WO2017188725A1 - 온열 치료 장치 - Google Patents

온열 치료 장치 Download PDF

Info

Publication number
WO2017188725A1
WO2017188725A1 PCT/KR2017/004438 KR2017004438W WO2017188725A1 WO 2017188725 A1 WO2017188725 A1 WO 2017188725A1 KR 2017004438 W KR2017004438 W KR 2017004438W WO 2017188725 A1 WO2017188725 A1 WO 2017188725A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic field
magnetic nanoparticles
nanoparticles
resonance frequency
Prior art date
Application number
PCT/KR2017/004438
Other languages
English (en)
French (fr)
Inventor
김상국
김민관
이재혁
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2017188725A1 publication Critical patent/WO2017188725A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • A61N1/403Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
    • A61N1/406Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia using implantable thermoseeds or injected particles for localized hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/06Electrodes for high-frequency therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy

Definitions

  • the present invention relates to a thermotherapy device. More specifically, the present invention relates to a device capable of treating heat by transferring heat generated from resonant magnetic nanoparticles to a affected part.
  • Hyperthermia is a technique for treating the affected area by applying heat above the body temperature.
  • body tissues, cells and the like when exposed to heat of 5 ° C. or higher than body temperature, they can be killed by denaturation of proteins.
  • cancer cells can be effectively killed at a temperature of 42 ° C. or higher, and immune cells can also be activated by the action of heat.
  • the thermotherapy may be applied in combination with radiation therapy or anticancer treatment, or may be applied alone.
  • the maximum limit of the calorific value applied to the conventional heat treatment method is only about 1 kW / g, and there is a problem that the ideal value for treating a tumor having a size of 10 mm or more (2 kW / g) is somewhat insufficient.
  • the present invention is to solve the various problems including the above problems, an object of the present invention to provide a heat treatment apparatus that can effectively transfer heat to the treatment target area inside the body.
  • an object of the present invention is to provide a heat treatment apparatus capable of generating heat selectively and intensively at a specific treatment target site.
  • an object of the present invention is to provide a heat treatment apparatus capable of generating a high calorific value at a site to be treated by application of a low magnetic field.
  • an object of the present invention is to provide a heat treatment apparatus capable of reducing the cost and size of an apparatus using a low frequency.
  • a heat treatment device for transferring heat generated from the magnetic nanoparticles provided to the treatment target site to the treatment target site, so that the magnetic nanoparticles have a resonance frequency
  • a first coil part configured to apply a first magnetic field to the magnetic nanoparticles
  • a second coil part configured to apply a second magnetic field having the resonance frequency to the magnetic nanoparticles
  • the method comprising: (a) providing magnetic nanoparticles to a treatment target site; (b) applying a first magnetic field to the magnetic nanoparticles such that the magnetic nanoparticles have a resonance frequency; (c) applying a second magnetic field having the resonance frequency to the magnetic nanoparticles; And (d) a heat treatment apparatus in which heat treatment is performed according to the step of transferring heat generated from the magnetic nanoparticles to the treatment target site.
  • the magnetic nanoparticles may have a diameter of more than 20nm, less than 40nm.
  • the magnetic nanoparticles may have a diameter of more than 40nm, less than 500nm.
  • the magnetic nanoparticles may have a magnetic vortex structure including a magnetic vortex core component, a horizontal magnetization component, and a spiral magnetization component.
  • the first magnetic field may be a direct current magnetic field.
  • the second magnetic field may be an alternating magnetic field or a pulsed magnetic field.
  • the second magnetic field may be applied in a direction having a predetermined angle with a direction in which the first magnetic field is applied.
  • the resonance frequency of the magnetic nanoparticles may vary depending on the size of the first magnetic field.
  • the resonance frequency of the magnetic nanoparticles may vary depending on the size of the magnetic nanoparticles.
  • the magnetic nanoparticles are Permalloy (Ni 80 Fe 20 ), Maghemite ( ⁇ -Fe 2 O 3 ), Magnetite ( ⁇ -Fe 3 O 4 ), Barium Ferrite (Ba x Fe y O z (x, y, z may be any composition) and CoFe 2 O 4 .
  • the intensity of the first magnetic field may be 10 Oe or more and less than 300 Oe.
  • the heat generated from the magnetic nanoparticles may generate a temperature change of 5K to 15K in the treatment target site.
  • the calorific value of the magnetic nanoparticles having a diameter of 20nm to 60nm may be at least 3kW / g.
  • FIG. 1 is a schematic diagram showing magnetic nanoparticles having a magnetic swirl structure according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing the magnetization alignment of the magnetic nanoparticles to the applied first magnetic field according to an embodiment of the present invention.
  • FIG 3 is a graph showing a change in resonance frequency according to the size of the magnetic nanoparticles with respect to the first magnetic field according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram illustrating an exemplary method of applying a direct current field and an alternating current magnetic field to the magnetic nanoparticles for resonance of the magnetic nanoparticles according to an embodiment of the present invention.
  • FIG. 5 is graphs illustrating resonance of magnetic nanoparticles according to sizes of magnetic nanoparticles when applying an alternating magnetic field having a different frequency according to an exemplary embodiment of the present invention.
  • Figure 6 is a graph showing the amount of heat required to remove cancer cells according to the particle concentration, tumor size according to an embodiment of the present invention.
  • FIG. 7 is a graph showing the calorific value for the second magnetic field of the magnetic nanoparticles of various sizes according to an embodiment of the present invention.
  • FIGS. 8 and 9 are graphs showing the behavior and calorific value of the non-resonant / resonant state of the magnetic nanoparticles according to the exemplary embodiment of the present invention.
  • FIG. 10 is a schematic diagram illustrating an apparatus for performing a thermotherapy according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram illustrating a magnet system according to an embodiment of the present invention.
  • control unit 210 control unit
  • the magnetic nanoparticles will be described based on magnetic nanoparticles having a terminal port and a magnetic vortex structure, but are not necessarily limited thereto, and may include all magnetic nanoparticles that can be thermally treated using resonance. Reveal.
  • the magnetic nanoparticles may include metals and may include, for example, iron, cobalt, nickel, alloys thereof, and the like. Magnetic nanoparticles may be ferromagnetic. Magnetic nanoparticles are, for example, Permalloy (Ni 80 Fe 20 ), Maghemite ( ⁇ -Fe 2 O 3 ), Magnetite ( ⁇ -Fe 3 O 4 ), Barium Ferrite (Ba x Fe y O z ; x, y, z May be any composition) and CoFe 2 O 4 . However, the material of the magnetic nanoparticles is not limited thereto.
  • Applying an externally constant magnitude of an external magnetic field to a nanoscale magnetic particle causes the spin of the magnetic particles to align in the direction of the external magnetic field.
  • the magnetic nanoparticles undergo a strong precessional motion around the external magnetic field direction (or the first magnetic field direction).
  • This precession motion is a phenomenon in which the rotation axis of the rotating body rotates around an axis that does not move.
  • an external magnetic field is applied to an electromagnetic field moving in the central force field, the magnetic moment of the angular momentum is directed to the direction of the external magnetic field. Will rotate.
  • Equation 1 The frequency of this precession motion is represented by Equation 1.
  • f is the frequency and B is the magnitude of the magnetic field.
  • a material with a single spin has a fixed constant of " L " of 2.803 (MHz / Oe) in Equation 1, which is known as the Lamor Frequency. Therefore, magnetic nanoparticles having a single magnetic domain also act as one giant spin structure, and thus have the lamore frequency.
  • the diameter of the magnetic nanoparticles having the terminal spheres may be about 20 nm or more and less than 40 nm.
  • magnetic nanoparticles having no lamore frequency will be referred to as "magnetic nanoparticles having a magnetic vortex structure".
  • magnetic nanoparticles having a magnetic vortex structure For example, when the magnetic nanoparticles 100 have a magnetic vortex structure, the magnetic nanoparticles have a resonance frequency changed according to their diameters.
  • FIG. 1 is a schematic diagram showing a magnetic nanoparticle 100 having a magnetic swirl structure 110 according to an embodiment of the present invention.
  • the magnetic nanoparticles 100 may have a size in a range having the magnetic swirl structure 110.
  • it may be spherical ( ⁇ ) permalloy alloy (Permalloy, Ni 80 Fe 20) is a sphere having a several tens of nm to several hundreds of nm, preferably, a diameter of 40 nm or more and less than 500nm case.
  • the size and shape of the magnetic nanoparticles are exemplary, and the case of having a shape other than spherical or having a diameter larger than 500 nm may be included in the technical idea of the present invention.
  • Equation 2 The frequency ( ⁇ MV ) of the precession motion of the magnetic nanoparticles having the magnetic vortex structure without the lamor frequency follows Equation 2.
  • the magnetic nanoparticle 100 having the magnetic vortex structure 110 follows ⁇ eff , and the resonance frequency ⁇ MV may vary according to ⁇ m ⁇ > reflecting the size of the nanoparticle.
  • the magnetic nanoparticle 100 may have a magnetic swirl structure 110.
  • the magnetic vortex structure 110 can have a magnetic vortex core component 120, a horizontal magnetization component 130, and a spiral magnetization component 140.
  • the magnetic vortex core component 120 may penetrate the central portion of the magnetic nanoparticle 100, and the magnetic force may have a + Z direction.
  • the + Z direction may be determined by the direction of the magnetic field that the magnetic nanoparticle 100 has in advance, or may be determined by the direction of the external magnetic field applied.
  • the horizontal magnetization component 130 may be positioned to rotate clockwise or counterclockwise with an orbit about the magnetic vortex core 120.
  • the horizontal magnetization component 130 may have orbits in the form of concentric circles or ellipses, depending on the shape, material, and / or crystal direction of the magnetic nanoparticles 100.
  • the horizontal magnetization component 130 may have an angle with respect to the magnetic vortex core 120 and may be vertical, for example.
  • the horizontal magnetization component 130 has a magnetization direction component in the direction of the magnetic vortex core 120 or a magnetization in the opposite direction of the magnetic vortex core 120, depending on the physical properties, shape, and / or size of the magnetic nanoparticles 100. Since the aromatic component may have a certain degree, the magnetic vortex core 120 and the horizontal magnetization component 130 may not be perpendicular to each other.
  • the horizontal magnetization component 130 may be present over the entire volume of the magnetic nanoparticles 100.
  • the spiral magnetization component 140 may be positioned adjacent to the magnetic vortex core 120 and may face in the same direction as the magnetic vortex core 120 faces.
  • the spiral magnetization component 140 may be influenced by the horizontal magnetization component 130, and thus may have a form of rotating in a helical manner. Due to the spiral magnetization component 140, the magnetization direction inside the magnetic nanoparticles 120 may be gradually changed from the magnetic vortex core 120 to the horizontal magnetization component 130. That is, the magnetization direction inside the magnetic nanoparticles 120 may be gradually changed from the Z direction to the Y direction according to the internal position of the magnetic nanoparticles 100.
  • Figure 2 is a schematic diagram showing the magnetization alignment of the magnetic nanoparticles to the applied external magnetic field (first magnetic field) according to an embodiment of the present invention.
  • the magnetization direction of the magnetic nanoparticles may be changed by an external magnetic field.
  • the + Z direction is used to indicate the average magnetization direction of the magnetic nanoparticles
  • the + Y direction is used to indicate the direction of the magnetic field applied to the magnetic nanoparticles from the outside. It is not limited.
  • the + Z direction and the + Y direction mean different directions, and may be perpendicular to each other or may not be vertical.
  • FIG. 2 (a) is before the external magnetic field (first magnetic field) is applied to the magnetic nanoparticles, and the magnetic nanoparticles may have a magnetization direction in the + Z direction. That is, the magnetic vortex core of the magnetic nanoparticles may face the + Z direction.
  • FIG 3 is a graph showing a change in resonance frequency according to the size of magnetic nanoparticles with respect to an external magnetic field (first magnetic field) according to an embodiment of the present invention.
  • first magnetic field when an external static magnetic field (first magnetic field) is applied, magnetic nanoparticles of 20 nm or more and less than 40 nm in diameter having a terminal sphere are precessed about the magnetic field direction of the external magnetic field to which the entire spin is applied.
  • the magnetization direction can be changed.
  • the resonant frequency of the magnetic nanoparticles is proportionally constant with respect to the external magnetic field, and this case corresponds to the case where "L” has a constant value (2.803 MHz / Oe) which is a lamore frequency in Equation 1 above. Can be.
  • the magnetic nanoparticles having a magnetic swirl structure decreases the resonance frequency as the diameter increases.
  • the resonance frequency increases as the magnitude of the external magnetic field increases.
  • the reduction rate of the resonance frequency of the magnetic nanoparticles having a magnetic vortex structure of 40 nm or more increases rapidly as the external magnetic field increases.
  • Table 1 is a table listing resonant frequencies of the diameters of magnetic nanoparticles of a Permalloy (Ni 80 Fe 20 ) material and the size of an external magnetic field.
  • FIG. 4 is a schematic diagram illustrating an exemplary method of applying a direct current field and an alternating magnetic field to the magnetic nanoparticles 100 for resonance of the magnetic nanoparticles 100 according to an embodiment of the present invention.
  • a direct-current magnetic field is applied in the + Z direction (magnetic vortex core component 120 direction) of the magnetic nanoparticle 100, and is a direction different from the + Z direction, for example, a + Y direction that is vertical.
  • the resonance frequency of the magnetic nanoparticles 100 may be determined according to the diameter of the magnetic nanoparticles 100 and the magnitude of the direct current magnetic field.
  • the AC magnetic field may be smaller than the size of the DC magnetic field, and the behavior of the magnetic nanoparticles 100 will be observed by changing the frequency of the AC magnetic field.
  • the magnetic nanoparticle 100 selects a diameter of 30nm and 80nm.
  • the direct current magnetic field applied in the Z direction is selected to a size of about 100 Oe.
  • the alternating magnetic field applied in the Y direction is selected to a size of about 10 Oe.
  • the frequency of the alternating magnetic field selects the resonance frequency of the magnetic nanoparticles of 30 nm diameter and 281 MHz, and the 50 MHz resonance frequency of the magnetic nanoparticles of 80 nm diameter.
  • FIG. 5 is graphs showing resonances of magnetic nanoparticles according to sizes of magnetic nanoparticles when an alternating magnetic field having a different frequency is applied.
  • 5A and 5B show magnetic nanoparticles having a diameter of 30 nm
  • FIGS. 5C and 5D show magnetic nanoparticles having a diameter of 80 nm.
  • the magnetic nanoparticles when the magnetic nanoparticles are applied with a magnetic field having their resonance frequency, the magnetic nanoparticles may be activated by the magnetic field, such as precession.
  • the magnetic nanoparticles having the terminal spheres may be selectively activated upon application of the second magnetic field (or alternating magnetic field) corresponding to the resonance frequency. .
  • the magnetic nanoparticle having the magnetic vortex structure has a resonant frequency different according to the material, the size (diameter) or the first magnetic field [or the direct current magnetic field], the second magnetic field corresponding to the resonant frequency [or alternating magnetic field] It can optionally be activated for the application of.
  • the thermal treatment process (a) providing the magnetic nanoparticles 100 to the treatment site 25, (b) the magnetic nanoparticles 100 to have a resonance frequency Applying a first magnetic field to the magnetic nanoparticles 100, (c) applying a second magnetic field having a resonance frequency to the magnetic nanoparticles 100, and (d) generating the magnetic nanoparticles 100.
  • Heat is carried out according to the steps delivered to the site 25 to be treated.
  • the magnetic nanoparticles 100 having the terminal holes or the magnetic vortex structure 110 may be provided to the treatment target site 25 (or the affected part 25a). Provision of the magnetic nanoparticles 100 may be performed by injecting the magnetic nanoparticles 100 into a specific site of a patient having a disease (or the subject 20), and the subject 20 or a portion of the subject 20 It can be understood that the movement is made by moving into the magnet system 250 of the heat treatment apparatus 200 (see FIG. 10). Since the magnetic nanoparticles 100 have a fine size, they may be uniformly distributed in the treatment target area 25 (or the affected part 25a).
  • the magnetic nanoparticles 100 may have a resonance frequency.
  • the resonance frequency of the magnetic nanoparticles 100 changes according to the first magnetic field, and in particular, when the magnetic nanoparticles 100 have the magnetic swirl structure 110, the magnetic nanoparticles 100 depend on their diameters. It may have a changed resonance frequency as shown in FIG.
  • the first magnetic field may be a direct current magnetic field.
  • the DC magnetic field may be understood as a static magnetic field formed by the static magnetic field coil unit 251 (see FIG. 11) of the magnetic thermal therapy apparatus 200 to be described later.
  • the direct current magnetic field may be in a range that does not change the magnetic vortex structure 110 of the magnetic nanoparticles 100. It may be, for example, magnetic nanoparticles are spherical ( ⁇ ) permalloy alloy (Permalloy, Ni 80 Fe 20) to there are several tens of Oe DC magnetic field when the hundreds Oe, for example, 10 Oe or more, a range of less than 300 Oe.
  • the range of the direct current magnetic field is exemplary and not limited thereto. For example, when the size of the magnetic nanoparticle 100 is increased, the size of the allowable first magnetic field may be increased as shown in FIG. 3.
  • the magnetic nanoparticles 100 may be aligned in the same direction.
  • the resonance frequency of the magnetic nanoparticles 100 may vary depending on the size of the first magnetic field. For example, as the size of the first magnetic field applied to the magnetic nanoparticles 100 increases, the resonance frequency of the magnetic nanoparticles 100 may increase.
  • the resonance frequency of the magnetic nanoparticles 100 may vary depending on the size of the magnetic nanoparticles 100. For example, as the diameter of the magnetic nanoparticle 100 increases, the resonance frequency of the magnetic nanoparticle 100 may decrease (see Table 1).
  • the resonance frequency of the magnetic nanoparticles 100 may vary depending on the material, size, and / or shape of the magnetic nanoparticles 100.
  • step (c) a second magnetic field equal to the resonance frequency of the magnetic nanoparticles 100 may be applied to the magnetic nanoparticles 100.
  • the second magnetic field may be an alternating magnetic field or a pulsed magnetic field.
  • the AC magnetic field may be understood as an RF pulse formed by the RF coil unit 255 (see FIG. 11) of the magnetic thermal therapy apparatus 200 to be described later.
  • the second magnetic field may be applied in a direction having a predetermined angle with a direction in which the first magnetic field is applied, and a direction having a predetermined angle may be vertical.
  • the magnetic nanoparticle 100 having the magnetic vortex structure 110 undergoes a strong precession motion and a reversal of magnetization, thereby causing a change in the magnetization axis.
  • step (d) heat may be generated in the selectively activated magnetic nanoparticle 100, and heat may be transferred to the treatment target area 25 in which the magnetic nanoparticle 100 is distributed.
  • FIG. 10 shows that cancer cells 25a are present on the upper torso side of the stomach 25.
  • the magnetic nanoparticles 100 may be injected into the cancer cell 25a in the stomach 25, and may be selectively and intensively distributed.
  • the heat (H) generated in the magnetic nanoparticles 100 causes a temperature change of 5K to 15K in the treatment target 25 (or cancer cells 25a), thereby causing cancer cells 25a in the treatment target region 25. ), Tumors and the like can be killed.
  • the generation of heat H may be performed by discharging, radiating, or vibrating the molecules of the portion 25 to be treated by the charge from the magnetic nanoparticles 100. .
  • the amount of change in temperature ( ⁇ T) caused by heat (H) generated from the particles transferred to the tumor, cells, etc. follows the equation (3).
  • the ideal temperature change ( ⁇ T) required to remove a tumor (cancer cell) 25a is 15K.
  • SAR Specific Absorption Rate
  • SAR Specific Heating Power
  • Figure 6 is a graph showing the amount of heat required to remove the tumor according to the particle concentration, the size of the tumor according to an embodiment of the present invention. It is the result calculated by 15K which is the amount of temperature change ((DELTA) T) ideal for tumor removal.
  • At least 0.1 kW / g of calorific value (SAR) is required to treat tumors having a size (R) of 10 mm or more by adsorbing particles at a concentration of 1 mg / cm 3 . 2 kW / g of calorific value (SAR) is required.
  • the energy R generated by the magnetic nanoparticles 100 is equal to the value obtained by subtracting the change in free energy of the magnetic nanoparticles 100 from the work applied to the system.
  • FIG. 7 is a graph showing the calorific value for the second magnetic field of the magnetic nanoparticles 100 of various sizes according to an embodiment of the present invention.
  • the 20 nm and 30 nm diameter magnetic nanoparticles having the terminal spheres may have a maximum calorific value (AR) (see Y-axis) at about 281 MHz, which is the same resonance frequency.
  • AR maximum calorific value
  • the magnetic nanoparticles having the diameter of 40 nm, 50 nm, and 60 nm having a magnetic vortex structure have a maximum calorific value (SAR) at the respective resonance frequencies of 244 MHz, 148 MHz, and 95 MHz.
  • SAR maximum calorific value
  • the maximum limit of calorific value (kW / g) applied to the thermal treatment according to the prior art is about 1 kW / g, which can be treated by adsorbing particles at a concentration of 1 mg / cm 3 to tumors having a size (R) of 10 mm or more.
  • the ideal figure (2kW / g, see FIG. 6) is somewhat lacking.
  • the calorific value of the 60 nm particle has a peak of about 3 kW / g, and the calorific value of the 20 nm-50 nm particle has a larger peak than this. Therefore, the magnetic nanoparticles 100 selectively activated using resonance phenomena exhibit sufficient values to adsorb the particles to tumors having a size (R) of 10 mm or more at low concentration (1 mg / cm 3 ) to perform thermal treatment. .
  • the thermal treatment method of the present invention after applying a direct current magnetic field so that the magnetic nanoparticles have a resonance frequency, by applying an alternating magnetic field equal to the resonance frequency, the magnetic nanoparticles can resonate and generate heat, Even with a magnetic field of 100 Oe or less, there is an advantage that can generate heat ideal for heat treatment (see Fig. 7).
  • the magnetic nanoparticles having a magnetic vortex structure decrease the resonance frequency as the diameter increases. Since the lower frequency is used, the device can be manufactured at lower cost, and thus the device can be manufactured in consideration of the diameter of the magnetic nanoparticle having the magnetic vortex structure and the amount of heat generated accordingly.
  • the resonance frequency of the magnetic nanoparticles can be controlled according to the direct current magnetic field (first magnetic field) applied to the magnetic nanoparticles [see Table 1], and the calorific value of the magnetic thermal therapy can be freely controlled by the control of the resonance frequency. Can be. It is also possible to control the resonance frequency low within a range not harmful to the human body.
  • FIG. 8 and 9 are graphs showing the behavior and calorific value of the non-resonant / resonant state of the magnetic nanoparticles according to the exemplary embodiment of the present invention.
  • FeNi particles having a size of 60 nm were selected, and the first magnetic field was applied at a frequency of 80 Mhz (FIG. 8) and 95 Mhz (FIG. 9) with a strength of 100 Oe and a second magnetic field of 10 Oe.
  • FIG. 10 is a schematic diagram illustrating an apparatus 200 for performing a thermal therapy according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram illustrating a magnet system 250 according to an embodiment of the present invention.
  • the thermal therapy apparatus 200 may include a control unit 210, an operation unit 230, and a magnet system 250. Each component is not physically separated as shown in FIG. 10 and may form an integrated component.
  • the controller 210 may control the static magnetic field coil unit 251, the gradient coil unit 253, the RF coil unit 255, and the like of the magnet system 250.
  • the magnet system 250 may be controlled by interpreting a command regarding an operation from a user received through the manipulation unit 230.
  • the image signal received by the magnet system 250 may be interpreted, and the image signal corresponding thereto may be generated and transmitted to the display of the operation unit 230.
  • the manipulation unit 230 may include an input device such as a keyboard or a mouse for receiving the control of the heat treatment apparatus 200 from a user, a display for checking an image, and the like.
  • the object (or patient) 20 may be moved into the magnet system 250 by a cradle 270.
  • the cradle 270 may be omitted depending on the size of the thermal therapy apparatus 200, and all or a portion of the object 20 may be positioned inside the magnet system 250.
  • the magnet system 250 may include a static field coil unit 251, a gradient coil unit 253, and an RF coil unit 255.
  • the magnet system 250 may have a cylindrical shape and may be disposed with a coaxial axis as a center axis, but is not limited thereto.
  • the magnetic field coil unit 251, the gradient coil unit 253, and the RF coil unit 255 may be arranged in the order from the outside, and the object 20 may be positioned inside the RF coil unit 255. It may have a hollow shape.
  • the static field coil unit 251 may form a static magnetic field (or a first magnetic field or a direct current magnetic field) inside the magnet system 250.
  • the direction of the static magnetic field may be parallel to or perpendicular to the longitudinal direction of the object 20, but it will be described herein as assumed to be parallel to the longitudinal direction of the object 20.
  • the static magnetic field coil unit 251 may use a permanent magnet, a superconducting magnet, an electromagnet, or the like. Since the thermal treatment method of the present invention does not need a high magnetic field of about T as in a device for applying only an alternating current magnetic field, the static magnetic field coil unit 251 is capable of forming a magnetic field of several mT to several hundred mT. ) Is sufficient. Therefore, there is an advantage that can significantly lower the cost of the equipment than the conventional heat treatment apparatus.
  • the gradient coil unit 253 may generate a gradient in the static magnetic field to form a gradient field. Since the gradient magnetic fields for all of the X, Y, and Z axes are required to obtain three-dimensional information, the gradient coil unit 253 may be provided for the three axes 253a, 253b, and 253c.
  • a gradient magnetic field may be formed in the Z-axis direction.
  • the Z-axis gradient coil unit 253c may be used for slice selection.
  • gradient magnetic fields by the X-axis and Y-axis gradient coil units 253a and 253b may be formed in the selected plane, and the frequency and the phase may be encoded. Thus, spatial coding of each spindle can be performed.
  • the RF coil unit 255 may apply an RF pulse (or a second magnetic field or an alternating magnetic field) to excite the magnetic nanoparticles 100 in the object 20.
  • the RF coil unit 255 may include a transmitting coil for transmitting an RF pulse and a receiving coil for receiving electromagnetic waves emitted by the excited magnetic nanoparticles 100.
  • the present invention utilizes the resonance of the magnetic nanoparticles, and thus has an effect of generating heat ideal for thermal treatment even with a low magnetic field, low cost, and miniaturization device.
  • the resonance frequency of the magnetic nanoparticles can be controlled according to the direct current magnetic field, and the calorific value according to the resonance frequency can be controlled, the temperature can be adjusted in consideration of the characteristics of the treatment target site.

Abstract

본 발명은 치료 대상 부위(25)에 제공한 자성 나노 입자(100)에서 생성된 열을 치료 대상 부위(25)에 전달하는 온열 치료 장치(200)로서, 자성 나노 입자(100)가 공명 주파수를 가지도록, 제1 자기장을 자성 나노 입자(100)에 인가하는 제1 코일부(251) 및 공명 주파수를 가지는 제2 자기장을 자성 나노 입자에 인가(100)하는 제2 코일부(255)를 포함하며, (a) 자성 나노 입자(100)를 치료 대상 부위(25)에 제공하는 단계, (b) 자성 나노 입자(100)가 공명 주파수를 가지도록, 제1 자기장을 자성 나노 입자(100)에 인가하는 단계, (c) 공명 주파수를 가지는 제2 자기장을 자성 나노 입자(100)에 인가하는 단계, 및 (d) 자성 나노 입자(100)에서 생성된 열이 치료 대상 부위(25)에 전달되는 단계에 따라 온열 치료가 수행되는 것을 특징으로 한다.

Description

온열 치료 장치
본 발명은 온열 치료 장치에 관한 것이다. 보다 상세하게는, 공명하는 자성 나노 입자에서 발생된 열을 환부에 전달하여 온열 치료할 수 있는 장치에 관한 것이다.
온열 치료(Hyperthermia)는 환부에 체온보다 높은 온도의 열을 가하여 치료하는 기술이다. 일반적으로, 신체 조직, 세포 등이 체온보다 5℃ 이상의 열에 노출되면, 단백질의 변성에 의해 사멸할 수 있다. 특히, 42℃ 이상의 온도에서는 암세포를 효과적으로 사멸시킬 수 있으며, 열의 작용으로 면역 세포 또한 활성화 될 수 있다. 그리하여, 종양, 암세포 등의 제거에 있어서 온열 치료는 방사선 치료 또는 항암 치료와 함께 병행하여 적용하거나, 단독으로 적용될 수 있다.
위와 같은 장점에도 불구하고, 온열 치료는 신체 내부 깊숙한 곳에 위치한 종양, 암세포 등에 골고루 열을 전달하면서도, 효과적으로 열을 전달하는 것이 어려운 실정이다. 최근 체내에 안테나, 고주파 전극 등을 삽입한 후 외부에서 고주파를 인가함에 따라 환부의 악성 세포를 괴사시키는 방법이 소개되고 있다.
그러나 이러한 종래의 온열 치료 방법은, 인체 내에 안테나, 고주파 전극 등의 삽입을 위해 물리적인 수술을 추가로 필요로 하는 문제점이 있었다. 또한, 온열 치료를 하고자 하는 대상 영역을 미세하게 특정하는 것이 어려워 종양, 암세포뿐만 아니라 주위의 정상적인 조직까지 괴사하게 되는 문제점이 있었다.
그리고, 종래의 온열 치료 방법에 적용되는 발열량의 최대 한계는 약 1kW/g에 불과하여 10mm 이상의 크기를 가진 종양을 치료할 수 있는 이상적인 수치(2kW/g)에는 다소 부족한 문제점이 있었다.
그리고, 종래의 온열 치료 방법은 고주파 인가에 따른 히스테리시스 자기 손실에 따른 에너지를 열로 발생시키거나, 브라우니안 릴랙세이션에 따라 열을 발생키는 것을 원리로 하는데, 이를 위해서는 인가되는 자기장의 크기가 수백 Oe 이상으로 매우 커져야 하며, 이는 장치의 고비용화, 대형화를 수반하는 문제점이 있었다.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 신체 내부의 치료 대상 부위에 효과적으로 열을 전달할 수 있는 온열 치료 장치를 제공하는 것을 목적으로 한다.
그리고, 본 발명은 특정한 치료 대상 부위에 선택적으로, 집중적으로 열을 발생시킬 수 있는 온열 치료 장치를 제공하는 것을 목적으로 한다.
그리고, 본 발명은 저자기장의 인가로 치료 대상 부위에 높은 발열량을 발생시킬 수 있는 온열 치료 장치를 제공하는 것을 목적으로 한다.
그리고, 본 발명은 저주파를 사용하여, 장치의 저비용화, 소형화가 가능한 온열 치료 장치를 제공하는 것을 목적으로 한다.
그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
상기 과제를 해결하기 위한 본 발명의 일 관점에 따르면, 치료 대상 부위에 제공한 자성 나노 입자에서 생성된 열을 상기 치료 대상 부위에 전달하는 온열 치료 장치로서, 상기 자성 나노 입자가 공명 주파수를 가지도록, 제1 자기장을 상기 자성 나노 입자에 인가하는 제1 코일부; 및 상기 공명 주파수를 가지는 제2 자기장을 상기 자성 나노 입자에 인가하는 제2 코일부를 포함하며, (a) 자성 나노 입자를 치료 대상 부위에 제공하는 단계; (b) 상기 자성 나노 입자가 공명 주파수를 가지도록, 제1 자기장을 상기 자성 나노 입자에 인가하는 단계; (c) 상기 공명 주파수를 가지는 제2 자기장을 상기 자성 나노 입자에 인가하는 단계; 및 (d) 상기 자성 나노 입자에서 생성된 열이 상기 치료 대상 부위에 전달되는 단계에 따라 온열치료가 수행되는 온열 치료 장치가 제공된다.
또한, 본 발명의 일 실시예에 따르면, 상기 자성 나노 입자는 20nm 이상, 40nm 미만의 직경을 가질 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 자성 나노 입자는 40nm 이상, 500nm 미만의 직경을 가질 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 자성 나노 입자는, 자기 소용돌이 코어 성분, 수평 자화 성분 및 나선 자화 성분을 포함하는 자기 소용돌이 구조(Magnetic Vortex Structure)를 가질 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 제1 자기장은 직류 자기장일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 제2 자기장은 교류 자기장 또는 펄스 자기장일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 제2 자기장은 상기 제1 자기장이 인가되는 방향과 소정의 각도를 가지는 방향으로 인가될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 자성 나노 입자의 상기 공명 주파수는 상기 제1 자기장의 크기에 따라 변화할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 자성 나노 입자의 상기 공명 주파수는 상기 자성 나노 입자의 크기에 따라 변화할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 자성 나노 입자는 Permalloy(Ni80Fe20), Maghemite(γ-Fe2O3), Magnetite(γ-Fe3O4), BariumFerrite(BaxFeyOz; x, y, z는 임의의 조성) 및 CoFe2O4 중 적어도 어느 하나를 포함할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 제1 자기장의 세기는 10 Oe 이상, 300 Oe 미만일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 자성 나노 입자에서 생성된 열이 상기 치료 대상 부위에 5K 내지 15K의 온도 변화를 발생시킬 수 있다.
또한, 본 발명의 일 실시예에 따르면, 20nm 내지 60nm의 직경을 가지는 상기 자성 나노 입자에서의 발열량은 적어도 3kW/g일 수 있다.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 신체 내부의 치료 대상 부위에 효과적으로 열을 전달할 수 있는 온열 치료 장치를 구현할 수 있다.
그리고, 본 발명의 일 실시예에 따르면, 특정한 치료 대상 부위에 선택적으로, 집중적으로 열을 발생시킬 수 있는 효과가 있다.
그리고, 본 발명의 일 실시예에 따르면, 저자기장의 인가로 치료 대상 부위에 높은 발열량을 발생시킬 수 있는 효과가 있다.
그리고, 본 발명의 일 실시예에 따르면, 저주파를 사용하여, 장치의 저비용화, 소형화가 가능한 효과가 있다.
물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 자기 소용돌이 구조를 가지는 자성 나노 입자를 도시하는 모식도이다.
도 2는 본 발명의 일 실시예에 따른 인가된 제1 자기장에 대한 자성 나노 입자의 자화 정렬을 나타내는 모식도이다.
도 3은 본 발명의 일 실시예에 따른 제1 자기장에 대한 자성 나노 입자의 크기에 따른 공명 주파수 변화를 나타내는 그래프이다.
도 4는 본 발명의 일 실시예에 따른 자성 나노 입자의 공명을 위하여 자성 나노 입자에 직류 자기장과 교류 자기장을 인가하는 예시적인 방법을 도시하는 개략도이다.
도 5는 본 발명의 일 실시예에 따른 다른 주파수를 가지는 교류 자기장을 인가할 때의 자성 나노 입자의 공진을 자성 나노 입자의 크기에 따라 도시하는 그래프들이다.
도 6은 본 발명의 일 실시예에 따른 입자 농도, 종양의 크기에 따라 암세포를 제거하는데 필요한 발열량을 나타내는 그래프이다.
도 7은 본 발명의 일 실시예에 따른 다양한 크기의 자성 나노 입자의 제2 자기장에 대한 발열량을 나타내는 그래프이다.
도 8 및 도 9는 본 발명의 일 실시예에 따른 자성 나노 입자의 비공명/공명 상태에서의 거동과 발열량을 나타내는 그래프들이다.
도 10는 본 발명의 일 실시예에 따른 온열 치료를 수행하는 장치를 도시하는 개략도이다.
도 11은 본 발명의 일 실시예에 따른 마그넷 시스템을 도시하는 개략도이다.
<부호의 설명>
20: 대상체
100: 자성 나노 입자
110: 자기 소용돌이 구조
120: 자기 소용돌이 코어 성분
130: 수평 자화 성분
140: 나선 자화 성분
200: 온열 치료 장치
210: 제어부
230: 조작부
250: 마그넷 시스템
251: 정자장 코일부
253: 경사 코일부
255: RF 코일부
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭하며, 길이 및 면적, 두께 등과 그 형태는 편의를 위하여 과장되어 표현될 수도 있다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
본 명세서에 있어서, 자성 나노 입자는 단자구 및 자기 소용돌이 구조를 가지는 자성 나노 입자를 중심으로 설명하나, 반드시 이에 제한되지는 않으며, 공명을 이용하여 온열 치료할 수 있는 자성 나노 입자는 모두 포함될 수 있음을 밝혀둔다.
[온열 치료에 사용되는 자성 나노 입자]
자성 나노 입자는 금속을 포함할 수 있고, 예를 들어 철, 코발트, 니켈, 또는 이들의 합금 등을 포함할 수 있다. 자성 나노 입자는 강자성체일 수 있다. 자성 나노 입자는, 예를 들어 Permalloy(Ni80Fe20), Maghemite(γ-Fe2O3), Magnetite(γ-Fe3O4), BariumFerrite(BaxFeyOz; x,y,z는 임의의 조성) 및 CoFe2O4등일 수 있다. 그러나, 이러한 자성 나노 입자의 재질이 이에 한정되는 것은 아니다.
나노 스케일의 자성 입자에 외부에서 일정한 크기의 외부 자기장을 가하면, 자성 입자의 스핀이 외부 자기장 방향으로 정렬한다. 이렇게 정렬된 상태에서 특정 공명 주파수의 교류 자기장 또는 펄스 자기장을 인가할 경우, 자성 나노 입자는 외부 자기장 방향[또는, 제1 자기장 방향]을 중심으로 강한 세차 운동(precessional motion)을 하게 된다. 이러한 세차 운동은 회전체의 회전축이 움직이지 않는 어떤 축의 둘레를 도는 현상을 의미하며, 중심력장 속에서 운동하고 있는 전자계에 외부 자기장이 인가되면, 각운동량의 자기 모멘트가 외부 자기장의 방향을 축으로 하여 회전하게 된다.
이러한 세차 운동의 주파수는 수학식 1과 같이 나타난다.
[수학식 1]
f = L·B
(여기에서 f는 주파수, B는 자기장의 크기)
현재까지는, 단일 스핀을 가지는 물질은 수학식 1의 "L"의 값이 2.803 (MHz/Oe)의 고정된 상수로 나타나며, 이는 라모어 주파수(Lamor Frequency)로 알려져 있다. 따라서, 단자구(single magnetic domain)를 가지는 자성 나노 입자도 하나의 거대한 스핀 구조체로서 작용하므로, 상기 라모어 주파수를 가지게 된다. 단자구를 가지는 자성 나노 입자의 직경은 약 20nm 이상 40nm 미만일 수 있다.
그러나, 자성 나노 입자의 크기, 형상, 및/또는 재료를 변화시키면, 상기 자성 나노 입자가 단자구로서 작용하지 않게 되고, 수학식 1의 "L"이 더 이상 상수값이 아니게 된다. 즉 라모어 주파수를 가지지 않게 된다. 본 명세서에서는, 라모어 주파수를 가지지 않는 자성 나노 입자를 "자기 소용돌이 구조(magnetic vortex structure)를 가지는 자성 나노 입자"로 지칭하기로 한다. 예를 들어, 자성 나노 입자(100)가 자기 소용돌이 구조를 가지는 경우에는, 자성 나노 입자는 자신의 직경에 따라 변화된 공진 주파수를 가지게 된다.
도 1은 본 발명의 일 실시예에 따른 자기 소용돌이 구조(110)를 가지는 자성 나노 입자(100)를 도시하는 모식도이다.
자성 나노 입자(100)는 자기 소용돌이 구조(110)를 가지는 범위의 크기를 가질 수 있다. 예를 들어 구형(球形) 퍼멀로이 합금(Permalloy, Ni80Fe20)인 경우에는 수십 nm 내지 수백 nm, 바람직하게는, 40 nm 이상 500nm 미만의 직경을 가지는 구체일 수 있다. 그러나, 자성 나노 입자의 크기와 형상은 예시적이며, 구형이 아닌 다른 형상을 가지거나 500nm 보다 큰 직경을 가지는 경우도 본 발명의 기술적 사상에 포함될 수 있다.
라모어 주파수를 가지지 않는, 자기 소용돌이 구조를 가지는 자성 나노 입자의 세차 운동의 주파수(ωMV)는 수학식 2를 따른다.
[수학식 2]
ωMVeffHDC , [γeff=γ<mГ> ]
(여기에서 <mГ>는 자기 소용돌이 핵 방향으로의 평균 자화값, γ은 자이로 자기 계수)
자기 소용돌이 구조(110)를 가지는 자성 나노 입자(100)는 γeff 를 따르며, 나노 입자의 크기를 반영하는 <mГ>에 따라 공명주파수 ωMV이 가변적일 수 있다.
도 1을 더 참조하면, 자성 나노 입자(100)는 자기 소용돌이 구조(110)를 가질 수 있다. 자기 소용돌이 구조(110)는 자기 소용돌이 코어(Magnetic Vortex Core) 성분(120), 수평 자화 성분(130), 및 나선 자화 성분(140)을 가질 수 있다.
자기 소용돌이 코어 성분(120)은 자성 나노 입자(100)의 중앙 부분을 관통하고, 자기력의 방향이 +Z 방향을 가질 수 있다. +Z 방향은 자성 나노 입자(100)가 미리 가지고 있는 자기장의 방향에 의하여 결정되거나 또는 인가되는 외부 자기장의 방향에 의하여 결정될 수 있다.
수평 자화 성분(130)은 자기 소용돌이 코어(120)를 축으로 하여 궤도를 가지고 시계 방향 또는 반시계 방향으로 회전하도록 위치할 수 있다. 수평 자화 성분(130)은 자성 나노 입자(100)의 형상, 재질, 및/또는 결정 방향에 따라 동심원의 형태의 궤도를 가지거나 또는 타원 등 다양한 형태의 궤도를 가질 수 있다. 수평 자화 성분(130)은 자기 소용돌이 코어(120)에 대하여 소정의 각도를 가질 수 있고, 예를 들어 수직일 수 있다. 그러나, 수평 자화 성분(130)은 자성 나노 입자(100)의 물성, 형상, 및/또는 크기에 따라 자기 소용돌이 코어(120)의 방향의 자화 방향 성분 또는 자기 소용돌이 코어(120)의 반대 방향의 자화 방향 성분을 일정 정도 가질 수 있으므로, 자기 소용돌이 코어(120)와 수평 자화 성분(130)은 서로 수직하지 않을 수 있다. 수평 자화 성분(130)은 자성 나노 입자(100)의 전체 부피에 걸쳐서 존재할 수 있다.
나선 자화 성분(140)은 자기 소용돌이 코어(120)에 인접하여 위치할 수 있고, 자기 소용돌이 코어(120)가 향하는 방향과 동일한 방향으로 향할 수 있다. 나선 자화 성분(140)은 수평 자화 성분(130)에 의하여 영향을 받을 수 있고, 이에 따라 나선형으로 회전하는 형태를 가질 수 있다. 이러한 나선 자화 성분(140)에 의하여 자성 나노 입자(120) 내부의 자화 방향이 자기 소용돌이 코어(120)로부터 수평 자화 성분(130)으로 점진적으로 변화할 수 있다. 즉, 자성 나노 입자(120) 내부의 자화 방향이 자성 나노 입자(100)의 내부 위치에 따라 Z 방향으로부터 Y 방향으로 점진적으로 변화할 수 있다.
도 2는 본 발명의 일 실시예에 따른 인가된 외부 자기장(제1 자기장)에 대한 자성 나노 입자의 자화 정렬을 나타내는 모식도이다.
도 2를 참조하면, 외부 자기장에 의하여 자성 나노 입자는 자화 방향이 변화될 수 있다. 도 2에서, +Z 방향은 상기 자성 나노 입자의 평균 자화 방향을 나타내는 것으로 사용되었으며, +Y 방향은 자성 나노 입자에 외부에서 인가되는 자기장의 방향을 나타내는 것으로 사용되는 것으로서, 본 발명이 이러한 방향에 한정되는 것은 아니다. 또한, +Z 방향과 +Y 방향은 서로 다른 방향을 의미하는 것으로서, 서로 수직일 수 있고, 또는 수직이 아닐 수 있다.
도 2(a)는 자성 나노 입자에 외부 자기장(제1 자기장)이 인가되기 전으로서, 자성 나노 입자는 +Z 방향의 자화 방향을 가질 수 있다. 즉, 자성 나노 입자의 자기 소용돌이 코어가 +Z 방향을 향할 수 있다.
도 2(b)는 자성 나노 입자에 +Y 방향으로 상대적으로 약한 외부 자기장을 인가한 직후이다. 자성 나노 입자의 평균 자화 방향인 +Z 방향과는 다른 방향인 +Y 방향으로 자성 나노 입자에 자기장을 인가하면, 자기 소용돌이 코어는 +Y 방향으로 향하게 되며, 자기 소용돌이 코어를 중심으로 자기 소용돌이가 형성된다. 이어서, +Y 방향으로 자화가 점진적으로 포화된다.
도 3은 본 발명의 일 실시예에 따른 외부 자기장(제1 자기장)에 대한 자성 나노 입자의 크기에 따른 공명 주파수 변화를 나타내는 그래프이다.
도 3을 참조하면, 외부 정자기장(제1 자기장)을 인가하는 경우, 단자구를 가지는 20nm 이상, 40nm 미만 직경의 자성 나노 입자는 전체 스핀이 인가된 외부 자기장의 자기장 방향을 중심으로 세차 운동을 하며 자화 방향을 변경시킬 수 있다. 이때에, 자성 나노 입자의 공진 주파수는 외부 자기장에 대하여 일정하게 비례하며, 이러한 경우는 상기 수학식 1에서 "L"이 라모어 주파수인 상수값(2.803 MHz/Oe)을 가지는 경우에 해당됨을 알 수 있다.
한편, 자기 소용돌이 구조를 가지는 자성 나노 입자는 직경이 커짐에 따라 공명 주파수가 감소된다. 또한, 공명 주파수는 외부 자기장의 크기가 증가됨에 따라 증가한다. 자기 소용돌이 구조를 가지는 40 nm 이상의 자성 나노 입자의 공명 주파수의 감소율은 외부 자기장이 커짐에 따라 급격하게 증가된다.
표 1은 일 실시예로서, 퍼멀로이(Permalloy, Ni80Fe20) 물질의 자성 나노 입자의 직경과 외부 정자기장에 크기에 대한 공명 주파수를 정리한 표이다.
10 Oe 50 Oe 100 Oe 200 Oe 300 Oe
20 nm 28 MHz 140 MHz 281 MHz 562 MHz 844 MHz
30 nm 28 MHz 140 MHz 281 MHz 562 MHz 844 MHz
40 nm 24 MHz 124 MHz 244 MHz 516 MHz 782 MHz
60 nm 10 MHz 50 MHz 95 MHz 194 MHz 294 MHz
80 nm 4 MHz 24 MHz 50 MHz 102 MHz 156 MHz
100 nm 2 MHz 16 MHz 32 MHz 64 MHz 98 MHz
120 nm 2 MHz 12 MHz 22 MHz 44 MHz 66 MHz
도 4는 본 발명의 일 실시예에 따른 자성 나노 입자(100)의 공명을 위하여 자성 나노 입자(100)에 직류 자기장과 교류 자기장을 인가하는 예시적인 방법을 도시하는 개략도이다.
도 4를 참조하면, 자성 나노 입자(100)의 +Z 방향[자기 소용돌이 코어 성분(120) 방향]으로 직류 자기장을 인가하고, +Z 방향과는 다른 방향, 예를 들어 수직 방향인 +Y 방향으로 교류 자기장을 인가한다. 표 1에서 나타난 바와 같이, 자성 나노 입자(100)의 직경과 직류 자기장의 크기에 따라 자성 나노 입자(100)의 공명 주파수가 결정될 수 있다. 교류 자기장은 직류 자기장의 크기에 비하여 작을 수 있고, 교류 자기장의 주파수를 변경하여 자성 나노 입자(100)의 거동을 관찰하기로 한다.
예를 들어, 자성 나노 입자(100)는 30nm 직경과 80nm의 직경을 선택한다. Z 방향으로 인가되는 직류 자기장은 약 100 Oe의 크기로 선택한다. Y 방향으로 인가되는 교류 자기장은 약 10 Oe의 크기로 선택한다. 교류 자기장의 주파수는 30nm 직경의 자성 나노 입자의 공명 주파수인 281MHz와 80nm 직경의 자성 나노 입자의 공명 주파수인 50MHz를 선택한다.
도 5는 다른 주파수를 가지는 교류 자기장을 인가할 때의 자성 나노 입자의 공진을 자성 나노 입자의 크기에 따라 도시하는 그래프들이다. 도 5의 (a) 및 (b)는 직경 30 nm의 자성 나노 입자의 경우이고, 도 5의 (c) 및 (d)는 직경 80 nm의 자성 나노 입자의 경우이다.
도 5를 참조하면, 직경 30nm의 자성 나노 입자의 경우에는 50MHz의 주파수의 교류 자기장을 인가하는 경우에는 변화가 나타나지 않으나[(a) 참조], 자신의 공명 주파수인 281MHz의 주파수의 교류 자기장을 인가하는 경우에는 이에 반응하여 강한 세차 운동과 자화 반전 등의 운동을 활발하게 하게 되는 것을 나타낸다[(b) 참조].
직경 80nm의 자성 나노 입자의 경우에는 281MHz의 주파수의 교류 자기장을 인가하는 경우에는 변화가 나타나지 않으나[(d) 참조], 자신의 공명 주파수인 50MHz의 주파수의 교류 자기장을 인가하는 경우에는 이에 반응하여 강한 세차 운동과 자화 반전 등의 운동을 활발하게 하게 되는 것을 나타낸다[(c) 참조].
즉, 자성 나노 입자는 자신의 공명 주파수를 가지는 자기장이 인가되면, 상기 자기장에 의하여 세차 운동 등의 운동의 활발해질 수 있다.
단자구를 가지는 자성 나노 입자는 제1 자기장[또는, 직류 자기장]에 따라 다른 공명 주파수를 가지게 되므로, 공명 주파수에 해당하는 제2 자기장[또는, 교류 자기장]의 인가에 대하여 선택적으로 활성화될 수 있다.
그리고, 자기 소용돌이 구조를 가지는 자성 나노 입자는 물질, 크기(직경) 또는 제1 자기장[또는, 직류 자기장]에 따라 다른 공명 주파수를 가지게 되므로, 공명 주파수에 해당하는 제2 자기장[또는, 교류 자기장]의 인가에 대하여 선택적으로 활성화될 수 있다.
[자성 나노 입자를 이용한 온열 치료 과정]
이하에서는, 본 발명의 일 실시예에 따른 자성 나노 입자(100)를 이용한 온열 치료 과정을 설명하기로 한다.
본 발명의 일 실시예에 따른, 온열 치료 과정은, (a) 자성 나노 입자(100)를 치료 대상 부위(25)에 제공하는 단계, (b) 자성 나노 입자(100)가 공명 주파수를 가지도록, 제1 자기장을 자성 나노 입자(100)에 인가하는 단계, (c) 공명 주파수를 가지는 제2 자기장을 자성 나노 입자(100)에 인가하는 단계, 및 (d) 자성 나노 입자(100)에서 생성된 열이 치료 대상 부위(25)에 전달되는 단계에 따라 수행된다.
먼저, (a) 단계로, 단자구 또는 자기 소용돌이 구조(110)를 가지는 자성 나노 입자(100)를 치료 대상 부위(25)[또는, 환부(25a)]에 제공할 수 있다. 자성 나노 입자(100)의 제공은, 자성 나노 입자(100)가 질병을 가지고 있는 환자[또는, 대상체(20)]의 특정 부위에 주입되고, 대상체(20) 또는 대상체(20)의 일부가 자기 온열 치료 장치(200)의 마그넷 시스템(250) 내부로 이동[도 10 참조]함에 따라 이루어지는 것으로 이해될 수 있다. 자성 나노 입자(100)는 미세한 크기를 가지기 때문에 치료 대상 부위(25)[또는, 환부(25a)]에 균일하게 분포될 수 있다.
이어서, (b) 단계로, 자성 나노 입자(100)에 제1 자기장이 인가됨에 따라 자성 나노 입자(100)가 공명 주파수를 가질 수 있다. 자성 나노 입자(100)의 공명 주파수는 제1 자기장에 따라 변화하고, 특히, 자성 나노 입자(100)가 자기 소용돌이 구조(110)를 가지는 경우에, 자성 나노 입자(100)는 자신의 직경에 따라 변화된 공명 주파수를 가질 수 있음은 도 5에서 살펴본 바와 같다.
제1 자기장은 직류 자기장일 수 있다. 직류 자기장은 후술할 자기 온열 치료 장치(200)의 정자장 코일부(251)[도 11 참조]에서 형성하는 정자장으로 이해될 수 있다. 직류 자기장은 자성 나노 입자(100)의 자기 소용돌이 구조(110)를 변화시키지 않는 범위일 수 있다. 예를 들어 자성 나노 입자가 구형(球形) 퍼멀로이 합금(Permalloy, Ni80Fe20)인 경우에는 직류 자기장은 수십 Oe 내지 수백 Oe, 예를 들어, 10 Oe 이상, 300 Oe 미만의 범위일 수 있다. 그러나, 직류 자기장의 범위는 예시적이며 이에 한정되는 것은 아니다. 예를 들어, 자성 나노 입자(100)의 크기가 증가되면 허용되는 제1 자기장의 크기는 증가될 수 있음은 도 3에서 살펴본 바와 같다.
제1 자기장 방향에 의해, 자성 나노 입자(100)[또는, 자기 소용돌이 코어(120)]가 동일한 방향으로 정렬될 수 있다.
자성 나노 입자(100)의 공명 주파수는 제1 자기장의 크기에 따라 변화할 수 있다. 예를 들어, 자성 나노 입자(100)에 인가되는 제1 자기장의 크기가 증가됨에 따라 자성 나노 입자(100)의 공명 주파수는 증가될 수 있다.
또한, 자성 나노 입자(100)의 공명 주파수는 자성 나노 입자(100)의 크기에 따라 변화할 수 있다. 예를 들어, 자성 나노 입자(100)의 직경이 커짐에 따라 자성 나노 입자(100)의 공명 주파수는 감소할 수 있다[표 1 참조].
또한, 자성 나노 입자(100)의 공명 주파수는 자성 나노 입자(100)의 재료, 크기, 및/또는 형상에 따라 변화할 수 있다.
이어서, (c) 단계로, 자성 나노 입자(100)의 공명 주파수와 동일한 제2 자기장을 자성 나노 입자(100)에 인가할 수 있다.
제2 자기장은 교류 자기장 또는 펄스 자기장일 수 있다. 교류 자기장은 후술할 자기 온열 치료 장치(200)의 RF 코일부(255)[도 11 참조]에서 형성하는 RF 펄스로 이해될 수 있다. 제2 자기장은 제1 자기장이 인가되는 방향과 소정의 각도를 가지는 방향으로 인가될 수 있고, 소정의 각도를 가지는 방향은 수직일 수 있다.
도 5에서 살펴본 바와 같이, 제2 자기장 인가시 자기 소용돌이 구조(110)를 가지는 자성 나노 입자(100)는 강한 세차 운동과 자화 반전 등의 운동이 활발하게 일어나면서 자화축의 변화가 일어나게 된다.
이어서, (d) 단계로, 선택적으로 활성화된 자성 나노 입자(100)에서는 열이 생성될 수 있고, 자성 나노 입자(100)가 분포된 치료 대상 부위(25)에 열이 전달될 수 있다. 일 예로, 도 10에는 위(stomach; 25)의 위몸통 측에 암세포(25a)가 존재하는 것이 도시되어 있다. 자성 나노 입자(100)는 위(25)에서도 암세포(25a)가 있는 부분에 주입되어, 선택적, 집중적으로 분포될 수 있다. 자성 나노 입자(100)에서 생성된 열(H)은 치료 대상 부위(25)[또는, 암세포(25a)]에 5K 내지 15K의 온도 변화를 발생시킴에 따라 치료 대상 부위(25)의 암세포(25a), 종양 등을 사멸시킬 수 있다. 열(H)의 발생은 자성 나노 입자(100)로부터 전하(charge)가 발산되거나, 복사(radiation)되거나, 자성 나노 입자(100)가 치료 대상 부위(25)의 분자를 진동시킴으로써 수행될 수 있다.
입자에서 발생된 열(H)이 종양, 세포 등에 전달되어 일으키는 온도의 변화량(△T)은 수학식 3을 따른다. 일반적으로 종양(암세포; 25a)를 제거하기 위해 필요한 이상적인 온도 변화량(△T)은 15K이다.
[수학식 3]
△T = SAR·c·R2 / (3λ)
[여기에서, SAR(Specific Absorption Rate; 또는 Specific Heating Power)은 교류 자기장 하에서 입자의 초당, 무게당 발열량, c는 세포에 흡착된 입자의 농도, R은 종양, 세포의 크기, λ은 열전도도로서 조직의 열전도도는 λ=0.64WK-1m-1]
도 6은 본 발명의 일 실시예에 따른 입자 농도, 종양의 크기에 따라 종양을 제거하는데 필요한 발열량을 나타내는 그래프이다. 종양 제거에 이상적인 온도 변화량(△T)인 15K로 계산한 결과이다.
도 6을 참조하면, 소정의 온도 변화량(△T)을 달성하기 위해서는, 고농도(c)로 입자를 흡착시키거나 발열량(SAR)을 높이는 것을 고려할 수 있다. 특히, 효과적인 종양 치료를 위해서는 10mm 이상의 크기(R)를 가진 종양에 대해서도 치료가 가능해야 한다. 현재 암세포에 고농도로 입자를 흡착시키기는 쉽지 않은 실정이므로, 농도(c)는 낮을수록 바람직하며, 결국 수학식 3에 따르면, 발열량(SAR)을 높이는 것이 온도 변화량을 제어하는 주된 요소가 될 수 있다. 도 6에 도시된 바에 따르면, 1mg/cm3의 농도로 입자를 흡착하여 10mm 이상의 크기(R)를 가진 종양을 치료하기 위해서는 최소한 0.1kW/g의 발열량(SAR)을 필요로 하며, 바람직하게는 2kW/g의 발열량(SAR)을 필요로 한다.
한편, 자성 나노 입자(100)에서 발열되는 에너지(R)는 수학식 4를 따른다.
[수학식 4]
Figure PCTKR2017004438-appb-I000001
(여기에서
Figure PCTKR2017004438-appb-I000002
는 자유 에너지 변화량, ε는 자유에너지, m은 자화, t는 시간,
Figure PCTKR2017004438-appb-I000003
는 계에 가해진 일, h는 외부 자기장, α, β는 감쇄 상수)
즉, 자성 나노 입자(100)에서 발열되는 에너지(R)는 계에 가해진 일에서 자성 나노 입자(100)의 자유 에너지 변화량을 뺀 수치와 같다. 일 실시예에 따라, 제1 자기장을 100 Oe, 제2 자기장을 10 Oe의 크기로 선택하고, FeNi(α=0.05, β=0) 자성 나노 입자(100)를 사용하여 발열되는 에너지(R)를 산출하면 도 7과 같다.
도 7은 본 발명의 일 실시예에 따른 다양한 크기의 자성 나노 입자(100)의 제2 자기장에 대한 발열량을 나타내는 그래프이다.
도 7을 참조하면, 단자구를 가지는 20nm, 30nm 직경의 자성 나노 입자는 동일한 공명 주파수인 약 281MHz에서 발열량(SAR)[Y축 참조]이 최대값을 가질 수 있다. 그리고, 자기 소용돌이 구조를 가지는 40nm, 50nm, 60nm 직경의 자성 나노 입자는 직경이 커질수록 점점 공명 주파수가 감소하므로, 각각의 공명 주파수인 약 244MHz, 약 148MHz, 약 95MHz에서 발열량(SAR)이 최대값을 가질 수 있다.
종래의 기술에 따른 온열 치료에 적용되는 발열량(kW/g)의 최대 한계는 약 1kW/g 정도로서, 10mm 이상의 크기(R)를 가진 종양에 1mg/cm3의 농도로 입자를 흡착시켜 치료할 수 있는 이상적인 수치(2kW/g, 도 6 참조)에는 다소 부족하다. 하지만, 본 발명의 온열 치료 방법을 적용하면, 도 7에 도시된 바와 같이, 60nm 입자의 발열량은 약 3kW/g의 피크를 가지며, 20nm - 50nm 입자의 발열량은 이보다도 큰 피크를 가진다. 따라서, 공명 현상을 이용하여 선택적으로 활성화한 자성 나노 입자(100)를 10mm 이상의 크기(R)를 가진 종양에 저농도(1mg/cm3)만으로 입자를 흡착시켜 온열 치료를 수행하기에 충분한 수치를 보인다.
한편, 종래의 기술에 따른 온열 치료로서, 20nm 미만의 크기를 가지는 초상자성(superparamagnetic) 입자에 교류 자기장만을 가하여 열적인 요동을 발생시키고, 교류 자기장의 인가를 해제하여 완화(relaxation)에 따른 발열을 이용하는 방법이 제안되었다. 이는 초상자성 입자의 히스테리시스(hysteresis) 자기 손실에 따른 에너지(히스테리시스 곡선의 넓이)를 열로 발생시키거나, 초상자성 입자의 자기 모멘트의 이완에 따른 주위 매질 또는 다른 입자와의 마찰에 의해 열을 발생(Brownian relaxation)시키는 것을 원리로 한다. 하지만 위 방법은 교류 자기장만을 가하여 자화 반전을 일으켜야 하므로, 가해지는 자기장이 수백 Oe 이상으로 매우 커져야 하며, 이는 장치의 고비용화, 대형화를 수반하는 문제점이 있다.
반면에, 본 발명의 온열 치료 방법은, 직류 자기장을 인가하여 자성 나노 입자가 공명 주파수를 가지게 한 후에, 공명 주파수와 동일한 교류 자기장을 인가하여 자성 나노 입자가 공명하며 열을 발생시킬 수 있게 하므로, 100 Oe 이하의 자기장만으로도 온열 치료에 이상적인 열을 발생시킬 수 있는 이점이 있다[도 7 참조].
특히, 자기 소용돌이 구조를 가지는 자성 나노 입자는 직경이 커질수록 점점 공명 주파수가 감소한다. 저주파를 사용할수록 저비용으로 장치의 제작이 가능해지므로, 자기 소용돌이 구조를 가지는 자성 나노 입자의 직경, 이에 따른 발열량을 고려하여 장치의 제작이 가능하다.
또한, 자성 나노 입자에 가하는 직류 자기장(제1 자기장)에 따라 자성 나노 입자의 공명 주파수를 제어할 수 있으며[표 1 참조], 공명 주파수의 제어에 따라 자기 온열 치료의 발열량을 자유자재로 제어할 수 있다. 인체에 해롭지 않은 범위 내에서 공명 주파수를 낮게 제어할 수도 있다.
도 8 및 도 9는 본 발명의 일 실시예에 따른 자성 나노 입자의 비공명/공명 상태에서의 거동과 발열량을 나타내는 그래프들이다. 60nm의 크기를 가지는 FeNi 입자를 선택하고, 제1 자기장을 100 Oe, 제2 자기장을 10 Oe 세기로 하여 80Mhz(도 8), 95Mhz(도 9)의 주파수로 각각 인가하였다.
도 8의 (a), (b)와 도 9의 (a), (b)를 비교할 때, 공명 상태에서의 도 9의 경우가 X축, Z축 방향으로의 스핀들의 동적 거동이 크게 나타남을 확인할 수 있다. 그리고, 도 8의 (c)와 도 9의 (c)를 비교할 때, 도 9에서 저에너지 상태의 스핀이 에너지를 흡수하여 고에너지 상태의 스핀으로 전환되면서 점차 발열량이 증가하는 것을 확인할 수 있다.
[온열 치료 장치]
이하에서는, 본 발명의 일 실시예에 따른 온열 치료를 수행할 수 있는 온열 치료 장치(200)를 설명하기로 한다.
도 10은 본 발명의 일 실시예에 따른 온열 치료를 수행하는 장치(200)를 도시하는 개략도이고, 도 11은 본 발명의 일 실시예에 따른 마그넷 시스템(250)을 도시하는 개략도이다.
도 10을 참조하면, 온열 치료 장치(200)는 제어부(210), 조작부(230), 마그넷 시스템(250)을 포함할 수 있다. 각 구성은 도 10에 도시된 것처럼 물리적으로 분리되어 있지 않고, 통합된 하나의 구성체를 이룰 수 있다.
제어부(210)는 마그넷 시스템(250)의 정자장 코일부(251), 경사 코일부(253), RF 코일부(255) 등을 제어할 수 있다. 그리고, 조작부(230)를 통해 전달받은 사용자로부터의 동작에 관한 명령을 해석하여 마그넷 시스템(250)을 제어할 수 있다. 그리고, 마그넷 시스템(250)에서 수신한 영상 신호를 해석하고, 이에 해당하는 영상 신호를 발생하여 조작부(230)의 디스플레이에 전달할 수 있다.
조작부(230)는 사용자로부터 온열 치료 장치(200)의 제어를 입력받기 위한 키보드, 마우스 등의 입력 장치, 영상을 확인할 수 있는 디스플레이 등을 포함할 수 있다.
대상체(또는, 환자)(20)는 크레들(cradle; 270)에 의해 마그넷 시스템(250) 내부로 옮겨질 수 있다. 온열 치료 장치(200)의 크기에 따라 크레들(270)은 생략도 가능하며, 마그넷 시스템(250)의 내부로 대상체(20)의 전부 또는 일부분만이 위치할 수도 있다.
도 11을 참조하면, 마그넷 시스템(250)은 정자장 코일부(251), 경사 코일부(253), RF 코일부(255)를 포함할 수 있다. 마그넷 시스템(250)은 원통 형상을 가지며, 동축을 중심축으로 하여 배치될 수 있으나, 이에 제한되는 것은 아니다. 그리고, 바깥쪽에서부터 정자장 코일부(251), 경사 코일부(253), RF 코일부(255) 순서로 배치될 수 있으며, RF 코일부(255)의 내부는 대상체(20)가 위치할 수 있도록 중공 형태를 가질 수 있다.
정자장 코일부(251)는 마그넷 시스템(250) 내부에 정자장(Static Magnetic Field) [또는, 제1 자기장, 직류 자기장]을 형성할 수 있다. 정자장의 방향은 대상체(20)의 길이 방향과 평행 또는 수직일 수 있으나, 본 명세서에서는 대상체(20)의 길이 방향과 평행한 것으로 상정하여 설명한다.
정자장 코일부(251)는 영구 자석, 초전도 자석, 전자석 등이 이용될 수 있다. 본 발명의 온열 치료 방법은, 기존의 교류 자기장만을 인가하는 장치와 같이 수 T 정도의 고자기장이 필요하지는 않으므로, 수 mT 내지 수백 mT 정도의 자기장을 형성할 수 있을 정도의 정자장 코일부(251)를 구비하면 충분하다. 따라서, 종래의 온열 치료 장치보다 장비 원가를 대폭 낮출 수 있는 이점이 있다.
경사 코일부(253)는 정자장에 경사(Gradient)를 발생시켜 경사자장(Gradient Field)를 형성할 수 있다. 3차원의 정보를 얻기 위해서는 X, Y, Z축 모두에 대한 경사자장이 요구되므로, 경사 코일부(253)는 세 축(253a, 253b, 253c)에 대해서 구비될 수 있다.
반대 극성의 직류전류가 두개의 Z축 경사 코일부(253c) 각각에 반대 방향으로 흐르면 Z축 방향으로 경사자장이 형성될 수 있다. Z축 경사 코일부(253c)는 슬라이스 선택에 사용될 수 있다. 그리고, 선택된 평면 내에서 X축과 Y축 경사 코일부(253a, 253b)에 의한 경사자장이 형성될 수 있고, 주파수와 위상을 부호화 할 수 있다. 그리하여 각 스핀들의 공간 위치를 부호화(Spatial Coding) 할 수 있다.
RF 코일부(255)는 대상체(20) 내의 자성 나노 입자(100)를 여기하기 위한 RF 펄스[또는, 제2 자기장, 교류 자기장]를 인가할 수 있다. RF 코일부(255)는 RF 펄스를 송신하는 송신 코일 및 여기된 자성 나노 입자(100)가 방출하는 전자기파를 수신하는 수신 코일 등을 포함할 수 있다.
이처럼 본 발명은, 자성 나노 입자의 공명을 이용하므로, 저자기장, 저비용, 소형화 장치로도 온열 치료에 이상적인 열을 발생시킬 수 있는 효과가 있다. 그리고, 저농도의 자성 나노 입자를 이용하여 신체 내부의 치료 대상 부위에 효과적으로 열을 전달할 수 있는 효과가 있다. 또한, 직류 자기장에 따라 자성 나노 입자의 공명 주파수를 제어할 수 있고, 공명 주파수에 따른 발열량을 제어할 수 있으므로, 치료 대상 부위의 특성을 고려하여 온도를 조절할 수 있는 효과가 있다.
본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.

Claims (13)

  1. 치료 대상 부위에 제공한 자성 나노 입자에서 생성된 열을 상기 치료 대상 부위에 전달하는 온열 치료 장치로서,
    상기 자성 나노 입자가 공명 주파수를 가지도록, 제1 자기장을 상기 자성 나노 입자에 인가하는 제1 코일부; 및
    상기 공명 주파수를 가지는 제2 자기장을 상기 자성 나노 입자에 인가하는 제2 코일부
    를 포함하며,
    (a) 자성 나노 입자를 치료 대상 부위에 제공하는 단계;
    (b) 상기 자성 나노 입자가 공명 주파수를 가지도록, 제1 자기장을 상기 자성 나노 입자에 인가하는 단계;
    (c) 상기 공명 주파수를 가지는 제2 자기장을 상기 자성 나노 입자에 인가하는 단계; 및
    (d) 상기 자성 나노 입자에서 생성된 열이 상기 치료 대상 부위에 전달되는 단계
    에 따라 온열 치료가 수행되는, 온열 치료 장치.
  2. 제1항에 있어서,
    상기 자성 나노 입자는 20nm 이상, 40nm 미만의 직경을 가지는, 온열 치료 장치.
  3. 제1항에 있어서,
    상기 자성 나노 입자는 40nm 이상, 500nm 미만의 직경을 가지는, 온열 치료 장치.
  4. 제3항에 있어서,
    상기 자성 나노 입자는, 자기 소용돌이 코어 성분, 수평 자화 성분 및 나선 자화 성분을 포함하는 자기 소용돌이 구조(Magnetic Vortex Structure)를 가지는, 온열 치료 장치.
  5. 제1항에 있어서,
    상기 제1 자기장은 직류 자기장인, 온열 치료 장치.
  6. 제1항에 있어서,
    상기 제2 자기장은 교류 자기장 또는 펄스 자기장인, 온열 치료 장치.
  7. 제1항에 있어서,
    상기 제2 자기장은 상기 제1 자기장이 인가되는 방향과 소정의 각도를 가지는 방향으로 인가되는, 온열 치료 장치.
  8. 제1항에 있어서,
    상기 자성 나노 입자의 상기 공명 주파수는 상기 제1 자기장의 크기에 따라 변화하는, 온열 치료 장치.
  9. 제3항에 있어서,
    상기 자성 나노 입자의 상기 공명 주파수는 상기 자성 나노 입자의 크기에 따라 변화하는, 온열 치료 장치.
  10. 제1항에 있어서,
    상기 자성 나노 입자는 Permalloy(Ni80Fe20), Maghemite(γ-Fe2O3), Magnetite(γ-Fe3O4), BariumFerrite(BaxFeyOz; x, y, z는 임의의 조성) 및 CoFe2O4 중 적어도 어느 하나를 포함하는, 온열 치료 장치.
  11. 제5항에 있어서,
    상기 제1 자기장의 세기는 10 Oe 이상, 300 Oe 미만인, 온열 치료 장치.
  12. 제1항에 있어서,
    상기 자성 나노 입자에서 생성된 열이 상기 치료 대상 부위에 5K 내지 15K의 온도 변화를 발생시키는, 온열 치료 장치.
  13. 제1항에 있어서,
    20nm 내지 60nm의 직경을 가지는 상기 자성 나노 입자에서의 발열량은 적어도 3kW/g인, 온열 치료 장치.
PCT/KR2017/004438 2016-04-29 2017-04-26 온열 치료 장치 WO2017188725A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160052686 2016-04-29
KR10-2016-0052686 2016-04-29

Publications (1)

Publication Number Publication Date
WO2017188725A1 true WO2017188725A1 (ko) 2017-11-02

Family

ID=60159876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004438 WO2017188725A1 (ko) 2016-04-29 2017-04-26 온열 치료 장치

Country Status (1)

Country Link
WO (1) WO2017188725A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162187A1 (ko) * 2020-02-14 2021-08-19 서울대학교산학협력단 공명현상을 이용한 자성 나노 입자의 발열 방법
CN114159213A (zh) * 2021-10-26 2022-03-11 北京大学(天津滨海)新一代信息技术研究院 热疗专用粒子
WO2023018060A1 (ko) * 2021-08-12 2023-02-16 서울대학교산학협력단 공명현상을 이용한 자성 나노 입자의 발열 장치
KR102665444B1 (ko) * 2021-08-12 2024-05-13 서울대학교산학협력단 공명현상을 이용한 자성 나노 입자의 발열 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000034772A (ko) * 1996-05-10 2000-06-26 부르스 나타니엘 그레이 질병 조직을 치료하는 부위 지정 히스테리시스 온열요법
JP2005523736A (ja) * 2001-07-25 2005-08-11 トリトン バイオシステムズ、インク. ナノスケール磁性粒子を標的とするデリバリーを介しての温熱療法
KR100612734B1 (ko) * 2003-04-30 2006-08-18 함승주 자기성 물질 및 치료제를 생분해성 고분자로 캡슐화한자기성 나노입자를 함유하는 조성물
KR101409296B1 (ko) * 2012-09-07 2014-06-24 서울대학교산학협력단 자성 나노 입자의 선택적 활성화 방법 및 선택적 활성화되는 자성 나노 입자
WO2015046672A1 (ko) * 2013-09-24 2015-04-02 경상대학교산학협력단 자성체 나노입자의 전달을 위한 3차원 전자기 구동장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000034772A (ko) * 1996-05-10 2000-06-26 부르스 나타니엘 그레이 질병 조직을 치료하는 부위 지정 히스테리시스 온열요법
JP2005523736A (ja) * 2001-07-25 2005-08-11 トリトン バイオシステムズ、インク. ナノスケール磁性粒子を標的とするデリバリーを介しての温熱療法
KR100612734B1 (ko) * 2003-04-30 2006-08-18 함승주 자기성 물질 및 치료제를 생분해성 고분자로 캡슐화한자기성 나노입자를 함유하는 조성물
KR101409296B1 (ko) * 2012-09-07 2014-06-24 서울대학교산학협력단 자성 나노 입자의 선택적 활성화 방법 및 선택적 활성화되는 자성 나노 입자
WO2015046672A1 (ko) * 2013-09-24 2015-04-02 경상대학교산학협력단 자성체 나노입자의 전달을 위한 3차원 전자기 구동장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162187A1 (ko) * 2020-02-14 2021-08-19 서울대학교산학협력단 공명현상을 이용한 자성 나노 입자의 발열 방법
KR20210103682A (ko) * 2020-02-14 2021-08-24 서울대학교산학협력단 공명현상을 이용한 자성 나노 입자의 발열 방법
KR102569850B1 (ko) * 2020-02-14 2023-08-24 서울대학교산학협력단 공명현상을 이용한 자성 나노 입자의 발열 방법
WO2023018060A1 (ko) * 2021-08-12 2023-02-16 서울대학교산학협력단 공명현상을 이용한 자성 나노 입자의 발열 장치
KR102665444B1 (ko) * 2021-08-12 2024-05-13 서울대학교산학협력단 공명현상을 이용한 자성 나노 입자의 발열 장치
CN114159213A (zh) * 2021-10-26 2022-03-11 北京大学(天津滨海)新一代信息技术研究院 热疗专用粒子

Similar Documents

Publication Publication Date Title
Baun et al. Permanent magnet system to guide superparamagnetic particles
US11215685B2 (en) B0 magnet methods and apparatus for a magnetic resonance imaging system
WO2017188725A1 (ko) 온열 치료 장치
US20170227617A1 (en) Method and apparatus for manipulating electropermanent magnets for magnetic resonance imaging and image guided therapy
US20070197953A1 (en) Magnetic particles for therapeutic treatment
WO2021162187A1 (ko) 공명현상을 이용한 자성 나노 입자의 발열 방법
Kim et al. Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia
JPH0446574B2 (ko)
WO2014038829A1 (ko) 자성 나노 입자의 선택적 활성화 방법 및 선택적 활성화되는 자성 나노 입자
Morais et al. Electron spin resonance in superparamagnetic particles dispersed in a non-magnetic matrix
KR102172017B1 (ko) 자성 나노 입자의 발열 방법
CN114252821B (zh) 磁体布置结构、包括其的装置和用于产生选择磁场的方法
EP2853197B1 (en) Hyperpolarized media transport vessel
WO2023018060A1 (ko) 공명현상을 이용한 자성 나노 입자의 발열 장치
US20090306455A1 (en) Method of Providing Magnetised Particles at a Location
KR102665444B1 (ko) 공명현상을 이용한 자성 나노 입자의 발열 장치
WO2016209012A2 (ko) 자성 나노 입자의 공명 현상을 이용한 바이오 영상 획득 방법
JP2004071853A (ja) 磁場中熱処理炉及びそれを用いた熱処理方法
Bagheri et al. A novel scanner architecture for MPI
Wosik et al. Effects of Magnetic Fields and Field Gradients on Living Cells
JPH01221175A (ja) 治療装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789909

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789909

Country of ref document: EP

Kind code of ref document: A1