1012.0hPa)を算出する(補正値算出処理S3)。そして、補正値c(1012.0hPa)に基づいて飛行高度調節プログラムFAPによりマルチコプター11の飛行高度を調節する(飛行高度調節処理S4)。しかしこのとき、補正値c(1012.0hPa)は維持高度ka(1012.0hPa)と一致しているため、飛行高度調節プログラムFAPは、マルチコプター11の実際の飛行高度は変更せず、それまでの飛行高度を維持する。ここで、オペレータの操縦端末91やオートパイロット処理から飛行高度変更指示が別途与えられている場合には、飛行高度調節プログラムFAPは、この補正値c(1012.0hPa)を基準としてマルチコプター11の飛行高度を変更する。 At this time, the multicopter 11 calculates an increase / decrease value d (-1 hPa) between the initial value i (1013.0 hPa) and the current value p (1012.0 hPa) at that time by the increase / decrease value acquisition program DP (current value). p-initial value i) (increase / decrease value acquisition processing S2). Then, the correction value acquisition program CP corrects the actual machine value m (1011.0 hPa) by adding / subtracting the increase / decrease value d (-1 hPa) (adding the value obtained by inverting the sign of the increase / decrease value d to the actual machine value m). A value c (1012.0 hPa) is calculated (correction value calculation processing S3). Then, the flight altitude of the multicopter 11 is adjusted by the flight altitude adjustment program FAP based on the correction value c (1012.0 hPa) (flight altitude adjustment processing S4). However, since the correction value c (1012.0 hPa) coincides with the maintenance altitude ka (1012.0 hPa) at this time, the flight altitude adjustment program FAP does not change the actual flight altitude of the multicopter 11 until then. Maintain the flight altitude. Here, if a flight altitude change instruction is separately given from the operator's control terminal 91 or autopilot processing, the flight altitude adjustment program FAP uses the correction value c (1012.0 hPa) as a reference for the multicopter 11. Change flight altitude.
 本実施形態の補正値取得プログラムCPは、補正値cを算出するにあたり、実機値mに対して単純に増減値dを加減算しているが、補正値cの算出方法はこれには限られない。本発明の「実機値に対して増減値を加味する」とは、補正値cを算出するにあたり、気圧変化による実機値mの乱れを、増減値dを使った数学的手法により除去または軽減することをいう。また、本実施形態においては、各値(初期値i、現在値p、増減値d、実機値m、補正値c、および維持高度ka)を気圧値の形式で取得・演算しているが、これらの各値を気圧高度の形式に変換して取り扱うことも可能である。 The correction value acquisition program CP of this embodiment simply adds or subtracts the increase / decrease value d with respect to the actual machine value m when calculating the correction value c, but the method of calculating the correction value c is not limited to this. . In the present invention, “adding an increase / decrease value to an actual machine value” means that, when calculating the correction value c, the disturbance of the actual machine value m due to a change in atmospheric pressure is removed or reduced by a mathematical method using the increase / decrease value d. That means. In the present embodiment, each value (initial value i, current value p, increase / decrease value d, actual machine value m, correction value c, and maintenance altitude ka) is acquired and calculated in the form of atmospheric pressure value. It is also possible to convert each of these values into a barometric altitude format for handling.
 このように、本実施形態における飛行高度補正システムS1は、マルチコプター11とは別に、大気圧の変化を検知するための基準器60を設けることにより、マルチコプター11の離陸時からの大気圧の変化を検知することが可能とされている。そして、マルチコプター11が認識する気圧値をこの大気圧の変化に基づいて調整することにより、同一高度における気圧値の増減を相殺し、マルチコプター11の飛行高度を一定に保つことが可能とされている。 As described above, the flight altitude correction system S1 in the present embodiment is provided with the reference device 60 for detecting the change in atmospheric pressure separately from the multicopter 11, so that the atmospheric pressure from the time when the multicopter 11 takes off can be detected. It is possible to detect changes. Then, by adjusting the atmospheric pressure value recognized by the multicopter 11 based on the change in the atmospheric pressure, it is possible to cancel the increase and decrease of the atmospheric pressure value at the same altitude and keep the flight altitude of the multicopter 11 constant. ing.
<第2実施形態>
[全体構成]
 以下に、本発明の第2実施形態について図面を用いて説明する。図5は、本発明の第2実施形態にかかる飛行高度補正システムS2の全体構成を示す模式図である。図6は、飛行高度補正システムS2の機能構成を示すブロック図である。なお、以下の説明では、先の実施形態と同一または同様の機能を有する構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。
Second Embodiment
[overall structure]
Below, 2nd Embodiment of this invention is described using drawing. FIG. 5 is a schematic diagram showing an overall configuration of a flight altitude correction system S2 according to the second embodiment of the present invention. FIG. 6 is a block diagram showing a functional configuration of the flight altitude correction system S2. In the following description, components having the same or similar functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
 飛行高度補正システムS2は、無人航空機であるマルチコプター11、互いに距離を空けて地面に設置された2基の基準器60(A,B)、並びに、マルチコプター11およびこれら基準器60と通信可能なサーバ装置70により構成されている。 The flight altitude correction system S2 can communicate with the multicopter 11 which is an unmanned aerial vehicle, two reference devices 60 (A, B) installed on the ground at a distance from each other, and the multicopter 11 and these reference devices 60. The server device 70 is configured.
[マルチコプターの構成]
 マルチコプター11の機体には、フライトコントローラ20、複数の回転翼であるローターR、サーバ装置70と無線通信を行う無線送受信器33、および、電力供給源であるバッテリー51が搭載されている。本実施形態における飛行制御プログラムFCPは、オートパイロット処理またはサーバ装置70の指示に従い、センサ等から取得した現在位置を基に各ローターRの回転数を調節し、機体の姿勢や位置の乱れを補正しながらマルチコプター11を飛行させる。また、マルチコプター11は、自機の緯度および経度である飛行座標を取得可能な飛行座標検出手段であるGPS受信器32を備えている。
[Configuration of multicopter]
The aircraft of the multicopter 11 is equipped with a flight controller 20, a rotor R that is a plurality of rotor blades, a wireless transceiver 33 that performs wireless communication with the server device 70, and a battery 51 that is a power supply source. The flight control program FCP in the present embodiment adjusts the rotational speed of each rotor R based on the current position acquired from a sensor or the like in accordance with autopilot processing or an instruction from the server device 70, and corrects the attitude and position disturbance of the aircraft. The multicopter 11 is allowed to fly while flying. In addition, the multicopter 11 includes a GPS receiver 32 that is a flight coordinate detection means capable of acquiring flight coordinates that are the latitude and longitude of the aircraft.
[基準器の構成]
 複数の基準器60は、それぞれ気圧センサ61と無線送受信器62とを備えており、その配置された場所における気圧値を検知してこれを発信するビーコンである。基準器60は、取得した気圧値を3G/HSPA(High Speed Packet Access)、LTE(Long Term Evolution)、またはWimax(Worldwide Interoperability for Microwave Access)などの移動体通信網によりインターネットを介してサーバ装置70に送信する。サーバ装置と基準器60との通信方式は特に限定されず、上記移動体通信網のほか、利用可能であるなら、Wi-Fiや第1実施形態のBLEなどの近距離無線通信、光通信網を使ったFTTH(Fiber To The Home)、または公衆交換電話網を使ったADSL(Asymmetric Digital Subscriber Line)などで気圧値を送信してもよい。
[Configuration of reference device]
Each of the plurality of reference devices 60 includes a barometric pressure sensor 61 and a wireless transmitter / receiver 62, and is a beacon that detects a barometric pressure value at a place where the barometer is disposed and transmits the detected barometric pressure value. The reference unit 60 converts the acquired atmospheric pressure value to the server device 70 via the Internet via a mobile communication network such as 3G / HSPA (High Speed Packet Access), LTE (Long Term Evolution), or Wimax (Worldwide Interoperability for Microwave Access). Send to. The communication method between the server device and the reference device 60 is not particularly limited. In addition to the above mobile communication network, short-range wireless communication such as Wi-Fi and BLE of the first embodiment, optical communication network, etc., if available. The atmospheric pressure value may be transmitted by FTTH (Fiber To The Home) using the ADSL or ADSL (Asymmetric Digital Subscriber Line) using the public switched telephone network.
 本実施形態における基準器60は、検知した気圧値を例えば数秒~数十秒に一回のサイクルでサーバ装置70へ送信する構成とされている。その他、例えば、サーバ装置70に前回送信した気圧値を基準器60が記憶可能であり、その値に対して所定の閾値以上の変化が生じた場合にのみ新たな気圧値を送信する構成としてもよい。または、サーバ装置70から送信指示があったときにだけ気圧値を送信する構成としてもよい。さらに、検知した気圧値を国際標準大気などに基づいて気圧高度に変換したうえでサーバ装置70に送信してもよい。 The reference device 60 in the present embodiment is configured to transmit the detected atmospheric pressure value to the server device 70 in a cycle of, for example, once every several seconds to several tens of seconds. In addition, for example, the reference device 60 can store the atmospheric pressure value transmitted to the server device 70 last time, and a new atmospheric pressure value is transmitted only when a change of a predetermined threshold value or more occurs with respect to the atmospheric pressure value. Good. Or it is good also as a structure which transmits an atmospheric | air pressure value only when there exists a transmission instruction | indication from the server apparatus 70. FIG. Further, the detected atmospheric pressure value may be converted to atmospheric pressure altitude based on the international standard atmosphere or the like and then transmitted to the server device 70.
[サーバ装置の構成]
 サーバ装置70は、中央処理装置であるCPU71と、主記憶装置であるRAM、補助記憶装置であるHDDなどからなるメモリ22と、を備えた汎用コンピュータである。
[Configuration of server device]
The server device 70 is a general-purpose computer including a CPU 71 that is a central processing unit, a memory 22 that includes a RAM that is a main storage device, an HDD that is an auxiliary storage device, and the like.
[飛行高度補正機能および方法]
 図6に示すように、サーバ装置70は、そのメモリ72に、各基準器60の設置位置の緯度および経度が予め記憶された設置座標記憶領域LS(設置座標記憶手段)を有している。サーバ装置70は、マルチコプター11のGPS受信器32が検知した飛行座標を取得し、マルチコプター11と各基準器60との距離を特定することができる。また、サーバ装置70は、各基準器60の気圧センサ61が検知した気圧値である基準値vを記憶する基準値記憶領域VS(基準値記憶手段)を有している。本実施形態の基準値記憶領域VSには、基準値vとともに、その基準値vの取得時刻、および、その基準値vを検知した基準器60の個体識別情報が蓄積される。
[Flight altitude correction function and method]
As shown in FIG. 6, the server device 70 has an installation coordinate storage area LS (installation coordinate storage means) in which the latitude and longitude of the installation position of each reference device 60 are stored in advance in the memory 72. The server device 70 can acquire the flight coordinates detected by the GPS receiver 32 of the multicopter 11 and specify the distance between the multicopter 11 and each reference device 60. The server device 70 also has a reference value storage area VS (reference value storage means) that stores a reference value v that is an atmospheric pressure value detected by the atmospheric pressure sensor 61 of each reference device 60. The reference value storage area VS of the present embodiment stores the reference value v, the acquisition time of the reference value v, and the individual identification information of the reference device 60 that has detected the reference value v.
 同メモリ72にはさらに、増減値取得プログラムDP(増減値取得手段)が記憶されている。増減値取得プログラムDPは、マルチコプター11の離陸時刻における各基準器60の基準値vである初期値iを基準値記憶領域VSから取得し、これら初期値iと、各基準器60の現在の基準値vである現在値pとを比較して、これらの値の差である増減値dを基準器60ごとに算出する。本実施形態における増減値取得プログラムDPはさらに、各基準器60とマルチコプター11との距離に応じてこれら増減値dを加重平均した値である調整増減値adを算出する。 The memory 72 further stores an increase / decrease value acquisition program DP (increase / decrease value acquisition means). The increase / decrease value acquisition program DP acquires the initial value i, which is the reference value v of each reference device 60 at the takeoff time of the multicopter 11, from the reference value storage area VS, and the initial value i and the current value of each reference device 60. The current value p that is the reference value v is compared, and an increase / decrease value d that is the difference between these values is calculated for each reference device 60. The increase / decrease value acquisition program DP in the present embodiment further calculates an adjustment increase / decrease value ad that is a value obtained by weighted average of these increase / decrease values d according to the distance between each reference device 60 and the multicopter 11.
 マルチコプター11の飛行制御プログラムFCPは、マルチコプター11の飛行高度を管理するサブプログラムとして、飛行高度調節プログラムFAP(飛行高度調節手段)を有している。さらに飛行高度調節プログラムFAPは、そのサブプログラムとして、補正値取得プログラムCP(補正値取得手段)を有している。補正値取得プログラムCPは、マルチコプター11の気圧センサ311が検知した気圧値である実機値mに対して、調整増減値adを加減算した値である補正値cを算出する。つまり、補正値cは、マルチコプター11の離陸以降に生じた大気圧の変化を相殺した実機値mである。すなわち、マルチコプター11の離陸時点における大気圧を基準としたマルチコプター11の現在の気圧高度である。 The flight control program FCP of the multicopter 11 has a flight altitude adjustment program FAP (flight altitude adjusting means) as a subprogram for managing the flight altitude of the multicopter 11. Further, the flight altitude adjustment program FAP has a correction value acquisition program CP (correction value acquisition means) as its subprogram. The correction value acquisition program CP calculates a correction value c that is a value obtained by adding or subtracting the adjustment increase / decrease value ad to the actual machine value m that is the atmospheric pressure value detected by the atmospheric pressure sensor 311 of the multicopter 11. That is, the correction value c is an actual machine value m that offsets the change in atmospheric pressure that has occurred since the multicopter 11 took off. That is, the present barometric altitude of the multicopter 11 with reference to the atmospheric pressure at the time of takeoff of the multicopter 11.
 飛行高度調節プログラムFAPは、補正値取得プログラムCPが算出した補正値cに基づいてマルチコプター11の飛行高度を調節する。ここで、マルチコプター11のメモリ22は、マルチコプター11が到達および維持すべき気圧値である維持高度khが記憶された維持高度記憶領域KSを有している。この維持高度記憶領域KSには、維持高度khとして、オートパイロットの飛行経路上のその地点における指定高度を気圧値に変換した値、または、サーバ装置70からインタラクティブに指示された高度を気圧値に変換した値が記憶されている。飛行高度調節プログラムFAPは、飛行制御プログラムFCPと協働し、マルチコプター11の補正値cが維持高度khと一致するようにマルチコプター11の飛行高度を制御する。 The flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c calculated by the correction value acquisition program CP. Here, the memory 22 of the multicopter 11 has a maintenance altitude storage area KS in which a maintenance altitude kh, which is an atmospheric pressure value that the multicopter 11 should reach and maintain, is stored. In the maintenance altitude storage area KS, as the maintenance altitude kh, a value obtained by converting the designated altitude at that point on the flight path of the autopilot into an atmospheric pressure value, or an altitude instructed interactively from the server device 70 as an atmospheric pressure value. The converted value is stored. The flight altitude adjustment program FAP cooperates with the flight control program FCP to control the flight altitude of the multicopter 11 so that the correction value c of the multicopter 11 matches the maintenance altitude kh.
 以下に、図7を参照し、飛行高度補正システムS2を用いたマルチコプター11の飛行高度補正方法について説明する。図7はマルチコプター11の飛行高度補正方法の手順を示すフローチャートである。本実施形態における飛行高度補正方法は、大きく、離陸処理S0、基準値取得処理S1、調整増減値取得処理S2、補正値算出処理S3、および飛行高度調節処理S4からなる。 Hereinafter, a method for correcting the flight altitude of the multicopter 11 using the flight altitude correction system S2 will be described with reference to FIG. FIG. 7 is a flowchart showing the procedure of the flight altitude correction method of the multicopter 11. The flight altitude correction method in the present embodiment is roughly composed of a take-off process S0, a reference value acquisition process S1, an adjustment increase / decrease value acquisition process S2, a correction value calculation process S3, and a flight altitude adjustment process S4.
 離陸処理S0では、オートパイロット処理またはサーバ装置70からの指示によりマルチコプター11が発着ポートから離陸する。基準値取得処理S1では、サーバ装置70が各基準器60から基準値vを取得し、それら基準値vとともに、その取得時刻、その基準値vを検知した基準器60の個体識別情報を基準値記憶領域VSに蓄積する。増減値取得処理S2では、サーバ装置70の増減値取得プログラムDPが、マルチコプター11の離陸時刻における各基準器60の基準値vである初期値iと、各基準器60の現在の気圧値である現在値pとを取得し、これら初期値iと現在値pとの差である増減値dを基準器60ごとに算出する。さらに、増減値取得プログラムDPは、マルチコプター11から現在の飛行座標を取得し、各基準器60とマルチコプター11との距離に応じてこれら増減値dを加重平均した値である調整増減値adを算出する。補正値算出処理S3では、マルチコプター11の補正値取得プログラムCPが、サーバ装置70から調整増減値adを取得し、実機値mに対して調整増減値adを加減算した値である補正値cを算出する。飛行高度調節処理S4では、マルチコプター11の飛行高度調節プログラムFAPが、補正値cに基づいてマルチコプター11の飛行高度を調節する。このとき、飛行高度調節プログラムFAPは、飛行制御プログラムFCPと協働し、補正値取得プログラムCPが算出した補正値cが維持高度khと一致するようにマルチコプター11の飛行高度を制御する。マルチコプター11は、離陸後、着陸するまでこれら基準値取得処理S1~飛行高度調節処理S4を繰り返す。 In the takeoff process S0, the multicopter 11 takes off from the departure / arrival port in accordance with an autopilot process or an instruction from the server device 70. In the reference value acquisition process S1, the server device 70 acquires the reference value v from each reference device 60, and together with these reference values v, the acquisition time and the individual identification information of the reference device 60 that has detected the reference value v are used as reference values. Accumulate in the storage area VS. In the increase / decrease value acquisition process S <b> 2, the increase / decrease value acquisition program DP of the server device 70 uses the initial value i, which is the reference value v of each reference device 60 at the takeoff time of the multicopter 11, and the current atmospheric pressure value of each reference device 60. A certain current value p is acquired, and an increase / decrease value d, which is the difference between the initial value i and the current value p, is calculated for each reference device 60. Further, the increase / decrease value acquisition program DP acquires the current flight coordinates from the multicopter 11 and adjusts the increase / decrease value ad which is a value obtained by weighted averaging the increase / decrease values d according to the distance between each reference device 60 and the multicopter 11. Is calculated. In the correction value calculation process S3, the correction value acquisition program CP of the multicopter 11 acquires the adjustment increase / decrease value ad from the server device 70, and calculates a correction value c that is a value obtained by adding / subtracting the adjustment increase / decrease value ad to the actual machine value m. calculate. In the flight altitude adjustment process S4, the flight altitude adjustment program FAP of the multicopter 11 adjusts the flight altitude of the multicopter 11 based on the correction value c. At this time, the flight altitude adjustment program FAP controls the flight altitude of the multicopter 11 so that the correction value c calculated by the correction value acquisition program CP matches the maintenance altitude kh in cooperation with the flight control program FCP. The multicopter 11 repeats these reference value acquisition processing S1 to flight altitude adjustment processing S4 after taking off until landing.
 以下に、図8~図10を参照してマルチコプター11の飛行高度補正方法について説明する。図8および図9は調整増減値の算出方法を説明する図であり、図8は、基準器が2基設置されている場合の例、図9は、基準器が3基設置されている場合の例である。 Hereinafter, a method for correcting the flight altitude of the multicopter 11 will be described with reference to FIGS. 8 and 9 are diagrams illustrating a method of calculating the adjustment increase / decrease value. FIG. 8 shows an example in which two reference devices are installed, and FIG. 9 shows a case in which three reference devices are installed. It is an example.
 図8の例では、2基の基準器A,Bがマルチコプターの飛行座標近傍に設置されている。これら2基の基準器A,Bを結ぶ直線に対してマルチコプターの飛行座標からおろした垂線の交点Dは、基準器Aからの距離laと基準器Bからの距離lbの比が1:2となる位置にある。これら基準器A,Bの増減値A,Bは、増減値Aが-0.6hPa、増減値Bが0.6hPaである。このとき、これら増減値A,Bの加重平均である調整増減値DABは、次式を用いて算出される。 In the example of FIG. 8, two reference devices A and B are installed in the vicinity of the flight coordinates of the multicopter. At the intersection D of the perpendicular line taken from the flight coordinates of the multicopter with respect to the straight line connecting these two reference devices A and B, the ratio of the distance la from the reference device A to the distance lb from the reference device B is 1: 2. It is in the position to become. The increase / decrease values A and B of these reference devices A and B have an increase / decrease value A of −0.6 hPa and an increase / decrease value B of 0.6 hPa. At this time, an adjusted increase / decrease value D AB which is a weighted average of the increase / decrease values A and B is calculated using the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 以下は、上記数式1に本例の具体値を代入した例である。
 
AB=-0.2=-0.6(2/3)+0.6(1/3)
本例では、上記数式1により、調整増減値DABとして-0.2hPaが導出される。
The following is an example of substituting the specific values of this example into the above Equation 1.

D AB = −0.2 = −0.6 (2/3) +0.6 (1/3)
In this example, −0.2 hPa is derived as the adjustment increase / decrease value D AB by the above equation 1.
 図9の例では、3基の基準器A,B,Cがマルチコプターの飛行座標近傍に設置されている。なお、これら3つの基準器A,B,Cは、マルチコプターを囲むように配置されている必要がある。これら3基の基準器A,B,Cを互いに結ぶ各直線に対して、マルチコプターの飛行座標からおろした各垂線の交点であるDAB,DBc,DAcの調整増減値DAB,DBc,DAcは、調整増減値DABが0.6hPa、調整増減値DBcが0.3hPa、調整増減値DAcが-0.3hPaである。尚、これら各調整増減値DAB,DBc,DAcは、上記数式1により算出されたものである。また、各交点DAB,DBc,DAcからマルチコプターまでの距離l,l,lの比は、3:1:1.5である。このとき、これら調整増減値DAB,DBc,DAcの加重平均である調整増減値DABcは、次式を用いて算出される。 In the example of FIG. 9, three reference devices A, B, and C are installed in the vicinity of the flight coordinates of the multicopter. These three reference devices A, B, and C need to be arranged so as to surround the multicopter. Adjusted increase / decrease values D AB , D of D AB , D Bc , D Ac , which are intersections of the perpendiculars taken from the flight coordinates of the multicopter, with respect to the straight lines connecting these three reference devices A, B, C to each other bc, D Ac is adjusted decrease value D AB is 0.6HPa adjustment change amount D bc is 0.3HPa, adjustment variate D Ac is -0.3HPa. These adjustment increase / decrease values D AB , D Bc , and D Ac are calculated by Equation 1 above. The ratio of the distances l 1 , l 2 , and l 3 from the intersections D AB , D Bc , and D Ac to the multicopter is 3: 1: 1.5. At this time, an adjustment increase / decrease value D ABc that is a weighted average of these adjustment increase / decrease values D AB , D Bc , D Ac is calculated using the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 以下は、上記数式2に本例の具体値を代入した例である。
ABc=0.15=(0.6+0.9-0.6)/(1+3+2)
本例では、上記数式2により、調整増減値DABcとして0.15hPaが導出される。このように、基準器が3基となる場合には、それら各基準器の組み合わせごとの調整増減値を求め、それら各調整増減値を増減値とみなしてさらに調整増減値を求めることで、本例の調整増減値が導出される。
The following is an example of substituting the specific values of this example into the above formula 2.
D ABc = 0.15 = (0.6 + 0.9−0.6) / (1 + 3 + 2)
In this example, 0.15 hPa is derived as the adjustment increase / decrease value D ABc by the above equation 2. In this way, when there are three reference devices, the adjustment increase / decrease value for each combination of these reference devices is obtained, and the adjustment increase / decrease value is obtained by regarding each adjustment increase / decrease value as the increase / decrease value. An example adjustment increase / decrease value is derived.
 本実施形態においては、基地局60は2基であるため、増減値取得プログラムDPは上記数式1を用いて調整増減値adを算出する。尚、調整増減値adを算出する方法は上記数式1および数式2には限定されない。本発明の「増減値を均す」とは、調整増減値adの増減と実際の大気圧の変化との誤差ができるだけ小さくなるように、複数の基地局60の増減値dから一の増減値(調整増減値ad)を求めることをいい、例えば単純平均や、より複雑な回帰計算、その他の数学的手法を用いることができる。 In the present embodiment, since there are two base stations 60, the increase / decrease value acquisition program DP calculates the adjusted increase / decrease value ad using the above Equation 1. Note that the method of calculating the adjustment increase / decrease value ad is not limited to Equation 1 and Equation 2. In the present invention, “equalizing the increase / decrease value” means that one increase / decrease value from the increase / decrease value d of the plurality of base stations 60 so that the error between the increase / decrease of the adjustment increase / decrease value ad and the actual change in atmospheric pressure becomes as small as possible. This refers to obtaining (adjusted increase / decrease value ad), and for example, simple averaging, more complicated regression calculation, and other mathematical methods can be used.
 以下に、具体値を用いてマルチコプター11の飛行高度補正方法について説明する。図10は、飛行高度補正システムS2によりマルチコプター11の飛行高度が維持される様子を示す説明図である。図10(a)では、マルチコプター11は、オートパイロット処理またはサーバ装置70により維持高度ka(1012hPa(10m))が設定され、発着ポートから離陸する(離陸処理S0)。このとき、各基準器60の気圧センサ61が検知した気圧値である基準値vは、どちらも1013.0hPaであった。サーバ装置70はマルチコプター11の離陸時における基準値vを、その取得時刻、および各基準器60の個体識別情報とともに基準値記憶領域VSに蓄積する(基準値取得処理S1)。 Hereinafter, the flight altitude correction method of the multicopter 11 will be described using specific values. FIG. 10 is an explanatory diagram showing how the flight altitude of the multicopter 11 is maintained by the flight altitude correction system S2. In FIG. 10A, the multicopter 11 is set to the maintenance altitude ka (1012 hPa (10 m)) by the autopilot process or the server device 70, and takes off from the departure / arrival port (takeoff process S0). At this time, the reference value v, which is the atmospheric pressure value detected by the atmospheric pressure sensor 61 of each reference device 60, was 1013.0 hPa. The server device 70 accumulates the reference value v at the time of take-off of the multicopter 11 in the reference value storage area VS together with the acquisition time and the individual identification information of each reference device 60 (reference value acquisition processing S1).
 マルチコプター11はそのまま10m上昇し、その位置でホバリングを開始する。このとき、マルチコプター11の実機値mは1012.0hPaであった。また、マルチコプター11が離陸してからホバリングを開始するまでの間に大気圧の変化は生じておらず、このときの各基準器60の現在値pは、どちらもマルチコプター11の離陸時刻における基準値v(初期値i)と同じ1013.0hPaのままであった。 The multicopter 11 rises 10m as it is and starts hovering at that position. At this time, the actual machine value m of the multicopter 11 was 1012.0 hPa. In addition, there is no change in atmospheric pressure between the time when the multicopter 11 takes off and the start of hovering, and the current value p of each reference device 60 at this time is the time at which the multicopter 11 takes off. It remained the same 1013.0 hPa as the reference value v (initial value i).
 サーバ装置70の増減値取得プログラムDPは、マルチコプター11の離陸後、各基準器60について、初期値i(1013.0hPa,1013.0hPa)と、そのときの現在値p(1013.0hPa,1013.0hPa)との差(現在値p-初期値i)である増減値d(0hPa,0hPa)を算出し、さらに、マルチコプター11から現在の飛行座標を取得し、上記数式1によりこれら増減値dの調整増減値ad(0hPa)を算出する(増減値取得処理S2)。 The increase / decrease value acquisition program DP of the server device 70 sets the initial value i (1013.0 hPa, 1013.0 hPa) and the current value p (1013.0 hPa, 1013) for each reference device 60 after the multicopter 11 takes off. .0 hPa), an increase / decrease value d (0 hPa, 0 hPa), which is a difference (current value p−initial value i), is calculated, and the current flight coordinates are obtained from the multicopter 11. An adjustment increase / decrease value ad (0 hPa) of d is calculated (increase / decrease value acquisition processing S2).
 マルチコプター11の補正値取得プログラムCPは、この調整増減値ad(0hPa)をサーバ装置70から取得し、実機値m(1012.0hPa)に調整増減値ad(0hPa)を加算した値である補正値c(1012.0hPa)を算出する(補正値算出処理S3)。そして、飛行高度調節プログラムFAPは、補正値c(1012.0hPa)が維持高度kaと一致するようにマルチコプター11の飛行高度を調節する(飛行高度調節処理S4)。飛行高度補正システムS2は、これら基準値取得処理S1~飛行高度調節処理S4を繰り返しながらマルチコプター11を飛行させる。しかし、マルチコプター11が離陸してからこれまでに大気圧の変化はなく、調整増減値adは0hPaのままである。よって、この時点では実機値mと補正値cはどちらも同じ値(1012.0hPa)である。 The correction value acquisition program CP of the multicopter 11 acquires the adjustment increase / decrease value ad (0 hPa) from the server device 70, and is a correction that is a value obtained by adding the adjustment increase / decrease value ad (0 hPa) to the actual machine value m (1012.0 hPa). A value c (1012.0 hPa) is calculated (correction value calculation processing S3). Then, the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 so that the correction value c (1012.0 hPa) matches the maintenance altitude ka (flight altitude adjustment processing S4). The flight altitude correction system S2 causes the multicopter 11 to fly while repeating these reference value acquisition processing S1 to flight altitude adjustment processing S4. However, since the multicopter 11 has taken off, the atmospheric pressure has not changed so far, and the adjusted increase / decrease value ad remains at 0 hPa. Therefore, at this time, the actual machine value m and the correction value c are both the same value (1012.0 hPa).
 その後、図10(b)に示すように、大気圧が変化し、各基準器60の基準値vがそれぞれ1012.4hPaと1013.6hPaに、実機値mが1011.8hPaに変化した(マルチコプター11の実際の飛行高度は、実機値mが1012.0hPaであったときと同じ10m)。 Thereafter, as shown in FIG. 10B, the atmospheric pressure changed, the reference value v of each reference device 60 changed to 1012.4 hPa and 1013.6 hPa, respectively, and the actual machine value m changed to 1011.8 hPa (multicopter The actual flight altitude of 11 is 10 m, which is the same as when the actual aircraft value m was 1012.0 hPa).
 サーバ装置70は、増減値取得プログラムDPにより、各基準器60の初期値i(1013.0hPa,1013.0hPa)と、気圧変化後の現在値p(1012.4hPa,1013.6hPa)との増減値d(-0.6hPa,0.6hPa)を算出(現在値p-初期値i)し、さらに上記数式1によりこれら増減値dの調整増減値ad(-0.2hPa)を算出する(増減値取得処理S2)。 The server device 70 increases or decreases between the initial value i (1013.0 hPa, 1013.0 hPa) of each reference device 60 and the current value p (1012.4 hPa, 1013.6 hPa) after the change in atmospheric pressure by the increase / decrease value acquisition program DP. The value d (−0.6 hPa, 0.6 hPa) is calculated (current value p—initial value i), and further, the adjusted increase / decrease value ad (−0.2 hPa) of these increase / decrease values d is calculated according to Equation 1 (increase / decrease). Value acquisition process S2).
 マルチコプター11の補正値取得プログラムCPは、この調整増減値ad(-0.2hPa)をサーバ装置70から取得し、実機値m(1011.8hPa)に対してこの調整増減値ad(-0.2hPa)を加減算(調整増減値adの符号を反転させた値を実機値mに加算)した値である補正値c(1012.0hPa)を算出する(補正値算出処理S3)。そして、飛行高度調節プログラムFAPは、この補正値c(1012.0hPa)を基準としてマルチコプター11の飛行高度を調節する(飛行高度調節処理S4)。しかしこのとき、補正値c(1012.0hPa)は維持高度ka(1012.0hPa)と一致しているため、飛行高度調節プログラムFAPは、マルチコプター11の実際の飛行高度は変更せず、それまでの飛行高度を維持する。ここで、サーバ装置70やオートパイロット処理から飛行高度変更指示が別途与えられている場合(維持高度kaが更新されたとき)には、飛行高度調節プログラムFAPは、補正値c(1012.0hPa)を基準としてマルチコプター11の飛行高度を変更する。 The correction value acquisition program CP of the multicopter 11 acquires the adjustment increase / decrease value ad (−0.2 hPa) from the server device 70, and adjusts this adjustment increase / decrease value ad (−0. 2hPa) is added or subtracted (a value obtained by inverting the sign of the adjustment increase / decrease value ad is added to the actual machine value m) to calculate a correction value c (1012.0 hPa) (correction value calculation processing S3). Then, the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 with reference to the correction value c (1012.0 hPa) (flight altitude adjustment processing S4). However, since the correction value c (1012.0 hPa) coincides with the maintenance altitude ka (1012.0 hPa) at this time, the flight altitude adjustment program FAP does not change the actual flight altitude of the multicopter 11 until then. Maintain the flight altitude. Here, when the flight altitude change instruction is separately given from the server device 70 or the autopilot process (when the maintenance altitude ka is updated), the flight altitude adjustment program FAP uses the correction value c (1012.0 hPa). Is used as a reference to change the flight altitude of the multicopter 11.
 尚、本実施形態においては、各値(初期値i、現在値p、増減値d、調整増減値ad、実機値m、補正値c、および維持高度ka)を気圧値の形式で取得・演算しているが、これらの各値を気圧高度の形式に変換して取り扱うことも可能である。 In this embodiment, each value (initial value i, current value p, increase / decrease value d, adjustment increase / decrease value ad, actual machine value m, correction value c, and maintenance altitude ka) is acquired and calculated in the form of an atmospheric pressure value. However, it is also possible to convert each of these values into a barometric altitude format.
 このように、本実施形態における飛行高度補正システムS2は、各基準器60とマルチコプター11との間に、これらと通信可能なサーバ装置70を設け、サーバ装置70が各基準器60の増減値dを収集して調整増減値adを算出し、マルチコプター11はサーバ装置70から取得した調整増減値adに基づいてその飛行高度を制御する構成とされていることにより、サーバ装置70を中心として飛行高度補正システムS2を一元的に管理することが可能とされている。またこれにより、各基準器60とマルチコプター11が備える機能が最小限に抑えられており、システムの規模や数の拡張が容易となっている。さらに、増減値取得プログラムDPが調整増減値adを算出するときに、各基準器60とマルチコプター11との距離に応じて各増減値dに重みづけを行うことにより、実際の大気圧の変化と調整増減値adとをより正確に一致させることが可能とされている。 As described above, the flight altitude correction system S2 according to the present embodiment includes the server device 70 that can communicate with each reference device 60 and the multicopter 11, and the server device 70 increases or decreases the value of each reference device 60. d is collected to calculate the adjustment increase / decrease value ad, and the multicopter 11 is configured to control the flight altitude based on the adjustment increase / decrease value ad acquired from the server device 70, so that the server device 70 is the center. The flight altitude correction system S2 can be managed in an integrated manner. This also minimizes the functions of each reference device 60 and the multicopter 11 and facilitates expansion of the scale and number of systems. Furthermore, when the increase / decrease value acquisition program DP calculates the adjusted increase / decrease value ad, the actual change in atmospheric pressure is obtained by weighting each increase / decrease value d according to the distance between each reference device 60 and the multicopter 11. And the adjustment increase / decrease value ad can be more accurately matched.
 また、マルチコプター11の発着ポートと、そこから遠く離れた場所とでは、互いに大気圧の変化条件が異なっている。そのため、マルチコプター11が基準器60から遠ざかるにつれて、実際にマルチコプター11が飛行しているエリアの増減値dと、基準器60が設置されたエリアの増減値dとに違いが生じ、マルチコプター11の飛行高度に乱れが生じるおそれがある。飛行高度補正システムS2では、基準器60が適当な間隔で複数設置されており、これら各基準器60の増減値dを加重平均した調整増減値adに基づいてマルチコプター11の実機値mを調整することにより、マルチコプター11の飛行高度の乱れを広範なエリアにわたって抑えることが可能とされている。 Also, the atmospheric pressure change conditions are different between the departure and arrival port of the multicopter 11 and a place far away from the departure and arrival port. Therefore, as the multicopter 11 moves away from the reference device 60, a difference occurs between the increase / decrease value d of the area where the multicopter 11 actually flies and the increase / decrease value d of the area where the reference device 60 is installed. There is a risk that the flight altitude of 11 may be disturbed. In the flight altitude correction system S2, a plurality of reference devices 60 are installed at appropriate intervals, and the actual machine value m of the multicopter 11 is adjusted based on an adjustment increase / decrease value ad obtained by weighted average of the increase / decrease values d of these reference devices 60. By doing so, it is possible to suppress the disturbance of the flight altitude of the multicopter 11 over a wide area.
 尚、本実施形態では、基準器60は2基だけであり、サーバ装置70は常にこれら2基の増減値dから調整増減値adを算出する。しかし、例えば、広大なエリアに多数の基準器60が分散配置されているときや、一部の基準器60がマルチコプター11から著しく離れた場所に設置されているようなときには、必ずしも設置した基準器60のすべてを参酌しなくてもよい。この場合、例えばサーバ装置70がマルチコプター11の飛行座標を取得してその直近の2~3基の基準器60を特定し、これら直近の基準器60の増減値dのみから調整増減値adを算出する構成としてもよい。 In the present embodiment, there are only two reference devices 60, and the server device 70 always calculates an adjustment increase / decrease value ad from these two increase / decrease values d. However, for example, when a large number of reference devices 60 are distributed in a large area, or when some reference devices 60 are installed at locations far away from the multicopter 11, they are not necessarily installed. It is not necessary to consider all of the vessel 60. In this case, for example, the server device 70 acquires the flight coordinates of the multicopter 11 to identify the nearest two to three reference devices 60, and sets the adjustment increase / decrease value ad from only the increase / decrease value d of these nearest reference devices 60. It is good also as a structure to calculate.
<第3実施形態>
[全体構成]
 図11は、第3実施形態にかかる飛行高度補正システムS3の全体構成を示す模式図である。図12は、飛行高度補正システムS3の機能構成を示すブロック図である。尚、以下の説明では、先の実施形態と同一または同様の機能を有する構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。また、飛行高度補正システムS3のマルチコプター11、基準器60、および操縦端末91の基本的な構成は第1実施形態の飛行高度補正システムS1と同様である。
<Third Embodiment>
[overall structure]
FIG. 11 is a schematic diagram showing an overall configuration of a flight altitude correction system S3 according to the third embodiment. FIG. 12 is a block diagram showing a functional configuration of the flight altitude correction system S3. In the following description, components having the same or similar functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted. The basic configurations of the multicopter 11, the reference device 60, and the control terminal 91 of the flight altitude correction system S3 are the same as the flight altitude correction system S1 of the first embodiment.
[飛行高度補正機能および方法]
 図12に示すように、マルチコプター11は、基準器60の設置位置における標高である標高値aを記憶する標高値記憶領域ES(標高値記憶手段)を有している。
[Flight altitude correction function and method]
As shown in FIG. 12, the multicopter 11 has an elevation value storage area ES (elevation value storage means) that stores an elevation value a that is an elevation at the installation position of the reference device 60.
 マルチコプター11の飛行制御プログラムFCPは、マルチコプター11の飛行高度を管理するサブプログラムとして、飛行高度調節プログラムFAP(飛行高度調節手段)を有している。さらに飛行高度調節プログラムFAPは、そのサブプログラムとして、高度誤差取得プログラムEP(高度誤差取得手段)、および、補正値取得プログラムCP(補正値取得手段)を有している。高度誤差取得プログラムEPは、基準器60の標高値aと、基準器60の気圧センサ61が検知した気圧値を気圧高度に変換した値である現在値pとを比較して、これらの値の差である高度誤差eを算出する。補正値取得プログラムCPは、マルチコプター11の気圧センサ311が検知した気圧値を気圧高度に変換した値である実機値mに対して、高度誤差eを加減算した値である補正値cを算出する。つまり、補正値cは、実際の高度(以下、このような高度を「真高度」ともいう。)と気圧高度との誤差を相殺した実機値mである。すなわち、真高度を基準としたマルチコプター11の現在の飛行高度である。 The flight control program FCP of the multicopter 11 has a flight altitude adjustment program FAP (flight altitude adjusting means) as a subprogram for managing the flight altitude of the multicopter 11. Furthermore, the flight altitude adjustment program FAP has an altitude error acquisition program EP (altitude error acquisition means) and a correction value acquisition program CP (correction value acquisition means) as its subprograms. The altitude error acquisition program EP compares the altitude value a of the reference device 60 with the current value p, which is a value obtained by converting the atmospheric pressure value detected by the atmospheric pressure sensor 61 of the reference device 60 into the atmospheric pressure altitude, and calculates these values. An altitude error e which is a difference is calculated. The correction value acquisition program CP calculates a correction value c that is a value obtained by adding or subtracting an altitude error e to an actual machine value m that is a value obtained by converting the atmospheric pressure value detected by the atmospheric pressure sensor 311 of the multicopter 11 into an atmospheric pressure altitude. . That is, the correction value c is an actual machine value m that offsets an error between the actual altitude (hereinafter, such altitude is also referred to as “true altitude”) and the atmospheric pressure altitude. That is, the current flight altitude of the multicopter 11 with reference to the true altitude.
 飛行高度調節プログラムFAPは、補正値取得プログラムCPが算出した補正値cに基づいてマルチコプター11の飛行高度を調節する。ここで、飛行高度調節プログラムFAPは、マルチコプター11が到達および維持すべき飛行高度である維持高度khが記憶される維持高度記憶領域KSを有している。この維持高度記憶領域KSには、維持高度khとして、オペレータの操縦端末91からの飛行高度変更指示が停止したときの補正値cが記憶される。または、マルチコプター11をオートパイロットで飛行させる場合には、その地点における予め指定された飛行高度が記憶される。飛行高度調節プログラムFAPは、飛行制御プログラムFCPと協働し、マルチコプター11の補正値cが維持高度khと一致するようにマルチコプター11の飛行高度を制御する。 The flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c calculated by the correction value acquisition program CP. Here, the flight altitude adjustment program FAP has a maintenance altitude storage area KS in which a maintenance altitude kh that is a flight altitude to be reached and maintained by the multicopter 11 is stored. In the maintenance altitude storage area KS, a correction value c when the flight altitude change instruction from the operator's control terminal 91 is stopped is stored as the maintenance altitude kh. Or when making the multicopter 11 fly by an autopilot, the flight altitude previously designated at that point is stored. The flight altitude adjustment program FAP cooperates with the flight control program FCP to control the flight altitude of the multicopter 11 so that the correction value c of the multicopter 11 matches the maintenance altitude kh.
 以下に、図13を参照し、飛行高度補正システムS3を用いたマルチコプター11の飛行高度補正方法について説明する。図13はマルチコプター11の飛行高度補正方法の手順を示すフローチャートである。飛行高度補正システムS3を用いたマルチコプター11の飛行高度補正方法は、大きく、離陸処理S1、高度誤差取得処理S2、補正値算出処理S3、および飛行高度調節処理S4からなる。 Hereinafter, the flight altitude correction method of the multicopter 11 using the flight altitude correction system S3 will be described with reference to FIG. FIG. 13 is a flowchart showing the procedure of the flight altitude correction method of the multicopter 11. The flight altitude correction method of the multicopter 11 using the flight altitude correction system S3 is roughly composed of a takeoff process S1, an altitude error acquisition process S2, a correction value calculation process S3, and a flight altitude adjustment process S4.
 離陸処理S1では、マルチコプター11がオペレータの操縦端末91からの指示、またはオートパイロット処理により発着ポートから離陸する。高度誤差取得処理S2では、高度誤差取得プログラムEPが、基準器60から現在値pを取得し、標高値aと現在値pとの差である高度誤差eを算出する。補正値算出処理S3では、補正値取得プログラムCPが、実機値mに対して高度誤差eを加減算した値である補正値cを算出する。飛行高度調節処理S4では、飛行高度調節プログラムFAPが、補正値cに基づいてマルチコプター11の飛行高度を調節する。このとき、オペレータの操縦端末91やオートパイロット処理から、マルチコプター11の飛行高度変更指示が与えられている場合には、飛行高度調節プログラムFAPは、その指示に従い、補正値cを現在の飛行高度としてマルチコプター11の飛行高度を変更する。飛行高度調節プログラムFAPはさらに、操縦端末91からの飛行高度変更指示が停止したときには、そのときの補正値cを維持高度kaとして維持高度記憶領域KSを更新する。尚、オートパイロット処理からの飛行高度変更指示とは、飛行高度調節プログラムFAPが、その地点における予め指定された飛行高度を、維持高度記憶領域KSに維持高度kaとして設定し、その維持高度kaに到達およびこれを維持するようにマルチコプター11の飛行高度を調節することをいう。マルチコプター11は、離陸後、着陸するまでこれら高度誤差取得処理S2~飛行高度調節処理S4を繰り返す。 In the takeoff process S1, the multicopter 11 takes off from the departure / arrival port according to an instruction from the operator's control terminal 91 or an autopilot process. In the altitude error acquisition process S2, the altitude error acquisition program EP acquires the current value p from the reference device 60, and calculates an altitude error e that is the difference between the altitude value a and the current value p. In the correction value calculation process S3, the correction value acquisition program CP calculates a correction value c that is a value obtained by adding or subtracting the altitude error e to the actual machine value m. In the flight altitude adjustment process S4, the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c. At this time, when the flight altitude change instruction of the multicopter 11 is given from the operator's control terminal 91 or the autopilot process, the flight altitude adjustment program FAP follows the instruction to set the correction value c to the current flight altitude. The flight altitude of the multicopter 11 is changed. Further, when the flight altitude change instruction from the control terminal 91 is stopped, the flight altitude adjustment program FAP updates the maintenance altitude storage area KS with the correction value c at that time as the maintenance altitude ka. The flight altitude change instruction from the autopilot process means that the flight altitude adjustment program FAP sets the flight altitude specified in advance at the point as the maintenance altitude ka in the maintenance altitude storage area KS, and sets the altitude to the maintenance altitude ka. It means adjusting the flight altitude of the multicopter 11 to reach and maintain this. The multicopter 11 repeats these altitude error acquisition processing S2 to flight altitude adjustment processing S4 after taking off until landing.
 以下に、図14を参照し、具体値を用いてマルチコプター11の飛行高度補正方法について説明する。図14は、飛行高度補正システムS3によりマルチコプター11の飛行高度が維持される様子を示す説明図である。図14(a)に示すように、基準器60の気圧センサ61が検知した気圧値を気圧高度に変換した値である基準値vは、マルチコプター11の離陸時において0mであった(離陸処理S1)。 Hereinafter, a method for correcting the flight altitude of the multicopter 11 using specific values will be described with reference to FIG. FIG. 14 is an explanatory diagram showing how the flight altitude of the multicopter 11 is maintained by the flight altitude correction system S3. As shown in FIG. 14A, the reference value v, which is a value obtained by converting the atmospheric pressure value detected by the atmospheric pressure sensor 61 of the reference device 60 into an atmospheric pressure altitude, was 0 m when the multicopter 11 took off (takeoff processing). S1).
 そしてこの例では、オペレータはマルチコプター11をそのまま手動で10m上昇させ、その位置で自律的にホバリングするようマルチコプター11に指示をした(オペレータの操縦端末91からの指示を停止した)。このとき、マルチコプター11の気圧センサ311が検知した実機値mは10mであった。また、マルチコプター11が離陸してからホバリングを開始するまでの間に大気圧の変化は生じておらず、このときの基準器60の基準値vである現在値pは、標高値aと同じ0mのままであった。 In this example, the operator manually raises the multicopter 11 as it is for 10 m, and instructs the multicopter 11 to autonomously hover at that position (the instruction from the operator's control terminal 91 is stopped). At this time, the actual machine value m detected by the atmospheric pressure sensor 311 of the multicopter 11 was 10 m. Further, there is no change in atmospheric pressure between the take-off of the multicopter 11 and the start of hovering, and the current value p, which is the reference value v of the reference device 60 at this time, is the same as the altitude value a. It remained at 0 m.
 マルチコプター11は、離陸後、高度誤差取得プログラムEPにより、標高値a(0m)と、そのときの現在値p(0m)との差(現在値p-標高値a)である高度誤差e(0m)を算出し(高度誤差取得処理S2)、補正値取得プログラムCPにより、実機値m(10m)に対して高度誤差e(0m)を加算した値である補正値c(10m)を算出する(補正値算出処理S3)。そして、飛行高度調節プログラムFAPにより、補正値c(10m)を基準としてマルチコプター11の飛行高度を調節する(飛行高度調節処理S4)。マルチコプター11は、これら高度誤差取得処理S2~飛行高度調節処理S4を繰り返しながら飛行する。しかし、マルチコプター11が離陸してからこれまでに大気圧の変化はなく、高度誤差eは0mのままである。よって、この時点では実機値mと補正値cはどちらも同じ値(10m)を示している。 After taking off, the multicopter 11 uses the altitude error acquisition program EP to obtain an altitude error e () which is the difference between the altitude value a (0 m) and the current value p (0 m) at that time (current value p−altitude value a). 0m) is calculated (altitude error acquisition process S2), and the correction value c (10m), which is a value obtained by adding the altitude error e (0m) to the actual machine value m (10m), is calculated by the correction value acquisition program CP. (Correction value calculation process S3). Then, the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c (10 m) (flight altitude adjustment processing S4). The multicopter 11 flies while repeating these altitude error acquisition processing S2 to flight altitude adjustment processing S4. However, since the multicopter 11 has taken off, the atmospheric pressure has not changed so far, and the altitude error e remains at 0 m. Therefore, at this time, the actual machine value m and the correction value c are both the same value (10 m).
 飛行高度調節プログラムFAPは、オペレータの操縦端末91からの飛行高度変更指示が停止したときに(ホバリングを開始したときに)、そのときの補正値c(10m)を維持高度kaとして維持高度記憶領域KSに記憶する。以降、飛行高度調節処理S4では、飛行高度調節プログラムFAPは、オペレータの操縦端末91やオートパイロット処理から飛行高度変更指示が与えられるまで、この維持高度kaを維持するように動作する。 When the flight altitude change instruction from the operator's control terminal 91 is stopped (when the hovering is started), the flight altitude adjustment program FAP maintains the correction altitude c (10 m) at that time as the maintenance altitude ka. Store in KS. Thereafter, in the flight altitude adjustment process S4, the flight altitude adjustment program FAP operates to maintain this maintenance altitude ka until an instruction to change the flight altitude is given from the operator's control terminal 91 or the autopilot process.
 その後、図4(b)に示すように、大気圧が1hPa下がり、基準器60の現在値pが10mに、実機値mが20mに上がった(マルチコプター11の実際の飛行高度は実機値mが10mであったときと同じ10m)。 After that, as shown in FIG. 4B, the atmospheric pressure decreased by 1 hPa, the current value p of the reference device 60 increased to 10 m, and the actual aircraft value m increased to 20 m (the actual flight altitude of the multicopter 11 is the actual aircraft value m. The same as when 10 m was 10 m).
 このとき、マルチコプター11は、高度誤差取得プログラムEPにより標高値a(0m)と、そのときの現在値p(10m)との高度誤差e(10m)を算出する(現在値p-標高値a)(高度誤差取得処理S2)。そして、補正値取得プログラムCPにより、実機値m(20m)に対して高度誤差e(10m)を加減算(高度誤差eの符号を反転させた値を実機値mに加算)して補正値c(10m)を算出する(補正値算出処理S3)。そして、補正値c(10m)に基づいて飛行高度調節プログラムFAPによりマルチコプター11の飛行高度を調節する(飛行高度調節処理S4)。しかしこのとき、補正値c(10m)は維持高度ka(10m)と一致しているため、飛行高度調節プログラムFAPは、マルチコプター11の実際の飛行高度は変更せず、それまでの飛行高度を維持する。ここで、オペレータの操縦端末91やオートパイロット処理から飛行高度変更指示が別途与えられている場合には、飛行高度調節プログラムFAPは、この補正値c(10m)を基準としてマルチコプター11の飛行高度を変更する。 At this time, the multicopter 11 calculates an altitude error e (10 m) between the altitude value a (0 m) and the current value p (10 m) at that time by the altitude error acquisition program EP (current value p-elevation value a (Altitude error acquisition process S2). Then, the altitude error e (10 m) is added to or subtracted from the actual machine value m (20 m) by the correction value acquisition program CP (a value obtained by inverting the sign of the altitude error e is added to the actual machine value m). 10m) is calculated (correction value calculation processing S3). Then, the flight altitude of the multicopter 11 is adjusted by the flight altitude adjustment program FAP based on the correction value c (10 m) (flight altitude adjustment processing S4). However, since the correction value c (10 m) coincides with the maintenance altitude ka (10 m) at this time, the flight altitude adjustment program FAP does not change the actual flight altitude of the multicopter 11 and the previous flight altitude is changed. maintain. Here, if a flight altitude change instruction is separately given from the operator's control terminal 91 or autopilot processing, the flight altitude adjustment program FAP uses the correction value c (10 m) as a reference for the flight altitude of the multicopter 11. To change.
 本実施形態の補正値取得プログラムCPは、補正値cを算出するにあたり、実機値mに対して単純に高度誤差eを加減算しているが、補正値cの算出方法はこれには限られない。本発明の「実機値に対して高度誤差を加味する」とは、補正値cを算出するにあたり、気圧変化による実機値mの乱れを、高度誤差eを使った数学的手法により除去または軽減することをいう。また、本実施形態においては、各値(標高値a、基準値v、現在値p、高度誤差e、実機値m、補正値c、および維持高度ka)を気圧高度の形式で取得・演算しているが、これらの各値を気圧値の形式で取り扱うことも可能である。 The correction value acquisition program CP of this embodiment simply adds or subtracts the altitude error e from the actual machine value m when calculating the correction value c, but the method of calculating the correction value c is not limited to this. . In the present invention, “adding an altitude error to the actual machine value” means that when calculating the correction value c, the disturbance of the actual machine value m due to a change in atmospheric pressure is removed or reduced by a mathematical method using the altitude error e. That means. In the present embodiment, each value (elevation value a, reference value v, current value p, altitude error e, actual machine value m, correction value c, and maintenance altitude ka) is acquired and calculated in the form of atmospheric pressure altitude. However, each of these values can also be handled in the form of an atmospheric pressure value.
 このように、本実施形態における飛行高度補正システムS3は、マルチコプター11とは別に、真高度と気圧高度との誤差である高度誤差eを検知するための基準器60を設け、マルチコプター11の実機値mをこの高度誤差eに基づいて調整することにより、マルチコプター11の真高度と実機値mとの誤差を解消させることができる。そして、これにより、マルチコプター11の飛行高度を真高度に基づいて一定に保つことが可能となる。先の実施形態における増減値dを使用した飛行高度の補正は、あくまで離陸時の大気圧に対する相対的かつ経時的な気圧変化を相殺することを目的としたものであり、真高度を基準としてマルチコプター11を一定の飛行高度に維持するためには、真高度を認識するための仕組みを別途備える必要がある。本実施形態では、基準器60の設置位置における標高(真高度)を予め標高値記憶領域ESに登録しておくことにより、先の実施形態の構成と同様の仕組みで、かつ、真高度を基準としてマルチコプター11を一定の飛行高度に保つことが可能とされている。 As described above, the flight altitude correction system S3 in the present embodiment is provided with the reference device 60 for detecting the altitude error e, which is an error between the true altitude and the barometric altitude, in addition to the multicopter 11. By adjusting the actual machine value m based on the altitude error e, the error between the true altitude of the multicopter 11 and the actual machine value m can be eliminated. Thus, the flight altitude of the multicopter 11 can be kept constant based on the true altitude. The correction of the flight altitude using the increase / decrease value d in the previous embodiment is only for the purpose of canceling the change in atmospheric pressure relative to the atmospheric pressure at the time of takeoff. In order to maintain the copter 11 at a constant flight altitude, it is necessary to separately provide a mechanism for recognizing the true altitude. In the present embodiment, the altitude (true altitude) at the installation position of the reference device 60 is registered in advance in the altitude value storage area ES, so that the same mechanism as in the previous embodiment is used and the true altitude is used as a reference. It is possible to keep the multicopter 11 at a constant flight altitude.
<第4実施形態>
[全体構成]
 以下に、本発明の第4実施形態について図面を用いて説明する。図15は、本発明の第4実施形態にかかる飛行高度補正システムS4の全体構成を示す模式図である。図16は、飛行高度補正システムS4の機能構成を示すブロック図である。なお、以下の説明では、先の実施形態と同一または同様の機能を有する構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。また、飛行高度補正システムS4のマルチコプター11、基準器60、およびサーバ装置70の基本的な構成は第2実施形態の飛行高度補正システムS2と同様である。
<Fourth embodiment>
[overall structure]
Below, 4th Embodiment of this invention is described using drawing. FIG. 15 is a schematic diagram showing an overall configuration of a flight altitude correction system S4 according to the fourth embodiment of the present invention. FIG. 16 is a block diagram showing a functional configuration of the flight altitude correction system S4. In the following description, components having the same or similar functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted. The basic configurations of the multicopter 11, the reference device 60, and the server device 70 of the flight altitude correction system S4 are the same as those of the flight altitude correction system S2 of the second embodiment.
 本実施形態の基準器60は、その気圧センサ61で検知した気圧値を国際標準大気などに基づいて気圧高度に変換し、変換後の気圧高度を基準値vとしてサーバ装置70に送信する。 The reference device 60 of the present embodiment converts the atmospheric pressure value detected by the atmospheric pressure sensor 61 into an atmospheric pressure altitude based on the international standard atmosphere or the like, and transmits the converted atmospheric pressure altitude to the server device 70 as a reference value v.
[飛行高度補正機能および方法]
 図16に示すように、サーバ装置70は、そのメモリ72に、各基準器60の設置位置の緯度および経度が予め記憶された設置座標記憶領域LS(設置座標記憶手段)を有している。サーバ装置70は、マルチコプター11のGPS受信器32が検知した飛行座標を取得し、マルチコプター11と各基準器60との距離を特定することができる。また、同メモリ72は、各基準器60の設置位置における標高である標高値aが予め記憶された標高値記憶領域ES(標高値記憶手段)を有している。
[Flight altitude correction function and method]
As shown in FIG. 16, the server device 70 has an installation coordinate storage area LS (installation coordinate storage means) in which the latitude and longitude of the installation position of each reference device 60 are stored in advance in the memory 72. The server device 70 can acquire the flight coordinates detected by the GPS receiver 32 of the multicopter 11 and specify the distance between the multicopter 11 and each reference device 60. Further, the memory 72 has an altitude value storage area ES (elevation value storage means) in which an altitude value a which is an altitude at the installation position of each reference device 60 is stored in advance.
 同メモリ72にはさらに、高度誤差取得プログラムEP(高度誤差取得手段)が記憶されている。高度誤差取得プログラムEPは、各基準器60の標高値aと、基準器60の現在の基準値vである現在値pとを比較して、これらの値の差である高度誤差eを算出する。本実施形態における高度誤差取得プログラムEPはさらに、各基準器60とマルチコプター11との距離に応じてこれら高度誤差eを加重平均した値である調整高度誤差aeを算出する。尚、調整高度誤差aeの算出方法は第2実施形態における調整増減値adの算出方法と同様である。本実施形態においては、基地局60は2基であるため、高度誤差取得プログラムEPは上記数式1を用いて調整高度誤差aeを算出する。尚、調整高度誤差aeを算出する方法は上記数式1および数式2には限定されない。本発明の「高度誤差を均す」とは、調整高度誤差aeの増減と実際の大気圧の変化との誤差ができるだけ小さくなるように、複数の基地局60の高度誤差eから一の高度誤差(調整高度誤差ae)を求めることをいい、例えば単純平均や、より複雑な回帰計算、その他の数学的手法を用いることができる。 The memory 72 further stores an altitude error acquisition program EP (altitude error acquisition means). The altitude error acquisition program EP compares the altitude value a of each reference device 60 with the current value p, which is the current reference value v of the reference device 60, and calculates an altitude error e that is the difference between these values. . The altitude error acquisition program EP in the present embodiment further calculates an adjusted altitude error ae that is a value obtained by weighted averaging the altitude errors e in accordance with the distance between each reference device 60 and the multicopter 11. The adjustment altitude error ae is calculated in the same manner as the adjustment increase / decrease value ad in the second embodiment. In the present embodiment, since there are two base stations 60, the altitude error acquisition program EP calculates the adjusted altitude error ae using Equation 1 above. Note that the method of calculating the adjustment altitude error ae is not limited to Equation 1 and Equation 2. In the present invention, “leveling the altitude error” means that the altitude error from the altitude errors e of the plurality of base stations 60 is reduced so that the error between the increase / decrease in the adjustment altitude error ae and the actual change in atmospheric pressure becomes as small as possible. This refers to obtaining (adjusted altitude error ae), and for example, simple averaging, more complicated regression calculation, and other mathematical methods can be used.
 マルチコプター11の飛行制御プログラムFCPは、マルチコプター11の飛行高度を管理するサブプログラムとして、飛行高度調節プログラムFAP(飛行高度調節手段)を有している。さらに飛行高度調節プログラムFAPは、そのサブプログラムとして、補正値取得プログラムCP(補正値取得手段)を有している。補正値取得プログラムCPは、マルチコプター11の気圧センサ311が検知した気圧値を気圧高度に変換した値である実機値mに対して、調整高度誤差aeを加減算し、補正値cを算出する。つまり、補正値cは、実際の高度(以下、このような高度を「真高度」ともいう。)と気圧高度との誤差を相殺した実機値mである。すなわち、真高度を基準としたマルチコプター11の現在の飛行高度である。 The flight control program FCP of the multicopter 11 has a flight altitude adjustment program FAP (flight altitude adjusting means) as a subprogram for managing the flight altitude of the multicopter 11. Further, the flight altitude adjustment program FAP has a correction value acquisition program CP (correction value acquisition means) as its subprogram. The correction value acquisition program CP calculates the correction value c by adding / subtracting the adjustment altitude error ae to / from the actual machine value m that is a value obtained by converting the atmospheric pressure value detected by the atmospheric pressure sensor 311 of the multicopter 11 into the atmospheric pressure altitude. That is, the correction value c is an actual machine value m that offsets an error between the actual altitude (hereinafter, such altitude is also referred to as “true altitude”) and the atmospheric pressure altitude. That is, the current flight altitude of the multicopter 11 with reference to the true altitude.
 飛行高度調節プログラムFAPは、補正値取得プログラムCPが算出した補正値cに基づいてマルチコプター11の飛行高度を調節する。ここで、マルチコプター11のメモリ22は、マルチコプター11が到達および維持すべき気圧高度である維持高度khが記憶された維持高度記憶領域KSを有している。この維持高度記憶領域KSには、維持高度khとして、オートパイロットの飛行経路上のその地点における指定高度、または、サーバ装置70からインタラクティブに指示された高度が記憶されている。飛行高度調節プログラムFAPは、飛行制御プログラムFCPと協働し、マルチコプター11の補正値cが維持高度khと一致するようにマルチコプター11の飛行高度を制御する。 The flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c calculated by the correction value acquisition program CP. Here, the memory 22 of the multicopter 11 has a maintenance altitude storage area KS in which a maintenance altitude kh that is a barometric altitude to be reached and maintained by the multicopter 11 is stored. In the maintenance altitude storage area KS, a specified altitude at that point on the flight path of the autopilot or an altitude interactively instructed from the server device 70 is stored as the maintenance altitude kh. The flight altitude adjustment program FAP cooperates with the flight control program FCP to control the flight altitude of the multicopter 11 so that the correction value c of the multicopter 11 matches the maintenance altitude kh.
 以下に、図17を参照し、飛行高度補正システムS4を用いたマルチコプター11の飛行高度補正方法について説明する。図17はマルチコプター11の飛行高度補正方法の手順を示すフローチャートである。本実施形態における飛行高度補正方法は、大きく、離陸処理S1、調整高度誤差取得処理S2、補正値算出処理S3、および飛行高度調節処理S4からなる。 Hereinafter, a method for correcting the flight altitude of the multicopter 11 using the flight altitude correction system S4 will be described with reference to FIG. FIG. 17 is a flowchart showing the procedure of the flight altitude correction method of the multicopter 11. The flight altitude correction method in the present embodiment is roughly composed of a takeoff process S1, an adjustment altitude error acquisition process S2, a correction value calculation process S3, and a flight altitude adjustment process S4.
 離陸処理S1では、オートパイロット処理またはサーバ装置70からの指示によりマルチコプター11が発着ポートから離陸する。増減値取得処理S2では、サーバ装置70の高度誤差取得プログラムEPが、各基準器60の現在値pを取得し、これら現在値pと標高値aとの差である高度誤差eを算出する。さらに、高度誤差取得プログラムEPは、マルチコプター11から現在の飛行座標を取得し、各基準器60とマルチコプター11との距離に応じてこれら高度誤差eを加重平均した値である調整高度誤差aeを算出する。補正値算出処理S3では、マルチコプター11の補正値取得プログラムCPが、サーバ装置70から調整高度誤差aeを取得し、実機値mに対して調整高度誤差aeを加減算した値である補正値cを算出する。飛行高度調節処理S4では、マルチコプター11の飛行高度調節プログラムFAPが、補正値cに基づいてマルチコプター11の飛行高度を調節する。このとき、飛行高度調節プログラムFAPは、飛行制御プログラムFCPと協働し、補正値取得プログラムCPが算出した補正値cが維持高度khと一致するようにマルチコプター11の飛行高度を制御する。マルチコプター11は、離陸後、着陸するまでこれら増減値取得処理S2~飛行高度調節処理S4を繰り返す。 In the takeoff process S1, the multicopter 11 takes off from the departure / arrival port according to an autopilot process or an instruction from the server device 70. In the increase / decrease value acquisition process S2, the altitude error acquisition program EP of the server device 70 acquires the current value p of each reference device 60, and calculates the altitude error e which is the difference between the current value p and the altitude value a. Further, the altitude error acquisition program EP acquires the current flight coordinates from the multicopter 11, and adjusts the altitude error ae, which is a value obtained by weighted averaging the altitude errors e according to the distance between each reference device 60 and the multicopter 11. Is calculated. In the correction value calculation process S3, the correction value acquisition program CP of the multicopter 11 acquires the adjustment altitude error ae from the server device 70, and calculates a correction value c that is a value obtained by adding or subtracting the adjustment altitude error ae to the actual machine value m. calculate. In the flight altitude adjustment process S4, the flight altitude adjustment program FAP of the multicopter 11 adjusts the flight altitude of the multicopter 11 based on the correction value c. At this time, the flight altitude adjustment program FAP controls the flight altitude of the multicopter 11 so that the correction value c calculated by the correction value acquisition program CP matches the maintenance altitude kh in cooperation with the flight control program FCP. After taking off, the multicopter 11 repeats these increase / decrease value acquisition processing S2 to flight altitude adjustment processing S4 until landing.
 以下に、具体値を用いてマルチコプター11の飛行高度補正方法について説明する。図18は、飛行高度補正システムS4によりマルチコプター11の飛行高度が維持される様子を示す説明図である。図18(a)では、マルチコプター11は、オートパイロット処理またはサーバ装置70により維持高度kaが10mに設定され、発着ポートから離陸する(離陸処理S1)。 Hereinafter, the flight altitude correction method of the multicopter 11 will be described using specific values. FIG. 18 is an explanatory diagram showing how the flight altitude of the multicopter 11 is maintained by the flight altitude correction system S4. In FIG. 18 (a), the multicopter 11 takes off from the departure / arrival port with the maintenance altitude ka set to 10 m by the autopilot process or the server device 70 (takeoff process S1).
 マルチコプター11はそのまま10m上昇し、その位置でホバリングを開始する。マルチコプター11が離陸してからホバリングを開始するまでの間に大気圧の変化は生じておらず、このときの各基準器60の現在値pは、どちらも標高値aと同じ0mであった。 The multicopter 11 rises 10m as it is and starts hovering at that position. No change in atmospheric pressure occurred between the take-off of the multicopter 11 and the start of hovering, and the current value p of each reference device 60 at this time was 0 m, which is the same as the altitude value a. .
 サーバ装置70の高度誤差取得プログラムEPは、マルチコプター11の離陸後、各基準器60について、標高値a(0m,0m)と、そのときの現在値p(0m,0m)との差(現在値p-標高値a)である高度誤差e(0m,0m)を算出し、さらに、マルチコプター11から現在の飛行座標を取得し、上記数式1によりこれら高度誤差eの調整高度誤差ae(0m)を算出する(高度誤差取得処理S2)。 The altitude error acquisition program EP of the server device 70 determines the difference between the altitude value a (0 m, 0 m) and the current value p (0 m, 0 m) at that time (currently) for each reference device 60 after the multicopter 11 takes off. The altitude error e (0m, 0m), which is the value p−the altitude value a), is calculated, and the current flight coordinates are obtained from the multicopter 11, and the adjusted altitude error ae (0m ) Is calculated (altitude error acquisition process S2).
 マルチコプター11の補正値取得プログラムCPは、この調整高度誤差ae(0m)をサーバ装置70から取得し、実機値m(10m)に調整増減値ad(0m)を加算した値である補正値c(10m)を算出する(補正値算出処理S3)。そして、飛行高度調節プログラムFAPは、補正値c(10m)が維持高度kaと一致するようにマルチコプター11の飛行高度を調節する(飛行高度調節処理S4)。飛行高度補正システムS4は、これら高度誤差取得処理S2~飛行高度調節処理S4を繰り返しながらマルチコプター11を飛行させる。しかし、マルチコプター11が離陸してからこれまでに大気圧の変化はなく、調整高度誤差aeは0mのままである。よって、この時点では実機値mと補正値cはどちらも同じ値(10m)である。 The correction value acquisition program CP of the multicopter 11 acquires the adjustment altitude error ae (0 m) from the server device 70, and the correction value c is a value obtained by adding the adjustment increase / decrease value ad (0 m) to the actual machine value m (10 m). (10 m) is calculated (correction value calculation processing S3). Then, the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 so that the correction value c (10 m) matches the maintenance altitude ka (flight altitude adjustment processing S4). The flight altitude correction system S4 causes the multicopter 11 to fly while repeating these altitude error acquisition processing S2 to flight altitude adjustment processing S4. However, since the multicopter 11 has taken off, the atmospheric pressure has not changed so far, and the adjustment altitude error ae remains 0 m. Therefore, at this time, the actual machine value m and the correction value c are both the same value (10 m).
 その後、図18(b)に示すように、大気圧が変化し、各基準器60の基準値vがそれぞれ0.6mと-0.6mに、実機値mが10.2mに変化した(マルチコプター11の実際の飛行高度は10mのまま)。 Thereafter, as shown in FIG. 18B, the atmospheric pressure changed, the reference value v of each reference device 60 changed to 0.6 m and −0.6 m, and the actual machine value m changed to 10.2 m (multiple The actual flight altitude of the copter 11 remains 10m).
 サーバ装置70は、高度誤差取得プログラムEPにより、各基準器60の標高値a(0m,0m)と、気圧変化後の現在値p(0.6m,-0.6m)との高度誤差e(0.6m,-0.6m)を算出(現在値p-初期値i)し、さらに上記数式1によりこれら増減値dの調整高度誤差ae(0.2m)を算出する(高度誤差取得処理S2)。 The server device 70 uses the altitude error acquisition program EP to obtain an altitude error e () between the altitude value a (0 m, 0 m) of each reference device 60 and the current value p (0.6 m, −0.6 m) after the change in atmospheric pressure. 0.6m, −0.6m) (current value p−initial value i), and further, an adjustment altitude error ae (0.2m) of these increase / decrease values d is calculated by the above equation 1 (altitude error acquisition process S2). ).
 マルチコプター11の補正値取得プログラムCPは、この調整高度誤差ae(0.2m)をサーバ装置70から取得し、実機値m(10.2m)に対してこの調整高度誤差ae(0.2m)を加減算(調整高度誤差aeの符号を反転させた値を実機値mに加算)した値である補正値c(10m)を算出する(補正値算出処理S3)。そして、飛行高度調節プログラムFAPは、この補正値c(10m)を基準としてマルチコプター11の飛行高度を調節する(飛行高度調節処理S4)。しかしこのとき、補正値c(10m)は維持高度ka(10m)と一致しているため、飛行高度調節プログラムFAPは、マルチコプター11の実際の飛行高度は変更せず、それまでの飛行高度を維持する。ここで、サーバ装置70やオートパイロット処理から飛行高度変更指示が別途与えられている場合(維持高度kaが更新されたとき)には、飛行高度調節プログラムFAPは、補正値c(10m)を基準としてマルチコプター11の飛行高度を変更する。 The correction value acquisition program CP of the multicopter 11 acquires the adjusted altitude error ae (0.2 m) from the server device 70, and this adjusted altitude error ae (0.2 m) with respect to the actual machine value m (10.2 m). A correction value c (10 m) that is a value obtained by adding and subtracting (adding a value obtained by inverting the sign of the adjustment altitude error ae to the actual machine value m) is calculated (correction value calculation process S3). Then, the flight altitude adjustment program FAP adjusts the flight altitude of the multicopter 11 based on the correction value c (10 m) (flight altitude adjustment processing S4). However, since the correction value c (10 m) coincides with the maintenance altitude ka (10 m) at this time, the flight altitude adjustment program FAP does not change the actual flight altitude of the multicopter 11 and the previous flight altitude is changed. maintain. Here, when the flight altitude change instruction is separately given from the server device 70 or the autopilot processing (when the maintenance altitude ka is updated), the flight altitude adjustment program FAP uses the correction value c (10 m) as a reference. The flight altitude of the multicopter 11 is changed.
 尚、本実施形態においては、各値(標高値a、基準値v、現在値p、高度誤差e、調整高度誤差ae、実機値m、補正値c、および維持高度ka)を気圧高度の形式で取得・演算しているが、これらの各値を気圧値の形式で取り扱うことも可能である。 In the present embodiment, each value (elevation value a, reference value v, current value p, altitude error e, adjustment altitude error ae, actual machine value m, correction value c, and maintenance altitude ka) is converted into a barometric altitude format. However, each of these values can be handled in the form of atmospheric pressure values.
 本実施形態において、整高度誤差aeの算出に標高値aを用いる効果は第3実施形態と同様である。サーバ装置70を介在させる効果、複数の基準器60を用いる効果、調整高度誤差aeを算出する際に、各基準器60とマルチコプター11との距離に応じて各高度誤差eに重みづけを行う効果は第2実施形態と同様である。 In this embodiment, the effect of using the altitude value a for calculating the leveling altitude error ae is the same as that of the third embodiment. When calculating the effect of interposing the server device 70, the effect of using a plurality of reference devices 60, and the adjusted height error ae, the height error e is weighted according to the distance between each reference device 60 and the multicopter 11. The effect is the same as in the second embodiment.
 尚、本実施形態では、基準器60は2基だけであり、サーバ装置70は常にこれら2基の高度誤差eから調整高度誤差aeを算出する。しかし、例えば、広大なエリアに多数の基準器60が分散配置されているときや、一部の基準器60がマルチコプター11から著しく離れた場所に設置されているようなときには、必ずしも設置した基準器60のすべてを参酌しなくてもよい。この場合、例えばサーバ装置70がマルチコプター11の飛行座標を取得してその直近の2~3基の基準器60を特定し、これら直近の基準器60の高度誤差eのみから調整高度誤差aeを算出する構成としてもよい。 In the present embodiment, there are only two reference devices 60, and the server device 70 always calculates the adjusted height error ae from these two height errors e. However, for example, when a large number of reference devices 60 are distributed in a large area, or when some reference devices 60 are installed at locations far away from the multicopter 11, they are not necessarily installed. It is not necessary to consider all of the vessel 60. In this case, for example, the server device 70 acquires the flight coordinates of the multicopter 11 and identifies the two to three reference devices 60 nearest to it, and the adjustment height error ae is determined from only the height error e of these nearest reference devices 60. It is good also as a structure to calculate.
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。

 
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

Claims (8)

  1.  回転翼および気圧センサを備える無人航空機と、
     気圧センサを備え固定位置に設置された基準器と、
     前記基準器の気圧センサの気圧値または該気圧値から算出した気圧高度を基準値として記憶する基準値記憶手段と、
     前記無人航空機の離陸時における前記基準値である初期値を前記基準値記憶手段から取得し、該初期値と現在の前記基準値である現在値とを比較してこれらの差である増減値を算出する増減値取得手段と、
     前記無人航空機の気圧センサの気圧値または該気圧値から算出した気圧高度を実機値としたときに、該実機値に対して、前記増減値取得手段が算出した前記増減値を加味した値である補正値を算出する補正値取得手段と、
     前記補正値に基づいて前記無人航空機の飛行高度を制御する飛行高度調節手段と、
    を備えることを特徴とする無人航空機の飛行高度補正システム。
    An unmanned aerial vehicle equipped with rotor blades and pressure sensors;
    A reference device with a pressure sensor and installed in a fixed position;
    Reference value storage means for storing, as a reference value, the atmospheric pressure value of the atmospheric pressure sensor of the reference device or the atmospheric pressure altitude calculated from the atmospheric pressure value;
    An initial value that is the reference value at the time of take-off of the unmanned aircraft is acquired from the reference value storage means, the initial value is compared with the current value that is the current reference value, and an increase / decrease value that is a difference between these is obtained. An increase / decrease value acquisition means for calculating;
    When the barometric pressure value of the unmanned aircraft or the barometric altitude calculated from the barometric pressure value is used as an actual machine value, the actual machine value is a value obtained by adding the increase / decrease value calculated by the increase / decrease value acquisition means. Correction value acquisition means for calculating a correction value;
    Flight altitude adjusting means for controlling the flight altitude of the unmanned aircraft based on the correction value;
    An unmanned aerial vehicle flight altitude correction system comprising:
  2.  前記基準器は、互いに距離を空けて複数設置されており、
     前記基準値記憶手段には、前記基準値とともに、該基準値の取得時刻、および、該基準値を取得した前記基準器の個体識別情報が記憶され、
     前記増減値取得手段はさらに、前記各基準器の前記増減値を均した値である調整増減値を算出し、
     前記補正値取得手段は、前記実機値に対して、前記増減値取得手段が算出した前記調整増減値を加味して前記補正値を算出することを特徴とする請求項1に記載の無人航空機の飛行高度補正システム。
    A plurality of the reference devices are installed at a distance from each other,
    The reference value storage means stores the reference value, the acquisition time of the reference value, and the individual identification information of the reference device that acquired the reference value,
    The increase / decrease value acquisition means further calculates an adjustment increase / decrease value that is a value obtained by averaging the increase / decrease values of the reference devices,
    2. The unmanned aircraft according to claim 1, wherein the correction value acquisition unit calculates the correction value by adding the adjustment increase / decrease value calculated by the increase / decrease value acquisition unit to the actual aircraft value. Flight altitude correction system.
  3.  前記無人航空機および前記各基準器と通信可能なサーバ装置をさらに備え、
     前記サーバ装置は、前記各基準器の設置位置の緯度および経度が記憶された設置座標記憶手段、前記基準値記憶手段、および、前記増減値取得手段を有しており、
     前記無人航空機は、自機の緯度および経度である飛行座標を取得可能な飛行座標取得手段、前記補正値取得手段、および、前記飛行高度調節手段を有しており、
     前記サーバ装置は、前記無人航空機から前記飛行座標を取得して、前記無人航空機と前記各基準器との距離を算出可能であり、前記増減値取得手段は、前記調整増減値を算出するときに、前記無人航空機と前記各基準器との距離に応じて前記各増減値に重み付けをすることを特徴とする請求項2に記載の無人航空機の飛行高度補正システム。
    A server device capable of communicating with the unmanned aircraft and the reference devices;
    The server device includes an installation coordinate storage unit that stores the latitude and longitude of the installation position of each reference device, the reference value storage unit, and the increase / decrease value acquisition unit.
    The unmanned aircraft has flight coordinate acquisition means capable of acquiring flight coordinates that are the latitude and longitude of the own aircraft, the correction value acquisition means, and the flight altitude adjustment means,
    The server device can acquire the flight coordinates from the unmanned aircraft and calculate a distance between the unmanned aircraft and each reference device, and the increase / decrease value acquisition unit can calculate the adjusted increase / decrease value. 3. The flight altitude correction system for an unmanned aircraft according to claim 2, wherein the increase / decrease value is weighted according to a distance between the unmanned aircraft and each reference device.
  4.  回転翼および気圧センサを備える無人航空機と、
     気圧センサを備え固定位置に設置された基準器と、
     前記基準器の設置位置の標高または該標高を気圧値に変換した値を標高値として記憶する標高値記憶手段と、
     前記基準器の気圧センサの気圧値または該気圧値から算出した気圧高度を基準値としたときに、前記基準器の前記標高値を前記標高値記憶手段から取得し、該標高値と、該基準器の前記基準値との差である高度誤差を算出する高度誤差取得手段と、
     前記無人航空機の気圧センサの気圧値または該気圧値から算出した気圧高度を実機値としたときに、該実機値に対して、前記高度誤差取得手段が算出した前記高度誤差を加味した値である補正値を算出する補正値取得手段と、
     前記補正値に基づいて該無人航空機の飛行高度を制御する飛行高度調節手段と、
    を備えることを特徴とする無人航空機の飛行高度補正システム。
    An unmanned aerial vehicle equipped with rotor blades and pressure sensors;
    A reference device with a pressure sensor and installed in a fixed position;
    An altitude value storage means for storing the altitude of the installation position of the reference device or a value obtained by converting the altitude into an atmospheric pressure value as an altitude value;
    When the atmospheric pressure value of the atmospheric pressure sensor of the reference device or the atmospheric pressure altitude calculated from the atmospheric pressure value is used as a reference value, the elevation value of the reference device is acquired from the elevation value storage means, and the elevation value and the reference Altitude error acquisition means for calculating an altitude error that is a difference from the reference value of the vessel;
    When the barometric pressure value of the unmanned aircraft or the barometric altitude calculated from the barometric pressure value is used as the actual aircraft value, the altitude error calculated by the altitude error acquisition means is added to the actual aircraft value. Correction value acquisition means for calculating a correction value;
    Flight altitude adjusting means for controlling the flight altitude of the unmanned aircraft based on the correction value;
    An unmanned aerial vehicle flight altitude correction system comprising:
  5.  前記基準器は、互いに距離を空けて複数設置されており、
     前記標高値記憶手段には、前記標高値とともに該標高値を取得した前記基準器の個体識別情報が記憶され、
     前記高度誤差取得手段はさらに、前記各基準器の前記高度誤差を均した値である調整高度誤差を算出し、
     前記飛行高度調節手段は、前記実機値に対して、前記高度誤差取得手段が算出した前記調整高度誤差を加味して前記補正値を算出することを特徴とする請求項4に記載の無人航空機の飛行高度補正システム。
    A plurality of the reference devices are installed at a distance from each other,
    The altitude value storage means stores the individual identification information of the reference device that acquired the altitude value together with the altitude value,
    The altitude error acquisition means further calculates an adjustment altitude error that is a value obtained by leveling the altitude error of each reference device,
    5. The unmanned aerial vehicle according to claim 4, wherein the flight altitude adjustment unit calculates the correction value by adding the adjustment altitude error calculated by the altitude error acquisition unit to the actual aircraft value. Flight altitude correction system.
  6.  前記無人航空機および前記各基準器と通信可能なサーバ装置をさらに備え、
     前記サーバ装置は、前記各基準器の設置位置の緯度および経度が記憶された設置座標記憶手段、および前記高度誤差取得手段を有しており、
     前記無人航空機は、自機の緯度および経度である飛行座標を取得可能な飛行座標検出手段、前記補正値取得手段、および、前記飛行高度調節手段を有しており、
     前記サーバ装置は、前記無人航空機から前記飛行座標を取得して、前記無人航空機と前記各基準器との距離を算出可能であり、前記増減値取得手段は、前記調整高度誤差を算出するときに、前記無人航空機と前記各基準器との距離に応じて前記各高度誤差に重み付けをすることを特徴とする請求項5に記載の無人航空機の飛行高度補正システム。
    A server device capable of communicating with the unmanned aircraft and the reference devices;
    The server device includes an installation coordinate storage unit that stores the latitude and longitude of the installation position of each reference device, and the altitude error acquisition unit.
    The unmanned aircraft has flight coordinate detection means capable of acquiring flight coordinates that are the latitude and longitude of the own aircraft, the correction value acquisition means, and the flight altitude adjustment means.
    The server device can acquire the flight coordinates from the unmanned aircraft and calculate a distance between the unmanned aircraft and each reference device, and the increase / decrease value acquisition unit can calculate the adjustment altitude error. 6. The flight altitude correction system for an unmanned aerial vehicle according to claim 5, wherein the altitude error is weighted in accordance with a distance between the unmanned aerial vehicle and each reference device.
  7.  回転翼および気圧センサを備える無人航空機と、
     気圧センサを備え固定位置に設置された基準器と、
    を用いた無人航空機の飛行高度補正方法であって、
     前記基準器の気圧センサの気圧値または該気圧値から算出した気圧高度を基準値としたときに、前記無人航空機の離陸時における該基準値である初期値と、該初期値と現在の前記基準値との差である増減値を算出する増減値取得処理と、
     前記無人航空機の気圧センサの気圧値または該気圧値から算出した気圧高度に対して前記増減値を加味した値に基づいて該無人航空機の飛行高度を制御する飛行高度調節処理と、
    を含むことを特徴とする無人航空機の飛行高度補正方法。
    An unmanned aerial vehicle equipped with rotor blades and pressure sensors;
    A reference device with a pressure sensor and installed in a fixed position;
    A method for correcting the flight altitude of an unmanned aerial vehicle using
    When the barometric pressure value of the barometer of the reference unit or the barometric altitude calculated from the barometric pressure value is used as a reference value, the initial value that is the reference value at the time of take-off of the unmanned aircraft, the initial value, and the current reference An increase / decrease value acquisition process for calculating an increase / decrease value that is a difference from the value,
    A flight altitude adjustment process for controlling a flight altitude of the unmanned aircraft based on a pressure value of the pressure sensor of the unmanned aircraft or a value obtained by adding the increase / decrease value to a pressure altitude calculated from the pressure value;
    A method for correcting the flight altitude of an unmanned aerial vehicle, comprising:
  8.  回転翼および気圧センサを備える無人航空機と、
     気圧センサを備え固定位置に設置された基準器と、
    を用いた無人航空機の飛行高度補正方法であって、
     前記基準器の設置位置の標高または該標高を気圧値に変換した値と、該基準器の気圧センサの気圧値または該気圧値から算出した気圧高度との差である高度誤差を算出する高度誤差取得処理と、
     前記無人航空機の気圧センサの気圧値または該気圧値から算出した気圧高度に対して前記高度誤差を加味した値に基づいて該無人航空機の飛行高度を制御する飛行高度調節処理と、
    を含むことを特徴とする無人航空機の飛行高度補正方法。

     
    An unmanned aerial vehicle equipped with rotor blades and pressure sensors;
    A reference device with a pressure sensor and installed in a fixed position;
    A method for correcting the flight altitude of an unmanned aerial vehicle using
    Altitude error for calculating an altitude error that is a difference between an altitude at the installation position of the reference device or a value obtained by converting the altitude into an atmospheric pressure value and an atmospheric pressure value of the reference device or an atmospheric pressure altitude calculated from the atmospheric pressure value Acquisition process,
    A flight altitude adjustment process for controlling a flight altitude of the unmanned aircraft based on a pressure value of the pressure sensor of the unmanned aircraft or a value obtained by adding the altitude error to a pressure altitude calculated from the pressure value;
    A method for correcting the flight altitude of an unmanned aerial vehicle, comprising:

PCT/JP2017/016895 2016-05-06 2017-04-28 Flight altitude correction system and method for unmanned air vehicle WO2017191810A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016093244A JP2017200803A (en) 2016-05-06 2016-05-06 Flight altitude correction system and method for unmanned aircraft
JP2016-093244 2016-05-06

Publications (1)

Publication Number Publication Date
WO2017191810A1 true WO2017191810A1 (en) 2017-11-09

Family

ID=60203734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016895 WO2017191810A1 (en) 2016-05-06 2017-04-28 Flight altitude correction system and method for unmanned air vehicle

Country Status (2)

Country Link
JP (1) JP2017200803A (en)
WO (1) WO2017191810A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252051A (en) * 2021-11-01 2022-03-29 杭州迅蚁网络科技有限公司 Method and system for estimating airway height of unmanned aerial vehicle
CN114252051B (en) * 2021-11-01 2024-07-09 杭州迅蚁网络科技有限公司 Method and system for estimating altitude of unmanned aerial vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7145655B2 (en) * 2018-06-20 2022-10-03 三菱電機株式会社 Altitude measurement device and altitude measurement program
CN108955634A (en) * 2018-07-20 2018-12-07 中国人民解放军总参谋部第六十研究所 A kind of unmanned plane height sensor fusion method
CN110017813A (en) * 2019-03-18 2019-07-16 中国商用飞机有限责任公司 A kind of pressure altitude generating means and its operating method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052723A (en) * 2011-09-01 2013-03-21 Seiko Epson Corp Altitude measurement system, altitude measurement method, altitude measurement program, and recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052723A (en) * 2011-09-01 2013-03-21 Seiko Epson Corp Altitude measurement system, altitude measurement method, altitude measurement program, and recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252051A (en) * 2021-11-01 2022-03-29 杭州迅蚁网络科技有限公司 Method and system for estimating airway height of unmanned aerial vehicle
CN114252051B (en) * 2021-11-01 2024-07-09 杭州迅蚁网络科技有限公司 Method and system for estimating altitude of unmanned aerial vehicle

Also Published As

Publication number Publication date
JP2017200803A (en) 2017-11-09

Similar Documents

Publication Publication Date Title
US11771076B2 (en) Flight control method, information processing device, program and recording medium
JP7020421B2 (en) Flight controls, unmanned aerial vehicles, flight control methods, and programs
JP6555786B2 (en) Method for setting flight altitude of unmanned aircraft and unmanned aircraft system
CN107728642B (en) Unmanned aerial vehicle flight control system and method thereof
AU2016339451B2 (en) Method for controlling small-size unmanned aerial vehicle
US10095242B1 (en) Invertible drone for selective power capture
US11447235B2 (en) Unmanned aerial vehicle
CN106774409B (en) A kind of semi-autonomous imitative ground flight system and its control method of unmanned plane
CN107664491B (en) Method, device and system for measuring downward inclination angle of base station antenna
KR102140929B1 (en) System for meteorological obervation using uav and method of the same
US20180281949A1 (en) Systems and methods for stabilisation of aerial vehicles
WO2019056172A1 (en) Flight control method for unmanned aerial vehicle, unmanned aerial vehicle, and machine readable storage medium
WO2017191810A1 (en) Flight altitude correction system and method for unmanned air vehicle
US20190009916A1 (en) Invertible Drone for Selective Power Capture
WO2018058288A1 (en) Method and device for detecting flight altitude, and unmanned aerial vehicle
US11920999B2 (en) Unmanned aerial vehicle control method and device, and unmanned aerial vehicle
KR101976199B1 (en) Control system and method of a disaster management drone embedded with a directional speaker
CN106155071A (en) A kind of unmanned plane for line patrolling maintenance
JP2019214294A (en) Unmanned aircraft
CN203289564U (en) Power line patrol system
JP6592679B1 (en) Unmanned aerial vehicle
JP6878543B2 (en) Control devices, control methods, and programs
JP2019064581A (en) Rotor craft
JP4369261B2 (en) Control device for unmanned helicopter
JP2018112485A (en) Weather measuring device, weather measuring method, and program

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792743

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792743

Country of ref document: EP

Kind code of ref document: A1