WO2017188608A1 - Method for manufacturing air conditioner - Google Patents

Method for manufacturing air conditioner Download PDF

Info

Publication number
WO2017188608A1
WO2017188608A1 PCT/KR2017/003315 KR2017003315W WO2017188608A1 WO 2017188608 A1 WO2017188608 A1 WO 2017188608A1 KR 2017003315 W KR2017003315 W KR 2017003315W WO 2017188608 A1 WO2017188608 A1 WO 2017188608A1
Authority
WO
WIPO (PCT)
Prior art keywords
return bend
tube
air conditioner
filler
manufacturing
Prior art date
Application number
PCT/KR2017/003315
Other languages
French (fr)
Korean (ko)
Inventor
이주형
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2017188608A1 publication Critical patent/WO2017188608A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/08Tube expanders
    • B21D39/20Tube expanders with mandrels, e.g. expandable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D41/00Application of procedures in order to alter the diameter of tube ends
    • B21D41/02Enlarging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D41/00Application of procedures in order to alter the diameter of tube ends
    • B21D41/02Enlarging
    • B21D41/026Enlarging by means of mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/203Fluxing, i.e. applying flux onto surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the present invention relates to a method of manufacturing a heat exchanger provided in an air conditioner.
  • An air conditioner is a device that cools / heats a room or purifies the air in order to create a more comfortable indoor environment for a user.
  • Such an air conditioner may be classified into a separate type air conditioner that separates the indoor unit and the outdoor unit, and an integrated air conditioner in which the indoor unit and the outdoor unit are combined into one device.
  • a single air conditioner configured to be used in a small space with a capacity to drive one indoor unit according to the capacity of the air conditioner, a medium to large air conditioner composed of a very large capacity for use in a company or a restaurant It can also be divided into a multi-air conditioner composed of a capacity capable of sufficiently driving the indoor unit.
  • the separate air conditioner is composed of an indoor unit which is installed indoors and supplies an air or cold air into the air conditioning space and an outdoor unit that compresses or expands the refrigerant so that sufficient heat exchange can be performed in the indoor unit.
  • the air conditioner has a cycle in which the refrigerant circulating inside circulates in the order of compression, condensation, expansion, and evaporation to transfer heat. According to the cycle, the air conditioner operates as a cooling cycle for discharging the heat of the room to the outside during the summer, and operates as a heating cycle of the heat pump for supplying heat to the room by circulating opposite to the cooling cycle in the winter.
  • the air conditioner includes a compressor (1), a four-way valve (2), an outdoor heat exchanger (3), an outdoor fan (4), an expansion valve (5), an indoor heat exchanger (6), and an indoor fan. It consists of (7).
  • the outdoor heat exchanger 3 When the air conditioner is operated in the cooling mode, the outdoor heat exchanger 3 functions as a condenser and the indoor heat exchanger 6 functions as an evaporator. If the air conditioner is operated in the heating mode by reversing the flow of the refrigerant, the outdoor heat exchanger 3 functions as an evaporator and the indoor heat exchanger 6 functions as a condenser.
  • the indoor heat exchanger and the outdoor heat exchanger constituting the air conditioner includes a tube 20 through which the refrigerant can move.
  • a plurality of tubes are connected side by side to the fin 40 which can increase the heat exchange rate.
  • the return bend 10 is used to connect the tubes to each other.
  • CAB controlled atmospheric brazing
  • An object of the present invention is to provide a method of manufacturing an air conditioner that can prevent the pressure resistance of a tube from being lowered without increasing the thickness of the tube.
  • the present invention provides a method of manufacturing an air conditioner including a heat exchanger having a plurality of tubes and at least one return bend connecting the tubes, the inside of the return bend clad with an aluminum alloy A cladding step; An expansion step of expanding an end of the return bend; A tube insertion step of inserting the tube into the expanded portion of the return bend; It provides a method for manufacturing an air conditioner comprising a; brazing step of heating the return bend the tube is inserted.
  • the inner diameter of the return bend and the inner diameter of the tube may be the same.
  • the method may further include a filler insertion step of inserting a filler into the return bend after the expansion step and before the tube insertion step.
  • the filler may be inserted into the site expanded in the expansion step.
  • the method may further include a re-expansion step of expanding the end of the expanded site once more.
  • the filler may be inserted into the site expanded in the re-expansion step.
  • the filler may be provided in a ring shape.
  • the end of the enlarged portion may be bent to have an inner diameter larger than that of the enlarged portion.
  • the aluminum alloy may be a four series aluminum alloy.
  • the method may further include an application step of applying flux to the surface of the tube before the tube insertion step.
  • the brazing step may use a CAB method.
  • the present invention is the inner surface is clad with an aluminum alloy and the return bend end is expanded; A tube inserted into the return bend; And a filler provided inside the return bend, wherein the filler provides an air conditioner that can fill a gap between the return bend and the tube when brazing.
  • the inner diameter of the return bend and the inner diameter of the tube may be the same.
  • the difference between the diameter of the expanded portion of the return bend and the diameter of the non-expanded portion may be equal to the thickness of the tube.
  • the filler may be provided at the end of the tube.
  • the end of the expanded portion of the return bend may include a second expansion portion having a diameter larger than the diameter of the expanded portion.
  • the filler may be provided in the second expansion portion.
  • the filler may have a hollow ring shape.
  • the brazing may be a CAB brazing method.
  • the inner surface is clad with an aluminum alloy return bend; A tube inserted into the return bend and flux coated on an outer surface thereof; After the tube is inserted into the return bend, the aluminum alloy clad on the return bend and the flux applied to the tube react with each other to provide an air conditioner that can fill a gap between the tube and the return bend.
  • the present invention has an effect that can prevent the pressure resistance of the tube is lowered.
  • the present invention has the effect of improving the bonding rate between the tube and the return bend.
  • 1 is a schematic diagram of the refrigerant flow inside the heat exchanger.
  • FIG. 2 shows the structure of a heat exchanger
  • Figure 3 shows a welding method between the return bend and the tube according to an embodiment of the present invention.
  • Figure 4 shows a welding method between the return bend and the tube according to another embodiment of the present invention.
  • Figure 5 shows the structure of a filler according to another embodiment of the present invention.
  • Figure 6 shows a welding method according to another embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of manufacturing an air conditioner.
  • a heat exchanger corresponding to either an outdoor unit or an indoor unit may include a plurality of fins 40, a plurality of tubes 20 passing through the plurality of fins 40, and the tubes 20. It is composed of a return bend 10 or a Y branch pipe 10 '.
  • the plurality of pins 40 are formed in a thin plate shape and are provided side by side with a width enough to form a fine space. This is to allow the heat exchange between the refrigerant flowing through the inside of the tube 20 and the air in contact with the outside of the tube 20 to actively occur between the minute spaces.
  • the thin plate shape constituting the body of each fin 40 so that heat exchange can occur more may be further provided with a fine gap to allow air to pass through.
  • the plurality of tubes 20 are provided to penetrate through the plurality of fins 40 while being perpendicular to the plurality of fins 40 provided in parallel.
  • the plurality of tubes 20 may be connected to each other by a return bend 10 or a Y branch tube 10 ', which allows the refrigerant flowing through the tube 20 to reciprocate between the plurality of fins 40 several times. Allow as much heat exchange as possible.
  • the refrigerant flowing through the Y branch pipe 10 ' flows in a zigzag fashion between the plurality of fins 40, such as toward the tube 20 and back through the return bend 10 to the tube 20. Heat exchange with air. After the heat exchange, the refrigerant will be discharged to the outside of the heat exchanger through the opposite Y branch pipe (10 ').
  • the coupling or welding between the Y branch pipe (10 ') and the tube 20 is also the same way. Will be made.
  • the return bend 10 and the tube 20 may be made of an aluminum material, but is not necessarily limited to aluminum.
  • the coupling between the return bend 10 and the tube 20 uses a manner in which the tube 20 is inserted into the return bend 10. Basically, the tube 20 is not subjected to any other processing, and the ends of the return bend 10 are expanded and then extrapolated to the tube 20.
  • FIG 3 is an algorithm illustrating a manufacturing method for joining or welding between the return bend 10 and the tube 20.
  • the step of cladding the inside of the return bend 10 with an aluminum alloy (S100) the step of expanding both ends of the return bend (10) (S200), inserting the filler in the expanded portion And pressing the filler to fix the filler (S300), inserting the tube 20 into the expanded return bend 10 (S400), and the return bend 10 and the tube 20 to be completely coupled.
  • Brazing may be configured as a step (S500).
  • the alloy clad in the return bend 10 may correspond to an aluminum four series alloy.
  • Four-series aluminum alloys correspond to aluminum mixed with silicon (Si) and other metals, and have a lower melting point than aluminum. The reason why the melting point should be lower than that of aluminum will be explained later.
  • An embodiment of the present invention has been described with reference to the aluminum 4-based alloy, but is not limited thereto.
  • Cladding is a technique of joining another metal to one surface of a specific metal. When the desired metal is placed on a specific metal and pressed at a high pressure, the surfaces of the two metals are bonded to each other.
  • the four series aluminum alloy is cladding on the entire return bend 10 or at least the portion to be expanded.
  • the four series aluminum alloy may be inserted into the expanded portion inside the return bend 10 before the tube 20 is inserted into the return bend 10.
  • step S200 of expanding the return bend 10 the end of the return bend 10 is heated, and then the core bar is press-fitted to expand the return bend 10.
  • the method is not limited to the expansion method using the core bar, and any method that can be expanded may be used.
  • the inner diameter of the return bend 10 may be the same as the inner diameter of the tube 20 before expansion. This is because when the return bend 10 and the tube 20 have the same inner diameter, when used as an actual heat exchanger, the refrigerant flow pressure loss is reduced. Therefore, the inner diameter of the expansion portion of the return bend 10 is preferably equal to or slightly longer than the outer diameter of the tube 20. In the case of heating the return bend 10 in the brazing step S500 later, the return of the expanded portion is such that a welding material such as a filler penetrates the surface where the return bend 10 and the tube 20 come into contact with each other by capillary action. It is preferable that the inner diameter of the bend 10 is longer than the outer diameter of the tube 20.
  • inserting the filler may be omitted.
  • An embodiment in which the filler insertion step is omitted will be described later with reference to FIG. 7.
  • the filler 30 may be inserted into an extended portion of the return bend 10, and when heated in the brazing step S500, the filler 30 may be changed into a liquid state by capillary action between the surfaces of the return bend 10 and the tube 20. It will soak in.
  • the outer circumferential surface of the return bend 10 may be compressed to be fixed on the inner circumferential surface of the return bend 10. This is to prevent the filler 30 from being disturbed or changed in position when the tube 20 is inserted.
  • the heat transfer is smoothed during brazing, so that the filler can be more melted.
  • the filler 30 may be provided in a hollow donut shape.
  • the filler 30 melts by brazing and then seeps into between the return bend 10 and the tube 20, the filler 30 in the center falls down by gravity, which may soon lead to welding failure. . Therefore, it is preferable that only the appropriate amount of filler 30 is installed so that all of the melted filler 30 penetrates between the return bend 10 and the tube 20 by capillary action, and the inside is provided in the form of an empty ring. something to do.
  • the filler 30 may correspond to a material in which the 4-series aluminum alloy and the Nocolok flux are mixed.
  • the filler 30 is lower than the melting point of aluminum, and the flux serves to allow the filler 30 to melt well.
  • the brazing step (S500) is a torch brazing method for heating each return bend 10 individually using a torch, and CAB (Controlled) which can heat a plurality of return bends 10 at once by increasing the temperature of ambient air. Atmospheric Brazing).
  • the same heat can be applied to the plurality of return bends 10 so that the joining or welding between the return bends 10 and the tube 20 is made even and the variation in the joining or welding is lowered. There is an advantage.
  • Tube insertion is preferably inserted all the way to the end of the returned return bend 10, when the filler 30 is inserted, it is preferable to insert so that the filler 30 is in contact with the installed position.
  • the inner surface of the return bend 10 is clad with a four series aluminum alloy.
  • the cladding treatment may be performed only on the entire inside of the return bend 10 or a portion to be expanded.
  • the four series aluminum alloy may be inserted into the return bend 10 before the tube 20 is inserted without a separate cladding treatment.
  • Both ends of the cladding return bend 10 is expanded in the return bend expansion step (S200), and then undergoes a re-expansion step of expanding the end of the portion expanded in the expansion step (S200) once more.
  • both ends of the return bend 10 may be expanded into a two-step staircase shape.
  • the inner diameter L1 expanded in the expansion step S200 is larger than the existing inner diameter L of the return bend 10, and the inner diameter L2 expanded in the re-expansion step is expanded in the expansion step S200. It is larger than the inner diameter L1.
  • the site expanded in the expansion step (S200) corresponds to the first expansion unit 12, and the site expanded through the re-expansion step corresponds to the second expansion unit (13).
  • the inner diameter of the second expanding portion 13 is larger than the inner diameter of the first expanding portion 12.
  • the filler 30 may have an annular shape and may have an outer diameter such that the filler 30 is inserted into the expanded portion in the re-expansion step.
  • the ring portion of the filler 30 may have a width equal to the difference between the inner diameter L2 expanded in the re-expansion step and the inner diameter L1 expanded in the expansion step S200. Therefore, when the tube 20 is inserted, the filler 30 and the tube 20 may come into contact with each other.
  • the outer circumferential surface of the return bend 10 of the portion where the filler 30 is positioned is compressed.
  • the difference between the inner diameter L1 expanded in the expansion step S200 and the existing inner diameter L of the return bend 10 is preferably equal to the thickness of the tube 20. That is, the inner diameter of the tube 20 is equal to the inner diameter L of the return bend 10. This is to minimize the pressure loss of the refrigerant flow when the refrigerant passes after the coupling between the return bend 10 and the tube 20.
  • Insertion of the tube 20 is inserted up to the portion expanded in the expansion step (S200) and the outer peripheral surface of the tube 20 and the inner peripheral surface expanded in the expansion step (S200) is in contact with each other.
  • the insertion of the filler 30 and the tube 20 is completed by brazing.
  • Brazing uses the CAB brazing method and the filler 30 is melted as a result of brazing soaked by the capillary phenomenon between the tube 20 and the inner circumferential surface expanded in the expansion step (S200) in contact with the outer circumferential surface of the tube 20.
  • the outer surface of the return bend 10 of the portion provided with the filler 30 is compressed to allow the filler 30 to be fixed. do.
  • the inner diameter of the return bend 10 is the same as the inner diameter of the tube 20, as shown in Figure 4,
  • the filler 30 may be provided in the form of a donut with an empty center, which is to prevent the defect of the brazing by preventing the air trapped inside the return bend 10 when CAB brazing as mentioned above.
  • the end of the expanded portion is bent to be larger than the inner diameter of the expanded portion. This helps the insertion of the tube 20 to be smooth by increasing the inner diameter of the expanded end of the return bend 10 at which the insertion of the tube 20 begins.
  • the inner diameter of the return bend 10 is provided to be the same as the inner diameter of the tube 20, and the filler 30 is looped to prevent trapping of air inside the return bend 10 when CAB brazing. It may be provided in the form.
  • the return bend 10 and the tube 20 can be connected without inserting the filler 30.
  • the return bend 10 is clad with a four series aluminum alloy, and both ends of the return band 10 are expanded to allow the tube 20 to be inserted. Nocolok flux is applied to the tube 20 inserted into the return band 10.
  • the inner diameter of the return bend 10 and the inner diameter of the tube 20 are the same, and when the tube 20 is inserted into the return bend 10, the outer circumferential surface of the tube 20 and the inner circumferential surface of the extended portion of the return bend 10 are You will encounter each other.
  • the four series aluminum alloy has a lower melting point than the return bend 10 or the tube 20 composed of aluminum, and the brazing ambient air temperature is higher than the melting point of the four series aluminum alloy and lower than the melting point of the aluminum. Do.
  • the filler 30 may be additionally inserted. If the manufacturing process is performed without the filler 30, there may be a lack of sufficient material to completely fill the space between the return bend 10 and the tube 20. As a result, the additional insertion of the filler 30 may reduce the defective rate. This can be

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The present invention relates to a method for manufacturing an air conditioner including a heat exchanger having a plurality of tubes and one or more return bends for connecting the tubes, the method comprising: a cladding step of cladding the inside of the return bend with an aluminum alloy; an expansion step of expanding the end of the return bend; a tube insertion step of inserting the tube into an expanded part of the return bend; and a brazing step of heating the return bend into which the tube is inserted.

Description

공기조화기 제조방법Air Conditioner Manufacturing Method
본 발명은 공기조화기 내에 구비되는 열교환기의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a heat exchanger provided in an air conditioner.
공기조화기는 사용자에게 보다 쾌적한 실내환경을 조성하기 위해 실내를 냉/난방시키거나 공기를 정화시키는 장치를 말한다.An air conditioner is a device that cools / heats a room or purifies the air in order to create a more comfortable indoor environment for a user.
이러한 공기조화기는 실내기와 실외기를 각각 분리한 분리형 공기조화기와, 실내기와 실외기가 하나의 장치로 결합된 일체형 공기조화기로 구분할 수 있다. 또한, 공기조화기의 용량에 따라 하나의 실내기를 구동시킬 수 있는 용량으로 좁은 장소에서 이용하도록 구성된 싱글형 공기조화기, 회사 또는 음식점에서 사용할 수 있도록 매우 큰 용량으로 구성된 중대형 공기조화기 및 다수개의 실내기를 충분히 구동시킬 수 있는 용량으로 구성된 멀티 공기 조화기 등으로 구분할 수도 있다. Such an air conditioner may be classified into a separate type air conditioner that separates the indoor unit and the outdoor unit, and an integrated air conditioner in which the indoor unit and the outdoor unit are combined into one device. In addition, a single air conditioner configured to be used in a small space with a capacity to drive one indoor unit according to the capacity of the air conditioner, a medium to large air conditioner composed of a very large capacity for use in a company or a restaurant It can also be divided into a multi-air conditioner composed of a capacity capable of sufficiently driving the indoor unit.
이 때, 분리형 공기 조화기는 실내에 설치되어 공조 공간 내부로 온풍 또는 냉풍을 공급하는 실내기와 실내기에서 충분한 열교환 동작이 이루어질 수 있도록 냉매의 압축 또는 팽창을 수행하는 실외기로 구성된다.At this time, the separate air conditioner is composed of an indoor unit which is installed indoors and supplies an air or cold air into the air conditioning space and an outdoor unit that compresses or expands the refrigerant so that sufficient heat exchange can be performed in the indoor unit.
공기 조화기는 내부를 순환하는 냉매가 압축, 응축, 팽창 및 증발의 순으로 순환하여 열을 전달하는 싸이클을 가진다. 상기 싸이클에 따라 공기 조화기는 하절기에는 실내의 열을 외부로 배출하는 냉방 싸이클로 동작하고, 동절기에는 냉방 싸이클과 반대로 순환하여 실내로 열을 공급하는 히트 펌프(Heat pump)의 난방 싸이클로 동작한다.The air conditioner has a cycle in which the refrigerant circulating inside circulates in the order of compression, condensation, expansion, and evaporation to transfer heat. According to the cycle, the air conditioner operates as a cooling cycle for discharging the heat of the room to the outside during the summer, and operates as a heating cycle of the heat pump for supplying heat to the room by circulating opposite to the cooling cycle in the winter.
도 1은 일반적인 공기조화기의 냉방 사이클을 나타낸 구성도이다. 도 1에 도시된 바와 같이, 공기 조화기는 압축기(1), 사방밸브(2), 실외열교환기(3), 실외팬(4), 팽창밸브(5), 실내열교환기(6) 및 실내팬(7)으로 구성되어 있다. 1 is a configuration diagram showing a cooling cycle of a general air conditioner. As shown in FIG. 1, the air conditioner includes a compressor (1), a four-way valve (2), an outdoor heat exchanger (3), an outdoor fan (4), an expansion valve (5), an indoor heat exchanger (6), and an indoor fan. It consists of (7).
공기조화기가 냉방모드로 운전되면 실외열교환기(3)는 응축기로 기능하고 실내열교환기(6)는 증발기로 기능한다. 만약 냉매의 흐름을 역으로 하여 공기조화기를 난방모드로 운전하면 실외열교환기(3)는 증발기로 기능하고 상기 실내열교환기(6)는 응축기로 기능한다. When the air conditioner is operated in the cooling mode, the outdoor heat exchanger 3 functions as a condenser and the indoor heat exchanger 6 functions as an evaporator. If the air conditioner is operated in the heating mode by reversing the flow of the refrigerant, the outdoor heat exchanger 3 functions as an evaporator and the indoor heat exchanger 6 functions as a condenser.
한편, 공기조화기를 구성하는 실내열교환기와 실외열교환기는 냉매가 이동할 수 있는 튜브(20)를 포함한다. 공정상 다수개의 튜브들이 열교환율을 높일 수 있는 핀(40)에 나란하게 연결된다. 이 때 튜브들을 서로 이을 수 있도록 리턴벤드(10)가 사용된다. On the other hand, the indoor heat exchanger and the outdoor heat exchanger constituting the air conditioner includes a tube 20 through which the refrigerant can move. In the process, a plurality of tubes are connected side by side to the fin 40 which can increase the heat exchange rate. At this time, the return bend 10 is used to connect the tubes to each other.
다수개의 튜브와 리턴벤드를 접합할 때에 각각의 튜브와 리턴벤드를 개별적으로 용접하는 토치 브레이징 방식과 다수개를 한번에 용접할 수 있는 CAB(Controlled Atmospheric Brazing) 브레이징 방식을 사용한다. 하지만 CAB 방식을 사용하는 경우, 재료의 풀림에 의해 내압강도가 저하되는 문제가 있으며, 미접합 부위가 발생하여 냉매 누설이 발생하는 문제가 있다.When joining multiple tubes and return bends, it uses a torch brazing method for welding each tube and return bend separately, and a controlled atmospheric brazing (CAB) brazing method for welding multiple parts at once. However, when using the CAB method, there is a problem that the pressure resistance is lowered due to the unwinding of the material, there is a problem that the non-bonded portion is generated and the refrigerant leaks.
본 발명은 튜브의 두께를 증가시키지 않고도 튜브의 내압강도가 저하되는 것을 방지할 수 있는 공기조화기의 제조방법을 제공하는 것을 과제로 한다.An object of the present invention is to provide a method of manufacturing an air conditioner that can prevent the pressure resistance of a tube from being lowered without increasing the thickness of the tube.
또한 본 발명은 튜브와 리턴벤드 사이의 접합률을 개선할 수 있는 공기조화기의 제조방법을 제공하는 것을 과제로 한다.It is another object of the present invention to provide a method for manufacturing an air conditioner capable of improving the bonding rate between a tube and a return bend.
본 발명은 상술한 과제를 해결하기 위하여, 복수개의 튜브들과 상기 튜브들을 연결하는 하나 이상의 리턴벤드가 구비되는 열교환기를 포함하는 공기조화기의 제조방법에 있어서, 상기 리턴벤드 내부를 알루미늄 합금으로 클래딩하는 클래딩단계; 상기 리턴벤드의 끝단을 확관하는 확관단계; 상기 리턴벤드의 확관된 부위로 상기 튜브를 삽입하는 튜브삽입단계; 상기 튜브가 삽입된 상기 리턴벤드를 가열하는 브레이징단계;를 포함하는 공기조화기의 제조방법을 제공한다.In order to solve the above problems, the present invention provides a method of manufacturing an air conditioner including a heat exchanger having a plurality of tubes and at least one return bend connecting the tubes, the inside of the return bend clad with an aluminum alloy A cladding step; An expansion step of expanding an end of the return bend; A tube insertion step of inserting the tube into the expanded portion of the return bend; It provides a method for manufacturing an air conditioner comprising a; brazing step of heating the return bend the tube is inserted.
또한, 상기 리턴벤드의 내경과 상기 튜브의 내경은 동일할 수 있다.In addition, the inner diameter of the return bend and the inner diameter of the tube may be the same.
또한, 상기 확관단계 후 상기 튜브삽입단계 전 상기 리턴벤드의 내부에 필러를 삽입하는 필러삽입단계를 더 포함할 수 있다. The method may further include a filler insertion step of inserting a filler into the return bend after the expansion step and before the tube insertion step.
또한, 상기 확관단계에서 확관된 부위에 필러를 삽입할 수 있다. In addition, the filler may be inserted into the site expanded in the expansion step.
또한, 상기 확관된 부위의 끝단을 한번 더 확관하는 재확관단계를 더 포함할 수 있다.In addition, the method may further include a re-expansion step of expanding the end of the expanded site once more.
또한, 상기 재확관단계에서 확관된 부위에 필러를 삽입할 수 있다. In addition, the filler may be inserted into the site expanded in the re-expansion step.
또한, 상기 필러는 링 형태로 구비될 수 있다.In addition, the filler may be provided in a ring shape.
또한, 상기 확관된 부위의 끝단은 상기 확관된 부위의 내경보다 더 큰 내경을 가지도록 벤딩 처리될 수 있다.In addition, the end of the enlarged portion may be bent to have an inner diameter larger than that of the enlarged portion.
또한, 상기 알루미늄 합금은 4계열 알루미늄 합금일 수 있다.In addition, the aluminum alloy may be a four series aluminum alloy.
또한, 상기 튜브삽입단계 전에 상기 튜브 표면에 플럭스를 도포하는 도포단계를 더 포함할 수 있다.In addition, the method may further include an application step of applying flux to the surface of the tube before the tube insertion step.
또한, 상기 브레이징단계는 CAB 방식을 사용할 수 있다.In addition, the brazing step may use a CAB method.
또한 본 발명은 내부면이 알루미늄 합금으로 클래드되고 끝단이 확관되어 있는 리턴벤드; 상기 리턴벤드 내부로 삽입되는 튜브; 상기 리턴벤드 내부에 구비되는 필러;를 포함하고, 상기 필러는 브레이징 시 상기 리턴벤드와 상기 튜브 사이의 틈새를 메울 수 있는 공기조화기를 제공한다. In another aspect, the present invention is the inner surface is clad with an aluminum alloy and the return bend end is expanded; A tube inserted into the return bend; And a filler provided inside the return bend, wherein the filler provides an air conditioner that can fill a gap between the return bend and the tube when brazing.
또한, 상기 리턴벤드 내경과 상기 튜브의 내경은 동일할 수 있다.In addition, the inner diameter of the return bend and the inner diameter of the tube may be the same.
또한, 상기 리턴벤드의 확관된 부위의 직경과 확관되지 않은 부위의 직경의 차이는 상기 튜브의 두께와 동일할 수 있다. In addition, the difference between the diameter of the expanded portion of the return bend and the diameter of the non-expanded portion may be equal to the thickness of the tube.
또한, 상기 필러는 상기 튜브의 끝단부에 구비될 수 있다.In addition, the filler may be provided at the end of the tube.
또한, 상기 리턴벤드의 확관된 부위의 끝단은 상기 확관된 부위의 직경보다 더 큰 직경을 가지는 제2확관부를 포함할 수 있다. In addition, the end of the expanded portion of the return bend may include a second expansion portion having a diameter larger than the diameter of the expanded portion.
또한, 상기 필러는 상기 제2확관부에 구비될 수 있다. In addition, the filler may be provided in the second expansion portion.
또한, 상기 필러는 중공 형상의 링 형태일 수 있다.In addition, the filler may have a hollow ring shape.
또한, 상기 브레이징은 CAB 브레이징 방식일 수 있다.In addition, the brazing may be a CAB brazing method.
또한, 본 발명은 내부면이 알루미늄 합금으로 클래드된 리턴벤드; 상기 리턴벤드 내부로 삽입되고 외부면에 플럭스가 도포되는 튜브; 상기 튜브가 상기 리턴벤드 내부로 삽입된 후 브레이징 시 상기 리턴벤드에 클래드된 알루미늄 합금과 상기 튜브에 도포된 플럭스가 반응하여 상기 튜브와 상기 리턴벤드 사이의 틈새를 메울 수 있는 공기조화기를 제공한다. In addition, the present invention the inner surface is clad with an aluminum alloy return bend; A tube inserted into the return bend and flux coated on an outer surface thereof; After the tube is inserted into the return bend, the aluminum alloy clad on the return bend and the flux applied to the tube react with each other to provide an air conditioner that can fill a gap between the tube and the return bend.
[발명의 효과][Effects of the Invention]
본 발명은 튜브의 내압강도가 저하되는 것을 방지할 수 있는 효과가 있다.The present invention has an effect that can prevent the pressure resistance of the tube is lowered.
또한, 본 발명은 튜브와 리턴벤드 사이의 접합률을 개선할 수 있는 효과가 있다.In addition, the present invention has the effect of improving the bonding rate between the tube and the return bend.
도 1은 열교환기 내부의 냉매 흐름을 알아보기 쉽게 도식화한 것이다.1 is a schematic diagram of the refrigerant flow inside the heat exchanger.
도 2는 열교환기의 구조를 나타낸 것이다.2 shows the structure of a heat exchanger.
도 3은 본 발명의 일 실시예에 따른 리턴벤드와 튜브 사이의 용접 방법을 나타낸 것이다.Figure 3 shows a welding method between the return bend and the tube according to an embodiment of the present invention.
도 4는 본 발명의 또 다른 실시예에 따른 따른 리턴벤드와 튜브 사이의 용접 방법을 나타낸 것이다.Figure 4 shows a welding method between the return bend and the tube according to another embodiment of the present invention.
도 5는 본 발명의 또 다른 실시예에 따른 필러의 구조를 나타낸 것이다.Figure 5 shows the structure of a filler according to another embodiment of the present invention.
도 6은 본 발명의 또 다른 실시예에 따른 용접 방법을 나타낸 것이다.Figure 6 shows a welding method according to another embodiment of the present invention.
도 7은 공기조화기의 제조방법을 나타낸 플로우 차트이다.7 is a flowchart illustrating a method of manufacturing an air conditioner.
이하에서는 첨부된 도면을 참고하여 본 발명의 바람직한 실시예를 상세하게 설명한다. 한편, 이하에 기술될 장치의 구성이나 제어방법은 본 발명의 실시예를 설명하기 위한 것일 뿐 본 발명의 권리범위를 한정하기 위함은 아니며, 명세서 전반에 걸쳐서 동일하게 사용된 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention. On the other hand, the configuration or control method of the device to be described below is not intended to limit the scope of the present invention, but to describe the embodiment of the present invention, the same reference numerals are used throughout the specification the same components Indicates.
도 2에 도시된 바와 같이, 실외기 또는 실내기 중 어느 하나에 해당하는 열교환기는 다수개의 핀(40)과 상기 다수개의 핀(40)을 관통하는 다수개의 튜브(20) 및 상기 튜브들(20)을 이어주는 리턴벤드(10) 또는 Y분지관(10')으로 구성된다. As illustrated in FIG. 2, a heat exchanger corresponding to either an outdoor unit or an indoor unit may include a plurality of fins 40, a plurality of tubes 20 passing through the plurality of fins 40, and the tubes 20. It is composed of a return bend 10 or a Y branch pipe 10 '.
상기 다수개의 핀(40)은 얇은 판 형상으로 이루어지며 미세한 공간이 형성될 정도의 폭을 가지고 나란하게 구비된다. 이는 미세한 공간 사이로 공기가 유입되어 튜브(20) 내부를 흐르는 냉매와 상기 튜브(20) 외부와 접촉하는 공기 사이의 열교환이 활발하게 일어나도록 하기 위함이다. 또한 열교환이 더욱 잘 일어날 수 있도록 각각의 핀(40)의 몸체를 이루는 얇은 판 형상에는 공기가 통과할 수 있도록 미세한 틈이 더 구비될 수 있다.The plurality of pins 40 are formed in a thin plate shape and are provided side by side with a width enough to form a fine space. This is to allow the heat exchange between the refrigerant flowing through the inside of the tube 20 and the air in contact with the outside of the tube 20 to actively occur between the minute spaces. In addition, the thin plate shape constituting the body of each fin 40 so that heat exchange can occur more may be further provided with a fine gap to allow air to pass through.
다수개의 튜브(20)는 상기 나란하게 구비된 다수개의 핀(40)과 수직을 이루면서 다수개의 핀(40)을 관통하여 구비된다. 다수개의 튜브(20)는 리턴벤드(10)나 Y분지관(10')에 의해 서로 연결될 수 있으며 이는 튜브(20) 내부를 흐르는 냉매가 다수개의 핀(40) 사이를 수회 왕복하면서 공기와의 열교환이 최대한 많이 일어날 수 있도록 한다. 예를들면, Y분지관(10')을 통하여 유입된 냉매는 튜브(20)로 향하고 리턴벤드(10)를 거쳐 다시 튜브(20)로 향하는 등 다수개의 핀(40) 사이를 지그재그 형태로 흐르면서 공기와 열교환을 하게 된다. 열교환을 마친 냉매는 반대편 Y분지관(10')을 통하여 열교환기 외부로 배출될 것이다. The plurality of tubes 20 are provided to penetrate through the plurality of fins 40 while being perpendicular to the plurality of fins 40 provided in parallel. The plurality of tubes 20 may be connected to each other by a return bend 10 or a Y branch tube 10 ', which allows the refrigerant flowing through the tube 20 to reciprocate between the plurality of fins 40 several times. Allow as much heat exchange as possible. For example, the refrigerant flowing through the Y branch pipe 10 'flows in a zigzag fashion between the plurality of fins 40, such as toward the tube 20 and back through the return bend 10 to the tube 20. Heat exchange with air. After the heat exchange, the refrigerant will be discharged to the outside of the heat exchanger through the opposite Y branch pipe (10 ').
본 발명의 경우, 일 실시예로써 리턴벤드(10)와 튜브(20) 사이의 결합 또는 용접 방식에 대하여 다루고 있으나, Y분지관(10')과 튜브(20) 사이의 결합 또는 용접도 같은 방식으로 이루어지게 된다. In the present invention, as an embodiment, but deals with the coupling or welding method between the return bend 10 and the tube 20, the coupling or welding between the Y branch pipe (10 ') and the tube 20 is also the same way. Will be made.
또한 본 발명의 경우, 리턴벤드(10)와 튜브(20)는 알루미늄 재료로 구성될 수 있으나, 반드시 알루미늄에 한정되는 것은 아니다.In addition, in the present invention, the return bend 10 and the tube 20 may be made of an aluminum material, but is not necessarily limited to aluminum.
리턴벤드(10)와 튜브(20) 사이의 결합은 튜브(20)가 리턴벤드(10) 내부로 삽입되는 방식을 사용한다. 기본적으로 튜브(20)에는 별다른 가공처리를 하지 않고, 리턴벤드(10)의 양 끝단을 확관한 후, 튜브(20)에 외삽하게 된다.The coupling between the return bend 10 and the tube 20 uses a manner in which the tube 20 is inserted into the return bend 10. Basically, the tube 20 is not subjected to any other processing, and the ends of the return bend 10 are expanded and then extrapolated to the tube 20.
도 3은 리턴벤드(10)와 튜브(20) 사이의 결합 또는 용접을 위한 제조방법을 나타낸 알고리즘이다. 본 발명의 제조방법을 살펴보면, 리턴벤드(10) 내부를 알루미늄 합금으로 클래딩 하는 단계(S100), 상기 리턴벤드(10)의 양 끝단을 확관하는 단계(S200), 상기 확관된 부위에 필러를 삽입하고 필러가 고정되도록 압착하는 단계(S300), 상기 확관된 리턴벤드(10) 내부로 튜브(20)를 삽입하는 단계(S400) 및 상기 리턴벤드(10)와 상기 튜브(20)가 완전히 결합되도록 브레이징하는 단계(S500)으로 구성될 수 있다. 3 is an algorithm illustrating a manufacturing method for joining or welding between the return bend 10 and the tube 20. Looking at the manufacturing method of the present invention, the step of cladding the inside of the return bend 10 with an aluminum alloy (S100), the step of expanding both ends of the return bend (10) (S200), inserting the filler in the expanded portion And pressing the filler to fix the filler (S300), inserting the tube 20 into the expanded return bend 10 (S400), and the return bend 10 and the tube 20 to be completely coupled. Brazing may be configured as a step (S500).
리턴벤드(10) 내부에 클래딩 되는 합금은 알루미늄 4계열 합금에 해당할 수 있다. 4계열 알루미늄 합금이란 알루미늄에 실리콘(Si)과 기타 금속이 섞인 것에 해당하며 알루미늄보다 녹는점이 낮은 것이 특징이다. 알루미늄보다 녹는점이 낮아야만 하는 이유는 추후 설명하도록 한다. 본 발명의 실시예의 경우 알루미늄 4계열 합금에 한하여 설명하고 있으나 이에 한정되지 않는다. The alloy clad in the return bend 10 may correspond to an aluminum four series alloy. Four-series aluminum alloys correspond to aluminum mixed with silicon (Si) and other metals, and have a lower melting point than aluminum. The reason why the melting point should be lower than that of aluminum will be explained later. An embodiment of the present invention has been described with reference to the aluminum 4-based alloy, but is not limited thereto.
클래딩이란 특정 금속의 일면에 다른 금속을 접합하는 기술에 해당한다. 특정 금속에 원하고자 하는 금속을 올려놓고 높은 압력으로 압착시키면 두 개의 금속이 접하는 면이 서로 결합하게 된다. 본 발명의 경우, 리턴벤드(10) 전체 또는 적어도 확관 처리할 부분에 상기 4계열 알루미늄 합금이 클래딩 처리된다.Cladding is a technique of joining another metal to one surface of a specific metal. When the desired metal is placed on a specific metal and pressed at a high pressure, the surfaces of the two metals are bonded to each other. In the case of the present invention, the four series aluminum alloy is cladding on the entire return bend 10 or at least the portion to be expanded.
클래딩을 하지 않은 경우, 리턴벤드(10)에 튜브(20)를 삽입하기 전 4계열 알루미늄 합금을 리턴벤드(10) 내부의 확관된 부위로 삽입하여 제조를 할 수도 있다. If the cladding is not performed, the four series aluminum alloy may be inserted into the expanded portion inside the return bend 10 before the tube 20 is inserted into the return bend 10.
리턴벤드(10)를 확관하는 단계(S200)는 리턴벤드(10)의 끝단을 가열한 후, 코어 바(core bar)를 압입하여 확관시킨다. 하지만 코어 바를 이용한 확관 방법에 한정되지 않고, 확관할 수 있는 어떠한 방법을 사용하여도 무방하다. In step S200 of expanding the return bend 10, the end of the return bend 10 is heated, and then the core bar is press-fitted to expand the return bend 10. However, the method is not limited to the expansion method using the core bar, and any method that can be expanded may be used.
확관되기 전 리턴벤드(10)의 내경은 튜브(20)의 내경과 동일할 수 있다. 리턴벤드(10)와 튜브(20)의 내경이 같아야 실제 열교환기로 사용될 때, 냉매 유동 압력 손실이 줄어들기 때문이다. 따라서 리턴벤드(10)의 확관 부위의 내경은 튜브(20)의 외경보다 같거나 약간 긴 것이 바람직하다. 추후 브레이징 단계(S500)에서 리턴벤드(10)를 가열하는 경우, 필러 등의 용접물질이 리턴벤드(10)와 튜브(20)가 접하는 면에 모세관 현상에 의해 스며들 정도로, 확관된 부위의 리턴벤드(10) 내경이 튜브(20)의 외경보다 긴 것이 바람직하다. The inner diameter of the return bend 10 may be the same as the inner diameter of the tube 20 before expansion. This is because when the return bend 10 and the tube 20 have the same inner diameter, when used as an actual heat exchanger, the refrigerant flow pressure loss is reduced. Therefore, the inner diameter of the expansion portion of the return bend 10 is preferably equal to or slightly longer than the outer diameter of the tube 20. In the case of heating the return bend 10 in the brazing step S500 later, the return of the expanded portion is such that a welding material such as a filler penetrates the surface where the return bend 10 and the tube 20 come into contact with each other by capillary action. It is preferable that the inner diameter of the bend 10 is longer than the outer diameter of the tube 20.
한편 필러를 삽입하는 단계(S300)는 생략될 수도 있다. 필러 삽입 단계를 생략하는 실시예는 도 7을 참고하여 추후 설명하도록 한다. Meanwhile, inserting the filler (S300) may be omitted. An embodiment in which the filler insertion step is omitted will be described later with reference to FIG. 7.
필러(30)는 리턴벤드(10)의 확관된 부위에 삽입될 수 있으며 브레이징 단계(S500)에서 가열되면 액체 상태로 변한 후 리턴벤드(10)와 튜브(20)가 접하는 면 사이로 모세관 현상에 의해 스며들게 된다. The filler 30 may be inserted into an extended portion of the return bend 10, and when heated in the brazing step S500, the filler 30 may be changed into a liquid state by capillary action between the surfaces of the return bend 10 and the tube 20. It will soak in.
상기 필러(30)가 리턴벤드(10) 내부에 삽입된 후 리턴벤드(10)의 내주면 상에 고정될 수 있도록 리턴벤드(10)의 외주면을 압착한다. 튜브(20)가 삽입될 때 필러(30)가 흐트러지거나 위치가 변경되는 것을 방지하기 위함이다. 또한 필러(30)와 리턴벤드(10)가 고르게 접촉됨으로써 브레이징 시 열전달이 원활하게 이루어져 필러가 더욱 잘 녹을 수 있게 된다.After the filler 30 is inserted into the return bend 10, the outer circumferential surface of the return bend 10 may be compressed to be fixed on the inner circumferential surface of the return bend 10. This is to prevent the filler 30 from being disturbed or changed in position when the tube 20 is inserted. In addition, since the filler 30 and the return bend 10 are evenly contacted, the heat transfer is smoothed during brazing, so that the filler can be more melted.
또한 필러(30)는 내부가 텅빈 도넛 형태로 구비될 수 있다. 필러(30)가 브레이징에 의해 녹은 후 리턴벤드(10)와 튜브(20) 사이로 녹아 스며들 때, 중심부에 있던 필러(30)는 중력에 의해서 아래로 떨어지게 되며, 이는 곧 용접 불량으로 이어질 수 있다. 따라서 녹은 필러(30)가 모두 리턴벤드(10)와 튜브(20) 사이로 모세관 현상에 의해 스며들 수 있도록 적정량의 필러(30)만 설치되는 것이 바람직하며, 내부가 텅빈 고리 형태로 구비되는 것이 바람직할 것이다. In addition, the filler 30 may be provided in a hollow donut shape. When the filler 30 melts by brazing and then seeps into between the return bend 10 and the tube 20, the filler 30 in the center falls down by gravity, which may soon lead to welding failure. . Therefore, it is preferable that only the appropriate amount of filler 30 is installed so that all of the melted filler 30 penetrates between the return bend 10 and the tube 20 by capillary action, and the inside is provided in the form of an empty ring. something to do.
또한 필러(30)는 4계열 알루미늄 합금과 Nocolok 플럭스가 혼합된 물질에 해당할 수 있다. 상기 필러(30)는 알루미늄의 녹는점보다 낮으며, 상기 플럭스는 필러(30)가 잘 녹아 스며들도록 하는 역할을 한다. In addition, the filler 30 may correspond to a material in which the 4-series aluminum alloy and the Nocolok flux are mixed. The filler 30 is lower than the melting point of aluminum, and the flux serves to allow the filler 30 to melt well.
또한 브레이징단계(S500)는 토치를 이용하여 각각의 리턴벤드(10)를 개별적으로 가열하는 토치 브레이징 방식과, 주변 공기의 온도를 높여서 다수개의 리턴벤드(10)를 한번에 가열할 수 있는 CAB(Controlled Atmospheric Brazing) 브레이징 방식이 있다.In addition, the brazing step (S500) is a torch brazing method for heating each return bend 10 individually using a torch, and CAB (Controlled) which can heat a plurality of return bends 10 at once by increasing the temperature of ambient air. Atmospheric Brazing).
CAB 브레이징 방식을 사용하는 경우, 다수개의 리턴벤드(10)에 동일한 열을 가할 수 있어 리턴벤드(10)와 튜브(20) 사이의 결합 또는 용접이 고르게 이루어지며, 결합 또는 용접의 편차가 낮아지는 장점이 있다. In the case of using the CAB brazing method, the same heat can be applied to the plurality of return bends 10 so that the joining or welding between the return bends 10 and the tube 20 is made even and the variation in the joining or welding is lowered. There is an advantage.
하지만 내부가 텅빈 고리 형태의 필러(30)가 아닌 원판 형태의 필러를 리턴벤드에 삽입하고 이와함께 CAB 브레이징 방식을 사용하는 경우, 필러(30)에 의해 리턴벤드(10) 내부에 갇히게 된 공기로 인해 용접 불량이 나타날 수 있다. CAB 브레이징은 고순도의 불활성 가스 분위기에서 이루어져야 하며, 산소나 수증기가 소량만 존재하여도 브레이징 시 접합 불량이 발생할 수 있기 때문이다. 따라서 고리 형태의 필러(30)를 리턴벤드(10) 내부에 삽입하여 유동 통로를 만들어 줌으로써 공기가 갇히는 것을 방지하여 용접이 더욱 잘 일어날 수 있도록 한다.However, when a disc-shaped filler is inserted into the return bend, instead of the hollow ring-shaped filler 30, and the CAB brazing method is used together, the air trapped inside the return bend 10 by the filler 30. This can lead to poor welding. CAB brazing must be performed in an inert gas atmosphere of high purity, and even if only a small amount of oxygen or water vapor can cause a poor bonding during brazing. Therefore, by inserting the ring-shaped filler 30 into the return bend 10 to create a flow passage to prevent the air is trapped so that the welding can occur better.
튜브 삽입은 확관된 리턴벤드(10)의 끝단까지 모두 삽입하는 것이 바람직하며, 필러(30)가 삽입된 경우, 필러(30)가 설치된 위치와 접할 수 있도록 삽입하는 것이 바람직하다. Tube insertion is preferably inserted all the way to the end of the returned return bend 10, when the filler 30 is inserted, it is preferable to insert so that the filler 30 is in contact with the installed position.
도 4 내지 도 7은 본 발명 공기조화기의 제조방법에 따른 리턴벤드(10)와 튜브(20)가 결합되는 다양한 실시예들을 각각 도시한 것이다. 4 to 7 illustrate various embodiments in which the return bend 10 and the tube 20 are coupled to the air conditioner according to the present invention.
도 4를 살펴보면, 리턴벤드(10) 내부면은 4계열 알루미늄 합금으로 클래딩 처리되어 있다. 다만 클래딩 처리는 리턴벤드(10) 내부 전체 또는 확관될 부위에만 되어도 무방하다. 또한 별도의 클래딩 처리 없이 튜브(20)를 삽입하기 전에 4계열 알루미늄 합금을 리턴벤드(10)에 삽입하여도 무방하다. 4, the inner surface of the return bend 10 is clad with a four series aluminum alloy. However, the cladding treatment may be performed only on the entire inside of the return bend 10 or a portion to be expanded. In addition, the four series aluminum alloy may be inserted into the return bend 10 before the tube 20 is inserted without a separate cladding treatment.
클래딩 처리된 리턴벤드(10)의 양 끝단은 리턴벤드 확관단계(S200)에서 확관된 후, 상기 확관단계(S200)에서 확관된 부위의 끝단을 한번 더 확관하는 재확관단계를 거치게 된다. Both ends of the cladding return bend 10 is expanded in the return bend expansion step (S200), and then undergoes a re-expansion step of expanding the end of the portion expanded in the expansion step (S200) once more.
상기 재확관단계를 통해 리턴벤드(10)의 양 끝단은 2단 계단 형태로 확관된 형태를 보이게 된다. 리턴벤드(10)의 기존의 내경(L)보다 상기 확관단계(S200)에서 확관된 내경(L1)이 더 크고 상기 재확관단계에서 확관된 내경(L2)는 상기 확관단계(S200)에서 확관된 내경(L1)보다 더 크다.Through the re-expansion step, both ends of the return bend 10 may be expanded into a two-step staircase shape. The inner diameter L1 expanded in the expansion step S200 is larger than the existing inner diameter L of the return bend 10, and the inner diameter L2 expanded in the re-expansion step is expanded in the expansion step S200. It is larger than the inner diameter L1.
상기 확관단계(S200)에서 확관된 부위는 제1확관부(12)에 해당하며 상기 재확관단계를 통해 확관된 부위는 제2확관부(13)에 해당한다. 제1확관부(12)의 내경보다 제2확관부(13)의 내경이 더 크다. The site expanded in the expansion step (S200) corresponds to the first expansion unit 12, and the site expanded through the re-expansion step corresponds to the second expansion unit (13). The inner diameter of the second expanding portion 13 is larger than the inner diameter of the first expanding portion 12.
필러(30)는 고리형태를 가질 수 있으며 재확관단계에서 확관된 부위에 삽입될 정도의 외경을 가질 수 있다. 상기 필러(30)의 고리부분은 상기 재확관단계에서 확관된 내경(L2)과 확관단계(S200)에서 확관된 내경(L1)의 차이만큼의 폭을 가질 수 있다. 따라서 튜브(20)가 삽입되었을 때 필러(30)와 튜브(20)가 접할 수 있게 된다. The filler 30 may have an annular shape and may have an outer diameter such that the filler 30 is inserted into the expanded portion in the re-expansion step. The ring portion of the filler 30 may have a width equal to the difference between the inner diameter L2 expanded in the re-expansion step and the inner diameter L1 expanded in the expansion step S200. Therefore, when the tube 20 is inserted, the filler 30 and the tube 20 may come into contact with each other.
또한 튜브(20)를 삽입하기 전에 필러(30)를 리턴벤드(10) 내주면에 고정시키기 위해서 필러(30)가 위치한 부분의 리턴벤드(10) 외주면을 압착시키게 된다. In addition, in order to fix the filler 30 to the inner circumferential surface of the return bend 10 before inserting the tube 20, the outer circumferential surface of the return bend 10 of the portion where the filler 30 is positioned is compressed.
상기 확관단계(S200)에서 확관된 내경(L1)과 리턴벤드(10)의 기존 내경(L)과의 차이는 튜브(20)의 두께와 같은 것이 바람직하다. 즉, 튜브(20)의 내경은 리턴벤드(10)의 내경(L)과 같게 된다. 이는 리턴벤드(10)와 튜브(20) 사이의 결합 후 냉매가 통과할 때 냉매 유동의 압력 손실을 최소화하기 위함이다. The difference between the inner diameter L1 expanded in the expansion step S200 and the existing inner diameter L of the return bend 10 is preferably equal to the thickness of the tube 20. That is, the inner diameter of the tube 20 is equal to the inner diameter L of the return bend 10. This is to minimize the pressure loss of the refrigerant flow when the refrigerant passes after the coupling between the return bend 10 and the tube 20.
튜브(20)의 삽입은 확관단계(S200)에서 확관된 부위까지 삽입되게 되며 튜브(20)의 외주면과 확관단계(S200)에서 확관된 내주면이 서로 접하게 된다. Insertion of the tube 20 is inserted up to the portion expanded in the expansion step (S200) and the outer peripheral surface of the tube 20 and the inner peripheral surface expanded in the expansion step (S200) is in contact with each other.
필러(30) 및 튜브(20)의 삽입이 완료되면 브레이징을 한다. 브레이징은 CAB 브레이징 방식을 사용하며 브레이징의 결과 필러(30)가 녹아 튜브(20)와 튜브(20)의 외주면과 접하고 있는 확관단계(S200)에서 확관된 내주면 사이로 모세관 현상에 의해 스며들게 된다. The insertion of the filler 30 and the tube 20 is completed by brazing. Brazing uses the CAB brazing method and the filler 30 is melted as a result of brazing soaked by the capillary phenomenon between the tube 20 and the inner circumferential surface expanded in the expansion step (S200) in contact with the outer circumferential surface of the tube 20.
도 5는 도 4와 같이 재확관단계없이 제조공정을 진행하는 실시예이다. 필러(30)를 확관단계(S200)에서 확관된 부위의 가장 깊숙한 곳까지 삽입한 후, 필러(30)가 구비된 부위의 리턴벤드(10) 외주면을 압착하여 필러(30)가 고정될 수 있도록 한다. 또한 도 4와 마찬가지로 리턴벤드(10)의 내경은 튜브(20)의 내경과 같게 구비되며, 5 is an embodiment of proceeding the manufacturing process without the re-expansion step as shown in FIG. After inserting the filler 30 to the deepest part of the portion expanded in the expanding step (S200), the outer surface of the return bend 10 of the portion provided with the filler 30 is compressed to allow the filler 30 to be fixed. do. In addition, the inner diameter of the return bend 10 is the same as the inner diameter of the tube 20, as shown in Figure 4,
한편 필러(30)는 중심부가 비어있는 도넛 형태로 구비될 수 있는데 이는 상기 언급했던 것처럼 CAB브레이징 시 리턴벤드(10) 내부에 공기가 트랩되는 것을 방지하여 브레이징의 불량을 방지하기 위함이다. On the other hand, the filler 30 may be provided in the form of a donut with an empty center, which is to prevent the defect of the brazing by preventing the air trapped inside the return bend 10 when CAB brazing as mentioned above.
도 6은 도 5에서 리턴벤드(10)를 조금 더 개량한 것에 해당한다. 확관단계(S200)에서 확관된 부위의 끝단을 상기 확관된 부위의 내경보다 더 커지도록 벤딩 처리한다. 이는 튜브(20)의 삽입이 시작되는 리턴벤드(10)의 확관된 끝단의 내경을 더욱 커지도록 하여 튜브(20)의 삽입이 원활할 수 있도록 돕는다. 6 corresponds to a further improvement of the return bend 10 in FIG. 5. In the expansion step (S200), the end of the expanded portion is bent to be larger than the inner diameter of the expanded portion. This helps the insertion of the tube 20 to be smooth by increasing the inner diameter of the expanded end of the return bend 10 at which the insertion of the tube 20 begins.
도 6 또한 도 4와 마찬가지로 리턴벤드(10)의 내경이 튜브(20)의 내경과 같게 구비되며, CAB 브레이징 시 리턴벤드(10) 내부에 공기가 트랩되는 것을 방지하기 위하여 필러(30)는 고리 형태로 구비될 수 있다. 6 and 4, the inner diameter of the return bend 10 is provided to be the same as the inner diameter of the tube 20, and the filler 30 is looped to prevent trapping of air inside the return bend 10 when CAB brazing. It may be provided in the form.
도 7은 필러(30)를 삽입하지 않고 리턴벤드(10)와 튜브(20)를 이을 수 있는 실시예이다. 리턴벤드(10) 내부는 4계열 알루미늄 합금으로 클래드되고, 리턴밴드(10)의 양 끝단은 튜브(20)가 삽입될 수 있도록 확관된다. 리턴밴드(10)에 삽입되는 튜브(20)에는 Nocolok 플럭스가 도포된다. 7 is an embodiment in which the return bend 10 and the tube 20 can be connected without inserting the filler 30. The return bend 10 is clad with a four series aluminum alloy, and both ends of the return band 10 are expanded to allow the tube 20 to be inserted. Nocolok flux is applied to the tube 20 inserted into the return band 10.
리턴벤드(10)의 내경과 튜브(20)의 내경은 동일하며 튜브(20)가 리턴벤드(10) 내부로 삽입되면 튜브(20)의 외주면과 리턴벤드(10)의 확장된 부위의 내주면은 서로 접하게 된다. The inner diameter of the return bend 10 and the inner diameter of the tube 20 are the same, and when the tube 20 is inserted into the return bend 10, the outer circumferential surface of the tube 20 and the inner circumferential surface of the extended portion of the return bend 10 are You will encounter each other.
튜브(20)가 리턴벤드(10)에 삽입된 상태에서 브레이징을 하게 되면 리턴벤드(10) 내부에 클래드된 4계열 알루미늄 합금과 튜브(20)의 외주면에 도포된 플럭스가 서로 반응을 하여 필러와 같은 역할을 하게 된다. When the tube 20 is brazed while being inserted into the return bend 10, the four series aluminum alloy clad inside the return bend 10 and the flux applied to the outer circumferential surface of the tube 20 react with each other to form a filler and It will play the same role.
4계열 알루미늄 합금은 알루미늄으로 구성되어 있는 리턴벤드(10)나 튜브(20)보다 녹는점이 낮으며 브레이징 시 주변 공기 온도는 4계열 알루미늄 합금의 녹는점보다는 높고 알루미늄의 녹는점보다는 낮게 유지하는 것이 바람직하다. The four series aluminum alloy has a lower melting point than the return bend 10 or the tube 20 composed of aluminum, and the brazing ambient air temperature is higher than the melting point of the four series aluminum alloy and lower than the melting point of the aluminum. Do.
도 7과 같은 경우, 필러(30)를 추가적으로 삽입하여도 무방하다. 필러(30)없이 제조를 진행하게될 경우, 리턴벤드(10)와 튜브(20) 사이를 완전히 채울만한 재료가 부족할 수도 있으므로 필러(30)를 추가로 삽입하는 것이 불량률을 감소시킬 수 있는 한 방편이 될 수 있다. In the case of FIG. 7, the filler 30 may be additionally inserted. If the manufacturing process is performed without the filler 30, there may be a lack of sufficient material to completely fill the space between the return bend 10 and the tube 20. As a result, the additional insertion of the filler 30 may reduce the defective rate. This can be
본 발명은 다양한 형태로 변형되어 실시될 수 있을 것인바 상술한 실시예에 그 권리범위가 한정되지 않는다. 따라서 변형된 실시예가 본 발명 특허청구범위의 구성요소를 포함하고 있다면 본 발명의 권리범위에 속하는 것으로 보아야 할 것이다.The present invention may be practiced in various forms and is not limited to the above-described embodiment. Therefore, if the modified embodiment includes the components of the claims of the present invention will be seen as belonging to the scope of the present invention.

Claims (20)

  1. 복수개의 튜브들과 상기 튜브들을 연결하는 하나 이상의 리턴벤드가 구비되는 열교환기를 포함하는 공기조화기의 제조방법에 있어서,In the manufacturing method of the air conditioner comprising a plurality of tubes and a heat exchanger having at least one return bend connecting the tubes,
    상기 리턴벤드 내부를 알루미늄 합금으로 클래딩하는 클래딩단계;A cladding step of cladding the inside of the return bend with an aluminum alloy;
    상기 리턴벤드의 끝단을 확관하는 확관단계;An expansion step of expanding an end of the return bend;
    상기 리턴벤드의 확관된 부위로 상기 튜브를 삽입하는 튜브삽입단계;A tube insertion step of inserting the tube into the expanded portion of the return bend;
    상기 튜브가 삽입된 상기 리턴벤드를 가열하는 브레이징단계;를 포함하는 공기조화기의 제조방법.Brazing step of heating the return bend the tube is inserted; manufacturing method of an air conditioner comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 리턴벤드의 내경과 상기 튜브의 내경은 동일한 것을 특징으로 하는 공기조화기의 제조방법.The inner diameter of the return bend and the inner diameter of the tube is the manufacturing method of the air conditioner.
  3. 제2항에 있어서,The method of claim 2,
    상기 확관단계 후 상기 튜브삽입단계 전 상기 리턴벤드의 내부에 필러를 삽입하는 필러삽입단계;를 더 포함하는 공기조화기의 제조방법.And a filler insertion step of inserting a filler into the return bend after the expansion step and before the tube insertion step.
  4. 제3항에 있어서,The method of claim 3,
    상기 확관단계에서 확관된 부위에 필러를 삽입하는 것을 특징으로 하는 공기조화기의 제조방법.Method of manufacturing an air conditioner, characterized in that the filler is inserted into the site of expansion in the expansion step.
  5. 제3항에 있어서,The method of claim 3,
    상기 확관된 부위의 끝단을 한번 더 확관하는 재확관단계;를 더 포함하는 것을 특징으로 하는 공기조화기의 제조방법.Re-expansion step of expanding the end of the expanded portion once more; air conditioning apparatus further comprising a.
  6. 제5항에 있어서,The method of claim 5,
    상기 재확관단계에서 확관된 부위에 필러를 삽입하는 것을 특징으로 하는 공기조화기의 제조방법.The method of manufacturing an air conditioner, characterized in that the filler is inserted into the site expanded in the re-expansion step.
  7. 제3항에 있어서,The method of claim 3,
    상기 확관된 부위의 끝단은 상기 확관된 부위의 내경보다 더 큰 내경을 가지도록 벤딩 처리되는 것을 특징으로 하는 공기조화기의 제조방법.The end of the expanded portion is a method of manufacturing an air conditioner, characterized in that the bending process to have a larger inner diameter than the inner diameter of the expanded portion.
  8. 제3항 내지 제7항 중 어느 한 항에 있어서,The method according to any one of claims 3 to 7,
    상기 필러는 링 형태로 구비되는 것을 특징으로 하는 공기조화기의 제조방법.The filler is a manufacturing method of the air conditioner, characterized in that provided in the form of a ring.
  9. 제8항에 있어서,The method of claim 8,
    상기 브레이징단계는 CAB 방식인 것을 특징으로 하는 공기조화기의 제조방법.The brazing step is a method of manufacturing an air conditioner, characterized in that the CAB method.
  10. 제2항 내지 제7항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 7,
    상기 알루미늄 합금은 4계열 알루미늄 합금인 것을 특징으로 하는 공기조화기의 제조방법.The aluminum alloy is a manufacturing method of the air conditioner, characterized in that the four series aluminum alloy.
  11. 제10항에 있어서,The method of claim 10,
    상기 튜브삽입단계 전에 상기 튜브 표면에 플럭스를 도포하는 도포단계;를 더 포함하는 공기조화기의 제조방법.And a coating step of applying flux to the surface of the tube before the tube insertion step.
  12. 내부면이 알루미늄 합금으로 클래드되고 끝단이 확관되어 있는 리턴벤드;A return bend whose inner surface is clad with an aluminum alloy and whose ends are extended;
    상기 리턴벤드 내부로 삽입되는 튜브;A tube inserted into the return bend;
    상기 리턴벤드 내부에 구비되는 필러; 및,A filler provided inside the return bend; And,
    상기 필러는 브레이징 시 상기 리턴벤드와 상기 튜브 사이의 틈새를 메우는 것을 특징으로 하는 공기조화기.The filler is an air conditioner, characterized in that for filling the gap between the return bend and the tube when brazing.
  13. 제12항에 있어서,The method of claim 12,
    상기 리턴벤드 내경과 상기 튜브의 내경은 동일한 것을 특징으로 하는 공기조화기.And the inner diameter of the return bend and the inner diameter of the tube are the same.
  14. 제13항에 있어서,The method of claim 13,
    상기 리턴벤드의 확관된 부위의 직경과 확관되지 않은 부위의 직경의 차이는 상기 튜브의 두께와 동일한 것을 특징으로 하는 공기조화기.And wherein a difference between the diameter of the expanded portion of the return bend and the diameter of the non-expanded portion is equal to the thickness of the tube.
  15. 제12항에 있어서, The method of claim 12,
    상기 필러는 상기 튜브의 끝단부에 구비되는 것을 특징으로 하는 공기조화기.The filler is an air conditioner, characterized in that provided at the end of the tube.
  16. 제12항에 있어서,The method of claim 12,
    상기 리턴벤드의 확관된 부위의 끝단은 상기 확관된 부위의 직경보다 더 큰 직경을 가지는 제2확관부를 포함하는 것을 특징으로 하는 공기조화기. An end of the expanded portion of the return bend comprises a second expansion portion having a diameter larger than the diameter of the expanded portion.
  17. 제16항에 있어서,The method of claim 16,
    상기 필러는 상기 제2확관부에 구비되는 것을 특징으로 하는 공기조화기.The filler is an air conditioner, characterized in that provided in the second expansion portion.
  18. 제15항 내지 제17항 중 어느 한 항에 있어서,The method according to any one of claims 15 to 17,
    상기 필러는 중공 형상의 링 형태인 것을 특징으로 하는 공기조화기.The filler is an air conditioner, characterized in that the ring-shaped hollow.
  19. 제18항에 있어서,The method of claim 18,
    상기 브레이징은 CAB 브레이징 방식인 것을 특징으로 하는 공기조화기.The brazing is an air conditioner, characterized in that the CAB brazing method.
  20. 내부면이 알루미늄 합금으로 클래드된 리턴벤드;A return bend with an inner surface clad with an aluminum alloy;
    상기 리턴벤드 내부로 삽입되고 외부면에 플럭스가 도포되는 튜브; A tube inserted into the return bend and flux coated on an outer surface thereof;
    상기 튜브가 상기 리턴벤드 내부로 삽입된 후 브레이징 시 상기 리턴벤드에 클래드된 알루미늄 합금과 상기 튜브에 도포된 플럭스가 반응하여 상기 튜브와 상기 리턴벤드 사이의 틈새를 메우는 것을 특징으로 하는 공기조화기.And the aluminum alloy clad on the return bend and the flux applied to the tube react to fill the gap between the tube and the return bend when the tube is inserted into the return bend.
PCT/KR2017/003315 2016-04-28 2017-03-28 Method for manufacturing air conditioner WO2017188608A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160052386A KR20170123130A (en) 2016-04-28 2016-04-28 Manufacturing of air conditioner
KR10-2016-0052386 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017188608A1 true WO2017188608A1 (en) 2017-11-02

Family

ID=60160845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003315 WO2017188608A1 (en) 2016-04-28 2017-03-28 Method for manufacturing air conditioner

Country Status (2)

Country Link
KR (1) KR20170123130A (en)
WO (1) WO2017188608A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114041405A (en) * 2021-11-20 2022-02-15 华北水利水电大学 Soil, straw and liquid cyclone mixing and straw soil composite pipe conical extruding device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102097462B1 (en) 2019-05-09 2020-04-06 (주)에프원공조 A return-bend for a heat exchanger and the manufacturing method of it
KR102209800B1 (en) * 2019-10-07 2021-01-29 삼원동관 주식회사 Brazing joint method for pipes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960000663B1 (en) * 1993-08-24 1996-01-11 백원두 Connecting method for band for welding pipes
KR200146331Y1 (en) * 1996-01-09 1999-06-15 조주현 Joint of copper and copper alloy pipe
KR20080089974A (en) * 2007-04-03 2008-10-08 엘지전자 주식회사 Heat exchanger of air conditioner
KR20120002212U (en) * 2010-09-17 2012-03-27 주식회사 동화엔텍 Brazing structure of connecting tube in radiator
KR20150055910A (en) * 2013-11-14 2015-05-22 한국생산기술연구원 Pipe connecting method using hybrid bonding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960000663B1 (en) * 1993-08-24 1996-01-11 백원두 Connecting method for band for welding pipes
KR200146331Y1 (en) * 1996-01-09 1999-06-15 조주현 Joint of copper and copper alloy pipe
KR20080089974A (en) * 2007-04-03 2008-10-08 엘지전자 주식회사 Heat exchanger of air conditioner
KR20120002212U (en) * 2010-09-17 2012-03-27 주식회사 동화엔텍 Brazing structure of connecting tube in radiator
KR20150055910A (en) * 2013-11-14 2015-05-22 한국생산기술연구원 Pipe connecting method using hybrid bonding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114041405A (en) * 2021-11-20 2022-02-15 华北水利水电大学 Soil, straw and liquid cyclone mixing and straw soil composite pipe conical extruding device

Also Published As

Publication number Publication date
KR20170123130A (en) 2017-11-07

Similar Documents

Publication Publication Date Title
WO2017188608A1 (en) Method for manufacturing air conditioner
WO2014092397A1 (en) Heat exchanger and method of manufacturing the same
JPH10339588A (en) Heat exchanger and manufacture thereof
CN106482568B (en) Heat exchanger tube, heat exchanger and its assembly method for heat exchanger
JP2002011569A (en) Heat exchanger and its manufacture
JP2004020174A (en) Flat radiating fin, heat exchanger using it, and its manufacturing method
US6886349B1 (en) Brazed aluminum heat exchanger
WO2017111333A1 (en) Air conditioner and manufacturing method therefor
EP3845851A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
JP2001124481A (en) Heat exchanger
CN208588118U (en) The parallel-flow evaporator used on refrigerator/freezer
WO2018101563A1 (en) Microchannel-type aluminum heat exchanger and manufacturing method therefor
JPH08110189A (en) Manufacture of multilayer heat exchanger
WO2020230738A1 (en) Heat exchanger, heat pump device, and method for manufacturing heat exchanger
JPH07127985A (en) Heat exchanger and its manufacturing method
KR100895278B1 (en) Pipe connection structure of heat exchanger
JP2009190045A (en) Soldering device
JP2003056992A (en) Heat exchanger
KR20090091529A (en) Heat exchanger and air conditioner include the same and manufacturing method of the same
WO2023074328A1 (en) Heat exchanger, air conditioning device, and method for manufacturing heat exchanger
JPS63259395A (en) Finned-tube type heat exchanger
JP2019215113A (en) Radiation panel and air conditioning device
JP2000176576A (en) Heat exchanger and its manufacture
JP7335690B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
WO2022097281A1 (en) Heat exchanger and refrigeration cycle apparatus equipped with same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789793

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789793

Country of ref document: EP

Kind code of ref document: A1