WO2017188743A1 - 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 cmos 이미지 센서 - Google Patents

적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 cmos 이미지 센서 Download PDF

Info

Publication number
WO2017188743A1
WO2017188743A1 PCT/KR2017/004473 KR2017004473W WO2017188743A1 WO 2017188743 A1 WO2017188743 A1 WO 2017188743A1 KR 2017004473 W KR2017004473 W KR 2017004473W WO 2017188743 A1 WO2017188743 A1 WO 2017188743A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength band
image sensor
band
quantum efficiency
cmos image
Prior art date
Application number
PCT/KR2017/004473
Other languages
English (en)
French (fr)
Inventor
김대훈
백승민
전병진
Original Assignee
아이리텍 잉크
김대훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이리텍 잉크, 김대훈 filed Critical 아이리텍 잉크
Publication of WO2017188743A1 publication Critical patent/WO2017188743A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present invention relates to an image sensor having improved quantum efficiency in a wavelength band where absorption of sunlight is higher than an adjacent wavelength band in an infrared band capable of acquiring a high quality iris image not only indoors but also outdoors. More specifically, unlike the conventional CMOS sensor, in order to obtain a high quality iris image, it corresponds to an image sensor having improved quantum efficiency in the wavelength band where the absorption rate of sunlight in the infrared band is higher than the adjacent wavelength band.
  • the present invention relates to a method of obtaining a high quality iris image by photographing a wavelength band.
  • biometrics are becoming more and more frequent.
  • fingerprint recognition technology has been widely used in the past, but attention has been drawn to other biometric technologies due to the possibility of fingerprint loss and theft, and iris recognition technology has excellent discrimination ability and continuous price drop of equipment.
  • the use is gradually increasing due to factors.
  • Iris are known to be identical, even for identical twins, and will not change forever unless they have a special trauma or serious illness.
  • the iris consists of complex fibrous tissue that shrinks and relaxes as the size of the pupil changes.
  • the pattern of the iris is most often formed within six months of age and is fully determined at ages 2-3. In addition, even if the same person, the iris shape of both eyes are different.
  • the iris has about 266 measurable identification features, which is far more complex and sophisticated than fingerprints with about 40 identification features, and is known to have a higher recognition rate than other biometric methods.
  • the iris image is acquired in the iris image registration step, converted into a template, and then stored in a server or a registration data store.
  • the iris image of the photographer is acquired and converted into a template, and the authentication or identification is performed by comparing the template with the registered photographer. In this process, obtaining a high quality iris image suitable for iris recognition becomes a very important factor.
  • Fig. 7 of Patent Document 1 US Pat. 4 is shown. It can be seen that the iris exhibits a reflectance of about 0.4% in the visible region having a wavelength of about 500 nm and a reflectance of about 5% in the near infrared region of about 780 nm. Therefore, in order to use the wavelength band showing the high reflectance of the iris, illumination in the near infrared region is used together with a band-pass filter that passes only light in the wavelength range of the corresponding region.
  • CMOS complementary metal-oxide-semiconductor
  • CIS color, near infrared, monochromatic
  • the image sensor used in the existing smart phone or digital camera has lowered the quantum efficiency of the wavelength above the near infrared.
  • the recent CMOS image sensors reduce quantum efficiency even more in the IR region than the CCD image sensor used in mobile phones and digital cameras.
  • Non-Patent Document 1 An image in a wavelength band of approximately 900 nm or more has not been used because the boundary between the iris and the sclera is unclear because of difficulty in separating the iris region, as described in Non-Patent Document 1.
  • the sun emits light in various wavelengths, from the visible to the infrared.
  • the existing iris recognition device uses the near infrared region because of the visible light reflected light.
  • the existing iris recognition device using the near infrared region is still a problem due to the reflected light of the sunlight in the near infrared region outdoors.
  • the conventional CMOS image sensor has very low quantum efficiency in the near infrared region, the problem of reflected light has existed because the intensity of irradiance in the near infrared region of sunlight is so high that it cannot be compared with an indoor environment. This causes the interference of sunlight when shooting iris outdoors. Therefore, when the iris is taken outdoors, strong reflection light is taken by the sunlight, and the reflection light is output on the iris image.
  • the problem to be solved by the present invention is to acquire a high-quality iris image not only indoors but also outdoors, the existing CMOS image sensor (as of 2013, about 34% of the CIS market, SONY's Exmor series, about 18% of the market Unlike Omnivision's OV16820 and OV16825, which are OV series and SAMSUNG, etc., the quantum efficiency is improved in the wavelength band where the absorption rate of sunlight in the infrared band is higher than that of adjacent wavelength bands. It is to provide a CMOS image sensor that can obtain a high quality iris image when photographing.
  • An object of the present invention is a CMOS image sensor configured in an apparatus for acquiring an iris image indoors or outdoors, wherein the CMOS image sensor includes absorption wavelengths in which the absorption rate of sunlight in an infrared band is a part of a wavelength band higher than an adjacent wavelength band.
  • the quantum efficiency (quantum efficiency) for the absorption wavelength band is higher than the conventional CMOS image sensor, characterized in that the noise due to sunlight is reduced when taking the iris image including the absorption wavelength band
  • the absorption wavelength band is at least part of at least one of a first band having a wavelength of 920 nm to 960 nm, a second band having 1,110 nm to 1,160 nm, and a third band having 1,300 nm to 1,500 nm.
  • the quantum efficiency is improved in the wavelength band, the absorption rate of sunlight in the infrared band is higher than the adjacent wavelength band to provide a CMOS image sensor capable of obtaining a high-quality iris image indoors as well as outdoors during shooting, including the wavelength band Can be achieved.
  • the conventional CMOS image sensor is a CMOS image sensor of Sony's IMX series, Omnivision's OV series, or SAMSUNG's S5K.
  • the quantum efficiency in the high wavelength band is improved, and thus, a CMOS image sensor capable of acquiring a high quality iris image can be achieved not only indoors but also outdoors.
  • an object of the present invention the CMOS image sensor, characterized in that the peak of the quantum efficiency (peak) in the absorption wavelength band, the absorption rate of sunlight in the infrared band in the wavelength band higher than the adjacent wavelength band.
  • the CMOS image sensor a method for changing the thickness of the Si layer, a method of forming an anti-reflection coating layer (Minimum) of one of MgF2 and HfO2, depletion region (depletion region) of In one of the methods of changing the size of the absorption wavelength band is configured to be higher than the conventional CMOS image sensor, the absorption rate of sunlight in the infrared band in the wavelength band higher than the adjacent wavelength band By improving the quantum efficiency of the can be achieved by providing a CMOS image sensor capable of obtaining a high-quality iris image indoors as well as indoors when shooting, including the wavelength band.
  • the present invention has the following effects.
  • an image sensor in which the quantum efficiency is higher than that of a conventional CMOS image sensor in the range of 920 nm to 960 nm, which is a main wavelength band used for outdoor iris recognition a corresponding wavelength is outdoors. Including the band, noise caused by sunlight during iris photographing is reduced, and the effect of obtaining a high quality iris image is generated.
  • the cost of using a CMOS image sensor generated in a conventional CMOS process is significantly reduced.
  • 1 is an example of a quantum efficiency graph for a wavelength of a conventional color image sensor
  • 2 is an example of a quantum efficiency graph of a conventional near infrared / monochrome image sensor
  • CMOS image sensor 4 is an iris image taken using the near-infrared region of the iris outdoors using a conventional CMOS image sensor
  • 5 is a solar radiation spectrum, a graph showing the irradiance versus wavelength at clear sky conditions and sea level,
  • FIGS. 6 and 7 are graphs comparing quantum efficiency according to wavelengths of a CMOS image sensor (solid line) and a conventional CMOS image sensor (dashed line) according to an embodiment of the present invention
  • CMOS image sensor 8 is an iris image of an iris image taken using a near-infrared region outdoors using a conventional CMOS image sensor and a corresponding wavelength region having particularly high absorption rate of sunlight outdoors using a CMOS image sensor according to an embodiment of the present invention. Including the iris image is taken of the iris.
  • a CMOS image sensor capable of acquiring high-quality iris images not only indoors but also outdoors by improving quantum efficiency in a wavelength band in which the absorption of sunlight is higher than an adjacent wavelength band in the infrared band is a mobile phone or a smart phone.
  • digital cameras may be applied to broadcast equipment, barcode readers, CCTV cameras, and the like, and may also be applied to front and rear cameras, robots, tablet PCs, laptops, automobiles, smart TVs, and various wearable devices.
  • CMOS complementary metal-oxide-semiconductor
  • image sensor such as CCD, sCMOS
  • CMOS image sensors account for about 18% of the market, including IMX series such as SONY's IMX230, IMX214, and IMX219, which account for about 34% of the CIS market's total sales in 2013.
  • IMX series such as SONY's IMX230, IMX214, and IMX219
  • This may mean a CIS (CMOS Image Sensor) that includes OV series such as Omnivision's OV16820 and OV16825, and S5K series such as SAMSUNG's S5K2P8 and S5K4H5YB.
  • the wavelength band is defined as a collectively designated wavelength range, and the wavelength band is arbitrarily used. It is defined to represent some wavelength range belonging to the designated range. For example, if the entire wavelength range corresponding to 700 nm to 900 nm is arbitrarily defined as an ISO recommended wavelength band, a wavelength range such as 700 nm to 800 nm corresponds to a wavelength band because it represents some wavelength range of the ISO recommended wavelength band.
  • the wavelength range of infrared rays is generally known to correspond to 700 nm to 1,000 ⁇ m.
  • the present invention is described based on the regulations classified into near infrared (700 nm to 1,400 nm), mid infrared (1,400 nm to 3,000 nm), and far infrared (3,000 nm to 1 mm) of the international commission on illumination. Any institutional definition may be used as long as it is consistent with its purpose and intent.
  • the absorption of sunlight in the infrared band is adjacent In the wavelength band Higher than In the wavelength band Quantum efficiency is improved In the wavelength band CMOS image sensor enables high quality iris image acquisition indoors as well as outdoors
  • the quantum efficiency is improved in the wavelength band in which the absorption rate of sunlight in the infrared band according to an embodiment of the present invention is higher than the adjacent wavelength band is improved to shoot a high-quality iris image not only indoors but also outdoors when photographing including the wavelength band Unlike conventional CMOS image sensors used in smartphones and digital cameras, the image sensor is an image sensor used in an iris image acquisition device because quantum efficiency is improved in a wavelength band in which the absorption rate of sunlight in the infrared band is higher than that of an adjacent wavelength band. It may mean.
  • the sensor may be composed of a crystal lattice structure of Group 4 elements such as silicon (Si) or germanium (Ge), as in the conventional CMOS sensor.
  • Group 4 elements such as silicon (Si) or germanium (Ge)
  • germanium (Ge) germanium
  • pure crystals containing no impurity are referred to as intrinsic semiconductors.
  • the stable state all electrons exist as valence electrons that are bound to the lattice, but when they absorb free photon energy from outside and become free electrons, the crystals have a conductor property instantaneously. At this time, by measuring the amount of charge flowing through the voltage applied to the semiconductor it is possible to measure the number of photons absorbed.
  • the image sensor will not respond. Therefore, the smaller the bandgap energy of the semiconductor material constituting the image sensor, the longer the electromagnetic wave can be observed.
  • Table 1 below describes the properties of the semiconductor that can be used in the image sensor, the bandgap energy (Eg) according to the temperature (T), the wavelength limit ( ⁇ c) .
  • the image sensor since the valence electrons become free electrons according to the Maxell-Boltzmann distribution by their own temperature without external photon energy, the image sensor must be cooled.
  • Si the most commonly used CMOS image sensor, can observe wavelengths shorter than 1.1 ⁇ m. Due to the 1.1 ⁇ m wavelength limit of Si, most conventional CMOS image sensors have dramatically reduced quantum efficiency in the infrared region.
  • FIG. 1 shows an example of a quantum efficiency graph with respect to a wavelength of a conventional color image sensor (OV7725 manufactured by Omnivision).
  • a conventional color image sensor OV7725 manufactured by Omnivision.
  • the quantum efficiency refers to the rate at which photons incident to the sensor are converted into electrons, and the higher the value, the clearer an image can be obtained.
  • FIG. 1 it can be seen that the conventional color image sensor dramatically reduces quantum efficiency toward the infrared region.
  • FIG. 2 shows an example of a quantum efficiency graph of a conventional near infrared / monochrome image sensor (EV76C661ABT from E2V Technologies). As shown in FIG. 1, the existing near-infrared / monochrome image sensor also shows that the quantum efficiency is drastically reduced toward the infrared region.
  • FIG. 3 shows an example of a quantum efficiency graph of an image sensor (XQE-0570 manufactured by SiOnyx) under development of some existing companies.
  • the image sensor being developed by some existing companies can confirm that the value of the relative quantum efficiency of the infrared region is less than half of the relative quantum efficiency of the visible ray region.
  • the sun emits light in various wavelengths, from the visible to the infrared.
  • the existing iris recognition device uses the near infrared region because of the visible light reflected light.
  • the existing iris recognition device using the near infrared region is still a problem due to the reflected light of the sunlight in the near infrared region outdoors.
  • the conventional CMOS image sensor has very low quantum efficiency in the near infrared region, the problem of reflected light has existed because the intensity of irradiance in the near infrared region of sunlight is so high that it cannot be compared with an indoor environment. This causes the interference of sunlight when shooting iris outdoors. Therefore, when the iris is taken outdoors, strong reflection light is taken by the sunlight, and the reflection light is output on the iris image.
  • FIG. 4 illustrates an iris image taken of an iris using a near infrared region outdoors using a conventional CMOS image sensor.
  • CMOS image sensor As shown in FIG. 4, although the iris is photographed in the near infrared region, reflected light noise of sunlight appears in the iris image. Such reflected light noise becomes a cause of difficulty in iris recognition outdoors.
  • the quantum efficiency is improved in a wavelength band in which the absorption rate of sunlight in the infrared band according to an embodiment of the present invention is higher than that of an adjacent wavelength band, so that a high-quality iris image can be obtained not only indoors but also outdoors when photographing including the wavelength band.
  • this capable CMOS image sensor has improved quantum efficiency in the infrared wavelength band where the solar absorption rate is particularly higher than that of an adjacent wavelength region, and thus is used in an apparatus for acquiring an iris image including the wavelength band. It may mean an image sensor.
  • the infrared wavelength band in which the said solar absorption is especially higher than an adjacent wavelength range is examined below.
  • FIG. 5 is a graph showing radiation intensity versus wavelength at a clear sky condition and sea level in solar radiation spectrum. As shown in FIG. 5, in the infrared region (about 700 nm or more), it can be seen that there are three wavelength bands in which the solar absorption rate is higher than that of the adjacent wavelength region. Related information can be found in Pettit (1951), Non-Patent Document 2.
  • the wavelength band of the ⁇ 1,500 nm may be defined as a wavelength band in which the solar absorption rate is higher than the adjacent wavelength range according to an embodiment of the present invention.
  • the first band and the second band are areas mainly absorbed by H 2 O
  • the third band is areas mainly absorbed by H 2 O and CO 2 .
  • an area (adjacent wavelength region) other than the wavelength band where the solar absorption rate defined according to one embodiment of the present invention is higher than the adjacent wavelength region is called an infrared window.
  • CMOS image sensor capable of obtaining high quality iris images in indoors as well as outdoors by improving quantum efficiency in wavelength bands in which infrared light absorption is higher than adjacent wavelength bands according to an embodiment of the present invention is conventional.
  • quantum efficiency in the wavelength band where the solar absorption rate is higher than the adjacent wavelength range in the infrared wavelength band is improved, and thus, it is meant an image sensor used in a device that can obtain a high quality iris image when photographed in the wavelength band.
  • the first wavelength band (920 nm to 960 nm), the second band (1,110 nm to 1,160 nm), and the third band (1,300 nm to 1,500 nm), which are the main wavelength bands used in the iris recognition device according to an embodiment of the present invention, may be used.
  • CMOS image sensor whose quantum efficiency is higher than that of conventional CMOS image sensors. This produces an effect of reducing noise generated by sunlight.
  • the iris image is taken indoors, even when the intensity of the external light is lowered than before, the effect of obtaining a higher quality iris image than the conventional one becomes possible.
  • CMOS image sensors already satisfy economies of scale.
  • the quantum efficiency is improved in a wavelength band in which the absorption rate of sunlight is higher than that of an adjacent wavelength band, so that a high quality iris image can be obtained not only indoors but also outdoors when photographing including the wavelength band.
  • quantum efficiency is improved in a wavelength band in which the absorption rate of sunlight in the infrared band according to an embodiment of the present invention is higher than that of an adjacent wavelength band, so that not only the indoor but also the indoor.
  • the CMOS image sensor which can obtain high quality iris images outdoors, can be modified to some extent in quantum efficiency by changing a few things in the conventional CMOS image sensor process.
  • depletion region For example, by changing the thickness of the Si layer, adding another material layer, or adding a process to form an anti-reflection coating layer (MgF 2 , HfO 2, etc.), depletion region (MgF 2 , HfO 2, etc.), depletion region (MgF 2 , HfO 2, etc.), depletion region (MgF 2 , HfO 2, etc.), depletion region (MgF 2 , HfO 2, etc.), depletion region (MgF 2 , HfO 2, etc.), depletion region (MgF 2 , HfO 2, etc.), depletion region (MgF 2 , HfO 2, etc.), depletion region (MgF 2 , HfO 2, etc.), depletion region (MgF 2 , HfO 2, etc.), depletion region (MgF 2 , HfO 2, etc.), depletion region (MgF 2 , HfO 2, etc.), depletion region (
  • the quantum efficiency is improved in a wavelength band in which the absorption rate of sunlight is higher than that of an adjacent wavelength band, so that a high quality iris image can be obtained not only indoors but also outdoors when photographing including the wavelength band.
  • the quantum efficiency having a higher quantum efficiency than the conventional CMOS image sensor in at least a portion of the wavelength band of the absorption of sunlight in the infrared band is higher than the adjacent wavelength band
  • An image sensor having a peak of (b) may mean an image sensor having higher quantum efficiency than a conventional CMOS image sensor in a wavelength band in which the absorption rate of sunlight in the infrared band is higher than that of an adjacent wavelength band.
  • 6 and 7 are graphs comparing quantum efficiencies according to wavelengths of a CMOS image sensor (solid line) and a conventional CMOS image sensor (dashed line) according to an embodiment of the present invention. 6 is a graph corresponding to (a) above, and FIG.
  • Quantum efficiency of a CMOS image sensor capable of acquiring a high quality iris image may be configured not only indoors but also outdoors.
  • the filter, the infrared light, and the wavelength band including at least a portion of the wavelength band are used. Together, a much higher quality iris image can be obtained when using the CMOS image sensor according to the present invention. This is because filters and infrared illumination cannot improve the sensitivity of the CMOS image sensor itself.
  • FIG. 8 is an iris image of an iris image taken using a near-infrared region outdoors using a conventional CMOS image sensor and a corresponding wavelength region having particularly high absorption rate of sunlight outdoors using a CMOS image sensor according to an embodiment of the present invention.
  • Including the iris image is taken of the iris.
  • the absorption rate of sunlight using the CMOS image sensor according to the exemplary embodiment of the present invention is higher than that of the iris photographed using the near infrared region using the conventional CMOS image sensor.
  • (b) photographing the iris using a high corresponding wavelength region has much less reflected light noise.
  • CMOS image sensor using the CMOS image sensor according to an embodiment of the present invention together with a filter used to include a wavelength band which is at least a part of the wavelength band, and the infrared illumination, photographing the iris including the wavelength band is simply a filter; Infrared illumination can produce a much higher quality iris image than by taking an iris that covers the wavelength range. This is because filters and infrared illumination cannot improve the sensitivity of the CMOS image sensor itself. In addition, improving the sensitivity of the CMOS image sensor itself for the wavelength range can reduce the intensity of the infrared illumination, which is extremely effective in terms of power and iris image clarity.
  • the CMOS sensor according to another embodiment of the present invention may be composed of a semiconductor material capable of detecting a wavelength range of 1-5 ⁇ m included in near-IR.
  • HgCdTe varies its bandgap energy according to the merging ratio of mercury and cadmium
  • astronomy uses HgCdTe image sensor which can be observed up to 2.5um.
  • InSb image sensors can be used when observing L (3.5 ⁇ m) and M-bands (4.8 ⁇ m) longer than the standard metering bands J (1.3 ⁇ m), H (1.6 ⁇ m) and K (2.2 ⁇ m) bands.
  • the price of an image sensor using such a new material is too expensive to be commercial.
  • the quantum efficiency is improved in a wavelength band in which the absorption rate of sunlight in the infrared band according to an embodiment of the present invention is higher than that of an adjacent wavelength band, and when photographing in the wavelength band, a high quality iris image can be obtained both indoors and outdoors. According to the image sensor, it is possible to obtain a high quality iris image without noise caused by sunlight at a low price.
  • the absorption of sunlight in the infrared band is adjacent In the wavelength band Higher than In the wavelength band Quantum efficiency is improved In the wavelength band Method and device for iris image acquisition using CMOS image sensor that can acquire high quality iris image indoors as well as outdoors
  • the method for acquiring a high quality iris image according to an embodiment of the present invention may include an infrared lighting control step, an iris image photographing step, and an iris image output step.
  • a method for acquiring high quality iris images according to an embodiment of the present invention improves the quantum efficiency in a wavelength band in which the absorption rate of sunlight in the infrared band is higher than that of an adjacent wavelength band, thereby photographing the wavelength band.
  • an iris image acquisition device including a CMOS image sensor capable of acquiring high quality iris images may be used indoors as well as outdoors.
  • the infrared light control step is a step of irradiating infrared light to the iris to be photographed by controlling the infrared light from the control unit.
  • the sensitivity of the image sensor in the wavelength band can be improved to lower the intensity of the infrared light.
  • the control unit captures the iris image in the corresponding wavelength band, and the iris image is condensed on the lens, and the band filter includes a region in which the absorption rate of sunlight in the infrared band is higher than the adjacent wavelength band. Only passes, and is detected by the image sensor according to an embodiment of the present invention and outputs it as a current.
  • the iris image output step is a step of acquiring and outputting a high quality iris image by an output unit connected to the image sensor.
  • the iris image acquisition device may include a lens, a memory, a band pass filter, an image sensor, an infrared light, a controller, and an output unit.
  • the quantum efficiency is improved in the wavelength band of the infrared ray band according to the embodiment of the present invention compared to the adjacent wavelength band, and the high quality iris image can be obtained not only indoors but also outdoors. Alternatively the intensity of the infrared illumination can be reduced.
  • the lens is installed in front of the iris image acquisition device, and is configured to receive the iris image by collecting light reflected from the subject iris.
  • the memory is a configuration for storing the detected iris image.
  • the band pass filter includes all of the wavelength bands in which the absorption rate of sunlight is higher than the adjacent wavelength bands among the infrared bands installed in front of the image sensor in order to prevent high quality iris images that are prevented from reflection images or reduced reflection noise. It means a band pass filter that passes only a part.
  • the image sensor is configured to generate an digitized signal by converting photons into electrons by sensing an iris image input through a lens, and an absorption rate of sunlight in an infrared band according to an embodiment of the present invention is higher than that of an adjacent wavelength band.
  • Infrared illumination refers to infrared light having a wavelength that passes through a wavelength band in which the absorption rate of sunlight in the infrared band is higher than the adjacent wavelength band.
  • the controller is configured to perform memory, application of a band pass filter, processing of an image sensor, and control of an infrared light.
  • the output unit is connected to the image sensor and outputs an iris image generated by the image sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

본 발명은 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한, 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상된 이미지 센서에 관한 것이다. 이에 따라, 실외에서 홍채 촬영시 태양광에 의한 노이즈가 저감되고, 고품질 홍채이미지의 획득이 가능하다.

Description

적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서
본 발명은 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상된 이미지 센서에 관한 것이다. 보다 상세하게는, 기존의 CMOS 센서와 달리, 고품질의 홍채이미지를 획득하기 위하여 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율(quantum efficiency)을 향상시킨 이미지 센서로 해당 파장대역을 포함해서 촬영하여 고품질의 홍채이미지를 획득하는 방법에 관한 것이다.
생체인식기술의 이용은 점점 더 빈번해지고 있다. 특히, 생체인식기술 중에서 지문인식기술은 과거부터 널리 사용되어 왔으나, 지문의 소실 및 도난 가능성 등으로 인해 다른 생체인식기술에도 관심이 쏠리고 있으며, 홍채인식기술은 뛰어난 변별력과 장비의 지속적인 가격 하락 등의 요인으로 인해 사용이 점차 증대되고 있다.
홍채는 일란성 쌍둥이라도 서로 다른 것으로 알려져 있으며, 특별한 외상이나 심각한 질병에 걸리지 않는 한, 평생 변하지 않는다. 홍채는 동공의 크기가 변함에 따라 수축 이완되는 복잡한 섬유 조직으로 구성되며, 홍채의 무늬는 대부분 생후 6개월 이내에 형성되어 2~3세에 완전히 결정된다. 또한, 동일인이라 하더라도 양쪽 눈의 홍채 모양이 서로 다르다.
홍채는 대략 266개의 측정 가능한 식별 특징을 지니고 있어 40개 정도의 식별 특징을 갖고 있는 지문보다 훨씬 복잡하고 정교하며, 다른 생체인식 방법에 비해 인식률이 매우 높은 장점을 가지고 있는 것으로 알려져 있다.
이러한 홍채인식을 수행하기 위해서는 홍채이미지 등록 단계에서 피촬영자의 홍채이미지를 획득하여 템플릿으로 변환한 다음, 서버 또는 등록데이터 저장소 등에 보관을 한다. 추후 인증 단계에서 마찬가지로 피촬영자의 홍채이미지를 획득하여 템플릿으로 변환을 하고, 이것과 기등록된 피촬영자의 템플릿을 서로 비교함으로써, 인증 또는 신원확인을 하게 된다. 이 과정에서 홍채인식에 적합한 고품질의 홍채이미지를 획득하는 것은 매우 중요한 요소가 된다.
홍채인식에 적합한 홍채이미지를 획득하기 위해서는 일반적인 사진 촬영 등에 쓰이는 가시광선 조명이 아니라, ISO/IEC 19794-6의 2011년 버전에서 권장하는 700nm~900nm의 근적외선 영역의 조명이 일반적으로 사용되고 있다. 이는 홍채의 반사도(Reflectance)가 근적외선 영역에서 가장 높기 때문이다. 이와 관련하여서는 특허문헌 1인 미국 등록특허 7,428,320 B2의 FIG. 4에 도시되어 있다. 홍채는 약 500nm의 파장을 갖는 가시광선 영역에서는 약 0.4%의 반사도를 나타내고, 약 780nm의 근적외선 영역에서는 약 5%의 반사도를 나타내는 것을 확인할 수 있다. 따라서 기존에는 홍채의 높은 반사도를 나타내는 파장대역을 이용하기 위하여, 해당 영역의 파장대의 빛만 통과시키는 대역필터(band-pass filter)와 함께 근적외선 영역의 조명을 사용하고 있었다.
또한, 홍채 인식(iris recognition)을 위한 기존의 이미지 센서는 스마트폰 또는 디지털 카메라 등에 이용되는 일반적인 CMOS(complementary metal-oxide-semiconductor) 이미지 센서(CIS; 컬러, 근적외선, 단색)를 이용하고 있었고, 일반적인 이미지 센서는 가시광선 영역에서 고효율의 양자효율(quantum efficiency)을 나타내도록 설계되어 있는 동시에, 근적외선 영역을 포함한 적외선 영역에서 양자효율이 상당히 낮아지게 설계되어 있었다.
이는 반도체의 에너지 갭(energy gap; 또는 bandgap energy)에 의하여 발생되는 센서의 장파장 측의 감도한계로서, 장파장에서의 낮은 양자효율은 반도체의 차단파장(또는 파장한계)을 의미하게 된다. 즉, 기존의 스마트폰 또는 디지털 카메라에 이용되는 이미지 센서에서는 적외선 파장대의 영향으로 인해 화질이 저하되는 것을 방지하기 위해 이미지 센서의 적외선 파장대의 감도를 낮추었다. 구체적으로 적외선 파장대의 영향에 관하여, 컬러 이미지 센서의 경우에는 촬영된 이미지가 붉은 색의 영향을 많이 받으며, 흑백 이미지 센서의 경우에는 이미지가 밝아지는 경향이 발생되었다. 위와 같은 이유로, 기존의 스마트폰 또는 디지털 카메라에 이용되는 이미지 센서는 근적외선 이상의 파장의 양자효율을 낮추고 있었다. 특히 최근의 CMOS 이미지 센서들은 예전에 휴대폰이나 디지털 카메라에 이용하던 CCD 이미지 센서에 비해, IR 영역에서 양자효율을 훨씬 더 저감시키는 것을 확인할 수 있다.
이러한 이유로, 대략 900nm 이상의 파장대역에서의 영상은, 비특허문헌 1에 기재된 바와 같이, 홍채와 공막 사이의 경계가 불분명하여 홍채영역 분리에 어려움이 있어서 이용하지 않고 있었다.
그러나 이와 같은 700nm~900nm의 근적외선 영역의 조명은 최대 수 천 룩스(lux)의 밝기를 가지는 실내에서는 적용이 가능하나, 태양광으로 인해 수 만 룩스(lux) 이상의 밝기를 가지는 실외 환경에서는 빛의 반사 현상이 발생하여 홍채인식에 적합한 홍채이미지 획득을 어렵게 만들고 있었다. 태양은 가시광선 영역부터 적외선 영역에 이르기까지 다양한 파장대의 빛을 방출하고 있으며, 그 복사조도(irradiance)의 세기는 실내 환경에 비할 수 없을 정도로 높다. 이것이 실외에서 홍채 촬영시 태양광의 간섭현상이 생기는 원인이 된다. 따라서 실외에서 홍채 촬영시 태양광에 의해 강한 반사광이 함께 촬영되게 되고, 홍채 이미지에 반사광의 이미지가 함께 출력되는 문제가 발생하므로, 이 문제 해결에 대한 필요성이 대두되고 있다.
태양은 가시광선 영역부터 적외선 영역에 이르기까지 다양한 파장대의 빛을 방출하고 있다. 특히, 가시광선 영역의 복사조도가 가장 높으므로, 기존의 홍채인식장치는 가시광선 반사광 때문에 근적외선 영역을 이용하고 있었다. 하지만, 근적외선 영역을 이용하는 기존의 홍채인식장치는 여전히 실외에서 근적외선 영역의 태양광의 반사광에 의한 노이즈가 문제되고 있었다. 기존의 CMOS 이미지 센서는 근적외선 영역에서 양자 효율이 매우 낮음에도 불구하고, 태양광의 근적외선 영역의 복사조도(irradiance)의 세기는 실내 환경에 비할 수 없을 정도로 높기 때문에 반사광의 문제가 상존하고 있던 것이다. 이것이 실외에서 홍채 촬영시 태양광의 간섭현상이 생기는 원인이 된다. 따라서 실외에서 홍채 촬영시 태양광에 의해 강한 반사광이 함께 촬영되게 되고, 홍채 이미지에 반사광의 이미지가 함께 출력되는 문제가 발생하는 것이다.
본 발명이 해결하고자 하는 과제는 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득을 위해, 기존의 CMOS 이미지 센서(2013년 기준, CIS 시장의 약 34%를 차지하고 있는 SONY의 Exmor 시리즈, 시장의 약 18%를 차지하고 있는 Omnivision의 OV16820과 OV16825 등 OV 시리즈, SAMSUNG 등)와 달리, 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 실내뿐만 아니라 실외에서도 해당 파장대역을 포함하여 촬영하면 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서를 제공하는데에 있다.
이하 본 발명의 목적을 달성하기 위한 구체적 수단에 대하여 설명한다.
본 발명의 목적은, 실내 또는 실외에서 홍채이미지를 획득하는 장치에 구성되는 CMOS 이미지 센서에 있어서, 상기 CMOS 이미지 센서는, 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역의 일부인 흡수 파장대역에서, 기존의 CMOS 이미지 센서에 비해 상기 흡수 파장대역에 대한 양자효율(quantum efficiency)이 높게 구성되며, 상기 흡수 파장대역을 포함하여 홍채이미지를 촬영 시 태양광에 의한 노이즈가 저감되는 것을 특징으로 하는, 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서를 제공하여 달성된다.
또한, 본 발명의 목적은, 상기 흡수 파장대역이, 파장이 920nm~960nm인 제1대역, 1,110nm~1,160nm인 제2대역 및 1,300nm~1,500nm인 제3대역 중 적어도 하나의 적어도 일부인 것을 특징으로 하는, 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서를 제공하여 달성될 수 있다.
또한, 본 발명의 목적은, 상기 기존의 CMOS 이미지 센서가, SONY의 IMX 계열, Omnivision의 OV계열 또는 SAMSUNG의 S5K의 CMOS 이미지 센서인 것을 특징으로 하는, 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서를 제공하여 달성될 수 있다.
또한, 본 발명의 목적은, 상기 CMOS 이미지 센서가, 상기 흡수 파장대역에서 양자효율의 피크(peak)가 존재하는 것을 특징으로 하는, 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서를 제공하여 달성될 수 있다.
또한, 본 발명의 목적은, 상기 CMOS 이미지 센서가, Si layer의 두께를 변경하는 방법, MgF2 및 HfO2 중 하나로 반사방지 코팅층(Anti-Reflection Coating Layer)을 구성하는 방법, 공핍영역(depletion region)의 크기를 변경하는 방법 중 하나의 방법을 통해 상기 흡수 파장대역에 대한 양자효율을 기존의 CMOS 이미지 센서보다 높게 구성하는 것을 특징으로 하는, 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서를 제공하여 달성될 수 있다.
상기한 바와 같이, 본 발명에 의하면 이하와 같은 효과가 있다.
첫째, 본 발명의 일실시예에 따라 실외 홍채인식에 사용되는 주요 파장대역인 920nm~960nm 범위에서 양자효율(quantum efficiency)이 기존의 CMOS 이미지 센서보다 높게 나타나는 이미지 센서를 사용함으로써, 실외에서 해당 파장대역을 포함하여 홍채 촬영시 태양광에 의한 노이즈가 저감되고, 고품질 홍채이미지의 획득이 가능해지는 효과가 발생된다.
둘째, 본 발명의 일실시예에 따르면 외부조명의 강도를 낮추더라도 동일 수준 이상의 고품질 홍채이미지를 획득할 수 있는 효과가 있다. 이에 따라 홍채이미지 획득에 소비되는 소비전력을 줄일 수 있다.
셋째, 본 발명의 일실시예에 따르면 값비싼 적외선 전용 이미지 센서를 이용하는 것이 아닌, 기존의 CMOS 공정에서 생성되는 CMOS 이미지 센서를 이용하는 비용이 상당히 절감되는 효과가 발생된다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명의 범위는 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 기존의 컬러 이미지 센서의 파장에 대한 양자효율 그래프의 예,
도 2는 기존의 근적외선/단색 이미지 센서의 양자효율 그래프의 예,
도 3은 기존의 일부 업체의 내부에서 개발중인 이미지 센서의 양자효율 그래프의 예,
도 4는 기존의 CMOS 이미지 센서를 이용하여 실외에서 근적외선 영역을 이용하여 홍채를 촬영한 홍채이미지,
도 5는 태양 복사 스펙트럼으로, clear sky condition 및 sea level에서의 파장 대비 복사조도를 도시한 그래프,
도 6, 7은 본 발명의 일실시예에 따른 CMOS 이미지 센서(실선)와 기존의 CMOS 이미지 센서(점선)의 파장에 따른 양자 효율을 비교한 그래프,
도 8은 기존의 CMOS 이미지 센서를 이용하여 실외에서 근적외선 영역을 이용하여 홍채를 촬영한 홍채이미지와 본 발명의 일실시예에 따른 CMOS 이미지 센서를 이용하여 실외에서 태양광의 흡수율이 특히 높은 해당 파장영역을 포함하여 홍채를 촬영한 홍채이미지를 도시한 것이다.
이하 첨부된 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 쉽게 실시할 수 있는 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예에 대한 동작원리를 상세하게 설명함에 있어서 관련된 공지기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다. 명세서 전체에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고, 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 포함한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 발명의 일실시예에 따른 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서는, 휴대폰, 스마트폰, 디지털 카메라는 물론 방송용 장비와 바코드 리더기, CCTV 카메라 등에도 적용될 수 있고, 자동차 전후방 카메라나 로봇, 태블릿 PC, 랩탑, 자동차, 스마트 TV, 각종 웨어러블 디바이스 등에도 적용되는 것을 포함할 수 있다.
이하에서는 설명의 편의를 위해 CMOS로 기재하였으나, 본 발명의 범위는 CCD, sCMOS 등의 이미지 센서를 포함할 수 있다.
이하에서, 기존의 CMOS 이미지 센서는 CIS 시장 전체 매출의 약 34%(2013년 기준)를 차지하고 있는 SONY의 IMX230, IMX214, IMX219와 같은 IMX 계열, 시장의 약 18%(2013년 기준)를 차지하고 있는 Omnivision의 OV16820과 OV16825 등 OV 계열, SAMSUNG의 S5K2P8, S5K4H5YB 등의 S5K계열을 포함하는 CIS(CMOS Image Sensor)를 의미할 수 있다.
일반적으로 파장대(wavelength range)와 파장대역(wavelength band)은 동일한 의미로 혼용되어 사용되고 있으나, 본 발명에서는 의미의 혼돈을 방지하기 위하여 파장대는 임의로 지정한 파장 범위를 통칭하는 것으로 정의하며, 파장대역은 임의로 지정한 범위에 속하는 일부 파장 범위를 나타내는 것으로 정의한다. 예를 들면, 700nm~900nm에 해당하는 파장 범위 전체를 임의로 ISO 권장 파장대라고 정의하면, 700nm~800nm와 같은 파장 범위는 ISO 권장 파장대의 일부 파장범위를 나타내기 때문에 파장대역에 해당한다.
일반적으로 실외 환경에서는 짧은 감마선에서부터 장파인 라디오파에 이르기까지 다양한 파장의 빛이 존재하는데, 그 중에서 대부분은 자외선, 가시광선, 적외선이다. 이러한 다양한 파장 중에서 적외선의 파장 범위는 일반적으로 700nm~1,000μm에 해당하는 것으로 알려져 있다. 본 발명에서는 국제조명위원회(international commission on illumination)의 근적외선(700nm~1,400nm), 중적외선(1,400nm~3,000nm), 원적외선(3,000nm~1mm)으로 구분한 규정에 근거하여 서술하지만, 본 발명의 목적과 취지에 부합되는 한 어떤 기관의 정의를 사용해도 무방하다. 산업용 적외선 영상 장비는 사용 목적에 따라 NIR (0.75~1.4 μm), SWIR (1.4~3 μm), MWIR (3~8 μm), LWIR (8~15 μm), FIR (15~1,000 μm) 밴드로 구분한다. 그러나 천문관측용 적외선 기기는 검출기의 특성과 사용 환경에 따라서 근적외선(near-IR, 1-5 μm), 중적외선(mid-IR, 5-30 μm), 원적외선(far-IR, 30-300 μm)으로 구분한다.
적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역에서 촬영하면 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서
본 발명의 일실시예에 따른 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영하면 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서는, 스마트폰이나 디지털 카메라 등에 이용되던 기존의 CMOS 이미지 센서와 달리 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 홍채이미지 획득장치에 이용되는 이미지 센서를 의미할 수 있다. 보다 구체적으로는, (a)적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역의 적어도 일부를 포함한 흡수 파장대역에서 기존의 CMOS 이미지 센서에 비해 높은 양자효율을 갖는 양자효율의 피크(peak)가 존재하는 이미지 센서, (b)적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역의 적어도 일부를 포함한 흡수 파장대역에서 기존의 CMOS 이미지 센서에 비해 양자효율이 높은 이미지 센서를 의미할 수 있다.
본 발명의 일실시예에 따른 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어, 해당 파장대역에서 촬영하면 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서는, 기존의 CMOS 센서와 같이, 실리콘(Si) 또는 게르마늄(Ge)과 같은 4족 원소의 크리스탈 격자(crystal lattice) 구조로 구성될 수 있다. 이때, 불순물(impurity)이 섞이지 않은 순수 결정을 진성반도체(intrinsic semiconductor)라고 한다. 안정된 상태에서는 모든 전자가 격자에 속박되어 있는 원자가 전자(valance electron)로 존재하지만, 외부에서 입사한 광자에너지를 흡수하여 자유전자가 되면 이 결정체는 순간적으로 도체의 성질을 갖게 된다. 이때 반도체에 전압을 걸고 흐르는 전하의 양을 측정하면 흡수된 광자의 수를 측정할 수 있다.
입사한 광자의 에너지가 원자가전자를 속박하는 밴드갭 에너지(bandgap energy)보다 작으면 이미지 센서는 반응하지 않는다. 따라서, 이미지 센서를 구성하는 반도체 물질의 밴드갭 에너지가 작을수록 긴 파장의 전자기파를 관측할 수 있다. 이하의 표 1은 이미지 센서에 이용될 수 있는 반도체의 물성, 온도(T)에 따른 밴드갭 에너지(Eg), 파장한계(λc)를 기재한 것이다.
이름 T (K) Eg (eV) λc (μm)
Si 295 1.12 1.11
Ge 295 0.67 1.85
PbS 295 0.42 2.95
InSb 77 0.23 5.4
HgxCd1-xTe (MCT, x=0.554) 77 0.5 2.5
이때, 원자가전자는 외부의 광자 에너지 없이도 자체 온도에 의한 Maxell-Boltzmann 분포에 따라 자유전자가 되므로 이미지 센서를 냉각해야 한다.
표 1에서 보여주듯이 CMOS 이미지 센서로 가장 많이 쓰이는 Si는 1.1 μm 보다 짧은 파장대의 관측을 할 수 있다. Si의 파장한계인 1.1 μm 때문에 기존에 이용되는 대부분의 CMOS 이미지 센서는 적외선 영역에서 양자효율이 극적으로 감소되는 것이다.
도 1은 기존의 컬러 이미지 센서(Omnivision 사의 OV7725)의 파장에 대한 양자효율 그래프의 예를 도시한 것이다. 이미지 센서의 감도를 평가하는 기준의 한 가지로서 양자 효율(quantum efficiency)이 있다. 양자 효율이란, 센서로 입사된 광자(photon)가 전자(electron)로 전환되는 비율을 말하며, 그 값이 높을수록 선명한 영상을 얻을 수 있다. 도 1에 도시된 바와 같이, 기존의 컬러 이미지 센서는 적외선 영역으로 갈수록 양자효율이 극심하게 감소되는 것을 확인할 수 있다.
도 2는 기존의 근적외선/단색 이미지 센서(E2V Technologies 사의 EV76C661ABT)의 양자효율 그래프의 예를 도시한 것이다. 기존의 근적외선/단색 이미지 센서도 도 1과 마찬가지로 적외선 영역으로 갈수록 양자효율이 극심하게 감소되는 것을 확인할 수 있다.
도 3은 기존의 일부 업체의 내부에서 개발중인 이미지 센서(SiOnyx 사의 XQE-0570)의 양자효율 그래프의 예를 도시한 것이다. 기존의 일부 업체에서 개발중인 이미지 센서도 도 3과 마찬가지로 적외선 영역의 상대적 양자효율의 값이 가시광선 영역의 상대적 양자효율의 절반 이하인 것을 확인할 수 있다.
태양은 가시광선 영역부터 적외선 영역에 이르기까지 다양한 파장대의 빛을 방출하고 있다. 특히, 가시광선 영역의 복사조도가 가장 높으므로, 기존의 홍채인식장치는 가시광선 반사광 때문에 근적외선 영역을 이용하고 있었다. 하지만, 근적외선 영역을 이용하는 기존의 홍채인식장치는 여전히 실외에서 근적외선 영역의 태양광의 반사광에 의한 노이즈가 문제되고 있었다. 기존의 CMOS 이미지 센서는 근적외선 영역에서 양자 효율이 매우 낮음에도 불구하고, 태양광의 근적외선 영역의 복사조도(irradiance)의 세기는 실내 환경에 비할 수 없을 정도로 높기 때문에 반사광의 문제가 상존하고 있던 것이다. 이것이 실외에서 홍채 촬영시 태양광의 간섭현상이 생기는 원인이 된다. 따라서 실외에서 홍채 촬영시 태양광에 의해 강한 반사광이 함께 촬영되게 되고, 홍채 이미지에 반사광의 이미지가 함께 출력되는 문제가 발생하는 것이다.
도 4는 기존의 CMOS 이미지 센서를 이용하여 실외에서 근적외선 영역을 이용하여 홍채를 촬영한 홍채이미지를 도시한 것이다. 도 4에 도시된 바와 같이, 근적외선 영역에서 홍채를 촬영함에도 불구하고, 홍채이미지에 태양광의 반사광 노이즈가 나타나는 것을 확인할 수 있다. 이러한 반사광 노이즈는 실외에서의 홍채인식을 어렵게 하는 원인이 된다.
따라서, 본 발명의 일실시예에 따른 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어, 해당 파장대역을 포함하여 촬영하면 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서는, 기존의 CMOS 이미지 센서와 달리 태양광 흡수율이 인접 파장 영역보다 특히 높은 적외선 파장대역에서의 양자효율이 향상되어, 해당 파장대역을 포함하여 홍채이미지를 획득하는 장치에 이용되는 이미지 센서를 의미할 수 있다. 상기 태양광 흡수율이 인접 파장 영역보다 특히 높은 적외선 파장대역에 대해 이하에서 검토한다.
도 5는 태양 복사 스펙트럼으로, clear sky condition 및 sea level에서의 파장 대비 복사조도를 도시한 그래프이다. 도 5에 도시된 바와 같이, 적외선 영역(약 700nm 이상)에서는 태양광 흡수율이 인접 파장 영역보다 높은 파장대역이 크게 3개 있는 것을 확인할 수 있다. 이에 관련된 내용은 비특허문헌 2인 Pettit(1951)에서 확인할 수 있다.
보다 구체적으로는, 도 5와 같이 clear sky 환경의 sea level에서 조사되는 태양 복사에 따르면, 대략 920nm~960nm 파장대역(제1대역), 1,110nm~1,160nm 파장대역(제2대역) 및 1,300nm~1,500nm 파장대역(제3대역)이 본 발명의 일실시예에 따른 태양광 흡수율이 인접 파장 영역보다 높은 파장대역으로 정의될 수 있다. 특히, 제1대역과 제2대역은 H2O에 의해 주로 흡수되는 영역이고, 제3대역은 H2O와 CO2에 의해 주로 흡수되는 영역이다. 적외선 영역에서 이러한 본 발명의 일실시예에 따라 정의된 태양광 흡수율이 인접 파장 영역보다 높은 파장대역이 아닌 다른 영역(인접 파장 영역)을 적외선 창(Infrared Window)라고 칭한다.
따라서, 본 발명의 일실시예에 따른 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서는, 기존의 CMOS 이미지 센서와 달리 적외선 파장대역 중에 태양광 흡수율이 인접 파장 영역보다 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역에서 촬영하면 고품질 홍채이미지를 획득할 수 있는 장치에 이용되는 이미지 센서를 의미할 수 있고, 본 발명의 일실시예에 따른 홍채인식장치에서 사용되는 주요 파장대역인 제1대역(920nm~960nm), 제2대역(1,110nm~1,160nm), 제3대역(1,300nm~1,500nm)에서 양자효율이 기존의 CMOS 이미지 센서보다 더 높게 구성되는 CMOS 이미지 센서를 사용한다. 이에 따라 태양광에 의해 발생되는 노이즈가 저감되는 효과가 발생된다. 또한, 이 경우, 실내에서 홍채이미지 촬영시 외부 조명의 강도를 기존보다 낮추더라도 기존보다 고품질인 홍채이미지의 획득이 가능해지는 효과가 발생된다. 또한, 외부조명의 강도를 낮출 수 있게 됨으로서 홍채이미지 획득장치의 소비전력이 저감되는 효과가 발생된다. 또한, 기존의 CMOS 공정을 이용함으로써, InP 등의 소재로 적외선 전용 이미지 센서를 별도 공정에서 제작하는 것에 비해 크게 저렴한 가격으로 홍채이미지의 품질을 향상시킬 수 있다. 이미 CMOS 이미지 센서는 규모의 경제를 만족하고 있기 때문이다.
본 발명의 일실시예에 따른 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어, 해당 파장대역을 포함하여 촬영하면 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서의 구성과 관련하여, 본 발명의 일실시예에 따른 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영하면 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서는, 기존의 CMOS 이미지 센서 공정에서 몇 가지를 변경하는 방식으로 양자효율에 대해 어느 정도 수정이 가능하다. 예를 들어, Si layer의 두께를 변경한다던지, 다른 소재층을 추가한다던지, MgF2, HfO2 등으로 반사방지 코팅층(Anti-Reflection Coating Layer)을 구성하는 공정을 추가한다던지, 공핍영역(depletion region)의 크기를 변경하는 등의 방법으로 양자효율의 수정이 가능하다.
본 발명의 일실시예에 따른 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어, 해당 파장대역을 포함하여 촬영하면 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서의 구성과 관련하여, 보다 구체적으로는, (a)적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역의 적어도 일부에서 기존의 CMOS 이미지 센서에 비해 높은 양자효율을 갖는 양자효율의 피크(peak)가 존재하는 이미지 센서, (b)적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서 기존의 CMOS 이미지 센서에 비해 양자효율이 높은 이미지 센서를 의미할 수 있다. 도 6, 7은 본 발명의 일실시예에 따른 CMOS 이미지 센서(실선)와 기존의 CMOS 이미지 센서(점선)의 파장에 따른 양자 효율을 비교한 그래프이다. 도 6는 위의 (a)에 대응되는 그래프, 도 7은 위의 (b)에 대응되는 그래프이다. 도 6, 7에 도시된 바와 같은 방식으로 본 발명의 일실시예에 따른 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어, 해당 파장대역을 포함하여 촬영하면 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서의 양자 효율이 구성될 수 있다. 또한, 도 6, 7에 도시된 바와 같이 단순히 필터와 적외선 조명을 이용하여 해당 파장대역을 포함하여 홍채를 촬영하는 것보다, 해당 파장대역의 적어도 일부인 파장대역을 포함하여 사용되는 필터, 적외선 조명과 함께 본 발명에 따른 CMOS 이미지 센서를 이용할 때 훨씬 더 고품질의 홍채이미지를 얻을 수 있다. 필터와 적외선 조명으로는 CMOS 이미지 센서 자체의 감도를 향상시킬 수 없기 때문이다.
도 8은 기존의 CMOS 이미지 센서를 이용하여 실외에서 근적외선 영역을 이용하여 홍채를 촬영한 홍채이미지와 본 발명의 일실시예에 따른 CMOS 이미지 센서를 이용하여 실외에서 태양광의 흡수율이 특히 높은 해당 파장영역을 포함하여 홍채를 촬영한 홍채이미지를 도시한 것이다. 도 8에 도시된 바와 같이, 기존의 CMOS 이미지 센서를 이용하여 근적외선 영역을 이용하여 홍채를 촬영한 것(a)에 비해, 본 발명의 일실시예에 따른 CMOS 이미지 센서를 이용하여 태양광의 흡수율이 특히 높은 해당 파장영역을 이용하여 홍채를 촬영한 것(b)이 훨씬 반사광 노이즈가 적은 것을 확인할 수 있다. 또한, 해당 파장대역의 적어도 일부인 파장대역을 포함하여 사용되는 필터, 적외선 조명과 함께 본 발명의 일실시예에 따른 CMOS 이미지 센서를 이용하여 해당 파장대역을 포함하여 홍채를 촬영하는 것은, 단순히 필터와 적외선 조명을 이용하여 해당 파장대역을 포함하여 홍채를 촬영하는 것보다 훨씬 더 고품질의 홍채이미지를 얻을 수 있다. 필터와 적외선 조명으로는 CMOS 이미지 센서 자체의 감도를 향상시킬 수 없기 때문이다. 또한, 해당 파장영역에 대해 CMOS 이미지 센서 자체의 감도를 향상시키는 것이, 적외선 조명의 강도를 저감시킬 수 있어서 전력 측면, 홍채이미지 선명도 측면에서 월등히 효과적이다.
본 발명의 다른 일실시예에 따른 CMOS 센서는 근적외선(near-IR)에 포함되는 1-5 μm 파장대를 검출할 수 있는 반도체 물질로 구성될 수 있다. 그 중에서 HgCdTe는 수은과 카드뮴의 화합 비율에 따라 밴드갭 에너지가 달라지는데, 천문학에서는 2.5 um까지 관측할 수 있는 HgCdTe 이미지 센서를 가장 많이 사용한다. 표준 측광 밴드인 J(1.3 μm), H(1.6 μm), K(2.2 μm) 밴드보다 긴 L(3.5 μm), M-밴드(4.8 μm)를 관측하는 경우 InSb 이미지 센서를 사용할 수 있다. 하지만, 이러한 새로운 소재를 이용한 이미지 센서의 가격은 지나치게 값비싸서 사업성이 없다. 따라서 본 발명의 일실시예에 따른 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어, 해당 파장대역에서 촬영하면 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서에 따르면 저렴한 가격으로 태양광에 의한 노이즈가 제거된 고품질의 홍채이미지 획득이 가능해지는 효과가 발생된다.
적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역에서 촬영하면 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서를 이용한 홍채이미지 획득방법 및 장치
본 발명의 일실시예에 따른 고품질 홍채이미지 획득방법과 관련하여, 본 발명의 일실시예에 따른 고품질 홍채이미지 획득방법은 적외선 조명 제어단계, 홍채이미지 촬영 단계, 홍채이미지 출력 단계를 포함할 수 있다. 본 발명의 일실시예에 따른 고품질 홍채이미지 획득방법은 본 발명의 일실시예에 따른 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어, 해당 파장대역에서 촬영하면 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서가 포함된 홍채이미지 획득장치를 이용할 수 있다.
적외선 조명 제어단계는 제어부에서 적외선 조명을 제어하여 피촬영 홍채에 적외선 조명을 조사하는 단계이다. 본 발명의 일실시예에 따르면, 해당 파장대역에서의 이미지 센서의 감도가 향상되어 적외선 조명의 강도를 낮출 수 있다.
홍채이미지 촬영 단계는 제어부에서 해당 파장대역에서의 홍채이미지의 촬영을 수행하여, 렌즈에 홍채이미지가 집광되고, 대역필터에 의해 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역을 포함한 영역만이 통과되고, 본 발명의 일실시예에 따른 이미지 센서에서 감지하여 이를 전류로 출력하는 단계이다.
홍채이미지 출력 단계는 이미지 센서와 연결된 출력부에 의해 고품질 홍채이미지를 획득하고 출력하는 단계이다.
본 발명의 일실시예에 따른 홍채이미지 획득장치와 관련하여, 홍채이미지 획득장치는 렌즈, 메모리, 대역필터, 이미지 센서, 적외선 조명, 제어부, 출력부를 포함할 수 있다. 이때 본 발명의 일실시예에 따른 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서 덕분에, 기존과 달리 적외선 조명의 강도가 저감될 수 있다.
렌즈는 홍채이미지 획득장치의 전면에 설치되며, 피사체인 홍채에서 반사되는 빛을 집광하여 홍채이미지를 받아들이는 구성이다. 메모리는 감지된 홍채이미지를 저장하는 구성이다. 대역필터는 홍채이미지 촬영 시 발생하는 반사이미지가 방지되거나 반사노이즈가 감소된 고품질의 홍채이미지를 획득하기 위해 이미지 센서 전단에 설치되는 적외선 대역 중 태양광의 흡수율이 인접 파장대역보다 높은 파장대역의 전부 또는 일부만을 통과시키는 대역 통과 필터를 의미한다. 이미지 센서는 렌즈를 통해서 입력되는 홍채이미지를 감지하여 광자를 전자로 변환하여 디지털 신호를 생성하는 구성이고, 본 발명의 일실시예에 따른 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역에서 촬영하면 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서이다. 적외선 조명은 적외선 대역 중 태양광의 흡수율이 인접 파장대역보다 높은 파장대역을 통과하는 파장을 가진 적외선 조명을 의미한다. 제어부는 메모리, 대역필터의 적용, 이미지 센서의 처리, 적외선 조명의 제어를 수행하는 구성이다. 출력부는 이미지 센서와 연결되어 이미지 센서에서 생성되는 홍채이미지를 출력하는 구성이다.
이상에서 설명한 바와 같이, 본 발명이 속하는 기술 분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 상술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함하는 것으로 해석되어야 한다.

Claims (5)

  1. 실내 또는 실외에서 홍채이미지를 획득하는 장치에 구성되는 CMOS 이미지 센서에 있어서,
    상기 CMOS 이미지 센서는, 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역의 일부인 흡수 파장대역에서, 기존의 CMOS 이미지 센서에 비해 상기 흡수 파장대역에 대한 양자효율(quantum efficiency)이 높게 구성되며,
    상기 흡수 파장대역을 포함하여 홍채이미지를 촬영 시 태양광에 의한 노이즈가 저감되는 것을 특징으로 하는,
    적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서.
  2. 제1항에서,
    상기 흡수 파장대역은, 파장이 920nm~960nm인 제1대역, 1,110nm~1,160nm인 제2대역 및 1,300nm~1,500nm인 제3대역 중 적어도 하나의 적어도 일부인 것을 특징으로 하는,
    적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서.
  3. 제1항 또는 제2항에서,
    상기 기존의 CMOS 이미지 센서는, SONY의 IMX 계열, Omnivision의 OV계열 또는 SAMSUNG의 S5K의 CMOS 이미지 센서인 것을 특징으로 하는,
    적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서.
  4. 제1항 또는 제2항에서,
    상기 CMOS 이미지 센서는, 상기 흡수 파장대역에서 양자효율의 피크(peak)가 존재하는 것을 특징으로 하는,
    적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서.
  5. 제1항 또는 제2항에서,
    상기 CMOS 이미지 센서는, Si layer의 두께를 변경하는 방법, MgF2 및 HfO2 중 하나로 반사방지 코팅층(Anti-Reflection Coating Layer)을 구성하는 방법, 공핍영역(depletion region)의 크기를 변경하는 방법 중 하나의 방법을 통해 상기 흡수 파장대역에 대한 양자효율을 기존의 CMOS 이미지 센서보다 높게 구성하는 것을 특징으로 하는,
    적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 CMOS 이미지 센서.
PCT/KR2017/004473 2016-04-29 2017-04-27 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 cmos 이미지 센서 WO2017188743A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0053128 2016-04-29
KR1020160053128A KR101813141B1 (ko) 2016-04-29 2016-04-29 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 cmos 이미지 센서

Publications (1)

Publication Number Publication Date
WO2017188743A1 true WO2017188743A1 (ko) 2017-11-02

Family

ID=60160950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004473 WO2017188743A1 (ko) 2016-04-29 2017-04-27 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 cmos 이미지 센서

Country Status (2)

Country Link
KR (1) KR101813141B1 (ko)
WO (1) WO2017188743A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091769A1 (en) * 2018-10-31 2020-05-07 The Regents Of The University Of Michigan Optimum spectral bands for active vision systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050088564A (ko) * 2004-03-02 2005-09-07 엘지전자 주식회사 외부광원의 특정파장 대역 차단 필터를 구비한 홍채 인식시스템
JP2009201064A (ja) * 2008-02-25 2009-09-03 Pioneer Electronic Corp 関連領域特定装置及び方法、並びに画像認識装置及び方法
KR101323483B1 (ko) * 2012-07-16 2013-10-31 아이리텍 잉크 일반촬영 및 홍채인식촬영모드를 갖는 홍채인식겸용 카메라
WO2015127313A1 (en) * 2014-02-21 2015-08-27 Samsung Electronics Co., Ltd. Multi-band biometric camera system having iris color recognition
KR20150099650A (ko) * 2014-02-21 2015-09-01 삼성전자주식회사 생체 정보디스플레이 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050088564A (ko) * 2004-03-02 2005-09-07 엘지전자 주식회사 외부광원의 특정파장 대역 차단 필터를 구비한 홍채 인식시스템
JP2009201064A (ja) * 2008-02-25 2009-09-03 Pioneer Electronic Corp 関連領域特定装置及び方法、並びに画像認識装置及び方法
KR101323483B1 (ko) * 2012-07-16 2013-10-31 아이리텍 잉크 일반촬영 및 홍채인식촬영모드를 갖는 홍채인식겸용 카메라
WO2015127313A1 (en) * 2014-02-21 2015-08-27 Samsung Electronics Co., Ltd. Multi-band biometric camera system having iris color recognition
KR20150099650A (ko) * 2014-02-21 2015-09-01 삼성전자주식회사 생체 정보디스플레이 방법 및 장치

Also Published As

Publication number Publication date
KR20170123498A (ko) 2017-11-08
KR101813141B1 (ko) 2017-12-28

Similar Documents

Publication Publication Date Title
Mishra et al. Image acquisition and techniques to perform image acquisition
US11849219B2 (en) Image pickup device and electronic apparatus with an image plane phase difference detection pixel
US7460160B2 (en) Multispectral digital camera employing both visible light and non-visible light sensing on a single image sensor
EP2471258B1 (en) Reducing noise in a color image
KR102270674B1 (ko) 생체인식 카메라
KR20140141390A (ko) 이미지 센서 및 이를 포함하는 촬상 장치
CN106254785A (zh) 图像传感器及用于改进非可见照明的方法
Chang et al. Multispectral visible and infrared imaging for face recognition
Sarkar et al. A biologically inspired CMOS image sensor
US10574872B2 (en) Methods and apparatus for single-chip multispectral object detection
TWI514894B (zh) 攝取數位影像中的白平衡校正技術
CN101300854A (zh) 使用数字成像系统再现来自物体的可供选择形式的光
TW201323939A (zh) 用於數位相機之具有紅色吸收層之紅外線截止濾波器
US10853641B2 (en) Apparatus and method for acquiring iris image outdoors and indoors
JP2018513964A (ja) スナップショット型偏光ハイパースペクトルカメラ及び結像方法
CN101610355B (zh) 日夜两用摄像装置
CN110072035A (zh) 双成像系统
JP2018513964A5 (ja) スナップショット型偏光ハイパースペクトルカメラ及び画像化方法
KR20210036168A (ko) 전자 장치
WO2017188743A1 (ko) 적외선 대역 중 태양광의 흡수율이 인접 파장대역에 비해 높은 파장대역에서의 양자효율이 향상되어 해당 파장대역을 포함하여 촬영시 실내뿐만 아니라 실외에서도 고품질 홍채이미지 획득이 가능한 cmos 이미지 센서
WO2014057335A1 (en) System for capturing scene and nir relighting effects in movie postproduction transmission
CN201467300U (zh) 日夜两用摄像装置及其滤光片、光学系统
US9497427B2 (en) Method and apparatus for image flare mitigation
CN110999283A (zh) 成像装置、成像方法以及程序
US20080173795A1 (en) Image sensor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789927

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789927

Country of ref document: EP

Kind code of ref document: A1