WO2017187985A1 - Ionic compound and photoresponsive nano carbon material dispersant - Google Patents

Ionic compound and photoresponsive nano carbon material dispersant Download PDF

Info

Publication number
WO2017187985A1
WO2017187985A1 PCT/JP2017/014972 JP2017014972W WO2017187985A1 WO 2017187985 A1 WO2017187985 A1 WO 2017187985A1 JP 2017014972 W JP2017014972 W JP 2017014972W WO 2017187985 A1 WO2017187985 A1 WO 2017187985A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
dispersoid
dispersant
ionic compound
swcnt
Prior art date
Application number
PCT/JP2017/014972
Other languages
French (fr)
Japanese (ja)
Inventor
啓邦 神徳
松澤 洋子
秀元 木原
吉田 勝
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2018514255A priority Critical patent/JP6755015B2/en
Publication of WO2017187985A1 publication Critical patent/WO2017187985A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C245/00Compounds containing chains of at least two nitrogen atoms with at least one nitrogen-to-nitrogen multiple bond
    • C07C245/02Azo compounds, i.e. compounds having the free valencies of —N=N— groups attached to different atoms, e.g. diazohydroxides
    • C07C245/06Azo compounds, i.e. compounds having the free valencies of —N=N— groups attached to different atoms, e.g. diazohydroxides with nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic rings
    • C07C245/08Azo compounds, i.e. compounds having the free valencies of —N=N— groups attached to different atoms, e.g. diazohydroxides with nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic rings with the two nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic rings, e.g. azobenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/40Acylated substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/75Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/61Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms not forming part of a nitro radical, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/12Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms
    • C07D295/135Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings

Definitions

  • the present invention relates to a dispersant for dispersing nanocarbon materials such as carbon nanotubes and aromatic compounds in water and polar solvents.
  • CNT carbon nanotubes
  • the surfactant type dispersant described in Non-Patent Document 1 requires an amount 10 times or more that of CNT.
  • the dispersant described in Patent Document 1 uses an enzymatic decomposition reaction for desorption from CNTs. However, since the detachment of the dispersant from the CNT depends on the activity of the enzyme, the use environment of the dispersant is limited. Moreover, since this decomposition reaction is irreversible, the dispersant cannot be reused.
  • the photoresponsive stilbene type dispersant described in Patent Document 2 can be detached from CNTs by light irradiation. However, since the optical response is multistage, several hours of light irradiation is required to desorb the dispersant from the CNT.
  • Patent Document 2 also describes an azo-based dispersant.
  • Other methods for desorbing the dispersant from CNT include desorption methods using redox of metal complexes (Non-Patent Document 2 and Non-Patent Document 3), desorption methods using changes in temperature and pH (Non-Patent Documents) 4), and a desorption method using a difference in solubility in a solvent (Non-Patent Document 5).
  • desorption methods using redox of metal complexes Non-Patent Document 2 and Non-Patent Document 3
  • desorption methods using changes in temperature and pH Non-Patent Documents 4
  • a desorption method using a difference in solubility in a solvent Non-Patent Document 5
  • the present invention has been made in view of such circumstances, and provides a dispersant capable of repeating dispersion and aggregation in a dispersion medium by irradiating the dispersion liquid with light for a short time. With the goal.
  • the ionic compound of the present invention is represented by the following general formula (I).
  • X is a kind selected from amide bonds and ester bonds shown below.
  • A is a substituent having a cation moiety represented by the following. However, n is a number from 1 to 10, R 1 is hydrogen, an alkyl group, a phenyl group, a polyethylene glycol group, or an allyl group, and R 2 and R 3 are independently hydrogen or an alkyl group.
  • B represents an anion, and m is a number such that mB becomes -2 valent.
  • the dispersant of the present invention is a dispersant for dispersing a dispersoid in a dispersion medium containing at least one of water and a polar organic solvent, and the ionic compound of the present invention is an active ingredient.
  • the dispersion of the present invention has a dispersoid, a dispersion medium containing at least one of water and a polar organic solvent, and the dispersant of the present invention.
  • the method for producing a dispersion of the present invention comprises a mixing step of mixing a dispersoid, a dispersion medium containing at least one of water and a polar organic solvent, and a dispersant of the present invention to obtain a mixed solution, A dispersion step of vibrating by sound waves to disperse the dispersoid in the dispersion medium.
  • the dispersion liquid of the present invention is irradiated with light having a predetermined wavelength of 250 to 450 nm to desorb the dispersing agent from the dispersoid, and the dispersoid is aggregated in the dispersion medium. To obtain an agglomerated liquid.
  • Another method for producing the dispersion of the present invention is to irradiate the dispersion of the present invention with light having a predetermined wavelength of 250 to 450 nm to desorb the dispersant from the dispersoid, and to disperse the dispersoid in the dispersion medium.
  • Another method for producing the dispersion of the present invention is to irradiate the dispersion of the present invention with light having a predetermined wavelength of 250 to 450 nm to desorb the dispersant from the dispersoid, and to disperse the dispersoid in the dispersion medium.
  • An aggregating step for aggregating to obtain an aggregated liquid a recovery step for recovering a solution containing at least part of the dispersant and at least part of the dispersion medium from the aggregated liquid, and mixing this solution with another dispersoid
  • a dispersion step of oscillating the obtained mixed liquid with ultrasonic waves to disperse the dispersoid in the dispersion medium is to irradiate the dispersion of the present invention with light having a predetermined wavelength of 250 to 450 nm to desorb the dispersant from the dispersoid, and to disperse the dispersoid in the dispersion medium.
  • dispersion and aggregation of the dispersoid can be repeated by irradiating the dispersion with light for a short time.
  • the visible-near infrared (Vis-NIR) absorption spectrum of the SWCNT dispersion of Example 19 The image of SWCNT dispersion liquid of Example 19.
  • the Vis-NIR absorption spectrum of the SWCNT dispersion of Example 20 Vis-NIR absorption spectrum of the SWCNT dispersion of Example 21.
  • Vis-NIR absorption spectrum of the SWCNT dispersion of Example 22 Vis-NIR absorption spectrum of the SWCNT dispersion of Example 23.
  • Vis-NIR absorption spectrum of the SWCNT dispersion of Example 25 The visible-NIR absorption spectrum of the SWCNT dispersion of Example 26.
  • FIG. 1 Vis-NIR absorption spectrum of the SWCNT dispersion of Example 27.
  • Vis-NIR absorption spectrum of the SWCNT dispersion of Example 29 Vis-NIR absorption spectrum of the SWCNT dispersion of Example 29-2.
  • Vis-NIR absorption spectrum of the SWCNT dispersion of Example 29-3. 4 is a UV-vis-NIR absorption spectrum of the SWCNT dispersion of Example 30.
  • FIG. 4 is a UV-vis-NIR absorption spectrum of the SWCNT dispersion of Example 31.
  • FIG. 6 shows a UV-vis-NIR absorption spectrum of the MWCNT dispersion of Example 32.
  • FIG. The image of the carbon black dispersion liquid of Example 33.
  • the image of the carbon black dispersion liquid of Example 34. 4 is a UV-vis-NIR absorption spectrum of the carbon black dispersion of Example 34.
  • FIG. The graphene nanoplatelet dispersion liquid of Example 35 The UV-vis-NIR absorption spectrum of the graphene nanoplatelet dispersion of Example 35.
  • Example 36 The image when the copper phthalocyanine dispersion liquid of Example 36 is spread on a slide glass.
  • the ionic compound, the dispersant, the dispersion, the method for producing the dispersion, and the method for producing the aggregated liquid according to the present invention will be described based on embodiments and examples. A duplicate description will be omitted as appropriate.
  • a numerical range is indicated by describing “ ⁇ ” between two numerical values, the two numerical values are also included in the numerical range.
  • the ionic compound of the present invention is represented by the following general formula (I).
  • X is a kind selected from amide bonds and ester bonds shown below.
  • A is a substituent having a cation moiety represented by the following. However, n is a number from 1 to 10, R 1 is hydrogen, an alkyl group, a phenyl group, a polyethylene glycol group, or an allyl group, and R 2 and R 3 are independently hydrogen or an alkyl group.
  • B represents an anion, and m is a number such that mB becomes -2 valent.
  • the number of carbon atoms of the alkyl group represented by R 1 is preferably 1 or more and 10 or less.
  • anions B halogen anions (F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ ), tetrafluoroborate anions (BF 4 ⁇ ), hexafluorophosphate anions (PF 6 ⁇ ), bis (trifluoromethanesulfonyl) ) Amide anion (TFSA), thioisocyanate anion (SCN ⁇ ), nitrate anion (NO 3 ⁇ ), sulfate anion (SO 4 2 ⁇ ), thiosulfate anion (S 2 O 3 2 ⁇ ), carbonate anion (CO 3 2 -), bicarbonate anion (HCO 3 -), phosphate anion (PO 4 3-), phosphorous acid anion (PO 3 3-), hypophosphorous acid anion (PO 2 3-), halogen anion (ClO 4 ⁇ , BrO 4 ⁇
  • the ionic compound of the present invention is preferably a kind selected from substances represented by the following chemical formulas.
  • the dispersant of the present invention is a dispersant for dispersing a dispersoid in a dispersion medium containing at least one of water and a polar organic solvent. And the dispersing agent of this invention uses the ionic compound of this invention as an active ingredient.
  • the dispersion of the present invention contains a dispersoid, a dispersion medium containing at least one of water and a polar organic solvent, and the dispersant of the present invention. Examples of the dispersoid include nanocarbon materials, hydrophobic fine particles, and hydrophobic molecules.
  • the dispersoid is preferably at least one selected from single-walled carbon nanotubes, multi-walled carbon nanotubes, carbon black, graphene, phthalocyanine, metal phthalocyanine, coronene, and iron oxide fine particles. This is because it is uniformly dispersed in the dispersion medium.
  • the method for producing a dispersion according to an aspect of the present invention includes a mixing step and a dispersion step.
  • a dispersion is obtained by mixing the dispersoid, a dispersion medium containing at least one of water and a polar organic solvent, and the dispersant of the present invention.
  • the mixture is vibrated by ultrasonic waves to disperse the dispersoid in the dispersion medium.
  • the dispersion liquid of the present invention is irradiated with light having a predetermined wavelength of 250 to 450 nm to desorb the dispersing agent from the dispersoid, and the dispersoid is aggregated in the dispersion medium.
  • light having a predetermined wavelength of 250 to 450 nm include ultraviolet light having a wavelength of 365 nm.
  • the “predetermined wavelength of 250 to 450 nm” is determined according to the structure of the dispersant used.
  • the method for producing a dispersion according to another aspect of the present invention includes an aggregation step and a dispersion step.
  • the dispersion liquid of the present invention is irradiated with light having a predetermined wavelength of 250 to 450 nm to desorb the dispersant from the dispersoid and aggregate the dispersoid in the dispersion medium to obtain an aggregate liquid.
  • the aggregate liquid is irradiated with light having a predetermined wavelength of 380 to 500 nm, which is different from the wavelength of light used when the dispersant is removed from the dispersoid in the aggregation step, and the dispersoid is dispersed in the dispersion medium. Is dispersed to obtain a dispersion. Examples of light having a predetermined wavelength of 380 to 500 nm include visible light having a wavelength of 436 nm.
  • the predetermined wavelength of 250 to 450 nm” and “the predetermined wavelength of 380 to 500 nm” are determined according to the structure of the dispersant used. Since these two types of “predetermined wavelengths” are different, the wavelength of light used in the aggregation process and the wavelength of light used in the dispersion process can be distinguished. That is, for example, in a dispersion containing a certain dispersant, the wavelength of ultraviolet light used in the aggregation step is between 340 and 380 nm, and the wavelength of visible light used in the dispersion step is between 400 and 450 nm.
  • the wavelength of ultraviolet light used in the aggregation step is between 360 and 400 nm, and the wavelength of visible light used in the dispersion step is between 420 and 480 nm.
  • the method for producing a dispersion according to another aspect of the present invention includes an aggregation step, a recovery step, and a dispersion step.
  • the dispersion liquid of the present invention is irradiated with light having a predetermined wavelength of 250 to 450 nm to desorb the dispersant from the dispersoid and aggregate the dispersoid in the dispersion medium to obtain an aggregate liquid.
  • the recovery step a solution containing at least a part of the dispersant and at least a part of the dispersion medium is recovered from the aggregate liquid.
  • another dispersoid and a solution are mixed, and then the obtained mixture is vibrated by ultrasonic waves to disperse the dispersoid in the dispersion medium.
  • Examples 1 to 6-2 Preparation of photoresponsive ionic compound raw material
  • Example 1 Preparation of photoresponsive ionic compound raw material 1
  • 4- (Piperidin-1-ylmethyl) aniline (0.62 g, 3.3 mmol) and triethylamine (0.9 g, 8.9 mmol) were dissolved in dehydrated methylene chloride (10 mL).
  • a solution prepared by dissolving 0.5 g (1.6 mmol) of azobenzene-4,4′-dicarbonyl chloride in 20 mL of dehydrated methylene chloride was added over 1 hour while stirring, and the mixture was further stirred at room temperature for 12 hours.
  • Example 2 Preparation of raw material of photoresponsive ionic compound 2
  • An orange powder was obtained in the same manner as in Example 1 except that 4- (1H-imidazol-1-yl) aniline having the same substance amount was used instead of 4- (piperidin-1-ylmethyl) aniline. (Rate 85%). From 1 H-NMR spectrum, it was confirmed that this powder was a compound represented by the following formula (2).
  • 1 H-NMR 400MHz, Pyridine-d 5 , ⁇ ): 8.11-8.15 (m, 8H), 8.21 (m, 4H), 8.32 (s, 2H), 8.45 (m, 4H), 8.56 (m, 4H ), 11.4 (s, 2H)
  • Example 3 Production of photoresponsive ionic compound raw material 3
  • An orange powder was obtained in the same manner as in Example 1 except that the same amount of 1- (3-aminopropyl) imidazole was used instead of 4- (piperidin-1-ylmethyl) aniline (yield 81% ). From the 1 H-NMR spectrum, it was confirmed that this powder was a compound represented by the following formula (3).
  • 1 H-NMR 400MHz, DMSO-d 6 , ⁇ ): 1.95 (m, 4H), 3.25 (m, 4H), 6.86 (d, 2H), 7.19 (d, 2H), 7.63 (s, 2H), 7.94-8.04 (m, 8H), 8.68 (m, 2H)
  • Example 4 Production 4 of photoresponsive ionic compound raw material
  • An orange powder was obtained in the same manner as in Example 1 except that the same amount of 1- (3-aminoethyl) pyridine was used instead of 4- (piperidin-1-ylmethyl) aniline (yield 84%). ). From the 1 H-NMR spectrum, it was confirmed that this powder was a compound represented by the following formula (4).
  • 1 H-NMR 400MHz, DMSO-d 6 , ⁇ ): 2.89 (t, 4H), 3.25 (t, 4H), 7.26 (m, 4H), 7.94-8.01 (m, 8H), 8.45 (m, 4H ), 8.76 (m, 2H)
  • Example 5 Preparation 5 of raw material of photoresponsive ionic compound
  • An orange powder was obtained in the same manner as in Example 1 except that 4-hydroxyphenethyl bromide having the same substance amount was used instead of 4- (piperidin-1-ylmethyl) aniline (yield 68%). From the 1 H-NMR spectrum, it was confirmed that this powder was a compound represented by the following formula (5).
  • 1 H-NMR 400MHz, Pyridine-d 5 , ⁇ ): 3.12 (t, 4H), 3.67 (t, 4H), 7.33 (d, 4H), 7.42 (d, 4H), 8.16 (d, 4H), 8.46 (d, 4H)
  • Example 6-2 Production of raw material of photoresponsive ionic compound 7
  • 0.55 g (3.3 mmol) of hordenine and 1.0 g (9.3 mmol) of triethylamine were dissolved in 20 mL of dehydrated methylene chloride.
  • a solution prepared by dissolving 0.5 g (1.6 mmol) of azobenzene-4,4′-dicarbonyl dichloride in 20 mL of dehydrated methylene chloride was added dropwise thereto with stirring. Then, it stirred at room temperature for about 12 hours.
  • the obtained reaction solution was concentrated under reduced pressure, and ethanol was added to precipitate a precipitate.
  • Examples 7 to 18-2 Preparation of photoresponsive ionic compound (Example 7: Preparation of photoresponsive ionic compound 1)
  • 0.6 g (1.16 mmol) of the compound represented by the formula (6) obtained in Example 6 and 1 g (9.9 mmol) of N-butyldimethylamine were stirred at 80 ° C. for 48 hours. did.
  • the reaction mixture was concentrated under reduced pressure, and the resulting precipitate was filtered with suction to obtain 0.56 g of a yellow powder (yield 67%). From 1 H-NMR and 13 C-NMR spectra, it was confirmed that this powder was an ionic compound represented by the following formula (7).
  • Example 8 Preparation of photoresponsive ionic compound 2
  • An orange powder was prepared in the same manner as in Example 7 except that instead of the compound represented by Formula (6), the same amount of the compound represented by Formula (5) obtained in Example 5 was used. Obtained (yield 60%). From 1 H-NMR and 13 C-NMR spectra, it was confirmed that this powder was a compound represented by the following formula (8).
  • Example 9 Preparation of photoresponsive ionic compound 3
  • 0.5 g (0.9 mmol) of the compound represented by the formula (2) obtained in Example 2 and 2 g (12 mmol) of methyl trifluoromethanesulfonate were stirred at room temperature for 48 hours.
  • the reaction solution was concentrated under reduced pressure, and the precipitate obtained by dropwise addition to acetone was suction filtered to obtain 0.76 g of an orange powder (yield 83%). From 1 H-NMR and 13 C-NMR spectra, it was confirmed that this powder was an ionic compound represented by the following formula (9).
  • Example 9-2 Preparation of photoresponsive ionic compound 3-2
  • 0.2 g (0.36 mmol) of the compound represented by the formula (2) obtained in Example 2 and 1.0 g (3.7 mmol) of triethylene glycol mono-2-bromoethyl methyl ether were added.
  • 1.0 g (3.7 mmol) of triethylene glycol mono-2-bromoethyl methyl ether were added.
  • the reaction mixture was cooled to room temperature and concentrated under reduced pressure.
  • Acetone was added to the concentrate, and the resulting precipitate was suction filtered and washed with acetone to obtain 0.29 g of an orange powder (yield 73%). From the 1 H-NMR spectrum, it was confirmed that this powder was an ionic compound represented by the following formula (9-2).
  • Example 10 Preparation of photoresponsive ionic compound 4
  • 0.1 g (0.2 mmol) of the compound represented by the formula (1) obtained in Example 1 and 1.0 g (7.9 mmol) of benzyl chloride were stirred at 80 ° C. for 24 hours. .
  • the reaction solution was concentrated under reduced pressure, and the precipitate obtained by dropwise addition to acetone was suction filtered to obtain 0.13 g of an orange powder (yield 81%). From 1 H-NMR and 13 C-NMR spectra, it was confirmed that this powder was an ionic compound represented by the following formula (10).
  • Example 10-2 Preparation of photoresponsive ionic compound 4-2
  • 0.32 g (0.52 mmol) of the compound represented by the formula (1) obtained in Example 1 and 1.5 g (9.6 mmol) of propyl iodide were stirred at 80 ° C. for 48 hours. did.
  • the reaction mixture was cooled to room temperature and concentrated under reduced pressure.
  • a precipitate formed by adding acetone to the concentrate was suction filtered and washed with acetone to obtain 0.42 g of an orange powder (yield 85%). From the 1 H-NMR spectrum, it was confirmed that this powder was an ionic compound represented by the following formula (10-2).
  • Example 11 Preparation of photoresponsive ionic compound 5
  • 0.1 g (0.2 mmol) of the compound represented by the formula (3) obtained in Example 3 and 4.0 g (25 mmol) of ethyl iodide were stirred at 50 ° C. for 6 hours.
  • the reaction solution was cooled to room temperature, and the resulting precipitate was filtered with suction and washed with acetone to obtain 0.1 g of an orange powder (yield 60%). From the 1 H-NMR spectrum, it was confirmed that this powder was an ionic compound represented by the following formula (11).
  • Example 12 Preparation of photoresponsive ionic compound 6
  • the same amount of the compound represented by the formula (4) obtained in Example 4 was used as in Example 11, except that the orange powder 0 0.1 g was obtained (yield 66%). From 1 H-NMR spectrum, it was confirmed that this powder was a compound represented by the following formula (12).
  • Example 13 Preparation of photoresponsive ionic compound 7
  • 0.07 g (0.09 mmol) of the compound represented by the formula (12) obtained in Example 12 and 0.1 g (0.6 mmol) of silver acetate were stirred at 40 ° C. for 24 hours. .
  • the reaction solution was naturally filtered, and the filtrate was evaporated to dryness.
  • the residue was dissolved in methanol and naturally filtered, and the filtrate was evaporated to dryness to obtain 0.05 g of a red-orange viscous solid (yield 92%). From the 1 H-NMR spectrum, it was confirmed that the viscous solid was a compound represented by the following formula (13).
  • Example 15 Preparation of photoresponsive ionic compound 9
  • 0.22 g (0.53 mmol) of the compound represented by the formula (14) obtained in Example 14 and 1.1 g (12.1 mmol) of 3-chloro-2-methyl-1-propene. was stirred at 60 ° C. for 72 hours.
  • 1.1 g (12.1 mmol) of 3-chloro-2-methyl-1-propene was added every 24 hours from the start of the reaction. After cooling the reaction solution to room temperature, the precipitate was filtered off to obtain 0.177 g of orange powder (yield 55%). From the 1 H-NMR spectrum, it was confirmed that this powder was an ionic compound represented by the following formula (16).
  • Example 16 Preparation of photoresponsive ionic compound 10.
  • 1.20 g of compound was obtained in the same manner as in Example 14 except that 4-aminopyridine having the same substance amount was used instead of 3-aminopyridine (yield 95%).
  • This compound has impurities removed by stirring in methanol. From 1 H-NMR and 13 C-NMR spectra, it was confirmed that this compound was represented by the following formula (17).
  • Example 17 Preparation of photoresponsive ionic compound 11
  • Product 0 was obtained in the same manner as in Example 15 except that instead of the compound represented by Formula (14), the same amount of the compound represented by Formula (17) obtained in Example 16 was used. 0.201 g was obtained (62% yield). From the 1 H-NMR spectrum, it was confirmed that this product was an ionic compound represented by the following formula (19).
  • Example 18 Preparation of photoresponsive ionic compound 12
  • 0.58 g of dark red powder was obtained in the same manner as in Example 1 except that 4- (4-pyridylmethyl) aniline having the same amount of material was used instead of 4- (piperidin-1-ylmethyl) aniline. (Rate 36%). From 1 H-NMR spectrum, it was confirmed that this compound is represented by the following formula (20).
  • Example 18-2 Preparation of photoresponsive ionic compound 13
  • 0.25 g (0.45 mmol) of the compound represented by the formula (6-2) obtained in Example 6-2 and 2 g (12.8 mmol) of ethyl iodide were mixed at 60 ° C. for 48 hours. Stir for hours. After cooling the reaction solution to room temperature, acetone was added and the resulting precipitate was filtered with suction to obtain 0.3 g of a yellow powder (yield 77%). From the 1 H-NMR spectrum, it was confirmed that this powder was an ionic compound represented by the following formula (22).
  • Examples 19 to 38 Preparation and evaluation of dispersion (Example 19: SWCNT dispersion 1 by HiPCO method)
  • a single-walled carbon nanotube (hereinafter referred to as a single-walled carbon nanotube) prepared by dissolving 1.05 mg of the ionic compound (formula (7)) obtained in Example 7 in 3 mL of pure water and a HIGH-Pressure carbon monoxide (HiPCO) method.
  • Single-wall carbon nanotubes may be described as “SWCNT”).
  • This mixed solution was placed in a vial and subjected to ultrasonic treatment (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device (SHARP, UT-105).
  • UV light ultraviolet light
  • FIG. 2 (a) Images of the SWCNT dispersion before UV light irradiation (original) and the SWCNT aggregate after UV light irradiation are shown in FIG.
  • FIG. 2 (a) Images of the SWCNT aggregate after the UV light irradiation resulted in black precipitation of SWCNT.
  • the SWCNT aggregate after the UV light irradiation was centrifuged at a rotational speed of 16400 rpm (28500 g) for 5 minutes.
  • An image of the SWCNT aggregate after the centrifugation is shown in FIG.
  • the supernatant was separated from the SWCNT aggregate and the absorbance was measured using a UV-vis-NIR spectrophotometer.
  • This Vis-NIR absorption spectrum is shown by a dotted line (after UV irradiation) in FIG.
  • Aggregation of SWCNT due to a change in solubility of SWCNT in pure water was also confirmed in the Vis-NIR absorption spectrum.
  • Example 20 SWCNT dispersion 2 by HiPCO method
  • the Vis-NIR absorption spectrum is shown in FIG.
  • Example 19 is the same as Example 19 except that 3.0 mg of the ionic compound (formula (8)) obtained in Example 8 was used instead of the ionic compound (formula (7)) obtained in Example 7. Similarly, the absorbance of the supernatant of the SWCNT dispersion before UV light irradiation was measured. The Vis-NIR absorption spectrum is shown in FIG.
  • Example 19 is the same as Example 19 except that 3.0 mg of the ionic compound (formula (10)) obtained in Example 10 was used instead of the ionic compound (formula (7)) obtained in Example 7. Similarly, the absorbance of the supernatant of the SWCNT dispersion before UV light irradiation was measured. The Vis-NIR absorption spectrum is shown in FIG.
  • Example 23 SWCNT dispersion 5 by HiPCO method
  • a solution prepared by dissolving 10.04 mg of the ionic compound (formula (15)) obtained in Example 14 in 20 mL of pure water and 6.99 mg of SWCNT synthesized by the HiPCO method were mixed. This mixed solution was placed in a vial and sonicated (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device.
  • this mixed solution is put into a plastic wide-mouth bottle with a capacity of 50 mL, and subjected to ultrasonic irradiation (20 W, 19.9 kHz) for 4 hours using an ultrasonic homogenizer (BRANSON, Advanced Digital Sonifier 250D), and a black SWCNT uniform dispersion liquid Got.
  • BRANSON Advanced Digital Sonifier 250D
  • the obtained dispersion was centrifuged at room temperature (22 ° C.) for 3 hours at a rotation speed of 16400 rpm (28500 g). Thereafter, the supernatant was collected to obtain a SWCNT dispersion.
  • the absorbance of the obtained SWCNT dispersion was measured using a UV-vis-NIR spectrophotometer. The Vis-NIR absorption spectrum is shown in FIG.
  • Example 24 SWCNT dispersion 6 by HiPCO method
  • Example 15 the same weight of the ionic compound obtained in Example 15 (Formula (16)) was used.
  • the absorbance of the supernatant of the SWCNT dispersion was measured.
  • the Vis-NIR absorption spectrum is shown in FIG.
  • Example 25 SWCNT dispersion 7 by HiPCO method
  • Example 16 instead of the ionic compound obtained in Example 14 (Formula (15)), the same weight of the ionic compound obtained in Example 16 (Formula (18)) was used. Similarly, the absorbance of the supernatant of the SWCNT dispersion was measured. The Vis-NIR absorption spectrum is shown in FIG.
  • Example 26 SWCNT dispersion 8 by HiPCO method
  • Example 17 the same weight of the ionic compound obtained in Example 17 (Formula (19)) was used.
  • the absorbance of the supernatant of the SWCNT dispersion was measured.
  • the Vis-NIR absorption spectrum is shown in FIG.
  • Example 27 SWCNT dispersion 9 by HiPCO method
  • Example 19 is the same as Example 19 except that 3.0 mg of the ionic compound (formula (21)) obtained in Example 18 was used instead of the ionic compound obtained in Example 7 (formula (7)).
  • the absorbance of the supernatant of the SWCNT dispersion before UV light irradiation was measured. This Vis-NIR absorption spectrum is shown in FIG.
  • Example 28 SWCNT dispersion 10 by HiPCO method
  • ionic compound (formula (7)) obtained in Example 7 1.0 mg was used, and in place of pure water
  • the absorbance of the supernatant of the SWCNT dispersion before UV light irradiation was measured in the same manner as in Example 19 except that propylene carbonate was used.
  • the Vis-NIR absorption spectrum is shown in FIG.
  • the supernatant was collected from the SWCNT aggregate after centrifugation and the absorbance was measured using a UV-vis-NIR spectrophotometer.
  • This Vis-NIR absorption spectrum is shown by a solid line (after UV irradiation) in FIG. Similar to Example 19, the sharp absorption peak appearing at 600-1600 nm characteristic of the Vis-NIR absorption spectrum of SWCNT synthesized by the HiPCO method has disappeared, and SWCNT is aggregated in propylene carbonate. confirmed.
  • the light having a wavelength of 436 nm extracted from a high-pressure mercury lamp (USHIO) using a filter was irradiated for 20 minutes to the aggregate liquid in which the aggregation of SWCNTs occurred. Then, this aggregated liquid was subjected to ultrasonic treatment (80 W, 35 kHz) for 10 minutes using an ultrasonic cleaning device to re-disperse SWCNT. The supernatant was separated from the re-dispersed SWCNT dispersion and the absorbance was measured. This Vis-NIR absorption spectrum is shown by a dotted line (after Vis irradiation) in FIG.
  • SWCNTs aggregated by ultraviolet light irradiation for a short time of 20 minutes, whereas in the dispersion containing the azobenzene type dispersant described in Patent Document 2, the length of 3 to 15 hours was increased. SWCNTs are aggregated by irradiation with ultraviolet light for a period of time.
  • FIG. 13 shows the change in absorbance when the supernatant of the SWCNT dispersion and SWCNT aggregate is irradiated with light having a wavelength of 1155 nm in this repeating step.
  • the isomer produced by ultraviolet light irradiation is not chemically stable, and thus immediately returns to the state before isomerization at room temperature.
  • the azobenzene type dispersant described in Patent Document 2 has a low desorption efficiency of the dispersant, and cannot be returned to the azobenzene type dispersant in the state before isomerization by irradiation with visible light.
  • Example 29 SWCNT dispersion 11 by HiPCO method
  • ionic compound (formula (7)) obtained in Example 7 1.51 mg of the ionic compound (formula (9)) obtained in Example 9 was used, and instead of pure water
  • the absorbance of the supernatant of the SWCNT dispersion before UV light irradiation was measured in the same manner as in Example 19 except that propylene carbonate was used. This Vis-NIR absorption spectrum is shown in FIG. 14 by a solid line (original).
  • the SWCNT dispersion was irradiated with UV light having a wavelength of 365 nm at an intensity of 150 mW / cm 2 for 10 minutes using an ultraviolet LED.
  • UV light having a wavelength of 365 nm at an intensity of 150 mW / cm 2 for 10 minutes using an ultraviolet LED.
  • the SWCNT dispersion after UV light irradiation was centrifuged at a rotational speed of 16400 rpm (28500 g) for 10 minutes. The supernatant was separated from the SWCNT dispersion after centrifugation, and the absorbance was measured using a UV-vis-NIR spectrophotometer. This Vis-NIR absorption spectrum is shown by a dotted line (after UV irradiation) in FIG.
  • the supernatant was separated from the SWCNT dispersion after the UV light irradiation, and irradiated with light having a wavelength of 436 nm extracted from the high pressure mercury lamp using a filter for 20 minutes. Then, this supernatant was added to 1.01 mg of SWCNT synthesized by the HiPCO method. This mixed solution was subjected to ultrasonic treatment (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device. The obtained mixture was centrifuged at room temperature (22 ° C.) for 3 hours at a rotation speed of 16400 rpm (28500 g) using a cooling centrifuge.
  • the Vis-NIR absorption spectrum is shown in FIG. 14 with a broken line (a dispersion obtained by reusing the collected supernatant).
  • Example 29-2 SWCNT dispersion 12 by HiPCO method Except for using 3.0 mg of the ionic compound (formula (9-2)) obtained in Example 9-2 instead of the ionic compound (formula (7)) obtained in Example 7, In the same manner as in Example 19, the absorbance of the supernatant of the SWCNT dispersion before UV light irradiation was measured. This Vis-NIR absorption spectrum is shown in FIG. 14-2.
  • Example 29-3 SWCNT dispersion 13 by HiPCO method
  • ionic compound (formula (7)) obtained in Example 7 3.0 mg of the ionic compound (formula (10-2)) obtained in Example 10-2 was used.
  • the absorbance of the supernatant of the SWCNT dispersion before UV light irradiation was measured in the same manner as in Example 19 except that propylene carbonate was used instead of water. This Vis-NIR absorption spectrum is shown in FIG. 14-3.
  • Example 30 SWCNT dispersion by SG method
  • a solution obtained by dissolving 12.1 mg of the ionic compound (formula (7)) obtained in Example 7 in 3 mL of pure water was mixed with 6.0 mg of SWCNT synthesized by the super growth (SG) method.
  • This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device to obtain a dispersion in which SWCNTs were stably dispersed.
  • the obtained dispersion was diluted 20 times with pure water, and the absorbance was measured using a UV-vis-NIR spectrophotometer.
  • the UV-vis-NIR absorption spectrum is shown by a solid line (original) in FIG.
  • Example 31 SWCNT dispersion by eDIPS method
  • a solution obtained by dissolving 3.0 mg of the ionic compound (formula (7)) obtained in Example 7 in 3 mL of pure water and 1.0 mg of SWCNT synthesized by the enhanced Direct Injection Pyrolytic Synthesis method (eDIPS) method were mixed. .
  • This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device to obtain a dispersion in which SWCNTs were stably dispersed.
  • the absorbance of this dispersion was measured using a UV-vis-NIR spectrophotometer. This UV-vis-NIR absorption spectrum is shown in FIG. 16 by a solid line (original).
  • This UV-vis-NIR absorption spectrum is shown by a dotted line (after UV irradiation) in FIG. It was confirmed that the absorption spectrum derived from SWCNT synthesized by the eDIPS method was reduced by UV light irradiation.
  • Example 32 MWCNT dispersion
  • a solution obtained by dissolving 3.0 mg of the ionic compound (formula (7)) obtained in Example 7 in 3 mL of pure water and 1.0 mg of multi-walled carbon nanotube (MWCNT) (Nanocyl, NC-7000) were mixed. .
  • This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device to obtain a dispersion in which MWCNTs were stably dispersed.
  • the obtained dispersion was diluted twice with pure water, and the absorbance was measured using a UV-vis-NIR spectrophotometer. This UV-vis-NIR absorption spectrum is shown by a solid line (original) in FIG.
  • Example 33 Carbon black dispersion 1
  • a solution obtained by dissolving 3.05 mg of the ionic compound (formula (7)) obtained in Example 7 in 3 mL of pure water and 1.03 mg of carbon black (Mitsubishi Chemical, CB-2600) were mixed.
  • This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device to obtain a dispersion in which carbon black was stably dispersed.
  • An image of this dispersion is shown in FIG. 18 (with a dispersant).
  • an image of a mixture of carbon black and pure water is also shown in FIG. 18 (no dispersant). It was confirmed that carbon black was well dispersed in pure water by using a dispersant.
  • FIG. 19 shows a UV-vis-NIR absorption spectrum of a mixture of carbon black and pure water with a dotted line (without a dispersant).
  • Example 34 Carbon black dispersion liquid 2
  • a carbon black dispersion was prepared in the same manner as in Example 33 except that the amount of carbon black was changed to 60 mg and the amount of the ionic compound (formula (7)) was changed to 10.5 mg.
  • This dispersion was diluted 40 times with pure water, 1 mL was taken and transferred to a glass sample tube. An image of this dispersion is shown in FIG. 20 (original). Then, while stirring the sample tube at a rotation speed of 500 rpm, the dispersion liquid was irradiated with UV light having a wavelength of 365 nm at an intensity of 450 mW / cm 2 for 20 minutes using an ultraviolet LED. An image of the dispersion which was allowed to stand for 12 hours after UV light irradiation is also shown in FIG. 20 (after UV light irradiation). It was confirmed that carbon black aggregates and precipitates when irradiated with UV light.
  • UV-vis-NIR absorption spectra are shown in FIG. 21 by a solid line (original) and a dotted line (after UV light irradiation), respectively.
  • Example 34-2 Carbon black dispersion 3
  • a solution prepared by dissolving 45.1 mg of the ionic compound (formula (7)) obtained in Example 7 in 2.4 mL of pure water and 600 mg of carbon black (Mitsubishi Chemical, CB-4000B) were mixed.
  • This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 37 kHz) for 1 hour using an ultrasonic cleaning device to obtain a dispersion in which carbon black was stably dispersed.
  • the viscosity of this dispersion was measured using a tuning fork vibration viscometer (SV-1A, manufactured by AND), it was 3.38 mPa ⁇ s at 26 ° C. It was confirmed that carbon black was well dispersed even in a carbon black dispersion having a high concentration, and a low viscosity dispersion was obtained.
  • SV-1A tuning fork vibration viscometer
  • Example 34-3 Carbon Black Dispersion 4 A solution obtained by dissolving 30.2 mg of the ionic compound (formula (9)) obtained in Example 9 in 2.7 mL of propylene carbonate and 300 mg of carbon black (Mitsubishi Chemical, CB-4000B) were mixed. This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 37 kHz) for 1 hour using an ultrasonic cleaning device to obtain a dispersion in which carbon black was stably dispersed. When the viscosity of this dispersion was measured using a tuning fork vibration viscometer, it was 120 mPa ⁇ s at 26 ° C. It was confirmed that carbon black was well dispersed even in a carbon black dispersion having a high concentration, and a low viscosity dispersion was obtained.
  • Example 34-4 Carbon black dispersion 5
  • Example 34-2 except that 3.7 mL of N-methylpyrrolidone was used instead of 2.7 mL of propylene carbonate, and carbon black was changed to “Ketjen Black EC300J” manufactured by Lion Specialty Chemicals. Thus, a high-viscosity paste in which carbon black was dispersed was obtained.
  • Example 35 Graphene nanoplatelet dispersion
  • the amount of the ionic compound (formula (7)) was 3.03 mg and that 1.05 mg of graphene nanoplatelets (XG SCIENCES, xGnP-C-300) was used instead of carbon black.
  • a graphene nanoplatelet dispersion was prepared in the same manner as in Example 33. An image of this dispersion is shown in FIG. 22 (with a dispersant). As a comparison, an image of a mixed solution of graphene nanoplatelets and pure water is also shown in FIG. 22 (no dispersant). It was confirmed that the graphene nanoplatelets were well dispersed in pure water by using the dispersant.
  • FIG. 23 shows a UV-vis-NIR absorption spectrum of a mixed solution of graphene nanoplatelets and pure water as a dotted line (without a dispersant).
  • Example 36 Copper phthalocyanine dispersion
  • a solution obtained by dissolving 10.5 mg of the ionic compound (formula (7)) obtained in Example 7 in 3 mL of pure water and 311.5 mg of copper phthalocyanine (Tokyo Kasei) were mixed.
  • This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 35 kHz) for 20 minutes using an ultrasonic cleaning device to obtain a dispersion in which copper phthalocyanine was stably dispersed.
  • An image of this dispersion is shown in FIG. 24 (with dispersant).
  • an image of a mixed solution of copper phthalocyanine and pure water is also shown in FIG. 24 (no dispersant). It was confirmed that copper phthalocyanine was well dispersed in pure water by using a dispersant.
  • FIG. 25 an image when a copper phthalocyanine dispersion containing a dispersant is dropped onto a slide glass (Matsunami Glass) and spread is shown in FIG. 25 (with a dispersant).
  • FIG. 25 an image when a liquid mixture of copper phthalocyanine and pure water is dropped onto a slide glass and spread is also shown in FIG. 25 (no dispersant).
  • the copper phthalocyanine dispersion showed good film forming properties.
  • Example 37 Iron (III) oxide dispersion
  • a solution obtained by dissolving 5.02 mg of the ionic compound (formula (7)) obtained in Example 7 in 3 mL of pure water and iron oxide (III) (Fe 2 O 3 ) (Wako Pure Chemical Co., Ltd., Cosmetic Grade) 5 0.01 mg was mixed.
  • This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device to obtain a dispersion liquid in which iron (III) oxide was dispersed.
  • An image of this dispersion is shown in FIG. 26 (with a dispersant).
  • an image of a mixed solution of iron (III) oxide and pure water is also shown in FIG. 26 (no dispersant). It was confirmed that the use of the dispersant improved the dispersibility of iron (III) oxide in pure water.
  • FIG. 27 shows a UV-vis-NIR absorption spectrum of a mixed solution of iron (III) oxide and pure water as a dotted line (without a dispersant).
  • Example 38 Coronene dispersion
  • a solution obtained by dissolving 3.12 mg of the ionic compound (formula (7)) obtained in Example 7 in 3 mL of pure water and 1.16 mg of coronene (Tokyo Kasei) were mixed.
  • This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device to obtain a dispersion in which coronene was dispersed.
  • An image of this dispersion is shown in FIG. 28 (with a dispersant).
  • an image of a mixed solution of coronene and pure water is also shown in FIG. 28 (no dispersant). It was confirmed that the dispersibility of coronene in pure water was improved by using the dispersant.
  • FIG. 29 shows a UV-vis-NIR absorption spectrum of a mixed solution of coronene and pure water as a dotted line (without a dispersant).
  • the ionic compound of the present invention can be used for nanocarbon material dispersants, nanocarbon material inks, nanocarbon material thin film processing, and the like.

Abstract

Provided is a dispersant which makes it possible to achieve the repeated dispersion and coagulation of a dispersoid in a dispersion containing the dispersant upon the irradiation of the dispersion with light for a short time. The dispersant contains an ionic compound represented by general formula (I) as an active ingredient. (In the formula, X represents an amide bond or an ester bond; A represents a substituent having a cation moiety; B represents an anion; and m represents such a numerical value that mB can have a valency of -2.)

Description

イオン性化合物および光応答性ナノ炭素材料分散剤Ionic compounds and photoresponsive nanocarbon material dispersants
 本発明は、カーボンナノチューブなどのナノ炭素材料や芳香族化合物などを、水や極性溶媒に分散するための分散剤に関するものである。 The present invention relates to a dispersant for dispersing nanocarbon materials such as carbon nanotubes and aromatic compounds in water and polar solvents.
 カーボンナノチューブ(以下、「CNT」と記載することがある)は電気的および光学的に優れた特性を有しているため、CNTに関する研究が盛んに進められている。CNT自体のvan der Waals力に基づく強い凝集力のため、CNTの液体への分散は非常に困難である。水や有機溶剤にCNTを分散させため、界面活性剤、高分子、および生体分子などを用いたCNT分散剤が数多く報告されている。 Since carbon nanotubes (hereinafter sometimes referred to as “CNT”) have excellent electrical and optical properties, research on CNTs has been actively promoted. Dispersion of CNTs in a liquid is very difficult due to the strong cohesive force based on the van der waals force of the CNTs themselves. Many CNT dispersants using surfactants, polymers, biomolecules, etc. have been reported to disperse CNTs in water or organic solvents.
 非特許文献1に記載された界面活性剤型の分散剤は、CNTの10倍以上の量が必要である。特許文献1に記載された分散剤は、CNTからの脱離に、酵素による分解反応を利用している。しかし、分散剤のCNTからの脱離が酵素の活性に左右されるため、この分散剤の使用環境は限定される。また、この分解反応は不可逆であるため、分散剤が再利用できない。特許文献2に記載された光応答性のスチルベン型分散剤は、光照射によってCNTから脱離できる。しかし、光応答が多段階であるため、分散剤をCNTから脱離するためには数時間の光照射が必要である。 The surfactant type dispersant described in Non-Patent Document 1 requires an amount 10 times or more that of CNT. The dispersant described in Patent Document 1 uses an enzymatic decomposition reaction for desorption from CNTs. However, since the detachment of the dispersant from the CNT depends on the activity of the enzyme, the use environment of the dispersant is limited. Moreover, since this decomposition reaction is irreversible, the dispersant cannot be reused. The photoresponsive stilbene type dispersant described in Patent Document 2 can be detached from CNTs by light irradiation. However, since the optical response is multistage, several hours of light irradiation is required to desorb the dispersant from the CNT.
 特許文献2にはアゾ系の分散剤も記載されている。しかし、この分散剤のシス体の熱安定性が低くトランス体に戻りやすいので、光照射によってCNTから分散剤を脱離するときの効率が低い。CNTから分散剤を脱離する他の方法として、金属錯体の酸化還元を利用した脱離法(非特許文献2および非特許文献3)、温度やpH変化を利用した脱離法(非特許文献4)、および溶媒への溶解度の差を利用した脱離法(非特許文献5)などがある。しかし、これらの分散剤の合成が複雑なことや、これらの脱離法ではクロロホルムやトルエン等の環境負荷が高い有機溶剤を使用していることが問題である。 Patent Document 2 also describes an azo-based dispersant. However, since the thermal stability of the cis form of this dispersant is low and it is easy to return to the trans form, the efficiency when desorbing the dispersant from the CNT by light irradiation is low. Other methods for desorbing the dispersant from CNT include desorption methods using redox of metal complexes (Non-Patent Document 2 and Non-Patent Document 3), desorption methods using changes in temperature and pH (Non-Patent Documents) 4), and a desorption method using a difference in solubility in a solvent (Non-Patent Document 5). However, there are problems that the synthesis of these dispersants is complicated, and that these desorption methods use organic solvents with high environmental impact such as chloroform and toluene.
特開2007-153716号公報JP 2007-153716 A 国際公開第2011/052604号International Publication No. 2011/052604
 本発明は、このような事情に鑑みてなされたものであり、分散液に光を短時間照射することで、分散質が分散媒中で分散と凝集を繰り返すことができる分散剤を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a dispersant capable of repeating dispersion and aggregation in a dispersion medium by irradiating the dispersion liquid with light for a short time. With the goal.
 本発明のイオン性化合物は下記一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000006
(式中、Xは下記で示されるアミド結合およびエステル結合から選択される一種である。
Figure JPOXMLDOC01-appb-C000007
Aは下記で表されるカチオン部位を有する置換基である。
Figure JPOXMLDOC01-appb-C000008
ただし、nは1以上10以下の数であり、R1は水素、アルキル基、フェニル基、ポリエチレングリコール基、またはアリル基であり、R2およびR3は独立して水素またはアルキル基である。Bはアニオンを示し、mはmBが-2価となる数である。)
The ionic compound of the present invention is represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000006
(In the formula, X is a kind selected from amide bonds and ester bonds shown below.
Figure JPOXMLDOC01-appb-C000007
A is a substituent having a cation moiety represented by the following.
Figure JPOXMLDOC01-appb-C000008
However, n is a number from 1 to 10, R 1 is hydrogen, an alkyl group, a phenyl group, a polyethylene glycol group, or an allyl group, and R 2 and R 3 are independently hydrogen or an alkyl group. B represents an anion, and m is a number such that mB becomes -2 valent. )
 本発明の分散剤は、水および極性有機溶剤の少なくとも一方を含有する分散媒に分散質を分散させるための分散剤であって、本発明のイオン性化合物を有効成分とする。本発明の分散液は、分散質と、水または極性有機溶剤の少なくとも一方を含有する分散媒と、本発明の分散剤とを有する。 The dispersant of the present invention is a dispersant for dispersing a dispersoid in a dispersion medium containing at least one of water and a polar organic solvent, and the ionic compound of the present invention is an active ingredient. The dispersion of the present invention has a dispersoid, a dispersion medium containing at least one of water and a polar organic solvent, and the dispersant of the present invention.
 本発明の分散液の製造方法は、分散質と、水および極性有機溶剤の少なくとも一方を含有する分散媒と、本発明の分散剤を混合して混合液を得る混合工程と、混合液を超音波によって振動し、分散質を分散媒に分散させる分散工程とを有する。本発明の凝集液の製造方法は、本発明の分散液に、250~450nmの所定の波長を有する光を照射して、分散質から分散剤を脱離し、分散質を分散媒中で凝集させて凝集液を得る。 The method for producing a dispersion of the present invention comprises a mixing step of mixing a dispersoid, a dispersion medium containing at least one of water and a polar organic solvent, and a dispersant of the present invention to obtain a mixed solution, A dispersion step of vibrating by sound waves to disperse the dispersoid in the dispersion medium. In the method for producing an aggregating liquid of the present invention, the dispersion liquid of the present invention is irradiated with light having a predetermined wavelength of 250 to 450 nm to desorb the dispersing agent from the dispersoid, and the dispersoid is aggregated in the dispersion medium. To obtain an agglomerated liquid.
 他の本発明の分散液の製造方法は、本発明の分散液に、250~450nmの所定の波長を有する光を照射して、分散質から分散剤を脱離し、分散媒中で分散質を凝集させて凝集液を得る凝集工程と、凝集工程で分散質から分散剤を脱離するときに用いた光の波長と異なる380~500nmの所定の波長を有する光を凝集液に照射して、分散媒中で分散質を分散させて分散液を得る分散工程とを有する。 Another method for producing the dispersion of the present invention is to irradiate the dispersion of the present invention with light having a predetermined wavelength of 250 to 450 nm to desorb the dispersant from the dispersoid, and to disperse the dispersoid in the dispersion medium. Aggregating step of aggregating to obtain an aggregating liquid, and irradiating the aggregating liquid with light having a predetermined wavelength of 380 to 500 nm different from the wavelength of light used when desorbing the dispersant from the dispersoid in the aggregating step A dispersion step of dispersing a dispersoid in a dispersion medium to obtain a dispersion.
 他の本発明の分散液の製造方法は、本発明の分散液に、250~450nmの所定の波長を有する光を照射して、分散質から分散剤を脱離し、分散媒中で分散質を凝集させて凝集液を得る凝集工程と、凝集液から、分散剤の少なくとも一部および分散媒の少なくとも一部を含有する溶液を回収する回収工程と、別の分散質とこの溶液を混合した後、得られた混合液を超音波によって振動し、分散質を分散媒に分散させる分散工程とを有する。 Another method for producing the dispersion of the present invention is to irradiate the dispersion of the present invention with light having a predetermined wavelength of 250 to 450 nm to desorb the dispersant from the dispersoid, and to disperse the dispersoid in the dispersion medium. An aggregating step for aggregating to obtain an aggregated liquid, a recovery step for recovering a solution containing at least part of the dispersant and at least part of the dispersion medium from the aggregated liquid, and mixing this solution with another dispersoid And a dispersion step of oscillating the obtained mixed liquid with ultrasonic waves to disperse the dispersoid in the dispersion medium.
 本発明によれば、分散液に光を短時間照射することで、分散質の分散と凝集を繰り返すことができる。 According to the present invention, dispersion and aggregation of the dispersoid can be repeated by irradiating the dispersion with light for a short time.
実施例19のSWCNT分散液の可視-近赤外(Vis-NIR)吸収スペクトル。The visible-near infrared (Vis-NIR) absorption spectrum of the SWCNT dispersion of Example 19. 実施例19のSWCNT分散液の画像。The image of SWCNT dispersion liquid of Example 19. 実施例20のSWCNT分散液のVis-NIR吸収スペクトル。The Vis-NIR absorption spectrum of the SWCNT dispersion of Example 20 実施例21のSWCNT分散液のVis-NIR吸収スペクトル。Vis-NIR absorption spectrum of the SWCNT dispersion of Example 21. 実施例22のSWCNT分散液のVis-NIR吸収スペクトル。Vis-NIR absorption spectrum of the SWCNT dispersion of Example 22. 実施例23のSWCNT分散液のVis-NIR吸収スペクトル。Vis-NIR absorption spectrum of the SWCNT dispersion of Example 23. 実施例24のSWCNT分散液のVis-NIR吸収スペクトル。The Vis-NIR absorption spectrum of the SWCNT dispersion of Example 24. 実施例25のSWCNT分散液のVis-NIR吸収スペクトル。Vis-NIR absorption spectrum of the SWCNT dispersion of Example 25. 実施例26のSWCNT分散液のVis-NIR吸収スペクトル。Vis-NIR absorption spectrum of the SWCNT dispersion of Example 26. 実施例27のSWCNT分散液のVis-NIR吸収スペクトル。Vis-NIR absorption spectrum of the SWCNT dispersion of Example 27. 実施例28のSWCNT分散液のVis-NIR吸収スペクトル。The Vis-NIR absorption spectrum of the SWCNT dispersion of Example 28. 実施例28のSWCNT分散液のVis-NIR吸収スペクトル。The Vis-NIR absorption spectrum of the SWCNT dispersion of Example 28. 実施例28のSWCNT分散液のSWCNTの凝集と再分散を繰り返したときの波長1155nmにおける吸光度プロット。The absorbance plot in wavelength 1155nm when repeating SWCNT aggregation and re-dispersion of the SWCNT dispersion liquid of Example 28. 実施例29のSWCNT分散液のVis-NIR吸収スペクトル。Vis-NIR absorption spectrum of the SWCNT dispersion of Example 29. 実施例29-2のSWCNT分散液のVis-NIR吸収スペクトル。Vis-NIR absorption spectrum of the SWCNT dispersion of Example 29-2. 実施例29-3のSWCNT分散液のVis-NIR吸収スペクトル。Vis-NIR absorption spectrum of the SWCNT dispersion of Example 29-3. 実施例30のSWCNT分散液のUV-vis-NIR吸収スペクトル。4 is a UV-vis-NIR absorption spectrum of the SWCNT dispersion of Example 30. FIG. 実施例31のSWCNT分散液のUV-vis-NIR吸収スペクトル。4 is a UV-vis-NIR absorption spectrum of the SWCNT dispersion of Example 31. FIG. 実施例32のMWCNT分散液のUV-vis-NIR吸収スペクトル。6 shows a UV-vis-NIR absorption spectrum of the MWCNT dispersion of Example 32. FIG. 実施例33のカーボンブラック分散液の画像。The image of the carbon black dispersion liquid of Example 33. 実施例33のカーボンブラック分散液のUV-vis-NIR吸収スペクトル。The UV-vis-NIR absorption spectrum of the carbon black dispersion of Example 33. 実施例34のカーボンブラック分散液の画像。The image of the carbon black dispersion liquid of Example 34. 実施例34のカーボンブラック分散液のUV-vis-NIR吸収スペクトル。4 is a UV-vis-NIR absorption spectrum of the carbon black dispersion of Example 34. FIG. 実施例35のグラフェンナノプレートレット分散液の画像。The graphene nanoplatelet dispersion liquid of Example 35. 実施例35のグラフェンナノプレートレット分散液のUV-vis-NIR吸収スペクトル。The UV-vis-NIR absorption spectrum of the graphene nanoplatelet dispersion of Example 35. 実施例36の銅フタロシアニン分散液の画像。The image of the copper phthalocyanine dispersion of Example 36. 実施例36の銅フタロシアニン分散液をスライドガラス上に塗り広げたときの画像。The image when the copper phthalocyanine dispersion liquid of Example 36 is spread on a slide glass. 実施例37の酸化鉄(III)分散液の画像。The image of the iron (III) oxide dispersion of Example 37. 実施例37の酸化鉄(III)分散液のUV-vis-NIR吸収スペクトル。The UV-vis-NIR absorption spectrum of the iron (III) oxide dispersion of Example 37. 実施例38のコロネン分散液の画像。The image of the coronene dispersion liquid of Example 38. 実施例38のコロネン分散液のUV-vis-NIR吸収スペクトル。The UV-vis-NIR absorption spectrum of the coronene dispersion of Example 38.
 以下、本発明のイオン性化合物、分散剤、分散液、分散液の製造方法、および凝集液の製造方法について、実施形態と実施例に基づいて説明する。重複説明は適宜省略する。なお、2つの数値の間に「~」を記載して数値範囲を表す場合には、この2つの数値も数値範囲に含まれるものとする。 Hereinafter, the ionic compound, the dispersant, the dispersion, the method for producing the dispersion, and the method for producing the aggregated liquid according to the present invention will be described based on embodiments and examples. A duplicate description will be omitted as appropriate. In the case where a numerical range is indicated by describing “˜” between two numerical values, the two numerical values are also included in the numerical range.
 本発明のイオン性化合物は下記一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000009
(式中、Xは下記で示されるアミド結合およびエステル結合から選択される一種である。
Figure JPOXMLDOC01-appb-C000010
Aは下記で表されるカチオン部位を有する置換基である。
Figure JPOXMLDOC01-appb-C000011
ただし、nは1以上10以下の数であり、R1は水素、アルキル基、フェニル基、ポリエチレングリコール基、またはアリル基であり、R2およびR3は独立して水素またはアルキル基である。Bはアニオンを示し、mはmBが-2価となる数である。)
The ionic compound of the present invention is represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000009
(In the formula, X is a kind selected from amide bonds and ester bonds shown below.
Figure JPOXMLDOC01-appb-C000010
A is a substituent having a cation moiety represented by the following.
Figure JPOXMLDOC01-appb-C000011
However, n is a number from 1 to 10, R 1 is hydrogen, an alkyl group, a phenyl group, a polyethylene glycol group, or an allyl group, and R 2 and R 3 are independently hydrogen or an alkyl group. B represents an anion, and m is a number such that mB becomes -2 valent. )
 R1のアルキル基の炭素数は、1以上10以下であることが好ましい。アニオンであるBとしては、ハロゲンアニオン(F-、Cl-、Br-、I-)、テトラフルオロホウ酸アニオン(BF4 -)、ヘキサフルオロリン酸アニオン(PF6 -)、ビス(トリフルオロメタンスルホニル)アミドアニオン(TFSA)、チオイソシアネートアニオン(SCN-)、硝酸アニオン(NO3 -)、硫酸アニオン(SO4 2-)、チオ硫酸アニオン(S23 2-)、炭酸アニオン(CO3 2-)、炭酸水素アニオン(HCO3 -)、リン酸アニオン(PO4 3-)、亜リン酸アニオン(PO3 3-)、次亜リン酸アニオン(PO2 3-)、ハロゲン酸アニオン(ClO4 -、BrO4 -、IO4 -、ClO3 -、BrO3 -、IO3 -、ClO2 -、BrO2 -、IO2 -、ClO-、BrO-、IO-)、トリス(トリフルオロメチルスルホニル)炭素酸アニオン、トリフルオロメチルスルホン酸アニオン、ジシアンアミドアニオン、酢酸アニオン(CH3COO-)、ハロゲン化酢酸アニオン((CAn3-n)COO-(A=F,Cl,Br,I、n=1,2,3))、テトラフェニルホウ酸アニオン(BPh4 -)、またはテトラフェニルホウ酸アニオンの誘導体(B(Aryl)4 -(Arylは置換フェニル基))が挙げられる。 The number of carbon atoms of the alkyl group represented by R 1 is preferably 1 or more and 10 or less. As anions B, halogen anions (F , Cl , Br , I ), tetrafluoroborate anions (BF 4 ), hexafluorophosphate anions (PF 6 ), bis (trifluoromethanesulfonyl) ) Amide anion (TFSA), thioisocyanate anion (SCN ), nitrate anion (NO 3 ), sulfate anion (SO 4 2− ), thiosulfate anion (S 2 O 3 2− ), carbonate anion (CO 3 2 -), bicarbonate anion (HCO 3 -), phosphate anion (PO 4 3-), phosphorous acid anion (PO 3 3-), hypophosphorous acid anion (PO 2 3-), halogen anion (ClO 4 , BrO 4 , IO 4 , ClO 3 , BrO 3 , IO 3 , ClO 2 , BrO 2 , IO 2 , ClO , BrO , IO ), Tris (trifluoromethyl) Sulfonyl) carbonic acid anion, trifluoromethyl Sulfonic acid anion, dicyanamide anion, acetic acid anion (CH 3 COO ), halogenated acetic acid anion ((CA n H 3−n ) COO (A═F, Cl, Br, I, n = 1, 2, 3)), tetraphenylborate anion (BPh 4 ), or a derivative of tetraphenylborate anion (B (Aryl) 4 (Aryl is a substituted phenyl group)).
 本発明のイオン性化合物は、下記化学式で表される物質の中から選択される一種であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
The ionic compound of the present invention is preferably a kind selected from substances represented by the following chemical formulas.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 本発明の分散剤は、水および極性有機溶剤の少なくとも一方を含有する分散媒に分散質を分散させるための分散剤である。そして、本発明の分散剤は、本発明のイオン性化合物を有効成分とする。また、本発明の分散液は、分散質と、水または極性有機溶剤の少なくとも一方を含有する分散媒と、本発明の分散剤とを含有している。分散質としては、ナノ炭素材料、疎水性微粒子、または疎水性分子が挙げられる。分散質は、単層カーボンナノチューブ、多層カーボンナノチューブ、カーボンブラック、グラフェン、フタロシアニン、金属フタロシアニン、コロネン、および酸化鉄微粒子から選ばれる少なくとも一種であることが好ましい。分散媒に均一に分散するからである。 The dispersant of the present invention is a dispersant for dispersing a dispersoid in a dispersion medium containing at least one of water and a polar organic solvent. And the dispersing agent of this invention uses the ionic compound of this invention as an active ingredient. The dispersion of the present invention contains a dispersoid, a dispersion medium containing at least one of water and a polar organic solvent, and the dispersant of the present invention. Examples of the dispersoid include nanocarbon materials, hydrophobic fine particles, and hydrophobic molecules. The dispersoid is preferably at least one selected from single-walled carbon nanotubes, multi-walled carbon nanotubes, carbon black, graphene, phthalocyanine, metal phthalocyanine, coronene, and iron oxide fine particles. This is because it is uniformly dispersed in the dispersion medium.
 本発明のある態様の分散液の製造方法は、混合工程と分散工程とを備えている。混合工程では、分散質と、水および極性有機溶剤の少なくとも一方を含有する分散媒と、本発明の分散剤を混合して混合液を得る。分散工程では、この混合液を超音波によって振動し、分散質を分散媒に分散させる。本発明の凝集液の製造方法は、本発明の分散液に、250~450nmの所定の波長を有する光を照射して、分散質から分散剤を脱離し、分散質を分散媒中で凝集させて凝集液を得る。250~450nmの所定の波長を有する光としては、例えば365nmの波長を有する紫外光が挙げられる。「250~450nmの所定の波長」は、用いる分散剤の構造に応じて定まる。 The method for producing a dispersion according to an aspect of the present invention includes a mixing step and a dispersion step. In the mixing step, a dispersion is obtained by mixing the dispersoid, a dispersion medium containing at least one of water and a polar organic solvent, and the dispersant of the present invention. In the dispersion step, the mixture is vibrated by ultrasonic waves to disperse the dispersoid in the dispersion medium. In the method for producing an aggregating liquid of the present invention, the dispersion liquid of the present invention is irradiated with light having a predetermined wavelength of 250 to 450 nm to desorb the dispersing agent from the dispersoid, and the dispersoid is aggregated in the dispersion medium. To obtain an agglomerated liquid. Examples of light having a predetermined wavelength of 250 to 450 nm include ultraviolet light having a wavelength of 365 nm. The “predetermined wavelength of 250 to 450 nm” is determined according to the structure of the dispersant used.
 また、本発明の他の態様の分散液の製造方法は、凝集工程と分散工程とを備えている。凝集工程では、本発明の分散液に、250~450nmの所定の波長を有する光を照射して、分散質から分散剤を脱離し、分散媒中で分散質を凝集させて凝集液を得る。分散工程では、凝集工程で分散質から分散剤を脱離するときに用いた光の波長と異なる380~500nmの所定の波長を有する光をこの凝集液に照射して、分散媒中で分散質を分散させて分散液を得る。380~500nmの所定の波長を有する光としては、例えば436nmの波長を有する可視光が挙げられる。 In addition, the method for producing a dispersion according to another aspect of the present invention includes an aggregation step and a dispersion step. In the flocculation step, the dispersion liquid of the present invention is irradiated with light having a predetermined wavelength of 250 to 450 nm to desorb the dispersant from the dispersoid and aggregate the dispersoid in the dispersion medium to obtain an aggregate liquid. In the dispersion step, the aggregate liquid is irradiated with light having a predetermined wavelength of 380 to 500 nm, which is different from the wavelength of light used when the dispersant is removed from the dispersoid in the aggregation step, and the dispersoid is dispersed in the dispersion medium. Is dispersed to obtain a dispersion. Examples of light having a predetermined wavelength of 380 to 500 nm include visible light having a wavelength of 436 nm.
 「250~450nmの所定の波長」と「380~500nmの所定の波長」は、用いる分散剤の構造に応じて定まる。これら二種類の「所定の波長」は異なるので、凝集工程で用いる光の波長と、分散工程で用いる光の波長を分別できる。すなわち、例えば、ある分散剤を含有する分散液では、凝集工程で用いる紫外光の波長は340~380nmの間にあり、分散工程で用いる可視光の波長は400~450nmの間にある。一方、別の分散剤を含有する分散液では、凝集工程で用いる紫外光の波長は360~400nmの間にあり、分散工程で用いる可視光の波長は420~480nmの間にある。 “The predetermined wavelength of 250 to 450 nm” and “the predetermined wavelength of 380 to 500 nm” are determined according to the structure of the dispersant used. Since these two types of “predetermined wavelengths” are different, the wavelength of light used in the aggregation process and the wavelength of light used in the dispersion process can be distinguished. That is, for example, in a dispersion containing a certain dispersant, the wavelength of ultraviolet light used in the aggregation step is between 340 and 380 nm, and the wavelength of visible light used in the dispersion step is between 400 and 450 nm. On the other hand, in a dispersion containing another dispersant, the wavelength of ultraviolet light used in the aggregation step is between 360 and 400 nm, and the wavelength of visible light used in the dispersion step is between 420 and 480 nm.
 また、本発明の他の態様の分散液の製造方法は、凝集工程と、回収工程と、分散工程とを備えている。凝集工程では、本発明の分散液に、250~450nmの所定の波長を有する光を照射して、分散質から分散剤を脱離し、分散媒中で分散質を凝集させて凝集液を得る。回収工程では、この凝集液から、分散剤の少なくとも一部および分散媒の少なくとも一部を含有する溶液を回収する。分散工程では、別の分散質と溶液を混合した後、得られた混合液を超音波によって振動し、分散質を分散媒に分散させる。 In addition, the method for producing a dispersion according to another aspect of the present invention includes an aggregation step, a recovery step, and a dispersion step. In the flocculation step, the dispersion liquid of the present invention is irradiated with light having a predetermined wavelength of 250 to 450 nm to desorb the dispersant from the dispersoid and aggregate the dispersoid in the dispersion medium to obtain an aggregate liquid. In the recovery step, a solution containing at least a part of the dispersant and at least a part of the dispersion medium is recovered from the aggregate liquid. In the dispersion step, another dispersoid and a solution are mixed, and then the obtained mixture is vibrated by ultrasonic waves to disperse the dispersoid in the dispersion medium.
実施例1~6-2:光応答性イオン性化合物の原料の作製
(実施例1:光応答性イオン性化合物の原料の作製1)
 4-(ピペリジン-1-イルメチル)アニリン0.62g(3.3mmol)とトリエチルアミン0.9g(8.9mmol)を脱水塩化メチレン10mLに溶解した。そこに、アゾベンゼン-4,4’-ジカルボニルクロリド0.5g(1.6mmol)を脱水塩化メチレン20mLに溶解した溶液を、かき混ぜながら1時間かけて加え、さらに、室温で12時間撹拌した。生成した沈殿物を吸引濾過して、塩化メチレンで洗浄して乾燥させ、橙色粉末0.75gを得た(収率75%)。1H-NMRスペクトルから、この粉末が下記の式(1)で表される化合物であることを確認した。
 1H-NMR (400MHz, Pyridine-d5, δ): 1.32 (m, 4H), 1.49 (m, 8H), 2.33 (br, 8H), 3.42 (s, 4H), 7.48 (m, 4H), 8.04-8.16 (m, 8H), 8.41 (m, 4H), 11.2 (s, 2H)
Examples 1 to 6-2: Preparation of photoresponsive ionic compound raw material (Example 1: Preparation of photoresponsive ionic compound raw material 1)
4- (Piperidin-1-ylmethyl) aniline (0.62 g, 3.3 mmol) and triethylamine (0.9 g, 8.9 mmol) were dissolved in dehydrated methylene chloride (10 mL). A solution prepared by dissolving 0.5 g (1.6 mmol) of azobenzene-4,4′-dicarbonyl chloride in 20 mL of dehydrated methylene chloride was added over 1 hour while stirring, and the mixture was further stirred at room temperature for 12 hours. The resulting precipitate was filtered with suction, washed with methylene chloride and dried to give 0.75 g of orange powder (75% yield). From the 1 H-NMR spectrum, it was confirmed that this powder was a compound represented by the following formula (1).
1 H-NMR (400MHz, Pyridine-d 5 , δ): 1.32 (m, 4H), 1.49 (m, 8H), 2.33 (br, 8H), 3.42 (s, 4H), 7.48 (m, 4H), 8.04-8.16 (m, 8H), 8.41 (m, 4H), 11.2 (s, 2H)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(実施例2:光応答性イオン性化合物の原料の作製2)
 4-(ピペリジン-1-イルメチル)アニリンに代えて同じ物質量の4-(1H-イミダゾール-1-イル)アニリンを使用したこと以外は、実施例1と同様にして橙色粉末を得た(収率85%)。1H-NMRスペクトルから、この粉末が下記の式(2)で表される化合物であることを確認した。
 1H-NMR (400MHz, Pyridine-d5, δ): 8.11-8.15 (m, 8H), 8.21 (m, 4H), 8.32 (s, 2H), 8.45 (m, 4H), 8.56 (m, 4H), 11.4 (s, 2H)
(Example 2: Preparation of raw material of photoresponsive ionic compound 2)
An orange powder was obtained in the same manner as in Example 1 except that 4- (1H-imidazol-1-yl) aniline having the same substance amount was used instead of 4- (piperidin-1-ylmethyl) aniline. (Rate 85%). From 1 H-NMR spectrum, it was confirmed that this powder was a compound represented by the following formula (2).
1 H-NMR (400MHz, Pyridine-d 5 , δ): 8.11-8.15 (m, 8H), 8.21 (m, 4H), 8.32 (s, 2H), 8.45 (m, 4H), 8.56 (m, 4H ), 11.4 (s, 2H)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(実施例3:光応答性イオン性化合物の原料の作製3)
 4-(ピペリジン-1-イルメチル)アニリンに代えて同じ物質量の1-(3-アミノプロピル)イミダゾールを使用したこと以外は、実施例1と同様にして橙色粉末を得た(収率81%)。1H-NMRスペクトルから、この粉末が下記の式(3)で表される化合物であることを確認した。
 1H-NMR (400MHz, DMSO-d6, δ): 1.95 (m, 4H), 3.25 (m, 4H), 6.86 (d, 2H), 7.19 (d, 2H), 7.63 (s, 2H), 7.94-8.04 (m, 8H), 8.68 (m, 2H)
(Example 3: Production of photoresponsive ionic compound raw material 3)
An orange powder was obtained in the same manner as in Example 1 except that the same amount of 1- (3-aminopropyl) imidazole was used instead of 4- (piperidin-1-ylmethyl) aniline (yield 81% ). From the 1 H-NMR spectrum, it was confirmed that this powder was a compound represented by the following formula (3).
1 H-NMR (400MHz, DMSO-d 6 , δ): 1.95 (m, 4H), 3.25 (m, 4H), 6.86 (d, 2H), 7.19 (d, 2H), 7.63 (s, 2H), 7.94-8.04 (m, 8H), 8.68 (m, 2H)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(実施例4:光応答性イオン性化合物の原料の作製4)
 4-(ピペリジン-1-イルメチル)アニリンに代えて同じ物質量の1-(3-アミノエチル)ピリジンを使用したこと以外は、実施例1と同様にして橙色粉末を得た(収率84%)。1H-NMRスペクトルから、この粉末が下記の式(4)で表される化合物であることを確認した。
 1H-NMR (400MHz, DMSO-d6, δ): 2.89 (t, 4H), 3.25 (t, 4H), 7.26 (m, 4H), 7.94-8.01 (m, 8H), 8.45 (m, 4H), 8.76 (m, 2H)
(Example 4: Production 4 of photoresponsive ionic compound raw material)
An orange powder was obtained in the same manner as in Example 1 except that the same amount of 1- (3-aminoethyl) pyridine was used instead of 4- (piperidin-1-ylmethyl) aniline (yield 84%). ). From the 1 H-NMR spectrum, it was confirmed that this powder was a compound represented by the following formula (4).
1 H-NMR (400MHz, DMSO-d 6 , δ): 2.89 (t, 4H), 3.25 (t, 4H), 7.26 (m, 4H), 7.94-8.01 (m, 8H), 8.45 (m, 4H ), 8.76 (m, 2H)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(実施例5:光応答性イオン性化合物の原料の作製5)
 4-(ピペリジン-1-イルメチル)アニリンに代えて同じ物質量の4-ヒドロキシフェネチルブロミドを使用したこと以外は、実施例1と同様にして橙色粉末を得た(収率68%)。1H-NMRスペクトルから、この粉末が下記の式(5)で表される化合物であることを確認した。
 1H-NMR (400MHz, Pyridine-d5, δ): 3.12 (t, 4H), 3.67 (t, 4H), 7.33 (d, 4H), 7.42 (d, 4H), 8.16 (d, 4H), 8.46 (d, 4H)
(Example 5: Preparation 5 of raw material of photoresponsive ionic compound)
An orange powder was obtained in the same manner as in Example 1 except that 4-hydroxyphenethyl bromide having the same substance amount was used instead of 4- (piperidin-1-ylmethyl) aniline (yield 68%). From the 1 H-NMR spectrum, it was confirmed that this powder was a compound represented by the following formula (5).
1 H-NMR (400MHz, Pyridine-d 5 , δ): 3.12 (t, 4H), 3.67 (t, 4H), 7.33 (d, 4H), 7.42 (d, 4H), 8.16 (d, 4H), 8.46 (d, 4H)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(実施例6:光応答性イオン性化合物の原料の作製6)
 4-(クロロメチル)ベンジルクロライド1.5g(7.9mmol)を脱水塩化メチレン20mLに溶解した。そこに、4,4’-ジヒドロキシアゾベンゼン0.5g(2.3mmol)とトリエチルアミン2g(19mmol)を脱水塩化メチレン30mLに溶解した溶液を、かき混ぜながら1時間かけて加えた。その後、室温で24時間撹拌した。沈殿物を吸引濾過して、塩化メチレンで洗浄して乾燥させ、黄色粉末1.1gを得た(収率88%)。1H-NMRスペクトルから、この粉末が下記の式(6)で表される化合物であることを確認した。
 1H-NMR (400MHz, Pyridine-d5, δ): 4.81 (s, 4H), 7.46-7.73 (m, 8H), 8.17 (m, 6H), 8.40 (m, 2H)
(Example 6: Preparation of raw material of photoresponsive ionic compound 6)
4- (Chloromethyl) benzyl chloride (1.5 g, 7.9 mmol) was dissolved in dehydrated methylene chloride (20 mL). A solution prepared by dissolving 0.5 g (2.3 mmol) of 4,4′-dihydroxyazobenzene and 2 g (19 mmol) of triethylamine in 30 mL of dehydrated methylene chloride was added over 1 hour with stirring. Then, it stirred at room temperature for 24 hours. The precipitate was filtered off with suction, washed with methylene chloride and dried to give 1.1 g of yellow powder (88% yield). From the 1 H-NMR spectrum, it was confirmed that this powder was a compound represented by the following formula (6).
1 H-NMR (400MHz, Pyridine -d 5, δ): 4.81 (s, 4H), 7.46-7.73 (m, 8H), 8.17 (m, 6H), 8.40 (m, 2H)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(実施例6-2:光応答性イオン性化合物の原料の作製7)
 ホルデニン0.55g(3.3mmol)とトリエチルアミン1.0g(9.3mmol)を脱水塩化メチレン20mLに溶解した。そこに、アゾベンゼン-4,4’-ジカルボニルジクロライド0.5g(1.6mmol)を脱水塩化メチレン20mLに溶解した溶液を、撹拌しながら滴下した。その後、室温で約12時間撹拌した。得られた反応液を減圧濃縮し、エタノールを加えて沈殿物を析出させた。この沈殿物を濾別し、エタノールで洗浄した後、真空乾燥して橙色粉末0.56gを得た(収率61%)。1H-NMRスペクトルから、この粉末が下記の式(6-2)で表される化合物であることを確認した。
 1H-NMR (400MHz, Pyridine-d5, δ): 2.21 (s, 12H), 2.24 (t, J=8Hz, 4H), 2.80 (t, J=8Hz, 4H), 7.36-7.44 (m, 8H), 8.19 (dd, 4H), 8.49 (dd, 4H)
(Example 6-2: Production of raw material of photoresponsive ionic compound 7)
0.55 g (3.3 mmol) of hordenine and 1.0 g (9.3 mmol) of triethylamine were dissolved in 20 mL of dehydrated methylene chloride. A solution prepared by dissolving 0.5 g (1.6 mmol) of azobenzene-4,4′-dicarbonyl dichloride in 20 mL of dehydrated methylene chloride was added dropwise thereto with stirring. Then, it stirred at room temperature for about 12 hours. The obtained reaction solution was concentrated under reduced pressure, and ethanol was added to precipitate a precipitate. The precipitate was separated by filtration, washed with ethanol, and then vacuum dried to obtain 0.56 g of orange powder (yield 61%). From 1 H-NMR spectrum, it was confirmed that this powder was a compound represented by the following formula (6-2).
1 H-NMR (400MHz, Pyridine-d 5 , δ): 2.21 (s, 12H), 2.24 (t, J = 8Hz, 4H), 2.80 (t, J = 8Hz, 4H), 7.36-7.44 (m, 8H), 8.19 (dd, 4H), 8.49 (dd, 4H)
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
実施例7~18-2:光応答性イオン性化合物の作製
(実施例7:光応答性イオン性化合物の作製1)
 ジメチルホルムアミド50mL中で、実施例6で得られた式(6)で表される化合物0.6g(1.16mmol)とN-ブチルジメチルアミン1g(9.9mmol)を、80℃で48時間撹拌した。この反応液を減圧濃縮し、生じた析出物を吸引濾過して、黄色粉末0.56gを得た(収率67%)。1H-NMRおよび13C-NMRスペクトルから、この粉末が下記の式(7)で表されるイオン性化合物であることを確認した。
 1H-NMR (400MHz, D2O, δ): 0.73 (t, 6H), 1.14 (m, 4H), 1.63 (m, 4H), 2.73-2.95 (m, 16H), 4.29 (s, 4H), 7.05 (d, 4H), 7.23-7.65 (m, 8H), 7.87 (m, 4H)
 13C-NMR (400MHz, DMSO-d6, δ): 13.55, 19.28, 23.82, 49.30, 63.62, 65.13, 123.04, 123.96, 130.11, 130.22, 133.64, 134.14, 149.71, 152.76, 163.88
Examples 7 to 18-2: Preparation of photoresponsive ionic compound (Example 7: Preparation of photoresponsive ionic compound 1)
In 50 mL of dimethylformamide, 0.6 g (1.16 mmol) of the compound represented by the formula (6) obtained in Example 6 and 1 g (9.9 mmol) of N-butyldimethylamine were stirred at 80 ° C. for 48 hours. did. The reaction mixture was concentrated under reduced pressure, and the resulting precipitate was filtered with suction to obtain 0.56 g of a yellow powder (yield 67%). From 1 H-NMR and 13 C-NMR spectra, it was confirmed that this powder was an ionic compound represented by the following formula (7).
1 H-NMR (400MHz, D 2 O, δ): 0.73 (t, 6H), 1.14 (m, 4H), 1.63 (m, 4H), 2.73-2.95 (m, 16H), 4.29 (s, 4H) , 7.05 (d, 4H), 7.23-7.65 (m, 8H), 7.87 (m, 4H)
13 C-NMR (400 MHz, DMSO-d 6 , δ): 13.55, 19.28, 23.82, 49.30, 63.62, 65.13, 123.04, 123.96, 130.11, 130.22, 133.64, 134.14, 149.71, 152.76, 163.88
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(実施例8:光応答性イオン性化合物の作製2)
 式(6)で表される化合物に代えて、同じ物質量の実施例5で得られた式(5)で表される化合物を使用したこと以外は、実施例7と同様にして橙色粉末を得た(収率60%)。1H-NMRおよび13C-NMRスペクトルから、この粉末が下記の式(8)で表される化合物であることを確認した。
 1H-NMR (400MHz, DMSO-d6, δ): 0.96 (t, 6H), 1.38 (m, 4H), 1.69 (m, 4H), 3.11 (m, 20H), 3.53 (m, 4H), 7.35 (d, 4H), 7.45 (d, 4H), 8.15 (d, 4H), 8.37 (d, 4H)
 13C-NMR (400MHz, DMSO-d6, δ): 13.54, 19.26, 23.79, 27.53, 50.05, 63.19, 63.52, 122.01, 123.19, 130.22, 131.29, 131.52, 134.30, 149.43, 154.64, 163.93
(Example 8: Preparation of photoresponsive ionic compound 2)
An orange powder was prepared in the same manner as in Example 7 except that instead of the compound represented by Formula (6), the same amount of the compound represented by Formula (5) obtained in Example 5 was used. Obtained (yield 60%). From 1 H-NMR and 13 C-NMR spectra, it was confirmed that this powder was a compound represented by the following formula (8).
1 H-NMR (400MHz, DMSO-d 6 , δ): 0.96 (t, 6H), 1.38 (m, 4H), 1.69 (m, 4H), 3.11 (m, 20H), 3.53 (m, 4H), 7.35 (d, 4H), 7.45 (d, 4H), 8.15 (d, 4H), 8.37 (d, 4H)
13 C-NMR (400 MHz, DMSO-d 6 , δ): 13.54, 19.26, 23.79, 27.53, 50.05, 63.19, 63.52, 122.01, 123.19, 130.22, 131.29, 131.52, 134.30, 149.43, 154.64, 163.93
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(実施例9:光応答性イオン性化合物の作製3)
 ジメチルホルムアミド100mL中で、実施例2で得られた式(2)で表される化合物0.5g(0.9mmol)とトリフルオロメタンスルホン酸メチル2g(12mmol)を、室温で48時間撹拌した。この反応液を減圧濃縮し、アセトンに滴下して得られた沈殿物を吸引濾過して、橙色粉末0.76gを得た(収率83%)。1H-NMRおよび13C-NMRスペクトルから、この粉末が下記の式(9)で表されるイオン性化合物であることを確認した。
 1H-NMR (400MHz, DMSO-d6,δ): 3.95 (s, 6H), 7.78 (m, 4H), 7.94 (m, 4H), 8.04-8.11 (m, 8H), 8.22-8.27 (m, 4H), 9.70 (s, 2H), 10.7 (s, 2H)
 13C-NMR (400MHz, DMSO-d6,δ): 36.14, 121.00, 121.36, 122.35, 122.76, 124.40, 129.24, 130.18, 135.49, 135.73, 136.98, 140.14, 153.58, 162.27, 164.96
(Example 9: Preparation of photoresponsive ionic compound 3)
In 100 mL of dimethylformamide, 0.5 g (0.9 mmol) of the compound represented by the formula (2) obtained in Example 2 and 2 g (12 mmol) of methyl trifluoromethanesulfonate were stirred at room temperature for 48 hours. The reaction solution was concentrated under reduced pressure, and the precipitate obtained by dropwise addition to acetone was suction filtered to obtain 0.76 g of an orange powder (yield 83%). From 1 H-NMR and 13 C-NMR spectra, it was confirmed that this powder was an ionic compound represented by the following formula (9).
1 H-NMR (400MHz, DMSO-d 6 , δ): 3.95 (s, 6H), 7.78 (m, 4H), 7.94 (m, 4H), 8.04-8.11 (m, 8H), 8.22-8.27 (m , 4H), 9.70 (s, 2H), 10.7 (s, 2H)
13 C-NMR (400 MHz, DMSO-d 6 , δ): 36.14, 121.00, 121.36, 122.35, 122.76, 124.40, 129.24, 130.18, 135.49, 135.73, 136.98, 140.14, 153.58, 162.27, 164.96
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(実施例9-2:光応答性イオン性化合物の作製3-2)
 ジメチルホルムアミド20mL中で、実施例2で得られた式(2)で表される化合物0.2g(0.36mmol)とトリエチレングリコールモノ2-ブロモエチルメチルエーテル1.0g(3.7mmol)を、100℃で72時間撹拌した。この反応液を室温まで冷却した後、減圧濃縮した。この濃縮物にアセトンを加えて生じた沈殿を吸引濾過し、アセトンで洗浄して橙色粉末0.29gを得た(収率73%)。1H-NMRスペクトルから、この粉末が下記の式(9-2)で表されるイオン性化合物であることを確認した。
 1H-NMR (400MHz, D2O, δ): 3.18 (s, 6H), 3.42-3.56 (m, 24H), 3.77 (br, 4H), 4.28 (br, 4H), 7.38 (m, 4H), 7.53-7.64 (m, 16H), 9.11 (s, 2H)
(Example 9-2: Preparation of photoresponsive ionic compound 3-2)
In 20 mL of dimethylformamide, 0.2 g (0.36 mmol) of the compound represented by the formula (2) obtained in Example 2 and 1.0 g (3.7 mmol) of triethylene glycol mono-2-bromoethyl methyl ether were added. , And stirred at 100 ° C. for 72 hours. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. Acetone was added to the concentrate, and the resulting precipitate was suction filtered and washed with acetone to obtain 0.29 g of an orange powder (yield 73%). From the 1 H-NMR spectrum, it was confirmed that this powder was an ionic compound represented by the following formula (9-2).
1 H-NMR (400MHz, D 2 O, δ): 3.18 (s, 6H), 3.42-3.56 (m, 24H), 3.77 (br, 4H), 4.28 (br, 4H), 7.38 (m, 4H) , 7.53-7.64 (m, 16H), 9.11 (s, 2H)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(実施例10:光応答性イオン性化合物の作製4)
 ジメチルホルムアミド10mL中で、実施例1で得られた式(1)で表される化合物0.1g(0.2mmol)とベンジルクロリド1.0g(7.9mmol)を、80℃で24時間撹拌した。この反応液を減圧濃縮し、アセトンに滴下して得られた沈殿物を吸引濾過して、橙色粉末0.13gを得た(収率81%)。1H-NMRおよび13C-NMRスペクトルから、この粉末が下記の式(10)で表されるイオン性化合物であることを確認した。
 1H-NMR (400MHz, DMSO-d6, δ): 1.44 (m, 4H), 1.75 (br, 4H), 2.07 (br, 4H), 3.19 (br, 8H), 4.63 (s, 4H), 7.56 (m, 10H), 7.86-7.98 (m, 8H), 8.08 (m, 4H), 8.22 (m, 4H), 10.8 (s, 2H)
 13C-NMR (400MHz, DMSO-d6, δ): 19.18, 22.11, 51.43, 55.37, 120.01, 120.26, 122.66, 127.75, 128.94, 129.23, 130.19, 131.91, 133.42, 133.88, 140.79, 146.30, 153.45
(Example 10: Preparation of photoresponsive ionic compound 4)
In 10 mL of dimethylformamide, 0.1 g (0.2 mmol) of the compound represented by the formula (1) obtained in Example 1 and 1.0 g (7.9 mmol) of benzyl chloride were stirred at 80 ° C. for 24 hours. . The reaction solution was concentrated under reduced pressure, and the precipitate obtained by dropwise addition to acetone was suction filtered to obtain 0.13 g of an orange powder (yield 81%). From 1 H-NMR and 13 C-NMR spectra, it was confirmed that this powder was an ionic compound represented by the following formula (10).
1 H-NMR (400MHz, DMSO-d 6, δ): 1.44 (m, 4H), 1.75 (br, 4H), 2.07 (br, 4H), 3.19 (br, 8H), 4.63 (s, 4H), 7.56 (m, 10H), 7.86-7.98 (m, 8H), 8.08 (m, 4H), 8.22 (m, 4H), 10.8 (s, 2H)
13 C-NMR (400 MHz, DMSO-d 6 , δ): 19.18, 22.11, 51.43, 55.37, 120.01, 120.26, 122.66, 127.75, 128.94, 129.23, 130.19, 131.91, 133.42, 133.88, 140.79, 146.30, 153.45
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(実施例10-2:光応答性イオン性化合物の作製4-2)
 ジメチルホルムアミド20mL中で、実施例1で得られた式(1)で表される化合物0.32g(0.52mmol)とヨウ化プロピル1.5g(9.6mmol)を、80℃で48時間撹拌した。この反応液を室温まで冷却した後に減圧濃縮した。この濃縮液にアセトンを加えて生じた沈殿を吸引濾過してアセトンで洗浄し、橙色粉末0.42gを得た(収率85%)。1H-NMRスペクトルから、この粉末が下記の式(10-2)で表されるイオン性化合物であることを確認した。
 1H-NMR (400MHz, DMSO-d6, δ): 1.44 (m, 4H), 1.75 (br, 4H), 2.07 (br, 4H), 3.19 (br, 8H), 4.63 (s, 4H), 7.56 (m, 10H), 7.86-7.98 (m, 8H), 8.08 (m, 4H), 8.22 (m, 4H), 10.8 (s, 2H)
(Example 10-2: Preparation of photoresponsive ionic compound 4-2)
In 20 mL of dimethylformamide, 0.32 g (0.52 mmol) of the compound represented by the formula (1) obtained in Example 1 and 1.5 g (9.6 mmol) of propyl iodide were stirred at 80 ° C. for 48 hours. did. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. A precipitate formed by adding acetone to the concentrate was suction filtered and washed with acetone to obtain 0.42 g of an orange powder (yield 85%). From the 1 H-NMR spectrum, it was confirmed that this powder was an ionic compound represented by the following formula (10-2).
1 H-NMR (400MHz, DMSO -d 6, δ): 1.44 (m, 4H), 1.75 (br, 4H), 2.07 (br, 4H), 3.19 (br, 8H), 4.63 (s, 4H), 7.56 (m, 10H), 7.86-7.98 (m, 8H), 8.08 (m, 4H), 8.22 (m, 4H), 10.8 (s, 2H)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(実施例11:光応答性イオン性化合物の作製5)
 ジメチルホルムアミド10mL中で、実施例3で得られた式(3)で表される化合物0.1g(0.2mmol)とヨウ化エチル4.0g(25mmol)を、50℃で6時間撹拌した。この反応液を室温まで冷却し、生じた沈殿を吸引濾過してアセトンで洗浄して、橙色粉末0.1gを得た(収率60%)。1H-NMRスペクトルから、この粉末が下記の式(11)で表されるイオン性化合物であることを確認した。
 1H-NMR (400MHz, DMSO-d6, δ): 1.43 (t, 6H), 2.12 (m, 4H), 3.37 (m, 4H), 4.15-4.27 (m, 8H), 7.81-7.83 (m, 4H), 8.01 (d, 4H), 8.07 (d, 4H), 8.74 (m, 2H), 8.21 (s, 2H)
(Example 11: Preparation of photoresponsive ionic compound 5)
In 10 mL of dimethylformamide, 0.1 g (0.2 mmol) of the compound represented by the formula (3) obtained in Example 3 and 4.0 g (25 mmol) of ethyl iodide were stirred at 50 ° C. for 6 hours. The reaction solution was cooled to room temperature, and the resulting precipitate was filtered with suction and washed with acetone to obtain 0.1 g of an orange powder (yield 60%). From the 1 H-NMR spectrum, it was confirmed that this powder was an ionic compound represented by the following formula (11).
1 H-NMR (400MHz, DMSO-d 6 , δ): 1.43 (t, 6H), 2.12 (m, 4H), 3.37 (m, 4H), 4.15-4.27 (m, 8H), 7.81-7.83 (m , 4H), 8.01 (d, 4H), 8.07 (d, 4H), 8.74 (m, 2H), 8.21 (s, 2H)
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(実施例12:光応答性イオン性化合物の作製6)
 式(3)で表される化合物に代えて、同じ物質量の実施例4で得られた式(4)で表される化合物を使用したこと以外は、実施例11と同様にして橙色粉末0.1gを得た(収率66%)。1H-NMRスペクトルから、この粉末が下記の式(12)で表される化合物であることを確認した。
 1H-NMR (400MHz, DMSO-d5, δ): 1.47 (t, 6H), 3.17 (m, 4H), 3.68 (m, 4H), 4.52 (m, 4H), 7.94 (m, 4H), 8.02-8.12 (m, 8H), 8.93 (d, 4H)9.23 (t, 2H)
(Example 12: Preparation of photoresponsive ionic compound 6)
Instead of the compound represented by the formula (3), the same amount of the compound represented by the formula (4) obtained in Example 4 was used as in Example 11, except that the orange powder 0 0.1 g was obtained (yield 66%). From 1 H-NMR spectrum, it was confirmed that this powder was a compound represented by the following formula (12).
1 H-NMR (400MHz, DMSO-d 5 , δ): 1.47 (t, 6H), 3.17 (m, 4H), 3.68 (m, 4H), 4.52 (m, 4H), 7.94 (m, 4H), 8.02-8.12 (m, 8H), 8.93 (d, 4H) 9.23 (t, 2H)
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(実施例13:光応答性イオン性化合物の作製7)
 蒸留水20mL中で、実施例12で得られた式(12)で表される化合物0.07g(0.09mmol)と酢酸銀0.1g(0.6mmol)を、40℃で24時間撹拌した。この反応液を自然濾過し、濾液を留去して乾固させた。残渣をメタノールに溶解させて自然濾過し、濾液を留去して乾固させ、赤橙色粘稠性固体0.05gを得た(収率92%)。1H-NMRスペクトルから、この粘稠性固体が下記の式(13)で表される化合物であることを確認した。
 1H-NMR (400MHz, DMSO-d5, δ): 1.49 (t, 6H), 1.60 (s, 6H), 3.20 (m, 4H), 3.70 (m, 4H), 4.56 (m, 4H), 7.95 (m, 4H), 8.01-8.10 (m, 8H), 8.98 (d, 4H)9.36 (t, 2H)
(Example 13: Preparation of photoresponsive ionic compound 7)
In 20 mL of distilled water, 0.07 g (0.09 mmol) of the compound represented by the formula (12) obtained in Example 12 and 0.1 g (0.6 mmol) of silver acetate were stirred at 40 ° C. for 24 hours. . The reaction solution was naturally filtered, and the filtrate was evaporated to dryness. The residue was dissolved in methanol and naturally filtered, and the filtrate was evaporated to dryness to obtain 0.05 g of a red-orange viscous solid (yield 92%). From the 1 H-NMR spectrum, it was confirmed that the viscous solid was a compound represented by the following formula (13).
1 H-NMR (400MHz, DMSO-d 5 , δ): 1.49 (t, 6H), 1.60 (s, 6H), 3.20 (m, 4H), 3.70 (m, 4H), 4.56 (m, 4H), 7.95 (m, 4H), 8.01-8.10 (m, 8H), 8.98 (d, 4H) 9.36 (t, 2H)
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(実施例14:光応答性イオン性化合物の作製8)
 3-アミノピリジン0.58g(6mmol)を脱水塩化メチレン15mLに溶解した。そこに、アゾベンゼン-4,4’-ジカルボニルジクロライド0.93g(3mmol)とトリエチルアミン0.67g(6.6mmol)を脱水塩化メチレン35mLに溶解した溶液を、撹拌しながら滴下した。その後、室温で終夜(約16時間)撹拌した。沈殿物を濾別し、メタノールで洗浄した後、真空乾燥して橙色粉末0.92gを得た(収率73%)。1H-NMRおよび13C-NMRスペクトルから、この粉末が下記の式(14)で表される化合物であることを確認した。
 1H-NMR (400MHz, DMSO-d6, δ): 7.43 (dd, J=4.6Hz, 2H), 8.15 (d, J=8.3Hz, 4H), 8.23 (d, J=8.5Hz, 4H), 8.35 (dd, J=4.6Hz, 2H), 8.96 (d, J=2.5Hz, 2H), 10.7 (s, 2H)
 13C-NMR (100MHz, DMSO-d6, δ): 122.73, 123.57, 127.45, 129.20, 130.33, 135.63, 136.85, 142.05, 144.78, 153.55, 165.02
(Example 14: Preparation of photoresponsive ionic compound 8)
0.58 g (6 mmol) of 3-aminopyridine was dissolved in 15 mL of dehydrated methylene chloride. A solution prepared by dissolving 0.93 g (3 mmol) of azobenzene-4,4′-dicarbonyl dichloride and 0.67 g (6.6 mmol) of triethylamine in 35 mL of dehydrated methylene chloride was added dropwise with stirring. Thereafter, the mixture was stirred at room temperature overnight (about 16 hours). The precipitate was filtered off, washed with methanol, and then vacuum dried to obtain 0.92 g of orange powder (yield 73%). From 1 H-NMR and 13 C-NMR spectra, it was confirmed that this powder was a compound represented by the following formula (14).
1 H-NMR (400MHz, DMSO-d 6 , δ): 7.43 (dd, J = 4.6Hz, 2H), 8.15 (d, J = 8.3Hz, 4H), 8.23 (d, J = 8.5Hz, 4H) , 8.35 (dd, J = 4.6Hz, 2H), 8.96 (d, J = 2.5Hz, 2H), 10.7 (s, 2H)
13 C-NMR (100 MHz, DMSO-d 6 , δ): 122.73, 123.57, 127.45, 129.20, 130.33, 135.63, 136.85, 142.05, 144.78, 153.55, 165.02
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 その後、ジメチルホルムアミド40mL中で、上記で得られた式(14)で表される化合物0.22g(0.53mmol)とベンジルクロライド1.33g(10.6mmol)を、80℃で48時間撹拌した。この反応液を室温まで冷却した後、沈殿物を濾別し、橙色粉末0.168gを得た(収率47%)。1H-NMRおよび13C-NMRスペクトルから、この粉末が下記の式(15)で表されるイオン性化合物であることを確認した。
 1H-NMR (400MHz, DMSO-d6, δ): 5.94 (s, 4H), 7.46-7.58 (m, 10H), 8.12 (d, J=8.6Hz, 4H), 8.21 (dd, J=8.6Hz, 5.9Hz, 2H), 8.30 (d, J=8.5Hz, 4H), 8.82 (d, J=9.9Hz, 2H), 9.16 (d, J=5.9Hz, 2H), 9.71 (s, 2H), 11.59 (s, 2H)
 13C-NMR (100MHz, DMSO-d6, δ): 65.23, 103.72, 122.99, 156.64, 127.49, 128.48, 128.98, 129.33, 129.73, 130.28, 132.61, 132.80, 134.12, 135.18
Thereafter, in 40 mL of dimethylformamide, 0.22 g (0.53 mmol) of the compound represented by the formula (14) obtained above and 1.33 g (10.6 mmol) of benzyl chloride were stirred at 80 ° C. for 48 hours. . After cooling the reaction solution to room temperature, the precipitate was filtered off to obtain 0.168 g of orange powder (yield 47%). From 1 H-NMR and 13 C-NMR spectra, it was confirmed that this powder was an ionic compound represented by the following formula (15).
1 H-NMR (400MHz, DMSO -d 6, δ): 5.94 (s, 4H), 7.46-7.58 (m, 10H), 8.12 (d, J = 8.6Hz, 4H), 8.21 (dd, J = 8.6 Hz, 5.9Hz, 2H), 8.30 (d, J = 8.5Hz, 4H), 8.82 (d, J = 9.9Hz, 2H), 9.16 (d, J = 5.9Hz, 2H), 9.71 (s, 2H) , 11.59 (s, 2H)
13 C-NMR (100 MHz, DMSO-d 6 , δ): 65.23, 103.72, 122.99, 156.64, 127.49, 128.48, 128.98, 129.33, 129.73, 130.28, 132.61, 132.80, 134.12, 135.18
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(実施例15:光応答性イオン性化合物の作製9)
 ジメチルホルムアミド40mL中で、実施例14で得られた式(14)で表される化合物0.22g(0.53mmol)と3-クロロ-2-メチル-1-プロペン1.1g(12.1mmol)を、60℃で72時間撹拌した。なお、反応開始から24時間毎に、3-クロロ-2-メチル-1-プロペンを1.1g(12.1mmol)加えた。この反応液を室温まで冷却した後、沈殿物を濾別し、橙色粉末0.177gを得た(収率55%)。1H-NMRスペクトルから、この粉末が下記の式(16)で表されるイオン性化合物であることを確認した。
 1H-NMR (400MHz, DMSO-d6, δ): 1.75 (s, 6H), 5.01 (s, 2H), 5.21 (s, 2H), 5.31 (s, 4H), 8.14 (d, J=8.6Hz, 2H), 8.22 (dd, J=5.9Hz, 2H), 8.33 (d, J=8.6Hz, 2H), 8.82 (d, J=6Hz, 2H), 8.87 (d, J=8.9Hz, 2H), 9.60 (s, 2H), 11.7 (s, 2H)
(Example 15: Preparation of photoresponsive ionic compound 9)
In 40 mL of dimethylformamide, 0.22 g (0.53 mmol) of the compound represented by the formula (14) obtained in Example 14 and 1.1 g (12.1 mmol) of 3-chloro-2-methyl-1-propene. Was stirred at 60 ° C. for 72 hours. In addition, 1.1 g (12.1 mmol) of 3-chloro-2-methyl-1-propene was added every 24 hours from the start of the reaction. After cooling the reaction solution to room temperature, the precipitate was filtered off to obtain 0.177 g of orange powder (yield 55%). From the 1 H-NMR spectrum, it was confirmed that this powder was an ionic compound represented by the following formula (16).
1 H-NMR (400MHz, DMSO-d 6 , δ): 1.75 (s, 6H), 5.01 (s, 2H), 5.21 (s, 2H), 5.31 (s, 4H), 8.14 (d, J = 8.6 Hz, 2H), 8.22 (dd, J = 5.9Hz, 2H), 8.33 (d, J = 8.6Hz, 2H), 8.82 (d, J = 6Hz, 2H), 8.87 (d, J = 8.9Hz, 2H ), 9.60 (s, 2H), 11.7 (s, 2H)
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(実施例16:光応答性イオン性化合物の作製10)
 3-アミノピリジンに代えて同じ物質量の4-アミノピリジンを使用したこと以外は、実施例14と同様にして化合物1.20gを得た(収率95%)。なお、この化合物は、メタノール中で撹拌することで不純物を除去してある。1H-NMRおよび13C-NMRスペクトルから、この化合物が下記の式(17)で表されることを確認した。
 1H-NMR (400MHz, DMSO-d6, δ): 7.82 (dd, J=4.8Hz, 4H), 8.10 (d, J=8.6Hz, 4H), 8.22 (d, J=8.5Hz, 4H), 8.51 (dd, J=4.7Hz, 4H), 10.79 (s, 2H)
 13C-NMR (100MHz, DMSO-d6, δ): 114.06, 122.75, 122.79, 129.31, 129.36, 135.13, 150.36
(Example 16: Preparation of photoresponsive ionic compound 10)
1.20 g of compound was obtained in the same manner as in Example 14 except that 4-aminopyridine having the same substance amount was used instead of 3-aminopyridine (yield 95%). This compound has impurities removed by stirring in methanol. From 1 H-NMR and 13 C-NMR spectra, it was confirmed that this compound was represented by the following formula (17).
1 H-NMR (400MHz, DMSO-d 6 , δ): 7.82 (dd, J = 4.8Hz, 4H), 8.10 (d, J = 8.6Hz, 4H), 8.22 (d, J = 8.5Hz, 4H) , 8.51 (dd, J = 4.7Hz, 4H), 10.79 (s, 2H)
13 C-NMR (100 MHz, DMSO-d 6 , δ): 114.06, 122.75, 122.79, 129.31, 129.36, 135.13, 150.36
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 その後、式(14)で表される化合物に代えて、同じ物質量の上記で得られた式(17)で表される化合物を使用したこと以外は、実施例14と同様にして生成物0.148gを得た(収率40%)。1H-NMRおよび13C-NMRスペクトルから、この生成物が下記の式(18)で表されるイオン性化合物であることを確認した。
 1H-NMR (400MHz, DMSO-d6, δ): 5.74 (s, 4H), 7.43-7.50 (m, 10H), 8.13 (d, J=8.6Hz, 4H), 8.32 (d, J=8.6Hz, 4H), 8.44 (d, J=7.4Hz, 4H), 8.99 (d, J=7.3Hz, 4H), 12.0 (s, 2H)
 13C-NMR (100MHz, D2O, δ): 100.75, 122.89, 128.49, 129.19, 131.64, 136.60, 145.21, 145.39, 156.51, 156.99, 158.34, 160.10, 164.95
Thereafter, in place of the compound represented by the formula (14), the product 0 was obtained in the same manner as in Example 14 except that the same amount of the compound represented by the formula (17) was used. Obtained .148 g (yield 40%). From the 1 H-NMR and 13 C-NMR spectra, it was confirmed that this product was an ionic compound represented by the following formula (18).
1 H-NMR (400MHz, DMSO-d 6 , δ): 5.74 (s, 4H), 7.43-7.50 (m, 10H), 8.13 (d, J = 8.6Hz, 4H), 8.32 (d, J = 8.6 Hz, 4H), 8.44 (d, J = 7.4Hz, 4H), 8.99 (d, J = 7.3Hz, 4H), 12.0 (s, 2H)
13 C-NMR (100 MHz, D 2 O, δ): 100.75, 122.89, 128.49, 129.19, 131.64, 136.60, 145.21, 145.39, 156.51, 156.99, 158.34, 160.10, 164.95
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(実施例17:光応答性イオン性化合物の作製11)
 式(14)で表される化合物に代えて、同じ物質量の実施例16で得られた式(17)で表される化合物を使用したこと以外は、実施例15と同様にして生成物0.201gを得た(収率62%)。1H-NMRスペクトルから、この生成物が下記の式(19)で表されるイオン性化合物であることを確認した。
 1H-NMR (400MHz, DMSO-d6, δ): 1.37 (s, 6H), 4.86 (s, 2H), 5.10 (s, 4H), 5.14 (s, 2H), 8.14 (d, J=8.6Hz, 4H), 8.34 (d, J=7.4Hz, 4H), 8.46 (d, J=7.4Hz, 4H), 8.82 (d, J=7.4Hz, 4H), 12.0 (s, 2H)
(Example 17: Preparation of photoresponsive ionic compound 11)
Product 0 was obtained in the same manner as in Example 15 except that instead of the compound represented by Formula (14), the same amount of the compound represented by Formula (17) obtained in Example 16 was used. 0.201 g was obtained (62% yield). From the 1 H-NMR spectrum, it was confirmed that this product was an ionic compound represented by the following formula (19).
1 H-NMR (400MHz, DMSO-d 6 , δ): 1.37 (s, 6H), 4.86 (s, 2H), 5.10 (s, 4H), 5.14 (s, 2H), 8.14 (d, J = 8.6 Hz, 4H), 8.34 (d, J = 7.4Hz, 4H), 8.46 (d, J = 7.4Hz, 4H), 8.82 (d, J = 7.4Hz, 4H), 12.0 (s, 2H)
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
(実施例18:光応答性イオン性化合物の作製12)
 4-(ピペリジン-1-イルメチル)アニリンに代えて同じ物質量の4-(4-ピリジルメチル)アニリンを使用した以外は、実施例1と同様にして暗赤色粉末0.58gを得た(収率36%)。1H-NMRスペクトルから、この化合物が下記の式(20)で表されることを確認した。
 1H-NMR (400MHz, DMSO-d6, δ): 3.94 (s, 4H), 7.24 (m, 8H), 7.96 (m, 4H), 8.15 (m, 8H), 8.44 (m, 4H), 10.4 (s, 2H)
(Example 18: Preparation of photoresponsive ionic compound 12)
0.58 g of dark red powder was obtained in the same manner as in Example 1 except that 4- (4-pyridylmethyl) aniline having the same amount of material was used instead of 4- (piperidin-1-ylmethyl) aniline. (Rate 36%). From 1 H-NMR spectrum, it was confirmed that this compound is represented by the following formula (20).
1 H-NMR (400MHz, DMSO-d 6 , δ): 3.94 (s, 4H), 7.24 (m, 8H), 7.96 (m, 4H), 8.15 (m, 8H), 8.44 (m, 4H), 10.4 (s, 2H)
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 その後、ジメチルホルムアミド30mL中で、上記で得られた式(20)で表される化合物0.2g(0.3mmol)と3-クロロ-2-メチル1-プロペン1.5g(16.6mmol)を60℃で72時間撹拌した。この反応液を減圧乾燥した後、エタノールに再溶解させて自然濾過した。濾液を留去して減圧濃縮し、これをアセトンに滴下して、得られた沈殿物を吸引濾過して橙色粉末0.03gを得た(収率11%)。1H-NMRおよび13C-NMRスペクトルから、この粉末が下記の式(21)で表されるイオン性化合物であることを確認した。
 1H-NMR (400MHz, DMSO-d6, δ): 1.74 (s, 6H), 5.00 (s, 2H), 5.19 (s, 2H), 5.34 (s, 4H), 7.94 (d, 4H), 8.09 (d, 4H), 8.13 (d, 4H), 8.26 (d, 4H), 8.41 (d, 4H), 9.24 (d, 4H), 11.1 (s, 2H)
 13C-NMR (400MHz, DMSO-d6, δ): 28.64, 47.21, 58.94, 114.18, 120.92, 122.64, 127.27, 129.09, 129.40, 131.49, 133.17, 141.35, 145.16, 148.31, 157.02, 162.53, 168.14
Thereafter, in 30 mL of dimethylformamide, 0.2 g (0.3 mmol) of the compound represented by the formula (20) obtained above and 1.5 g (16.6 mmol) of 3-chloro-2-methyl 1-propene were obtained. The mixture was stirred at 60 ° C. for 72 hours. The reaction solution was dried under reduced pressure, redissolved in ethanol, and naturally filtered. The filtrate was distilled off and concentrated under reduced pressure. This was added dropwise to acetone, and the resulting precipitate was filtered with suction to obtain 0.03 g of an orange powder (yield 11%). From 1 H-NMR and 13 C-NMR spectra, it was confirmed that this powder was an ionic compound represented by the following formula (21).
1 H-NMR (400MHz, DMSO-d 6 , δ): 1.74 (s, 6H), 5.00 (s, 2H), 5.19 (s, 2H), 5.34 (s, 4H), 7.94 (d, 4H), 8.09 (d, 4H), 8.13 (d, 4H), 8.26 (d, 4H), 8.41 (d, 4H), 9.24 (d, 4H), 11.1 (s, 2H)
13 C-NMR (400 MHz, DMSO-d 6 , δ): 28.64, 47.21, 58.94, 114.18, 120.92, 122.64, 127.27, 129.09, 129.40, 131.49, 133.17, 141.35, 145.16, 148.31, 157.02, 162.53, 168.14
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
(実施例18-2:光応答性イオン性化合物の作製13)
 ジメチルホルムアミド50mL中で、実施例6-2で得られた式(6-2)で表される化合物0.25g(0.45mmol)とヨウ化エチル2g(12.8mmol)を、60℃で48時間撹拌した。この反応液を室温まで冷却した後、アセトンを加えて生じた析出物を吸引濾過して、黄色粉末0.3gを得た(収率77%)。1H-NMRスペクトルから、この粉末が下記の式(22)で表されるイオン性化合物であることを確認した。
 1H-NMR (400MHz, DMSO-d6, δ): 1.29 (t, J=8Hz, 6H), 3.08 (m, 16H), 3.42 (m, 4H), 3.51 (m, 4H), 7.35 (d, J=12Hz, 4H), 7.45 (d, J=12Hz, 4H), 7.14(d, J=8Hz, 4H), 7.36(d, J=8Hz, 4H)
(Example 18-2: Preparation of photoresponsive ionic compound 13)
In 50 mL of dimethylformamide, 0.25 g (0.45 mmol) of the compound represented by the formula (6-2) obtained in Example 6-2 and 2 g (12.8 mmol) of ethyl iodide were mixed at 60 ° C. for 48 hours. Stir for hours. After cooling the reaction solution to room temperature, acetone was added and the resulting precipitate was filtered with suction to obtain 0.3 g of a yellow powder (yield 77%). From the 1 H-NMR spectrum, it was confirmed that this powder was an ionic compound represented by the following formula (22).
1 H-NMR (400MHz, DMSO-d 6 , δ): 1.29 (t, J = 8Hz, 6H), 3.08 (m, 16H), 3.42 (m, 4H), 3.51 (m, 4H), 7.35 (d , J = 12Hz, 4H), 7.45 (d, J = 12Hz, 4H), 7.14 (d, J = 8Hz, 4H), 7.36 (d, J = 8Hz, 4H)
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
実施例19~38:分散液の作製と評価
(実施例19:HiPCO法によるSWCNT分散液1)
 実施例7で得られたイオン性化合物(式(7))1.05mgを3mLの純水に溶解したものと、HIGH-Pressure carbon monoxide(HiPCO)法によって合成した単層カーボンナノチューブ(以下、単層カーボンナノチューブを「SWCNT」と記載することがある)1.02mgを混合した。この混合液をバイアル瓶に入れ、超音波洗浄装置(SHARP、UT-105)を用いて1時間超音波処理(80W,35kHz)した。
Examples 19 to 38: Preparation and evaluation of dispersion (Example 19: SWCNT dispersion 1 by HiPCO method)
A single-walled carbon nanotube (hereinafter referred to as a single-walled carbon nanotube) prepared by dissolving 1.05 mg of the ionic compound (formula (7)) obtained in Example 7 in 3 mL of pure water and a HIGH-Pressure carbon monoxide (HiPCO) method. Single-wall carbon nanotubes may be described as “SWCNT”). This mixed solution was placed in a vial and subjected to ultrasonic treatment (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device (SHARP, UT-105).
 冷却遠心機(Eppendorf、Centrifuge 5417R、FA45-24-11)を用いて、回転速度16400rpm(28500g)で、得られた混合液を室温(22℃)で3時間遠心分離した。その後、上澄みを分取して、SWCNTが安定して分散している分散液を得た。紫外可視近赤外(UV-vis-NIR)分光光度計(日本分光、V-670)を用いて、得られたSWCNT分散液の吸光度を測定した。この可視-近赤外(Vis-NIR)吸収スペクトルを実線(original)で図1に示す。このVis-NIR吸収スペクトルは、これまでに報告されているHiPCO法で合成されたSWCNT分散液のVis-NIR吸収スペクトルと類似しており、式(7)で表されるイオン性化合物によって、SWCNTのバンドルが解けて孤立分散していることが確認された。 Using a refrigerated centrifuge (Eppendorf, Centrifuge 5417R, FA45-24-11), the resulting mixture was centrifuged at room temperature (22 ° C.) for 3 hours at a rotational speed of 16400 rpm (28500 g). Thereafter, the supernatant was collected to obtain a dispersion in which SWCNTs were stably dispersed. The absorbance of the obtained SWCNT dispersion was measured using a UV-vis-NIR spectrophotometer (JASCO, V-670). This visible-near infrared (Vis-NIR) absorption spectrum is shown in FIG. 1 as a solid line (original). This Vis-NIR absorption spectrum is similar to the Vis-NIR absorption spectrum of SWCNT dispersions synthesized by the HiPCO method reported so far, and the ionic compound represented by formula (7) allows It was confirmed that the bundles of the above were unpacked and isolated.
 得られたSWCNT分散液1mLをガラス製のサンプル管に分取した。このSWCNT分散液を回転速度500rpmで撹拌しながら、紫外LED(HOYA CANDEO OPTRONICS、EXECURE H-1VC II)を用いて、このSWCNT分散液に波長365nmの紫外光(UV光)を強度250mW/cm2で10分間照射した。UV光照射前(original)のSWCNT分散液およびUV光照射後のSWCNT凝集液の画像を図2(a)に示す。図2(a)に示すように、UV光照射後のSWCNT凝集液では、SWCNTの黒色沈殿が生じた。 1 mL of the obtained SWCNT dispersion was dispensed into a glass sample tube. While stirring the SWCNT dispersion at a rotation speed of 500 rpm, ultraviolet light (UV light) having a wavelength of 365 nm was applied to the SWCNT dispersion using an ultraviolet LED (HOYA CANDEO OPTRONICS, EXECURE H-1VC II) with an intensity of 250 mW / cm 2. For 10 minutes. Images of the SWCNT dispersion before UV light irradiation (original) and the SWCNT aggregate after UV light irradiation are shown in FIG. As shown in FIG. 2 (a), the SWCNT aggregate after the UV light irradiation resulted in black precipitation of SWCNT.
 つぎに、回転速度16400rpm(28500g)で、このUV光照射後のSWCNT凝集液を5分間遠心分離した。遠心分離後のSWCNT凝集液の画像を図2(b)に示す。その後、このSWCNT凝集液から上澄みを分取して、UV-vis-NIR分光光度計を用いて吸光度を測定した。このVis-NIR吸収スペクトルを点線(UV照射後)で図1に示す。SWCNTの純水への溶解性の変化によるSWCNTの凝集が、Vis-NIR吸収スペクトルでも確認された。すなわち、UV光照射後のSWCNT凝集液の上澄みのVis-NIR吸収スペクトルでは、HiPCO法によって合成されたSWCNTのVis-NIR吸収スペクトルに特徴的な600~1600nmに現れる鋭い吸収ピークが消失していた。UV光照射により分散剤が構造変化してSWCNT表面から脱離し、SWCNTの水への分散性が極端に低下したためと考えられる。 Next, the SWCNT aggregate after the UV light irradiation was centrifuged at a rotational speed of 16400 rpm (28500 g) for 5 minutes. An image of the SWCNT aggregate after the centrifugation is shown in FIG. Thereafter, the supernatant was separated from the SWCNT aggregate and the absorbance was measured using a UV-vis-NIR spectrophotometer. This Vis-NIR absorption spectrum is shown by a dotted line (after UV irradiation) in FIG. Aggregation of SWCNT due to a change in solubility of SWCNT in pure water was also confirmed in the Vis-NIR absorption spectrum. That is, in the Vis-NIR absorption spectrum of the supernatant of the SWCNT aggregate after UV light irradiation, the sharp absorption peak appearing at 600-1600 nm characteristic of the Vis-NIR absorption spectrum of SWCNT synthesized by the HiPCO method has disappeared. . It is thought that the structure of the dispersant was changed by UV light irradiation and desorbed from the surface of the SWCNT, and the dispersibility of SWCNT in water was extremely reduced.
(実施例20:HiPCO法によるSWCNT分散液2)
 実施例7で得られたイオン性化合物(式(7))およびSWCNTの使用量をそれぞれ10.0mgに変更したこと以外は、実施例19と同様にしてUV光照射前のSWCNT分散液の上澄みの吸光度を測定した。このVis-NIR吸収スペクトルを図3に示す。
(Example 20: SWCNT dispersion 2 by HiPCO method)
The supernatant of the SWCNT dispersion before UV light irradiation in the same manner as in Example 19, except that the amounts of the ionic compound (formula (7)) and SWCNT obtained in Example 7 were changed to 10.0 mg, respectively. The absorbance was measured. The Vis-NIR absorption spectrum is shown in FIG.
(実施例21:HiPCO法によるSWCNT分散液3)
 実施例7で得られたイオン性化合物(式(7))に代えて、実施例8で得られたイオン性化合物(式(8))3.0mgを使用したこと以外は、実施例19と同様にしてUV光照射前のSWCNT分散液の上澄みの吸光度を測定した。このVis-NIR吸収スペクトルを図4に示す。
(Example 21: SWCNT dispersion 3 by HiPCO method)
Example 19 is the same as Example 19 except that 3.0 mg of the ionic compound (formula (8)) obtained in Example 8 was used instead of the ionic compound (formula (7)) obtained in Example 7. Similarly, the absorbance of the supernatant of the SWCNT dispersion before UV light irradiation was measured. The Vis-NIR absorption spectrum is shown in FIG.
(実施例22:HiPCO法によるSWCNT分散液4)
 実施例7で得られたイオン性化合物(式(7))に代えて、実施例10で得られたイオン性化合物(式(10))3.0mgを使用したこと以外は、実施例19と同様にしてUV光照射前のSWCNT分散液の上澄みの吸光度を測定した。このVis-NIR吸収スペクトルを図5に示す。
(Example 22: SWCNT dispersion 4 by HiPCO method)
Example 19 is the same as Example 19 except that 3.0 mg of the ionic compound (formula (10)) obtained in Example 10 was used instead of the ionic compound (formula (7)) obtained in Example 7. Similarly, the absorbance of the supernatant of the SWCNT dispersion before UV light irradiation was measured. The Vis-NIR absorption spectrum is shown in FIG.
(実施例23:HiPCO法によるSWCNT分散液5)
 実施例14で得られたイオン性化合物(式(15))10.04mgを20mLの純水に溶解したものと、HiPCO法によって合成されたSWCNT6.99mgを混合した。この混合液をバイアル瓶に入れ、超音波洗浄装置を用いて1時間超音波処理(80W,35kHz)した。そして、容量50mLのプラスチック製広口瓶にこの混合液を入れ、超音波ホモジナイザー(BRANSON、Advanced Digital Sonifire 250D)を用いて4時間超音波照射(20W,19.9kHz)し、黒色のSWCNT均一分散液を得た。
(Example 23: SWCNT dispersion 5 by HiPCO method)
A solution prepared by dissolving 10.04 mg of the ionic compound (formula (15)) obtained in Example 14 in 20 mL of pure water and 6.99 mg of SWCNT synthesized by the HiPCO method were mixed. This mixed solution was placed in a vial and sonicated (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device. Then, this mixed solution is put into a plastic wide-mouth bottle with a capacity of 50 mL, and subjected to ultrasonic irradiation (20 W, 19.9 kHz) for 4 hours using an ultrasonic homogenizer (BRANSON, Advanced Digital Sonifier 250D), and a black SWCNT uniform dispersion liquid Got.
 冷却遠心機を用いて、回転速度16400rpm(28500g)で、得られた分散液を室温(22℃)で3時間遠心分離した。その後、上澄みを分取して、SWCNT分散液を得た。UV-vis-NIR分光光度計を用いて、得られたSWCNT分散液の吸光度を測定した。このVis-NIR吸収スペクトルを図6に示す。 Using a refrigerated centrifuge, the obtained dispersion was centrifuged at room temperature (22 ° C.) for 3 hours at a rotation speed of 16400 rpm (28500 g). Thereafter, the supernatant was collected to obtain a SWCNT dispersion. The absorbance of the obtained SWCNT dispersion was measured using a UV-vis-NIR spectrophotometer. The Vis-NIR absorption spectrum is shown in FIG.
(実施例24:HiPCO法によるSWCNT分散液6)
 実施例14で得られたイオン性化合物(式(15))に代えて、同じ重量の実施例15で得られたイオン性化合物(式(16))を使用したこと以外は、実施例23と同様にしてSWCNT分散液の上澄みの吸光度を測定した。このVis-NIR吸収スペクトルを図7に示す。
(Example 24: SWCNT dispersion 6 by HiPCO method)
Instead of the ionic compound obtained in Example 14 (Formula (15)), the same weight of the ionic compound obtained in Example 15 (Formula (16)) was used. Similarly, the absorbance of the supernatant of the SWCNT dispersion was measured. The Vis-NIR absorption spectrum is shown in FIG.
(実施例25:HiPCO法によるSWCNT分散液7)
 実施例14で得られたイオン性化合物(式(15))に代えて、同じ重量の実施例16で得られたイオン性化合物(式(18))を使用したこと以外は、実施例23と同様にしてSWCNT分散液の上澄みの吸光度を測定した。このVis-NIR吸収スペクトルを図8に示す。
(Example 25: SWCNT dispersion 7 by HiPCO method)
Instead of the ionic compound obtained in Example 14 (Formula (15)), the same weight of the ionic compound obtained in Example 16 (Formula (18)) was used. Similarly, the absorbance of the supernatant of the SWCNT dispersion was measured. The Vis-NIR absorption spectrum is shown in FIG.
(実施例26:HiPCO法によるSWCNT分散液8)
 実施例14で得られたイオン性化合物(式(15))に代えて、同じ重量の実施例17で得られたイオン性化合物(式(19))を使用したこと以外は、実施例23と同様にしてSWCNT分散液の上澄みの吸光度を測定した。このVis-NIR吸収スペクトルを図9に示す。
(Example 26: SWCNT dispersion 8 by HiPCO method)
Instead of the ionic compound obtained in Example 14 (Formula (15)), the same weight of the ionic compound obtained in Example 17 (Formula (19)) was used. Similarly, the absorbance of the supernatant of the SWCNT dispersion was measured. The Vis-NIR absorption spectrum is shown in FIG.
(実施例27:HiPCO法によるSWCNT分散液9)
 実施例7で得られたイオン性化合物(式(7))に代えて、実施例18で得られたイオン性化合物(式(21))3.0mgを使用したこと以外は、実施例19と同様にしてUV光照射前のSWCNT分散液の上澄みの吸光度を測定した。このVis-NIR吸収スペクトルを図10に示す。
(Example 27: SWCNT dispersion 9 by HiPCO method)
Example 19 is the same as Example 19 except that 3.0 mg of the ionic compound (formula (21)) obtained in Example 18 was used instead of the ionic compound obtained in Example 7 (formula (7)). Similarly, the absorbance of the supernatant of the SWCNT dispersion before UV light irradiation was measured. This Vis-NIR absorption spectrum is shown in FIG.
(実施例28:HiPCO法によるSWCNT分散液10)
 実施例7で得られたイオン性化合物(式(7))に代えて、実施例9で得られたイオン性化合物(式(9))1.0mgを使用したこと、および純水に代えてプロピレンカーボネートを使用したこと以外は、実施例19と同様にしてUV光照射前のSWCNT分散液の上澄みの吸光度を測定した。このVis-NIR吸収スペクトルを図11に示す。
(Example 28: SWCNT dispersion 10 by HiPCO method)
Instead of the ionic compound (formula (7)) obtained in Example 7, 1.0 mg of the ionic compound (formula (9)) obtained in Example 9 was used, and in place of pure water The absorbance of the supernatant of the SWCNT dispersion before UV light irradiation was measured in the same manner as in Example 19 except that propylene carbonate was used. The Vis-NIR absorption spectrum is shown in FIG.
 得られたSWCNT分散液1mLをガラス製のサンプル管に分取した。このSWCNT分散液を回転速度500rpmで撹拌しながら、紫外LEDを用いて、このSWCNT分散液に波長365nmのUV光を強度250mW/cm2で20分間照射した。つぎに、回転速度16400rpm(28500g)で、UV光照射後に得られたSWCNT凝集液を5分間遠心分離した。 1 mL of the obtained SWCNT dispersion was dispensed into a glass sample tube. While stirring the SWCNT dispersion at a rotation speed 500 rpm, using an ultraviolet LED, and irradiated with a wavelength of 365nm UV light at an intensity 250 mW / cm 2 20 min the SWCNT dispersion. Next, the SWCNT aggregate obtained after the UV light irradiation was centrifuged at a rotational speed of 16400 rpm (28500 g) for 5 minutes.
 遠心分離後のSWCNT凝集液から上澄みを分取して、UV-vis-NIR分光光度計を用いて吸光度を測定した。このVis-NIR吸収スペクトルを実線(UV照射後)で図12に示す。実施例19と同様に、HiPCO法によって合成されたSWCNTのVis-NIR吸収スペクトルに特徴的な600~1600nmに現れる鋭い吸収ピークが消失しており、SWCNTがプロピレンカーボネート中で凝集していることが確認された。 The supernatant was collected from the SWCNT aggregate after centrifugation and the absorbance was measured using a UV-vis-NIR spectrophotometer. This Vis-NIR absorption spectrum is shown by a solid line (after UV irradiation) in FIG. Similar to Example 19, the sharp absorption peak appearing at 600-1600 nm characteristic of the Vis-NIR absorption spectrum of SWCNT synthesized by the HiPCO method has disappeared, and SWCNT is aggregated in propylene carbonate. confirmed.
 このSWCNTの凝集が生じた凝集液に、フィルターを用いて高圧水銀灯(USHIO)から取り出した波長436nmの光を20分間照射した。そして、超音波洗浄装置を用いて、この凝集液を10分間超音波処理(80W,35kHz)し、SWCNTを再分散させた。この再分散させたSWCNT分散液から上澄みを分取して吸光度を測定した。このVis-NIR吸収スペクトルを点線(Vis照射後)で図12に示す。本実施例のSWCNT分散液では、20分間という短時間の紫外光照射でSWCNTが凝集したのに対して、特許文献2記載のアゾベンゼン型分散剤が含まれる分散液では、3~15時間の長時間の紫外光照射によってSWCNTを凝集させている。 The light having a wavelength of 436 nm extracted from a high-pressure mercury lamp (USHIO) using a filter was irradiated for 20 minutes to the aggregate liquid in which the aggregation of SWCNTs occurred. Then, this aggregated liquid was subjected to ultrasonic treatment (80 W, 35 kHz) for 10 minutes using an ultrasonic cleaning device to re-disperse SWCNT. The supernatant was separated from the re-dispersed SWCNT dispersion and the absorbance was measured. This Vis-NIR absorption spectrum is shown by a dotted line (after Vis irradiation) in FIG. In the SWCNT dispersion of this example, SWCNTs aggregated by ultraviolet light irradiation for a short time of 20 minutes, whereas in the dispersion containing the azobenzene type dispersant described in Patent Document 2, the length of 3 to 15 hours was increased. SWCNTs are aggregated by irradiation with ultraviolet light for a period of time.
 つぎに、再分散させたSWCNT分散液に紫外光を照射してSWCNTを凝集させること、およびSWCNTが凝集したSWCNT凝集液に可視光を照射してSWCNTを再分散させることを繰り返した。この繰り返し工程において、SWCNT分散液およびSWCNT凝集液の上澄みに波長1155nmの光を照射したときの吸光度の変化を図13に示す。 Next, the re-dispersed SWCNT dispersion was irradiated with ultraviolet light to agglomerate SWCNTs, and the SWCNT agglomerated liquid in which SWCNTs were aggregated was irradiated with visible light to re-disperse SWCNTs. FIG. 13 shows the change in absorbance when the supernatant of the SWCNT dispersion and SWCNT aggregate is irradiated with light having a wavelength of 1155 nm in this repeating step.
 図13に示すように、SWCNT分散液に紫外光を照射するとSWCNTが凝集し、SWCNTが凝集したSWCNT凝集液に可視光を照射するとSWCNTが分散することが確認された。本発明の分散剤に紫外光を照射したときに生成する異性体は、化学的に安定である。このため、本発明の分散剤を含むSWCNT分散液に紫外光を照射すると、SWCNTから分散剤が脱離する効率が高い。一方、特許文献2に記載されているアゾベンゼン型の分散剤では、紫外光照射によって生成する異性体が化学的に安定ではないため、室温ですぐに異性化前の状態に戻ってしまう。このため、特許文献2記載のアゾベンゼン型分散剤は、分散剤の脱離効率が低く、可視光の照射によって、異性化前の状態のアゾベンゼン型分散剤に戻すことはできない。 As shown in FIG. 13, it was confirmed that when the SWCNT dispersion liquid was irradiated with ultraviolet light, SWCNTs aggregated, and when the SWCNT aggregation liquid in which SWCNTs aggregated was irradiated with visible light, SWCNTs were dispersed. The isomer produced when the dispersant of the present invention is irradiated with ultraviolet light is chemically stable. For this reason, when the SWCNT dispersion containing the dispersant of the present invention is irradiated with ultraviolet light, the efficiency of desorbing the dispersant from SWCNT is high. On the other hand, with the azobenzene-type dispersant described in Patent Document 2, the isomer produced by ultraviolet light irradiation is not chemically stable, and thus immediately returns to the state before isomerization at room temperature. For this reason, the azobenzene type dispersant described in Patent Document 2 has a low desorption efficiency of the dispersant, and cannot be returned to the azobenzene type dispersant in the state before isomerization by irradiation with visible light.
(実施例29:HiPCO法によるSWCNT分散液11)
 実施例7で得られたイオン性化合物(式(7))に代えて、実施例9で得られたイオン性化合物(式(9))1.51mgを使用したこと、および純水に代えてプロピレンカーボネートを使用したこと以外は、実施例19と同様にしてUV光照射前のSWCNT分散液の上澄みの吸光度を測定した。このVis-NIR吸収スペクトルを実線(original)で図14に示す。
(Example 29: SWCNT dispersion 11 by HiPCO method)
Instead of the ionic compound (formula (7)) obtained in Example 7, 1.51 mg of the ionic compound (formula (9)) obtained in Example 9 was used, and instead of pure water The absorbance of the supernatant of the SWCNT dispersion before UV light irradiation was measured in the same manner as in Example 19 except that propylene carbonate was used. This Vis-NIR absorption spectrum is shown in FIG. 14 by a solid line (original).
 このSWCNT分散液を回転速度500rpmで撹拌しながら、紫外LEDを用いて、このSWCNT分散液に波長365nmのUV光を強度150mW/cm2で10分間照射した。つぎに、回転速度16400rpm(28500g)で、このUV光照射後のSWCNT分散液を10分間遠心分離した。遠心分離後のSWCNT分散液から上澄みを分取して、UV-vis-NIR分光光度計を用いて吸光度を測定した。このVis-NIR吸収スペクトルを点線(UV照射後)で図14に示す。 While agitating the SWCNT dispersion at a rotation speed of 500 rpm, the SWCNT dispersion was irradiated with UV light having a wavelength of 365 nm at an intensity of 150 mW / cm 2 for 10 minutes using an ultraviolet LED. Next, the SWCNT dispersion after UV light irradiation was centrifuged at a rotational speed of 16400 rpm (28500 g) for 10 minutes. The supernatant was separated from the SWCNT dispersion after centrifugation, and the absorbance was measured using a UV-vis-NIR spectrophotometer. This Vis-NIR absorption spectrum is shown by a dotted line (after UV irradiation) in FIG.
 つぎに、このUV光照射後のSWCNT分散液から上澄みを分取し、フィルターを用いて高圧水銀灯から取り出した波長436nmの光を20分間照射した。そして、HiPCO法によって合成されたSWCNT1.01mgにこの上澄み液を加えた。超音波洗浄装置を用いて、この混合液を1時間超音波処理(80W,35kHz)した。冷却遠心機を用いて、回転速度16400rpm(28500g)で、得られた混合液を室温(22℃)で3時間遠心分離した。その後、上澄みを分取して、UV-vis-NIR分光光度計を用いて吸光度を測定した。このVis-NIR吸収スペクトルを破線(回収した上澄みを再利用した分散液)で図14に示す。 Next, the supernatant was separated from the SWCNT dispersion after the UV light irradiation, and irradiated with light having a wavelength of 436 nm extracted from the high pressure mercury lamp using a filter for 20 minutes. Then, this supernatant was added to 1.01 mg of SWCNT synthesized by the HiPCO method. This mixed solution was subjected to ultrasonic treatment (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device. The obtained mixture was centrifuged at room temperature (22 ° C.) for 3 hours at a rotation speed of 16400 rpm (28500 g) using a cooling centrifuge. Thereafter, the supernatant was separated and the absorbance was measured using a UV-vis-NIR spectrophotometer. The Vis-NIR absorption spectrum is shown in FIG. 14 with a broken line (a dispersion obtained by reusing the collected supernatant).
(実施例29-2:HiPCO法によるSWCNT分散液12)
 実施例7で得られたイオン性化合物(式(7))に代えて、実施例9-2で得られたイオン性化合物(式(9-2))3.0mgを使用したこと以外は、実施例19と同様にしてUV光照射前のSWCNT分散液の上澄みの吸光度を測定した。このVis-NIR吸収スペクトルを図14-2に示す。
(Example 29-2: SWCNT dispersion 12 by HiPCO method)
Except for using 3.0 mg of the ionic compound (formula (9-2)) obtained in Example 9-2 instead of the ionic compound (formula (7)) obtained in Example 7, In the same manner as in Example 19, the absorbance of the supernatant of the SWCNT dispersion before UV light irradiation was measured. This Vis-NIR absorption spectrum is shown in FIG. 14-2.
(実施例29-3:HiPCO法によるSWCNT分散液13)
 実施例7で得られたイオン性化合物(式(7))に代えて、実施例10-2で得られたイオン性化合物(式(10-2))3.0mgを使用したこと、および純水に代えてプロピレンカーボネートを使用したこと以外は、実施例19と同様にしてUV光照射前のSWCNT分散液の上澄みの吸光度を測定した。このVis-NIR吸収スペクトルを図14-3に示す。
(Example 29-3: SWCNT dispersion 13 by HiPCO method)
Instead of the ionic compound (formula (7)) obtained in Example 7, 3.0 mg of the ionic compound (formula (10-2)) obtained in Example 10-2 was used. The absorbance of the supernatant of the SWCNT dispersion before UV light irradiation was measured in the same manner as in Example 19 except that propylene carbonate was used instead of water. This Vis-NIR absorption spectrum is shown in FIG. 14-3.
(実施例30:SG法によるSWCNT分散液)
 実施例7で得られたイオン性化合物(式(7))12.1mgを3mLの純水に溶解したものと、スーパーグロース(SG)法によって合成されたSWCNT6.0mgを混合した。この混合液をバイアル瓶に入れ、超音波洗浄装置を用いて1時間超音波処理(80W,35kHz)し、SWCNTが安定して分散している分散液を得た。得られた分散液を純水で20倍に希釈し、UV-vis-NIR分光光度計を用いて吸光度を測定した。このUV-vis-NIR吸収スペクトルを実線(original)で図15に示す。
(Example 30: SWCNT dispersion by SG method)
A solution obtained by dissolving 12.1 mg of the ionic compound (formula (7)) obtained in Example 7 in 3 mL of pure water was mixed with 6.0 mg of SWCNT synthesized by the super growth (SG) method. This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device to obtain a dispersion in which SWCNTs were stably dispersed. The obtained dispersion was diluted 20 times with pure water, and the absorbance was measured using a UV-vis-NIR spectrophotometer. The UV-vis-NIR absorption spectrum is shown by a solid line (original) in FIG.
 つぎに、この分散液1mLをガラス製のセルに分取し、回転速度500rpmで撹拌しながら、紫外LEDを用いて、この分散液に波長365nmのUV光を強度450mW/cm2で20分間照射した。UV光照射後の分散液では、SWCNTの黒色凝集物が生じた。回転速度16400rpm(28500g)で、凝集物が生じたこの混合液を5分間遠心分離した。その後、上澄みを分取して、UV-vis-NIR分光光度計を用いて吸光度を測定した。このUV-vis-NIR吸収スペクトルを点線(UV照射後)で図15に示す。SG法によって合成されたSWCNTに由来する吸収スペクトルが、UV光照射によって減少したことが確認された。 Next, 1 mL of this dispersion is dispensed into a glass cell, and UV light having a wavelength of 365 nm is irradiated to the dispersion at an intensity of 450 mW / cm 2 for 20 minutes using an ultraviolet LED while stirring at a rotation speed of 500 rpm. did. In the dispersion after UV light irradiation, black aggregates of SWCNTs were formed. The mixed solution in which the aggregate was formed was centrifuged at a rotational speed of 16400 rpm (28500 g) for 5 minutes. Thereafter, the supernatant was separated and the absorbance was measured using a UV-vis-NIR spectrophotometer. This UV-vis-NIR absorption spectrum is shown by a dotted line (after UV irradiation) in FIG. It was confirmed that the absorption spectrum derived from SWCNT synthesized by the SG method was reduced by UV light irradiation.
(実施例31:eDIPS法によるSWCNT分散液)
 実施例7で得られたイオン性化合物(式(7))3.0mgを3mLの純水に溶解したものと、enhanced Direct Injection Pyrolytic Synthesis method(eDIPS)法によって合成されたSWCNT1.0mgを混合した。この混合液をバイアル瓶に入れ、超音波洗浄装置を用いて1時間超音波処理(80W,35kHz)し、SWCNTが安定して分散している分散液を得た。UV-vis-NIR分光光度計を用いて、この分散液の吸光度を測定した。このUV-vis-NIR吸収スペクトルを実線(original)で図16に示す。
(Example 31: SWCNT dispersion by eDIPS method)
A solution obtained by dissolving 3.0 mg of the ionic compound (formula (7)) obtained in Example 7 in 3 mL of pure water and 1.0 mg of SWCNT synthesized by the enhanced Direct Injection Pyrolytic Synthesis method (eDIPS) method were mixed. . This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device to obtain a dispersion in which SWCNTs were stably dispersed. The absorbance of this dispersion was measured using a UV-vis-NIR spectrophotometer. This UV-vis-NIR absorption spectrum is shown in FIG. 16 by a solid line (original).
 つぎに、この分散液1mLをガラス製のセルに分取し、回転速度500rpmで撹拌しながら、紫外LEDを用いて、この分散液に波長365nmのUV光を強度450mW/cm2で20分間照射した。UV光照射後の分散液では、SWCNTの黒色凝集物が生じた。回転速度16400rpm(28500g)で、凝集物が生じたこの混合液を5分間遠心分離した。その後、上澄みを分取して、UV-vis-NIR分光光度計を用いて吸光度を測定した。このUV-vis-NIR吸収スペクトルを点線(UV照射後)で図16に示す。eDIPS法によって合成されたSWCNTに由来する吸収スペクトルが、UV光照射によって減少したことが確認された。 Next, 1 mL of this dispersion is dispensed into a glass cell, and UV light having a wavelength of 365 nm is irradiated to the dispersion at an intensity of 450 mW / cm 2 for 20 minutes using an ultraviolet LED while stirring at a rotation speed of 500 rpm. did. In the dispersion after UV light irradiation, black aggregates of SWCNTs were formed. The mixed solution in which the aggregate was formed was centrifuged at a rotational speed of 16400 rpm (28500 g) for 5 minutes. Thereafter, the supernatant was separated and the absorbance was measured using a UV-vis-NIR spectrophotometer. This UV-vis-NIR absorption spectrum is shown by a dotted line (after UV irradiation) in FIG. It was confirmed that the absorption spectrum derived from SWCNT synthesized by the eDIPS method was reduced by UV light irradiation.
(実施例32:MWCNT分散液)
 実施例7で得られたイオン性化合物(式(7))3.0mgを3mLの純水に溶解したものと、多層カーボンナノチューブ(MWCNT)(Nanocyl社、NC-7000)1.0mgを混合した。この混合液をバイアル瓶に入れ、超音波洗浄装置を用いて1時間超音波処理(80W,35kHz)し、MWCNTが安定して分散している分散液を得た。得られた分散液を純水で2倍に希釈し、UV-vis-NIR分光光度計を用いて吸光度を測定した。このUV-vis-NIR吸収スペクトルを実線(original)で図17に示す。
(Example 32: MWCNT dispersion)
A solution obtained by dissolving 3.0 mg of the ionic compound (formula (7)) obtained in Example 7 in 3 mL of pure water and 1.0 mg of multi-walled carbon nanotube (MWCNT) (Nanocyl, NC-7000) were mixed. . This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device to obtain a dispersion in which MWCNTs were stably dispersed. The obtained dispersion was diluted twice with pure water, and the absorbance was measured using a UV-vis-NIR spectrophotometer. This UV-vis-NIR absorption spectrum is shown by a solid line (original) in FIG.
 つぎに、この分散液1mLをガラス製のセルに分取し、回転速度500rpmで撹拌しながら、紫外LEDを用いて、この分散液に波長365nmのUV光を強度450mW/cm2で20分間照射した。UV光照射後の分散液では、MWCNTの黒色凝集物が生じた。回転速度16400rpm(28500g)で、凝集物が生じたこの混合液を5分間遠心分離した。その後、上澄みを分取して、UV-vis-NIR分光光度計を用いて吸光度を測定した。このUV-vis-NIR吸収スペクトルを点線(UV照射後)で図17に示す。MWCNTに由来する吸収スペクトルが、UV光照射によって減少したことが確認された。 Next, 1 mL of this dispersion is dispensed into a glass cell, and UV light having a wavelength of 365 nm is irradiated to the dispersion at an intensity of 450 mW / cm 2 for 20 minutes using an ultraviolet LED while stirring at a rotation speed of 500 rpm. did. In the dispersion after UV light irradiation, black aggregates of MWCNTs were formed. The mixed solution in which the aggregate was formed was centrifuged at a rotational speed of 16400 rpm (28500 g) for 5 minutes. Thereafter, the supernatant was separated and the absorbance was measured using a UV-vis-NIR spectrophotometer. This UV-vis-NIR absorption spectrum is shown by a dotted line (after UV irradiation) in FIG. It was confirmed that the absorption spectrum derived from MWCNT decreased by UV light irradiation.
(実施例33:カーボンブラック分散液1)
 実施例7で得られたイオン性化合物(式(7))3.05mgを3mLの純水に溶解したものと、カーボンブラック(三菱化学、CB-2600)1.03mgを混合した。この混合液をバイアル瓶に入れ、超音波洗浄装置を用いて1時間超音波処理(80W,35kHz)し、カーボンブラックが安定して分散している分散液を得た。この分散液の画像を図18に示す(分散剤あり)。比較として、カーボンブラックと純水の混合液の画像も図18に示す(分散剤なし)。分散剤を用いたことによって、カーボンブラックが純水中によく分散していることが確認された。
(Example 33: Carbon black dispersion 1)
A solution obtained by dissolving 3.05 mg of the ionic compound (formula (7)) obtained in Example 7 in 3 mL of pure water and 1.03 mg of carbon black (Mitsubishi Chemical, CB-2600) were mixed. This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device to obtain a dispersion in which carbon black was stably dispersed. An image of this dispersion is shown in FIG. 18 (with a dispersant). As a comparison, an image of a mixture of carbon black and pure water is also shown in FIG. 18 (no dispersant). It was confirmed that carbon black was well dispersed in pure water by using a dispersant.
 また、UV-vis-NIR分光光度計を用いて、分散剤を含むこの分散液の吸光度を測定した。このUV-vis-NIR吸収スペクトルを実線(分散剤あり)で図19に示す。比較として、カーボンブラックと純水の混合液のUV-vis-NIR吸収スペクトルを点線(分散剤なし)で図19に示す。 Further, the absorbance of this dispersion containing the dispersant was measured using a UV-vis-NIR spectrophotometer. This UV-vis-NIR absorption spectrum is shown by a solid line (with a dispersant) in FIG. As a comparison, FIG. 19 shows a UV-vis-NIR absorption spectrum of a mixture of carbon black and pure water with a dotted line (without a dispersant).
(実施例34:カーボンブラック分散液2)
 カーボンブラックの量を60mgにしたこと、およびイオン性化合物(式(7))の量を10.5mgにしたこと以外は、実施例33と同様にしてカーボンブラック分散液を調製した。この分散液を純水で40倍に希釈し、1mL分取してガラス製のサンプル管に移した。この分散液の画像を図20に示す(original)。そして、このサンプル管を回転速度500rpmで撹拌しながら、紫外LEDを用いて、分散液に波長365nmのUV光を強度450mW/cm2で20分間照射した。UV光照射後、12時間静置した分散液の画像も図20に示す(UV光照射後)。UV光照射によって、カーボンブラックが凝集沈殿することが確認された。
(Example 34: Carbon black dispersion liquid 2)
A carbon black dispersion was prepared in the same manner as in Example 33 except that the amount of carbon black was changed to 60 mg and the amount of the ionic compound (formula (7)) was changed to 10.5 mg. This dispersion was diluted 40 times with pure water, 1 mL was taken and transferred to a glass sample tube. An image of this dispersion is shown in FIG. 20 (original). Then, while stirring the sample tube at a rotation speed of 500 rpm, the dispersion liquid was irradiated with UV light having a wavelength of 365 nm at an intensity of 450 mW / cm 2 for 20 minutes using an ultraviolet LED. An image of the dispersion which was allowed to stand for 12 hours after UV light irradiation is also shown in FIG. 20 (after UV light irradiation). It was confirmed that carbon black aggregates and precipitates when irradiated with UV light.
 また、UV-vis-NIR分光光度計を用いて、UV光照射前およびUV光照射後の分散液の吸光度をそれぞれ測定した。これらのUV-vis-NIR吸収スペクトルを、実線(original)および点線(UV光照射後)で図21にそれぞれ示す。 Further, the absorbance of the dispersion before and after UV light irradiation was measured using a UV-vis-NIR spectrophotometer. These UV-vis-NIR absorption spectra are shown in FIG. 21 by a solid line (original) and a dotted line (after UV light irradiation), respectively.
(実施例34-2:カーボンブラック分散液3)
 実施例7で得られたイオン性化合物(式(7) )45.1mgを2.4mLの純水に溶解したものと、カーボンブラック(三菱化学、CB-4000B)600mgを混合した。この混合液をバイアル瓶に入れ、超音波洗浄装置を用いて1時間超音波処理(80W,37kHz)し、カーボンブラックが安定して分散している分散液を得た。音叉振動式粘度計(AND製、SV-1A)を用いてこの分散液の粘度を測定したところ、26℃において3.38mPa・sであった。濃度が高いカーボンブラック分散液においてもカーボンブラックが良好に分散し、低粘度の分散液が得られていることが確認された。
(Example 34-2: Carbon black dispersion 3)
A solution prepared by dissolving 45.1 mg of the ionic compound (formula (7)) obtained in Example 7 in 2.4 mL of pure water and 600 mg of carbon black (Mitsubishi Chemical, CB-4000B) were mixed. This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 37 kHz) for 1 hour using an ultrasonic cleaning device to obtain a dispersion in which carbon black was stably dispersed. When the viscosity of this dispersion was measured using a tuning fork vibration viscometer (SV-1A, manufactured by AND), it was 3.38 mPa · s at 26 ° C. It was confirmed that carbon black was well dispersed even in a carbon black dispersion having a high concentration, and a low viscosity dispersion was obtained.
(実施例34-3:カーボンブラック分散液4)
 実施例9で得られたイオン性化合物(式(9) )30.2mgを2.7mLのプロピレンカーボネートに溶解したものと、カーボンブラック(三菱化学、CB-4000B)300mgを混合した。この混合液をバイアル瓶に入れ、超音波洗浄装置を用いて1時間超音波処理(80W,37kHz)し、カーボンブラックが安定して分散している分散液を得た。音叉振動式粘度計を用いてこの分散液の粘度を測定したところ、26℃において120mPa・sであった。濃度が高いカーボンブラック分散液においてもカーボンブラックが良好に分散し、低粘度の分散液が得られていることが確認された。
Example 34-3: Carbon Black Dispersion 4
A solution obtained by dissolving 30.2 mg of the ionic compound (formula (9)) obtained in Example 9 in 2.7 mL of propylene carbonate and 300 mg of carbon black (Mitsubishi Chemical, CB-4000B) were mixed. This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 37 kHz) for 1 hour using an ultrasonic cleaning device to obtain a dispersion in which carbon black was stably dispersed. When the viscosity of this dispersion was measured using a tuning fork vibration viscometer, it was 120 mPa · s at 26 ° C. It was confirmed that carbon black was well dispersed even in a carbon black dispersion having a high concentration, and a low viscosity dispersion was obtained.
(実施例34-4:カーボンブラック分散液5)
 プロピレンカーボネート2.7mLに代えてN-メチルピロリドン3.7mLを用いたことと、カーボンブラックをライオンスペシャリティケミカルズ製の「ケッチェンブラックEC300J」に変更したこと以外は、実施例34-2と同様にしてカーボンブラックが分散している高粘度ペーストを得た。
(Example 34-4: Carbon black dispersion 5)
Example 34-2 except that 3.7 mL of N-methylpyrrolidone was used instead of 2.7 mL of propylene carbonate, and carbon black was changed to “Ketjen Black EC300J” manufactured by Lion Specialty Chemicals. Thus, a high-viscosity paste in which carbon black was dispersed was obtained.
(実施例35:グラフェンナノプレートレット分散液)
 イオン性化合物(式(7))の量を3.03mgにしたこと、およびカーボンブラックに代えてグラフェンナノプレートレット(XG SCIENCES、xGnP-C-300)1.05mgを使用したこと以外は、実施例33と同様にしてグラフェンナノプレートレット分散液を調製した。この分散液の画像を図22に示す(分散剤あり)。比較として、グラフェンナノプレートレットと純水の混合液の画像も図22に示す(分散剤なし)。分散剤を用いたことによって、グラフェンナノプレートレットが純水中によく分散していることが確認された。
(Example 35: Graphene nanoplatelet dispersion)
Except that the amount of the ionic compound (formula (7)) was 3.03 mg and that 1.05 mg of graphene nanoplatelets (XG SCIENCES, xGnP-C-300) was used instead of carbon black. A graphene nanoplatelet dispersion was prepared in the same manner as in Example 33. An image of this dispersion is shown in FIG. 22 (with a dispersant). As a comparison, an image of a mixed solution of graphene nanoplatelets and pure water is also shown in FIG. 22 (no dispersant). It was confirmed that the graphene nanoplatelets were well dispersed in pure water by using the dispersant.
 また、UV-vis-NIR分光光度計を用いて、分散剤を含むこの分散液の吸光度を測定した。このUV-vis-NIR吸収スペクトルを実線(分散剤あり)で図23に示す。比較として、グラフェンナノプレートレットと純水の混合液のUV-vis-NIR吸収スペクトルを点線(分散剤なし)で図23に示す。 Further, the absorbance of this dispersion containing the dispersant was measured using a UV-vis-NIR spectrophotometer. This UV-vis-NIR absorption spectrum is shown by a solid line (with a dispersant) in FIG. As a comparison, FIG. 23 shows a UV-vis-NIR absorption spectrum of a mixed solution of graphene nanoplatelets and pure water as a dotted line (without a dispersant).
(実施例36:銅フタロシアニン分散液)
 実施例7で得られたイオン性化合物(式(7))10.5mgを3mLの純水に溶解したものと、銅フタロシアニン(東京化成)311.5mgを混合した。この混合液をバイアル瓶に入れ、超音波洗浄装置を用いて20分間超音波処理(80W,35kHz)し、銅フタロシアニンが安定して分散している分散液を得た。この分散液の画像を図24に示す(分散剤あり)。比較として、銅フタロシアニンと純水の混合液の画像も図24に示す(分散剤なし)。分散剤を用いたことによって、銅フタロシアニンが純水中によく分散していることが確認された。
(Example 36: Copper phthalocyanine dispersion)
A solution obtained by dissolving 10.5 mg of the ionic compound (formula (7)) obtained in Example 7 in 3 mL of pure water and 311.5 mg of copper phthalocyanine (Tokyo Kasei) were mixed. This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 35 kHz) for 20 minutes using an ultrasonic cleaning device to obtain a dispersion in which copper phthalocyanine was stably dispersed. An image of this dispersion is shown in FIG. 24 (with dispersant). As a comparison, an image of a mixed solution of copper phthalocyanine and pure water is also shown in FIG. 24 (no dispersant). It was confirmed that copper phthalocyanine was well dispersed in pure water by using a dispersant.
 また、分散剤を含む銅フタロシアニン分散液をスライドガラス(松浪硝子)へ滴下し、塗り広げたときの画像を図25に示す(分散剤あり)。比較として、銅フタロシアニンと純水の混合液をスライドガラスへ滴下し、塗り広げたときの画像も図25に示す(分散剤なし)。分散剤を用いたことによって、銅フタロシアニン分散液は良好な製膜性を示した。 Also, an image when a copper phthalocyanine dispersion containing a dispersant is dropped onto a slide glass (Matsunami Glass) and spread is shown in FIG. 25 (with a dispersant). As a comparison, an image when a liquid mixture of copper phthalocyanine and pure water is dropped onto a slide glass and spread is also shown in FIG. 25 (no dispersant). By using the dispersant, the copper phthalocyanine dispersion showed good film forming properties.
(実施例37:酸化鉄(III)分散液)
 実施例7で得られたイオン性化合物(式(7))5.02mgを3mLの純水に溶解したものと、酸化鉄(III)(Fe23)(和光純薬、Cosmetic Grade)5.01mgを混合した。この混合液をバイアル瓶に入れ、超音波洗浄装置を用いて1時間超音波処理(80W,35kHz)し、酸化鉄(III)を分散させた分散液を得た。この分散液の画像を図26に示す(分散剤あり)。比較として、酸化鉄(III)と純水の混合液の画像も図26に示す(分散剤なし)。分散剤を用いたことによって、純水中での酸化鉄(III)の分散性が向上したことが確認された。
(Example 37: Iron (III) oxide dispersion)
A solution obtained by dissolving 5.02 mg of the ionic compound (formula (7)) obtained in Example 7 in 3 mL of pure water and iron oxide (III) (Fe 2 O 3 ) (Wako Pure Chemical Co., Ltd., Cosmetic Grade) 5 0.01 mg was mixed. This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device to obtain a dispersion liquid in which iron (III) oxide was dispersed. An image of this dispersion is shown in FIG. 26 (with a dispersant). As a comparison, an image of a mixed solution of iron (III) oxide and pure water is also shown in FIG. 26 (no dispersant). It was confirmed that the use of the dispersant improved the dispersibility of iron (III) oxide in pure water.
 また、UV-vis-NIR分光光度計を用いて、分散剤を含むこの分散液の吸光度を測定した。このUV-vis-NIR吸収スペクトルを実線(分散剤あり)で図27に示す。比較として、酸化鉄(III)と純水の混合液のUV-vis-NIR吸収スペクトルを点線(分散剤なし)で図27に示す。 Further, the absorbance of this dispersion containing the dispersant was measured using a UV-vis-NIR spectrophotometer. This UV-vis-NIR absorption spectrum is shown by a solid line (with a dispersant) in FIG. As a comparison, FIG. 27 shows a UV-vis-NIR absorption spectrum of a mixed solution of iron (III) oxide and pure water as a dotted line (without a dispersant).
(実施例38:コロネン分散液)
 実施例7で得られたイオン性化合物(式(7))3.12mgを3mLの純水に溶解したものと、コロネン(東京化成)1.16mgを混合した。この混合液をバイアル瓶に入れ、超音波洗浄装置を用いて1時間超音波処理(80W,35kHz)し、コロネンを分散させた分散液を得た。この分散液の画像を図28に示す(分散剤あり)。比較として、コロネンと純水の混合液の画像も図28に示す(分散剤なし)。分散剤を用いたことによって、純水中でのコロネンの分散性が向上したことが確認された。
(Example 38: Coronene dispersion)
A solution obtained by dissolving 3.12 mg of the ionic compound (formula (7)) obtained in Example 7 in 3 mL of pure water and 1.16 mg of coronene (Tokyo Kasei) were mixed. This mixed solution was put into a vial and subjected to ultrasonic treatment (80 W, 35 kHz) for 1 hour using an ultrasonic cleaning device to obtain a dispersion in which coronene was dispersed. An image of this dispersion is shown in FIG. 28 (with a dispersant). As a comparison, an image of a mixed solution of coronene and pure water is also shown in FIG. 28 (no dispersant). It was confirmed that the dispersibility of coronene in pure water was improved by using the dispersant.
 また、UV-vis-NIR分光光度計を用いて、分散剤を含むこの分散液の吸光度を測定した。このUV-vis-NIR吸収スペクトルを実線(分散剤あり)で図29に示す。比較として、コロネンと純水の混合液のUV-vis-NIR吸収スペクトルを点線(分散剤なし)で図29に示す。 Further, the absorbance of this dispersion containing the dispersant was measured using a UV-vis-NIR spectrophotometer. This UV-vis-NIR absorption spectrum is shown by a solid line (with a dispersant) in FIG. As a comparison, FIG. 29 shows a UV-vis-NIR absorption spectrum of a mixed solution of coronene and pure water as a dotted line (without a dispersant).
 本発明のイオン性化合物は、ナノ炭素材料分散剤、ナノ炭素材料インク、ナノ炭素材料薄膜加工などに利用できる。 The ionic compound of the present invention can be used for nanocarbon material dispersants, nanocarbon material inks, nanocarbon material thin film processing, and the like.

Claims (14)

  1.  下記一般式(I)で表されるイオン性化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは下記で示されるアミド結合およびエステル結合から選択される一種である。
    Figure JPOXMLDOC01-appb-C000002
    Aは下記で表されるカチオン部位を有する置換基である。
    Figure JPOXMLDOC01-appb-C000003
    ただし、nは1以上10以下の数であり、R1は水素、アルキル基、フェニル基、ポリエチレングリコール基、またはアリル基であり、R2およびR3は独立して水素またはアルキル基である。Bはアニオンを示し、mはmBが-2価となる数である。)
    An ionic compound represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, X is a kind selected from amide bonds and ester bonds shown below.
    Figure JPOXMLDOC01-appb-C000002
    A is a substituent having a cation moiety represented by the following.
    Figure JPOXMLDOC01-appb-C000003
    However, n is a number from 1 to 10, R 1 is hydrogen, an alkyl group, a phenyl group, a polyethylene glycol group, or an allyl group, and R 2 and R 3 are independently hydrogen or an alkyl group. B represents an anion, and m is a number such that mB becomes -2 valent. )
  2.  下記化学式で表される物質の中から選択される一種である請求項1に記載のイオン性化合物。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    The ionic compound according to claim 1, which is a kind selected from substances represented by the following chemical formulas:
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
  3.  水および極性有機溶剤の少なくとも一方を含有する分散媒に分散質を分散させるための分散剤であって、
     請求項1または2に記載のイオン性化合物を有効成分とする分散剤。
    A dispersant for dispersing a dispersoid in a dispersion medium containing at least one of water and a polar organic solvent,
    A dispersant comprising the ionic compound according to claim 1 as an active ingredient.
  4.  前記分散質が、ナノ炭素材料、疎水性微粒子、および疎水性分子から選ばれる少なくとも一種である請求項3に記載の分散剤。 The dispersant according to claim 3, wherein the dispersoid is at least one selected from nanocarbon materials, hydrophobic fine particles, and hydrophobic molecules.
  5.  前記分散質が、単層カーボンナノチューブ、多層カーボンナノチューブ、カーボンブラック、グラフェン、フタロシアニン、金属フタロシアニン、コロネン、および酸化鉄微粒子から選ばれる少なくとも一種である請求項4に記載の分散剤。 The dispersant according to claim 4, wherein the dispersoid is at least one selected from single-walled carbon nanotubes, multi-walled carbon nanotubes, carbon black, graphene, phthalocyanine, metal phthalocyanine, coronene, and iron oxide fine particles.
  6.  分散質と、
     水または極性有機溶剤の少なくとも一方を含有する分散媒と、
     請求項3から5のいずれかに記載の分散剤と、
     を有する分散液。
    With dispersoids,
    A dispersion medium containing at least one of water and a polar organic solvent;
    A dispersant according to any one of claims 3 to 5;
    A dispersion having
  7.  前記分散質が、ナノ炭素材料、疎水性微粒子、および疎水性分子から選ばれる少なくとも一種である請求項6に記載の分散液。 The dispersion according to claim 6, wherein the dispersoid is at least one selected from nanocarbon materials, hydrophobic fine particles, and hydrophobic molecules.
  8.  前記分散質が、単層カーボンナノチューブ、多層カーボンナノチューブ、カーボンブラック、グラフェン、フタロシアニン、金属フタロシアニン、コロネン、および酸化鉄微粒子から選ばれる少なくとも一種である請求項7に記載の分散液。 The dispersion according to claim 7, wherein the dispersoid is at least one selected from single-walled carbon nanotubes, multi-walled carbon nanotubes, carbon black, graphene, phthalocyanine, metal phthalocyanine, coronene, and iron oxide fine particles.
  9.  分散質と、水および極性有機溶剤の少なくとも一方を含有する分散媒と、請求項3から5のいずれかに記載の分散剤を混合して混合液を得る混合工程と、
     前記混合液を超音波によって振動し、前記分散質を前記分散媒に分散させる分散工程と、
     を有する分散液の製造方法。
    A mixing step of mixing a dispersoid, a dispersion medium containing at least one of water and a polar organic solvent, and a dispersant according to any one of claims 3 to 5 to obtain a mixed liquid;
    A dispersion step of oscillating the mixed liquid with ultrasonic waves and dispersing the dispersoid in the dispersion medium;
    A method for producing a dispersion having
  10.  前記分散質が、前記ナノ炭素材料、疎水性微粒子、および疎水性分子から選ばれる少なくとも一種である請求項9に記載の分散液の製造方法。 The method for producing a dispersion according to claim 9, wherein the dispersoid is at least one selected from the nanocarbon material, hydrophobic fine particles, and hydrophobic molecules.
  11.  前記分散質が、単層カーボンナノチューブ、多層カーボンナノチューブ、カーボンブラック、グラフェン、フタロシアニン、金属フタロシアニン、コロネン、および酸化鉄微粒子から選ばれる少なくとも一種である請求項10に記載の分散液の製造方法。 The method for producing a dispersion according to claim 10, wherein the dispersoid is at least one selected from single-walled carbon nanotubes, multi-walled carbon nanotubes, carbon black, graphene, phthalocyanine, metal phthalocyanine, coronene, and iron oxide fine particles.
  12.  請求項6から8のいずれかに記載の分散液に、250~450nmの所定の波長を有する光を照射して、前記分散質から前記分散剤を脱離し、前記分散質を前記分散媒中で凝集させて凝集液を得る凝集液の製造方法。 The dispersion according to any one of claims 6 to 8 is irradiated with light having a predetermined wavelength of 250 to 450 nm to desorb the dispersant from the dispersoid, and disperse the dispersoid in the dispersion medium. A method for producing an agglomerated liquid by aggregating to obtain an aggregated liquid.
  13.  請求項6から8のいずれかに記載の分散液に、250~450nmの所定の波長を有する光を照射して、前記分散質から前記分散剤を脱離し、前記分散媒中で前記分散質を凝集させて凝集液を得る凝集工程と、
     前記凝集工程で前記分散質から前記分散剤を脱離するときに用いた光の波長と異なる380~500nmの所定の波長を有する光を前記凝集液に照射して、前記分散媒中で前記分散質を分散させて分散液を得る分散工程と、
     を有する分散液の製造方法。
    The dispersion according to any one of claims 6 to 8 is irradiated with light having a predetermined wavelength of 250 to 450 nm to desorb the dispersant from the dispersoid, and the dispersoid is dispersed in the dispersion medium. An aggregating step of aggregating to obtain an aggregated liquid;
    The aggregate liquid is irradiated with light having a predetermined wavelength of 380 to 500 nm different from the wavelength of light used when the dispersant is desorbed from the dispersoid in the aggregation step, and the dispersion medium is dispersed in the dispersion medium. A dispersion step of dispersing the quality to obtain a dispersion;
    A method for producing a dispersion having
  14.  請求項6から8のいずれかに記載の分散液に、250~450nmの所定の波長を有する光を照射して、前記分散質から前記分散剤を脱離し、前記分散媒中で前記分散質を凝集させて凝集液を得る凝集工程と、
     前記凝集液から、前記分散剤の少なくとも一部および前記分散媒の少なくとも一部を含有する溶液を回収する回収工程と、
     別の前記分散質と前記溶液を混合した後、得られた混合液を超音波によって振動し、前記分散質を前記分散媒に分散させる分散工程と、
     を有する分散液の製造方法。
    The dispersion according to any one of claims 6 to 8 is irradiated with light having a predetermined wavelength of 250 to 450 nm to desorb the dispersant from the dispersoid, and the dispersoid is dispersed in the dispersion medium. An aggregating step of aggregating to obtain an aggregated liquid;
    A recovery step of recovering a solution containing at least a part of the dispersant and at least a part of the dispersion medium from the aggregate liquid;
    After mixing the other dispersoid and the solution, a dispersion step of vibrating the obtained mixture with ultrasonic waves to disperse the dispersoid in the dispersion medium;
    A method for producing a dispersion having
PCT/JP2017/014972 2016-04-26 2017-04-12 Ionic compound and photoresponsive nano carbon material dispersant WO2017187985A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018514255A JP6755015B2 (en) 2016-04-26 2017-04-12 Ionic compounds and photoresponsive nanocarbon material dispersants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016087854 2016-04-26
JP2016-087854 2016-04-26

Publications (1)

Publication Number Publication Date
WO2017187985A1 true WO2017187985A1 (en) 2017-11-02

Family

ID=60160480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014972 WO2017187985A1 (en) 2016-04-26 2017-04-12 Ionic compound and photoresponsive nano carbon material dispersant

Country Status (2)

Country Link
JP (1) JP6755015B2 (en)
WO (1) WO2017187985A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109781820A (en) * 2019-03-18 2019-05-21 河南城建学院 A kind of graphene composite material modified electrode and preparation method thereof
WO2020109855A1 (en) * 2018-12-01 2020-06-04 Ehsani Telgerafchi Armaghan Fabrication of polymeric solar thermal fuel composites applicable as stff, stfi, steg, stfp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052604A1 (en) * 2009-10-26 2011-05-05 独立行政法人産業技術総合研究所 Photoresponsive ionic organic compound, production method therefor, and photoresponsive carbon nanotube dispersant comprising said ionic organic compound
JP2012087259A (en) * 2010-10-22 2012-05-10 National Institute Of Advanced Industrial Science & Technology Ionic organic compound, method for producing the same, and photoresponsive polymer electrolyte
WO2015016156A1 (en) * 2013-08-02 2015-02-05 独立行政法人産業技術総合研究所 Dispersant-containing carbon material film containing light-responsive dispersant, and method for producing carbon material film using said dispersant-containing carbon material film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052604A1 (en) * 2009-10-26 2011-05-05 独立行政法人産業技術総合研究所 Photoresponsive ionic organic compound, production method therefor, and photoresponsive carbon nanotube dispersant comprising said ionic organic compound
JP2012087259A (en) * 2010-10-22 2012-05-10 National Institute Of Advanced Industrial Science & Technology Ionic organic compound, method for producing the same, and photoresponsive polymer electrolyte
WO2015016156A1 (en) * 2013-08-02 2015-02-05 独立行政法人産業技術総合研究所 Dispersant-containing carbon material film containing light-responsive dispersant, and method for producing carbon material film using said dispersant-containing carbon material film

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO, SONG ET AL.: "Nano-size stripes of self-assembled bolaform amphiphiles", CHEMICAL COMMUNICATIONS, 2000, pages 1273 - 1274, XP055434324, ISSN: 1359-7345 *
S ONG, BO ET AL.: "Interfacial Self-Organization of Bolaamphiphiles Bearing Mesogenic Groups: Relationships between the Molecular Structures and Their Self-Organized Morphologies", LANGMUIR, vol. 24, 2008, pages 3734 - 3739, XP055434323, ISSN: 0743-7463 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020109855A1 (en) * 2018-12-01 2020-06-04 Ehsani Telgerafchi Armaghan Fabrication of polymeric solar thermal fuel composites applicable as stff, stfi, steg, stfp
CN109781820A (en) * 2019-03-18 2019-05-21 河南城建学院 A kind of graphene composite material modified electrode and preparation method thereof
CN109781820B (en) * 2019-03-18 2021-03-19 河南城建学院 Graphene composite material modified electrode and preparation method thereof

Also Published As

Publication number Publication date
JP6755015B2 (en) 2020-09-16
JPWO2017187985A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
Amiri et al. A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges
González-Rodríguez et al. Persistent, well-defined, monodisperse, π-conjugated organic nanoparticles via G-quadruplex self-assembly
US7531114B2 (en) Composition in gel form comprising carbon nanotube and ionic liquid and method for production thereof
Soares et al. Surface modification of carbon black nanoparticles by dodecylamine: thermal stability and phase transfer in brine medium
JP2010248023A (en) Surface-modified nanodiamond and producing method thereof
KR20150095749A (en) Edge halogenation of graphene materials
WO2017187985A1 (en) Ionic compound and photoresponsive nano carbon material dispersant
CN105050950A (en) Method for separating metallic single-walled carbon nanotube from semiconductive single-walled carbon nanotube
JP6887646B2 (en) Sp2-type carbon-containing composition, graphene quantum dot-containing composition and method for producing them, and method for exfoliating graphite.
JP5881019B2 (en) Carbon nanotube dispersant, method for producing the same, carbon nanotube dispersion, and method for producing the same
JP5800678B2 (en) Nanocarbon aqueous dispersion, method for producing the same, and nanocarbon-containing structure
Park et al. Tailoring graphene nanosheets for highly improved dispersion stability and quantitative assessment in nonaqueous solvent
Zhi et al. Molecule ordering triggered by boron nitride nanotubes and “green” chemical functionalization of boron nitride nanotubes
JPWO2011052604A1 (en) Photoresponsive ionic organic compound, process for producing the same, and photoresponsive carbon nanotube dispersant comprising the ionic organic compound
JP5435595B2 (en) Ionic organic compound and process for producing the same, and carbon nanotube dispersant comprising the ionic organic compound
CN104955904B (en) Solvent base and water base carbon nanotube ink with removable property additive
JP2009023886A (en) Carbon nanotube dispersion liquid, its production process and its use
JP2005219964A (en) Method for treating single-wall carbon nanotube, method for producing dispersion of single-wall carbon nanotube, obtained single-wall carbon nanotube, and dispersion of single-wall carbon nanotube
WO2020250769A1 (en) Surface-modified nanodiamonds and method for producing surface-modified nano carbon particles
JP2022092085A (en) Surface-modified nano-diamond and production method of surface-modified nano-carbon powders
TW201821589A (en) Light-modulating material, light-modulating film, and light-modulating laminate
WO2018084297A1 (en) Method and apparatus for producing nanocarbon material film
JP2021017411A (en) Photoresponsive compound, dispersant containing this photoresponsive compound, and method of producing nanocarbon material film using this dispersant
JP2019077679A (en) Light responsive compound, and light responsive dispersant containing the compound as active ingredient
Kharisov et al. Solubilization and Dispersion of Carbon Allotropes and Their Metal-Complex Composites

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018514255

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789272

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789272

Country of ref document: EP

Kind code of ref document: A1