WO2017188465A1 - 폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물 - Google Patents

폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물 Download PDF

Info

Publication number
WO2017188465A1
WO2017188465A1 PCT/KR2016/004325 KR2016004325W WO2017188465A1 WO 2017188465 A1 WO2017188465 A1 WO 2017188465A1 KR 2016004325 W KR2016004325 W KR 2016004325W WO 2017188465 A1 WO2017188465 A1 WO 2017188465A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
waste
products
aluminate
Prior art date
Application number
PCT/KR2016/004325
Other languages
English (en)
French (fr)
Inventor
이건호
우상일
양준호
민승의
이형우
Original Assignee
한일시멘트(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한일시멘트(주) filed Critical 한일시멘트(주)
Priority to PCT/KR2016/004325 priority Critical patent/WO2017188465A1/ko
Publication of WO2017188465A1 publication Critical patent/WO2017188465A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention is economical and environmentally friendly using calcium sulfo aluminate minerals prepared from waste by-products, and crude steel type low carbon mixtures that can improve compressive strength while expressing roughness and shrinkage control function by addition of calcium sulfo aluminate minerals. It relates to a cement composition.
  • Cracks in concrete structures can cause serious problems and damage the appearance of the structure. These cracks are caused by a variety of causes, the cracks may occur due to plastic shrinkage, self shrinkage, dry shrinkage, and the like.
  • Plastic shrinkage occurs when moisture evaporates on the exposed surface faster than bleeding inside the concrete due to exposure to low humidity atmosphere or wind after the concrete is poured. It is caused by the self-desiccation phenomenon whereby the relative humidity in concrete decreases as the water used in the compounding is consumed by the hydration reaction. It is caused by the volume of water remaining as it is not reacting and drying.
  • calcium sulfo aluminate minerals are added to control various shrinkage causes such as dry shrinkage, and calcium sulfo aluminate minerals prepared from waste by-products are added to have a function of roughness and shrinkage control. It is to provide a cement composition to be expressed.
  • the crude steel low carbon mixed cement composition containing the aluminate-based minerals utilizing the waste by-products of the present invention to achieve the above object is calcium sulfo aluminate minerals 5 to 30 prepared from waste by-products based on 100 parts by weight of one ordinary portland cement. It is characterized by including 1 part by weight to 6 parts by weight of gypsum.
  • the calcium sulfo aluminate mineral is mixed by 40 to 150 parts by weight of limestone and 10 to 100 parts by weight of gypsum with respect to 100 parts by weight of waste by-products.
  • the waste by-product here does not limit the alumina component content.
  • 1 to 5 parts by weight of polybutadiene and 1 to 3 parts by weight of trimethylated silica are further blended with respect to 100 parts by weight of cement.
  • 1 to 5 parts by weight of monoethanolamine may be added to 100 parts by weight of cement.
  • the present invention has the advantages of eco-friendly and economical by utilizing industrial waste by-products, and control the cracks by reducing shrinkage, and also prevent the degradation of workability and strengthen the strength even by early strength expression.
  • the crude steel-type low carbon mixed cement composition containing the aluminate-based mineral utilizing the waste by-product of the present invention is 5 to 30 parts by weight of calcium sulfo aluminate mineral prepared from the waste by-product based on 100 parts by weight of one ordinary portland cement, and 1 to 30 gypsum. It is characterized by including 6 parts by weight.
  • the calcium sulfo aluminate mineral exhibits densification and swelling characteristics of the tissue due to ettringite formation during hydration, thereby controlling the shrinkage of the paste during curing.
  • Calcium sulfoaluminate-based minerals produced here are industrial waste by-products, and are characterized in that they are manufactured at a firing temperature of 100 ° C. or higher than the firing temperature of one type of ordinary Portland cement. Low purity CSA content 10 ⁇ 50 wt%)
  • the calcium sulfo aluminate mineral is prepared by calcination and cooling after grinding by mixing 40 to 150 parts by weight of limestone, 10 to 100 parts by weight of gypsum and 5 to 10 parts by weight of bio tea, based on 100 parts by weight of waste byproducts. It is characterized by.
  • the waste by-products are appropriate to use process sludge, by-products containing alumina as industrial waste by-products generated in various industries.
  • waste by-products and limestone, gypsum and bio-tea are mixed in the blending range to be pulverized by a known pulverizer, and the pulverized raw material is calcined and cooled to produce a calcium sulfo aluminate mineral.
  • the calcium sulfo aluminate mineral is manufactured by adding bio tea in addition to waste by-products, limestone and gypsum as mentioned above.
  • the reason for adding the bio tea is to fix and pour carbon dioxide generated during the manufacturing process and after pouring.
  • a large amount of volatiles (Dulfurm Chiorine, Akali, etc.) may be generated in the manufacture of cement clinker, which may cause coating troubles.
  • the bio-car is contained so as to adsorb or stabilize the volatiles so as to save energy by not using a separate volatile removing device or using less.
  • the biochar is a porous high carbon material obtained by pyrolyzing biomass and waste resources under anoxic or low oxygen conditions.
  • the bio-car is added during the manufacture of calcium sulfo aluminate minerals to fix the carbon generated during the sintering process, and when the cement of the present invention is poured, it is possible to fix the carbon in the exhaust gas, thereby significantly increasing the carbon fixed amount. will be.
  • the high pH of the bio-tea to express the function of improving the durability to prevent the neutralization after pouring.
  • the volatilized substance (Dulfurm Chiorine, Akali, etc.) as mentioned above. This may occur a large amount of coating trouble, which is to control the generation of the coating trouble by the adsorption and fixing of the volatiles such as volatiles.
  • the gypsum corresponds to the composition to be added since only a calcium sulfo aluminate mineral may be added, so problems due to quenching may occur.
  • the present invention provides an example in which 1 to 5 parts by weight of polybutadiene and 1 to 3 parts by weight of trimethyl silica are added in addition to 100 parts by weight of cement.
  • the reason for adding polybutadiene and trimethylated silica as described above is to double the shrinkage control effect by allowing a tight paste to be formed in addition to the shrinkage control of the paste by calcium sulfo aluminate.
  • the present invention also provides an example in which 1 to 5 parts by weight of monoethanolamine is added to 100 parts by weight of cement in addition to the above composition.
  • Ethanolamine (Monoethanolamine) is monoethanolamine CO3 2- ions are attached around amine that functions as a modifier of the compositions noted above for the other a hydrophilic group is CO3 2- attached on the contact process according to the composition and formulation - O ⁇ is attached to the (+) functional groups around the particles of other compositions to hydrophilize the particles around other compositions.
  • the surface of the other composition is made hydrophilic so that the cement-hydrogen reaction is more solid, so that a particularly advantageous effect is expressed in strength. It is also natural that the shrinkage is reduced by the crosslinking action due to the strengthening of the bonding force between these compositions.
  • Table 2 shows a sample using the cement of the present invention (Example 1), a sample using only one ordinary portland cement (Comparative Example 1), using the same composition as the cement of the present invention, but using the imported calcium sulfo aluminate mineral. The result of experiment with the sample (comparative example 2) is shown.
  • Example 1 uses a cement containing 10 parts by weight of calcium sulfo aluminate mineral and 3 parts by weight of gypsum prepared from waste by-products with respect to 100 parts by weight of one ordinary portland cement
  • Comparative Example 2 is one kind of ordinary portland cement 100 It uses cement containing 10 parts by weight of imported calcium sulfo aluminate mineral and 3 parts by weight of gypsum.
  • Comparative Example 2 and Example 1 are similar in fluidity to Comparative Example 1, but it can be seen that favorable results are obtained in compressive strength and shrinkage.
  • the shrinkage is significantly reduced by the action of calcium sulfo aluminate.
  • the initial strength (7 days) is improved by the addition of calcium sulfo aluminate. I can see that it is not.
  • Comparative Example 2 and Example 1 it can be seen that the fluidity, compressive strength, and shrinkage resulted in almost similar results, which were produced from commercialized (imported) calcium sulfo aluminate minerals and waste by-products prepared in the present invention. It is believed that calcium sulfo aluminate minerals express the same function.
  • Table 3 below is an experimental result of the flow, compressive strength and shrinkage performed in the same manner as in the experimental example of Table 2 in addition to Examples 2 and 3 in addition to Comparative Examples 1, 2 and Example 1.
  • Example 2 is blended in the same manner as in Example 1, 10 parts by weight of calcium sulfo aluminate mineral, 3 parts by weight of gypsum, 3 parts by weight of polybutadiene, prepared from waste by-products with respect to 100 parts by weight of one ordinary Portland cement as a cement raw material. 2 parts by weight of trimethylated silica, and Example 3, 10 parts by weight of calcium sulfo aluminate mineral prepared from waste by-products, 100 parts by weight of gypsum, 3 parts by weight of polybutadiene, It is the sample which mix
  • Example 2 As shown in Table 3, it can be seen that the result of Example 2 is better than that of Example 1 in the amount of shrinkage. This is the case of Example 2 where polybutadiene and trimethylated silica are added more than Example 1. It is believed that better results are obtained in the amount of shrinkage by allowing a tight paste to be formed.
  • Example 3 it can be seen that the best result in terms of strength is obtained, which is attributed to the addition of monoethanolamine in Example 3, which is mentioned above.
  • the surface of the compositions is hydrophilized and is believed to be due to strong hydrogen bonding with cement.
  • advantageous results are also obtained in the amount of shrinkage due to the crosslinking action by strengthening the bonding force between the compositions.
  • the present invention has the advantages of being environmentally friendly and economical by utilizing industrial waste by-products, controlling shrinkage by reducing shrinkage, and preventing construction loss and strengthening strength even by early strength expression.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

본 발명은 1종 보통 포틀랜드시멘트 100중량부에 대해 폐부산물로부터 제조된 칼슘설포 알루미네이트 광물 5 내지 30중량부, 석고 1 내지 5중량부를 포함하는 것을 특징으로 하는 폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물에 관한 것이다.

Description

폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물
본 발명은 폐부산물로부터 제조된 칼슘설포 알루미네이트 광물을 사용하여 경제적이며 친환경적이고, 칼슘설포 알루미네이트 광물의 첨가에 의해 조강성 및 수축제어 기능이 발현되도록 하면서 압축강도도 향상시킬 수 있는 조강형 저탄소 혼합시멘트 조성물에 관한 것이다.
콘크리트 구조물에 있어 발생하는 균열은 심각한 문제를 유발할 수도 있고 구조물의 외관을 손상시킨다. 이러한 균열은 다양한 원인에 의해 발생하는 바, 그 원인으로 소성수축, 자기수축, 건조수축 등에 의해 균열이 발생할 수 있다.
소성수축은 콘크리트가 타설된 후 낮은 습도의 대기나 바람에 노출됨으로서 노출된 표면에서 수분증발이 콘크리트 내부에서 블리딩보다 빠르게 일어날 경우 발생하는 것이며, 자기수축은 외부로부터의 수분공급이 없고 일정한 온도 하에서 시멘트의 수화반응에 의해 배합 시 사용된 배합수가 소비되면서 콘크리트 내부의 상대습도가 감소하는 자기건조(self-desiccation) 현상에 의해 발생하는 것이고, 건조수축은 콘크리트가 경화 후 시멘트 페이스트에 함유하고 있는 수분 중 반응하지 않고 남은 수분이 건조되면서 체적이 줄어들어서 발생하는 것이다.
이러한 다양한 수축을 제어하기 위한 콘크리트 조성물이 제시되고 있는 바, 일 예로 대한민국 특허등록 제1361833호에서는 “시멘트 결합재 5 내지 23중량%, 잔골재 32 내지 45중량%, 굵은골재 28 내지 44중량%, 물 1 내지 7중량%, 폴리머 에멀젼 0.1 내지 5중량%, 매크로파이버 0.1 내지 2중량%와, 혼화제로서 감수제 0.1 내지 3중량%를 포함하되, 상기 시멘트 결합재는 조강시멘트 50 내지 80중량%, 칼슘설포알루미네이트 0.1 내지 40중량%, 석고 1 내지 15중량%, 알칼리실리케이트 0.1 내지 5중량%로 조성되고, 상기 폴리머 에멀젼은 중량%로 메틸메타크릴레이트(MMA) 0.1 내지 10%, 상기 메틸메타크릴레이트(MMA)를 제외한 아크릴 80 내지 99%, SBR 라텍스 0.1 내지 15% 및 에틸비닐아세테이트(EVA) 0.1 내지 10%를 포함하는 균열저항성이 우수한 초조강 수밀성 폴리머 개질 매크로파이버 콘크리트 조성물”을 제시하고 있다.
이렇게 기존 시멘트 또는 콘크리트 조성물에 있어 칼슘설포알루미네이트가 첨가되도록 하여 조강성을 확보하면서 균열(수축)을 저감시키고자 하는 기술이 다수 제시되고 있는데 상기와 같은 특성을 갖는 칼슘설포알루미네이트는 전량 수입에 의존하는 알루미나 원광인 보크사이트에 의해 제조되거나 칼슘설포알루미네이트 자체를 수입해서 사용되어야 하는 문제가 있다.
따라서, 본 발명은 건조수축 등 다양한 수축원인을 제어할 수 있도록 하기 위해 칼슘설포 알루미네이트 광물을 첨가하되, 폐부산물로부터 제조된 칼슘설포 알루미네이트 광물이 첨가되도록 하여 조강성, 수축제어 등의 기능이 발현되도록 하는 시멘트 조성물을 제공하고자 함이다.
상기 목적을 달성하기 위해 본 발명의 폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물은 1종 보통 포틀랜드시멘트 100중량부에 대해 폐부산물로부터 제조된 칼슘설포 알루미네이트 광물 5 내지 30중량부, 석고 1 내지 6중량부를 포함하는 것을 특징으로 한다.
하나의 예로 상기 칼슘설포 알루미네이트 광물은 폐부산물 100중량부에 대해 석회석 40 내지 150중량부, 석고 10 내지 100중량부를 혼합하여 분쇄후 소성 및 냉각에 의해 제조되는 것을 특징으로 한다. 여기서 폐부산물은 알루미나 성분 함유량을 한정하지 않는다.
하나의 예로 시멘트 100중량부에 대해 폴리부타디엔 1 내지 5중량부 및 트리메틸화실리카 1 내지 3중량부가 더 배합되는 것을 특징으로 한다.
하나의 예로 시멘트 100중량부에 대해 모노에탄올아민 1 내지 5중량부가 더 배합되는 것을 특징으로 한다.
본 발명은 산업폐부산물을 활용함으로써 친환경적이고 경제적인 장점이 있으며, 수축을 저감시켜 균열을 제어하고 이와 함께 조기강도발현에 의하더라도 시공성 저하를 방지하고 강도를 강화시킬 수 있는 장점이 있다.
또한, 산업 폐부산물을 재활용함으로써 자원 절약은 물론 환경오염 방지와 경제적 이익뿐만 아니라 온실가스 저감효과를 가져오게 된다.
이하 본 발명의 실시 예를 를 첨부되는 도면을 통해 보다 상세히 설명하도록 한다.
본 발명의 폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물은 1종 보통 포틀랜드시멘트 100중량부에 대해 폐부산물로부터 제조된 칼슘설포 알루미네이트 광물 5 내지 30중량부, 석고 1 내지 6중량부를 포함하는 것을 특징으로 한다.
상기 칼슘설포 알루미네이트 광물(CSA)는 수화반응시 에트린자이트(Ettringite)생성에 의한 조직의 치밀화 및 팽창특성을 나타내어 경화과정 등에서 페이스트의 수축을 제어토록 하는 것이다.
특히 본 발명에서는 상기 칼슘설포 알루미네이트 광물이 폐부산물로부터 재활용된 것을 사용함으로써 경제적이며 친환경적인 장점을 갖게 되는 것이다.
여기서 제조되는 칼슘설포알루미네이트계 광물은 산업폐부산물을 사용하며, 1종 보통 포틀랜드시멘트의 소성온도 보다 100℃ 이상의 낮은 소성온도에서 제조하는 것을 특징으로 한다.(고순도 CSA 함량 50~90 중량% 또는 저순도 CSA 함량 10~50 중량%)
이를 더욱 상세히 설명하면 상기 칼슘설포 알루미네이트 광물은 폐부산물 100중량부에 대해 석회석 40 내지 150중량부, 석고 10 내지 100중량부, 바이오차 5 내지 10중량부를 혼합하여 분쇄후 소성 및 냉각에 의해 제조되는 것을 특징으로 한다.
상기 폐부산물은 각종 산업체에서 발생하는 산업 폐부산물로서 알루미나를 함유하고 있는 공정슬러지, 부산물 등을 사용하는 것이 타당하다.
이러한 폐부산물과 석회석, 석고 및 바이오차를 상기 배합범위로 혼합하여 공지의 분쇄기에 의해 분쇄를 하는 것이며 이렇게 분쇄된 원료를 소성 및 냉각을 하여 칼슘설포 알루미네이트 광물을 제조하는 것이다.
특히 상기 칼슘설포 알루미네이트 광물은 상기에서 언급한 바와 같이 폐부산물, 석회석, 석고에 더하여 바이오차가 더 첨가되어 제조되는데 이렇게 바이오차를 더 첨가하는 이유는 제조과정 및 타설후에 발생되는 이산화탄소를 고정시키고 타설후에 중성화를 방지하도록 하는 것이며 시멘트 클링커 제조시 휘발물질(Dulfurm Chiorine, Akali 등)이 다량 발생하여 코팅 트러블을 발생시킬 수 있어 종래에 이런 문제점을 해결하기 위하여 분쇄기의 하부에 공지의 휘발물질 제거장치를 별도로 가동하였으나 상기 바이오차가 함유되어 휘발물질을 흡착 또는 안정화시켜 별도의 휘발물질 제거장치를 사용하지 않거나 적은 사용으로 에너지를 절감시킬 수 있도록 하는 것이다.
상기 바이오차(Biochar)는 바이오매스, 폐자원들을 무산소 또는 저산소 조건에서 열분해함으로서 얻어지는 다공성 고탄소물질이다. 상기 바이오차가 칼슘설포 알루미네이트 광물을 제조시 첨가되어 소성과정 등에서 발생되는 탄소를 고정시키고 본 발명의 시멘트가 타설되는 경우 배기가스 등에서의 탄소를 고정시킬 수 있어 획기적으로 탄소고정량을 늘릴 수 있게 되는 것이다.
즉 이산화탄소 발생을 저감시킬 수 있게 되는 것이다. 또한 바이오차의 높은 pH에 의해 타설후 중성화를 방지토록 하는 내구성향상의 기능도 발현되도록 하는 것이다.
또한 칼슘설포 알루미네이트 광물을 제조시 및 제조된 칼슘설포 알루미네이트 광물과 1종 보통포틀랜드 시멘트 등을 혼합하여 본 발명의 시멘트 조성물 제조시에는 상기에서 언급한 바와 같이 휘발물질(Dulfurm Chiorine, Akali 등)이 다량 발생하여 코팅 트러블이 발생될 수 있는데 이러한 휘발물질을 바이오차가 흡착 및 고정함으로써 코팅트러블의 발생을 제어할 수 있게 되는 것이다.
상기 석고는 칼슘설포 알루미네이트 광물만을 첨가하는 경우 급결에 의한 문제가 발생할 수 있으므로 첨가되는 조성에 해당한다.
한편 본 발명은 상기 조성외에도 시멘트 100중량부에 대해 폴리부타디엔 1 내지 5중량부, 트리메틸화실리카 1 내지 3중량부가 더 배합되는 예를 제시한다. 이와 같이 폴리부타디엔 및 트리메틸화실리카가 첨가되도록 하는 이유는 밀실한 페이스트가 형성되도록 함으로써 칼슘설포 알루미네이트에 의한 페이스트의 수축제어에 더하여 밀실한 페이스트가 형성되도록 함으로써 수축제어효과를 배가시키기 위한 것이다.
이는 폴리부타디엔에 상기 트리메틸화실리카가 분산되고 상호 반응하여 치밀한 도막을 만드는 것에 기인하여 밀실한 페이스트가 유도되는 것이며 이에 더하여 물에 일부 용해되어 알칼리성 분위기를 조성하여 산성화조건을 사전에 차단토록 하여 중성화에 대한 저항성도 향상시키게 되는 것이다.
상기와 같이 폴리부타디엔 및 트리메틸화실리카의 배합범위를 한정하는 이유는 2가지 조성중 하나가 미만으로 첨가되는 경우 도막의 내구성이 현저히 떨어지며, 2가지 조성중 하나가 초과되는 경우 겔 반응이 일어나 도막의 균열, 시공성 저하 등의 문제가 발생되어 상기와 같이 한정하는 것이다.
이에 더하여 본 발명에서는 상기 조성 외에도 시멘트 100중량부에 대해 모노에탄올아민 1 내지 5중량부가 더 배합되는 예도 제시한다. 모노에탄올아민(Monoethanolamine)은 상기에서 언급된 조성들의 개질제로서 기능을 하는 것으로 모노에탄올아민 주위에 CO32- 이온들이 부착되며 타 조성들과 배합에 의한 접촉과정에서 부착된 친수성기인 CO32-의 -O- 가 타 조성들의 입자 주위의 (+)작용기에 부착되면서 타 조성들의 입자주위를 친수화 시키는 것이다.
이렇게 타 조성의 표면을 친수화 시켜 시멘트와 수소결합반응이 더욱 견고히 되도록 하여 특히 강도면에서 유리한 효과가 발현되도록 하는 것이다. 또한 이러한 조성들간의 결합력의 강화로 가교작용에 의해 수축이 저하되는 것은 당연하다.
[실험예]
이하, 본 발명의 실험 예를 통해 바람직한 실시 예를 설명한다. 단, 본 실시예는 본 발명을 설명하기 위한 일예에 불과하며, 본 실시예의 의하여 권리범위를 한정하는 것은 아니다. 본 실험 예에서 콘크리트 배합강도는 일반 강도인 24MPa에서 결정하였으며, 자세한 배합은 하단의 [표 1]에 나타내었다.
표 1
구분 W/B(%) S/a(%) W(㎏/㎥) B(㎏/㎥) AD(B×%) 비고
배합 50.0 48.0 170 340 0.7
W/B : 물/결합재비(W:물, B:결합재)S/a : 세골재율(세골재(S)/전체골재(a)AD : 고성능 AE 감수제
하기 표 2는 본 발명의 시멘트를 사용한 시료(실시예 1), 1종 보통 포틀랜드 시멘트만을 사용한 시료(비교 예 1), 본 발명의 시멘트와 동일한 조성으로 이루어지되 수입된 칼슘설포 알루미네이트 광물을 사용한 시료(비교 예 2)를 가지고 실험한 결과를 나타내고 있다.
여기서 실시 예 1은 1종 보통 포틀랜드시멘트 100중량부에 대해 폐부산물로부터 제조된 칼슘설포 알루미네이트 광물 10중량부, 석고 3중량부가 포함된 시멘트를 사용한 것이고, 비교 예 2는 1종 보통 포틀랜드시멘트 100중량부에 대해 수입된 칼슘설포 알루미네이트 광물 10중량부, 석고 3중량부가 포함된 시멘트를 사용한 것이다.
표 2
시험항목 비교예 비교예2 실시예1 실험방법
흐름 185 184 186 KSF 2476
압축강도(Mpa) 7일 12.6 16.0 16.4 KCI-AD 102
28일 25.3 29.1 28.6
수축량 -450 -373 -371
상기 표 2에서 보는 바와 같이 비교예 1에 비해 비교 예 2 및 실시 예 1의 경우가 유동성에서는 유사하나 압축강도, 수축량에서 유리한 결과가 도출되는 것을 알 수 있다. 즉 칼슘설포 알루미네이트의 작용에 의해 수축량이 현저히 작아지는 것을 알 수 있으며 특히 칼슘설포 알루미네이트의 첨가에 의해 초기강도(7일)가 향상되는 것을 알 수 있고 이러한 초기강도의 향상에도 불구 유동성이 저하되지 않는 것을 알 수 있다.
또한 비교 예 2와 실시 예 1을 비교하면 유동성, 압축강도, 수축량에서 거의 유사한 결과가 도출되는 것을 알 수 있는데 이는 제품화 된(수입된) 칼슘설포 알루미네이트 광물과 본 발명과 같이 폐부산물에서 제조된 칼슘설포 알루미네이트 광물이 동일한 기능을 발현하는 것으로 판단된다.
하기 표 3은 상기 비교예 1, 2 및 실시예 1에 더하여 실시예 2 및 실시 예 3을 추가하여 상기 표 2의 실험 예와 동일한 방법으로 수행된 흐름, 압축강도 및 수축량에 대한 실험결과이다.
실시 예 2는 실시 예 1과 동일하게 배합되면서 시멘트 원료로 1종 보통 포틀랜드시멘트 100중량부에 대해 폐부산물로부터 제조된 칼슘설포 알루미네이트 광물 10중량부, 석고 3중량부, 폴리부타디엔 3중량부, 트리메틸화실리카 2중량부가 배합된 시료이며, 실시 예 3은 1종 보통 포틀랜드시멘트 100중량부에 대해 폐부산물로부터 제조된 칼슘설포 알루미네이트 광물 10중량부, 석고 3중량부, 폴리부타디엔 3중량부, 트리메틸화실리카 2중량부, 모노에탄올아민 2중량부가 배합된 시료이다.
표 3
구분 흐름(mm) 수축량(㎛) 압축강도(MPa) 비고
3일 7일 28일
비교예1 185 -450 7.7 12.6 25.3
실시예1 186 -371 8.4 16.4 28.6
실시예2 185 -348 8.3 17.4 30.1
실시예3 186 -341 9.8 18.6 35.5
상기 표 3에서 보는 바와 같이 실시예 1의 경우보다 실시예 2의 경우가 수축량에서 우수한 결과가 도출되는 것을 알 수 있는데 이는 실시 예 2의 경우가 폴리부타디엔 및 트리메틸화실리카가 실시 예 1보다 더 첨가되도록 하여 밀실한 페이스트가 형성되도록 함으로써 수축량에 있어 더 우수한 결과가 도출되는 것으로 보인다.
또한 이러한 밀실한 페이스트가 형성됨에 의해 강도면에서도 유리한 결과가 도출되는 것을 알 수 있다. 이는 상기에서 언급한 바와 같이 폴리부타디엔에 상기 트리메틸화실리카가 분산되고 상호 반응하여 치밀한 도막이 형성됨에 기인한 것으로 판단된다.
또한 실시 예 3의 경우가 강도면에서 가장 우수한 결과가 도출되는 것을 알 수 있는데 이는 실시 예 3의 경우 모노에탄올아민이 더 첨가됨에 기인한 것으로 판단되는데 이는 상기에서 언급한 바와 같이 모노에탄올아민이 타 조성들의 표면을 친수화 시켜 시멘트와 강력한 수소결합반응에 기인 한 것으로 판단된다. 또한 이러한 조성들간의 결합력의 강화로 가교작용에 의해 수축량에 있어서도 유리한 결과가 도출되는 것을 알 수 있다.
이와 같이 본 발명은 산업폐부산물을 활용함으로써 친환경적이고 경제적인 장점이 있으며, 수축을 저감시켜 균열을 제어하고 이와 함께 조기강도발현에 의하더라도 시공성 저하를 방지하고 강도를 강화시킬 수 있는 장점이 있다.
뿐만 아니라 산업 폐부산물을 재활용함으로써 자원 절약은 물론 환경오염 방지와 경제적 이익뿐만 아니라 온실가스 저감 효과를 가져오게 된다.
이상 설명한 내용을 통해 당업자라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의해 정하여 져야만 할 것이다.

Claims (4)

1종 보통 포틀랜드시멘트 100중량부에 대해 폐부산물로부터 제조된 칼슘설포 알루미네이트 광물 5 내지 30중량부, 석고 1 내지 6중량부를 포함하는 것을 특징으로 하는 폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물.
제 1항에 있어서,
상기 칼슘설포 알루미네이트 광물은 폐부산물 100중량부에 대해 석회석 40 내지 150중량부, 석고 10 내지 100중량부, 바이오차 5 내지 10중량부를 혼합하여 분쇄후 소성 및 냉각에 의해 제조되는 것을 특징으로 하는 폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물.
제 1항에 있어서,
시멘트 100중량부에 대해 폴리부타디엔 1 내지 5중량부 및 트리메틸화실리카 1 내지 3중량부가 더 배합되는 것을 특징으로 하는 폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물.
제 1항에 있어서,
시멘트 100중량부에 대해 모노에탄올아민 1 내지 5중량부가 더 배합되는 것을 특징으로 하는 폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물.
PCT/KR2016/004325 2016-04-26 2016-04-26 폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물 WO2017188465A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/004325 WO2017188465A1 (ko) 2016-04-26 2016-04-26 폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/004325 WO2017188465A1 (ko) 2016-04-26 2016-04-26 폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물

Publications (1)

Publication Number Publication Date
WO2017188465A1 true WO2017188465A1 (ko) 2017-11-02

Family

ID=60159712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004325 WO2017188465A1 (ko) 2016-04-26 2016-04-26 폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물

Country Status (1)

Country Link
WO (1) WO2017188465A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100117954A (ko) * 2009-04-27 2010-11-04 현대제철 주식회사 활성탄 및 활성탄 제조 방법
US20120219519A1 (en) * 2009-10-01 2012-08-30 Mclaughlin Michael John Remediation composition comprising alum sludge
KR101304230B1 (ko) * 2012-11-21 2013-09-05 한국지질자원연구원 산업 폐부산물을 활용한 알루미네이트계 시멘트 제조방법
KR101396859B1 (ko) * 2012-11-08 2014-05-30 주식회사 케미콘 조기강도 발현용 시멘트조성물 및 이를 이용한 시멘트
KR101547661B1 (ko) * 2015-02-13 2015-08-26 (주)에이치비티 무수축 수중 불분리 모르타르 조성물
KR101672505B1 (ko) * 2016-04-14 2016-11-03 한일시멘트 (주) 폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100117954A (ko) * 2009-04-27 2010-11-04 현대제철 주식회사 활성탄 및 활성탄 제조 방법
US20120219519A1 (en) * 2009-10-01 2012-08-30 Mclaughlin Michael John Remediation composition comprising alum sludge
KR101396859B1 (ko) * 2012-11-08 2014-05-30 주식회사 케미콘 조기강도 발현용 시멘트조성물 및 이를 이용한 시멘트
KR101304230B1 (ko) * 2012-11-21 2013-09-05 한국지질자원연구원 산업 폐부산물을 활용한 알루미네이트계 시멘트 제조방법
KR101547661B1 (ko) * 2015-02-13 2015-08-26 (주)에이치비티 무수축 수중 불분리 모르타르 조성물
KR101672505B1 (ko) * 2016-04-14 2016-11-03 한일시멘트 (주) 폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물

Similar Documents

Publication Publication Date Title
KR101873880B1 (ko) 친환경 속경성 시멘트 조성물 및 단면 보수공법
KR101512962B1 (ko) 단면 복구용 모르타르 조성물 및 이를 이용한 단면 복구공법
KR101051097B1 (ko) 슬래그를 이용한 고성능 콘크리트 조성물
CN1844026A (zh) 一种新型砌筑水泥
MX2014001274A (es) Mortero de proteccion contra incendios.
KR101623150B1 (ko) 내산성 및 내알칼리성 친환경 보수용 몰탈 조성물
US20110178209A1 (en) Manufacturing hydraulic cement aggregates for use in insulating and heat reflecting products
CN115057680A (zh) 一种绿色自修复高效渗透结晶双重防水材料及其制备方法
KR101670409B1 (ko) 해조류를 이용한 혼합 시멘트 조성물
KR102662384B1 (ko) 작업성 및 재료분리에 대한 저항성이 우수한 저수축 중유동 콘크리트 조성물
KR101366174B1 (ko) 친환경 콘크리트용 결합재 조성물
KR20140115420A (ko) 시멘트 조성물 및 콘크리트 조성물
KR101670410B1 (ko) 해조류를 이용한 초속경 혼합 시멘트 조성물 및 이를 이용한 시공방법
KR101963579B1 (ko) 조기강도 발현 콘크리트 조성물 및 이를 이용한 시공방법
WO2015199291A1 (ko) 조기강도 발현형 고유동 저발열 고내구성 이산화탄소 저감형 콘크리트 조성물
CN1226219C (zh) 阿利特-硫铝酸钡钙水泥
WO2017188465A1 (ko) 폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물
KR101672505B1 (ko) 폐부산물을 활용한 알루미네이트계 광물을 함유하는 조강형 저탄소 혼합시멘트 조성물
RU2285677C1 (ru) Гипсовое вяжущее
CN110922081A (zh) 赤泥用处理剂、拜耳法赤泥处理方法、混凝土、建筑材料
CN114195424B (zh) 一种防水抗裂混凝土外加剂及其制备方法
CN112279577B (zh) 一种大体积后浇带混凝土裂缝的控制方法
KR20100129399A (ko) 시멘트 무첨가 콘크리트용 수용성 결합재 및 콘크리트의 제조방법
WO2014187052A1 (zh) 一种高炉矿粉复合粉料及用其制造的合成材料
KR102146455B1 (ko) 고로슬래그 기반 조성물 및 이의 경화체

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900539

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900539

Country of ref document: EP

Kind code of ref document: A1