WO2017187826A1 - Display device, drive method, and electronic apparatus - Google Patents

Display device, drive method, and electronic apparatus Download PDF

Info

Publication number
WO2017187826A1
WO2017187826A1 PCT/JP2017/010369 JP2017010369W WO2017187826A1 WO 2017187826 A1 WO2017187826 A1 WO 2017187826A1 JP 2017010369 W JP2017010369 W JP 2017010369W WO 2017187826 A1 WO2017187826 A1 WO 2017187826A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
line
driving
scanning
voltage
Prior art date
Application number
PCT/JP2017/010369
Other languages
French (fr)
Japanese (ja)
Inventor
西池 昭仁
安倍 浩信
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017187826A1 publication Critical patent/WO2017187826A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1677Structural association of cells with optical devices, e.g. reflectors or illuminating devices

Definitions

  • the present disclosure relates to a display device using an electrophoretic element, a driving method thereof, and an electronic apparatus including the display device.
  • a display device there are various types such as a cholesteric liquid crystal type, an electrophoretic type, an electrooxidation reduction type, a twist ball type, etc.
  • a reflection type display device is advantageous. This is because a reflective display device performs bright display using reflection (scattering) of external light as in the case of paper, so that a display quality closer to that of paper can be obtained.
  • an electrophoretic display device using an electrophoretic element is expected to be a promising candidate because of its low power consumption and fast response speed.
  • an active matrix driving method using TFT (Thin Film Transistor) or the like a segment system in which a display body is sandwiched between a pair of divided electrodes, and driving is performed for each electrode. Is mentioned.
  • TFT Thin Film Transistor
  • an active matrix driving method is widely used because high resolution is required.
  • Patent Documents 1 to 3 In a display device using such an electrophoretic element, various driving methods have been proposed in order to improve display quality (for example, Patent Documents 1 to 3).
  • a display device includes a pixel unit having a plurality of pixels each including an electrophoretic element, and a drive unit that drives the voltage of the pixel unit for each pixel.
  • voltage driving is performed in units shorter than one frame period.
  • the effective display period of one frame period is shorter than one frame period. Voltage driving is performed in units of periods.
  • An electronic apparatus includes the display device according to the embodiment of the present disclosure.
  • the effective display period in one frame period is a period shorter than one frame period.
  • Voltage drive is performed in units. A voltage can be applied to each pixel at an arbitrary timing and pulse width without increasing the frame frequency (frame rate). In other words, the frame frequency is apparently increased, and more fine voltage drive can be performed.
  • the effective display period in one frame period is longer than the one frame period.
  • Voltage driving is performed in units of short periods. As a result, it is possible to perform more detailed voltage driving without increasing the frame frequency (frame rate). Therefore, it is possible to improve display quality while suppressing an increase in power consumption.
  • FIG. 2 is a timing chart for explaining a method for driving the display device shown in FIG. 1. It is a timing chart for explaining an example of a gradation display operation. It is a schematic diagram for demonstrating the transition of the display state with respect to an applied voltage waveform. It is a schematic diagram showing an example of an applied voltage waveform. It is a schematic diagram showing an example of an applied voltage waveform.
  • FIG. 2 is a timing chart for explaining a driving operation (line sequential driving operation in all scanning lines) of the display device shown in FIG. 1.
  • FIG. 2 is a timing chart for explaining a driving operation (line sequential driving operation for each scanning line group) of the display device shown in FIG. 1.
  • 11 is a timing chart for explaining a driving operation (line sequential driving operation for each scanning line group) of a display device according to Modification 1.
  • FIG. 10 is a functional block diagram for explaining a configuration of a display device according to modification example 2.
  • FIG. FIG. 12 is a timing diagram for describing a driving operation of a display device according to a second embodiment of the present disclosure. It is a timing diagram for explaining a drive operation according to a comparative example. It is a characteristic view showing an example of the voltage for display concerning an example. It is a characteristic view showing the optical response characteristic (light reflectivity change with time) by the voltage application shown to FIG. 15A.
  • FIG. 15B is a characteristic diagram illustrating a first combination example of the display voltage and the correction voltage illustrated in FIG. 15A. It is a characteristic view showing the optical response characteristic by the voltage application shown to FIG. 16A.
  • FIG. 12 is a timing diagram for describing a driving operation of a display device according to a second embodiment of the present disclosure. It is a timing diagram for explaining a drive operation according to a comparative example. It is a characteristic view showing an example of the voltage for display concerning an example. It
  • FIG. 15B is a characteristic diagram illustrating a second combination example of the display voltage and the correction voltage illustrated in FIG. 15A. It is a characteristic view showing the optical response characteristic by the voltage application shown to FIG. 17A.
  • 12 is a perspective view illustrating a configuration of an electronic book according to application example 1.
  • FIG. 12 is a perspective view illustrating another configuration of the electronic book according to Application Example 1.
  • FIG. 12 is a perspective view illustrating a state of a configuration of an electronic timepiece according to application example 2.
  • FIG. 12 is a perspective view illustrating another state of the configuration of the electronic timepiece according to application example 2.
  • First embodiment an example of a display device in which voltage driving is performed in units of periods shorter than one frame period by dividing and driving all scanning lines into two scanning line groups
  • Modification 1 example in which all scanning lines are divided into four scanning line groups
  • Modification 2 example in which a plurality of scanning line driving circuits are arranged
  • Second Embodiment An example of a display device in which voltage driving is performed in units of periods shorter than one frame period by driving by dividing an ON period in a scanning signal pulse
  • Example Example of voltage drive
  • Application examples (examples of electronic devices)
  • FIG. 1 illustrates the configuration of the display device (display device 1) according to the first embodiment of the present disclosure together with the configuration of the drive device (drive device 2).
  • FIG. 2 illustrates a main configuration of the pixel unit 1 ⁇ / b> A of the display device 1.
  • the display device 1 is an electrophoretic display device that displays an image using an electrophoretic phenomenon, and is a so-called electronic paper display.
  • the display device 1 includes a plurality of pixels 10 (pixel portions 1A) that are driven to display by an active matrix driving method using TFTs, for example.
  • the plurality of pixels 10 include a display body 10A (electrophoretic element), and display characters and images by changing the light reflectance of the display body 10A for each pixel 10.
  • the pixel portion 1A is connected to the scanning line driving circuit 110 and the signal line driving circuit 120.
  • the output end of the scanning line driving circuit 110 and each pixel 10 are connected, and a plurality of scanning lines GL extending along the row direction, the output end of the signal line driving circuit 120, and each pixel 10 are connected.
  • a plurality of signal lines DL extending in the column direction are arranged.
  • a pixel 10 is formed at each intersection of the plurality of scanning lines GL and the plurality of signal lines DL.
  • the scanning line driving circuit 110 includes, for example, a shift register circuit and a predetermined logic circuit.
  • the scanning line driving circuit 110 applies the scanning signal sequentially (line-sequentially) to the plurality of scanning lines GL in accordance with the control signal supplied from the driving device 2, thereby causing the pixel unit 1 ⁇ / b> A (the plurality of pixels 10). It has a function to select line by line.
  • the output terminal of the scanning line driving circuit 110 is connected to the gate terminal of the TFT disposed in each pixel 10 through the scanning line GL.
  • the scanning line driving circuit 110 includes a plurality of scanning line groups (scanning line group GLgrp). ) Each time line-sequential driving (line-sequential scanning) is performed. That is, the scanning line driving circuit 110 can apply a scanning start signal (gate start pulse) to the scanning lines GL of two or more specified lines among all the scanning lines GL (IC: Integrated Circuit). ). As a result, the scanning line driving circuit 110 applies a scanning start signal (Gst) to the scanning line GL of each head line (for example, the top line) of the plurality of scanning line groups GLgrp. The scanning lines GL on the lower line (second and subsequent lines from the top) are sequentially scanned.
  • a scanning start signal gate start pulse
  • the scanning line group GLgrp is a group including a plurality of scanning lines GL configured by dividing all scanning lines GL connected to the output terminal of the scanning line driving circuit 110 by n (n is an integer of 2 or more).
  • This division number “n” is, for example, a number that can divide the total number of scanning lines, and is determined according to a target scanning period (a period required to select all the scanning lines GL) in one frame period. desirable.
  • scanning line group GLgrp1 include, for example, a total of 360 scanning lines GL from the scanning lines GL 1 of the first line to the scanning line GL 360 of the 360 lines.
  • the line sequential driving of the scanning line groups GLgrp1, scanning lines GL 1 is a first line, the scanning lines GL 360 is the last line.
  • Scanning line group GLgrp2 include, for example, a total of 360 scanning lines GL from the scanning line GL 361 of the 361 line to the scanning lines GL 720 of the 720 lines.
  • the scanning line GL 361 is the first line
  • the last scanning line GL 720 is the last line.
  • the vertical period (unit period of voltage driving) when all the scanning lines are sequentially scanned from the first line to the last line is 20 ms.
  • the line sequential driving for each scanning line group GLgrp as described above is shorter than a vertical period corresponding to the frame frequency, that is, one frame period (20 ms in the case of 50 Hz).
  • the signal line driving circuit 120 generates an analog signal corresponding to the display signal in accordance with a control signal supplied from the driving device 2 and applies the analog signal to each signal line DL.
  • a display signal (signal voltage) applied to each signal line DL by the signal line driving circuit 120 is applied to the pixel 10 selected by the scanning line driving circuit 110.
  • This signal line driving circuit 120 has a function of generating and holding a voltage waveform pattern used for voltage driving in units of periods (Th1, Th2), which will be described later, separately from a normal voltage waveform pattern for display. Good.
  • the drive device 2 generates signals necessary for driving the display device 1 and supplies power.
  • the drive device 2 includes, for example, a control unit 210, a storage unit 211, a signal processing unit 212, and a power supply circuit 213.
  • the signal processor 212 includes, for example, a timing controller 212a and a display signal generator 212b.
  • the timing controller 212a and the display signal generator 212b generate various signals output to the scanning lines GL and the signal lines DL, signals for controlling application timings of these signals, and the like.
  • the driving device 2, the scanning line driving circuit 110, and the signal line driving circuit 120 correspond to a specific example of “driving unit” of the present disclosure.
  • FIG. 3 schematically shows the configuration of the display 10A.
  • a plurality of first electrodes (pixel electrodes) 13 are provided on the first substrate 11 via the TFT layer 12.
  • a sealing layer 14 is formed so as to cover the TFT layer 12 and the first electrode 13, and the display body 10 ⁇ / b> A is provided on the sealing layer (adhesive layer) 14.
  • a second electrode (counter electrode) 19 and a second substrate 20 are arranged in this order on the display body 10A.
  • the display body 10 ⁇ / b> A is configured such that the light reflectance changes (generates contrast) according to the voltage applied through the first electrode 13 and the second electrode 19.
  • the display 10 ⁇ / b> A includes a porous layer 16 and migrating particles 17 in an insulating liquid 15.
  • the display body 10 ⁇ / b> A is separated for each pixel 10 by the partition wall 18.
  • the display body 10A is configured to be partitioned by the partition wall 18.
  • the configuration of the electrophoretic element is not limited to this, and other configurations (for example, capsule-shaped or without partition). It may be.
  • the first substrate 11 is made of, for example, an inorganic material, a metal material, or a plastic material.
  • the inorganic material include silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), and aluminum oxide (AlO x ).
  • Silicon oxide includes, for example, glass or spin-on-glass (SOG).
  • the metal material include aluminum (Al), nickel (Ni), and stainless steel.
  • the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethyl ether ketone (PEEK).
  • the TFT layer 12 is a layer in which switching elements (TFT elements) for selecting pixels are formed.
  • the TFT element may be, for example, an inorganic TFT using an inorganic semiconductor such as amorphous silicon, polysilicon, or oxide as a channel layer, or an organic TFT using an organic semiconductor such as pentacene.
  • the type of the TFT element is not particularly limited, and may be, for example, an inverted stagger structure (so-called bottom gate type) or a stagger structure (so-called top gate type). Further, it may be n-type or p-type.
  • the TFT element is disposed for each pixel 10, and each is electrically connected to the first electrode 13. In this specification, it is assumed that the TFT element is n-type. However, when the TFT element is p-type, the waveform of the scanning signal pulse is inverted between positive and negative.
  • the first electrode 13 includes at least one of conductive materials such as gold (Au), silver (Ag), and copper (Cu). A plurality of the first electrodes 13 are arranged in a matrix in the pixel portion 1A.
  • the sealing layer 14 is made of an adhesive resin material.
  • the insulating liquid 15 is a non-aqueous solvent such as an organic solvent, and is specifically paraffin or isoparaffin. It is preferable that the viscosity and refractive index of the insulating liquid 15 be as low as possible. This is because the mobility (response speed) of the migrating particles 17 is improved and the energy (power consumption) required to move the migrating particles 17 is accordingly reduced. Moreover, since the difference between the refractive index of the insulating liquid 15 and the refractive index of the porous layer 16 becomes large, the light reflectance of the porous layer 16 becomes high.
  • the insulating liquid 15 may contain various materials as necessary.
  • the insulating liquid 15 may include a colorant, a charge control agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant, or a resin.
  • the electrophoretic particles 17 are one or more charged particles that can move between the first electrode 13 and the second electrode 19, and are dispersed in the insulating liquid 15.
  • the migrating particles 17 can move between the first electrode 13 and the second electrode 19 in the insulating liquid 15.
  • the migrating particles 17 are, for example, any one kind or two or more kinds of particles (powder) such as an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, or a polymer material (resin). .
  • the migrating particles 17 may be pulverized particles or capsule particles of resin solids containing the above-described particles.
  • materials corresponding to carbon materials, metal materials, metal oxides, glass, or polymer materials are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes.
  • the migrating particles 17 one of the above may be used, or a plurality of types may be used.
  • the content (concentration) of the migrating particles 17 in the insulating liquid 15 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. This is because shielding (concealment) and mobility of the migrating particles 17 are ensured. In this case, if it is less than 0.1% by weight, there is a possibility that the migrating particles 17 are difficult to shield the porous layer 16. On the other hand, if the amount is more than 10% by weight, the dispersibility of the migrating particles 17 is lowered, so that the migrating particles 17 are difficult to migrate, and in some cases, there is a possibility of aggregation.
  • the electrophoretic particles 17 also have arbitrary light reflection characteristics (light reflectivity).
  • the light reflectance of the migrating particles 17 is not particularly limited, but is preferably set so that at least the migrating particles 17 can shield the porous layer 16. This is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 17 and the light reflectance of the porous layer 16.
  • the specific forming material of the migrating particles 17 is selected according to the role of the migrating particles 17 in order to cause contrast, for example.
  • the material in the case of bright display (white display) by the migrating particles 17 is, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate. preferable. This is because it is excellent in electrochemical stability and dispersibility and has high reflectance.
  • the material in the case of dark display (black display) by the migrating particles 17 is, for example, a carbon material or a metal oxide.
  • the carbon material is, for example, carbon black
  • the metal oxide is, for example, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide, or copper-iron. -Chromium oxide and the like.
  • a carbon material is preferable. This is because excellent chemical stability, mobility and light absorption are obtained.
  • the color of the migrating particles 17 viewed from the outside is not particularly limited as long as a contrast can be generated, but for example, white or a color close to white is desirable.
  • the color of the migrating particles 17 visually recognized from the outside is not particularly limited as long as a contrast can be generated, but is desirably black or a color close to black. This is because in either case, the contrast becomes high.
  • the migrating particles 17 may be colored in a target color.
  • the migrating particles 17 are easily dispersed and charged in the insulating liquid 15 for a long period of time and are not easily adsorbed to the porous layer 16.
  • a dispersant or a charge adjusting agent
  • the electrophoretic particles 17 may be subjected to a surface treatment, or both may be used in combination.
  • the porous layer 16 is, for example, a three-dimensional structure (irregular network structure such as a nonwoven fabric) formed of a fibrous structure 16A as shown in FIG.
  • the porous layer 16 has a plurality of gaps (pores H) through which the migrating particles 17 pass in places where the fibrous structure 16A does not exist.
  • the fibrous structure 16A includes one or more non-migrating particles 16B, and the non-migrating particles 16B are held by the fibrous structure 16A.
  • one fibrous structure 16A may be randomly entangled, or a plurality of fibrous structures 16A may be gathered and overlap at random. However, both may be mixed.
  • each fibrous structure 16A preferably holds one or more non-migrating particles 16B.
  • FIG. 3 shows a case where the porous layer 16 is formed of a plurality of fibrous structures 16A.
  • the reason why the porous layer 16 is a three-dimensional structure is that the irregular three-dimensional structure easily causes external light to be irregularly reflected (multiple scattering), so that the light reflectance of the porous layer 16 increases and the high light This is because the porous layer 16 can be thin in order to obtain reflectance. Thereby, the contrast is increased and the energy required for moving the migrating particles 17 is decreased. Moreover, since the average pore diameter of the pores H increases and the number thereof increases, the migrating particles 17 easily pass through the pores H. As a result, the time required to move the migrating particles 17 is shortened, and the energy required to move the migrating particles 17 is also reduced.
  • the reason why the non-migrating particles 16B are included in the fibrous structure 16A is that the light reflectance of the porous layer 16 becomes higher because external light is more easily diffusely reflected. Thereby, contrast becomes higher.
  • the fibrous structure 16A is a fibrous substance having a sufficiently large length with respect to the fiber diameter (diameter).
  • the fibrous structure 16A includes, for example, any one type or two or more types such as a polymer material or an inorganic material, and may include other materials.
  • Polymer materials include, for example, nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, polyvinylidene fluoride, polyhexa Fluoropropylene, cellulose acetate, collagen, gelatin, chitosan or copolymers thereof.
  • the inorganic material is, for example, titanium oxide.
  • a polymer material is preferable as a forming material of the fibrous structure 16A.
  • the reactivity photoreactivity, etc.
  • the surface of the fibrous structure 16A is preferably covered with an arbitrary protective layer.
  • the shape (external appearance) of the fibrous structure 16A is not particularly limited as long as the fibrous structure 16A has a sufficiently long length with respect to the fiber diameter as described above. Specifically, it may be linear, may be curled, or may be bent in the middle. Moreover, you may branch to 1 or 2 or more directions on the way, not only extending in one direction.
  • the formation method of the fibrous structure 16A is not particularly limited. For example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, A sol-gel method or a spray coating method is preferred. This is because a fibrous substance having a sufficiently large length with respect to the fiber diameter can be easily and stably formed.
  • the average fiber diameter of the fibrous structure 16A is not particularly limited, but is preferably as small as possible. This is because light easily diffuses and the average pore diameter of the pores H increases. However, the average fiber diameter may be determined so that the fibrous structure 16A can hold the non-migrating particles 16B. For this reason, it is preferable that the average fiber diameter of 16 A of fibrous structures is 10 micrometers or less. In addition, although the minimum of an average fiber diameter is not specifically limited, For example, it is 0.1 micrometer and may be less than that. This average fiber diameter is measured, for example, by microscopic observation using a scanning electron microscope (SEM) or the like. The average length of the fibrous structure 16A may be arbitrary.
  • the average pore diameter of the pores H is not particularly limited, but is preferably as large as possible. This is because the migrating particles 17 easily pass through the pores H. For this reason, the average pore diameter of the pores H is preferably 0.1 ⁇ m to 10 ⁇ m.
  • the thickness of the porous layer 16 is not particularly limited, but is, for example, 5 ⁇ m to 100 ⁇ m. This is because the shielding property of the porous layer 16 becomes high and the migrating particles 17 easily pass through the pores H.
  • the fibrous structure 16A is preferably a nanofiber. Since the three-dimensional structure is complicated and external light is easily diffusely reflected, the light reflectance of the porous layer 16 is further increased, and the volume ratio of the pores H in the unit volume of the porous layer 16 is increased. This is because the migrating particles 17 easily pass through the pores H. Thereby, the contrast becomes higher and the energy required to move the migrating particles 17 becomes lower.
  • a nanofiber is a fibrous material having a fiber diameter of 0.001 ⁇ m to 0.1 ⁇ m and a length that is 100 times or more of the fiber diameter.
  • the fibrous structure 16A that is a nanofiber is preferably formed by an electrostatic spinning method using a polymer material. This is because the fibrous structure 16A having a small fiber diameter can be easily and stably formed.
  • the fibrous structure 16A has an optical reflection characteristic different from that of the migrating particles 17.
  • the light reflectance of the fibrous structure 16A is not particularly limited, but is preferably set so that at least the porous layer 16 can shield the migrating particles 17 as a whole. As described above, this is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 17 and the light reflectance of the porous layer 16.
  • Non-electrophoretic particles 16B are particles that are fixed to the fibrous structure 16A and do not migrate electrically.
  • the material for forming the non-migrating particles 16B is, for example, the same as the material for forming the migrating particles 17, and is selected according to the role played by the non-migrating particles 16B, as will be described later.
  • the non-migrating particles 16 ⁇ / b> B have optical reflection characteristics different from those of the migrating particles 17.
  • the light reflectance of the non-migrating particles 16B is not particularly limited, but is preferably set so that at least the porous layer 16 can shield the migrating particles 17 as a whole. As described above, this is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 17 and the light reflectance of the porous layer 16.
  • the specific forming material of the non-migrating particles 16B is selected according to the role of the non-migrating particles 16B in order to cause contrast, for example.
  • the material when brightly displayed by the non-electrophoretic particles 16B is the same as the material of the electrophoretic particles 17 selected when brightly displayed.
  • the material in the case of dark display by the non-electrophoretic particles 16B is the same as the material of the electrophoretic particles 17 selected in the case of dark display.
  • a metal oxide is preferable, and titanium oxide is more preferable. This is because it is excellent in electrochemical stability and fixability, and high reflectance can be obtained.
  • the material for forming the non-migrating particles 16B may be the same as or different from the material for forming the migrating particles 17.
  • An example of the procedure for forming the porous layer 16 is as follows. First, a material for forming the fibrous structure 16A (for example, a polymer material) is dispersed or dissolved in an organic solvent to prepare a spinning solution. Subsequently, after adding the non-migrating particles 16B to the spinning solution, the non-migrating particles 16B are dispersed in the spinning solution by sufficiently stirring. Finally, spinning is performed by an electrostatic spinning method using a spinning solution. Thereby, the non-migrating particles 16B are held by the fibrous structure 16A, and the porous layer 16 is formed.
  • a material for forming the fibrous structure 16A for example, a polymer material
  • the second electrode 19 is made of, for example, a transparent conductive film.
  • the transparent conductive film include indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO).
  • ITO indium oxide-tin oxide
  • ATO antimony oxide-tin oxide
  • FTO fluorine-doped tin oxide
  • AZO aluminum-doped zinc oxide
  • the second electrode 19 is formed on one surface of the second substrate 20 as an electrode common to all the pixels 10.
  • the second electrode 19 may be divided in the same manner as the first electrode 13. May be).
  • the second substrate 20 is made of the same material as the first substrate 11. However, since an image is displayed on the upper surface of the second substrate 20, a material having optical transparency is used for the second substrate 20.
  • a color filter (not shown) may be provided in contact with one surface of the second substrate 20 or in a layer above the second substrate 20.
  • the driving device 2 the scanning line driving circuit 110, and the signal line driving circuit 120 drive the voltage of the pixel unit 1A for each pixel 10, for example, as described above, for example, the migrating particles 17
  • contrast can be generated, and white display, black display, or gradation display can be performed.
  • the migrating particles 17 are changed according to the magnitude, polarity, application time, and the like of the applied voltage. It moves between the first electrode 13 and the second electrode 19.
  • the light reflectance of each pixel 10 can be changed.
  • FIG. 4 schematically shows an example of the display operation of the display device 1 (pixel unit 1A).
  • a fixed potential for example, 0 V
  • a positive potential for example, +15 V
  • a negative potential for example, ⁇ 15 V
  • 0 V is applied to each first electrode 13.
  • a potential difference is generated between the first electrode 13 and the second electrode 19 for each pixel 10 and a voltage of positive polarity, negative polarity, or 0 V is applied to the display body 10A.
  • the electrophoretic particles 17 charged positively or negatively move to the first electrode 13 side or the second electrode 19 side.
  • the migrating particles 17 are shielded by the porous layer 16 as the migrating particles 17 move to the first electrode 13 side. That is, the light reflectance of the porous layer 16 becomes dominant, and a display state (for example, white display state) corresponding to the light reflectance of the porous layer 16 is obtained.
  • the migrating particles 17 are exposed to the porous layer 16 by moving to the second electrode 19 side. That is, the light reflectance of the migrating particles 17 becomes dominant, and a display state (for example, a black display state) corresponding to the light reflectance of the migrating particles 17 is obtained.
  • a display state for example, a black display state
  • the light reflectance changes in time series according to the optical response characteristics of the display body 10A when shifting from white display to black display or from black display to white display. have. It is desirable to perform voltage driving in consideration of a change in light reflectance according to the optical response characteristics of the display body 10A.
  • switching to a desired display state is not performed in one frame period but over a plurality of frame periods (for example, a period corresponding to several frames to several tens frames). That is, a plurality of frame periods are unit periods (hereinafter referred to as “writing periods”) for displaying one screen (or rewriting to another screen).
  • a waveform pattern (Waveform) of an applied voltage is set in advance so that a desired display state is obtained. It is also effective to apply 0 V at a predetermined timing during the writing period.
  • the driving operation a driving operation in the case of shifting (switching) from black display to white display will be described.
  • Sig (k) is a voltage waveform (video signal pulse) applied to the signal line DL of the k-th line (k is an integer) G (1), G (2),. m) (m is an integer) indicates a voltage waveform (scanning signal pulse) applied from the first line to the m-th scanning line GL.
  • one frame period (vertical period corresponding to the frame frequency) V includes an effective display period V AC and a vertical blanking period V BL .
  • the frame frequency is not particularly limited, but is 40 to 100 Hz, for example, and one frame period V corresponding to this frame frequency is 10 to 25 ms (milliseconds), for example.
  • one frame period V corresponds to an interval of an on period in a scanning signal pulse applied to one scanning line GL, and is also called a frame or a vertical period.
  • the vertical blanking period V BL is set to, for example, about 0.1 ⁇ 4 ms.
  • the effective display period V AC corresponds to a period other than the vertical blanking period V BL in one frame period V.
  • the potential Vsig is applied to the signal line DL, while each scanning is performed.
  • the on-potential is applied to the line GL in a line-sequential manner.
  • a voltage corresponding to the potential Vsig is applied to the display body 10A via the TFT element.
  • the TFT element of the pixel 10 of the m-th line is turned on, and the potential Vsig of the signal line DL at that time is selected, and the first Applied to the electrode 13.
  • a voltage corresponding to the potential difference between the first electrode 13 and the second electrode 19 is applied to the display body 10A.
  • This applied voltage is held by a capacitive element (not shown) formed in the pixel 10 even after the TFT element is turned off.
  • the electrophoretic element is driven for each pixel 10 by a voltage (corresponding to a potential difference between the first electrode 13 and the second electrode 19) held by the capacitor element.
  • the migrating particles 17 move between the electrodes in accordance with the applied voltage, thereby changing the light reflectance.
  • Such voltage driving is continuously performed over a plurality of frames.
  • FIG. 5B schematically shows voltage waveforms S11 and S12 applied to the display body 10A and optical response waveforms (temporal changes in light reflectance) L11 and L12 corresponding thereto as an example.
  • the display 10A is displayed.
  • the optical response characteristic indicates a waveform L11. That is, from the start time of frame 1 to the end time of frame 4, the light reflectance gradually increases and shifts from the black display state to the white display state. In addition, the light reflectance gradually decreases from the start time of frame 5 to the end time of frame 12, and the white display state shifts to the black display state.
  • the applied voltage may be changed in small increments as in the voltage waveform S12. For example, after positive voltage is continuously applied in frames (n-6) and (n-5), 0 V is applied in frames (n-4) and (n-3). Thereafter, a negative voltage is continuously applied in frames (n-2) and (n-1), and 0 V is applied again in the last frame (n).
  • the optical response characteristic of the display body 10A shows, for example, a waveform L12. That is, the light reflectance gradually increases from the start time of the frame (n-6) to the end time of the frame (n-5), and shifts from the gradation display state to the white display state, for example.
  • the display state (white display state) of the immediately preceding frame is maintained from the start time of frame (n-4) to the end time of frame (n-3). Thereafter, the light reflectance gradually decreases from the start time of the frame (n-2) to the end time of the frame (n-1), and the white display state shifts to the gradation display state. In the frame (n), the display state (gradation display state) of the immediately preceding frame is maintained.
  • FIG. 6 shows an image of the gradation change of the frame with the voltage application as described above.
  • a positive voltage is continuously applied in the period T100 corresponding to the frames 1 to 9, and then a negative voltage is continuously applied in the period T101 corresponding to the frames 10 and 11.
  • 0 V is applied in a period T102 corresponding to the frame 12, and a negative voltage is applied in a period T103 corresponding to the frame 13.
  • gradation changes as schematically shown in the frames 1 to 13 occur.
  • gradation display is possible by a pulse width modulation (PMW: Pulse : Width Modulation) method in units of frames.
  • PMW Pulse : Width Modulation
  • a voltage waveform combining a positive voltage, a negative voltage, 0 V, and the like is written for each writing period. And set according to the optical response characteristics of the display body 10A.
  • the display can be switched toward the white display state by applying a positive voltage, and the display can be switched toward the black display state by applying a negative voltage.
  • a further fine gradation display can be realized by combining the application of 0V. 7A to 7D show voltage waveforms at the time of switching from the black display state to the white display state or the low gradation state as an example.
  • the positive voltage is applied in all frames (for example, 500 ms) in one writing period Tw.
  • Tw the extreme black display state
  • Tw2 the subsequent period
  • a positive voltage is applied in intermittent frames in one writing period Tw, and 0 V is applied in other frames (positive voltage and 0 V are alternately applied repeatedly).
  • a positive voltage is applied in the first half period Tw3 of one writing period Tw, and a negative voltage is applied in the subsequent period Tw4 (for example, Tw3> Tw4).
  • the all-black display state can be switched to the low gradation state.
  • there are a plurality of patterns of applied voltage waveforms for gradation display and the present invention is not limited to those illustrated.
  • FIG. 8A showing the voltage waveform in the case where 0V is applied to the last frame f EN the write period Tw Sig (k), and G (m), and a waveform L21 of the optical response characteristic of the display 10A for the applied voltage.
  • FIG. 8B as a comparative example, the voltage waveform Sig when no 0V is applied to the last frame f EN the write period Tw (k), and G (m), the optical response characteristics of the display body 10A for the applied voltage
  • the waveform L22 is shown.
  • 8A and 8B the voltage charge held in the capacitor (Cs) of the pixel 10 is indicated by hatching.
  • FIG. 1 the comparative example
  • a vertical period corresponding to one frame period V is a voltage application period to each pixel 10.
  • the pulse width (on period width) of the scanning signal pulse is changed in units of 20 ms. Therefore, usable pulse widths are 20 ms, 40 ms, 60 ms,... For this reason, for example, when driving is performed such that the positive voltage and the negative voltage are alternately repeated every frame, the electrophoretic element exhibits a behavior of alternately repeating the light and dark display. Since one frame period corresponds to a time of several tens of ms, it is visually recognized as flicker, and the display quality may be impaired.
  • the design change to increase the frame frequency includes, for example, the display signal generation unit 212b and the scanning line.
  • the clock frequency is changed. This leads to an increase in power consumption.
  • the scanning line driving circuit 110 has a function of performing line sequential driving (line sequential scanning) for each of a plurality of scanning line groups (scanning line group GLGrp). Specifically, the scanning line driving circuit 110 scans a scanning start signal for the scanning line GL of the first line (uppermost line) of each of a plurality of scanning line groups GLgrp formed by dividing all the scanning lines GL into n. Gst is applied to sequentially scan the scanning lines GL below the first line.
  • Line-sequential driving of all scanning lines GL First, with reference to FIG. 1 and FIG. 9, the line-sequential driving operation in the normal all scanning lines GL will be described. This driving corresponds to the above-described voltage driving in units of frames (line sequential driving in the “first frame period”). In this example, the total number of scanning lines (the number of effective scanning lines) is 720, and the division number n is 2. Line-sequential driving is performed in each of two scanning line groups GLgrp1 and GLgrp2 formed by dividing all scanning lines GL into two. In FIG.
  • Sig (k) is a voltage waveform (video signal pulse) applied to the signal line DL of the kth line (kth column) (k is an integer)
  • G (1), G (2), .., G (720) indicate voltage waveforms (scanning signal pulses) applied to the scanning lines GL from the first line to the 720th line, respectively.
  • Pix (1), Pix (2),..., Pix (720) are pixels 10 arranged at intersections of the signal line DL of the kth line and the scanning lines GL of the first line to the 720th line. Represents the voltage held in the. For simplicity, only one period corresponding to the above-described effective display period V AC is shown as one frame period V.
  • the scanning line drive circuit 110 at time t11, to the scanning lines GL 1 of the first line is the first line of the scanning line groups GLgrp1, applying a scan start signal GST1.
  • the scanning lines GL 1 of the first line the ON potential is applied.
  • the ON potential is sequentially applied to the scanning lines GL after the second line (from the second line to the 360th line).
  • the scanning line driving circuit 110 applies the scanning line GL 361 of the 361st line, which is the first line in the scanning line group GLgrp2, at time t12 immediately after the ON potential is applied to the scanning line GL 360 of the 360th line.
  • the scanning start signal Gst361 is applied.
  • the ON potential is applied to the scanning line GL 361 of the 361st line.
  • the ON potential is sequentially applied to the scanning lines GL from the 362rd line onward (from the 362rd line to the 720th line).
  • the signal line driver circuit 120 has a constant signal potential for a period until the scanning of all the scanning lines GL with respect to the signal line DL of the k-th line ends (period from time t11 to time t13: period Th). Apply. As a result, in the period Th corresponding to one frame period V, the signal potential is applied to each pixel 10 and this applied voltage is held. When the frame frequency is 50 Hz, this period Th is 20 ms. That is, in this example, one frame period V (period Th) is a unit period for voltage driving.
  • FIG. 10 illustrates an example in which line-sequential driving is performed for each scanning line group GLgrp in a part of the frame period V (second frame period). Also in this example, the total number of scanning lines (the number of effective scanning lines) is 720, and the division number n is 2.
  • Sig (k) is a voltage waveform (video signal pulse) applied to the signal line DL of the kth line (kth column), G (1), G (2),..., G (720)
  • the voltage waveforms (scanning signal pulses) applied to the scanning lines GL from the first line to the 720th line are respectively shown.
  • Pix (1), Pix (2),..., Pix (720) are pixels 10 arranged at intersections of the signal line DL of the kth line and the scanning lines GL of the first line to the 720th line. Represents the voltage held in the. For simplification, only the above-described effective display period V AC is shown as one frame period V.
  • the scanning line driver circuit 110 at any time t21, to the scanning lines GL 1 of the first line is the first line of the scanning line groups GLgrp1, applies a scanning start signal GST1.
  • the scanning lines GL 1 of the first line the ON potential is applied.
  • the ON potential is sequentially applied to the scanning lines GL after the second line (from the second line to the 360th line).
  • the scanning line driving circuit 110 in synchronization with the application timing of the scanning start signal Gst1 to the scanning lines GL 1 of the first line (at time t21), a first line of the scanning line group GLgrp2 # 361 A scanning start signal Gst 361 is applied to the scanning line GL 361 of the line.
  • an ON potential is applied to the scanning line GL 361 of the 361st line at the same time t21.
  • the ON potential is sequentially applied to the scanning lines GL from the 362rd line onward (from the 362rd line to the 720th line).
  • the scanning line group GLgrp1 scanning lines GL for a total of 360 lines from the first line to the 360th line are sequentially scanned, and the process ends at time t22.
  • scanning lines GL for a total of 360 lines from the 361st line to the 720th line are sequentially scanned, and the process ends at time t22. That is, the period required to scan all the scanning lines GL by line-sequential driving for each scanning line group GLgrp is a period (Th1) that is half (the first half part) of one frame period V (period Th).
  • the signal line drive circuit 120 applies a display signal voltage Vsig to the signal line DL, for example.
  • the scanning line driving circuit 110 in the same manner as described above, to the scanning lines GL 1 of the first line of scanning line group GLgrp1, applies a scanning start signal GST1.
  • the ON potential is sequentially applied from the first line to the 360-th scanning line GL.
  • the scanning line drive circuit 110 to the scanning lines GL 361 of the 361 lines of the scanning line groups GLgrp2, applies a scanning start signal Gst361.
  • the ON potential is sequentially applied to the scanning lines GL from the 361st line to the 720th line.
  • scanning lines GL for a total of 360 lines from the first line to the 360th line are sequentially scanned, and the process ends at time t23.
  • scanning lines GL for a total of 360 lines from the 361st line to the 720th line are sequentially scanned, and the process ends at time t23.
  • the line sequential driving for each scanning line group GLgrp makes it possible to apply a voltage even in the second half period (Th2) of one frame period V (period Th).
  • the signal line driving circuit 120 can apply a voltage (for example, a correction voltage Vcrt to be described later) different from that for display to the signal line DL.
  • a voltage for example, a correction voltage Vcrt to be described later
  • a voltage driving can be performed in units of periods shorter than one frame period V without increasing the frame frequency (increasing the frame rate).
  • a scanning signal scanning signal pulse
  • a scanning signal pulse can be applied to each scanning line GL once or a plurality of times (here, twice).
  • each pixel 10 including the electrophoretic element when each pixel 10 including the electrophoretic element is voltage-driven, in the effective display period V AC in one frame period V, periods Th1 and Th2 shorter than one frame period V.
  • Voltage drive can be performed in units. A voltage can be applied to each pixel at any timing and pulse width (using a desired voltage waveform pattern) without increasing the frame frequency (frame rate). In other words, the frame frequency is apparently increased, and more fine voltage drive can be performed. Therefore, it is possible to improve display quality while suppressing an increase in power consumption.
  • voltage driving in units of several ms which is shorter than one frame period V, is possible instead of voltage driving in units of several tens of ms.
  • the time width of this pulse can be varied freely.
  • the occurrence of flicker is suppressed by enabling voltage application in units of less than one frame period V. be able to.
  • FIG. 11 is a timing chart for explaining the drive operation (scan line division drive operation) of the display device according to the first modification.
  • the division number n of all the scanning lines GL is set to 2 and line-sequential driving is performed in each of the two scanning line groups GLgrp1 and GLgrp2 is shown.
  • the division number n is limited to two. It may be 3 or more.
  • an example in the case of n 4 is shown.
  • the total number of scanning lines (the number of effective scanning lines) is 720, as in the first embodiment.
  • Sig (k) is a voltage waveform (video signal pulse) applied to the signal line DL of the kth line (kth column), and G (1),..., G (720) are from the first line.
  • a voltage waveform (scanning signal pulse) applied to the scanning line GL of the 720th line is shown.
  • Pix (1),..., Pix (720) is a voltage held in the pixel 10 arranged at each intersection of the signal line DL of the kth line and the scanning line GL of the first line to the 720th line.
  • V AC For simplification, only the above-described effective display period V AC is shown as one frame period V.
  • line-sequential driving is performed for each of the four scanning line groups GLgrp1, GLgrp2, GLgrp3, and GLgrp4 by dividing the entire scanning line GL into four.
  • a scanning start signal (Gst1, Gst181, Gst361, Gst541) is applied to the scanning line GL of the first line (first line, 181st line, 361st line, and 541st line) of each scanning line group GLgrp1, GLgrp2, GLgrp3, GLgrp4. Can be applied synchronously.
  • a total of 180 scanning lines GL from the first line to the 180th line are sequentially scanned.
  • a total of 180 scanning lines GL from the 181st line to the 360th line are sequentially scanned.
  • a total of 180 scanning lines GL from the 361st line to the 540th line are sequentially scanned.
  • a total of 180 scanning lines GL from the 541st line to the 720th line are sequentially scanned.
  • the signal line driver circuit 120 applies a display signal voltage (Vsig) in at least one period (for example, the period Th1) of the periods Th1 to Th4, and in other arbitrary periods, for example, a correction voltage (described later) Vcrt) can be applied.
  • Vsig display signal voltage
  • Th1 the period of the periods Th1 to Th4
  • Vcrt a correction voltage
  • FIG. 12 illustrates a main configuration of a display device according to the second modification.
  • gate start pulse a scanning start signal
  • the present invention is not limited to such a configuration.
  • a plurality of (here, two) scanning line driving circuits 110A and 110B are provided, and these scanning line driving circuits 110A and 110B are respectively provided. It may be connected to the scanning line group GLgrp.
  • the scanning line driving circuit 110A is connected to the scanning line group GLgrp1, and the scanning line driving circuit 110B is connected to the scanning line group GLgrp2.
  • the area A1 in the pixel portion 1A is driven using the scanning line group GLgrp1, and the area A2 is driven using the scanning line group GLgrp2.
  • FIG. 13 is a timing chart for explaining the driving operation of the display device according to the second embodiment of the present disclosure.
  • the display device of the present embodiment is an electrophoretic display device that displays an image using an electrophoretic phenomenon, and is a so-called electronic paper display.
  • the pixel 10 (pixel unit 1A) is driven and displayed by an active matrix driving method using TFTs.
  • the plurality of pixels 10 include a display body 10A (electrophoretic element), and display characters and images by changing the light reflectance of the display body 10A for each pixel 10.
  • the pixel portion 1A is connected to the scanning line driving circuit 110 and the signal line driving circuit 120.
  • the output end of the scanning line driving circuit 110 and each pixel 10 are connected, and a plurality of scanning lines GL extending along the row direction, the output end of the signal line driving circuit 120, and each pixel 10 are connected. And a plurality of signal lines DL extending in the column direction are arranged. A pixel 10 is formed at each intersection of the plurality of scanning lines GL and the plurality of signal lines DL.
  • FIG. 13 shows an example in which, in some frame periods V, another voltage (for example, a correction voltage) is applied in addition to the display voltage.
  • Sig (k) is a voltage waveform (video signal pulse) applied to the signal line DL of the kth line (kth column), and G (1) and G (2) are the first line.
  • the voltage waveform (scanning signal pulse) applied to the scanning line GL of the second line is shown.
  • Pix1 (k) represents a voltage waveform applied to the pixel 10 arranged at the intersection of the signal line DL of the kth line and the scanning line GL of the first line.
  • V AC For simplification, only the above-described effective display period V AC is shown as one frame period V.
  • the scanning line driving circuit 110 allocates a first on period b11 corresponding to a part of the on period b1 in the scanning signal pulse, for example, for display, and drives each pixel 10. It has become.
  • the scanning line driving circuit 110 also drives each pixel 10 by assigning, for example, a second on period b12 different from the first on period b11 in the on period b1 for correction.
  • the first on period b11 corresponds to the first half of the on period b1
  • the second on period b12 corresponds to the second half of the on period b1.
  • the first on-period b11 uses the first half phase of the on-period b1
  • the second on-period b12 uses the second half phase of the on-period b1.
  • the ON period b1 may be divided into three or more periods, and the lengths (division ratios) of the divided periods may be different.
  • the signal line driving circuit 120 applies, for example, a display signal voltage (Vsig) to each pixel 10 in the first on period b11, and in the second on period b12, for example, a correction voltage. (Vcrt) is applied.
  • Vsig display signal voltage
  • Vcrt correction voltage
  • the signal line driver circuit 120 has the voltage waveform S31 to which a voltage corresponding to each of the first on period b11 and the second on period b12 can be applied.
  • the correction voltage Vcrt can be an arbitrary voltage, for example, a voltage having a polarity opposite to that of the display voltage Vsig.
  • FIG. 14 is a timing diagram illustrating a driving operation according to a comparative example of the present embodiment.
  • the scanning signal pulse G (1) applied to the scanning line GL of the first line becomes high level (on potential) only once in one frame period V, and the rest is low level.
  • the TFT in the pixel 10 is turned on during the on potential period (on period b1), and the signal voltage applied to the signal line DL at that time is transmitted to each pixel 10 (Pix1 (k)).
  • a signal voltage for black display (corresponding to the black portion in FIG. 14) is applied to each pixel 10.
  • the electrophoretic element undergoes an optical change by this applied voltage, and exhibits an optical response as shown in the bottom of FIG.
  • a state in which the optical response level is lowered due to the black display signal being input is shown.
  • a signal for shifting from black display to white display (corresponding to a portion close to white in FIG. 14). Is applied to each pixel 10, and the optical response level of the electrophoretic element is increased.
  • one frame period V defined by the frame frequency is a unit period for voltage application. As described above, it is possible to shorten one frame period V by increasing the frame frequency (increasing the frame rate).
  • a design change that increases the frame frequency can be applied to, for example, the scanning line driving circuit 110. This involves changing the clock frequency in the logic circuit used. This leads to an increase in power consumption.
  • the scanning line driving circuit 110 applies the signal voltage Vsig to each pixel 10 in the first on-period b11 that is about half (first half) of the normal on-period b1. Apply. Although the pulse width is shortened in this way, the signal voltage Vsig for black display is applied to the pixel 10 as in the case of the comparative example if the transistor can be sufficiently operated within that time. In FIG. 13, as in the comparative example, the optical response level is lowered by writing the black display signal. In the first on period b11 in the scanning signal pulse applied to the scanning lines GL of the second, third and fourth lines, a signal for shifting from black display to white display is applied to each pixel 10, The optical response level of the electrophoretic element is increasing.
  • a pulse (pulse S32a) is added (an ON potential is applied).
  • the pulse S32a is applied using the second on period b12 of the on period b1. In this way, writing to the pixel 10 is added in the middle of one frame period V (at an arbitrary timing) by applying the pulse S32a whose phase is half shifted from the first on-period b11 for display. Can be done.
  • the optical response level L31 decreases from time t33 (L31a). Note that after the time t35 when the next frame period starts, the white display signal is applied to the pixel 10 in the first on-period b11, and the optical level rises again (the display becomes white).
  • the pulse S32a can be added at an arbitrary timing within one frame period V by dividing and using the ON period b1 in the scanning signal pulse.
  • Driving such as applying a voltage Vcrt having a polarity opposite to that of the display voltage Vsig can be performed by the pulse S32a, and optical characteristics can be improved.
  • the scanning period (unit period) of the pulse S32a is a period Th5 (t35-t33) from the start time (time t33) of the second on-period b12 to the start time (t35) of the next first on-period b11. It corresponds to. That is, the voltage (voltage Vcrt) can be applied in units of periods shorter than one frame period V.
  • the scanning period (period Th5) of the pulse S32a can be freely adjusted by a signal applied to the scanning line driving circuit 110.
  • the pulse S32a can be inserted in one ON period b1 in the scanning signal pulse, for example, when the total number of scanning lines is 720, about 27 ⁇ s (20 ms / 720) is required for the scanning period (period) of the pulse S32a.
  • the minimum range of Th5) is required for the scanning period (period) of the pulse S32a.
  • the pulse S32a is applied once, but may be applied a plurality of times in order to improve optical characteristics.
  • scanning signal pulses are automatically and sequentially output to the scanning lines GL for the second and subsequent lines based on the scanning start signal (Gst) input to the scanning line GL of the first line. be able to.
  • the pulse S32a can be similarly applied to the scanning lines GL on and after the second line. it can. That is, it is possible to insert the pulse S32a at an arbitrary timing and pulse width only by changing the signal waveform input to the scanning line driving circuit 110 without changing the wiring state connected to the pixel portion 1A.
  • the signal line driving circuit 120 is required to have high-speed operation performance because the output signal is switched at twice the normal speed. This employs a general semiconductor manufacturing technique used for a normal display. This can be easily realized.
  • each pixel 10 including an electrophoretic element when each pixel 10 including an electrophoretic element is voltage-driven, a period (period) shorter than one frame period V in the effective display period V AC in one frame period V.
  • Voltage drive can be performed in units of Th5).
  • a voltage can be applied to each pixel at any timing and pulse width (using a desired voltage waveform pattern) without increasing the frame frequency (frame rate). In other words, the frame frequency is apparently increased, and more fine voltage drive can be performed. Therefore, an effect equivalent to that of the first embodiment can be obtained.
  • the light reflectance is changed for each pixel 10 in accordance with the applied voltage, and white display, black display, or gradation display is performed using this.
  • white display, black display, or gradation display is performed using this.
  • the light reflectance is particularly high during white display.
  • FIG. 15A shows an example of an applied voltage waveform when switching from black display to white display.
  • FIG. 15B shows optical response characteristics of the display 10A when the voltage waveform shown in FIG. 15A is applied.
  • the light reflectance gradually changes over a plurality of frames (in time series).
  • a desired reflectance here, 1 is reached by applying a positive voltage continuously for a certain time (for example, 400 ms).
  • FIGS. 16A and 16B An example is shown in FIGS. 16A and 16B.
  • FIG. 16A is an example of an applied voltage waveform when switching from black display to white display.
  • the correction voltage Vcrt is applied as the reverse polarity voltage in one frame period V after about 100 ms has elapsed since the start of application of the positive voltage. After the voltage Vcrt is applied, the positive voltage is continuously applied again.
  • FIG. 16A is an example of an applied voltage waveform when switching from black display to white display.
  • the correction voltage Vcrt is applied as the reverse polarity voltage in one frame period V after about 100 ms has elapsed since the start of application of the positive voltage. After the voltage Vcrt is applied, the positive voltage is continuously applied again.
  • 16B shows the optical response characteristics of the display body 10A corresponding to the voltage waveform shown in FIG. 16A.
  • the reverse polarity voltage is applied in the middle, the light reflectance is instantaneously reduced, but thereafter, the light reflectance is increased again.
  • the increase rate of the light reflectance at this time is larger than that when only the positive voltage is continuously applied (FIG. 15B).
  • the desired reflectance (1) is likely to be reached at an earlier timing (in this example, after about 200 ms has elapsed) than when only the positive voltage is applied.
  • Vcrt when switching to white display or white display.
  • the period during which the correction voltage Vcrt as described above is applied is shorter than one frame period V.
  • the voltage is applied in units of one frame period V or less by line-sequential driving for each scanning line group GLgrp described in the first embodiment or driving using the additional pulse S32a described in the second embodiment. It can be driven.
  • the correction can be performed by applying the voltage Vcrt at an extremely fine timing.
  • FIG. 17B it is possible to make the flickering of the image less visible while increasing the light reflectance at an early timing.
  • the application timing of the correction voltage Vcrt is not particularly limited within one frame period V (effective display period V AC ). Further, the voltage Vcrt may be applied only once in one frame period V or may be applied multiple times. Further, in the voltage driving of less than one frame period V, the voltage Vcrt may be applied for the purpose of gradation control and color mixing adjustment without being limited to the positive voltage and negative voltage repetitive driving.
  • the electronic book 3 includes, for example, a display unit 810, a non-display unit (housing) 820, and an operation unit 830.
  • the operation unit 830 may be provided on the front surface of the non-display unit 820 as shown in FIG. 18A, or may be provided on the upper surface as shown in FIG. 18B.
  • the display device 1 described above can be applied to a part of clothing such as a watch (watch), a bag, clothes, a hat, glasses and shoes as a so-called wearable terminal. Below, an example of such an electronic device integrated with clothing is shown.
  • FIG. 19A and FIG. 19B show the appearance of an electronic timepiece (a wristwatch integrated electronic device).
  • the electronic timepiece has, for example, a dial (character information display portion) 410 and a band portion (color pattern display portion) 420, and the dial 410 and the band portion 420 include the display device 1. It is configured. For example, various characters and designs are displayed on the dial plate 410 as shown in FIGS. 19A and 19B by display driving using the above-described electrophoretic element.
  • the band unit 420 is a part that can be attached to an arm or the like, for example. Various color patterns can be displayed by using the display device 1 for the band unit 420, and the design of the band unit 420 can be changed from the example of FIG. 19A to the example of FIG. 19B. Electronic devices that are also useful in fashion applications can be realized.
  • the present disclosure is not limited to the aspects described in the above embodiments and the like, and various modifications are possible.
  • the second voltage is not necessarily reversed.
  • the voltage may not be a polarity voltage, and may be a voltage different from the first voltage.
  • the second voltage may be 0V.
  • the first voltage is a positive voltage for shifting from black display to white display
  • the second voltage may be a voltage lower than the first voltage.
  • the reflectance can be effectively improved by applying a voltage having a polarity opposite to that of the first voltage as the second voltage as in the above embodiment.
  • the effect demonstrated in the said embodiment etc. is an example, The effect of this indication may be other effects and may also include other effects.
  • a pixel portion having a plurality of pixels each including an electrophoretic element;
  • a driving unit for driving the pixel unit for each pixel, and
  • the display device configured to perform the voltage driving in a unit of period shorter than one frame period in an effective display period of one frame period.
  • the drive unit is A scanning line driving circuit and a signal line driving circuit connected to each pixel; Line-sequential driving is performed in each of a plurality of scanning line groups obtained by dividing a plurality of scanning lines connecting the output terminal of the scanning line driving circuit and each pixel by n (n is an integer of 2 or more).
  • the scanning line driving circuit supplies a scanning start signal to the scanning line of the first line of each of the plurality of scanning line groups.
  • the scanning line driving circuit includes a circuit that supplies the scanning start signal for each scanning line group.
  • the drive unit is When applying a signal voltage to each pixel over a plurality of frame periods, In the first frame period of the plurality of frame periods, the first line scanning line to the last scanning line among all the scanning lines are sequentially driven, The display device according to any one of (2) to (5), wherein line-sequential driving is performed for each of the scanning line groups in a second frame period of the plurality of frame periods.
  • the driving unit applies a display signal voltage in a first unit period of one frame period and applies a correction voltage in a second unit period different from the first unit period.
  • the display device according to any one of (1) to (6), wherein the pixel is driven.
  • the drive unit is A scanning line driving circuit and a signal line driving circuit for performing line sequential driving of each pixel;
  • the scanning line driving circuit allocates a first on period corresponding to a part of the on period in the scanning signal pulse for display and drives the pixel. Any one of the above (1) to (7)
  • the display device described in 1. (9)
  • the scanning line driving circuit further drives the pixel by allocating a second on period different from the first on period among the on periods for correction, and the signal line driving circuit includes: The display device according to (8), wherein a display signal voltage is applied to the pixel during the first on-period and a correction voltage is applied during the second on-period.
  • the first on-period corresponds to the first half of the on-period
  • the drive unit is Driving each of the plurality of pixels in a line-sequential manner using a plurality of scanning lines;
  • the display device according to any one of (1) to (10), wherein a scanning signal is supplied to each pixel one or more times within one frame period.
  • (12) When driving a plurality of pixels each including an electrophoretic element for each pixel, A driving method in which the voltage driving is performed in a unit of period shorter than one frame period in an effective display period of one frame period.
  • the first on-period corresponds to the first half of the on-period
  • a pixel portion having a plurality of pixels each including an electrophoretic element;
  • An electronic apparatus comprising: a display device configured to perform the voltage driving in a unit of period shorter than one frame period in an effective display period of one frame period.

Abstract

This display device comprises: a pixel section comprising a plurality of pixels with each pixel including an electrophoretic element; and a drive section for applying drive voltage to each pixel in the pixel section. The drive section is configured so as to apply the drive voltage at each period shorter than one frame period during the effective display period in the one frame period.

Description

表示装置および駆動方法ならびに電子機器Display device, driving method, and electronic apparatus
 本開示は、電気泳動素子を用いた表示装置およびその駆動方法、ならびにその表示装置を備えた電子機器に関する。 The present disclosure relates to a display device using an electrophoretic element, a driving method thereof, and an electronic apparatus including the display device.
 近年、携帯電話機または携帯情報端末(PDA)等のモバイル機器の普及に伴い、低消費電力で高品位画質の表示装置に関する需要が高まっている。最近では、電子書籍の配信事業の誕生に伴い、読書用途に適した表示品位の表示装置が望まれている。 In recent years, with the widespread use of mobile devices such as mobile phones or personal digital assistants (PDAs), there is an increasing demand for display devices with low power consumption and high image quality. Recently, with the birth of an electronic book distribution business, display devices with display quality suitable for reading applications have been desired.
 このような表示装置としては、コレステリック液晶型,電気泳動型,電気酸化還元型またはツイストボール型等の様々なものがあるが、中でも、反射型の表示装置が有利である。反射型の表示装置では、紙と同様に、外光の反射(散乱)を利用して明表示を行うため、より紙に近い表示品位が得られるからである。 As such a display device, there are various types such as a cholesteric liquid crystal type, an electrophoretic type, an electrooxidation reduction type, a twist ball type, etc. Among them, a reflection type display device is advantageous. This is because a reflective display device performs bright display using reflection (scattering) of external light as in the case of paper, so that a display quality closer to that of paper can be obtained.
 反射型の表示装置の中でも、電気泳動素子を用いた電気泳動型の表示装置は、低消費電力であると共に応答速度が速く、有力候補として期待されている。この電気泳動型の表示装置の駆動方式としては、TFT(Thin Film Transistor)等を用いたアクティブマトリクス駆動方式、あるいは分割された一対の電極で表示体を挟み、電極毎に駆動を行うセグメント方式などが挙げられる。電子書籍のように、多数の細かい文字を表示する場合には、高解像度が求められることから、アクティブマトリクス駆動方式が広く用いられている。 Among reflective display devices, an electrophoretic display device using an electrophoretic element is expected to be a promising candidate because of its low power consumption and fast response speed. As a driving method of the electrophoretic display device, an active matrix driving method using TFT (Thin Film Transistor) or the like, a segment system in which a display body is sandwiched between a pair of divided electrodes, and driving is performed for each electrode. Is mentioned. In the case where a large number of fine characters are displayed as in an electronic book, an active matrix driving method is widely used because high resolution is required.
 このような電気泳動素子を用いた表示装置では、表示品位を向上させるために様々な駆動方法が提案されている(例えば、特許文献1~3)。 In a display device using such an electrophoretic element, various driving methods have been proposed in order to improve display quality (for example, Patent Documents 1 to 3).
特開2013-218342号公報JP 2013-218342 A 特表2007-519045号公報Special table 2007-519045 gazette 特開2011-59525号公報JP 2011-59525 A
 しかしながら、上記特許文献1~3の手法では、フレーム周波数(フレームレート)に応じた垂直期間に各画素に電圧が印加される。フレーム周波数を上げることで、極め細やかな電圧制御が可能となり表示品位を向上できるが、消費電力が増大してしまう。 However, in the methods of Patent Documents 1 to 3, a voltage is applied to each pixel in a vertical period corresponding to the frame frequency (frame rate). By increasing the frame frequency, fine voltage control is possible and display quality can be improved, but power consumption increases.
 消費電力の増大を抑制しつつ、表示品位を向上させることが可能な表示装置および駆動方法を提供することが望ましい。 It is desirable to provide a display device and a driving method capable of improving display quality while suppressing an increase in power consumption.
 本開示の一実施の形態の表示装置は、各々が電気泳動素子を含む複数の画素を有する画素部と、画素部を画素毎に電圧駆動する駆動部とを備え、駆動部は、1フレーム期間のうちの有効表示期間において、1フレーム期間よりも短い期間単位で電圧駆動を行うように構成されたものである。 A display device according to an embodiment of the present disclosure includes a pixel unit having a plurality of pixels each including an electrophoretic element, and a drive unit that drives the voltage of the pixel unit for each pixel. In the effective display period, voltage driving is performed in units shorter than one frame period.
 本開示の一実施の形態の駆動方法は、各々が電気泳動素子を含む複数の画素を、画素毎に電圧駆動する際に、1フレーム期間のうちの有効表示期間において、1フレーム期間よりも短い期間単位で電圧駆動を行うものである。 In the driving method according to the embodiment of the present disclosure, when a plurality of pixels each including an electrophoretic element are voltage-driven for each pixel, the effective display period of one frame period is shorter than one frame period. Voltage driving is performed in units of periods.
 本開示の一実施の形態の電子機器は、上記本開示の一実施の形態の表示装置を有するものである。 An electronic apparatus according to an embodiment of the present disclosure includes the display device according to the embodiment of the present disclosure.
 本開示の一実施の形態の表示装置および駆動方法ならびに電子機器では、電気泳動素子を含む各画素を電圧駆動する際に、1フレーム期間のうちの有効表示期間において、1フレーム期間よりも短い期間単位で電圧駆動を行う。フレーム周波数(フレームレート)を上げることなく、任意のタイミングおよびパルス幅で各画素に電圧を印加することが可能となる。換言すると、見かけ上、フレーム周波数が大きくなり、より極め細やかな電圧駆動を行うことができる。 In the display device, the driving method, and the electronic device according to the embodiment of the present disclosure, when each pixel including the electrophoretic element is voltage-driven, the effective display period in one frame period is a period shorter than one frame period. Voltage drive is performed in units. A voltage can be applied to each pixel at an arbitrary timing and pulse width without increasing the frame frequency (frame rate). In other words, the frame frequency is apparently increased, and more fine voltage drive can be performed.
 本開示の一実施の形態の表示装置および駆動方法ならびに電子機器によれば、電気泳動素子を含む各画素を電圧駆動する際に、1フレーム期間のうちの有効表示期間において、1フレーム期間よりも短い期間単位で電圧駆動が行われる。これにより、フレーム周波数(フレームレート)を上げることなく、より極め細やかな電圧駆動を行うことができる。よって、消費電力の増大を抑制しつつ、表示品位を向上させることが可能となる。 According to the display device, the driving method, and the electronic apparatus according to the embodiment of the present disclosure, when each pixel including the electrophoretic element is voltage-driven, the effective display period in one frame period is longer than the one frame period. Voltage driving is performed in units of short periods. As a result, it is possible to perform more detailed voltage driving without increasing the frame frequency (frame rate). Therefore, it is possible to improve display quality while suppressing an increase in power consumption.
 尚、上記内容は本開示の一例である。本開示の効果は、上述したものに限らず、他の異なる効果であってもよいし、更に他の効果を含んでいてもよい。 The above content is an example of the present disclosure. The effects of the present disclosure are not limited to those described above, and may be other different effects or may include other effects.
本開示の第1の実施形態の表示装置の構成を駆動装置の構成と共に表すブロック図である。It is a block diagram showing the composition of the display of a 1st embodiment of this indication with the composition of a drive. 図1に示した画素部の要部構成を表す断面図である。It is sectional drawing showing the principal part structure of the pixel part shown in FIG. 図2に示した表示体の構成を表す模式図である。It is a schematic diagram showing the structure of the display body shown in FIG. 図1に示した表示装置の駆動方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the drive method of the display apparatus shown in FIG. 図1に示した表示装置の駆動方法を説明するためのタイミング図である。FIG. 2 is a timing chart for explaining a method for driving the display device shown in FIG. 1. 階調表示動作の一例を説明するためのタイミング図である。It is a timing chart for explaining an example of a gradation display operation. 印加電圧波形に対する表示状態の遷移について説明するための模式図である。It is a schematic diagram for demonstrating the transition of the display state with respect to an applied voltage waveform. 印加電圧波形の一例を表す模式図である。It is a schematic diagram showing an example of an applied voltage waveform. 印加電圧波形の一例を表す模式図である。It is a schematic diagram showing an example of an applied voltage waveform. 印加電圧波形の一例を表す模式図である。It is a schematic diagram showing an example of an applied voltage waveform. 印加電圧波形の一例を表す模式図である。It is a schematic diagram showing an example of an applied voltage waveform. 書き込み期間の最終フレームにおいて0Vを印加した場合の光学応答特性を表した図である。It is a figure showing the optical response characteristic at the time of applying 0V in the last frame of a writing period. 書き込み期間の最終フレームにおいて0Vを印加しない場合の光学応答特性を表した図である。It is a figure showing the optical response characteristic when 0V is not applied in the last frame of the writing period. 図1に示した表示装置の駆動動作(全走査線における線順次駆動動作)を説明するためのタイミング図である。FIG. 2 is a timing chart for explaining a driving operation (line sequential driving operation in all scanning lines) of the display device shown in FIG. 1. 図1に示した表示装置の駆動動作(走査線群毎の線順次駆動動作)を説明するためのタイミング図である。FIG. 2 is a timing chart for explaining a driving operation (line sequential driving operation for each scanning line group) of the display device shown in FIG. 1. 変形例1に係る表示装置の駆動動作(走査線群毎の線順次駆動動作)を説明するためのタイミング図である。11 is a timing chart for explaining a driving operation (line sequential driving operation for each scanning line group) of a display device according to Modification 1. FIG. 変形例2に係る表示装置の構成を説明するための機能ブロック図である。10 is a functional block diagram for explaining a configuration of a display device according to modification example 2. FIG. 本開示の第2の実施形態の表示装置の駆動動作を説明するためのタイミング図である。FIG. 12 is a timing diagram for describing a driving operation of a display device according to a second embodiment of the present disclosure. 比較例に係る駆動動作を説明するためのタイミング図である。It is a timing diagram for explaining a drive operation according to a comparative example. 実施例に係る表示用の電圧の一例を表す特性図である。It is a characteristic view showing an example of the voltage for display concerning an example. 図15Aに示した電圧印加による光学応答特性(時間に対する光反射率変化)を表す特性図である。It is a characteristic view showing the optical response characteristic (light reflectivity change with time) by the voltage application shown to FIG. 15A. 図15Aに示した表示用の電圧と補正用の電圧との第1の組み合わせ例を表す特性図である。FIG. 15B is a characteristic diagram illustrating a first combination example of the display voltage and the correction voltage illustrated in FIG. 15A. 図16Aに示した電圧印加による光学応答特性を表す特性図である。It is a characteristic view showing the optical response characteristic by the voltage application shown to FIG. 16A. 図15Aに示した表示用の電圧と補正用の電圧との第2の組み合わせ例を表す特性図である。FIG. 15B is a characteristic diagram illustrating a second combination example of the display voltage and the correction voltage illustrated in FIG. 15A. 図17Aに示した電圧印加による光学応答特性を表す特性図である。It is a characteristic view showing the optical response characteristic by the voltage application shown to FIG. 17A. 適用例1に係る電子ブックの構成を表す斜視図である。12 is a perspective view illustrating a configuration of an electronic book according to application example 1. FIG. 適用例1に係る電子ブックの他の構成を表す斜視図である。12 is a perspective view illustrating another configuration of the electronic book according to Application Example 1. FIG. 適用例2に係る電子時計の構成の一状態を表す斜視図である。12 is a perspective view illustrating a state of a configuration of an electronic timepiece according to application example 2. FIG. 適用例2に係る電子時計の構成の他の状態を表す斜視図である。12 is a perspective view illustrating another state of the configuration of the electronic timepiece according to application example 2. FIG.
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。
1.第1の実施の形態(全走査線を2つの走査線群に分割して駆動することで、1フレーム期間よりも短い期間単位で電圧駆動を行う表示装置の例)
2.変形例1(全走査線を4つの走査線群に分割した場合の例)
3.変形例2(走査線駆動回路を複数配置した場合の例)
4.第2の実施の形態(走査信号パルスにおけるオン期間を分割して駆動することで、1フレーム期間よりも短い期間単位で電圧駆動を行う表示装置の例)
5.実施例(電圧駆動の一例)
6.適用例(電子機器の例)
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The order of explanation is as follows.
1. First embodiment (an example of a display device in which voltage driving is performed in units of periods shorter than one frame period by dividing and driving all scanning lines into two scanning line groups)
2. Modification 1 (example in which all scanning lines are divided into four scanning line groups)
3. Modification 2 (example in which a plurality of scanning line driving circuits are arranged)
4). Second Embodiment (An example of a display device in which voltage driving is performed in units of periods shorter than one frame period by driving by dividing an ON period in a scanning signal pulse)
5). Example (Example of voltage drive)
6). Application examples (examples of electronic devices)
<第1の実施の形態>
[構成]
 図1は、本開示の第1の実施形態の表示装置(表示装置1)の構成をその駆動装置(駆動装置2)の構成と共に表したものである。図2は、表示装置1の画素部1Aの要部構成を表したものである。この表示装置1は、電気泳動現象を利用して画像を表示する電気泳動型の表示装置であり、いわゆる電子ペーパーディスプレイである。
<First Embodiment>
[Constitution]
FIG. 1 illustrates the configuration of the display device (display device 1) according to the first embodiment of the present disclosure together with the configuration of the drive device (drive device 2). FIG. 2 illustrates a main configuration of the pixel unit 1 </ b> A of the display device 1. The display device 1 is an electrophoretic display device that displays an image using an electrophoretic phenomenon, and is a so-called electronic paper display.
 表示装置1は、例えばTFTを用いたアクティブマトリクス駆動方式によって表示駆動される複数の画素10(画素部1A)を有している。これらの複数の画素10は、表示体10A(電気泳動素子)を含み、表示体10Aの光反射率を画素10毎に変化させることで、文字や画像の表示を行うものである。画素部1Aは、走査線駆動回路110および信号線駆動回路120に接続されている。画素部1Aには、走査線駆動回路110の出力端と各画素10とを接続すると共に行方向に沿って延在する複数の走査線GLと、信号線駆動回路120の出力端と各画素10とを接続すると共に列方向に沿って延在する複数の信号線DLとが配置されている。これらの複数の走査線GLと複数の信号線DLとの各交点に、画素10が形成されている。 The display device 1 includes a plurality of pixels 10 (pixel portions 1A) that are driven to display by an active matrix driving method using TFTs, for example. The plurality of pixels 10 include a display body 10A (electrophoretic element), and display characters and images by changing the light reflectance of the display body 10A for each pixel 10. The pixel portion 1A is connected to the scanning line driving circuit 110 and the signal line driving circuit 120. In the pixel portion 1A, the output end of the scanning line driving circuit 110 and each pixel 10 are connected, and a plurality of scanning lines GL extending along the row direction, the output end of the signal line driving circuit 120, and each pixel 10 are connected. And a plurality of signal lines DL extending in the column direction are arranged. A pixel 10 is formed at each intersection of the plurality of scanning lines GL and the plurality of signal lines DL.
 走査線駆動回路110は、例えばシフトレジスタ回路と、所定の論理回路等とを含んで構成されている。この走査線駆動回路110は、駆動装置2から供給される制御信号に従って複数の走査線GLに対して走査信号を順次(線順次で)印加することにより、画素部1A(複数の画素10)を行単位で選択する機能を有する。走査線駆動回路110の出力端は、走査線GLを通じて、各画素10に配置されたTFTのゲート端子に接続されている。 The scanning line driving circuit 110 includes, for example, a shift register circuit and a predetermined logic circuit. The scanning line driving circuit 110 applies the scanning signal sequentially (line-sequentially) to the plurality of scanning lines GL in accordance with the control signal supplied from the driving device 2, thereby causing the pixel unit 1 </ b> A (the plurality of pixels 10). It has a function to select line by line. The output terminal of the scanning line driving circuit 110 is connected to the gate terminal of the TFT disposed in each pixel 10 through the scanning line GL.
 本実施の形態では、この走査線駆動回路110が、複数の走査線群(走査線群GLgrp
)毎に、線順次駆動(線順次走査)を行うように構成されている。即ち、走査線駆動回路110は、全走査線GLのうちの2以上の指定したラインの走査線GLに対し、走査開始信号(ゲートスタートパルス)を印加することができる回路機能(IC:Integrated Circuit)を含んで構成されている。これにより、走査線駆動回路110は、複数の走査線群GLgrpの各先頭ライン(例えば1番上のライン)の走査線GLに対し、走査開始信号(Gst)を印加し、該先頭ラインよりも下のライン(上から2番目以降のライン)の走査線GLを順次走査するようになっている。
In the present embodiment, the scanning line driving circuit 110 includes a plurality of scanning line groups (scanning line group GLgrp).
) Each time line-sequential driving (line-sequential scanning) is performed. That is, the scanning line driving circuit 110 can apply a scanning start signal (gate start pulse) to the scanning lines GL of two or more specified lines among all the scanning lines GL (IC: Integrated Circuit). ). As a result, the scanning line driving circuit 110 applies a scanning start signal (Gst) to the scanning line GL of each head line (for example, the top line) of the plurality of scanning line groups GLgrp. The scanning lines GL on the lower line (second and subsequent lines from the top) are sequentially scanned.
 走査線群GLgrpは、走査線駆動回路110の出力端に接続された全走査線GLを、n(nは2以上の整数)分割して構成された、複数の走査線GLを含む群である。この分割数「n」は、例えば全走査線数を割り切れる数であり、1フレーム期間のうちの目標の走査期間(全走査線GLを選択するのに要する期間)に応じて決定されることが望ましい。 The scanning line group GLgrp is a group including a plurality of scanning lines GL configured by dividing all scanning lines GL connected to the output terminal of the scanning line driving circuit 110 by n (n is an integer of 2 or more). . This division number “n” is, for example, a number that can divide the total number of scanning lines, and is determined according to a target scanning period (a period required to select all the scanning lines GL) in one frame period. desirable.
 一例を挙げると、図1に示したように、全走査線数(有効走査線数)が720本で、nが2の場合、720/2=360となり、割り切ることができる。全走査線GLを2分割してなる2つの走査線群GLgrp1,GLgrp2のそれぞれにおいて線順次駆動がなされる。具体的には、走査線群GLgrp1は、例えば、第1ラインの走査線GL1から第360ラインの走査線GL360までの計360本の走査線GLを含む。この走査線群GLgrp1の線順次駆動では、走査線GL1が先頭ラインとされ、走査線GL360が最終ラインとされる。走査線群GLgrp2は、例えば、第361ラインの走査線GL361から第720ラインの走査線GL720までの計360本の走査線GLを含む。この走査線群GLgrp2の線順次駆動では、走査線GL361が先頭ラインとされ、最終ラインの走査線GL720が最終ラインとされる。 For example, as shown in FIG. 1, when the total number of scanning lines (the number of effective scanning lines) is 720 and n is 2, 720/2 = 360, which is divisible. Line-sequential driving is performed in each of two scanning line groups GLgrp1 and GLgrp2 formed by dividing all scanning lines GL into two. Specifically, scanning line group GLgrp1 include, for example, a total of 360 scanning lines GL from the scanning lines GL 1 of the first line to the scanning line GL 360 of the 360 lines. The line sequential driving of the scanning line groups GLgrp1, scanning lines GL 1 is a first line, the scanning lines GL 360 is the last line. Scanning line group GLgrp2 include, for example, a total of 360 scanning lines GL from the scanning line GL 361 of the 361 line to the scanning lines GL 720 of the 720 lines. In the line-sequential driving of the scanning line group GLgrp2, the scanning line GL 361 is the first line, and the last scanning line GL 720 is the last line.
 この例において、フレーム周波数が50Hzである場合、全走査線を第1ラインから最終ラインまで順次走査した場合の垂直期間(電圧駆動の単位期間)は20msとなる。本実施の形態では、詳細は後述するが、上記のような走査線群GLgrp毎の線順次駆動により、フレーム周波数に対応する垂直期間、即ち1フレーム期間(50Hzの場合には20ms)よりも短い期間単位で、電圧駆動を行うものである。例えば、フレーム周波数が50Hzで、n=2の場合には、20/2=10(ms)を、電圧印加の単位期間として設定することができる。 In this example, when the frame frequency is 50 Hz, the vertical period (unit period of voltage driving) when all the scanning lines are sequentially scanned from the first line to the last line is 20 ms. Although details will be described later in the present embodiment, the line sequential driving for each scanning line group GLgrp as described above is shorter than a vertical period corresponding to the frame frequency, that is, one frame period (20 ms in the case of 50 Hz). Voltage driving is performed in units of periods. For example, when the frame frequency is 50 Hz and n = 2, 20/2 = 10 (ms) can be set as the unit period of voltage application.
 信号線駆動回路120は、駆動装置2から供給される制御信号に従って、表示用信号に対応するアナログの信号を生成し、各信号線DLに印加するものである。信号線駆動回路120により各信号線DLに対して印加された表示用の信号(信号電圧)が、走査線駆動回路110により選択された画素10に対して印加されるようになっている。この信号線駆動回路120は、後述する期間(Th1,Th2)単位での電圧駆動で用いる電圧波形パターンを、通常の表示用の電圧波形パターンとは別に生成し、保持する機能を持っていてもよい。 The signal line driving circuit 120 generates an analog signal corresponding to the display signal in accordance with a control signal supplied from the driving device 2 and applies the analog signal to each signal line DL. A display signal (signal voltage) applied to each signal line DL by the signal line driving circuit 120 is applied to the pixel 10 selected by the scanning line driving circuit 110. This signal line driving circuit 120 has a function of generating and holding a voltage waveform pattern used for voltage driving in units of periods (Th1, Th2), which will be described later, separately from a normal voltage waveform pattern for display. Good.
 駆動装置2は、表示装置1を表示駆動するために必要な信号の生成および電源供給などを行うものである。この駆動装置2は、例えば制御部210と、記憶部211と、信号処理部212と、電源回路213とを備えている。信号処理部212は、例えばタイミングコントローラ212aと表示用信号生成部212bとを有している。これらのタイミングコントローラ212aと表示用信号生成部212bにより、走査線GL,信号線DLに出力される各種信号やそれらの信号の印加タイミングを制御する信号などが生成される。なお、この駆動装置2と、走査線駆動回路110および信号線駆動回路120とが、本開示の「駆動部」の一具体例に相当する。 The drive device 2 generates signals necessary for driving the display device 1 and supplies power. The drive device 2 includes, for example, a control unit 210, a storage unit 211, a signal processing unit 212, and a power supply circuit 213. The signal processor 212 includes, for example, a timing controller 212a and a display signal generator 212b. The timing controller 212a and the display signal generator 212b generate various signals output to the scanning lines GL and the signal lines DL, signals for controlling application timings of these signals, and the like. The driving device 2, the scanning line driving circuit 110, and the signal line driving circuit 120 correspond to a specific example of “driving unit” of the present disclosure.
(表示装置1の詳細構成例)
 図3は、表示体10Aの構成を模式的に表したものである。画素部1Aでは、例えば、第1基板11上に、TFT層12を介して複数の第1電極(画素電極)13が設けられている。これらのTFT層12および第1電極13を覆うように、封止層14が形成されており、この封止層(接着層)14の上に表示体10Aが設けられている。表示体10A上には、第2電極(対向電極)19および第2基板20がこの順に配置されている。表示体10Aは、第1電極13と第2電極19とを通じて印加された電圧に応じて光反射率が変化する(コントラストを生じさせる)ように構成されている。一例としては、表示体10Aは、絶縁性液体15中に多孔質層16と泳動粒子17とを含むものである。この表示体10Aは、隔壁18によって画素10毎に分離されている。尚、ここでは、表示体10Aが隔壁18によって区切られた構成となっているが、電気泳動素子の構成はこれに限定されず、他の構成(例えば、カプセル状のものや隔壁無しのもの)であってもよい。
(Detailed configuration example of the display device 1)
FIG. 3 schematically shows the configuration of the display 10A. In the pixel unit 1 </ b> A, for example, a plurality of first electrodes (pixel electrodes) 13 are provided on the first substrate 11 via the TFT layer 12. A sealing layer 14 is formed so as to cover the TFT layer 12 and the first electrode 13, and the display body 10 </ b> A is provided on the sealing layer (adhesive layer) 14. A second electrode (counter electrode) 19 and a second substrate 20 are arranged in this order on the display body 10A. The display body 10 </ b> A is configured such that the light reflectance changes (generates contrast) according to the voltage applied through the first electrode 13 and the second electrode 19. As an example, the display 10 </ b> A includes a porous layer 16 and migrating particles 17 in an insulating liquid 15. The display body 10 </ b> A is separated for each pixel 10 by the partition wall 18. Here, the display body 10A is configured to be partitioned by the partition wall 18. However, the configuration of the electrophoretic element is not limited to this, and other configurations (for example, capsule-shaped or without partition). It may be.
 第1基板11は、例えば無機材料、金属材料またはプラスチック材料などにより構成されている。無機材料としては、例えば、ケイ素(Si)、酸化ケイ素(SiOX)、窒化ケイ素(SiNX)または酸化アルミニウム(AlOX)などが挙げられる。酸化ケイ素には、例えばガラスまたはスピンオングラス(SOG)などが含まれる。金属材料としては、例えばアルミニウム(Al)、ニッケル(Ni)またはステンレスなどが挙げられる。プラスチック材料としては、例えば、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)またはポリエチルエーテルケトン(PEEK)などが挙げられる。 The first substrate 11 is made of, for example, an inorganic material, a metal material, or a plastic material. Examples of the inorganic material include silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), and aluminum oxide (AlO x ). Silicon oxide includes, for example, glass or spin-on-glass (SOG). Examples of the metal material include aluminum (Al), nickel (Ni), and stainless steel. Examples of the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethyl ether ketone (PEEK).
 TFT層12は、画素を選択するためのスイッチング素子(TFT素子)が形成された層である。TFT素子は、例えば、チャネル層としてアモルファスシリコン、ポリシリコンまたは酸化物などの無機半導体を用いた無機TFTでもよいし、ペンタセンなどの有機半導体を用いた有機TFTでもよい。また、TFT素子の種類は特に限定されず、例えば逆スタガー構造(いわゆるボトムゲート型)であってもよいし、スタガー構造(いわゆるトップゲート型)であってもよい。また、n型であってもよいし、p型であってもよい。TFT素子は、画素10毎に配置され、それぞれが第1電極13に電気的に接続されている。本明細書では、このTFT素子が、n型である場合を想定しているが、p型である場合には、走査信号パルスの波形は正負が反転したものとされる。 The TFT layer 12 is a layer in which switching elements (TFT elements) for selecting pixels are formed. The TFT element may be, for example, an inorganic TFT using an inorganic semiconductor such as amorphous silicon, polysilicon, or oxide as a channel layer, or an organic TFT using an organic semiconductor such as pentacene. The type of the TFT element is not particularly limited, and may be, for example, an inverted stagger structure (so-called bottom gate type) or a stagger structure (so-called top gate type). Further, it may be n-type or p-type. The TFT element is disposed for each pixel 10, and each is electrically connected to the first electrode 13. In this specification, it is assumed that the TFT element is n-type. However, when the TFT element is p-type, the waveform of the scanning signal pulse is inverted between positive and negative.
 第1電極13は、例えば、金(Au)、銀(Ag)または銅(Cu)などの導電性材料のうち少なくとも1種を含んでいる。この第1電極13は、画素部1Aにおいて、マトリクス状に複数配置されている。 The first electrode 13 includes at least one of conductive materials such as gold (Au), silver (Ag), and copper (Cu). A plurality of the first electrodes 13 are arranged in a matrix in the pixel portion 1A.
 封止層14は、粘着性をもつ樹脂材料から構成されている。 The sealing layer 14 is made of an adhesive resin material.
 絶縁性液体15は、例えば有機溶媒などの非水溶媒であり、具体的には、パラフィンまたはイソパラフィンなどである。この絶縁性液体15の粘度および屈折率は、できるだけ低いことが好ましい。泳動粒子17の移動性(応答速度)が向上すると共に、それに応じて泳動粒子17の移動に要するエネルギー(消費電力)が低くなるからである。また、絶縁性液体15の屈折率と多孔質層16の屈折率との差が大きくなるため、その多孔質層16の光反射率が高くなるからである。 The insulating liquid 15 is a non-aqueous solvent such as an organic solvent, and is specifically paraffin or isoparaffin. It is preferable that the viscosity and refractive index of the insulating liquid 15 be as low as possible. This is because the mobility (response speed) of the migrating particles 17 is improved and the energy (power consumption) required to move the migrating particles 17 is accordingly reduced. Moreover, since the difference between the refractive index of the insulating liquid 15 and the refractive index of the porous layer 16 becomes large, the light reflectance of the porous layer 16 becomes high.
 なお、絶縁性液体15は、必要に応じて、各種材料を含んでいてもよい。例えば、絶縁性液体15は、着色剤、電荷制御剤、分散安定剤、粘度調製剤、界面活性剤または樹脂などを含んでいてもよい。 The insulating liquid 15 may contain various materials as necessary. For example, the insulating liquid 15 may include a colorant, a charge control agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant, or a resin.
 泳動粒子17は、第1電極13と第2電極19との間を移動可能な1または2以上の荷電粒子であり、絶縁性液体15中に分散されている。この泳動粒子17は、絶縁性液体15中で第1電極13と第2電極19との間を移動可能になっている。泳動粒子17は、例えば、有機顔料、無機顔料、染料、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料(樹脂)などのいずれか1種類または2種類以上の粒子(粉末)である。なお、泳動粒子17は、上記した粒子を含む樹脂固形分の粉砕粒子またはカプセル粒子などでもよい。ただし、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料に該当する材料は、有機顔料、無機顔料または染料に該当する材料から除かれることとする。この泳動粒子17としては、上記の中のいずれか1種類が用いられてもよいし、複数種類のものが用いられてもよい。 The electrophoretic particles 17 are one or more charged particles that can move between the first electrode 13 and the second electrode 19, and are dispersed in the insulating liquid 15. The migrating particles 17 can move between the first electrode 13 and the second electrode 19 in the insulating liquid 15. The migrating particles 17 are, for example, any one kind or two or more kinds of particles (powder) such as an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, or a polymer material (resin). . The migrating particles 17 may be pulverized particles or capsule particles of resin solids containing the above-described particles. However, materials corresponding to carbon materials, metal materials, metal oxides, glass, or polymer materials are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes. As the migrating particles 17, one of the above may be used, or a plurality of types may be used.
 絶縁性液体15中における泳動粒子17の含有量(濃度)は、特に限定されないが、例えば、0.1重量%~10重量%である。泳動粒子17の遮蔽(隠蔽)性および移動性が確保されるからである。この場合には、0.1重量%よりも少ないと、泳動粒子17が多孔質層16を遮蔽しにくくなる可能性がある。一方、10重量%よりも多いと、泳動粒子17の分散性が低下するため、その泳動粒子17が泳動しにくくなり、場合によっては凝集する可能性がある。 The content (concentration) of the migrating particles 17 in the insulating liquid 15 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. This is because shielding (concealment) and mobility of the migrating particles 17 are ensured. In this case, if it is less than 0.1% by weight, there is a possibility that the migrating particles 17 are difficult to shield the porous layer 16. On the other hand, if the amount is more than 10% by weight, the dispersibility of the migrating particles 17 is lowered, so that the migrating particles 17 are difficult to migrate, and in some cases, there is a possibility of aggregation.
 この泳動粒子17は、また、任意の光反射特性(光反射率)を有している。泳動粒子17の光反射率は、特に限定されないが、少なくとも泳動粒子17が多孔質層16を遮蔽可能となるように設定されることが好ましい。泳動粒子17の光反射率と多孔質層16の光反射率との違いを利用してコントラストを生じさせるためである。 The electrophoretic particles 17 also have arbitrary light reflection characteristics (light reflectivity). The light reflectance of the migrating particles 17 is not particularly limited, but is preferably set so that at least the migrating particles 17 can shield the porous layer 16. This is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 17 and the light reflectance of the porous layer 16.
 泳動粒子17の具体的な形成材料は、例えば、コントラストを生じさせるために泳動粒子17が担う役割に応じて選択される。例えば、泳動粒子17により明表示(白表示)される場合の材料は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウムまたはチタン酸カリウムなどの金属酸化物であり、中でも、酸化チタンが好ましい。電気化学的安定性および分散性などに優れていると共に、高い反射率が得られるからである。一方、泳動粒子17により暗表示(黒表示)される場合の材料は、例えば、炭素材料または金属酸化物などである。炭素材料は、例えば、カーボンブラックなどであり、金属酸化物は、例えば、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物などである。中でも、炭素材料が好ましい。優れた化学的安定性、移動性および光吸収性が得られるからである。 The specific forming material of the migrating particles 17 is selected according to the role of the migrating particles 17 in order to cause contrast, for example. For example, the material in the case of bright display (white display) by the migrating particles 17 is, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate. preferable. This is because it is excellent in electrochemical stability and dispersibility and has high reflectance. On the other hand, the material in the case of dark display (black display) by the migrating particles 17 is, for example, a carbon material or a metal oxide. The carbon material is, for example, carbon black, and the metal oxide is, for example, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide, or copper-iron. -Chromium oxide and the like. Among these, a carbon material is preferable. This is because excellent chemical stability, mobility and light absorption are obtained.
 泳動粒子17により明表示される場合、外部から視認される泳動粒子17の色は、コントラストを生じさせることができれば特に限定されないが、例えば白色または白色に近い色であることが望ましい。一方、泳動粒子17により暗表示される場合、外部から視認される泳動粒子17の色は、コントラストを生じさせることができれば特に限定されないが、黒色または黒色に近い色であることが望ましい。いずれの場合でも、コントラストが高くなるからである。白または黒以外の色表示を目的とする場合には、泳動粒子17は、目的とする色に着色されていてもよい。 When the migrating particles 17 are brightly displayed, the color of the migrating particles 17 viewed from the outside is not particularly limited as long as a contrast can be generated, but for example, white or a color close to white is desirable. On the other hand, when the dark display is performed by the migrating particles 17, the color of the migrating particles 17 visually recognized from the outside is not particularly limited as long as a contrast can be generated, but is desirably black or a color close to black. This is because in either case, the contrast becomes high. When the purpose is to display a color other than white or black, the migrating particles 17 may be colored in a target color.
 なお、泳動粒子17は、絶縁性液体15中で長期間に渡って分散および帯電しやすいと共に多孔質層16に吸着しにくいことが好ましい。このため、静電反発により泳動粒子17を分散させるために分散剤(または電荷調整剤)を用いたり、泳動粒子17に表面処理を施してもよく、両者を併用してもよい。 In addition, it is preferable that the migrating particles 17 are easily dispersed and charged in the insulating liquid 15 for a long period of time and are not easily adsorbed to the porous layer 16. For this reason, in order to disperse the electrophoretic particles 17 by electrostatic repulsion, a dispersant (or a charge adjusting agent) may be used, or the electrophoretic particles 17 may be subjected to a surface treatment, or both may be used in combination.
 多孔質層16は、例えば、図3に示したように、繊維状構造体16Aにより形成された3次元立体構造物(不織布のような不規則なネットワーク構造物)である。この多孔質層16は、繊維状構造体16Aが存在していない箇所に、泳動粒子17が通過するための複数の隙間(細孔H)を有している。 The porous layer 16 is, for example, a three-dimensional structure (irregular network structure such as a nonwoven fabric) formed of a fibrous structure 16A as shown in FIG. The porous layer 16 has a plurality of gaps (pores H) through which the migrating particles 17 pass in places where the fibrous structure 16A does not exist.
 繊維状構造体16Aには、1または2以上の非泳動粒子16Bが含まれており、その非泳動粒子16Bは、繊維状構造体16Aにより保持されている。3次元立体構造物である多孔質層16では、1本の繊維状構造体16Aがランダムに絡み合っていてもよいし、複数本の繊維状構造体16Aが集合してランダムに重なっていてもよいし、両者が混在していてもよい。繊維状構造体16Aが複数本である場合、各繊維状構造体16Aは、1または2以上の非泳動粒子16Bを保持していることが好ましい。なお、図3では、複数本の繊維状構造体16Aにより多孔質層16が形成されている場合を示している。 The fibrous structure 16A includes one or more non-migrating particles 16B, and the non-migrating particles 16B are held by the fibrous structure 16A. In the porous layer 16 that is a three-dimensional solid structure, one fibrous structure 16A may be randomly entangled, or a plurality of fibrous structures 16A may be gathered and overlap at random. However, both may be mixed. When there are a plurality of fibrous structures 16A, each fibrous structure 16A preferably holds one or more non-migrating particles 16B. FIG. 3 shows a case where the porous layer 16 is formed of a plurality of fibrous structures 16A.
 多孔質層16が3次元立体構造物であるのは、その不規則な立体構造により外光が乱反射(多重散乱)されやすいため、多孔質層16の光反射率が高くなると共に、その高い光反射率を得るために多孔質層16が薄くて済むからである。これにより、コントラストが高くなると共に、泳動粒子17を移動させるために必要なエネルギーが低くなる。また、細孔Hの平均孔径が大きくなると共にその数が多くなるため、泳動粒子17が細孔Hを通過しやすくなるからである。これにより、泳動粒子17の移動に要する時間が短くなると共に、その泳動粒子17の移動に要するエネルギーも低くなる。 The reason why the porous layer 16 is a three-dimensional structure is that the irregular three-dimensional structure easily causes external light to be irregularly reflected (multiple scattering), so that the light reflectance of the porous layer 16 increases and the high light This is because the porous layer 16 can be thin in order to obtain reflectance. Thereby, the contrast is increased and the energy required for moving the migrating particles 17 is decreased. Moreover, since the average pore diameter of the pores H increases and the number thereof increases, the migrating particles 17 easily pass through the pores H. As a result, the time required to move the migrating particles 17 is shortened, and the energy required to move the migrating particles 17 is also reduced.
 繊維状構造体16Aに非泳動粒子16Bが含まれているのは、外光がより乱反射しやすくなるため、多孔質層16の光反射率がより高くなるからである。これにより、コントラストがより高くなる。 The reason why the non-migrating particles 16B are included in the fibrous structure 16A is that the light reflectance of the porous layer 16 becomes higher because external light is more easily diffusely reflected. Thereby, contrast becomes higher.
 繊維状構造体16Aは、繊維径(直径)に対して長さが十分に大きい繊維状物質である。この繊維状構造体16Aは、例えば、高分子材料または無機材料などのいずれか1種類または2種類以上を含んでおり、他の材料を含んでいてもよい。高分子材料は、例えば、ナイロン、ポリ乳酸、ポリアミド、ポリイミド、ポリエチレンテレフタレート、ポリアクリロニトリル、ポリエチレンオキシド、ポリビニルカルバゾール、ポリビニルクロライド、ポリウレタン、ポリスチレン、ポリビニルアルコール、ポリサルフォン、ポリビニルピロリドン、ポリビニリデンフロリド、ポリヘキサフルオロプロピレン、セルロースアセテート、コラーゲン、ゼラチン、キトサンまたはそれらのコポリマーなどである。無機材料は、例えば、酸化チタンなどである。中でも、繊維状構造体16Aの形成材料としては、高分子材料が好ましい。反応性(光反応性など)が低い(化学的に安定である)ため、繊維状構造体16Aの意図しない分解反応が抑制されるからである。なお、繊維状構造体16Aが高反応性の材料により形成されている場合には、その繊維状構造体16Aの表面は任意の保護層により被覆されていることが好ましい。 The fibrous structure 16A is a fibrous substance having a sufficiently large length with respect to the fiber diameter (diameter). The fibrous structure 16A includes, for example, any one type or two or more types such as a polymer material or an inorganic material, and may include other materials. Polymer materials include, for example, nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, polyvinylidene fluoride, polyhexa Fluoropropylene, cellulose acetate, collagen, gelatin, chitosan or copolymers thereof. The inorganic material is, for example, titanium oxide. Among these, a polymer material is preferable as a forming material of the fibrous structure 16A. This is because the reactivity (photoreactivity, etc.) is low (chemically stable), so that the unintended decomposition reaction of the fibrous structure 16A is suppressed. In addition, when the fibrous structure 16A is formed of a highly reactive material, the surface of the fibrous structure 16A is preferably covered with an arbitrary protective layer.
 繊維状構造体16Aの形状(外観)は、上記したように繊維径に対して長さが十分に大きい繊維状であれば、特に限定されない。具体的には、直線状でもよいし、縮れていたり、途中で折れ曲がっていてもよい。また、一方向に延在しているだけに限らず、途中で1または2以上の方向に分岐していてもよい。この繊維状構造体16Aの形成方法は、特に限定されないが、例えば、相分離法、相反転法、静電(電界)紡糸法、溶融紡糸法、湿式紡糸法、乾式紡糸法、ゲル紡糸法、ゾルゲル法またはスプレー塗布法などであることが好ましい。繊維径に対して長さが十分に大きい繊維状物質を容易かつ安定に形成しやすいからである。 The shape (external appearance) of the fibrous structure 16A is not particularly limited as long as the fibrous structure 16A has a sufficiently long length with respect to the fiber diameter as described above. Specifically, it may be linear, may be curled, or may be bent in the middle. Moreover, you may branch to 1 or 2 or more directions on the way, not only extending in one direction. The formation method of the fibrous structure 16A is not particularly limited. For example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, A sol-gel method or a spray coating method is preferred. This is because a fibrous substance having a sufficiently large length with respect to the fiber diameter can be easily and stably formed.
 繊維状構造体16Aの平均繊維径は、特に限定されないが、できるだけ小さいことが好ましい。光が乱反射しやすくなると共に、細孔Hの平均孔径が大きくなるからである。ただし、平均繊維径は、繊維状構造体16Aが非泳動粒子16Bを保持できるように決定されるとよい。このため、繊維状構造体16Aの平均繊維径は、10μm以下であることが好ましい。なお、平均繊維径の下限は、特に限定されないが、例えば、0.1μmであり、それ以下でもよい。この平均繊維径は、例えば、走査型電子顕微鏡(SEM)などを用いた顕微鏡観察により測定される。なお、繊維状構造体16Aの平均長さは、任意でよい。 The average fiber diameter of the fibrous structure 16A is not particularly limited, but is preferably as small as possible. This is because light easily diffuses and the average pore diameter of the pores H increases. However, the average fiber diameter may be determined so that the fibrous structure 16A can hold the non-migrating particles 16B. For this reason, it is preferable that the average fiber diameter of 16 A of fibrous structures is 10 micrometers or less. In addition, although the minimum of an average fiber diameter is not specifically limited, For example, it is 0.1 micrometer and may be less than that. This average fiber diameter is measured, for example, by microscopic observation using a scanning electron microscope (SEM) or the like. The average length of the fibrous structure 16A may be arbitrary.
 細孔Hの平均孔径は、特に限定されないが、できるだけ大きいことが好ましい。泳動粒子17が細孔Hを通過しやすくなるからである。このため、細孔Hの平均孔径は、0.1μm~10μmであることが好ましい。 The average pore diameter of the pores H is not particularly limited, but is preferably as large as possible. This is because the migrating particles 17 easily pass through the pores H. For this reason, the average pore diameter of the pores H is preferably 0.1 μm to 10 μm.
 多孔質層16の厚さは、特に限定されないが、例えば、5μm~100μmである。多孔質層16の遮蔽性が高くなると共に、泳動粒子17が細孔Hを通過しやすくなるからである。 The thickness of the porous layer 16 is not particularly limited, but is, for example, 5 μm to 100 μm. This is because the shielding property of the porous layer 16 becomes high and the migrating particles 17 easily pass through the pores H.
 特に、繊維状構造体16Aは、ナノファイバーであることが好ましい。立体構造が複雑化して外光が乱反射しやすくなるため、多孔質層16の光反射率がより高くなると共に、多孔質層16の単位体積中に占める細孔Hの体積の割合が大きくなるため、泳動粒子17が細孔Hを通過しやすくなるからである。これにより、コントラストがより高くなると共に、泳動粒子17の移動に要するエネルギーがより低くなる。ナノファイバーとは、繊維径が0.001μm~0.1μmであると共に長さが繊維径の100倍以上である繊維状物質である。ナノファイバーである繊維状構造体16Aは、高分子材料を用いて静電紡糸法により形成されていることが好ましい。繊維径が小さい繊維状構造体16Aを容易かつ安定に形成しやすいからである。 Particularly, the fibrous structure 16A is preferably a nanofiber. Since the three-dimensional structure is complicated and external light is easily diffusely reflected, the light reflectance of the porous layer 16 is further increased, and the volume ratio of the pores H in the unit volume of the porous layer 16 is increased. This is because the migrating particles 17 easily pass through the pores H. Thereby, the contrast becomes higher and the energy required to move the migrating particles 17 becomes lower. A nanofiber is a fibrous material having a fiber diameter of 0.001 μm to 0.1 μm and a length that is 100 times or more of the fiber diameter. The fibrous structure 16A that is a nanofiber is preferably formed by an electrostatic spinning method using a polymer material. This is because the fibrous structure 16A having a small fiber diameter can be easily and stably formed.
 この繊維状構造体16Aは、泳動粒子17とは異なる光学的反射特性を有していることが好ましい。具体的には、繊維状構造体16Aの光反射率は、特に限定されないが、少なくとも多孔質層16が全体として泳動粒子17を遮蔽可能となるように設定されることが好ましい。上記したように、泳動粒子17の光反射率と多孔質層16の光反射率との違いを利用してコントラストを生じさせるためである。 It is preferable that the fibrous structure 16A has an optical reflection characteristic different from that of the migrating particles 17. Specifically, the light reflectance of the fibrous structure 16A is not particularly limited, but is preferably set so that at least the porous layer 16 can shield the migrating particles 17 as a whole. As described above, this is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 17 and the light reflectance of the porous layer 16.
 非泳動粒子16Bは、繊維状構造体16Aに固定されており、電気的に泳動しない粒子である。この非泳動粒子16Bの形成材料は、例えば、泳動粒子17の形成材料と同様であり、後述するように、非泳動粒子16Bが担う役割に応じて選択される。この非泳動粒子16Bは、泳動粒子17とは異なる光学的反射特性を有している。非泳動粒子16Bの光反射率は、特に限定されないが、少なくとも多孔質層16が全体として泳動粒子17を遮蔽可能となるように設定されることが好ましい。上記したように、泳動粒子17の光反射率と多孔質層16の光反射率との違いを利用してコントラストを生じさせるためである。 Non-electrophoretic particles 16B are particles that are fixed to the fibrous structure 16A and do not migrate electrically. The material for forming the non-migrating particles 16B is, for example, the same as the material for forming the migrating particles 17, and is selected according to the role played by the non-migrating particles 16B, as will be described later. The non-migrating particles 16 </ b> B have optical reflection characteristics different from those of the migrating particles 17. The light reflectance of the non-migrating particles 16B is not particularly limited, but is preferably set so that at least the porous layer 16 can shield the migrating particles 17 as a whole. As described above, this is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 17 and the light reflectance of the porous layer 16.
 ここで、非泳動粒子16Bの具体的な形成材料は、例えば、コントラストを生じさせるために非泳動粒子16Bが担う役割に応じて選択される。具体的には、非泳動粒子16Bにより明表示される場合の材料は、明表示される場合に選択される泳動粒子17の材料と同様である。一方、非泳動粒子16Bにより暗表示される場合の材料は、暗表示される場合に選択される泳動粒子17の材料と同様である。中でも、非泳動粒子16Bにより明表示される場合に選択される材料としては、金属酸化物が好ましく、酸化チタンがより好ましい。電気化学的安定性および定着性などに優れていると共に、高い反射率が得られるからである。コントラストを生じさせることができれば、非泳動粒子16Bの形成材料は、泳動粒子17の形成材料と同じ種類でもよいし、違う種類でもよい。 Here, the specific forming material of the non-migrating particles 16B is selected according to the role of the non-migrating particles 16B in order to cause contrast, for example. Specifically, the material when brightly displayed by the non-electrophoretic particles 16B is the same as the material of the electrophoretic particles 17 selected when brightly displayed. On the other hand, the material in the case of dark display by the non-electrophoretic particles 16B is the same as the material of the electrophoretic particles 17 selected in the case of dark display. Among these, as a material selected when brightly displayed by the non-migrating particles 16B, a metal oxide is preferable, and titanium oxide is more preferable. This is because it is excellent in electrochemical stability and fixability, and high reflectance can be obtained. If the contrast can be generated, the material for forming the non-migrating particles 16B may be the same as or different from the material for forming the migrating particles 17.
 なお、非泳動粒子16Bにより明表示または暗表示される場合に視認される色は、泳動粒子17が視認される色について説明した場合と同様である。 It should be noted that the color visually recognized when the non-electrophoretic particle 16B is displayed brightly or darkly is the same as the case where the color where the electrophoretic particle 17 is viewed is described.
 多孔質層16の形成手順の一例は、以下の通りである。最初に、有機溶剤などに繊維状構造体16Aの形成材料(例えば高分子材料など)を分散または溶解させて、紡糸溶液を調製する。続いて、紡糸溶液に非泳動粒子16Bを加えたのち、十分に攪拌して非泳動粒子16Bを紡糸溶液中に分散させる。最後に、紡糸溶液を用いた静電紡糸法により紡糸を行う。これにより、繊維状構造体16Aにより非泳動粒子16Bが保持され、多孔質層16が形成される。 An example of the procedure for forming the porous layer 16 is as follows. First, a material for forming the fibrous structure 16A (for example, a polymer material) is dispersed or dissolved in an organic solvent to prepare a spinning solution. Subsequently, after adding the non-migrating particles 16B to the spinning solution, the non-migrating particles 16B are dispersed in the spinning solution by sufficiently stirring. Finally, spinning is performed by an electrostatic spinning method using a spinning solution. Thereby, the non-migrating particles 16B are held by the fibrous structure 16A, and the porous layer 16 is formed.
 第2電極19は、例えば透明導電膜により構成されている。透明導電膜としては、例えば、酸化インジウム-酸化スズ(ITO)、酸化アンチモン-酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)またはアルミニウムドープ酸化亜鉛(AZO)などが挙げられる。ここでは、第2電極19は、例えば、全画素10に共通の電極として、第2基板20の一面に形成されているが、第1電極13と同様に分割されていてもよい(複数、形成されていてもよい)。 The second electrode 19 is made of, for example, a transparent conductive film. Examples of the transparent conductive film include indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO). Here, for example, the second electrode 19 is formed on one surface of the second substrate 20 as an electrode common to all the pixels 10. However, the second electrode 19 may be divided in the same manner as the first electrode 13. May be).
 第2基板20は、第1基板11と同様の材料により構成されている。但し、第2基板20の上面に画像が表示されることから、第2基板20には、光透過性を有する材料が用いられる。この第2基板20の一面に接して、もしくは第2基板20よりも上の層に、図示しないカラーフィルタが設けられていてもよい。 The second substrate 20 is made of the same material as the first substrate 11. However, since an image is displayed on the upper surface of the second substrate 20, a material having optical transparency is used for the second substrate 20. A color filter (not shown) may be provided in contact with one surface of the second substrate 20 or in a layer above the second substrate 20.
[駆動方法]
 本実施の形態の表示装置1では、駆動装置2、走査線駆動回路110および信号線駆動回路120が、画素部1Aを画素10毎に電圧駆動することにより、上記のように、例えば泳動粒子17の光反射率と多孔質層16の光反射率との違いを利用してコントラストを生じさせ、白表示、黒表示または階調表示を行うことができる。具体的には、画素10毎に第1電極13と第2電極19との間に電圧が印加されることで、この印加電圧の大きさ、極性および印加時間等に応じて泳動粒子17が、第1電極13と第2電極19との間を移動する。これにより、例えば泳動粒子17の光反射特性と多孔質層16の光反射特性とのうちのいずれか、または両方を発揮して、画素10毎の光反射率を変化させることができる。
[Driving method]
In the display device 1 according to the present embodiment, the driving device 2, the scanning line driving circuit 110, and the signal line driving circuit 120 drive the voltage of the pixel unit 1A for each pixel 10, for example, as described above, for example, the migrating particles 17 By utilizing the difference between the light reflectivity of the light and the light reflectivity of the porous layer 16, contrast can be generated, and white display, black display, or gradation display can be performed. Specifically, by applying a voltage between the first electrode 13 and the second electrode 19 for each pixel 10, the migrating particles 17 are changed according to the magnitude, polarity, application time, and the like of the applied voltage. It moves between the first electrode 13 and the second electrode 19. Thereby, for example, one or both of the light reflection characteristics of the migrating particles 17 and the light reflection characteristics of the porous layer 16 can be exhibited, and the light reflectance of each pixel 10 can be changed.
 図4に、表示装置1(画素部1A)の表示動作の一例について模式的に示す。このように、例えば第2電極19に固定電位(例えば0V)が印加され、各第1電極13には、正極性の電位(例えば+15V)、負極性の電位(例えば-15V)または0Vが印加された場合を例に挙げる。これにより、表示体10Aには、画素10毎に、第1電極13および第2電極19間に電位差が生じ、正極性,負極性または0Vの電圧が印加される。この結果、正または負(ここでは例えば負)に帯電した泳動粒子17が、第1電極13側または第2電極19側へ移動する。 FIG. 4 schematically shows an example of the display operation of the display device 1 (pixel unit 1A). Thus, for example, a fixed potential (for example, 0 V) is applied to the second electrode 19, and a positive potential (for example, +15 V), a negative potential (for example, −15 V) or 0 V is applied to each first electrode 13. Take the case as an example. As a result, a potential difference is generated between the first electrode 13 and the second electrode 19 for each pixel 10 and a voltage of positive polarity, negative polarity, or 0 V is applied to the display body 10A. As a result, the electrophoretic particles 17 charged positively or negatively (eg, negatively in this case) move to the first electrode 13 side or the second electrode 19 side.
 この例では、第1電極13に+15Vが印加された画素10では、泳動粒子17が第1電極13側へ移動することにより、泳動粒子17が多孔質層16によって遮蔽される。即ち、多孔質層16の光反射率が支配的となり、多孔質層16の光反射率に対応した表示状態(例えば、白表示状態)となる。一方で、第1電極13に-15Vが印加された画素10では、泳動粒子17が第2電極19側へ移動することにより、泳動粒子17が多孔質層16から露出する。即ち、泳動粒子17の光反射率が支配的となり、泳動粒子17の光反射率に対応した表示状態(例えば、黒表示状態)となる。なお、0Vの印加理由については後述する。 In this example, in the pixel 10 to which +15 V is applied to the first electrode 13, the migrating particles 17 are shielded by the porous layer 16 as the migrating particles 17 move to the first electrode 13 side. That is, the light reflectance of the porous layer 16 becomes dominant, and a display state (for example, white display state) corresponding to the light reflectance of the porous layer 16 is obtained. On the other hand, in the pixel 10 to which −15 V is applied to the first electrode 13, the migrating particles 17 are exposed to the porous layer 16 by moving to the second electrode 19 side. That is, the light reflectance of the migrating particles 17 becomes dominant, and a display state (for example, a black display state) corresponding to the light reflectance of the migrating particles 17 is obtained. The reason for applying 0 V will be described later.
 但し、電気泳動型の表示装置1では、白表示から黒表示、または黒表示から白表示へ移行する際に、表示体10Aの光学応答特性に応じて、時系列で光反射率が変化する性質を持つ。この表示体10Aの光学応答特性に応じた光反射率の変化を考慮した電圧駆動を行うことが望ましい。一般には、所望の表示状態(階調)への切り替えは、1フレーム期間において行われるのではなく、複数のフレーム期間(例えば数フレームから数10フレームに相当する期間)にわたって行われる。即ち、複数のフレーム期間が1枚の画面を表示する(または別の画面に書き換える)ための単位期間(以下、「書き込み期間」と称する)とされる。1つの書き込み期間の終了時において、所望の表示状態となるような印加電圧の波形パターン(Waveform)が予め設定される。この書き込み期間中には、所定のタイミングで0Vを印加することも有効である。以下に、この駆動動作の一例として、黒表示から白表示へ移行する(切り替える)場合の駆動動作について説明する。 However, in the electrophoretic display device 1, the light reflectance changes in time series according to the optical response characteristics of the display body 10A when shifting from white display to black display or from black display to white display. have. It is desirable to perform voltage driving in consideration of a change in light reflectance according to the optical response characteristics of the display body 10A. In general, switching to a desired display state (gradation) is not performed in one frame period but over a plurality of frame periods (for example, a period corresponding to several frames to several tens frames). That is, a plurality of frame periods are unit periods (hereinafter referred to as “writing periods”) for displaying one screen (or rewriting to another screen). At the end of one writing period, a waveform pattern (Waveform) of an applied voltage is set in advance so that a desired display state is obtained. It is also effective to apply 0 V at a predetermined timing during the writing period. Hereinafter, as an example of the driving operation, a driving operation in the case of shifting (switching) from black display to white display will be described.
(基本的な表示駆動:フレーム期間単位で電圧駆動)
 まず、図4,図5Aおよび図5Bを参照して、表示装置1の基本的な表示駆動について説明する。なお、図5Aにおいて、Sig(k)は、第kライン(kは整数)の信号線DLに印加される電圧波形(映像信号パルス)を、G(1),G(2),…G(m)(mは整数)は、第1ラインから第mラインの走査線GLに印加される電圧波形(走査信号パルス)を、それぞれ示している。この例では、1つのフレーム期間(フレーム周波数に対応する垂直期間)Vが、有効表示期間VACと垂直ブランキング期間VBLとを含む。フレーム周波数は、特に限定されないが、例えば40~100Hzであり、このフレーム周波数に対応する1フレーム期間Vは、例えば10~25ms(ミリ秒)である。ここで、1フレーム期間Vは、1つの走査線GLに印加される走査信号パルスにおけるオン期間の間隔に相当し、フレームまたは垂直周期とも呼ばれる。また、垂直ブランキング期間VBLは、例えば0.1~4ms程度に設定される。有効表示期間VACは、1フレーム期間Vのうちの垂直ブランキング期間VBL以外の期間に相当する。
(Basic display drive: voltage drive in frame periods)
First, basic display driving of the display device 1 will be described with reference to FIGS. 4, 5A, and 5B. In FIG. 5A, Sig (k) is a voltage waveform (video signal pulse) applied to the signal line DL of the k-th line (k is an integer) G (1), G (2),. m) (m is an integer) indicates a voltage waveform (scanning signal pulse) applied from the first line to the m-th scanning line GL. In this example, one frame period (vertical period corresponding to the frame frequency) V includes an effective display period V AC and a vertical blanking period V BL . The frame frequency is not particularly limited, but is 40 to 100 Hz, for example, and one frame period V corresponding to this frame frequency is 10 to 25 ms (milliseconds), for example. Here, one frame period V corresponds to an interval of an on period in a scanning signal pulse applied to one scanning line GL, and is also called a frame or a vertical period. The vertical blanking period V BL is set to, for example, about 0.1 ~ 4 ms. The effective display period V AC corresponds to a period other than the vertical blanking period V BL in one frame period V.
 このように、例えば12フレームからなる書き込み期間Twのうちの1つのフレーム(ここではNo.9フレーム)に対応する1フレーム期間Vにおいて、信号線DLに電位Vsigが印加される一方で、各走査線GLには線順次でオン電位が印加される。これにより、選択された画素10では、TFT素子を介して、電位Vsigに応じた電圧が表示体10Aに印加される。詳細には、例えば第mラインの走査線GLにオン電位が印加されることで、mライン目の画素10のTFT素子がオン状態となり、その時の信号線DLの電位Vsigが選択され、第1電極13に印加される。これにより、表示体10Aには、第1電極13および第2電極19間の電位差に応じた電圧が印加される。この印加電圧は、TFT素子がオフ状態となった後も、画素10内に形成された容量素子(図示せず)によって保持される。このような動作が画素10毎に行われ、容量素子により保持された電圧(第1電極13と第2電極19との間の電位差に相当)によって、電気泳動素子が画素10毎に駆動される。各画素10では、その印加電圧に応じて泳動粒子17が電極間を移動し、これにより光反射率が変化する。このような電圧駆動が複数フレームにわたって連続して行われる。 Thus, for example, in one frame period V corresponding to one frame (here, No. 9 frame) of the writing period Tw consisting of 12 frames, the potential Vsig is applied to the signal line DL, while each scanning is performed. The on-potential is applied to the line GL in a line-sequential manner. Thereby, in the selected pixel 10, a voltage corresponding to the potential Vsig is applied to the display body 10A via the TFT element. Specifically, for example, when an on potential is applied to the scanning line GL of the m-th line, the TFT element of the pixel 10 of the m-th line is turned on, and the potential Vsig of the signal line DL at that time is selected, and the first Applied to the electrode 13. Thereby, a voltage corresponding to the potential difference between the first electrode 13 and the second electrode 19 is applied to the display body 10A. This applied voltage is held by a capacitive element (not shown) formed in the pixel 10 even after the TFT element is turned off. Such an operation is performed for each pixel 10, and the electrophoretic element is driven for each pixel 10 by a voltage (corresponding to a potential difference between the first electrode 13 and the second electrode 19) held by the capacitor element. . In each pixel 10, the migrating particles 17 move between the electrodes in accordance with the applied voltage, thereby changing the light reflectance. Such voltage driving is continuously performed over a plurality of frames.
 図5Bに、一例として、表示体10Aに印加される電圧波形S11,S12とそれに応じた光学応答波形(光反射率の時間的変化)L11,L12について模式的に示す。例えば、電圧波形S11のように、フレーム1~4において連続的に正極性の電圧を印加したのち、フレーム5~12において連続的に負極性の電圧を印加する駆動を行った場合、表示体10Aの光学応答特性は、例えば波形L11を示す。即ち、フレーム1の開始時点からフレーム4の終了時点にかけて、光反射率が徐々に上昇し、黒表示状態から白表示状態へ移行する。また、フレーム5の開始時点からフレーム12の終了時点にかけて、光反射率が徐々に減少し、白表示状態から黒表示状態へ移行する。 FIG. 5B schematically shows voltage waveforms S11 and S12 applied to the display body 10A and optical response waveforms (temporal changes in light reflectance) L11 and L12 corresponding thereto as an example. For example, as shown in the voltage waveform S11, when the positive polarity voltage is continuously applied in the frames 1 to 4, and then the negative polarity voltage is continuously applied in the frames 5 to 12, the display 10A is displayed. For example, the optical response characteristic indicates a waveform L11. That is, from the start time of frame 1 to the end time of frame 4, the light reflectance gradually increases and shifts from the black display state to the white display state. In addition, the light reflectance gradually decreases from the start time of frame 5 to the end time of frame 12, and the white display state shifts to the black display state.
 他方、電圧波形S12のように、小刻みに印加電圧を変化させてもよい。例えば、フレーム(n-6),(n-5)において連続的に正極性の電圧を印加したのち、フレーム(n-4),(n-3)において0Vを印加する。その後、フレーム(n-2),(n-1)においてに連続的に負極性の電圧を印加し、最後のフレーム(n)において再び0Vを印加する。このような駆動を行った場合、表示体10Aの光学応答特性は、例えば波形L12を示す。即ち、フレーム(n-6)の開始時点からフレーム(n-5)の終了時点にかけて、光反射率が徐々に上昇し、例えば階調表示状態から白表示状態へ移行する。また、フレーム(n-4)の開始時点からフレーム(n-3)の終了時点までは、直前フレームの表示状態(白表示状態)が維持される。その後、フレーム(n-2)の開始時点からフレーム(n-1)の終了時点にかけて、光反射率が徐々に減少し、白表示状態から階調表示状態へ移行する。フレーム(n)では、その直前のフレームの表示状態(階調表示状態)が維持される。 On the other hand, the applied voltage may be changed in small increments as in the voltage waveform S12. For example, after positive voltage is continuously applied in frames (n-6) and (n-5), 0 V is applied in frames (n-4) and (n-3). Thereafter, a negative voltage is continuously applied in frames (n-2) and (n-1), and 0 V is applied again in the last frame (n). When such driving is performed, the optical response characteristic of the display body 10A shows, for example, a waveform L12. That is, the light reflectance gradually increases from the start time of the frame (n-6) to the end time of the frame (n-5), and shifts from the gradation display state to the white display state, for example. Also, the display state (white display state) of the immediately preceding frame is maintained from the start time of frame (n-4) to the end time of frame (n-3). Thereafter, the light reflectance gradually decreases from the start time of the frame (n-2) to the end time of the frame (n-1), and the white display state shifts to the gradation display state. In the frame (n), the display state (gradation display state) of the immediately preceding frame is maintained.
 図6に、上記のような電圧印加に対するフレームの階調変化のイメージを示す。このように、電圧波形S13として、例えばフレーム1~9に相当する期間T100に正極性の電圧を連続して印加したのち、フレーム10,11に相当する期間T101に負極性の電圧を連続して印加し、続いてフレーム12に相当する期間T102に0Vを、フレーム13に相当する期間T103に負極性の電圧をそれぞれ印加する。この場合、フレーム1~13に模式的に示したような階調変化を生じる。このように、フレーム単位でのパルス幅変調(PMW:Pulse Width Modulation)方式により、階調表示が可能である。 FIG. 6 shows an image of the gradation change of the frame with the voltage application as described above. As described above, as the voltage waveform S13, for example, a positive voltage is continuously applied in the period T100 corresponding to the frames 1 to 9, and then a negative voltage is continuously applied in the period T101 corresponding to the frames 10 and 11. Next, 0 V is applied in a period T102 corresponding to the frame 12, and a negative voltage is applied in a period T103 corresponding to the frame 13. In this case, gradation changes as schematically shown in the frames 1 to 13 occur. Thus, gradation display is possible by a pulse width modulation (PMW: Pulse : Width Modulation) method in units of frames.
 上記のように、表示体10A(電気泳動素子)を含む画素部1Aにおける画像表示または画像切り替えの際には、書き込み期間毎に、正極性電圧、負極性電圧および0Vなどを組み合わせた電圧波形を、表示体10Aの光学応答特性に応じて設定する。ここで説明した例では、正極性の電圧印加により、白表示状態に向かって表示を切り替え、負極性の電圧印加により、黒表示状態に向かって表示を切り替えることができる。 As described above, at the time of image display or image switching in the pixel portion 1A including the display body 10A (electrophoretic element), a voltage waveform combining a positive voltage, a negative voltage, 0 V, and the like is written for each writing period. And set according to the optical response characteristics of the display body 10A. In the example described here, the display can be switched toward the white display state by applying a positive voltage, and the display can be switched toward the black display state by applying a negative voltage.
 これらの正極性電圧および負極性電圧に加え、更に0Vの印加を組み合わせることで、より極め細やかな階調表示を実現できる。図7A~図7Dに、一例として、黒表示状態から、白表示状態または低階調状態への切り替えの際の電圧波形を示す。図7Aの例では、1書き込み期間Twの全フレーム(例えば500ms)において正極性電圧を印加している。このような電圧印加により、極限の黒表示状態(全黒表示状態)から極限の白表示状態(全白表示状態)へ切り替えることができる。図7Bの例では、1書き込み期間Twのうちの前半の期間Tw1において正極性電圧を印加し、その後の期間Tw2では0Vを印加している(例えば、Tw1<Tw2)。図7Cの例では、1書き込み期間Twのうちの間欠的なフレームにおいて正極性電圧を印加し、その他のフレームでは0Vを印加している(正極性電圧と0Vとを交互に繰り返し印加している)。図7Dの例では、1書き込み期間Twのうちの前半の期間Tw3において正極性電圧を印加し、その後の期間Tw4において負極性電圧を印加している(例えば、Tw3>Tw4)。これらの図7Bないし図7Dに示した例では、いずれも、全黒表示状態から低階調状態へ切り替えることができる。このように、階調表示のための印加電圧波形のパターンは複数あり、例示したものに限定されるものではない。 In addition to these positive voltage and negative voltage, a further fine gradation display can be realized by combining the application of 0V. 7A to 7D show voltage waveforms at the time of switching from the black display state to the white display state or the low gradation state as an example. In the example of FIG. 7A, the positive voltage is applied in all frames (for example, 500 ms) in one writing period Tw. By such voltage application, it is possible to switch from the extreme black display state (all black display state) to the extreme white display state (all white display state). In the example of FIG. 7B, a positive voltage is applied in the first half period Tw1 of one writing period Tw, and 0 V is applied in the subsequent period Tw2 (for example, Tw1 <Tw2). In the example of FIG. 7C, a positive voltage is applied in intermittent frames in one writing period Tw, and 0 V is applied in other frames (positive voltage and 0 V are alternately applied repeatedly). ). In the example of FIG. 7D, a positive voltage is applied in the first half period Tw3 of one writing period Tw, and a negative voltage is applied in the subsequent period Tw4 (for example, Tw3> Tw4). In any of the examples shown in FIGS. 7B to 7D, the all-black display state can be switched to the low gradation state. Thus, there are a plurality of patterns of applied voltage waveforms for gradation display, and the present invention is not limited to those illustrated.
 また、書き込み期間の最終フレームに0Vを印加することにより、以下のようなメリットがある。図8Aに、書き込み期間Twの最終フレームfENに0Vを印加する場合の電圧波形Sig(k),G(m)と、その印加電圧に対する表示体10Aの光学応答特性の波形L21とを示す。また、図8Bには、比較例として、書き込み期間Twの最終フレームfENに0Vを印加しない場合の電圧波形Sig(k),G(m)と、その印加電圧に対する表示体10Aの光学応答特性の波形L22とを示す。なお、図8Aおよび図8Bにおいて、画素10の容量素子(Cs)に保持された電圧チャージ分を斜線で示す。図8Bに示した比較例では、最終フレームfENにおいて、その直前のフレームで印加された電圧が容量素子Csに残る。このため、表示体10Aには電圧が印加され続けることとなり、光反射率が上昇し続ける。このため、所望の光反射率を得にくい。これに対し、図8Aに示したように、最終フレームfENに0Vを印加した場合、最終フレームfENでは、容量素子Csがディスチャージされ、その直前のフレーム終了時点での光反射率が維持される。このため、所望の光反射率を得易い。つまり、印加電圧×時間による階調制御が容易となる。このように、TFT素子を用いた電圧駆動では、書き込み期間Twの最終フレームにおいて0Vを印加することが望ましい。 Further, by applying 0 V to the last frame of the writing period, there are the following merits. Figure 8A, showing the voltage waveform in the case where 0V is applied to the last frame f EN the write period Tw Sig (k), and G (m), and a waveform L21 of the optical response characteristic of the display 10A for the applied voltage. Further, FIG. 8B, as a comparative example, the voltage waveform Sig when no 0V is applied to the last frame f EN the write period Tw (k), and G (m), the optical response characteristics of the display body 10A for the applied voltage The waveform L22 is shown. 8A and 8B, the voltage charge held in the capacitor (Cs) of the pixel 10 is indicated by hatching. In the comparative example shown in FIG. 8B, in the final frame fEN , the voltage applied in the immediately preceding frame remains in the capacitive element Cs. For this reason, a voltage is continuously applied to the display body 10A, and the light reflectance continues to increase. For this reason, it is difficult to obtain a desired light reflectance. In contrast, as shown in Figure 8A, when 0V is applied to the last frame f EN, the last frame f EN, is discharged the capacitor Cs, the light reflection factor in the frame end time of the immediately preceding is maintained The For this reason, it is easy to obtain a desired light reflectance. That is, gradation control by applied voltage × time is facilitated. Thus, in voltage driving using a TFT element, it is desirable to apply 0 V in the last frame of the writing period Tw.
 ここで、上述したようなフレーム単位の駆動では、1フレーム期間Vに相当する垂直期間が各画素10への電圧印加期間となっている。例えば、50Hzのフレーム周波数で駆動する場合、走査信号パルスにおけるパルス幅(オン期間の幅)は20msの単位で変更することとなる。このため、使用可能なパルス幅は、20ms,40ms,60ms,…となり、20ms以上となる。このため、例えば正電圧と負電圧を1フレーム毎に交互に繰り返す様な駆動を行った場合に、電気泳動素子は明暗表示を交互に繰り返す挙動を示す。1フレーム期間は数十msの時間に相当するため、視覚的にはちらつき(フリッカ)として認識され、表示品位を損なうことがある。あるいは、フレーム周波数を大きくする(フレームレートを高くする)ことで、1フレーム期間Vを短縮することが可能であるが、フレーム周波数を大きくする設計変更は、例えば表示用信号生成部212bおよび走査線駆動回路110に用いられる論理回路においてクロック周波数の変更を伴う。これは、消費電力の増大につながる。 Here, in the drive in units of frames as described above, a vertical period corresponding to one frame period V is a voltage application period to each pixel 10. For example, when driving at a frame frequency of 50 Hz, the pulse width (on period width) of the scanning signal pulse is changed in units of 20 ms. Therefore, usable pulse widths are 20 ms, 40 ms, 60 ms,... For this reason, for example, when driving is performed such that the positive voltage and the negative voltage are alternately repeated every frame, the electrophoretic element exhibits a behavior of alternately repeating the light and dark display. Since one frame period corresponds to a time of several tens of ms, it is visually recognized as flicker, and the display quality may be impaired. Alternatively, it is possible to shorten one frame period V by increasing the frame frequency (increasing the frame rate), but the design change to increase the frame frequency includes, for example, the display signal generation unit 212b and the scanning line. In the logic circuit used for the driving circuit 110, the clock frequency is changed. This leads to an increase in power consumption.
 そこで、本実施の形態では、走査線駆動回路110が、複数の走査線群(走査線群GLgrp)毎に、線順次駆動(線順次走査)を行う機能を有する。具体的には、走査線駆動回路110は、全走査線GLをn分割してなる複数の走査線群GLgrpのそれぞれの先頭ライン(1番上のライン)の走査線GLに対し、走査開始信号Gstを印加し、該先頭ライン以下のラインの走査線GLを順次走査するようになっている。 Therefore, in the present embodiment, the scanning line driving circuit 110 has a function of performing line sequential driving (line sequential scanning) for each of a plurality of scanning line groups (scanning line group GLGrp). Specifically, the scanning line driving circuit 110 scans a scanning start signal for the scanning line GL of the first line (uppermost line) of each of a plurality of scanning line groups GLgrp formed by dividing all the scanning lines GL into n. Gst is applied to sequentially scan the scanning lines GL below the first line.
(全走査線GLの線順次駆動)
 まず、図1および図9を参照して、通常の全走査線GLにおける線順次駆動動作について説明する。この駆動は、上述のフレーム単位での電圧駆動(「第1のフレーム期間」における線順次駆動)に相当するものである。この例では、全走査線数(有効走査線数)を720本、分割数nを2としている。全走査線GLを2分割してなる2つの走査線群GLgrp1,GLgrp2のそれぞれにおいて線順次駆動がなされる。図9において、Sig(k)は、第kライン(第k列)(kは整数)の信号線DLに印加される電圧波形(映像信号パルス)を、G(1),G(2),…,G(720)は、第1ラインから第720ラインの走査線GLに印加される電圧波形(走査信号パルス)を、それぞれ示している。また、Pix(1),Pix(2),…,Pix(720)は、第kラインの信号線DLと、第1ラインから第720ラインの走査線GLとの各交点に配置された画素10に保持される電圧を表している。簡便化のため、1フレーム期間Vとして、上述の有効表示期間VACに相当する期間のみを示している。
(Line-sequential driving of all scanning lines GL)
First, with reference to FIG. 1 and FIG. 9, the line-sequential driving operation in the normal all scanning lines GL will be described. This driving corresponds to the above-described voltage driving in units of frames (line sequential driving in the “first frame period”). In this example, the total number of scanning lines (the number of effective scanning lines) is 720, and the division number n is 2. Line-sequential driving is performed in each of two scanning line groups GLgrp1 and GLgrp2 formed by dividing all scanning lines GL into two. In FIG. 9, Sig (k) is a voltage waveform (video signal pulse) applied to the signal line DL of the kth line (kth column) (k is an integer), G (1), G (2), .., G (720) indicate voltage waveforms (scanning signal pulses) applied to the scanning lines GL from the first line to the 720th line, respectively. In addition, Pix (1), Pix (2),..., Pix (720) are pixels 10 arranged at intersections of the signal line DL of the kth line and the scanning lines GL of the first line to the 720th line. Represents the voltage held in the. For simplicity, only one period corresponding to the above-described effective display period V AC is shown as one frame period V.
 具体的には、走査線駆動回路110は、時間t11において、走査線群GLgrp1のうちの先頭ラインである第1ラインの走査線GL1に対し、走査開始信号Gst1を印加する。これにより、同刻の時間t11において、第1ラインの走査線GL1には、オン電位が印加される。この走査開始信号Gst1の印加後は、第2ライン以降(第2ラインから第360ライン)の走査線GLに対して、順次オン電位が印加される。 Specifically, the scanning line drive circuit 110 at time t11, to the scanning lines GL 1 of the first line is the first line of the scanning line groups GLgrp1, applying a scan start signal GST1. Thus, at time t11 the same time, the scanning lines GL 1 of the first line, the ON potential is applied. After the application of the scanning start signal Gst1, the ON potential is sequentially applied to the scanning lines GL after the second line (from the second line to the 360th line).
 続いて、走査線駆動回路110は、第360ラインの走査線GL360にオン電位を印加した直後の時間t12において、走査線群GLgrp2のうちの先頭ラインである第361ラインの走査線GL361に対し、走査開始信号Gst361を印加する。これにより、同刻の時間t12において、第361ラインの走査線GL361には、オン電位が印加される。この走査開始信号Gst361の印加後は、第362ライン以降(第362ラインから第720ライン)の走査線GLに対して、順次オン電位が印加される。 Subsequently, the scanning line driving circuit 110 applies the scanning line GL 361 of the 361st line, which is the first line in the scanning line group GLgrp2, at time t12 immediately after the ON potential is applied to the scanning line GL 360 of the 360th line. On the other hand, the scanning start signal Gst361 is applied. As a result, at the same time t12, the ON potential is applied to the scanning line GL 361 of the 361st line. After the application of the scanning start signal Gst361, the ON potential is sequentially applied to the scanning lines GL from the 362rd line onward (from the 362rd line to the 720th line).
 一方、信号線駆動回路120は、第kラインの信号線DLに対し、全ての走査線GLの走査が終了するまでの期間(時間t11から時間t13までの期間:期間Th)、一定の信号電位を印加する。これにより、1フレーム期間Vに相当する期間Thにおいて、各画素10に信号電位が印加され、この印加電圧が保持される。フレーム周波数が50Hzである場合、この期間Thは20msである。つまり、この例では、1フレーム期間V(期間Th)が、電圧駆動の単位期間となっている。 On the other hand, the signal line driver circuit 120 has a constant signal potential for a period until the scanning of all the scanning lines GL with respect to the signal line DL of the k-th line ends (period from time t11 to time t13: period Th). Apply. As a result, in the period Th corresponding to one frame period V, the signal potential is applied to each pixel 10 and this applied voltage is held. When the frame frequency is 50 Hz, this period Th is 20 ms. That is, in this example, one frame period V (period Th) is a unit period for voltage driving.
(走査線群毎の線順次駆動)
 次に、図1および図10を参照して、走査線群GLgrp毎の線順次駆動動作について説明する。この駆動は、例えば上述のフレーム単位での電圧駆動に替えて行われてもよいし、上述のフレーム単位での駆動と併用して行われてもよい。図10では、一部のフレーム期間V(第2のフレーム期間)において、走査線群GLgrp毎の線順次駆動が行われる例を示している。この例においても、全走査線数(有効走査線数)を720本、分割数nを2としている。また、Sig(k)は、第kライン(第k列)の信号線DLに印加される電圧波形(映像信号パルス)を、G(1),G(2),…,G(720)は、第1ラインから第720ラインの走査線GLに印加される電圧波形(走査信号パルス)を、それぞれ示している。また、Pix(1),Pix(2),…,Pix(720)は、第kラインの信号線DLと、第1ラインから第720ラインの走査線GLとの各交点に配置された画素10に保持される電圧を表している。簡便化のため、1フレーム期間Vとしては、上述の有効表示期間VACのみを示している。
(Line sequential drive for each scanning line group)
Next, the line-sequential driving operation for each scanning line group GLgrp will be described with reference to FIGS. This driving may be performed instead of the voltage driving in units of frames described above, for example, or may be performed in combination with the driving in units of frames described above. FIG. 10 illustrates an example in which line-sequential driving is performed for each scanning line group GLgrp in a part of the frame period V (second frame period). Also in this example, the total number of scanning lines (the number of effective scanning lines) is 720, and the division number n is 2. Sig (k) is a voltage waveform (video signal pulse) applied to the signal line DL of the kth line (kth column), G (1), G (2),..., G (720) The voltage waveforms (scanning signal pulses) applied to the scanning lines GL from the first line to the 720th line are respectively shown. In addition, Pix (1), Pix (2),..., Pix (720) are pixels 10 arranged at intersections of the signal line DL of the kth line and the scanning lines GL of the first line to the 720th line. Represents the voltage held in the. For simplification, only the above-described effective display period V AC is shown as one frame period V.
 具体的には、走査線駆動回路110は、任意の時間t21において、走査線群GLgrp1のうちの先頭ラインである第1ラインの走査線GL1に対し、走査開始信号Gst1を印加する。これにより、同刻の時間t11において、第1ラインの走査線GL1には、オン電位が印加される。この走査開始信号Gst1の印加後は、第2ライン以降(第2ラインから第360ライン)の走査線GLに対して、順次オン電位が印加される。 Specifically, the scanning line driver circuit 110, at any time t21, to the scanning lines GL 1 of the first line is the first line of the scanning line groups GLgrp1, applies a scanning start signal GST1. Thus, at time t11 the same time, the scanning lines GL 1 of the first line, the ON potential is applied. After the application of the scanning start signal Gst1, the ON potential is sequentially applied to the scanning lines GL after the second line (from the second line to the 360th line).
 このとき、走査線駆動回路110は、第1ラインの走査線GL1への走査開始信号Gst1の印加タイミングに同期して(時間t21において)、走査線群GLgrp2のうちの先頭ラインである第361ラインの走査線GL361に対し、走査開始信号Gst361を印加する。これにより、同刻の時間t21において、第361ラインの走査線GL361には、オン電位が印加される。この走査開始信号Gst361の印加後は、第362ライン以降(第362ラインから第720ライン)の走査線GLに対して、順次オン電位が印加される。 In this case, the scanning line driving circuit 110, in synchronization with the application timing of the scanning start signal Gst1 to the scanning lines GL 1 of the first line (at time t21), a first line of the scanning line group GLgrp2 # 361 A scanning start signal Gst 361 is applied to the scanning line GL 361 of the line. Thus, an ON potential is applied to the scanning line GL 361 of the 361st line at the same time t21. After the application of the scanning start signal Gst361, the ON potential is sequentially applied to the scanning lines GL from the 362rd line onward (from the 362rd line to the 720th line).
 上記駆動により、走査線群GLgrp1では、第1ラインから第360ラインまでの計360ライン分の走査線GLが順次走査され、時間t22に終了する。また、走査線群GLgrp2では、第361ラインから第720ラインまでの計360ライン分の走査線GLが順次走査され、時間t22に終了する。つまり、走査線群GLgrp毎の線順次駆動により、全走査線GLを走査するために要する期間は、1フレーム期間V(期間Th)の半分(前半部分)の期間(Th1)となる。 By the above driving, in the scanning line group GLgrp1, scanning lines GL for a total of 360 lines from the first line to the 360th line are sequentially scanned, and the process ends at time t22. In the scanning line group GLgrp2, scanning lines GL for a total of 360 lines from the 361st line to the 720th line are sequentially scanned, and the process ends at time t22. That is, the period required to scan all the scanning lines GL by line-sequential driving for each scanning line group GLgrp is a period (Th1) that is half (the first half part) of one frame period V (period Th).
 この期間Th1(第1の単位期間)では、信号線駆動回路120は、例えば、信号線DLに対して表示用の信号電圧Vsigを印加する。 In this period Th1 (first unit period), the signal line drive circuit 120 applies a display signal voltage Vsig to the signal line DL, for example.
 この後(時間t22において)、走査線駆動回路110は、上記と同様にして、走査線群GLgrp1の第1ラインの走査線GL1に対し、走査開始信号Gst1を印加する。これにより、第1ラインから第360ラインの走査線GLに対して、順次オン電位が印加される。また、この時間t22には、走査線駆動回路110は、走査線群GLgrp2の第361ラインの走査線GL361に対し、走査開始信号Gst361を印加する。これにより、第361ラインから第720ラインの走査線GLに対して、順次オン電位が印加される。 Thereafter (at time t22), the scanning line driving circuit 110, in the same manner as described above, to the scanning lines GL 1 of the first line of scanning line group GLgrp1, applies a scanning start signal GST1. As a result, the ON potential is sequentially applied from the first line to the 360-th scanning line GL. Also, this time t22, the scanning line drive circuit 110, to the scanning lines GL 361 of the 361 lines of the scanning line groups GLgrp2, applies a scanning start signal Gst361. As a result, the ON potential is sequentially applied to the scanning lines GL from the 361st line to the 720th line.
 上記駆動により、走査線群GLgrp1では、第1ラインから第360ラインまでの計360ライン分の走査線GLが順次走査され、時間t23に終了する。また、走査線群GLgrp2では、第361ラインから第720ラインまでの計360ライン分の走査線GLが順次走査され、時間t23に終了する。このように、走査線群GLgrp毎の線順次駆動により、1フレーム期間V(期間Th)の後半部分の期間(Th2)においても電圧を印加することが可能となる。 By the above driving, in the scanning line group GLgrp1, scanning lines GL for a total of 360 lines from the first line to the 360th line are sequentially scanned, and the process ends at time t23. In the scanning line group GLgrp2, scanning lines GL for a total of 360 lines from the 361st line to the 720th line are sequentially scanned, and the process ends at time t23. As described above, the line sequential driving for each scanning line group GLgrp makes it possible to apply a voltage even in the second half period (Th2) of one frame period V (period Th).
 この期間Th2(第2の単位期間)では、信号線駆動回路120は、信号線DLに対して表示用とは異なる電圧(例えば、後述の補正用の電圧Vcrt)を印加することができる。 In this period Th2 (second unit period), the signal line driving circuit 120 can apply a voltage (for example, a correction voltage Vcrt to be described later) different from that for display to the signal line DL.
 このように、1フレーム期間V(期間Th)よりも短い期間(期間Th1,Th2)単位で、各画素10に電圧を印加することが可能となる。フレーム周波数が50Hzである場合、期間Th1,Th2は20/2=10msである。つまり、この例では、フレーム周波数を上げる(フレームレートを高める)ことなく、1フレーム期間Vよりも短い期間単位で、電圧駆動が可能となる。また、1フレーム期間Vには、各走査線GLに対し、走査信号(走査信号パルス)を1回または複数回(ここでは2回)印加することができる。 Thus, it becomes possible to apply a voltage to each pixel 10 in units of periods (periods Th1, Th2) shorter than one frame period V (period Th). When the frame frequency is 50 Hz, the periods Th1 and Th2 are 20/2 = 10 ms. That is, in this example, voltage driving can be performed in units of periods shorter than one frame period V without increasing the frame frequency (increasing the frame rate). In one frame period V, a scanning signal (scanning signal pulse) can be applied to each scanning line GL once or a plurality of times (here, twice).
[効果]
 以上のように本実施の形態では、電気泳動素子を含む各画素10を電圧駆動する際に、1フレーム期間Vのうちの有効表示期間VACにおいて、1フレーム期間Vよりも短い期間Th1,Th2単位で電圧駆動を行うことができる。フレーム周波数(フレームレート)を上げることなく、任意のタイミングおよびパルス幅で(所望の電圧波形パターンを用いて)各画素に電圧を印加することが可能となる。換言すると、見かけ上、フレーム周波数が大きくなり、より極め細やかな電圧駆動を行うことができる。よって、消費電力の増大を抑制しつつ、表示品位を向上させることが可能となる。
[effect]
As described above, in the present embodiment, when each pixel 10 including the electrophoretic element is voltage-driven, in the effective display period V AC in one frame period V, periods Th1 and Th2 shorter than one frame period V. Voltage drive can be performed in units. A voltage can be applied to each pixel at any timing and pulse width (using a desired voltage waveform pattern) without increasing the frame frequency (frame rate). In other words, the frame frequency is apparently increased, and more fine voltage drive can be performed. Therefore, it is possible to improve display quality while suppressing an increase in power consumption.
 例えば、一般的な数十msのフレーム単位の電圧駆動でなく、1フレーム期間Vよりも短い、数msの期間単位での電圧駆動が可能となる。このパルスの時間幅は自由に可変することができる。 For example, voltage driving in units of several ms, which is shorter than one frame period V, is possible instead of voltage driving in units of several tens of ms. The time width of this pulse can be varied freely.
 また、正電圧と負電圧を交互に複数回印加するような駆動を行う場合には、1フレーム期間V未満の期間単位で電圧印加を可能にする事で、ちらつき(フリッカ)の発生を抑制することができる。 In addition, when driving such that a positive voltage and a negative voltage are alternately applied a plurality of times, the occurrence of flicker is suppressed by enabling voltage application in units of less than one frame period V. be able to.
 次に、上記第1の実施の形態の変形例について説明する。以下では、上記第1の実施の形態と同様の構成要素については同一の符号を付し、適宜説明を省略する。 Next, a modification of the first embodiment will be described. In the following, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
<変形例1>
 図11は、変形例1に係る表示装置の駆動動作(走査線分割駆動動作)を説明するためのタイミング図である。上記第1の実施の形態では、全走査線GLの分割数nを2とし、2つの走査線群GLgrp1,GLgrp2のそれぞれにおいて線順次駆動を行う例を示したが、分割数nは2に限定されず、3以上であってもよい。本変形例では、n=4の場合の 一例を示す。
<Modification 1>
FIG. 11 is a timing chart for explaining the drive operation (scan line division drive operation) of the display device according to the first modification. In the first embodiment, the example in which the division number n of all the scanning lines GL is set to 2 and line-sequential driving is performed in each of the two scanning line groups GLgrp1 and GLgrp2 is shown. However, the division number n is limited to two. It may be 3 or more. In this modification, an example in the case of n = 4 is shown.
 本変形例においても、上記第1の実施の形態と同様、全走査線数(有効走査線数)は720本としている。また、Sig(k)は、第kライン(第k列)の信号線DLに印加される電圧波形(映像信号パルス)を、G(1),…,G(720)は、第1ラインから第720ラインの走査線GLに印加される電圧波形(走査信号パルス)を、それぞれ示している。また、Pix(1),…,Pix(720)は、第kラインの信号線DLと、第1ラインから第720ラインの走査線GLとの各交点に配置された画素10に保持される電圧を表している。簡便化のため、1フレーム期間Vとしては、上述の有効表示期間VACのみを示している。 Also in this modification, the total number of scanning lines (the number of effective scanning lines) is 720, as in the first embodiment. Sig (k) is a voltage waveform (video signal pulse) applied to the signal line DL of the kth line (kth column), and G (1),..., G (720) are from the first line. A voltage waveform (scanning signal pulse) applied to the scanning line GL of the 720th line is shown. Pix (1),..., Pix (720) is a voltage held in the pixel 10 arranged at each intersection of the signal line DL of the kth line and the scanning line GL of the first line to the 720th line. Represents. For simplification, only the above-described effective display period V AC is shown as one frame period V.
 但し、本変形例では、全走査線GLの4分割により、計4つの走査線群GLgrp1,GLgrp2,GLgrp3,GLgrp4に対して、それぞれ線順次駆動が行われる。走査線群GLgrp1,GLgrp2,GLgrp3,GLgrp4のそれぞれは、計180(720/4=180)ライン分の走査線GLから構成される。各走査線群GLgrp1,GLgrp2,GLgrp3,GLgrp4の先頭ライン(第1ライン、第181ライン、第361ラインおよび第541ライン)の走査線GLには、走査開始信号(Gst1,Gst181,Gst361,Gst541)を同期して印加することが可能となっている。 However, in this modification, line-sequential driving is performed for each of the four scanning line groups GLgrp1, GLgrp2, GLgrp3, and GLgrp4 by dividing the entire scanning line GL into four. Each of the scanning line groups GLgrp1, GLgrp2, GLgrp3, and GLgrp4 is composed of a total of 180 (720/4 = 180) scanning lines GL. A scanning start signal (Gst1, Gst181, Gst361, Gst541) is applied to the scanning line GL of the first line (first line, 181st line, 361st line, and 541st line) of each scanning line group GLgrp1, GLgrp2, GLgrp3, GLgrp4. Can be applied synchronously.
 上記第1の実施の形態と同様にして、走査線群GLgrp1では、第1ラインから第180ラインまでの計180ラインの走査線GLが順次走査される。同様に、走査線群GLgrp2では、第181ラインから第360ラインまでの計180ラインの走査線GLが順次走査される。同様に、走査線群GLgrp3では、第361ラインから第540ラインまでの計180ラインの走査線GLが順次走査される。同様に、走査線群GLgrp4では、第541ラインから第720ラインまでの計180ラインの走査線GLが順次走査される。つまり、走査線群GLgrp毎の線順次駆動により、全走査線GLを走査するために要する期間は、1フレーム期間V(期間Th)の1/4の期間(Th1~Th4)となる。このため、50Hzのフレーム周波数での駆動の場合、5ms(20/4=5)の期間(期間Th1~Th4)単位での電圧駆動が可能となる。 In the same manner as in the first embodiment, in the scanning line group GLgrp1, a total of 180 scanning lines GL from the first line to the 180th line are sequentially scanned. Similarly, in the scanning line group GLgrp2, a total of 180 scanning lines GL from the 181st line to the 360th line are sequentially scanned. Similarly, in the scanning line group GLgrp3, a total of 180 scanning lines GL from the 361st line to the 540th line are sequentially scanned. Similarly, in the scanning line group GLgrp4, a total of 180 scanning lines GL from the 541st line to the 720th line are sequentially scanned. That is, the period required to scan all the scanning lines GL by line-sequential driving for each scanning line group GLgrp is a period (Th1 to Th4) that is ¼ of one frame period V (period Th). Therefore, in the case of driving at a frame frequency of 50 Hz, voltage driving can be performed in units of 5 ms (20/4 = 5) periods (periods Th1 to Th4).
 信号線駆動回路120は、期間Th1~Th4の少なくとも1つの期間(例えば期間Th1)において表示用の信号電圧(Vsig)を印加し、他の任意の期間には、例えば後述する補正用の電圧(Vcrt)を印加することができる。 The signal line driver circuit 120 applies a display signal voltage (Vsig) in at least one period (for example, the period Th1) of the periods Th1 to Th4, and in other arbitrary periods, for example, a correction voltage (described later) Vcrt) can be applied.
 このように、本変形例においても、1フレーム期間Vよりも短い期間(期間Th1~Th4)単位で、各画素10に電圧を印加することが可能となる。よって、上記第1の実施の形態と同等の効果を得ることができる。また、分割数nを増やす(走査線群GLgrpの数を増やす)ことで、より極め細やかなタイミングでの電圧制御が可能となり、表示品位を向上させるための駆動を実現し易い。 As described above, also in this modification, it is possible to apply a voltage to each pixel 10 in units of periods (periods Th1 to Th4) shorter than one frame period V. Therefore, an effect equivalent to that of the first embodiment can be obtained. Further, by increasing the number of divisions n (increasing the number of scanning line groups GLGrp), voltage control can be performed at finer timing, and driving for improving display quality can be easily realized.
<変形例2>
 図12は、変形例2に係る表示装置の要部構成を表したものである。上記第1の実施の形態では、1つの走査線駆動回路110が、全走査線GLのうちの2以上の指定したラインの走査線GLに対し、走査開始信号(ゲートスタートパルス)を印加できる回路機能(IC)を含み、これにより走査線群GLgrp毎の線順次駆動を行う場合について説明した。しかしながら、このような構成に限定されず、例えば、本変形例のように、複数(ここでは2つ)の走査線駆動回路110A,110Bを設け、これらの走査線駆動回路110A,110Bがそれぞれ、走査線群GLgrpに接続されていてもよい。
<Modification 2>
FIG. 12 illustrates a main configuration of a display device according to the second modification. In the first embodiment, a circuit in which one scanning line driving circuit 110 can apply a scanning start signal (gate start pulse) to the scanning lines GL of two or more designated lines among all the scanning lines GL. The case where the line sequential driving for each scanning line group GLgrp is performed by including the function (IC) has been described. However, the present invention is not limited to such a configuration. For example, as in the present modification, a plurality of (here, two) scanning line driving circuits 110A and 110B are provided, and these scanning line driving circuits 110A and 110B are respectively provided. It may be connected to the scanning line group GLgrp.
 具体的には、走査線駆動回路110Aは、走査線群GLgrp1に、走査線駆動回路110Bは、走査線群GLgrp2にそれぞれ接続されている。画素部1Aのうちの領域A1が、走査線群GLgrp1を用いて駆動され、領域A2が、走査線群GLgrp2を用いて駆動される。 Specifically, the scanning line driving circuit 110A is connected to the scanning line group GLgrp1, and the scanning line driving circuit 110B is connected to the scanning line group GLgrp2. The area A1 in the pixel portion 1A is driven using the scanning line group GLgrp1, and the area A2 is driven using the scanning line group GLgrp2.
 このような構成の場合にも、走査線群GLgrp毎の線順次駆動動作が可能であり、上記第1の実施の形態と同等の効果を得ることができる。 Even in such a configuration, a line-sequential driving operation for each scanning line group GLgrp is possible, and an effect equivalent to that of the first embodiment can be obtained.
<第2の実施の形態>
 図13は、本開示の第2の実施形態の表示装置の駆動動作を説明するためのタイミング図である。本実施の形態の表示装置は、上記第1の実施の形態の表示装置1と同様、電気泳動現象を利用して画像を表示する電気泳動型の表示装置であり、いわゆる電子ペーパーディスプレイである。また、例えばTFTを用いたアクティブマトリクス駆動方式によって表示駆動される複数の画素10(画素部1A)を有している。これらの複数の画素10は、表示体10A(電気泳動素子)を含み、表示体10Aの光反射率を画素10毎に変化させることで、文字や画像の表示を行うようになっている。画素部1Aは、走査線駆動回路110および信号線駆動回路120に接続されている。画素部1Aには、走査線駆動回路110の出力端と各画素10とを接続すると共に行方向に沿って延在する複数の走査線GLと、信号線駆動回路120の出力端と各画素10とを接続すると共に列方向に沿って延在する複数の信号線DLとが配置されている。これらの複数の走査線GLと複数の信号線DLとの各交点に、画素10が形成されている。
<Second Embodiment>
FIG. 13 is a timing chart for explaining the driving operation of the display device according to the second embodiment of the present disclosure. Similar to the display device 1 of the first embodiment, the display device of the present embodiment is an electrophoretic display device that displays an image using an electrophoretic phenomenon, and is a so-called electronic paper display. In addition, for example, the pixel 10 (pixel unit 1A) is driven and displayed by an active matrix driving method using TFTs. The plurality of pixels 10 include a display body 10A (electrophoretic element), and display characters and images by changing the light reflectance of the display body 10A for each pixel 10. The pixel portion 1A is connected to the scanning line driving circuit 110 and the signal line driving circuit 120. In the pixel portion 1A, the output end of the scanning line driving circuit 110 and each pixel 10 are connected, and a plurality of scanning lines GL extending along the row direction, the output end of the signal line driving circuit 120, and each pixel 10 are connected. And a plurality of signal lines DL extending in the column direction are arranged. A pixel 10 is formed at each intersection of the plurality of scanning lines GL and the plurality of signal lines DL.
 図13では、一部のフレーム期間Vにおいて、表示用の電圧に加え、他の電圧(例えば、補正用の電圧)を印加する例を示している。この例においても、Sig(k)は、第kライン(第k列)の信号線DLに印加される電圧波形(映像信号パルス)を、G(1),G(2)は、第1ラインおよび第2ラインの走査線GLに印加される電圧波形(走査信号パルス)を、それぞれ示している。また、Pix1(k)は、第kラインの信号線DLと、第1ラインの走査線GLとの交点に配置された画素10に印加される電圧波形を表している。簡便化のため、1フレーム期間Vとしては、上述の有効表示期間VACのみを示している。 FIG. 13 shows an example in which, in some frame periods V, another voltage (for example, a correction voltage) is applied in addition to the display voltage. Also in this example, Sig (k) is a voltage waveform (video signal pulse) applied to the signal line DL of the kth line (kth column), and G (1) and G (2) are the first line. The voltage waveform (scanning signal pulse) applied to the scanning line GL of the second line is shown. Pix1 (k) represents a voltage waveform applied to the pixel 10 arranged at the intersection of the signal line DL of the kth line and the scanning line GL of the first line. For simplification, only the above-described effective display period V AC is shown as one frame period V.
 本実施の形態では、走査線駆動回路110が、走査信号パルスにおけるオン期間b1のうちの一部に相当する第1のオン期間b11を例えば表示用に割り当てて、各画素10を駆動するようになっている。走査線駆動回路110は、また、オン期間b1のうちの第1のオン期間b11とは異なる第2のオン期間b12を例えば補正用に割り当てて各画素10を駆動するようになっている。第1のオン期間b11は、オン期間b1のうちの前半部分に相当し、第2のオン期間b12は、オン期間b1のうちの後半部分に相当する。換言すると、第1のオン期間b11は、オン期間b1のうちの前半の位相を用いたものであり、第2のオン期間b12は、オン期間b1のうちの後半の位相を用いたものである。但し、オン期間b1は、3以上の期間に分割されていてもよいし、分割された各期間の長さ(分割比)が異なっていてもよい。 In the present embodiment, the scanning line driving circuit 110 allocates a first on period b11 corresponding to a part of the on period b1 in the scanning signal pulse, for example, for display, and drives each pixel 10. It has become. The scanning line driving circuit 110 also drives each pixel 10 by assigning, for example, a second on period b12 different from the first on period b11 in the on period b1 for correction. The first on period b11 corresponds to the first half of the on period b1, and the second on period b12 corresponds to the second half of the on period b1. In other words, the first on-period b11 uses the first half phase of the on-period b1, and the second on-period b12 uses the second half phase of the on-period b1. . However, the ON period b1 may be divided into three or more periods, and the lengths (division ratios) of the divided periods may be different.
 信号線駆動回路120は、各画素10に対し、第1のオン期間b11には、例えば表示用の信号電圧(Vsig)を印加すると共に、第2のオン期間b12には、例えば補正用の電圧(Vcrt)を印加するようになっている。このように、信号線駆動回路120は、第1のオン期間b11および第2のオン期間b12にそれぞれ対応した電圧を印加可能な電圧波形S31を有している。補正用の電圧Vcrtは、任意の電圧とすることができるが、例えば、表示用の電圧Vsigとは逆極性の電圧とされる。 The signal line driving circuit 120 applies, for example, a display signal voltage (Vsig) to each pixel 10 in the first on period b11, and in the second on period b12, for example, a correction voltage. (Vcrt) is applied. As described above, the signal line driver circuit 120 has the voltage waveform S31 to which a voltage corresponding to each of the first on period b11 and the second on period b12 can be applied. The correction voltage Vcrt can be an arbitrary voltage, for example, a voltage having a polarity opposite to that of the display voltage Vsig.
(駆動方法)
 まず、図14を参照して、一般的な駆動動作について説明する。図14は、本実施の形態の比較例に係る駆動動作を説明するタイミング図である。この比較例では、第1ラインの走査線GLに印加される走査信号パルスG(1)では、1フレーム期間Vの中で1度だけHighレベルになり(オン電位となり)、それ以外はLowレベルとなっている(オフ電位となっている)。オン電位となる期間(オン期間b1)に画素10内のTFTが導通し、そのときに信号線DLに印加されている信号電圧が各画素10へと伝達される(Pix1(k))。この例では、黒表示のための信号電圧(図14の黒色の部分に相当)が、各画素10に印加される。この印加電圧によって電気泳動素子は光学変化を起こし、図14の最下段に示したような光学応答を示す。ここでは、黒表示信号が入ったことで光学応答レベルが低下する様子を表している。一方、第2,第3,第4ラインの走査線GLに印加される走査信号パルスにおけるオン期間b1では、黒表示から白表示へ移行するための信号(図14の白色に近い部分に相当)が各画素10に印加され、電気泳動素子の光学応答レベルは上昇している。
(Driving method)
First, a general driving operation will be described with reference to FIG. FIG. 14 is a timing diagram illustrating a driving operation according to a comparative example of the present embodiment. In this comparative example, the scanning signal pulse G (1) applied to the scanning line GL of the first line becomes high level (on potential) only once in one frame period V, and the rest is low level. (Off-potential). The TFT in the pixel 10 is turned on during the on potential period (on period b1), and the signal voltage applied to the signal line DL at that time is transmitted to each pixel 10 (Pix1 (k)). In this example, a signal voltage for black display (corresponding to the black portion in FIG. 14) is applied to each pixel 10. The electrophoretic element undergoes an optical change by this applied voltage, and exhibits an optical response as shown in the bottom of FIG. Here, a state in which the optical response level is lowered due to the black display signal being input is shown. On the other hand, in the on period b1 in the scanning signal pulse applied to the scanning lines GL of the second, third, and fourth lines, a signal for shifting from black display to white display (corresponding to a portion close to white in FIG. 14). Is applied to each pixel 10, and the optical response level of the electrophoretic element is increased.
 電気泳動表示素子の光学応答においては、一定電圧を長時間印加するのに比べ、途中に反転した電圧を数回加えることで、応答速度を向上させる、あるいは、より極限に近い光学状態へ遷移し易くなる、等のメリットがある。しかしながら、TFTを用いた電圧駆動では、上述のように、フレーム周波数によって規定される1フレーム期間Vが、電圧印加の単位期間となる。上述したように、フレーム周波数を大きくする(フレームレートを高くする)ことで、1フレーム期間Vを短縮することが可能であるが、フレーム周波数を大きくする設計変更は、例えば走査線駆動回路110に用いられる論理回路においてクロック周波数の変更を伴う。これは、消費電力の増大につながる。 In the optical response of the electrophoretic display element, compared to applying a constant voltage for a long time, applying a reversed voltage several times in the middle improves the response speed or makes a transition to a more extreme optical state. There are advantages such as being easy. However, in voltage driving using TFTs, as described above, one frame period V defined by the frame frequency is a unit period for voltage application. As described above, it is possible to shorten one frame period V by increasing the frame frequency (increasing the frame rate). However, a design change that increases the frame frequency can be applied to, for example, the scanning line driving circuit 110. This involves changing the clock frequency in the logic circuit used. This leads to an increase in power consumption.
 そこで、本実施の形態では、図13に示したように、走査線駆動回路110が、通常のオン期間b1の約半分(前半)の第1のオン期間b11において、各画素10に信号電圧Vsigを印加する。このようにパルス幅は短くなるものの、その時間で十分にトランジスタを動作させることができれば、上記比較例の場合と同じく黒表示のための信号電圧Vsigが画素10に印加される。図13においても、比較例と同様、黒表示信号の書き込みにより光学応答レベルが低下している。また、第2,第3,第4ラインの走査線GLに印加される走査信号パルスにおける第1のオン期間b11では、黒表示から白表示へ移行するための信号が各画素10に印加され、電気泳動素子の光学応答レベルは上昇している。 Therefore, in the present embodiment, as shown in FIG. 13, the scanning line driving circuit 110 applies the signal voltage Vsig to each pixel 10 in the first on-period b11 that is about half (first half) of the normal on-period b1. Apply. Although the pulse width is shortened in this way, the signal voltage Vsig for black display is applied to the pixel 10 as in the case of the comparative example if the transistor can be sufficiently operated within that time. In FIG. 13, as in the comparative example, the optical response level is lowered by writing the black display signal. In the first on period b11 in the scanning signal pulse applied to the scanning lines GL of the second, third and fourth lines, a signal for shifting from black display to white display is applied to each pixel 10, The optical response level of the electrophoretic element is increasing.
 このように、画素部1Aに接続する走査線GLを複雑にすることなく、光学特性を向上させることを可能とする。 Thus, it is possible to improve the optical characteristics without complicating the scanning line GL connected to the pixel portion 1A.
 一方、ある選択的なフレーム期間Vでは、走査信号パルスG(1)において、時間t31から時間t32までの期間(第1のオン期間b11)にオン電位が印加された後、任意のタイミングにおいて(時間t33から時間t34までの期間に)、パルス(パルスS32a)が追加されている(オン電位が印加されている)。このパルスS32aは、オン期間b1のうちの第2のオン期間b12を用いて印加される。このように、表示用の第1のオン期間b11とは位相が半分ずれたパルスS32aが印加されることによって、1フレーム期間Vの途中で(任意のタイミングで)、画素10への書き込みを追加で行うことができる。この例では、黒表示信号と同等の電圧Vcrtが信号線DLに印加されているため、時間t33から、光学応答レベルL31が低下する(L31a)。尚、次のフレーム期間の開始される時間t35以降は、第1のオン期間b11において白表示信号が画素10に印加され、光学レベルは再び上昇する(表示が白くなる)。 On the other hand, in a certain selective frame period V, in the scanning signal pulse G (1), after the on potential is applied in the period from the time t31 to the time t32 (first on period b11), at an arbitrary timing ( During the period from time t33 to time t34, a pulse (pulse S32a) is added (an ON potential is applied). The pulse S32a is applied using the second on period b12 of the on period b1. In this way, writing to the pixel 10 is added in the middle of one frame period V (at an arbitrary timing) by applying the pulse S32a whose phase is half shifted from the first on-period b11 for display. Can be done. In this example, since the voltage Vcrt equivalent to the black display signal is applied to the signal line DL, the optical response level L31 decreases from time t33 (L31a). Note that after the time t35 when the next frame period starts, the white display signal is applied to the pixel 10 in the first on-period b11, and the optical level rises again (the display becomes white).
 このように、本実施の形態では、走査信号パルスにおけるオン期間b1を分割して用いることで、1フレーム期間Vのうちの任意のタイミングでパルスS32aを追加することができる。パルスS32aによって表示用の電圧Vsigとは逆極性の電圧Vcrtを印加する等の駆動を行うことができ、光学特性を改善することが可能となる。 Thus, in the present embodiment, the pulse S32a can be added at an arbitrary timing within one frame period V by dividing and using the ON period b1 in the scanning signal pulse. Driving such as applying a voltage Vcrt having a polarity opposite to that of the display voltage Vsig can be performed by the pulse S32a, and optical characteristics can be improved.
 このパルスS32aの走査期間(単位期間)は、第2のオン期間b12の開始時点(時間t33)から、次の第1のオン期間b11の開始時点(t35)までの期間Th5(t35-t33)に相当する。即ち、1フレーム期間Vよりも短い期間単位で電圧(電圧Vcrt)を印加することができる。このパルスS32aの走査期間(期間Th5)は、走査線駆動回路110に印加する信号によって自由に調整することができる。パルスS32aは、走査信号パルスにおける1つのオン期間b1に挿入することが可能なため、例えば全走査線本数が720本の場合には約27μs(20ms/720)が、パルスS32aの走査期間(期間Th5)の最小範囲となる。 The scanning period (unit period) of the pulse S32a is a period Th5 (t35-t33) from the start time (time t33) of the second on-period b12 to the start time (t35) of the next first on-period b11. It corresponds to. That is, the voltage (voltage Vcrt) can be applied in units of periods shorter than one frame period V. The scanning period (period Th5) of the pulse S32a can be freely adjusted by a signal applied to the scanning line driving circuit 110. Since the pulse S32a can be inserted in one ON period b1 in the scanning signal pulse, for example, when the total number of scanning lines is 720, about 27 μs (20 ms / 720) is required for the scanning period (period) of the pulse S32a. The minimum range of Th5).
 したがって、本実施の形態では、1フレーム期間V(例えば20ms)単位でしか印加することが困難であった補正用パルスを、任意のタイミングおよびパルス幅(例えば5ms)で印加することが可能となる。また図13では、パルスS32aの印加回数を1回としているが、光学特性を向上させるために複数回印加してもよい。 Therefore, in the present embodiment, it is possible to apply a correction pulse that was difficult to apply only in units of one frame period V (for example, 20 ms) at an arbitrary timing and pulse width (for example, 5 ms). . In FIG. 13, the pulse S32a is applied once, but may be applied a plurality of times in order to improve optical characteristics.
 なお、一般的な走査線駆動回路では、先頭ラインの走査線GLに入力される走査開始信号(Gst)に基づいて、自動的に第2ライン以降の走査線GLへ走査信号パルスを順次出力することができる。このため、図13の走査信号パルスG(1)を出力するために用意した走査開始信号をICに入力すれば、第2ライン以降の走査線GLについても、同様にパルスS32aを印加することができる。すなわち、画素部1Aに接続される配線状況を変更することなく、走査線駆動回路110へ入力する信号波形を変更するだけで、任意のタイミングおよびパルス幅で、パルスS32aを挿入することが可能となる。一方、信号線駆動回路120については、通常の2倍の速度で出力信号を切り換えることから、高速動作性能が要求されるが、これは通常のディスプレイに用いられる一般的な半導体製造技術を採用することで容易に実現が可能である。 In a general scanning line driving circuit, scanning signal pulses are automatically and sequentially output to the scanning lines GL for the second and subsequent lines based on the scanning start signal (Gst) input to the scanning line GL of the first line. be able to. For this reason, if the scanning start signal prepared for outputting the scanning signal pulse G (1) of FIG. 13 is input to the IC, the pulse S32a can be similarly applied to the scanning lines GL on and after the second line. it can. That is, it is possible to insert the pulse S32a at an arbitrary timing and pulse width only by changing the signal waveform input to the scanning line driving circuit 110 without changing the wiring state connected to the pixel portion 1A. Become. On the other hand, the signal line driving circuit 120 is required to have high-speed operation performance because the output signal is switched at twice the normal speed. This employs a general semiconductor manufacturing technique used for a normal display. This can be easily realized.
 以上のように本実施の形態においても、電気泳動素子を含む各画素10を電圧駆動する際に、1フレーム期間Vのうちの有効表示期間VACにおいて、1フレーム期間Vよりも短い期間(期間Th5)単位で電圧駆動を行うことができる。フレーム周波数(フレームレート)を上げることなく、任意のタイミングおよびパルス幅で(所望の電圧波形パターンを用いて)各画素に電圧を印加することが可能となる。換言すると、見かけ上、フレーム周波数が大きくなり、より極め細やかな電圧駆動を行うことができる。よって、上記第1の実施の形態と同等の効果を得ることができる。 As described above, also in the present embodiment, when each pixel 10 including an electrophoretic element is voltage-driven, a period (period) shorter than one frame period V in the effective display period V AC in one frame period V. Voltage drive can be performed in units of Th5). A voltage can be applied to each pixel at any timing and pulse width (using a desired voltage waveform pattern) without increasing the frame frequency (frame rate). In other words, the frame frequency is apparently increased, and more fine voltage drive can be performed. Therefore, an effect equivalent to that of the first embodiment can be obtained.
(実施例:光学応答特性を高めるための補正駆動)
 上記実施の形態および変形例において説明した表示装置およびその駆動方法では、1フレーム期間Vよりも短い期間単位での電圧駆動を実現することにより、表示用の電圧とは異なる電圧(例えば、補正(調整)用の電圧Vcrt)を印加することができる。以下に、この電圧Vcrtを用いた補正駆動の一例について説明する。
(Example: Correction drive for improving optical response characteristics)
In the display device and the driving method thereof described in the above embodiments and modifications, a voltage different from the display voltage (for example, correction (for example, correction) is realized by realizing voltage driving in a unit shorter than one frame period V. Voltage Vcrt) for adjustment) can be applied. Hereinafter, an example of correction driving using the voltage Vcrt will be described.
 上述のように、電気泳動型の表示装置では、印加電圧に応じて画素10毎に光反射率を変化させ、これを利用して白表示,黒表示あるいは階調表示がなされる。このような表示装置では、視認性を高めるために、特に白表示時における光反射率が高いことが望まれている。 As described above, in the electrophoretic display device, the light reflectance is changed for each pixel 10 in accordance with the applied voltage, and white display, black display, or gradation display is performed using this. In such a display device, in order to improve visibility, it is desired that the light reflectance is particularly high during white display.
 ここで、図15Aに、黒表示から白表示へ切り替える際の印加電圧波形の一例を示す。また、図15Bには、図15Aに示した電圧波形を印加した場合の表示体10Aの光学応答特性について示す。前述のように、表示体10Aの光学応答特性では、複数フレームにわたって(時系列で)徐々に光反射率が変化する。例えば、図15Aおよび図15Bに示したように、正極性電圧を一定時間(例えば400ms)連続して印加することで、所望の反射率(ここでは1とする)に達する。 Here, FIG. 15A shows an example of an applied voltage waveform when switching from black display to white display. FIG. 15B shows optical response characteristics of the display 10A when the voltage waveform shown in FIG. 15A is applied. As described above, in the optical response characteristics of the display 10A, the light reflectance gradually changes over a plurality of frames (in time series). For example, as shown in FIGS. 15A and 15B, a desired reflectance (here, 1) is reached by applying a positive voltage continuously for a certain time (for example, 400 ms).
 このような書き込み期間の途中において、白表示状態へ移行させるための電圧(ここでは正極性電圧)とは逆極性の電圧または0V(ここでは負極性電圧)を印加することにより、結果として白表示時における光反射率を高めることができる。図16Aおよび図16Bにその一例を示す。図16Aは、黒表示から白表示へ切り替える際の印加電圧波形の一例である。この例では、正極性電圧を印加し始めてから約100ms経過後の1フレーム期間Vに、逆極性電圧として、補正用の電圧Vcrtを印加している。電圧Vcrtを印加した後は、再び正極性電圧を印加し続ける。図16Bは、図16Aに示した電圧波形に応じた表示体10Aの光学応答特性について示したものである。このように、逆極性電圧を途中で印加した場合、それにより瞬間的に光反射率が低下するものの、その後は再び光反射率が上昇する。このときの光反射率の上昇率は、正極性電圧のみを印加し続けた場合(図15B)と比べ、大きくなる。この結果、正極性電圧のみを印加した場合よりも早いタイミングで(この例では、200ms程度経過後に)所望の反射率(1)に達し易くなる。このように、白表示または白表示への切り替えの際に、逆極性の電圧Vcrtを印加することで、光反射率を高めることが可能である。 In the middle of such a writing period, by applying a voltage having a polarity opposite to the voltage for shifting to the white display state (here, positive voltage) or 0 V (here, negative voltage), white display is obtained as a result. The light reflectance at the time can be increased. An example is shown in FIGS. 16A and 16B. FIG. 16A is an example of an applied voltage waveform when switching from black display to white display. In this example, the correction voltage Vcrt is applied as the reverse polarity voltage in one frame period V after about 100 ms has elapsed since the start of application of the positive voltage. After the voltage Vcrt is applied, the positive voltage is continuously applied again. FIG. 16B shows the optical response characteristics of the display body 10A corresponding to the voltage waveform shown in FIG. 16A. As described above, when the reverse polarity voltage is applied in the middle, the light reflectance is instantaneously reduced, but thereafter, the light reflectance is increased again. The increase rate of the light reflectance at this time is larger than that when only the positive voltage is continuously applied (FIG. 15B). As a result, the desired reflectance (1) is likely to be reached at an earlier timing (in this example, after about 200 ms has elapsed) than when only the positive voltage is applied. As described above, it is possible to increase the light reflectance by applying the reverse polarity voltage Vcrt when switching to white display or white display.
 ところが、白表示の途中において逆極性電圧を印加した場合、結果的に光反射率は高くなるものの、1フレーム期間V(例えば20ms)にわたって逆極性電圧を印加することから、白表示の途中で一時的に黒表示へ推移し(瞬間的に光反射率が低下し)、その後再び白表示に戻る。このような現象は、画像のちらつきとして視認される(画像にちらつきが生じる)。これは、表示品位の低下につながる。 However, when a reverse polarity voltage is applied in the middle of white display, the light reflectivity increases as a result, but since the reverse polarity voltage is applied over one frame period V (for example, 20 ms), it is temporarily in the middle of white display. Transition to black display (light reflectance decreases instantaneously), and then returns to white display again. Such a phenomenon is visually recognized as flickering of the image (flickering occurs in the image). This leads to a decrease in display quality.
 上記のような補正用の電圧Vcrtを印加する期間は、1フレーム期間Vよりも短い期間であることが望ましい。上記第1実施の形態で説明した走査線群GLgrp毎の線順次駆動、または上記第2の実施の形態で説明した追加のパルスS32aを用いた駆動により、1フレーム期間V以下の期間単位で電圧駆動が可能である。このため、例えば図17Aに示したように、より極め細やかなタイミングで電圧Vcrtを印加して補正を行うことができる。これにより、図17Bに示したように、光反射率を早いタイミングで上昇させつつ、画像のちらつきを視認されにくくすることができる。 It is desirable that the period during which the correction voltage Vcrt as described above is applied is shorter than one frame period V. The voltage is applied in units of one frame period V or less by line-sequential driving for each scanning line group GLgrp described in the first embodiment or driving using the additional pulse S32a described in the second embodiment. It can be driven. For this reason, for example, as shown in FIG. 17A, the correction can be performed by applying the voltage Vcrt at an extremely fine timing. As a result, as shown in FIG. 17B, it is possible to make the flickering of the image less visible while increasing the light reflectance at an early timing.
 尚、補正用の電圧Vcrtの印加タイミングは、1フレーム期間V(有効表示期間VAC)内で特に限定されない。また、電圧Vcrtは、1フレーム期間V内において、1回だけ印加されてもよいし、複数回にわたって印加されてもよい。また、1フレーム期間V未満の電圧駆動では、正電圧および負電圧の繰り返し駆動に限らず、階調制御や混色調整を目的として電圧Vcrtを印加してもよい。 Note that the application timing of the correction voltage Vcrt is not particularly limited within one frame period V (effective display period V AC ). Further, the voltage Vcrt may be applied only once in one frame period V or may be applied multiple times. Further, in the voltage driving of less than one frame period V, the voltage Vcrt may be applied for the purpose of gradation control and color mixing adjustment without being limited to the positive voltage and negative voltage repetitive driving.
<適用例>
 次に、上述の実施の形態および変形例において説明した表示装置の適用例について説明する。ただし、以下で説明する電子機器の構成はあくまで一例であり、その構成は適宜変更可能である。
<Application example>
Next, application examples of the display device described in the above embodiments and modifications will be described. However, the configuration of the electronic device described below is merely an example, and the configuration can be changed as appropriate.
 図18Aおよび図18Bは、適用例に係る電子ブック(電子ブック3)の外観構成を表している。この電子ブック3は、例えば、表示部810および非表示部(筐体)820と、操作部830とを備えている。なお、操作部830は、図18Aに示したように非表示部820の前面に設けられていてもよいし、図18Bに示したように上面に設けられていてもよい。 18A and 18B show the external configuration of an electronic book (electronic book 3) according to an application example. The electronic book 3 includes, for example, a display unit 810, a non-display unit (housing) 820, and an operation unit 830. Note that the operation unit 830 may be provided on the front surface of the non-display unit 820 as shown in FIG. 18A, or may be provided on the upper surface as shown in FIG. 18B.
 上記の表示装置1は、いわゆるウェアラブル端末として、例えば時計(腕時計)、鞄、衣服、帽子、眼鏡および靴等の服飾品の一部に適用することも可能である。以下に、そのような服飾品一体型の電子機器の一例を示す。 The display device 1 described above can be applied to a part of clothing such as a watch (watch), a bag, clothes, a hat, glasses and shoes as a so-called wearable terminal. Below, an example of such an electronic device integrated with clothing is shown.
 図19Aおよび図19Bは、電子時計(腕時計一体型電子機器)の外観を表したものである。この電子時計は、例えば文字盤(文字情報表示部分)410とバンド部(色柄表示部分)420とを有しており、これらの文字盤410とバンド部420とが上記表示装置1を含んで構成されている。文字盤410には、上述の電気泳動素子を用いた表示駆動により、図19Aおよび図19Bのように、例えば様々な文字や図柄が表示される。バンド部420は、例えば腕などに装着可能な部位である。このバンド部420に表示装置1が用いられることで、様々な色柄を表示することができ、図19Aの例から図19Bの例のように、バンド部420の意匠を変更することができる。ファッション用途においても有用な電子デバイスを実現可能となる。 FIG. 19A and FIG. 19B show the appearance of an electronic timepiece (a wristwatch integrated electronic device). The electronic timepiece has, for example, a dial (character information display portion) 410 and a band portion (color pattern display portion) 420, and the dial 410 and the band portion 420 include the display device 1. It is configured. For example, various characters and designs are displayed on the dial plate 410 as shown in FIGS. 19A and 19B by display driving using the above-described electrophoretic element. The band unit 420 is a part that can be attached to an arm or the like, for example. Various color patterns can be displayed by using the display device 1 for the band unit 420, and the design of the band unit 420 can be changed from the example of FIG. 19A to the example of FIG. 19B. Electronic devices that are also useful in fashion applications can be realized.
 以上、実施形態および変形例を挙げて説明したが、本開示は上記実施形態等で説明した態様に限定されず、種々の変形が可能である。例えば、上記実施の形態等では、本開示の第2の電圧として、第1の電圧と逆極性の電圧または0Vを印加する場合を例に挙げて説明したが、第2の電圧は、必ずしも逆極性電圧でなくてもよく、第1の電圧と異なる電圧であればよい。例えば、第2の電圧は、0Vであってもよい。あるいは、第1の電圧が黒表示から白表示に移行させるための正極性の電圧である場合には、第2の電圧は、第1の電圧未満の電圧であればよい。但し、上記実施の形態のように、第2の電圧として第1の電圧の逆極性の電圧を印加することで、効果的に反射率を向上させることができる。尚、上記実施の形態等において説明した効果は一例であり、本開示の効果は、他の効果であってもよいし、更に他の効果を含んでいてもよい。 As described above, the embodiments and modifications have been described. However, the present disclosure is not limited to the aspects described in the above embodiments and the like, and various modifications are possible. For example, in the above-described embodiment and the like, a case where a voltage having a polarity opposite to the first voltage or 0 V is applied as the second voltage of the present disclosure has been described as an example. However, the second voltage is not necessarily reversed. The voltage may not be a polarity voltage, and may be a voltage different from the first voltage. For example, the second voltage may be 0V. Alternatively, when the first voltage is a positive voltage for shifting from black display to white display, the second voltage may be a voltage lower than the first voltage. However, the reflectance can be effectively improved by applying a voltage having a polarity opposite to that of the first voltage as the second voltage as in the above embodiment. In addition, the effect demonstrated in the said embodiment etc. is an example, The effect of this indication may be other effects and may also include other effects.
 尚、本開示内容は以下のような構成であってもよい。
(1)
 各々が電気泳動素子を含む複数の画素を有する画素部と、
 前記画素部を前記画素毎に電圧駆動する駆動部と
 を備え、
 前記駆動部は、1フレーム期間のうちの有効表示期間において、1フレーム期間よりも短い期間単位で前記電圧駆動を行う
 ように構成された
 表示装置。
(2)
 前記駆動部は、
 各画素に接続された走査線駆動回路および信号線駆動回路を有し、
 前記走査線駆動回路の出力端と各画素とを接続する複数の走査線をn(nは2以上の整数)分割してなる複数の走査線群のそれぞれにおいて線順次駆動を行う
 上記(1)に記載の表示装置。
(3)
 前記走査線駆動回路は、前記複数の走査線群のそれぞれの先頭ラインの走査線に対し、走査開始信号を供給する
 上記(2)に記載の表示装置。
(4)
 前記走査線駆動回路は、前記走査線群毎に前記走査開始信号を供給する回路を有する
 上記(3)に記載の表示装置。
(5)
 前記走査線駆動回路を複数備え、
 前記複数の走査線駆動回路はそれぞれ前記走査線群に接続されている
 上記(3)に記載の表示装置。
(6)
 前記駆動部は、
 複数のフレーム期間にわたって各画素に信号電圧を印加する場合に、
 前記複数のフレーム期間のうちの第1のフレーム期間では、全走査線のうちの第1ラインの走査線から最終ラインの走査線までを順次駆動し、
 前記複数のフレーム期間のうちの第2のフレーム期間では、前記走査線群毎の線順次駆動を行う
 上記(2)ないし(5)のいずれか1つに記載の表示装置。
(7)
 前記駆動部は、1フレーム期間のうちの第1の単位期間に表示用の信号電圧を印加すると共に、前記第1の単位期間とは異なる第2の単位期間に補正用の電圧を印加して、前記画素を駆動する
 上記(1)ないし(6)のいずれか1つに記載の表示装置。
(8)
 前記駆動部は、
 各画素の線順次駆動を行うための走査線駆動回路および信号線駆動回路を有し、
 前記走査線駆動回路は、走査信号パルスにおけるオン期間のうちの一部に相当する第1のオン期間を表示用に割り当てて前記画素を駆動する
 上記(1)ないし(7)のいずれか1つに記載の表示装置。
(9)
 前記走査線駆動回路は、更に、前記オン期間のうちの前記第1のオン期間とは異なる第2のオン期間を補正用に割り当てて前記画素を駆動し、かつ
 前記信号線駆動回路は、各画素に対し、前記第1のオン期間には表示用の信号電圧を印加すると共に、前記第2のオン期間には補正用の電圧を印加する
 上記(8)に記載の表示装置。
(10)
 前記第1のオン期間は、前記オン期間のうちの前半部分に相当し、
 前記第2のオン期間は、前記オン期間のうちの後半部分に相当する
 上記(9)に記載の表示装置。
(11)
 前記駆動部は、
 前記複数の画素のそれぞれを複数の走査線を用いて線順次で駆動し、
 各画素に対し、1フレーム期間内に1または複数回にわたって走査信号を供給する
 上記(1)ないし(10)のいずれか1つに記載の表示装置。
(12)
 各々が電気泳動素子を含む複数の画素を、前記画素毎に電圧駆動する際に、
 1フレーム期間のうちの有効表示期間において、1フレーム期間よりも短い期間単位で前記電圧駆動を行う
 駆動方法。
(13)
 前記複数の画素のそれぞれを複数の走査線を用いて線順次で駆動し、
 前記複数の走査線をn(nは2以上の整数)分割してなる複数の走査線群のそれぞれにおいて線順次駆動を行う
 上記(12)に記載の駆動方法。
(14)
 前記複数の走査線群のそれぞれの先頭ラインの走査線に対し、走査開始信号を供給する
 上記(13)に記載の駆動方法。
(15)
 複数のフレーム期間にわたって各画素に信号電圧を印加する場合に、
 前記複数のフレーム期間のうちの第1のフレーム期間では、全走査線のうちの第1ラインの走査線から最終ラインの走査線までを順次駆動し、
 前記複数のフレーム期間のうちの第2のフレーム期間では、前記走査線群毎の線順次駆動を行う
 上記(12)ないし(14)のいずれか1つに記載の駆動方法。
(16)
 1フレーム期間のうちの第1の単位期間に表示用の信号電圧を印加すると共に、前記第1の単位期間とは異なる第2の単位期間に補正用の電圧を印加して、前記画素を駆動する
 上記(12)ないし(15)のいずれか1つに記載の駆動方法。
(17)
 前記複数の画素のそれぞれを複数の走査線を用いて線順次で駆動し、
 走査信号パルスにおけるオン期間のうちの一部に相当する第1のオン期間を表示用に割り当てて前記画素を駆動する
 上記(12)に記載の駆動方法。
(18)
 更に、前記オン期間のうちの前記第1のオン期間とは異なる第2のオン期間を補正用に割り当てて前記画素を駆動し、かつ
 各画素に対し、前記第1のオン期間には表示用の信号電圧を印加すると共に、前記第2のオン期間には補正用の電圧を印加する
 上記(17)に記載の駆動方法。
(19)
 前記第1のオン期間は、前記オン期間のうちの前半部分に相当し、
 前記第2のオン期間は、前記オン期間のうちの後半部分に相当する
 上記(18)に記載の駆動方法。
(20)
 各々が電気泳動素子を含む複数の画素を有する画素部と、
 前記画素部を前記画素毎に電圧駆動する駆動部と
 を備え、
 前記駆動部は、1フレーム期間のうちの有効表示期間において、1フレーム期間よりも短い期間単位で前記電圧駆動を行う
 ように構成された
 表示装置を備えた電子機器。
Note that the present disclosure may be configured as follows.
(1)
A pixel portion having a plurality of pixels each including an electrophoretic element;
A driving unit for driving the pixel unit for each pixel, and
The display device configured to perform the voltage driving in a unit of period shorter than one frame period in an effective display period of one frame period.
(2)
The drive unit is
A scanning line driving circuit and a signal line driving circuit connected to each pixel;
Line-sequential driving is performed in each of a plurality of scanning line groups obtained by dividing a plurality of scanning lines connecting the output terminal of the scanning line driving circuit and each pixel by n (n is an integer of 2 or more). The display device described in 1.
(3)
The display device according to (2), wherein the scanning line driving circuit supplies a scanning start signal to the scanning line of the first line of each of the plurality of scanning line groups.
(4)
The display device according to (3), wherein the scanning line driving circuit includes a circuit that supplies the scanning start signal for each scanning line group.
(5)
A plurality of the scanning line driving circuits;
The display device according to (3), wherein each of the plurality of scanning line driving circuits is connected to the scanning line group.
(6)
The drive unit is
When applying a signal voltage to each pixel over a plurality of frame periods,
In the first frame period of the plurality of frame periods, the first line scanning line to the last scanning line among all the scanning lines are sequentially driven,
The display device according to any one of (2) to (5), wherein line-sequential driving is performed for each of the scanning line groups in a second frame period of the plurality of frame periods.
(7)
The driving unit applies a display signal voltage in a first unit period of one frame period and applies a correction voltage in a second unit period different from the first unit period. The display device according to any one of (1) to (6), wherein the pixel is driven.
(8)
The drive unit is
A scanning line driving circuit and a signal line driving circuit for performing line sequential driving of each pixel;
The scanning line driving circuit allocates a first on period corresponding to a part of the on period in the scanning signal pulse for display and drives the pixel. Any one of the above (1) to (7) The display device described in 1.
(9)
The scanning line driving circuit further drives the pixel by allocating a second on period different from the first on period among the on periods for correction, and the signal line driving circuit includes: The display device according to (8), wherein a display signal voltage is applied to the pixel during the first on-period and a correction voltage is applied during the second on-period.
(10)
The first on-period corresponds to the first half of the on-period,
The display device according to (9), wherein the second on period corresponds to a second half of the on period.
(11)
The drive unit is
Driving each of the plurality of pixels in a line-sequential manner using a plurality of scanning lines;
The display device according to any one of (1) to (10), wherein a scanning signal is supplied to each pixel one or more times within one frame period.
(12)
When driving a plurality of pixels each including an electrophoretic element for each pixel,
A driving method in which the voltage driving is performed in a unit of period shorter than one frame period in an effective display period of one frame period.
(13)
Driving each of the plurality of pixels in a line-sequential manner using a plurality of scanning lines;
The driving method according to (12), wherein line-sequential driving is performed in each of a plurality of scanning line groups obtained by dividing the plurality of scanning lines by n (n is an integer of 2 or more).
(14)
The driving method according to (13), wherein a scanning start signal is supplied to the first scanning line of each of the plurality of scanning line groups.
(15)
When applying a signal voltage to each pixel over a plurality of frame periods,
In the first frame period of the plurality of frame periods, the first line scanning line to the last scanning line among all the scanning lines are sequentially driven,
The driving method according to any one of (12) to (14), wherein line-sequential driving is performed for each scanning line group in a second frame period of the plurality of frame periods.
(16)
A display signal voltage is applied in a first unit period of one frame period, and a correction voltage is applied in a second unit period different from the first unit period to drive the pixel. The driving method according to any one of (12) to (15).
(17)
Driving each of the plurality of pixels in a line-sequential manner using a plurality of scanning lines;
The driving method according to (12), wherein the pixel is driven by allocating a first on period corresponding to a part of the on period in the scanning signal pulse for display.
(18)
Further, a second on-period different from the first on-period among the on-periods is allocated for correction to drive the pixels, and for each pixel, the display is used for display in the first on-period. And the correction voltage is applied during the second ON period. The driving method according to (17) above.
(19)
The first on-period corresponds to the first half of the on-period,
The driving method according to (18), wherein the second on period corresponds to a second half of the on period.
(20)
A pixel portion having a plurality of pixels each including an electrophoretic element;
A driving unit for driving the pixel unit for each pixel, and
An electronic apparatus comprising: a display device configured to perform the voltage driving in a unit of period shorter than one frame period in an effective display period of one frame period.
 本出願は、日本国特許庁において2016年4月28日に出願された日本特許出願番号第2016-90212号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2016-90212 filed on April 28, 2016 at the Japan Patent Office. The entire contents of this application are incorporated herein by reference. This is incorporated into the application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (20)

  1.  各々が電気泳動素子を含む複数の画素を有する画素部と、
     前記画素部を前記画素毎に電圧駆動する駆動部と
     を備え、
     前記駆動部は、1フレーム期間のうちの有効表示期間において、1フレーム期間よりも短い期間単位で前記電圧駆動を行う
     ように構成された
     表示装置。
    A pixel portion having a plurality of pixels each including an electrophoretic element;
    A driving unit for driving the pixel unit for each pixel, and
    The display device configured to perform the voltage driving in a unit of period shorter than one frame period in an effective display period of one frame period.
  2.  前記駆動部は、
     各画素に接続された走査線駆動回路および信号線駆動回路を有し、
     前記走査線駆動回路の出力端と各画素とを接続する複数の走査線をn(nは2以上の整数)分割してなる複数の走査線群のそれぞれにおいて線順次駆動を行う
     請求項1に記載の表示装置。
    The drive unit is
    A scanning line driving circuit and a signal line driving circuit connected to each pixel;
    The line-sequential driving is performed in each of a plurality of scanning line groups obtained by dividing a plurality of scanning lines connecting the output terminal of the scanning line driving circuit and each pixel by n (n is an integer of 2 or more). The display device described.
  3.  前記走査線駆動回路は、前記複数の走査線群のそれぞれの先頭ラインの走査線に対し、走査開始信号を供給する
     請求項2に記載の表示装置。
    The display device according to claim 2, wherein the scanning line driving circuit supplies a scanning start signal to the scanning line of the first line of each of the plurality of scanning line groups.
  4.  前記走査線駆動回路は、前記走査線群毎に前記走査開始信号を供給する回路を有する
     請求項3に記載の表示装置。
    The display device according to claim 3, wherein the scanning line driving circuit includes a circuit that supplies the scanning start signal for each scanning line group.
  5.  前記走査線駆動回路を複数備え、
     前記複数の走査線駆動回路はそれぞれ前記走査線群に接続されている
     請求項3に記載の表示装置。
    A plurality of the scanning line driving circuits;
    The display device according to claim 3, wherein each of the plurality of scanning line driving circuits is connected to the scanning line group.
  6.  前記駆動部は、
     複数のフレーム期間にわたって各画素に信号電圧を印加する場合に、
     前記複数のフレーム期間のうちの第1のフレーム期間では、全走査線のうちの第1ラインの走査線から最終ラインの走査線までを順次駆動し、
     前記複数のフレーム期間のうちの第2のフレーム期間では、前記走査線群毎の線順次駆動を行う
     請求項2に記載の表示装置。
    The drive unit is
    When applying a signal voltage to each pixel over a plurality of frame periods,
    In the first frame period of the plurality of frame periods, the first line scanning line to the last scanning line among all the scanning lines are sequentially driven,
    The display device according to claim 2, wherein line-sequential driving is performed for each scanning line group in a second frame period of the plurality of frame periods.
  7.  前記駆動部は、1フレーム期間のうちの第1の単位期間に表示用の信号電圧を印加すると共に、前記第1の単位期間とは異なる第2の単位期間に補正用の電圧を印加して、前記画素を駆動する
     請求項1に記載の表示装置。
    The driving unit applies a display signal voltage in a first unit period of one frame period and applies a correction voltage in a second unit period different from the first unit period. The display device according to claim 1, wherein the pixel is driven.
  8.  前記駆動部は、
     各画素の線順次駆動を行うための走査線駆動回路および信号線駆動回路を有し、
     前記走査線駆動回路は、走査信号パルスにおけるオン期間のうちの一部に相当する第1のオン期間を表示用に割り当てて前記画素を駆動する
     請求項1に記載の表示装置。
    The drive unit is
    A scanning line driving circuit and a signal line driving circuit for performing line sequential driving of each pixel;
    The display device according to claim 1, wherein the scanning line driving circuit allocates a first on period corresponding to a part of an on period in a scanning signal pulse for display and drives the pixel.
  9.  前記走査線駆動回路は、更に、前記オン期間のうちの前記第1のオン期間とは異なる第2のオン期間を補正用に割り当てて前記画素を駆動し、かつ
     前記信号線駆動回路は、各画素に対し、前記第1のオン期間には表示用の信号電圧を印加すると共に、前記第2のオン期間には補正用の電圧を印加する
     請求項8に記載の表示装置。
    The scanning line driving circuit further drives the pixel by allocating a second on period different from the first on period among the on periods for correction, and the signal line driving circuit includes: The display device according to claim 8, wherein a display signal voltage is applied to the pixel during the first on-period, and a correction voltage is applied during the second on-period.
  10.  前記第1のオン期間は、前記オン期間のうちの前半部分に相当し、
     前記第2のオン期間は、前記オン期間のうちの後半部分に相当する
     請求項9に記載の表示装置。
    The first on-period corresponds to the first half of the on-period,
    The display device according to claim 9, wherein the second on-period corresponds to a second half of the on-period.
  11.  前記駆動部は、
     前記複数の画素のそれぞれを複数の走査線を用いて線順次で駆動し、
     各画素に対し、1フレーム期間内に1または複数回にわたって走査信号を供給する
     請求項1に記載の表示装置。
    The drive unit is
    Driving each of the plurality of pixels in a line-sequential manner using a plurality of scanning lines;
    The display device according to claim 1, wherein a scanning signal is supplied to each pixel one or more times within one frame period.
  12.  各々が電気泳動素子を含む複数の画素を、前記画素毎に電圧駆動する際に、
     1フレーム期間のうちの有効表示期間において、1フレーム期間よりも短い期間単位で前記電圧駆動を行う
     駆動方法。
    When driving a plurality of pixels each including an electrophoretic element for each pixel,
    A driving method in which the voltage driving is performed in a unit of period shorter than one frame period in an effective display period of one frame period.
  13.  前記複数の画素のそれぞれを複数の走査線を用いて線順次で駆動し、
     前記複数の走査線をn(nは2以上の整数)分割してなる複数の走査線群のそれぞれにおいて線順次駆動を行う
     請求項12に記載の駆動方法。
    Driving each of the plurality of pixels in a line-sequential manner using a plurality of scanning lines;
    The driving method according to claim 12, wherein line-sequential driving is performed in each of a plurality of scanning line groups obtained by dividing the plurality of scanning lines by n (n is an integer of 2 or more).
  14.  前記複数の走査線群のそれぞれの先頭ラインの走査線に対し、走査開始信号を供給する
     請求項13に記載の駆動方法。
    The driving method according to claim 13, wherein a scanning start signal is supplied to the first scanning line of each of the plurality of scanning line groups.
  15.  複数のフレーム期間にわたって各画素に信号電圧を印加する場合に、
     前記複数のフレーム期間のうちの第1のフレーム期間では、全走査線のうちの第1ラインの走査線から最終ラインの走査線までを順次駆動し、
     前記複数のフレーム期間のうちの第2のフレーム期間では、前記走査線群毎の線順次駆動を行う
     請求項12に記載の駆動方法。
    When applying a signal voltage to each pixel over a plurality of frame periods,
    In the first frame period of the plurality of frame periods, the first line scanning line to the last scanning line among all the scanning lines are sequentially driven,
    The driving method according to claim 12, wherein line-sequential driving for each scanning line group is performed in a second frame period of the plurality of frame periods.
  16.  1フレーム期間のうちの第1の単位期間に表示用の信号電圧を印加すると共に、前記第1の単位期間とは異なる第2の単位期間に補正用の電圧を印加して、前記画素を駆動する
     請求項12に記載の駆動方法。
    A display signal voltage is applied in a first unit period of one frame period, and a correction voltage is applied in a second unit period different from the first unit period to drive the pixel. The driving method according to claim 12.
  17.  前記複数の画素のそれぞれを複数の走査線を用いて線順次で駆動し、
     走査信号パルスにおけるオン期間のうちの一部に相当する第1のオン期間を表示用に割り当てて前記画素を駆動する
     請求項12に記載の駆動方法。
    Driving each of the plurality of pixels in a line-sequential manner using a plurality of scanning lines;
    The driving method according to claim 12, wherein the pixel is driven by assigning a first on-period corresponding to a part of the on-period in the scanning signal pulse for display.
  18.  更に、前記オン期間のうちの前記第1のオン期間とは異なる第2のオン期間を補正用に割り当てて前記画素を駆動し、かつ
     各画素に対し、前記第1のオン期間には表示用の信号電圧を印加すると共に、前記第2のオン期間には補正用の電圧を印加する
     請求項17に記載の駆動方法。
    Further, a second on-period different from the first on-period among the on-periods is allocated for correction to drive the pixels, and for each pixel, the display is used for display in the first on-period. The driving method according to claim 17, wherein a correction voltage is applied during the second ON period.
  19.  前記第1のオン期間は、前記オン期間のうちの前半部分に相当し、
     前記第2のオン期間は、前記オン期間のうちの後半部分に相当する
     請求項18に記載の駆動方法。
    The first on-period corresponds to the first half of the on-period,
    The driving method according to claim 18, wherein the second on-period corresponds to a second half of the on-period.
  20.  各々が電気泳動素子を含む複数の画素を有する画素部と、
     前記画素部を前記画素毎に電圧駆動する駆動部と
     を備え、
     前記駆動部は、1フレーム期間のうちの有効表示期間において、1フレーム期間よりも短い期間単位で前記電圧駆動を行う
     ように構成された
     表示装置を備えた電子機器。
    A pixel portion having a plurality of pixels each including an electrophoretic element;
    A driving unit for driving the pixel unit for each pixel, and
    An electronic apparatus comprising: a display device configured to perform the voltage driving in a unit of period shorter than one frame period in an effective display period of one frame period.
PCT/JP2017/010369 2016-04-28 2017-03-15 Display device, drive method, and electronic apparatus WO2017187826A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016090212A JP2017198877A (en) 2016-04-28 2016-04-28 Display device, drive method, and electronic apparatus
JP2016-090212 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017187826A1 true WO2017187826A1 (en) 2017-11-02

Family

ID=60161416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010369 WO2017187826A1 (en) 2016-04-28 2017-03-15 Display device, drive method, and electronic apparatus

Country Status (2)

Country Link
JP (1) JP2017198877A (en)
WO (1) WO2017187826A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267982A (en) * 2005-02-28 2006-10-05 Seiko Epson Corp Method of driving electrophoretic display
JP2008304489A (en) * 2007-05-09 2008-12-18 Seiko Epson Corp Driving device and method of display, and electronic equipment
JP2011180409A (en) * 2010-03-02 2011-09-15 Dainippon Printing Co Ltd Electrophoretic display device and method of driving display panel
JP2013537649A (en) * 2010-08-25 2013-10-03 プラスティック ロジック リミテッド Display control mode
JP2014157306A (en) * 2013-02-18 2014-08-28 Seiko Epson Corp Drive method of electrophoretic display device, control circuit of electrophoretic display device, electrophoretic display device, and electronic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267982A (en) * 2005-02-28 2006-10-05 Seiko Epson Corp Method of driving electrophoretic display
JP2008304489A (en) * 2007-05-09 2008-12-18 Seiko Epson Corp Driving device and method of display, and electronic equipment
JP2011180409A (en) * 2010-03-02 2011-09-15 Dainippon Printing Co Ltd Electrophoretic display device and method of driving display panel
JP2013537649A (en) * 2010-08-25 2013-10-03 プラスティック ロジック リミテッド Display control mode
JP2014157306A (en) * 2013-02-18 2014-08-28 Seiko Epson Corp Drive method of electrophoretic display device, control circuit of electrophoretic display device, electrophoretic display device, and electronic equipment

Also Published As

Publication number Publication date
JP2017198877A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP6739540B2 (en) Method for driving an electro-optical display
JP5506967B2 (en) Electrophoretic display using gaseous fluid
JP5928840B2 (en) Method for driving an electro-optic display
CN104238227B (en) Method for addressing bistable electro-optical medium
CN101493627B (en) Electrophoretic display device, method of driving the same, and electronic apparatus
US20220019119A1 (en) Methods for updating color electrophoretic displays
CA3049994C (en) Drivers providing dc-balanced refresh sequences for color electrophoretic displays
JP2007163987A (en) Electrophoretic display
CN102024427A (en) Electrophoretic display apparatus and method of driving the same
WO2017115645A1 (en) Display device, drive method, and electronic apparatus
US9659534B2 (en) Reducing visual artifacts and reducing power consumption in electrowetting displays
JP2007178785A (en) Electrophoresis display device and its driving method
WO2016088502A1 (en) Display device, driving method, and electronic device
WO2016084566A1 (en) Display device, driving method, and electronic device
CN106952620B (en) The bistable state driving method and relevant electric moistening display of electric moistening display
WO2017187826A1 (en) Display device, drive method, and electronic apparatus
JP4287310B2 (en) Driving method of electrophoretic display element
JP2023541267A (en) Improved drive voltages for advanced color electrophoretic displays and displays with improved drive voltages
JP2011232594A (en) Electrophoresis display device, control circuit, electronic equipment and method of driving the same
TWI795933B (en) Electro-optic displays, and methods for driving same
US20110115774A1 (en) Driving method for driving electrophoretic apparatus, electrophoretic display apparatus, electronic device, and controller
TW202341123A (en) Methods for driving electro-optic displays
JP2010020213A (en) Electrophoretic display

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789115

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789115

Country of ref document: EP

Kind code of ref document: A1