WO2017115645A1 - Display device, drive method, and electronic apparatus - Google Patents

Display device, drive method, and electronic apparatus Download PDF

Info

Publication number
WO2017115645A1
WO2017115645A1 PCT/JP2016/087085 JP2016087085W WO2017115645A1 WO 2017115645 A1 WO2017115645 A1 WO 2017115645A1 JP 2016087085 W JP2016087085 W JP 2016087085W WO 2017115645 A1 WO2017115645 A1 WO 2017115645A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
pixels
pixel
voltage value
display
Prior art date
Application number
PCT/JP2016/087085
Other languages
French (fr)
Japanese (ja)
Inventor
安倍 浩信
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017115645A1 publication Critical patent/WO2017115645A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/067Special waveforms for scanning, where no circuit details of the gate driver are given
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0257Reduction of after-image effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame

Definitions

  • the present disclosure relates to a display device using an electrophoretic element, a driving method, and an electronic apparatus.
  • an active matrix display device using an electrophoretic element when an image is rewritten, it is applied to each pixel based on the information of the image that has been displayed so far and the information of the image that is to be displayed next.
  • a voltage waveform (Waveform) is determined, and each pixel is driven to display using this voltage waveform.
  • Patent Document 1 proposes a method for correcting an edge ghost generated in an image.
  • this method by applying a voltage that cancels the edge ghost to the portion where the edge ghost has occurred, the display state of the portion can be changed to make the edge ghost inconspicuous.
  • a display device includes a pixel unit including an electrophoretic element and having a plurality of pixels, and applying a voltage waveform for switching at least two values to each pixel of the pixel unit over a plurality of frames.
  • a driving unit that performs driving to change the display state of the pixel.
  • the driving unit includes first and second voltage waveforms as combinations of the voltage waveforms applied to the first and second pixels. The driving is performed using a combination in which the difference between the voltage values applied to the two pixels is smaller.
  • a driving method performs driving for changing a display state of a pixel by applying a voltage waveform for switching at least two values over a plurality of frames to each of a plurality of pixels including an electrophoretic element.
  • a voltage waveform for switching at least two values over a plurality of frames to each of a plurality of pixels including an electrophoretic element.
  • combinations of voltage waveforms applied to the first and second pixels are applied to the first and second pixels.
  • a combination in which the difference between the applied voltage values becomes smaller is used.
  • An electronic apparatus includes the display device according to the embodiment of the present disclosure.
  • each voltage waveform applied to the first and second pixels when the adjacent first and second pixels have different display states.
  • the combination in which the difference between the voltage values applied to the first and second pixels becomes smaller is used. Thereby, the electric field generated in the horizontal direction between the adjacent first and second pixels is reduced, and the occurrence of edge ghost is suppressed.
  • each applied to the first and second pixels As a combination with the voltage waveform, a combination in which the difference between the voltage values applied to the first and second pixels is smaller is used.
  • the occurrence of edge ghost can be suppressed. Therefore, it is possible to suppress image quality deterioration.
  • FIG. 1 is a functional block diagram illustrating an overall configuration of a display device according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view illustrating a main configuration of a pixel array unit illustrated in FIG. 1. It is a schematic diagram for demonstrating a display drive operation
  • FIG. 6 is a schematic diagram illustrating an image written by a driving method according to Comparative Example 1.
  • FIG. 12 is a schematic diagram illustrating an image displayed by a driving method according to Comparative Example 1.
  • FIG. 10 is a schematic diagram for explaining a driving method according to Comparative Example 2.
  • FIG. It is a schematic diagram of the voltage waveform used for the driving method according to the present embodiment.
  • FIG. 6 is a schematic diagram illustrating an image written by the driving method according to the first embodiment. 6 is a schematic diagram illustrating an image displayed by the driving method according to Embodiment 1.
  • FIG. 6 is a diagram illustrating an example of a voltage waveform according to Modification 1.
  • FIG. 10 is a schematic diagram illustrating an image written by a driving method according to Comparative Example 3.
  • FIG. 10 is a schematic diagram illustrating an image displayed by a driving method according to Comparative Example 3.
  • FIG. 6 is a schematic diagram illustrating an image written by a driving method according to Embodiment 2.
  • FIG. 10 is a schematic diagram illustrating an image displayed by a driving method according to a second embodiment.
  • FIG. 10 is a schematic diagram for explaining a display body according to Modification 2.
  • FIG. 14 is a perspective view illustrating an appearance of application example 1.
  • FIG. FIG. 24B is a perspective view illustrating another example of the electronic book illustrated in FIG. 24A.
  • 12 is a perspective view illustrating an appearance of application example 2.
  • FIG. 12 is a perspective view illustrating an appearance of application example 3.
  • FIG. 26B is a perspective view illustrating another display example of the electronic timepiece illustrated in FIG. 26A.
  • Embodiment an example of an electrophoretic display device that is driven by applying voltage waveforms in a predetermined combination to adjacent pixels
  • Modification 1 Driving example of a pixel having a gray display state
  • Modification 2 example when a porous layer is used for the display body
  • Application examples (examples of electronic devices)
  • FIG. 1 illustrates an overall configuration of a display device (display device 1) according to a first embodiment of the present disclosure.
  • the display device 1 is a reflective display device that displays an image using, for example, an electrophoretic element.
  • the display device 1 includes, for example, a pixel array unit 10, a panel control unit 51, a gate drive unit 52, a source drive unit 53, a data replacement unit 54, and a central control unit 50.
  • the display device 1 further includes LUTs (look-up tables) 55A and 55B, a contour (edge) detection unit 56, and storage units 57A and 57B.
  • the panel control unit 51, the gate drive unit 52, the source drive unit 53, the data replacement unit 54, and the central control unit 50 in the present embodiment correspond to a specific example of “drive unit” in the present disclosure.
  • the LUTs 55A and 55B correspond to specific examples of “first holding unit” and “second holding unit” of the present disclosure.
  • the pixel array unit 10 includes, for example, a plurality of pixels P arranged in a matrix, and is driven to display by an active matrix driving method using a thin film transistor (TFT: Thin Film Transistor). As will be described in detail later, the pixel array unit 10 includes, for example, an electrophoretic element, and displays an image (such as text) by changing the light reflectance for each pixel P.
  • the pixel array unit 10 is connected to the gate drive unit 52 and the source drive unit 53.
  • a plurality of gate lines (gate voltage supply lines) 110G extending from the gate drive unit 52 along the row direction, and a plurality of source lines (source voltage supply lines) extending from the source drive unit 53 along the column direction.
  • a pixel P is formed at each intersection with 110S.
  • the panel control unit 51 generates signals necessary to display and drive the pixel array unit 10, and includes, for example, a timing controller and a display signal generation unit.
  • the panel control unit 51 can supply a common potential (ground potential or offset potential) to each pixel P, for example, via the common voltage supply line 110C.
  • the panel control unit 51 is configured to perform gradation display for each pixel P by, for example, a pulse width modulation (PMW: Pulse Width Modulation) method in units of frames. That is, display driving of the pixel array unit 10 is performed by switching and applying at least two values to each pixel P over a plurality of frames and changing the display state of each pixel P.
  • PMW Pulse Width Modulation
  • the gate driving unit 52 sequentially selects a plurality of pixels P by sequentially applying gate signals (scanning signals) to the plurality of gate lines 110G in accordance with a control signal supplied from the panel control unit 51.
  • the source driving unit 53 generates an analog signal corresponding to the image signal in accordance with a control signal supplied from the panel control unit 51, and applies the analog signal to each source line 110S.
  • Signals for display (signals corresponding to voltage waveforms Dp and Dpa described later) applied to each source line 110S by the source drive unit 53 are applied to the pixel P selected by the gate drive unit 52. It is like that.
  • the data replacement unit 54 replaces the signal of the pixel corresponding to the contour portion of the image display signal (signal corresponding to the voltage waveform Dp) based on information about the voltage waveform (voltage waveform Dpa) held in advance.
  • the process which performs is performed. Specifically, the data replacement unit 54 converts a part of the plurality of types of voltage waveforms Dp held in the LUT 55A as image display signals (voltage waveforms given to adjacent two pixels corresponding to the contour portion) into the LUT 55B.
  • the replacement process is performed using the information held in.
  • the LUT 55A (first holding unit) holds information about the voltage waveform Dp (first voltage waveform) of the image display signal.
  • a voltage waveform (Waveform) applied to a pixel in response to a change in the display state of the pixel for example, a change from black to white, white to black, black to black, or white to white.
  • the voltage waveform Dp applied to each pixel is set. Information about a plurality of types of voltage waveforms Dp corresponding to changes in these display states is held in advance as an LUT 55A.
  • the LUT 55B (second holding unit) stores information on the voltage waveform Dpa (second voltage waveform) obtained by replacing a part of the voltage waveform Dp (voltage waveform held in the LUT 55A) of the image display signal. It is to hold.
  • the voltage waveform Dpa held in the LUT 55B is to be applied to one or both of two adjacent pixels (pixels P1 and P2 described later) arranged in a region corresponding to the contour portion of the image.
  • the contour detection unit 56 detects a contour (edge) portion of the image displayed on the pixel array unit 10 by, for example, a predetermined calculation process. Specifically, it can be detected by a technique using differential calculation processing between data of adjacent pixels or a technique using an algorithm such as an edge detection filter.
  • the contour detection unit 56 detects pixels (two adjacent pixels having different display states) arranged in the contour portion in the image to be displayed.
  • driving is performed to optimize the combination of applied voltage waveforms for two adjacent pixels having different display states.
  • two adjacent pixels have different display states (white, black, gray, etc.) they are held in LUTs 55A and 55B as a combination with each voltage waveform applied to these two pixels.
  • a combination in which the difference between the voltage values applied to these two pixels is smaller is used.
  • the central control unit 50 is a central part of the display device 1 that performs all processes including display control, for example, specifically, a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-). It consists of parts such as Programmable (Gate Array).
  • a CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-
  • the storage unit 57A is an image memory that stores information on an image (written image) that has already been displayed on the pixel array unit 10, for example.
  • the storage unit 57B is an image memory that stores information on an image to be displayed (image to be written) in the pixel array unit 10, for example. As described above, the pieces of information of the images before and after display are separately held here, but these pieces of information may be held in one storage unit.
  • FIG. 2 illustrates a main configuration of the pixel array unit 10 of the display device 1.
  • the pixel array unit 10 includes, for example, a TFT layer 12, a first electrode 13, a display body 14, a second electrode 15, and a second substrate 16 in this order on a first substrate 11.
  • the display body 14 may be separated for each predetermined region by a partition (not shown), or the partition may not be provided.
  • the first substrate 11 is made of, for example, an inorganic material, a metal material, or plastic.
  • the inorganic material include silicon (Si), silicon oxide (SiO x ), and silicon nitride (S iN x ) or aluminum oxide (AlO x ).
  • Silicon oxide includes, for example, glass or spin-on-glass (SOG).
  • the metal material include aluminum (Al), nickel (Ni), and stainless steel.
  • the plastic include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethyl ether ketone (PEEK).
  • the TFT layer 12 is a layer in which, for example, pixel circuits and various wirings including TFTs (Thin Film Transistors) are formed.
  • the TFT layer 12 includes, for example, a TFT, a capacitor, a gate line (110G), a source line (110S), a common voltage supply line (110C), and the like.
  • the TFT is disposed for each pixel P and is electrically connected to the first electrode 13. As a result, a signal voltage corresponding to the display image can be applied to the first electrode 13 of each pixel P.
  • the surface of the TFT layer 12 is covered with a planarization insulating film.
  • a plurality of first electrodes 13 are arranged in a matrix (arranged for each pixel P).
  • the first electrode 13 includes, for example, at least one of conductive materials such as gold (Au), silver (Ag), and copper (Cu).
  • the display body 14 is configured such that the light reflectance (light reflection characteristics) changes (generates contrast) according to the voltage applied through the first electrode 13 and the second electrode 15.
  • the display body 14 includes, for example, a plurality of types of migrating particles having different light reflectivities in the insulating liquid 140, for example, positive (+) charged black particles 141, and negative ( ⁇ ) Charged white particles 142.
  • the insulating liquid 140 is a nonaqueous solvent such as an organic solvent, and is specifically paraffin or isoparaffin. It is preferable that the viscosity and refractive index of the insulating liquid 140 be as low as possible. This is because the mobility (response speed) of the migrating particles (the black particles 141 and the white particles 142) is improved, and the energy (power consumption) required for the migrating particles to move is accordingly reduced.
  • the insulating liquid 140 may contain various materials as necessary.
  • the insulating liquid 140 may include a colorant, a charge control agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant, or a resin.
  • Electrophoretic particles are one or more charged particles that can move between the first electrode 13 and the second electrode 15, and are dispersed in the insulating liquid 140.
  • the migrating particles are positively or negatively charged, and for example, any one or two of organic pigments, inorganic pigments, dyes, carbon materials, metal materials, metal oxides, glasses, polymer materials (resins), and the like. These particles (powder).
  • the migrating particles 152 may be pulverized particles or capsule particles of resin solids containing the above-described particles. However, materials corresponding to carbon materials, metal materials, metal oxides, glass, or polymer materials are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes. As the migrating particles 152, any one of the above may be used, or a plurality of types may be used.
  • the specific forming material of the migrating particles is selected according to, for example, the role of the migrating particles to cause contrast.
  • the material of the black particles 141 is a black material such as a carbon material or a metal oxide.
  • the carbon material is, for example, carbon black
  • the metal oxide is, for example, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide, or copper-iron. -Chromium oxide and the like.
  • a carbon material is preferable. This is because excellent chemical stability, mobility and light absorption are obtained.
  • the material of the white particles 142 is a white material, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate, or potassium titanate.
  • a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate, or potassium titanate.
  • titanium oxide is preferable. This is because it is excellent in electrochemical stability and dispersibility and has high reflectance.
  • electrophoretic particles are preferably easily dispersed and charged in the insulating liquid 140 over a long period of time. For this reason, in order to disperse the migrating particles by electrostatic repulsion, a dispersing agent (or charge adjusting agent) may be used, or the migrating particles may be subjected to a surface treatment. Moreover, you may use both together.
  • the second electrode 15 is made of, for example, a transparent conductive film.
  • the transparent conductive film include indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO).
  • ITO indium oxide-tin oxide
  • ATO antimony oxide-tin oxide
  • FTO fluorine-doped tin oxide
  • AZO aluminum-doped zinc oxide
  • the second electrode 15 is formed on one surface of the second substrate 16 as an electrode common to all the pixels P, for example.
  • the second electrode 15 is connected to the common voltage supply line 110C.
  • the second substrate 16 is made of the same material as the first substrate 11. However, since an image is displayed through the second substrate 16, a material having optical transparency is used for the second substrate 16.
  • a color filter (not shown) may be provided in contact with one surface of the second substrate 16, above the second substrate 16, or between the second substrate 16 and the second electrode 15.
  • the gate drive unit 52 and the source drive unit 53 voltage drive each pixel P of the pixel array unit 10 based on the control signal from the panel control unit 51 shown in FIG. .
  • a predetermined voltage (voltage waveform Dp, Dpa) is applied between the first electrode 13 and the second electrode 15 for each pixel P by active matrix driving, and according to this applied voltage.
  • Electrophoretic particles (black particles 141 and white particles 142) move between the first electrode 13 and the second electrode 15.
  • the light reflectance in the display body 14 changes for each pixel P (the display state of the pixel P changes), and an image can be displayed (rewritten).
  • a voltage waveform for switching for example, binary or ternary is applied over a plurality of frames by a so-called pulse width modulation method.
  • a desired display state for example, a period corresponding to several frames to several tens of frames (hereinafter referred to as a writing period) is a unit for displaying (or rewriting) one image.
  • a voltage waveform Dp of a signal applied to each pixel P is set.
  • the voltage waveform Dp is preset as a plurality of types of patterns in accordance with the change in the display state, and is held in the LUT 55A.
  • FIG. 3 shows an example of a signal voltage waveform applied to certain pixels P (m) and P (n).
  • a signal voltage for switching three values of the voltage value V H , the voltage value V L, and 0 V is applied to each of the pixels P (m) and P (n).
  • one writing period (period for black display) with respect to the pixel P (m) is further composed of several tens of frames, and the voltage value has a predetermined pattern (voltage waveform DPb) in these several tens of frames. Switched and applied.
  • one writing period (period for white display) with respect to the pixel P (n) is further composed of several tens of frames, and the voltage value is a predetermined pattern (voltage waveform DPw) in these several tens of frames. Switched and applied.
  • the voltage waveforms DPb and DPw are shown as an array of frame periods, and the voltage values V L , 0 V, and voltage value V H are respectively shown in the periods with numerical values “ ⁇ 1”, “0”, and “1”. This corresponds to the application period.
  • the voltage value V L is a negative value, for example, and can be set to ⁇ 15V as an example.
  • Voltage V H is, for example, a positive value, it is possible to + 15V as an example.
  • the voltage value V L corresponds to a specific example of “first voltage value” of the present disclosure
  • the voltage value V H corresponds to a specific example of “second voltage value”
  • 0 V corresponds to “first voltage value”.
  • This corresponds to a specific example of “three voltage values”.
  • the voltage value is merely an example.
  • the first voltage value and the second voltage value may be values other than ⁇ 15V and 15V.
  • the third voltage value is not limited to 0V, and may be a value shifted from 0V as long as it is an intermediate value between the first voltage value and the second voltage value.
  • the voltage waveform may be set by switching between the two voltage values V L and V H.
  • FIG. 4 shows an example of the voltage waveform Dp.
  • the voltage waveform Dp11 is an example of a voltage waveform for switching the display state from white to white (holding the white display state), for example.
  • the voltage waveform Dp12 is an example of a voltage waveform for switching the display state from white to black.
  • numerical values ( ⁇ 1, 0, 1) representing voltage values are shown for each frame period (1 V) in the upper part of each voltage waveform.
  • the lower part shows the shape of the corresponding voltage waveform.
  • each of the three values of voltage values V L, V H, and 0 V may be applied continuously over two or more frames, or may be switched in units of frames.
  • black display, white display, and the like can be performed.
  • the black particles 141 are secondly applied by applying the voltage value V H to the first electrode 13.
  • White particles 142 move to the first electrode 13 side toward the electrode 15 side, respectively.
  • the pixel region to which the voltage value V H is applied here, the region corresponding to the three pixels P is shown
  • the black particles 141 are uniformly distributed on the second electrode 15 side, and good black (with little shading unevenness) is displayed. it can.
  • the black particles 141 move to the first electrode 13 side, and the white particles 142 move to the second electrode 15 side.
  • the pixel region to which the voltage value V L is applied (here, the region corresponding to the three pixels P is displayed) is displayed in white.
  • the white particles 142 are uniformly distributed on the second electrode 15 side, and a good (small shading unevenness) white color is displayed. it can.
  • a white display pixel P (referred to as pixel P1) and a black display pixel P (referred to as pixel P2) are adjacent to each other, an edge Image quality degradation called ghost is likely to occur. This is due to the following reasons.
  • the voltage waveform Dp for displaying white and the voltage waveform Dp for displaying black often have almost symmetrical waveform patterns (inversion patterns) from the viewpoint of migration of electrophoretic particles. For this reason, the potential difference between the adjacent first electrodes 13 in the pixels P1 and P2 tends to increase. For example, ⁇ 15V is applied to the pixel P1, and + 15V is applied to the pixel P2. As a result, a large potential difference (for example, 30 V) occurs in the lateral direction (direction parallel to the first substrate 11) between the pixels P1 and P2.
  • the black particles 141 and the white particles 142 are affected by the electric field in the lateral direction as described above, and move in an unintended direction (to adjacent pixels).
  • the black particles 141 on the second electrode 15 side are small, and the white particles 142 on the first electrode 13 side are small.
  • the edge portion of the pixel P2 has a color that is mixed with white instead of the original black (a white outline-shaped edge ghost is generated at the edge portion).
  • black is mixed in the edge portion and an edge ghost with a black outline may be generated.
  • the degree of occurrence of the edge ghost varies depending on the structure of the electrophoretic element, the number of black particles 141 and white particles 142, and the like.
  • FIG. 8 shows an example of an image (image 30) displayed on the pixel array unit 10.
  • FIG. 9 shows a part of the area A in FIG. 8 in an enlarged manner.
  • the image 30 includes a black character region 30A representing “H” and a white background region 30B
  • the outline portion of the character region 30A (the character region 30A and the background region 30B Boundary).
  • pixels for example, pixels a11 to a17
  • pixels for example, pixels constituting the black display character area 30A.
  • the adjacent two pixels are, for example, a set of pixel a11 and pixel a21, a set of pixel a12 and pixel a22, a set of pixel a13 and pixel a23, a set of pixel a15 and pixel a23, and a set of pixel a16 and pixel a24.
  • Examples include a set and a set of the pixel a17 and the pixel a25.
  • the combination of two adjacent pixels may be two pixels adjacent in the oblique direction, such as a set of the pixel a11 and the pixel a22 or a set of the pixel a14 and the pixel a23.
  • a comparative example As shown in FIG. 10, after displaying an image 30 (left figure) having a character area 30A and a background area 30B, an entire white image 31 (right figure) is displayed.
  • the above-described edge ghost occurs in an actually displayed image. That is, as shown in the right diagram of FIG. 11, the image 103 is such that only the outline portion (x1) of the character region 30A remains lightly on the white background.
  • FIG. 12 is a schematic diagram for explaining a driving method according to the second comparative example.
  • the upper diagram in FIG. 12 shows a written image and an actually displayed image in time series.
  • the lower diagram shows the voltage (Vcom) to the common electrode and the voltage waveform applied to the pixels i, j, m, and k.
  • Vcom voltage
  • the image 104 with the character “K” is rewritten to the image 107B with the character “H”.
  • the entire screen is changed from the image 104 displaying “K” to the white image 105 (display reset period).
  • the normal image 106A is written (black writing period) in the region (pixel i, m) where no edge ghost occurs.
  • the correction image 107A is further written (monochrome overwriting period).
  • the overwriting correction as described above is performed in units of writing periods similar to the case of displaying normal white and black.
  • various voltage values are switched and applied over several tens of frames.
  • each voltage waveform applied to these pixels P1 and P2 As a combination, a combination in which a difference between the voltage values applied to these two pixels becomes smaller among a plurality of types of voltage waveforms held in advance is used.
  • the contour detection unit 56 detects a contour portion of an image to be displayed, and extracts two adjacent pixels having different display states.
  • the data replacement unit 54 selects the voltage waveform Dpa for the pixels P1 and P2 held in the LUT 55B from among the signals for display corresponding to the voltage waveform Dp held in the LUT 55A. Replace based on the information. This replaces (optimizes) the signal corresponding to the contour portion of the normal image display signal, and outputs the replaced signal to the panel control unit 51. That is, two adjacent pixels corresponding to the contour portion are driven using the voltage waveform Dpa, and pixels other than the contour portion are driven using the voltage waveform Dp.
  • the voltage waveform Dpa is obtained by replacing a part of the voltage waveform Dp so that the difference between the respective voltage values becomes smaller in the combination of the voltage waveforms applied to the pixels P1 and P2. That is, when the voltage value V H is “1” and the voltage value V L is “ ⁇ 1”, the difference between the voltage values applied to the pixels P1 and P2 is the maximum value ( ⁇ 2 or 2). A part of the voltage value of the voltage waveform Dp is replaced with another voltage value so that the number of combinations is further reduced.
  • FIG. 13 shows an example of a voltage waveform Dp (voltage waveforms Dp11, Dp12) applied to the pixels P1, P2 and a voltage waveform Dpa (voltage waveforms Dp11a, Dp12a) formed by replacing a part thereof.
  • Dp voltage waveforms
  • Dpa voltage waveforms Dp11a, Dp12a
  • the voltage waveform Dp11 is a pattern applied to change the display state from white to white
  • the voltage waveform Dp12 is changed from white to black.
  • the voltage waveform Dp11a after replacement has a pattern that changes the display state from white to white
  • the voltage waveform Dp12a has a pattern that changes the display state from white to black.
  • the voltage value applied to the pixel P1 is the voltage value V H , V L or 0 V
  • the voltage value applied to the pixel P2 is the voltage value V H to the pixel P1.
  • the voltage waveform Dpa may be obtained by replacing only one of the combinations of the voltage waveforms Dp applied to the pixels P1 and P2, or may be obtained by replacing both.
  • the combination of the voltage waveforms applied to two adjacent pixels P having different display states from each other is replaced with a combination in which the difference between the voltage values applied to each is reduced.
  • a large potential difference is less likely to occur between adjacent pixels.
  • the voltage waveform Dpa for the contour portion is prepared in advance instead of performing the correction after the “writing period” unit as in the method of the comparative example 2, and thus the correction period. As a result, a desired display with little edge ghost can be achieved in a short time.
  • FIG. 14 schematically shows a case where an image 30 having a character area 30A and a background area 30B (left figure) is displayed and then a white image 31 (right figure) is written.
  • the signal corresponding to the outline portion of the character region 30A (the boundary portion between the character region 30A and the background region 30B) in the normal signal (voltage waveform Dp) for writing the entire white image 31 is described above.
  • the voltage waveform Dpa is used for replacement.
  • the display device 1 holds information about the voltage waveforms Dp and Dpa as LUTs 55A and 55B in advance, and replaces the display image signal based on these information.
  • the configuration of the display device 1 is not limited to this.
  • the display device 1 may have a function of generating information corresponding to the voltage waveforms Dp and Dpa as described above by arithmetic processing in real time.
  • the display device 1 displays (rewrites) the voltage waveforms Dp and Dpa including the combination that reduces the difference value between the voltage values applied to the pixels P1 and P2 as described above.
  • an arithmetic processing unit for calculating is provided. Further, when this arithmetic processing unit is provided, the LUTs 55A and 55B may not be provided.
  • ⁇ Modification 1> the case where the display state of each pixel P changes between black and white has been described as an example. However, a display showing a gray level (gray) between black and white is shown.
  • the driving method described above can also be applied to a change to a state or a change from a gray display state to a white or black display state.
  • FIG. 16 shows an example of the voltage waveform Dp.
  • the voltage waveform Dp21 is a pattern for changing the display state from white to white
  • the voltage waveform Dp22 is from white to black
  • the voltage waveform Dp23 is from black to white
  • the voltage waveform Dp24 is from black to black.
  • the voltage waveform Dp25 is a pattern for changing the display state from white to gray
  • the voltage waveform Dp26 is a pattern for changing the display state from gray to gray.
  • FIG. 17 shows the lower part of these combinations with partial replacement.
  • the voltage waveform Dp21a for changing from white to white and the voltage waveform Dp25 for changing from white to gray are the same as before the replacement.
  • Combinations can be set.
  • FIG. 18 shows the lower part of FIG.
  • the voltage waveform Dp26a for changing from gray to gray as in the case before the replacement and the voltage waveform Dp24 for changing from black to black are the same. Combinations can be set.
  • a comparative example As shown in FIG. 19, after displaying an image 30 (left figure) having a character area 30A and a background area 30B, an entire gray image 32 (right figure) is displayed.
  • an edge ghost as described above occurs in an actually displayed image.
  • the image 108 is such that a blackish line and a whitish line (x2) are generated in a region corresponding to the outline of the character region 30A on a gray background.
  • FIG. 21 schematically shows a case where an image 30 (left figure) having a character area 30A and a background area 30B is displayed and then a full gray image 32 (right figure) is written.
  • the signal corresponding to the outline portion of the character region 30A (the boundary portion between the character region 30A and the background region 30B) out of the normal signal (voltage waveform Dp) for writing the entire gray image 32 is described above.
  • the voltage waveform Dpa is used for replacement.
  • the display body 14 of the electrophoretic element gave as an example what contained two types of electrophoretic particles (black particle 141, white particle 142), the structure of the display body 14 is limited to this. It is not a thing.
  • a fibrous structure may be used.
  • the display body 14 includes, for example, the porous layer 153 and the migrating particles 152 in the insulating liquid 140 as described above.
  • the migrating particles 152 are one or more charged particles that can move between the first electrode 13 and the second electrode 15, and are dispersed in the insulating liquid 140.
  • the migrating particles 152 can move between the first electrode 13 and the second electrode 15 in the insulating liquid 140.
  • the migrating particles 152 are, for example, any one kind or two or more kinds of particles (powder) such as an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, or a polymer material (resin). .
  • the migrating particles 152 may be pulverized particles or capsule particles of resin solids containing the above-described particles.
  • any one of the above may be used, or a plurality of types may be used.
  • the content (concentration) of the migrating particles 152 in the insulating liquid 140 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. This is because shielding (concealment) and mobility of the migrating particles 152 are ensured. In this case, when the amount is less than 0.1% by weight, the migrating particles 152 may hardly shield the porous layer 153. On the other hand, when the content is more than 10% by weight, the dispersibility of the migrating particles 152 is lowered, so that the migrating particles 152 are difficult to migrate, and in some cases, there is a possibility of aggregation.
  • the specific forming material of the migrating particles 152 is selected according to the role of the migrating particles 152 in order to generate contrast, for example.
  • the material in the case of dark display (black display) by the migrating particles 152 is a black material such as a carbon material or a metal oxide.
  • the carbon material is, for example, carbon black
  • the metal oxide is, for example, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide, or copper-iron. -Chromium oxide and the like.
  • a carbon material is preferable. This is because excellent chemical stability, mobility and light absorption are obtained.
  • the material in the case of bright display (white display) by the migrating particles 152 is a white material, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate, Titanium oxide is preferred. This is because it is excellent in electrochemical stability and dispersibility and has high reflectance.
  • the migrating particles 152 are easily dispersed and charged in the insulating liquid 140 for a long period of time and are not easily adsorbed by the porous layer 153. Therefore, a dispersing agent (or a charge adjusting agent) may be used to disperse the migrating particles 152 by electrostatic repulsion, or the migrating particles 152 may be subjected to a surface treatment. Moreover, you may use both together.
  • the porous layer 153 is, for example, a three-dimensional structure (irregular network structure such as a nonwoven fabric) formed by a fibrous structure 154 as shown in FIG.
  • the porous layer 153 has a plurality of gaps (pores 156) through which the migrating particles 152 pass, at places where the fibrous structure 154 does not exist.
  • the fibrous structure 154 includes one or more non-migrating particles 155, and the non-migrating particles 155 are held by the fibrous structure 154.
  • the porous layer 153 that is a three-dimensional structure, one fibrous structure 154 may be entangled at random, or a plurality of fibrous structures 154 may be gathered and overlap at random. However, both may be mixed.
  • each fibrous structure 154 preferably holds one or more non-migrating particles 155. Note that FIG. 23 illustrates a case where the porous layer 153 is formed of a plurality of fibrous structures 154.
  • the reason why the non-migrating particles 155 are included in the fibrous structure 154 is that the light reflectance of the porous layer 153 becomes higher because external light is more easily diffusely reflected. Thereby, contrast becomes higher.
  • the fibrous structure 154 is a fibrous substance having a sufficiently large length with respect to the fiber diameter (diameter).
  • the fibrous structure 154 includes, for example, any one type or two or more types such as a polymer material or an inorganic material, and may include other materials.
  • Polymer materials include, for example, nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, polyvinylidene fluoride, polyhexa Fluoropropylene, cellulose acetate, collagen, gelatin, chitosan or copolymers thereof.
  • the inorganic material is, for example, titanium oxide.
  • a polymer material is preferable as a material for forming the fibrous structure 154.
  • the reactivity (photoreactivity, etc.) is low (chemically stable), so that an unintended decomposition reaction of the fibrous structure 154 is suppressed.
  • the surface of the fibrous structure 154 is preferably covered with an arbitrary protective layer.
  • the shape (appearance) of the fibrous structure 154 is not particularly limited as long as it is a fibrous shape having a sufficiently large length with respect to the fiber diameter as described above. Specifically, it may be linear, may be curled, or may be bent in the middle. Moreover, you may branch to 1 or 2 or more directions on the way, not only extending in one direction.
  • the formation method of the fibrous structure 154 is not particularly limited. For example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, A sol-gel method or a spray coating method is preferred. This is because a fibrous substance having a sufficiently large length with respect to the fiber diameter can be easily and stably formed.
  • the fibrous structure 154 preferably has an optical reflection characteristic different from that of the migrating particles 152. For example, when dark display is performed by the migrating particles 152, black migrating particles 152 and white fibrous structures 154 are used. When bright display is performed by the migrating particles 152, white migrating particles 152 and a black fibrous structure 154 are used.
  • Non-electrophoretic particles 155 are particles that are fixed to the fibrous structure 154 and do not migrate electrically.
  • the material for forming the non-electrophoretic particles 155 is, for example, the same as the material for forming the electrophoretic particles 152, and is selected according to the role played by the non-electrophoretic particles 155.
  • the non-migrating particles 155 have optical reflection characteristics different from those of the migrating particles 152.
  • the configuration of the display body 14 described above is an example, and other configurations may be used.
  • another configuration that does not have the porous layer 153 for example, a capsule shape, or an electrochromic display element may be used.
  • the display device and the driving method thereof can be applied to various reflective display elements that can maintain a display state even when an external electric field is interrupted.
  • the display device 1 can be applied to a part of various electronic devices or clothing, and the type of the electronic device is not particularly limited.
  • the display device 1 can be mounted on, for example, the following electronic devices.
  • the configuration of the electronic device or the like described below is merely an example, and the configuration can be changed as appropriate.
  • 24A and 24B show the external configuration of an electronic book.
  • the electronic book includes, for example, a display unit 110, a non-display unit 120, and an operation unit 130.
  • the operation unit 130 may be provided on the front surface of the non-display unit 120 as illustrated in FIG. 24A, or may be provided on the upper surface as illustrated in FIG. 24B.
  • the display unit 110 includes the display device 1.
  • the display device 1 may be mounted on a PDA (Personal Digital Assistants) having the same configuration as the electronic book shown in FIGS. 24A and 24B.
  • PDA Personal Digital Assistants
  • FIG. 25 shows the appearance of a tablet personal computer.
  • the tablet personal computer has, for example, a touch panel unit 310 and a housing 320, and the touch panel unit 310 includes the display device 1.
  • the display device 1 described above can be applied to a part of clothing such as a watch (watch), a bag, clothes, a hat, glasses and shoes as a so-called wearable terminal. Below, an example of such an electronic device integrated with clothing is shown.
  • 26A and 26B show the appearance of an electronic timepiece (a wristwatch integrated electronic device).
  • the electronic timepiece has, for example, a dial (character information display portion) 410 and a band portion (color pattern display portion) 420, and the dial 410 and the band portion 420 include the display device 1. It is configured. For example, various characters and designs are displayed on the dial plate 410 as shown in FIGS. 26A and 26B by display driving using the above-described electrophoretic element.
  • the band unit 420 is a part that can be attached to an arm or the like, for example. By using the display device 1 in the band unit 420, various color patterns can be displayed, and the design of the band unit 420 can be changed from the example of FIG. 26A to the example of FIG. 26B. .
  • Electronic devices that are also useful in fashion applications can be realized.
  • the effect demonstrated in the said embodiment etc. is an example, The effect of this indication may be other effects and may also contain other effects.
  • a pixel portion including an electrophoretic element and having a plurality of pixels;
  • a drive unit that performs driving to change the display state of the pixel by applying a voltage waveform that switches at least two values over a plurality of frames to each pixel of the pixel unit;
  • the driving is performed using a combination of smaller voltage values applied to the first and second pixels as a combination of voltage waveforms applied to the first and second pixels.
  • the drive unit is Applying the first voltage waveform for image display to each pixel other than the first and second pixels to perform the driving, The driving is performed by applying a second voltage waveform obtained by replacing a part of the first voltage waveform to one or both of the first and second pixels.
  • Display device (3) A first holding unit for holding the first voltage waveform; The display device according to (2), further comprising: a second holding unit that holds the second voltage waveform.
  • (5) 5 The display device according to any one of (1) to (4), further including a detection unit that detects a contour portion including the first and second pixels in an image displayed on the pixel unit.
  • the display device according to any one of (1) to (5), wherein the voltage waveform has a shape that switches between at least a negative first voltage value and a positive second voltage value. (7) Each of the voltage waveforms has a shape for switching the first voltage value, the second voltage value, and a third voltage value intermediate between the first voltage value and the second voltage value. Display device. (8) The combination of the voltage waveforms applied to the first and second pixels is such that one of the first and second pixels has the first voltage value and the other pixel has the second voltage value.
  • each frame is a combination in which relatively few frames are applied.
  • the electrophoretic element is: A first electrode provided for each pixel; A second electrode disposed opposite to the plurality of first electrodes; Any of the above (1) to (9), comprising: a display body that is sealed between the plurality of first electrodes and the second electrode, includes migrating particles, and changes light reflection characteristics according to an applied voltage.
  • the display apparatus as described in any one.
  • (12) Applying the first voltage waveform for image display to each pixel other than the first and second pixels to perform the driving, The driving is performed by applying a second voltage waveform obtained by replacing a part of the first voltage waveform to one or both of the first and second pixels.
  • Driving method (13) The driving method according to (11) or (12), wherein a contour portion including the first and second pixels in the image is detected.
  • Each of the voltage waveforms has a shape for switching the first voltage value, the second voltage value, and a third voltage value intermediate between the first voltage value and the second voltage value.
  • Driving method (16) The combination of the voltage waveforms applied to the first and second pixels is such that one of the first and second pixels has the first voltage value and the other pixel has the second voltage value.
  • the driving method according to (14), wherein each of the frames is a combination in which relatively few frames are applied.
  • a pixel portion including an electrophoretic element and having a plurality of pixels;
  • a driving unit that performs driving to change a display state of the pixel by applying a voltage waveform that switches at least two values over a plurality of frames to each pixel of the pixel unit; and
  • the drive is performed using a combination of smaller voltage values applied to the first and second pixels as a combination of voltage waveforms applied to the first and second pixels.

Abstract

A display device provided with: a pixel part including an electrophoresis element and having a plurality of pixels; and a drive part for performing drive by applying a voltage waveform for switching at least two values to each pixel of the pixel part, extending over multiple frames, and causing the display state of the pixel to change. When adjacent first and second pixels out of the plurality of pixels have mutually different display states, the drive part performs drive using such a combination of voltage waveforms applied to the first and second pixels that the difference between the voltage values applied to the first and second pixels is smaller than in other combinations.

Description

表示装置、駆動方法および電子機器Display device, driving method, and electronic apparatus
 本開示は、電気泳動素子を用いた表示装置および駆動方法、ならびに電子機器に関する。 The present disclosure relates to a display device using an electrophoretic element, a driving method, and an electronic apparatus.
 電気泳動素子を用いたアクティブマトリクス型の表示装置では、画像の書き換えを行う際に、それまで表示されていた画像の情報と、次に表示したい画像の情報とに基づいて、各画素に印加される電圧波形(Waveform)が決定され、この電圧波形を用いて各画素が表示駆動される。 In an active matrix display device using an electrophoretic element, when an image is rewritten, it is applied to each pixel based on the information of the image that has been displayed so far and the information of the image that is to be displayed next. A voltage waveform (Waveform) is determined, and each pixel is driven to display using this voltage waveform.
 ところが、このような電気泳動素子を用いた表示装置では、書き換え後の画像に前の画像の一部が残る現象(残像)が生じたり、画像の輪郭部分の画質が劣化する現象(エッジゴースト)が発生することがある。 However, in a display device using such an electrophoretic element, a phenomenon in which a part of the previous image remains in the rewritten image (afterimage) occurs, or a phenomenon in which the image quality of the contour portion of the image deteriorates (edge ghost). May occur.
 そこで、例えば特許文献1には、画像に生じたエッジゴーストを補正する手法が提案されている。この手法では、エッジゴーストが生じた部分に対して、それを打ち消すような電圧を印加することにより、該部分の表示状態を変化させてエッジゴーストを目立たなくすることができる。 Therefore, for example, Patent Document 1 proposes a method for correcting an edge ghost generated in an image. In this method, by applying a voltage that cancels the edge ghost to the portion where the edge ghost has occurred, the display state of the portion can be changed to make the edge ghost inconspicuous.
特開2012-93406号公報JP 2012-93406 A
 しかしながら、上記特許文献1の手法では、エッジゴーストを補正するために更に電圧を印加する(上書きする)時間を要する。このため、エッジゴーストが強く生じている場合には、補正に長時間を要する、あるいは補正自体が困難となる。また、上書きによって新たなエッジゴーストが発生する場合もある。このように、発生したエッジゴーストを事後的に補正する手法では、エッジゴーストによる画質劣化を十分に抑制することが困難である。 However, in the method of Patent Document 1, it takes time to further apply (overwrite) a voltage in order to correct the edge ghost. For this reason, when the edge ghost is strong, the correction takes a long time or the correction itself becomes difficult. In addition, a new edge ghost may occur due to overwriting. As described above, with the method of correcting the generated edge ghost afterwards, it is difficult to sufficiently suppress image quality deterioration due to the edge ghost.
 したがって、画質劣化を抑制することが可能な表示装置および駆動方法ならびに電子機器を提供することが望ましい。 Therefore, it is desirable to provide a display device, a driving method, and an electronic device that can suppress image quality deterioration.
 本開示の一実施の形態の表示装置は、電気泳動素子を含むと共に複数の画素を有する画素部と、画素部の各画素に対し、少なくとも2値を切り替える電圧波形を複数フレームにわたって印加することにより画素の表示状態を変化させる駆動を行う駆動部とを備える。駆動部は、複数の画素のうちの隣り合う第1および第2の画素が互いに異なる表示状態を有する場合に、第1および第2の画素に印加する各電圧波形の組み合わせとして、第1および第2の画素に対して印加される各電圧値の差分がより小さくなる組み合わせを用いて、駆動を行うものである。 A display device according to an embodiment of the present disclosure includes a pixel unit including an electrophoretic element and having a plurality of pixels, and applying a voltage waveform for switching at least two values to each pixel of the pixel unit over a plurality of frames. A driving unit that performs driving to change the display state of the pixel. When the first and second pixels adjacent to each other among the plurality of pixels have different display states, the driving unit includes first and second voltage waveforms as combinations of the voltage waveforms applied to the first and second pixels. The driving is performed using a combination in which the difference between the voltage values applied to the two pixels is smaller.
 本開示の一実施の形態の駆動方法は、電気泳動素子を含む複数の画素のそれぞれに対し、少なくとも2値を切り替える電圧波形を複数フレームにわたって印加して画素の表示状態を変化させる駆動を行い、複数の画素のうちの隣り合う第1および第2の画素が互いに異なる表示状態を有する場合に、第1および第2の画素に印加する各電圧波形の組み合わせとして、第1および第2の画素に対して印加される各電圧値の差分がより小さくなる組み合わせを用いる。 A driving method according to an embodiment of the present disclosure performs driving for changing a display state of a pixel by applying a voltage waveform for switching at least two values over a plurality of frames to each of a plurality of pixels including an electrophoretic element. When adjacent first and second pixels of the plurality of pixels have different display states, combinations of voltage waveforms applied to the first and second pixels are applied to the first and second pixels. On the other hand, a combination in which the difference between the applied voltage values becomes smaller is used.
 本開示の一実施の形態の電子機器は、上記本開示の一実施の形態の表示装置を備えたものである。 An electronic apparatus according to an embodiment of the present disclosure includes the display device according to the embodiment of the present disclosure.
 本開示の一実施の形態の表示装置および駆動方法ならびに電子機器では、隣り合う第1および第2の画素が互いに異なる表示状態を有する場合に、第1および第2の画素に印加する各電圧波形との組み合わせとして、第1および第2の画素に対して印加される各電圧値の差分がより小さくなる組み合わせを用いる。これにより、隣り合う第1および第2の画素間において横方向に生じる電界が低減され、エッジゴーストの発生が抑制される。 In the display device, the driving method, and the electronic device according to the embodiment of the present disclosure, each voltage waveform applied to the first and second pixels when the adjacent first and second pixels have different display states. As the combination, the combination in which the difference between the voltage values applied to the first and second pixels becomes smaller is used. Thereby, the electric field generated in the horizontal direction between the adjacent first and second pixels is reduced, and the occurrence of edge ghost is suppressed.
 本開示の一実施の形態の表示装置および駆動方法ならびに電子機器によれば、隣り合う第1および第2の画素が互いに異なる表示状態を有する場合に、第1および第2の画素に印加する各電圧波形との組み合わせとして、第1および第2の画素に対して印加される各電圧値の差分がより小さくなる組み合わせを用いる。これにより、隣り合う第1および第2の画素が異なる表示状態を有する場合に、エッジゴーストの発生を抑制することができる。よって、画質劣化を抑制することが可能となる。 According to the display device, the driving method, and the electronic device according to the embodiment of the present disclosure, when the first and second pixels adjacent to each other have different display states, each applied to the first and second pixels As a combination with the voltage waveform, a combination in which the difference between the voltage values applied to the first and second pixels is smaller is used. Thereby, when adjacent first and second pixels have different display states, the occurrence of edge ghost can be suppressed. Therefore, it is possible to suppress image quality deterioration.
 尚、上記内容は本開示の一例である。本開示の効果は、上述したものに限らず、他の異なる効果であってもよいし、更に他の効果を含んでいてもよい。 The above content is an example of the present disclosure. The effects of the present disclosure are not limited to those described above, and may be other different effects or may include other effects.
本開示の一実施形態に係る表示装置の全体構成を表す機能ブロック図である。1 is a functional block diagram illustrating an overall configuration of a display device according to an embodiment of the present disclosure. 図1に示した画素アレイ部の要部構成を表す断面図である。FIG. 2 is a cross-sectional view illustrating a main configuration of a pixel array unit illustrated in FIG. 1. 表示駆動動作を説明するための模式図である。It is a schematic diagram for demonstrating a display drive operation | movement. 各画素を駆動する電圧波形の一例を表す図である。It is a figure showing an example of the voltage waveform which drives each pixel. 黒表示状態を表す断面模式図である。It is a cross-sectional schematic diagram showing a black display state. 白表示状態を表す断面模式図である。It is a cross-sectional schematic diagram showing a white display state. 黒表示状態と白表示状態との境界領域を表す断面模式図である。It is a cross-sectional schematic diagram showing the boundary area | region of a black display state and a white display state. 画素アレイ部に表示される画像の一例を表す図である。It is a figure showing an example of the image displayed on a pixel array part. 図8の一部の領域を拡大した図である。It is the figure which expanded the one part area | region of FIG. 比較例1に係る駆動方法により書き込む画像を表す模式図である。6 is a schematic diagram illustrating an image written by a driving method according to Comparative Example 1. FIG. 比較例1に係る駆動方法により表示される画像を表す模式図である。12 is a schematic diagram illustrating an image displayed by a driving method according to Comparative Example 1. FIG. 比較例2に係る駆動方法を説明するための模式図である。10 is a schematic diagram for explaining a driving method according to Comparative Example 2. FIG. 本実施の形態に係る駆動方法に用いる電圧波形を模式図である。It is a schematic diagram of the voltage waveform used for the driving method according to the present embodiment. 実施例1に係る駆動方法により書き込む画像を表す模式図である。FIG. 6 is a schematic diagram illustrating an image written by the driving method according to the first embodiment. 実施例1に係る駆動方法により表示される画像を表す模式図である。6 is a schematic diagram illustrating an image displayed by the driving method according to Embodiment 1. FIG. 変形例1に係る電圧波形の一例を表す図である。6 is a diagram illustrating an example of a voltage waveform according to Modification 1. FIG. 白表示状態を保持する画素と白からグレーに表示状態が変化する画素との各電圧波形の組み合わせの置換例を表す図である。It is a figure showing the example of substitution of the combination of each voltage waveform of the pixel holding a white display state, and the pixel which a display state changes from white to gray. 黒表示状態を保持する画素とグレーの表示状態を保持する画素との各電圧波形の組み合わせの置換例を表す図である。It is a figure showing the example of substitution of the combination of each voltage waveform of the pixel holding a black display state, and the pixel holding a gray display state. 比較例3に係る駆動方法により書き込む画像を表す模式図である。10 is a schematic diagram illustrating an image written by a driving method according to Comparative Example 3. FIG. 比較例3に係る駆動方法により表示される画像を表す模式図である。10 is a schematic diagram illustrating an image displayed by a driving method according to Comparative Example 3. FIG. 実施例2に係る駆動方法により書き込む画像を表す模式図である。6 is a schematic diagram illustrating an image written by a driving method according to Embodiment 2. FIG. 実施例2に係る駆動方法により表示される画像を表す模式図である。FIG. 10 is a schematic diagram illustrating an image displayed by a driving method according to a second embodiment. 変形例2に係る表示体を説明するための模式図である。10 is a schematic diagram for explaining a display body according to Modification 2. FIG. 適用例1の外観を表す斜視図である。14 is a perspective view illustrating an appearance of application example 1. FIG. 図24Aに示した電子ブックの他の例を表す斜視図である。FIG. 24B is a perspective view illustrating another example of the electronic book illustrated in FIG. 24A. 適用例2の外観を表す斜視図である。12 is a perspective view illustrating an appearance of application example 2. FIG. 適用例3の外観を表す斜視図である。12 is a perspective view illustrating an appearance of application example 3. FIG. 図26Aに示した電子時計の他の表示例を表す斜視図である。FIG. 26B is a perspective view illustrating another display example of the electronic timepiece illustrated in FIG. 26A.
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。
1.実施の形態(隣接画素に対して所定の組み合わせとなる電圧波形をそれぞれ印加して駆動を行う電気泳動型の表示装置の例)
2.変形例1(グレーの表示状態を有する画素の駆動例)
3.変形例2(表示体に多孔質層を用いた場合の例)
4.適用例(電子機器の例)
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The order of explanation is as follows.
1. Embodiment (an example of an electrophoretic display device that is driven by applying voltage waveforms in a predetermined combination to adjacent pixels)
2. Modification 1 (Driving example of a pixel having a gray display state)
3. Modification 2 (example when a porous layer is used for the display body)
4). Application examples (examples of electronic devices)
<実施の形態>
[構成]
 図1は、本開示の第1の実施形態の表示装置(表示装置1)の全体構成を表したものである。表示装置1は、例えば電気泳動素子を用いて画像を表示する反射型の表示装置である。
<Embodiment>
[Constitution]
FIG. 1 illustrates an overall configuration of a display device (display device 1) according to a first embodiment of the present disclosure. The display device 1 is a reflective display device that displays an image using, for example, an electrophoretic element.
 表示装置1は、例えば、画素アレイ部10と、パネル制御部51と、ゲート駆動ユニット52と、ソース駆動ユニット53と、データ置換部54と、中央制御部50とを備える。この表示装置1は、更に、LUT(ルックアップテーブル)55A,55Bと、輪郭(エッジ)検出部56と、記憶部57A,57Bとを備えている。尚、本実施の形態におけるパネル制御部51、ゲート駆動ユニット52、ソース駆動ユニット53、データ置換部54および中央制御部50が、本開示における「駆動部」の一具体例に相当する。また、LUT55A,55Bが、本開示の「第1の保持部」および「第2の保持部」の一具体例に相当する。 The display device 1 includes, for example, a pixel array unit 10, a panel control unit 51, a gate drive unit 52, a source drive unit 53, a data replacement unit 54, and a central control unit 50. The display device 1 further includes LUTs (look-up tables) 55A and 55B, a contour (edge) detection unit 56, and storage units 57A and 57B. The panel control unit 51, the gate drive unit 52, the source drive unit 53, the data replacement unit 54, and the central control unit 50 in the present embodiment correspond to a specific example of “drive unit” in the present disclosure. Further, the LUTs 55A and 55B correspond to specific examples of “first holding unit” and “second holding unit” of the present disclosure.
 画素アレイ部10は、例えばマトリクス状に配置された複数の画素Pを含み、薄膜トランジスタ(TFT:Thin Film Transistor)を用いたアクティブマトリクス駆動方式によって表示駆動されるものである。画素アレイ部10は、詳細は後述するが、例えば電気泳動素子を含み、画素P毎に光反射率を変化させることにより画像(文字など)を表示するものである。この画素アレイ部10は、ゲート駆動ユニット52およびソース駆動ユニット53に接続されている。ゲート駆動ユニット52から行方向に沿って延設された複数のゲート線(ゲート電圧供給線)110Gと、ソース駆動ユニット53から列方向に沿って延設された複数のソース線(ソース電圧供給線)110Sとの各交点に、画素Pが形成されている。 The pixel array unit 10 includes, for example, a plurality of pixels P arranged in a matrix, and is driven to display by an active matrix driving method using a thin film transistor (TFT: Thin Film Transistor). As will be described in detail later, the pixel array unit 10 includes, for example, an electrophoretic element, and displays an image (such as text) by changing the light reflectance for each pixel P. The pixel array unit 10 is connected to the gate drive unit 52 and the source drive unit 53. A plurality of gate lines (gate voltage supply lines) 110G extending from the gate drive unit 52 along the row direction, and a plurality of source lines (source voltage supply lines) extending from the source drive unit 53 along the column direction. ) A pixel P is formed at each intersection with 110S.
 パネル制御部51は、画素アレイ部10を表示駆動するために必要な信号の生成を行うものであり、例えばタイミングコトローラおよび表示用信号生成部等を有している。このパネル制御部51は、共通電圧供給線110Cを介して、例えば各画素Pに対して共通電位(グランド電位あるいはオフセット電位)を供給可能となっている。パネル制御部51は、例えばフレーム単位でのパルス幅変調(PMW:Pulse Width Modulation)方式により、画素P毎の階調表示を行うように構成されている。即ち、各画素Pに対して複数のフレームにわたって少なくとも2値を切り替えて印加し、画素P毎の表示状態を変化させることにより、画素アレイ部10の表示駆動を行うものである。 The panel control unit 51 generates signals necessary to display and drive the pixel array unit 10, and includes, for example, a timing controller and a display signal generation unit. The panel control unit 51 can supply a common potential (ground potential or offset potential) to each pixel P, for example, via the common voltage supply line 110C. The panel control unit 51 is configured to perform gradation display for each pixel P by, for example, a pulse width modulation (PMW: Pulse Width Modulation) method in units of frames. That is, display driving of the pixel array unit 10 is performed by switching and applying at least two values to each pixel P over a plurality of frames and changing the display state of each pixel P.
 ゲート駆動ユニット52は、パネル制御部51から供給される制御信号に従って複数のゲート線110Gに対してゲート信号(走査信号)を順次印加することにより、複数の画素Pを順次選択するものである。ソース駆動ユニット53は、パネル制御部51から供給される制御信号に従って、画像信号に対応するアナログの信号を生成し、各ソース線110Sに印加するものである。ソース駆動ユニット53により各ソース線110Sに対して印加された表示用の信号(後述の電圧波形Dp,Dpaに対応する信号)が、ゲート駆動ユニット52により選択された画素Pに対して印加されるようになっている。 The gate driving unit 52 sequentially selects a plurality of pixels P by sequentially applying gate signals (scanning signals) to the plurality of gate lines 110G in accordance with a control signal supplied from the panel control unit 51. The source driving unit 53 generates an analog signal corresponding to the image signal in accordance with a control signal supplied from the panel control unit 51, and applies the analog signal to each source line 110S. Signals for display (signals corresponding to voltage waveforms Dp and Dpa described later) applied to each source line 110S by the source drive unit 53 are applied to the pixel P selected by the gate drive unit 52. It is like that.
 データ置換部54は、画像表示用の信号(電圧波形Dpに対応する信号)のうち輪郭部分に相当する画素の信号を、予め保持された電圧波形(電圧波形Dpa)についての情報に基づいて置換する処理を行うものである。具体的には、データ置換部54は、画像表示用の信号としてLUT55Aに保持された複数種類の電圧波形Dpのうちの一部(輪郭部分に相当する隣接2画素に与える電圧波形)を、LUT55Bに保持された情報を用いて置換する処理を行うものである。 The data replacement unit 54 replaces the signal of the pixel corresponding to the contour portion of the image display signal (signal corresponding to the voltage waveform Dp) based on information about the voltage waveform (voltage waveform Dpa) held in advance. The process which performs is performed. Specifically, the data replacement unit 54 converts a part of the plurality of types of voltage waveforms Dp held in the LUT 55A as image display signals (voltage waveforms given to adjacent two pixels corresponding to the contour portion) into the LUT 55B. The replacement process is performed using the information held in.
 LUT55A(第1の保持部)は、画像表示用の信号の電圧波形Dp(第1の電圧波形)についての情報を保持するものである。電気泳動素子を用いた表示駆動では、画素の表示状態の変化、例えば黒から白、白から黒、黒から黒、白から白、といった変化に応じて、画素に印加される電圧波形(Waveform)は様々なパターンをとりうる。換言すると、画像の書き換えの際には、それまで表示されていた画像の情報(記憶部57Aに保持された画像情報)と、次に表示したい画像の情報(記憶部57Bに保持された画像情報)とに基づいて、各画素に印加される電圧波形Dpが設定される。これらの表示状態の変化に応じた複数種類の電圧波形Dpについての情報が、LUT55Aとして予め保持されている。 The LUT 55A (first holding unit) holds information about the voltage waveform Dp (first voltage waveform) of the image display signal. In display driving using an electrophoretic element, a voltage waveform (Waveform) applied to a pixel in response to a change in the display state of the pixel, for example, a change from black to white, white to black, black to black, or white to white. Can take various patterns. In other words, when rewriting an image, information on the image that has been displayed so far (image information held in the storage unit 57A) and information on an image that is to be displayed next (image information held in the storage unit 57B). ) And the voltage waveform Dp applied to each pixel is set. Information about a plurality of types of voltage waveforms Dp corresponding to changes in these display states is held in advance as an LUT 55A.
 LUT55B(第2の保持部)は、画像表示用の信号の電圧波形Dp(LUT55Aに保持された電圧波形)の一部が置換されてなる電圧波形Dpa(第2の電圧波形)についての情報を保持するものである。このLUT55Bに保持される電圧波形Dpaは、画像の輪郭部分に対応する領域に配置された隣接2画素(後述の画素P1,P2)のうちの一方または両方に印加されるためのものである。 The LUT 55B (second holding unit) stores information on the voltage waveform Dpa (second voltage waveform) obtained by replacing a part of the voltage waveform Dp (voltage waveform held in the LUT 55A) of the image display signal. It is to hold. The voltage waveform Dpa held in the LUT 55B is to be applied to one or both of two adjacent pixels (pixels P1 and P2 described later) arranged in a region corresponding to the contour portion of the image.
 輪郭検出部56(検出部)は、画素アレイ部10に表示する画像のうち輪郭(エッジ)部分を、例えば所定の演算処理により検出する。具体的には、隣接する画素の各データ間の微分演算処理を用いた手法、あるいはエッジ検出フィルタ等のアルゴリズムを用いた手法により検出することができる。この輪郭検出部56が、表示する画像において、輪郭部分に配置された画素(表示状態の異なる、隣り合う2つの画素)を検出する。 The contour detection unit 56 (detection unit) detects a contour (edge) portion of the image displayed on the pixel array unit 10 by, for example, a predetermined calculation process. Specifically, it can be detected by a technique using differential calculation processing between data of adjacent pixels or a technique using an algorithm such as an edge detection filter. The contour detection unit 56 detects pixels (two adjacent pixels having different display states) arranged in the contour portion in the image to be displayed.
 本実施の形態では、表示状態の異なる隣り合う2画素に対して、印加される電圧波形の組み合わせを最適化する駆動がなされる。具体的には、隣り合う2つの画素が互いに異なる表示状態(白、黒またはグレー等)を有する場合に、これらの2画素に印加する各電圧波形との組み合わせとして、LUT55A,55Bに保持された複数種類の電圧波形のうち、これら2画素に対して印加される各電圧値の差分がより小さくなる組み合わせが用いられる。 In the present embodiment, driving is performed to optimize the combination of applied voltage waveforms for two adjacent pixels having different display states. Specifically, when two adjacent pixels have different display states (white, black, gray, etc.), they are held in LUTs 55A and 55B as a combination with each voltage waveform applied to these two pixels. Among a plurality of types of voltage waveforms, a combination in which the difference between the voltage values applied to these two pixels is smaller is used.
 中央制御部50は、例えば表示制御を含む全ての処理を担う、表示装置1の中心部分であり、具体的には、CPU(Central Processing Unit)、ASIC(Application Specific Integrated Circuit)またはFPGA(Field-Programmable Gate Array)などの部品を用いて構成される。 The central control unit 50 is a central part of the display device 1 that performs all processes including display control, for example, specifically, a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-). It consists of parts such as Programmable (Gate Array).
 記憶部57Aは、例えば画素アレイ部10に既に表示した画像(書き込み済の画像)の情報を格納する画像メモリである。記憶部57Bは、例えば画素アレイ部10にこれから表示する画像(書き込み予定の画像)の情報を格納する画像メモリである。このように、ここでは、表示前後の画像の各情報が別々に保持されているが、これらの情報は1つの記憶部に保持されていてもよい。 The storage unit 57A is an image memory that stores information on an image (written image) that has already been displayed on the pixel array unit 10, for example. The storage unit 57B is an image memory that stores information on an image to be displayed (image to be written) in the pixel array unit 10, for example. As described above, the pieces of information of the images before and after display are separately held here, but these pieces of information may be held in one storage unit.
(画素アレイ部10の詳細構成例)
 図2は、表示装置1の画素アレイ部10の要部構成を表したものである。画素アレイ部10は、例えば、第1基板11上に、TFT層12、第1電極13、表示体14および第2電極15および第2基板16をこの順に備えたものである。画素アレイ部10では、表示体14が、図示しない隔壁によって所定の領域毎に分離されていてもよいし、隔壁が設けられていなくともよい。
(Detailed configuration example of the pixel array unit 10)
FIG. 2 illustrates a main configuration of the pixel array unit 10 of the display device 1. The pixel array unit 10 includes, for example, a TFT layer 12, a first electrode 13, a display body 14, a second electrode 15, and a second substrate 16 in this order on a first substrate 11. In the pixel array unit 10, the display body 14 may be separated for each predetermined region by a partition (not shown), or the partition may not be provided.
 第1基板11は、例えば無機材料、金属材料またはプラスチックなどにより構成されている。無機材料は、例えば、ケイ素(Si)、酸化ケイ素(SiOx)、窒化ケイ素(S
iNx)または酸化アルミニウム(AlOx)などである。酸化ケイ素には、例えばガラスまたはスピンオングラス(SOG)などが含まれる。金属材料は、例えばアルミニウム(Al)、ニッケル(Ni)またはステンレスなどである。プラスチックは、例えば、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)またはポリエチルエーテルケトン(PEEK)などである。
The first substrate 11 is made of, for example, an inorganic material, a metal material, or plastic. Examples of the inorganic material include silicon (Si), silicon oxide (SiO x ), and silicon nitride (S
iN x ) or aluminum oxide (AlO x ). Silicon oxide includes, for example, glass or spin-on-glass (SOG). Examples of the metal material include aluminum (Al), nickel (Ni), and stainless steel. Examples of the plastic include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethyl ether ketone (PEEK).
 TFT層12は、例えばTFT(Thin Film Transistor:薄膜トランジスタ)を含む画素回路や各種配線が形成された層である。具体的には、TFT層12は、例えばTFT、容量素子、ゲート線(110G)、ソース線(110S)および共通電圧供給線(110C)などを含んでいる。TFTは、画素P毎に配置されて第1電極13と電気的に接続されている。これにより、各画素Pの第1電極13に対し、表示画像に応じた信号電圧を印加できるようになっている。このTFT層12の表面は、平坦化絶縁膜によって覆われている。 The TFT layer 12 is a layer in which, for example, pixel circuits and various wirings including TFTs (Thin Film Transistors) are formed. Specifically, the TFT layer 12 includes, for example, a TFT, a capacitor, a gate line (110G), a source line (110S), a common voltage supply line (110C), and the like. The TFT is disposed for each pixel P and is electrically connected to the first electrode 13. As a result, a signal voltage corresponding to the display image can be applied to the first electrode 13 of each pixel P. The surface of the TFT layer 12 is covered with a planarization insulating film.
 第1電極13は、マトリクス状に複数配置されている(画素P毎に配置されている)。この第1電極13は、例えば、金(Au)、銀(Ag)および銅(Cu)などの導電性材料のうち少なくとも1種を含んでいる。 A plurality of first electrodes 13 are arranged in a matrix (arranged for each pixel P). The first electrode 13 includes, for example, at least one of conductive materials such as gold (Au), silver (Ag), and copper (Cu).
 表示体14は、第1電極13と第2電極15とを通じて印加された電圧に応じて光反射率(光反射特性)が変化する(コントラストを生じさせる)ように構成されている。例えば、図2に示した例では、表示体14は、例えば絶縁性液体140中に、光反射率の異なる複数種類の泳動粒子、例えば正(+)に帯電した黒色粒子141と、負(-)に帯電した白色粒子142とを含んでいる。 The display body 14 is configured such that the light reflectance (light reflection characteristics) changes (generates contrast) according to the voltage applied through the first electrode 13 and the second electrode 15. For example, in the example shown in FIG. 2, the display body 14 includes, for example, a plurality of types of migrating particles having different light reflectivities in the insulating liquid 140, for example, positive (+) charged black particles 141, and negative (− ) Charged white particles 142.
 絶縁性液体140は、例えば有機溶媒などの非水溶媒であり、具体的には、パラフィンまたはイソパラフィンなどである。この絶縁性液体140の粘度および屈折率は、できるだけ低いことが好ましい。泳動粒子(黒色粒子141,白色粒子142)の移動性(応答速度)が向上すると共に、それに応じて泳動粒子の移動に要するエネルギー(消費電力)が低くなるからである。なお、絶縁性液体140は、必要に応じて、各種材料を含んでいてもよい。例えば、絶縁性液体140は、着色剤、電荷制御剤、分散安定剤、粘度調製剤、界面活性剤または樹脂などを含んでいてもよい。 The insulating liquid 140 is a nonaqueous solvent such as an organic solvent, and is specifically paraffin or isoparaffin. It is preferable that the viscosity and refractive index of the insulating liquid 140 be as low as possible. This is because the mobility (response speed) of the migrating particles (the black particles 141 and the white particles 142) is improved, and the energy (power consumption) required for the migrating particles to move is accordingly reduced. The insulating liquid 140 may contain various materials as necessary. For example, the insulating liquid 140 may include a colorant, a charge control agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant, or a resin.
 泳動粒子(黒色粒子141,白色粒子142)は、第1電極13と第2電極15との間を移動可能な1または2以上の荷電粒子であり、絶縁性液体140中に分散されている。泳動粒子は、正または負に帯電しており、例えば、有機顔料、無機顔料、染料、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料(樹脂)などのいずれか1種類または2種類以上の粒子(粉末)である。なお、泳動粒子152は、上記した粒子を含む樹脂固形分の粉砕粒子またはカプセル粒子などでもよい。ただし、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料に該当する材料は、有機顔料、無機顔料または染料に該当する材料から除かれることとする。この泳動粒子152としては、上記の中のいずれか1種類が用いられてもよいし、複数種類のものが用いられてもよい。 Electrophoretic particles (black particles 141 and white particles 142) are one or more charged particles that can move between the first electrode 13 and the second electrode 15, and are dispersed in the insulating liquid 140. The migrating particles are positively or negatively charged, and for example, any one or two of organic pigments, inorganic pigments, dyes, carbon materials, metal materials, metal oxides, glasses, polymer materials (resins), and the like. These particles (powder). The migrating particles 152 may be pulverized particles or capsule particles of resin solids containing the above-described particles. However, materials corresponding to carbon materials, metal materials, metal oxides, glass, or polymer materials are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes. As the migrating particles 152, any one of the above may be used, or a plurality of types may be used.
 泳動粒子の具体的な形成材料は、例えば、コントラストを生じさせるために泳動粒子が担う役割に応じて選択される。例えば、黒色粒子141の材料は、黒色の材料、例えば、炭素材料または金属酸化物などである。炭素材料は、例えば、カーボンブラックなどであり、金属酸化物は、例えば、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物などである。中でも、炭素材料が好ましい。優れた化学的安定性、移動性および光吸収性が得られるからである。一方、白色粒子142の材料は、白色の材料、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウムまたはチタン酸カリウムなどの金属酸化物であり、中でも、酸化チタンが好ましい。電気化学的安定性および分散性などに優れていると共に、高い反射率が得られるからである。 The specific forming material of the migrating particles is selected according to, for example, the role of the migrating particles to cause contrast. For example, the material of the black particles 141 is a black material such as a carbon material or a metal oxide. The carbon material is, for example, carbon black, and the metal oxide is, for example, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide, or copper-iron. -Chromium oxide and the like. Among these, a carbon material is preferable. This is because excellent chemical stability, mobility and light absorption are obtained. On the other hand, the material of the white particles 142 is a white material, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate, or potassium titanate. Among these, titanium oxide is preferable. This is because it is excellent in electrochemical stability and dispersibility and has high reflectance.
 なお、これらの泳動粒子は、絶縁性液体140中で長期間に渡って分散および帯電しやすいことが好ましい。このため、静電反発により泳動粒子を分散させるために分散剤(または電荷調整剤)を用いたり、泳動粒子に表面処理を施してもよい。また、両者を併用してもよい。 Note that these electrophoretic particles are preferably easily dispersed and charged in the insulating liquid 140 over a long period of time. For this reason, in order to disperse the migrating particles by electrostatic repulsion, a dispersing agent (or charge adjusting agent) may be used, or the migrating particles may be subjected to a surface treatment. Moreover, you may use both together.
 第2電極15は、例えば透明導電膜により構成されている。透明導電膜としては、例えば、酸化インジウム-酸化スズ(ITO)、酸化アンチモン-酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)またはアルミニウムドープ酸化亜鉛(AZO)などが挙げられる。ここでは、第2電極15は、例えば、全画素Pに共通の電極として、第2基板16の一面に形成されている。この第2電極15は、共通電圧供給線110Cに接続されている。 The second electrode 15 is made of, for example, a transparent conductive film. Examples of the transparent conductive film include indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO). Here, the second electrode 15 is formed on one surface of the second substrate 16 as an electrode common to all the pixels P, for example. The second electrode 15 is connected to the common voltage supply line 110C.
 第2基板16は、第1基板11と同様の材料により構成されている。但し、第2基板16を透過して画像が表示されることから、第2基板16には、光透過性を有する材料が用いられる。この第2基板16の一面に接して、もしくは第2基板16よりも上、または第2基板16と第2電極15との間に、図示しないカラーフィルタが設けられていてもよい。 The second substrate 16 is made of the same material as the first substrate 11. However, since an image is displayed through the second substrate 16, a material having optical transparency is used for the second substrate 16. A color filter (not shown) may be provided in contact with one surface of the second substrate 16, above the second substrate 16, or between the second substrate 16 and the second electrode 15.
[駆動方法]
 本実施の形態の表示装置1では、図1に示したパネル制御部51からの制御信号に基づいて、ゲート駆動ユニット52およびソース駆動ユニット53が、画素アレイ部10の各画素Pを電圧駆動する。具体的には、アクティブマトリクス駆動により、画素P毎に第1電極13と第2電極15との間に所定の電圧(電圧波形Dp,Dpa)が印加されることで、この印加電圧に応じて泳動粒子(黒色粒子141,白色粒子142)が、第1電極13と第2電極15との間を移動する。この結果、表示体14における光反射率が画素P毎に変化し(画素Pの表示状態が変化し)、画像を表示する(書き換える)ことができる。
[Driving method]
In the display device 1 according to the present embodiment, the gate drive unit 52 and the source drive unit 53 voltage drive each pixel P of the pixel array unit 10 based on the control signal from the panel control unit 51 shown in FIG. . Specifically, a predetermined voltage (voltage waveform Dp, Dpa) is applied between the first electrode 13 and the second electrode 15 for each pixel P by active matrix driving, and according to this applied voltage. Electrophoretic particles (black particles 141 and white particles 142) move between the first electrode 13 and the second electrode 15. As a result, the light reflectance in the display body 14 changes for each pixel P (the display state of the pixel P changes), and an image can be displayed (rewritten).
 ここで、電気泳動素子を用いた表示装置1では、上記のような表示駆動を行う際に、いわゆるパルス幅変調方式により、複数フレームにわたって、例えば2値あるいは3値を切り替える電圧波形が印加される。即ち、所望の表示状態(階調)を表現するために、例えば数フレームから数10フレームに相当する期間(以下、書き込み期間という)を、1枚の画像を表示する(または書き換える)ための単位期間として、各画素Pに印加される信号の電圧波形Dpが設定される。この電圧波形Dpは、上述のように、表示状態の変化に応じて複数種類のパターンとして予め設定されており、LUT55Aに保持されている。 Here, in the display device 1 using an electrophoretic element, when performing the display driving as described above, a voltage waveform for switching, for example, binary or ternary is applied over a plurality of frames by a so-called pulse width modulation method. . That is, in order to express a desired display state (gradation), for example, a period corresponding to several frames to several tens of frames (hereinafter referred to as a writing period) is a unit for displaying (or rewriting) one image. As a period, a voltage waveform Dp of a signal applied to each pixel P is set. As described above, the voltage waveform Dp is preset as a plurality of types of patterns in accordance with the change in the display state, and is held in the LUT 55A.
 例えば、図3は、ある画素P(m),P(n)に印加される信号電圧波形の一例を示したものである。このように、画像表示の際には、例えば画素P(m),P(n)のそれぞれに対し、電圧値VH、電圧値VLおよび0Vの3値を切り替える信号電圧が印加される。また、画素P(m)に対する1つの書き込み期間(黒表示のための期間)が、更に数10フレームから構成され、それらの数10フレームの中で電圧値が所定のパターン(電圧波形DPb)で切り替えられて印加される。同様に、画素P(n)に対する1つの書き込み期間(白表示のための期間)が、更に数10フレームから構成され、それらの数10フレームの中で電圧値が所定のパターン(電圧波形DPw)で切り替えられて印加される。尚、各電圧波形DPb,DPwは、フレーム期間の配列として示しており、数値「-1」「0」「1」が付された期間は、それぞれ電圧値VL、0V,電圧値VHを印加する期間に相当する。電圧値VLは、例えば負の値であり、一例としては-15Vとすることができる。電圧値VHは、例えば正の値であり、一例としては+15Vとすることができる。これらのうち、電圧値VLは、本開示の「第1電圧値」の一具体例に相当し、電圧値VHは「第2電圧値」の一具体例に相当し、0Vは「第3電圧値」の一具体例に相当する。但し、上記電圧値はあくまで一例である。第1電圧値および第2電圧値は、-15Vおよび15V以外の値とされてもよい。また、第3電圧値は0Vに限定されるものではなく、第1電圧値と第2電圧値との中間の値であれば、0Vからシフトした値であっても構わない。また、このような3つの電圧値ではなく、電圧値VL,Hの2値間の切り替えにより電圧波形が設定されてもよい。 For example, FIG. 3 shows an example of a signal voltage waveform applied to certain pixels P (m) and P (n). As described above, when displaying an image, for example, a signal voltage for switching three values of the voltage value V H , the voltage value V L, and 0 V is applied to each of the pixels P (m) and P (n). In addition, one writing period (period for black display) with respect to the pixel P (m) is further composed of several tens of frames, and the voltage value has a predetermined pattern (voltage waveform DPb) in these several tens of frames. Switched and applied. Similarly, one writing period (period for white display) with respect to the pixel P (n) is further composed of several tens of frames, and the voltage value is a predetermined pattern (voltage waveform DPw) in these several tens of frames. Switched and applied. The voltage waveforms DPb and DPw are shown as an array of frame periods, and the voltage values V L , 0 V, and voltage value V H are respectively shown in the periods with numerical values “−1”, “0”, and “1”. This corresponds to the application period. The voltage value V L is a negative value, for example, and can be set to −15V as an example. Voltage V H is, for example, a positive value, it is possible to + 15V as an example. Among these, the voltage value V L corresponds to a specific example of “first voltage value” of the present disclosure, the voltage value V H corresponds to a specific example of “second voltage value”, and 0 V corresponds to “first voltage value”. This corresponds to a specific example of “three voltage values”. However, the voltage value is merely an example. The first voltage value and the second voltage value may be values other than −15V and 15V. Further, the third voltage value is not limited to 0V, and may be a value shifted from 0V as long as it is an intermediate value between the first voltage value and the second voltage value. Further, instead of such three voltage values, the voltage waveform may be set by switching between the two voltage values V L and V H.
 図4は、電圧波形Dpの一例を表したものである。電圧波形Dp11は、例えば白から白へ表示状態を切り替える(白の表示状態を保持する)ための電圧波形の一例である。電圧波形Dp12は、白から黒へ表示状態を切り替えるための電圧波形の一例である。尚、図4では、各電圧波形の上段に、1フレーム期間(1V)毎に、電圧値を表す数値(-1,0,1)を示している。下段には、対応する電圧波形の形状を示している。これらの例のように、電圧値VL,Hおよび0Vの3値のそれぞれを2以上のフレームにわたって連続的に印加してもよいし、フレーム単位で切り替えてもよい。但し、これらは一例であり、表示状態を変化させるための電圧波形のパターン(電圧値、切り替えタイミング等の組み合わせ)は数多く存在する。表示装置1では、表示状態の変化に応じた複数種類の電圧波形Dpの情報を、LUT55Aとして予め保持している。これにより、表示する画像に応じてLUT55Aが適宜参照され、各画素Pに対して表示状態に応じた電圧波形を印加することができる。 FIG. 4 shows an example of the voltage waveform Dp. The voltage waveform Dp11 is an example of a voltage waveform for switching the display state from white to white (holding the white display state), for example. The voltage waveform Dp12 is an example of a voltage waveform for switching the display state from white to black. In FIG. 4, numerical values (−1, 0, 1) representing voltage values are shown for each frame period (1 V) in the upper part of each voltage waveform. The lower part shows the shape of the corresponding voltage waveform. As in these examples, each of the three values of voltage values V L, V H, and 0 V may be applied continuously over two or more frames, or may be switched in units of frames. However, these are merely examples, and there are many voltage waveform patterns (combinations of voltage value, switching timing, etc.) for changing the display state. In the display device 1, information on a plurality of types of voltage waveforms Dp corresponding to changes in the display state is held in advance as an LUT 55A. Thereby, the LUT 55A is appropriately referred to according to the image to be displayed, and a voltage waveform corresponding to the display state can be applied to each pixel P.
 上記のような電圧波形Dpが画素P毎に第1電極13に印加されることにより、黒表示および白表示等を行うことができる。このとき、例えば表示体14が正に帯電した黒色粒子141と負に帯電した白色粒子142とを含む場合には、第1電極13への電圧値VHの印加によって、黒色粒子141が第2電極15側へ、白色粒子142が第1電極13側へそれぞれ移動する。これにより、図5に示したように、電圧値VHの印加された画素領域(ここでは3つの画素Pに相当する領域を示す)では黒表示となる。このように、黒表示の画素P同士が隣接して存在している領域では、黒色粒子141が第2電極15側に均一に分布し、良好な(濃淡むらの少ない)黒色を表示することができる。 By applying the voltage waveform Dp as described above to the first electrode 13 for each pixel P, black display, white display, and the like can be performed. At this time, for example, when the display body 14 includes positively charged black particles 141 and negatively charged white particles 142, the black particles 141 are secondly applied by applying the voltage value V H to the first electrode 13. White particles 142 move to the first electrode 13 side toward the electrode 15 side, respectively. As a result, as shown in FIG. 5, the pixel region to which the voltage value V H is applied (here, the region corresponding to the three pixels P is shown) is displayed in black. As described above, in the region where the black display pixels P are adjacent to each other, the black particles 141 are uniformly distributed on the second electrode 15 side, and good black (with little shading unevenness) is displayed. it can.
 一方、第1電極13へ電圧値VLが印加された場合には、黒色粒子141が第1電極13側へ、白色粒子142が第2電極15側へそれぞれ移動する。これにより、図6に示したように、電圧値VLの印加された画素領域(ここでは3つの画素Pに相当する領域を示す)では白表示となる。このように、白表示の画素P同士が隣接して存在している領域では、白色粒子142が第2電極15側に均一に分布し、良好な(濃淡むらの少ない)白色を表示することができる。 On the other hand, when the voltage value V L is applied to the first electrode 13, the black particles 141 move to the first electrode 13 side, and the white particles 142 move to the second electrode 15 side. As a result, as shown in FIG. 6, the pixel region to which the voltage value V L is applied (here, the region corresponding to the three pixels P is displayed) is displayed in white. As described above, in the region where the white display pixels P are adjacent to each other, the white particles 142 are uniformly distributed on the second electrode 15 side, and a good (small shading unevenness) white color is displayed. it can.
 ところが、図7に示したように、互いに表示状態の異なる画素、ここでは白表示の画素P(画素P1とする)と黒表示の画素P(画素P2とする)とが隣接する領域では、エッジゴーストと呼ばれる画質劣化が生じ易い。これは、以下のような理由による。 However, as shown in FIG. 7, in an area where pixels having different display states, here, a white display pixel P (referred to as pixel P1) and a black display pixel P (referred to as pixel P2) are adjacent to each other, an edge Image quality degradation called ghost is likely to occur. This is due to the following reasons.
 即ち、白を表示するための電圧波形Dpと、黒を表示するための電圧波形Dpは、泳動粒子の移動という観点から、ほぼ対称的な波形のパターン(反転パターン)となることが多い。このため、画素P1,P2において隣り合う第1電極13同士の間の電位差が大きくなり易い。例えば、画素P1には-15Vが印加され、画素P2には+15Vが印加される。これにより、画素P1,P2間には横方向(第1基板11に平行な方向)に大きな電位差(例えば30V)が生じてしまう。各画素P1,P2のそれぞれにおいて第1電極13と第2電極15との間に印加される電位差は大きくとも15Vであるから、それよりも大きな30Vという電位差が横方向に印加されてしまうこととなる。このため、画素P1,P2間で泳動粒子が移動し易く、容易にエッジゴーストが発生する。 That is, the voltage waveform Dp for displaying white and the voltage waveform Dp for displaying black often have almost symmetrical waveform patterns (inversion patterns) from the viewpoint of migration of electrophoretic particles. For this reason, the potential difference between the adjacent first electrodes 13 in the pixels P1 and P2 tends to increase. For example, −15V is applied to the pixel P1, and + 15V is applied to the pixel P2. As a result, a large potential difference (for example, 30 V) occurs in the lateral direction (direction parallel to the first substrate 11) between the pixels P1 and P2. Since the potential difference applied between the first electrode 13 and the second electrode 15 in each of the pixels P1 and P2 is at most 15V, a potential difference of 30V larger than that is applied in the lateral direction. Become. For this reason, the electrophoretic particles easily move between the pixels P1 and P2, and an edge ghost is easily generated.
 詳細には、境界領域14eでは、黒色粒子141および白色粒子142が上記のような横方向の電界の影響を受けて、意図しない方向へ(隣の画素へ)移動する。これにより、例えば画素P2の境界領域14eでは、第2電極15側の黒色粒子141が少なく、第1電極13側の白色粒子142が少なくなる。この結果、画素P2の縁部分では、本来の黒色ではなく、白色が混ざったような色味となる(縁部分に白い輪郭状のエッジゴーストが発生する)。一方で、画素P1では、画素P2とは逆に、縁部分に黒色が混ざり、黒い輪郭状のエッジゴーストが生じることもある。このエッジゴーストの発生度合いは、電気泳動素子の構造や黒色粒子141および白色粒子142の数の違い等によって異なる。 Specifically, in the boundary region 14e, the black particles 141 and the white particles 142 are affected by the electric field in the lateral direction as described above, and move in an unintended direction (to adjacent pixels). Thereby, for example, in the boundary region 14e of the pixel P2, the black particles 141 on the second electrode 15 side are small, and the white particles 142 on the first electrode 13 side are small. As a result, the edge portion of the pixel P2 has a color that is mixed with white instead of the original black (a white outline-shaped edge ghost is generated at the edge portion). On the other hand, in the pixel P1, contrary to the pixel P2, black is mixed in the edge portion and an edge ghost with a black outline may be generated. The degree of occurrence of the edge ghost varies depending on the structure of the electrophoretic element, the number of black particles 141 and white particles 142, and the like.
 このような画素P1,P2の境界領域14eは、表示画像の輪郭部分に存在する。図8に、画素アレイ部10に表示される画像(画像30)の一例を示す。図9には、図8の一部の領域Aを拡大して示す。図8に示したように、画像30が、「H」を表す黒色の文字領域30Aと、白色の背景領域30Bとを含む場合、文字領域30Aの輪郭部分(文字領域30Aと背景領域30Bとの境界部分)が存在する。この輪郭部分に相当する領域Aでは、図9に示したように、白表示の背景領域30Bを構成する画素(例えば画素a11~a17)と、黒表示の文字領域30Aを構成する画素(例えば画素a21~a25)とが、X方向およびY方向あるいは斜め方向において隣接する。この例において、隣接2画素とは、例えば、画素a11と画素a21の組、画素a12と画素a22の組、画素a13と画素a23の組、画素a15と画素a23の組、画素a16と画素a24の組および画素a17と画素a25の組等が挙げられる。但し、この他にも、隣接する2画素の組み合わせとしては、画素a11と画素a22の組、あるいは画素a14と画素a23の組等、斜め方向に隣接する2画素であってもよい。 Such a boundary region 14e between the pixels P1 and P2 exists in the contour portion of the display image. FIG. 8 shows an example of an image (image 30) displayed on the pixel array unit 10. FIG. 9 shows a part of the area A in FIG. 8 in an enlarged manner. As shown in FIG. 8, when the image 30 includes a black character region 30A representing “H” and a white background region 30B, the outline portion of the character region 30A (the character region 30A and the background region 30B Boundary). In the area A corresponding to the contour portion, as shown in FIG. 9, pixels (for example, pixels a11 to a17) constituting the white display background area 30B and pixels (for example, pixels) constituting the black display character area 30A. a21 to a25) are adjacent to each other in the X direction and the Y direction or in the oblique direction. In this example, the adjacent two pixels are, for example, a set of pixel a11 and pixel a21, a set of pixel a12 and pixel a22, a set of pixel a13 and pixel a23, a set of pixel a15 and pixel a23, and a set of pixel a16 and pixel a24. Examples include a set and a set of the pixel a17 and the pixel a25. However, in addition to this, the combination of two adjacent pixels may be two pixels adjacent in the oblique direction, such as a set of the pixel a11 and the pixel a22 or a set of the pixel a14 and the pixel a23.
 ここで、比較例(比較例1)として、図10に示したように、文字領域30Aおよび背景領域30Bを有する画像30(左図)を表示した後に、全面白色の画像31(右図)を書き込む場合、実際に表示される画像には、上述のエッジゴーストが生じる。即ち、図11の右図に示したように、白色の背景に文字領域30Aの輪郭部分(x1)だけが薄く残ったような画像103となる。 Here, as a comparative example (comparative example 1), as shown in FIG. 10, after displaying an image 30 (left figure) having a character area 30A and a background area 30B, an entire white image 31 (right figure) is displayed. When writing, the above-described edge ghost occurs in an actually displayed image. That is, as shown in the right diagram of FIG. 11, the image 103 is such that only the outline portion (x1) of the character region 30A remains lightly on the white background.
 そこで、このようなエッジゴーストが発生した場合に、発生したエッジゴーストを消去する補正を行う手法がある。図12は、比較例2に係る駆動方法を説明するための模式図である。図12の上段の図は、書き込む画像と、実際に表示される画像とを時系列で示したものである。下段の図は、共通電極への電圧(Vcom)と、画素i,j,m,kへ印加する電圧波形を示している。この例では、「K」という文字の画像104を、「H」という文字の画像107Bに書き換える場合を示している。この際、まず、「K」が表示された画像104から、画面全体を白色の画像105へ遷移させる(表示リセット期間)。その後、予め抽出された輪郭情報に基づいて、エッジゴーストの生じない領域(画素i,m)では、通常の画像106Aの書き込みを行う(黒書き込み期間)。続いて、エッジゴーストの生じる領域(画素j,k)では、更に補正用の画像107Aの書き込みを行う(白黒上書き期間)。このように、比較例2の手法では、画像107Aの上書き補正、即ちエッジゴーストの補正のために、通常の表示駆動の時間とは別に、更に電圧を印加する(上書きする)時間を要する。 Therefore, there is a method of performing correction to erase the generated edge ghost when such an edge ghost occurs. FIG. 12 is a schematic diagram for explaining a driving method according to the second comparative example. The upper diagram in FIG. 12 shows a written image and an actually displayed image in time series. The lower diagram shows the voltage (Vcom) to the common electrode and the voltage waveform applied to the pixels i, j, m, and k. In this example, the image 104 with the character “K” is rewritten to the image 107B with the character “H”. At this time, first, the entire screen is changed from the image 104 displaying “K” to the white image 105 (display reset period). After that, based on the contour information extracted in advance, the normal image 106A is written (black writing period) in the region (pixel i, m) where no edge ghost occurs. Subsequently, in the region (pixels j, k) where the edge ghost occurs, the correction image 107A is further written (monochrome overwriting period). As described above, in the method of Comparative Example 2, it takes time to apply (overwrite) a voltage separately from the normal display drive time for overwriting correction of the image 107A, that is, edge ghost correction.
 ここで、上記の比較例2の手法では、上記のような上書き補正を、通常の白や黒を表示する場合と同様の書き込み期間単位で実施している。上述したように、1枚の画像を表示する際には、数10フレームにわたって種々の電圧値が切り替えられて印加される。これは、換言すると、画像107Aを上書きする期間も、他の書き込み期間と同様に、数10フレームからなる電圧波形のパターンを要することを意味する。 Here, in the method of Comparative Example 2 described above, the overwriting correction as described above is performed in units of writing periods similar to the case of displaying normal white and black. As described above, when displaying one image, various voltage values are switched and applied over several tens of frames. In other words, this means that a period of overwriting the image 107A also requires a voltage waveform pattern of several tens of frames, as in other writing periods.
 このため、エッジゴーストが強く生じている場合には、補正に長時間を要する、あるいは補正自体が困難となる。また、上書きによって新たなエッジゴーストが発生する場合もある。このように、発生したエッジゴーストを事後的に補正する手法では、エッジゴーストを十分に抑制することが困難である。 For this reason, when the edge ghost is strong, the correction takes a long time or the correction itself becomes difficult. In addition, a new edge ghost may occur due to overwriting. As described above, it is difficult to sufficiently suppress the edge ghost by the method of correcting the generated edge ghost afterwards.
 これに対し、本実施の形態の表示装置1では、表示される画像において、隣接する2画素(画素P1,P2)において互いに表示状態の異なる場合、これらの画素P1,P2に印加する各電圧波形との組み合わせとして、予め保持された複数種類の電圧波形のうち、これら2画素に対して印加される各電圧値の差分がより小さくなる組み合わせが用いられる。 On the other hand, in the display device 1 of the present embodiment, in the displayed image, when two adjacent pixels (pixels P1 and P2) have different display states, each voltage waveform applied to these pixels P1 and P2 As a combination, a combination in which a difference between the voltage values applied to these two pixels becomes smaller among a plurality of types of voltage waveforms held in advance is used.
 具体的には、まず、輪郭検出部56が、表示する画像の輪郭部分を検出し、互いに表示状態の異なる隣接2画素を抽出する。次いで、データ置換部54が、LUT55Aに保持された電圧波形Dpに対応する表示用の信号のうち、抽出された2画素に対応する信号をLUT55Bに保持された画素P1,P2用の電圧波形Dpaの情報に基づいて置換する。これにより、通常の画像表示用の信号のうちの輪郭部分に相当する信号を置換し(最適化し)、置換後の信号をパネル制御部51へ出力する。即ち、輪郭部分に対応する隣接2画素では、電圧波形Dpaを用いた駆動が行われ、輪郭部分以外の画素では、電圧波形Dpを用いた駆動が行われる。 Specifically, first, the contour detection unit 56 detects a contour portion of an image to be displayed, and extracts two adjacent pixels having different display states. Next, the data replacement unit 54 selects the voltage waveform Dpa for the pixels P1 and P2 held in the LUT 55B from among the signals for display corresponding to the voltage waveform Dp held in the LUT 55A. Replace based on the information. This replaces (optimizes) the signal corresponding to the contour portion of the normal image display signal, and outputs the replaced signal to the panel control unit 51. That is, two adjacent pixels corresponding to the contour portion are driven using the voltage waveform Dpa, and pixels other than the contour portion are driven using the voltage waveform Dp.
 電圧波形Dpaは、画素P1,P2に印加される電圧波形の組み合わせにおいて、各電圧値の差分がより小さくなるように、電圧波形Dpの一部が置換されたものである。即ち、電圧値VHを「1」、電圧値VLを「-1」とした場合、画素P1,P2に印加される各電圧値の差分が最大値(-2または2)となるフレームの数がより低減される組み合わせとなるように、電圧波形Dpの一部の電圧値を他の電圧値に置換したものである。 The voltage waveform Dpa is obtained by replacing a part of the voltage waveform Dp so that the difference between the respective voltage values becomes smaller in the combination of the voltage waveforms applied to the pixels P1 and P2. That is, when the voltage value V H is “1” and the voltage value V L is “−1”, the difference between the voltage values applied to the pixels P1 and P2 is the maximum value (−2 or 2). A part of the voltage value of the voltage waveform Dp is replaced with another voltage value so that the number of combinations is further reduced.
 図13に、画素P1,P2に印加される電圧波形Dp(電圧波形Dp11,Dp12)と、その一部を置換してなる電圧波形Dpa(電圧波形Dp11a,Dp12a)の一例を示す。このように、電圧波形Dp11,Dp12の組み合わせでは、画素P1,P2に印加される各電圧値の差分が最大値(-2または2)となる期間twが多く存在するが、置換後の電圧波形Dp11a,Dp12aの組み合わせでは、画素P1,P2に印加される各電圧値の差分が最大値(-2または2)となる期間twが存在しない。また、この置換の前後で、表示状態が変化しないように(表示状態を維持しつつ)電圧値を調整することが重要である。例えば、電圧波形Dp11は白から白へ、電圧波形Dp12は白から黒へ、それぞれ表示状態を変化させるために印加するパターンである。このため、置換後の電圧波形Dp11aにおいても白から白へ表示状態を変化させるパターンとなるようにし、電圧波形Dp12aでは白から黒へ表示状態を変化させるパターンとなるようにする。この例では、置換後の電圧波形Dpaでは、画素P1に印加される電圧値が電圧値VH,VLまたは0Vであり、画素P2に印加される電圧値は、画素P1に電圧値VHまたは電圧値VLが印加される場合には画素P1と同電圧または0Vであり、画素P1に0Vが印加される場合には電圧値VH,VLおよび0Vのうちのいずれかである。また、電圧波形Dpaは、画素P1,P2に印加される各電圧波形Dpの組み合わせのうち一方のみを置換したものであってもよいし、両方を置換したものであってもよい。 FIG. 13 shows an example of a voltage waveform Dp (voltage waveforms Dp11, Dp12) applied to the pixels P1, P2 and a voltage waveform Dpa (voltage waveforms Dp11a, Dp12a) formed by replacing a part thereof. As described above, in the combination of the voltage waveforms Dp11 and Dp12, there are many periods tw in which the difference between the voltage values applied to the pixels P1 and P2 is the maximum value (−2 or 2). In the combination of Dp11a and Dp12a, there is no period tw in which the difference between the voltage values applied to the pixels P1 and P2 is the maximum value (−2 or 2). It is also important to adjust the voltage value before and after this replacement so that the display state does not change (while maintaining the display state). For example, the voltage waveform Dp11 is a pattern applied to change the display state from white to white, and the voltage waveform Dp12 is changed from white to black. For this reason, the voltage waveform Dp11a after replacement has a pattern that changes the display state from white to white, and the voltage waveform Dp12a has a pattern that changes the display state from white to black. In this example, in the voltage waveform Dpa after replacement, the voltage value applied to the pixel P1 is the voltage value V H , V L or 0 V, and the voltage value applied to the pixel P2 is the voltage value V H to the pixel P1. Or, when the voltage value V L is applied, it is the same voltage or 0V as the pixel P1, and when 0V is applied to the pixel P1, it is one of the voltage values V H , V L and 0V. Further, the voltage waveform Dpa may be obtained by replacing only one of the combinations of the voltage waveforms Dp applied to the pixels P1 and P2, or may be obtained by replacing both.
 このように、本実施の形態では、互いに表示状態の異なる、隣接する2つの画素Pに対して印加する電圧波形の組み合わせを、それぞれに印加する電圧値の差分が低減された組み合わせに入れ替えることによって、隣接画素間に大きな電位差が生じにくくなる。これにより、上述のようなエッジゴーストと呼ばれる画質劣化の発生を抑制することができる。ここで、重要なのは、上記比較例2のように、発生したエッジゴーストを事後的に補正するのではなく、エッジゴースト自体が発生しにくい電圧波形の組み合わせを用いることにある。つまり、本実施の形態では、比較例2の手法のように「書き込み期間」単位で事後的に補正するのではなく、予め輪郭部分用の電圧波形Dpaを用意しておくため、補正用の期間自体が不要になり、結果として短時間でエッジゴーストの少ない所望の表示を達成することができる。 As described above, in this embodiment, the combination of the voltage waveforms applied to two adjacent pixels P having different display states from each other is replaced with a combination in which the difference between the voltage values applied to each is reduced. A large potential difference is less likely to occur between adjacent pixels. Thereby, it is possible to suppress the occurrence of image quality degradation called edge ghost as described above. Here, what is important is not to correct the generated edge ghost afterwards as in the second comparative example, but to use a combination of voltage waveforms in which the edge ghost itself hardly occurs. That is, in the present embodiment, the voltage waveform Dpa for the contour portion is prepared in advance instead of performing the correction after the “writing period” unit as in the method of the comparative example 2, and thus the correction period. As a result, a desired display with little edge ghost can be achieved in a short time.
 例えば、実施例1として、図14に、文字領域30Aおよび背景領域30Bを有する画像30(左図)を表示した後に、全面白色の画像31(右図)を書き込む場合について模式的に示す。この場合、全面白色の画像31を書き込むための通常の信号(電圧波形Dp)のうち、文字領域30Aの輪郭部分(文字領域30Aと背景領域30Bとの境界部分)に対応する信号を、上述のような電圧波形Dpaを用いて置換する。この置換後の信号を画素アレイ部10に書き込むことで、図15に示したように、エッジゴーストの低減された全面白色の画像31を表示することができる。 For example, as Example 1, FIG. 14 schematically shows a case where an image 30 having a character area 30A and a background area 30B (left figure) is displayed and then a white image 31 (right figure) is written. In this case, the signal corresponding to the outline portion of the character region 30A (the boundary portion between the character region 30A and the background region 30B) in the normal signal (voltage waveform Dp) for writing the entire white image 31 is described above. The voltage waveform Dpa is used for replacement. By writing the signal after the replacement into the pixel array unit 10, as shown in FIG. 15, the entire white image 31 with reduced edge ghost can be displayed.
[効果]
 本実施の形態の表示装置1では、隣り合う2つの画素Pが互いに異なる表示状態を有する場合に、即ち画像の輪郭部分に配置された画素P(P1,P2)に対し、これらの画素Pに印加する各電圧波形の組み合わせとして、各画素Pに対して印加される各電圧値の差分がより小さくなる組み合わせを用いる。これにより、隣り合う2つの画素P間において横方向に生じる電界が低減される。この結果、泳動粒子の画素P間の移動を抑制できる。輪郭部分等の隣接する2つの画素Pが異なる表示状態を有する場合に、それらの画素Pの境界付近で発生しうる画質劣化(エッジゴースト)の発生を抑制することができる。
[effect]
In the display device 1 of the present embodiment, when two adjacent pixels P have different display states, that is, with respect to the pixels P (P1, P2) arranged in the contour portion of the image, As the combination of the voltage waveforms to be applied, a combination in which the difference between the voltage values applied to the pixels P is smaller is used. Thereby, the electric field generated in the horizontal direction between two adjacent pixels P is reduced. As a result, movement of the migrating particles between the pixels P can be suppressed. When two adjacent pixels P such as a contour portion have different display states, it is possible to suppress the occurrence of image quality deterioration (edge ghost) that may occur near the boundary between the pixels P.
 尚、本実施の形態では、上述のように、表示装置1が、電圧波形Dp,Dpaについての情報を予めLUT55A,55Bとして保持し、これらの情報に基づいて表示用の画像信号を置換する構成について例示したが、表示装置1の構成はこれに限定されない。例えば、表示装置1は、上述したような電圧波形Dp,Dpaに相当する情報をリアルタイムに演算処理によって生成する機能を有していてもよい。例えば、表示装置1は、データ置換部54の代わりに、上述したような画素P1,P2に印加される各電圧値の差分値を低減する組み合わせを含む電圧波形Dp,Dpaを、表示(書き換え)の都度、算出する演算処理部を備える。また、この演算処理部を備える場合には、LUT55A,55Bは設けられていなくともよい。 In the present embodiment, as described above, the display device 1 holds information about the voltage waveforms Dp and Dpa as LUTs 55A and 55B in advance, and replaces the display image signal based on these information. However, the configuration of the display device 1 is not limited to this. For example, the display device 1 may have a function of generating information corresponding to the voltage waveforms Dp and Dpa as described above by arithmetic processing in real time. For example, instead of the data replacement unit 54, the display device 1 displays (rewrites) the voltage waveforms Dp and Dpa including the combination that reduces the difference value between the voltage values applied to the pixels P1 and P2 as described above. In this case, an arithmetic processing unit for calculating is provided. Further, when this arithmetic processing unit is provided, the LUTs 55A and 55B may not be provided.
 以下に、上記実施の形態の変形例について説明する。尚、上記実施の形態と同様の構成要素については同一の符号を付し、適宜その説明を省略する。 Hereinafter, modifications of the above embodiment will be described. In addition, the same code | symbol is attached | subjected about the component similar to the said embodiment, and the description is abbreviate | omitted suitably.
<変形例1>
 上記実施の形態では、各画素Pの表示状態の変化として、黒と白との間で変化する場合を例に挙げたが、黒または白から、それらの中間の階調(グレー)を示す表示状態への変
化、あるいはこのグレーの表示状態から白または黒の表示状態へ変化する場合にも、上述の駆動方法を適用することが可能である。
<Modification 1>
In the above embodiment, the case where the display state of each pixel P changes between black and white has been described as an example. However, a display showing a gray level (gray) between black and white is shown. The driving method described above can also be applied to a change to a state or a change from a gray display state to a white or black display state.
 図16に、電圧波形Dpの一例を示す。電圧波形Dp21は白から白へ、電圧波形Dp22は白から黒へ、電圧波形Dp23は黒から白へ、電圧波形Dp24は黒から黒へ、表示状態をそれぞれ変化させるためのパターンである。また、電圧波形Dp25は白からグレーへ表示状態を変化させるためのパターンであり、電圧波形Dp26はグレーからグレーへ表示状態を変化させるためのパターンである。 FIG. 16 shows an example of the voltage waveform Dp. The voltage waveform Dp21 is a pattern for changing the display state from white to white, the voltage waveform Dp22 is from white to black, the voltage waveform Dp23 is from black to white, and the voltage waveform Dp24 is from black to black. The voltage waveform Dp25 is a pattern for changing the display state from white to gray, and the voltage waveform Dp26 is a pattern for changing the display state from gray to gray.
 これらのうち、図17に示したように、例えば白から白へ変化させるための電圧波形Dp21と、白からグレーへ変化させるための電圧波形Dp25とが、隣接する2画素に印加される場合、それぞれに印加される各電圧値の差分が最大値(-2または2)となる期間twが存在する(上段)。これらの組み合わせについて一部を置換したものを図17の下段に示す。このように、例えば電圧波形Dp21の一部の電圧値を置換することで、置換前と同じく白から白へ変化させるための電圧波形Dp21aと、白からグレーへ変化させるための電圧波形Dp25との組み合わせを設定することができる。 Among these, as shown in FIG. 17, for example, when a voltage waveform Dp21 for changing from white to white and a voltage waveform Dp25 for changing from white to gray are applied to two adjacent pixels, There is a period tw in which the difference between the voltage values applied to each is the maximum value (-2 or 2) (upper stage). FIG. 17 shows the lower part of these combinations with partial replacement. Thus, for example, by replacing a part of the voltage value of the voltage waveform Dp21, the voltage waveform Dp21a for changing from white to white and the voltage waveform Dp25 for changing from white to gray are the same as before the replacement. Combinations can be set.
 また、図18に示したように、例えば黒から黒へ変化させるための電圧波形Dp24と、グレーからグレーへ変化させるための電圧波形Dp26とが、隣接する2画素に印加される場合、それぞれに印加される各電圧値の差分が最大値(2)となる期間twが存在する(上段)。これらの組み合わせについて一部を置換したものを図18の下段に示す。このように、例えば電圧波形Dp26の一部の電圧値を置換することで、置換前と同じくグレーからグレーへ変化させるための電圧波形Dp26aと、黒から黒へ変化させるための電圧波形Dp24との組み合わせを設定することができる。 Further, as shown in FIG. 18, for example, when a voltage waveform Dp24 for changing from black to black and a voltage waveform Dp26 for changing from gray to gray are applied to two adjacent pixels, respectively. There is a period tw in which the difference between the applied voltage values is the maximum value (2) (upper stage). FIG. 18 shows the lower part of FIG. Thus, for example, by replacing a part of the voltage value of the voltage waveform Dp26, the voltage waveform Dp26a for changing from gray to gray as in the case before the replacement and the voltage waveform Dp24 for changing from black to black are the same. Combinations can be set.
 ここで、比較例(比較例3)として、図19に示したように、文字領域30Aおよび背景領域30Bを有する画像30(左図)を表示した後に、全面グレーの画像32(右図)を書き込む場合、実際に表示される画像には、上述したようなエッジゴーストが生じる。例えば、図20の右図に示したように、グレーの背景に文字領域30Aの輪郭に対応する領域に黒っぽい線と白っぽい線(x2)とが生じたような画像108となる。 Here, as a comparative example (comparative example 3), as shown in FIG. 19, after displaying an image 30 (left figure) having a character area 30A and a background area 30B, an entire gray image 32 (right figure) is displayed. When writing, an edge ghost as described above occurs in an actually displayed image. For example, as shown in the right diagram of FIG. 20, the image 108 is such that a blackish line and a whitish line (x2) are generated in a region corresponding to the outline of the character region 30A on a gray background.
 これに対し、実施例2として、図21に、文字領域30Aおよび背景領域30Bを有する画像30(左図)を表示した後に、全面グレーの画像32(右図)を書き込む場合について模式的に示す。この場合、全面グレーの画像32を書き込むための通常の信号(電圧波形Dp)のうち、文字領域30Aの輪郭部分(文字領域30Aと背景領域30Bとの境界部分)に対応する信号を、上述のような電圧波形Dpaを用いて置換する。この置換後の信号を画素アレイ部10に書き込むことで、図22に示したように、エッジゴーストの低減された全面グレーの画像32を表示することができる。 On the other hand, as a second embodiment, FIG. 21 schematically shows a case where an image 30 (left figure) having a character area 30A and a background area 30B is displayed and then a full gray image 32 (right figure) is written. . In this case, the signal corresponding to the outline portion of the character region 30A (the boundary portion between the character region 30A and the background region 30B) out of the normal signal (voltage waveform Dp) for writing the entire gray image 32 is described above. The voltage waveform Dpa is used for replacement. By writing the signal after the replacement into the pixel array unit 10, as shown in FIG. 22, a full gray image 32 with reduced edge ghost can be displayed.
<変形例2>
 上記実施の形態では、電気泳動素子の表示体14が、2種類の泳動粒子(黒色粒子141,白色粒子142)を含むものを例に挙げたが、表示体14の構成はこれに限定されるものではない。例えば、図23に示したように、繊維状構造体(多孔質層153)を用いたものであってもよい。この表示体14は、例えば、上述したような絶縁性液体140中に多孔質層153と泳動粒子152とを含むものである。
<Modification 2>
In the said embodiment, although the display body 14 of the electrophoretic element gave as an example what contained two types of electrophoretic particles (black particle 141, white particle 142), the structure of the display body 14 is limited to this. It is not a thing. For example, as shown in FIG. 23, a fibrous structure (porous layer 153) may be used. The display body 14 includes, for example, the porous layer 153 and the migrating particles 152 in the insulating liquid 140 as described above.
 泳動粒子152は、第1電極13と第2電極15との間を移動可能な1または2以上の荷電粒子であり、絶縁性液体140中に分散されている。この泳動粒子152は、絶縁性液体140中で第1電極13と第2電極15との間を移動可能になっている。泳動粒子152は、例えば、有機顔料、無機顔料、染料、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料(樹脂)などのいずれか1種類または2種類以上の粒子(粉末)である。なお、泳動粒子152は、上記した粒子を含む樹脂固形分の粉砕粒子またはカプセル粒子などでもよい。ただし、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料に該当する材料は、有機顔料、無機顔料または染料に該当する材料から除かれることとする。この泳動粒子152としては、上記の中のいずれか1種類が用いられてもよいし、複数種類のものが用いられてもよい。 The migrating particles 152 are one or more charged particles that can move between the first electrode 13 and the second electrode 15, and are dispersed in the insulating liquid 140. The migrating particles 152 can move between the first electrode 13 and the second electrode 15 in the insulating liquid 140. The migrating particles 152 are, for example, any one kind or two or more kinds of particles (powder) such as an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, or a polymer material (resin). . The migrating particles 152 may be pulverized particles or capsule particles of resin solids containing the above-described particles. However, materials corresponding to carbon materials, metal materials, metal oxides, glass, or polymer materials are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes. As the migrating particles 152, any one of the above may be used, or a plurality of types may be used.
 絶縁性液体140中における泳動粒子152の含有量(濃度)は、特に限定されないが、例えば、0.1重量%~10重量%である。泳動粒子152の遮蔽(隠蔽)性および移動性が確保されるからである。この場合には、0.1重量%よりも少ないと、泳動粒子152が多孔質層153を遮蔽しにくくなる可能性がある。一方、10重量%よりも多いと、泳動粒子152の分散性が低下するため、その泳動粒子152が泳動しにくくなり、場合によっては凝集する可能性がある。 The content (concentration) of the migrating particles 152 in the insulating liquid 140 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. This is because shielding (concealment) and mobility of the migrating particles 152 are ensured. In this case, when the amount is less than 0.1% by weight, the migrating particles 152 may hardly shield the porous layer 153. On the other hand, when the content is more than 10% by weight, the dispersibility of the migrating particles 152 is lowered, so that the migrating particles 152 are difficult to migrate, and in some cases, there is a possibility of aggregation.
 泳動粒子152の具体的な形成材料は、例えば、コントラストを生じさせるために泳動粒子152が担う役割に応じて選択される。例えば、泳動粒子152により暗表示(黒表示)される場合の材料は、黒色の材料、例えば、炭素材料または金属酸化物などである。炭素材料は、例えば、カーボンブラックなどであり、金属酸化物は、例えば、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物などである。中でも、炭素材料が好ましい。優れた化学的安定性、移動性および光吸収性が得られるからである。一方、泳動粒子152により明表示(白表示)される場合の材料は、白色の材料、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウムまたはチタン酸カリウムなどの金属酸化物であり、中でも、酸化チタンが好ましい。電気化学的安定性および分散性などに優れていると共に、高い反射率が得られるからである。 The specific forming material of the migrating particles 152 is selected according to the role of the migrating particles 152 in order to generate contrast, for example. For example, the material in the case of dark display (black display) by the migrating particles 152 is a black material such as a carbon material or a metal oxide. The carbon material is, for example, carbon black, and the metal oxide is, for example, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide, or copper-iron. -Chromium oxide and the like. Among these, a carbon material is preferable. This is because excellent chemical stability, mobility and light absorption are obtained. On the other hand, the material in the case of bright display (white display) by the migrating particles 152 is a white material, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate, Titanium oxide is preferred. This is because it is excellent in electrochemical stability and dispersibility and has high reflectance.
 なお、泳動粒子152は、絶縁性液体140中で長期間に渡って分散および帯電しやすいと共に多孔質層153に吸着されにくいことが好ましい。このため、静電反発により泳動粒子152を分散させるために分散剤(または電荷調整剤)を用いたり、泳動粒子152に表面処理を施してもよい。また、両者を併用してもよい。 Note that it is preferable that the migrating particles 152 are easily dispersed and charged in the insulating liquid 140 for a long period of time and are not easily adsorbed by the porous layer 153. Therefore, a dispersing agent (or a charge adjusting agent) may be used to disperse the migrating particles 152 by electrostatic repulsion, or the migrating particles 152 may be subjected to a surface treatment. Moreover, you may use both together.
 多孔質層153は、例えば、図23に示したように、繊維状構造体154により形成された3次元立体構造物(不織布のような不規則なネットワーク構造物)である。この多孔質層153は、繊維状構造体154が存在していない箇所に、泳動粒子152が通過するための複数の隙間(細孔156)を有している。 The porous layer 153 is, for example, a three-dimensional structure (irregular network structure such as a nonwoven fabric) formed by a fibrous structure 154 as shown in FIG. The porous layer 153 has a plurality of gaps (pores 156) through which the migrating particles 152 pass, at places where the fibrous structure 154 does not exist.
 繊維状構造体154は、1または2以上の非泳動粒子155を含み、その非泳動粒子155は、繊維状構造体154により保持されている。3次元立体構造物である多孔質層153では、1本の繊維状構造体154がランダムに絡み合っていてもよいし、複数本の繊維状構造体154が集合してランダムに重なっていてもよいし、両者が混在していてもよい。繊維状構造体154が複数本である場合、各繊維状構造体154は、1または2以上の非泳動粒子155を保持していることが好ましい。なお、図23では、複数本の繊維状構造体154により多孔質層153が形成されている場合を示している。 The fibrous structure 154 includes one or more non-migrating particles 155, and the non-migrating particles 155 are held by the fibrous structure 154. In the porous layer 153 that is a three-dimensional structure, one fibrous structure 154 may be entangled at random, or a plurality of fibrous structures 154 may be gathered and overlap at random. However, both may be mixed. In the case where there are a plurality of fibrous structures 154, each fibrous structure 154 preferably holds one or more non-migrating particles 155. Note that FIG. 23 illustrates a case where the porous layer 153 is formed of a plurality of fibrous structures 154.
 繊維状構造体154に非泳動粒子155が含まれているのは、外光がより乱反射しやすくなるため、多孔質層153の光反射率がより高くなるからである。これにより、コントラストがより高くなる。 The reason why the non-migrating particles 155 are included in the fibrous structure 154 is that the light reflectance of the porous layer 153 becomes higher because external light is more easily diffusely reflected. Thereby, contrast becomes higher.
 繊維状構造体154は、繊維径(直径)に対して長さが十分に大きい繊維状物質である。この繊維状構造体154は、例えば、高分子材料または無機材料などのいずれか1種類
または2種類以上を含んでおり、他の材料を含んでいてもよい。高分子材料は、例えば、ナイロン、ポリ乳酸、ポリアミド、ポリイミド、ポリエチレンテレフタレート、ポリアクリロニトリル、ポリエチレンオキシド、ポリビニルカルバゾール、ポリビニルクロライド、ポリウレタン、ポリスチレン、ポリビニルアルコール、ポリサルフォン、ポリビニルピロリドン、ポリビニリデンフロリド、ポリヘキサフルオロプロピレン、セルロースアセテート、コラーゲン、ゼラチン、キトサンまたはそれらのコポリマーなどである。無機材料は、例えば、酸化チタンなどである。中でも、繊維状構造体154の形成材料としては、高分子材料が好ましい。反応性(光反応性など)が低い(化学的に安定である)ため、繊維状構造体154の意図しない分解反応が抑制されるからである。なお、繊維状構造体154が高反応性の材料により形成されている場合には、その繊維状構造体154の表面は任意の保護層により被覆されていることが好ましい。
The fibrous structure 154 is a fibrous substance having a sufficiently large length with respect to the fiber diameter (diameter). The fibrous structure 154 includes, for example, any one type or two or more types such as a polymer material or an inorganic material, and may include other materials. Polymer materials include, for example, nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, polyvinylidene fluoride, polyhexa Fluoropropylene, cellulose acetate, collagen, gelatin, chitosan or copolymers thereof. The inorganic material is, for example, titanium oxide. Among these, a polymer material is preferable as a material for forming the fibrous structure 154. This is because the reactivity (photoreactivity, etc.) is low (chemically stable), so that an unintended decomposition reaction of the fibrous structure 154 is suppressed. Note that in the case where the fibrous structure 154 is formed of a highly reactive material, the surface of the fibrous structure 154 is preferably covered with an arbitrary protective layer.
 繊維状構造体154の形状(外観)は、上記したように繊維径に対して長さが十分に大きい繊維状であれば、特に限定されない。具体的には、直線状でもよいし、縮れていたり、途中で折れ曲がっていてもよい。また、一方向に延在しているだけに限らず、途中で1または2以上の方向に分岐していてもよい。この繊維状構造体154の形成方法は、特に限定されないが、例えば、相分離法、相反転法、静電(電界)紡糸法、溶融紡糸法、湿式紡糸法、乾式紡糸法、ゲル紡糸法、ゾルゲル法またはスプレー塗布法などであることが好ましい。繊維径に対して長さが十分に大きい繊維状物質を容易かつ安定に形成しやすいからである。 The shape (appearance) of the fibrous structure 154 is not particularly limited as long as it is a fibrous shape having a sufficiently large length with respect to the fiber diameter as described above. Specifically, it may be linear, may be curled, or may be bent in the middle. Moreover, you may branch to 1 or 2 or more directions on the way, not only extending in one direction. The formation method of the fibrous structure 154 is not particularly limited. For example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, A sol-gel method or a spray coating method is preferred. This is because a fibrous substance having a sufficiently large length with respect to the fiber diameter can be easily and stably formed.
 この繊維状構造体154は、泳動粒子152とは異なる光学的反射特性を有していることが好ましい。例えば、泳動粒子152により暗表示がなされる場合、黒色の泳動粒子152と、白色の繊維状構造体154とが用いられる。泳動粒子152により明表示がなされる場合には、白色の泳動粒子152と、黒色の繊維状構造体154とが用いられる。 The fibrous structure 154 preferably has an optical reflection characteristic different from that of the migrating particles 152. For example, when dark display is performed by the migrating particles 152, black migrating particles 152 and white fibrous structures 154 are used. When bright display is performed by the migrating particles 152, white migrating particles 152 and a black fibrous structure 154 are used.
 非泳動粒子155は、繊維状構造体154に固定されており、電気的に泳動しない粒子である。この非泳動粒子155の形成材料は、例えば、泳動粒子152の形成材料と同様であり、非泳動粒子155が担う役割に応じて選択される。この非泳動粒子155は、泳動粒子152とは異なる光学的反射特性を有している。 Non-electrophoretic particles 155 are particles that are fixed to the fibrous structure 154 and do not migrate electrically. The material for forming the non-electrophoretic particles 155 is, for example, the same as the material for forming the electrophoretic particles 152, and is selected according to the role played by the non-electrophoretic particles 155. The non-migrating particles 155 have optical reflection characteristics different from those of the migrating particles 152.
 上記の表示体14の構成は一例であり、他の構成であってもよい。例えば、多孔質層153を持たない他の構成、例えば、カプセル状のものであってもよいし、エレクトロクロミック表示素子などが用いられてもよい。このように、上述した表示装置およびその駆動方法は、外部電界を遮断しても表示状態を保持することが可能な、種々の反射型表示素子に適用可能である。 The configuration of the display body 14 described above is an example, and other configurations may be used. For example, another configuration that does not have the porous layer 153, for example, a capsule shape, or an electrochromic display element may be used. As described above, the display device and the driving method thereof can be applied to various reflective display elements that can maintain a display state even when an external electric field is interrupted.
<適用例>
 次に、上述の実施の形態および変形例において説明した表示装置の適用例について説明する。ただし、以下で説明する電子機器の構成はあくまで一例であり、その構成は適宜変更可能である。上記の表示装置1は、各種の電子機器あるいは服飾品の一部に適用可能であり、その電子機器等の種類は特に限定されない。この表示装置1は、例えば、以下の電子機器等に搭載可能である。ただし、以下で説明する電子機器等の構成はあくまで一例であるため、その構成は適宜変更可能である。
<Application example>
Next, application examples of the display device described in the above embodiments and modifications will be described. However, the configuration of the electronic device described below is merely an example, and the configuration can be changed as appropriate. The display device 1 can be applied to a part of various electronic devices or clothing, and the type of the electronic device is not particularly limited. The display device 1 can be mounted on, for example, the following electronic devices. However, the configuration of the electronic device or the like described below is merely an example, and the configuration can be changed as appropriate.
(適用例1)
 図24Aおよび図24Bは、電子ブックの外観構成を表している。この電子ブックは、例えば、表示部110および非表示部120と、操作部130とを備えている。なお、操作部130は、図24Aに示したように非表示部120の前面に設けられていてもよいし、図24Bに示したように上面に設けられていてもよい。表示部110が表示装置1を含んで構成される。なお、表示装置1は、図24A,図24Bに示した電子ブックと同様の構成を有するPDA(Personal Digital Assistants)等に搭載されてもよい。
(Application example 1)
24A and 24B show the external configuration of an electronic book. The electronic book includes, for example, a display unit 110, a non-display unit 120, and an operation unit 130. Note that the operation unit 130 may be provided on the front surface of the non-display unit 120 as illustrated in FIG. 24A, or may be provided on the upper surface as illustrated in FIG. 24B. The display unit 110 includes the display device 1. The display device 1 may be mounted on a PDA (Personal Digital Assistants) having the same configuration as the electronic book shown in FIGS. 24A and 24B.
(適用例2)
 図25は、タブレットパーソナルコンピュータの外観を表したものである。このタブレットパーソナルコンピュータは、例えば、タッチパネル部310および筐体320を有しており、タッチパネル部310が上記表示装置1を含んで構成されている。
(Application example 2)
FIG. 25 shows the appearance of a tablet personal computer. The tablet personal computer has, for example, a touch panel unit 310 and a housing 320, and the touch panel unit 310 includes the display device 1.
 上記の表示装置1は、いわゆるウェアラブル端末として、例えば時計(腕時計)、鞄、衣服、帽子、眼鏡および靴等の服飾品の一部に適用することも可能である。以下に、そのような服飾品一体型の電子機器の一例を示す。 The display device 1 described above can be applied to a part of clothing such as a watch (watch), a bag, clothes, a hat, glasses and shoes as a so-called wearable terminal. Below, an example of such an electronic device integrated with clothing is shown.
(適用例3)
 図26Aおよび図26Bは、電子時計(腕時計一体型電子機器)の外観を表したものである。この電子時計は、例えば文字盤(文字情報表示部分)410とバンド部(色柄表示部分)420とを有しており、これらの文字盤410とバンド部420とが上記表示装置1を含んで構成されている。文字盤410には、上述の電気泳動素子を用いた表示駆動により、図26Aおよび図26Bのように、例えば様々な文字や図柄が表示される。バンド部420は、例えば腕などに装着可能な部位である。このバンド部420において、表示装置1が用いられることで、様々な色柄を表示することができ、図26Aの例から図26Bの例のように、バンド部420の意匠を変更することができる。ファッション用途においても有用な電子デバイスを実現可能となる。
(Application example 3)
26A and 26B show the appearance of an electronic timepiece (a wristwatch integrated electronic device). The electronic timepiece has, for example, a dial (character information display portion) 410 and a band portion (color pattern display portion) 420, and the dial 410 and the band portion 420 include the display device 1. It is configured. For example, various characters and designs are displayed on the dial plate 410 as shown in FIGS. 26A and 26B by display driving using the above-described electrophoretic element. The band unit 420 is a part that can be attached to an arm or the like, for example. By using the display device 1 in the band unit 420, various color patterns can be displayed, and the design of the band unit 420 can be changed from the example of FIG. 26A to the example of FIG. 26B. . Electronic devices that are also useful in fashion applications can be realized.
 以上、実施形態を挙げて本開示を説明したが、本開示は実施形態で説明した態様に限定されず、種々の変形が可能である。例えば、上記実施の形態において説明した構成要素を全て備える必要はなく、更に他の構成要素を含んでいてもよい。また、上述した構成要素の材料や厚みは一例であり、記載したものに限定されるものではない。 Although the present disclosure has been described with reference to the embodiment, the present disclosure is not limited to the aspect described in the embodiment, and various modifications are possible. For example, it is not necessary to provide all the components described in the above embodiment, and other components may be included. Moreover, the material and thickness of the component mentioned above are examples, and are not limited to what was described.
 尚、上記実施の形態等において説明した効果は一例であり、本開示の効果は、他の効果であってもよいし、更に他の効果を含んでいてもよい。 In addition, the effect demonstrated in the said embodiment etc. is an example, The effect of this indication may be other effects and may also contain other effects.
 尚、本開示内容は以下のような構成であってもよい。
(1)
 電気泳動素子を含むと共に複数の画素を有する画素部と、
 前記画素部の各画素に対し、少なくとも2値を切り替える電圧波形を複数フレームにわたって印加することにより前記画素の表示状態を変化させる駆動を行う駆動部と、
 を備え、
 前記駆動部は、前記複数の画素のうちの隣り合う第1および第2の画素が互いに異なる表示状態を有する場合に、
 前記第1および第2の画素に印加する各電圧波形の組み合わせとして、前記第1および第2の画素に対して印加される各電圧値の差分がより小さくなる組み合わせを用いて、前記駆動を行う
 表示装置。
(2)
 前記駆動部は、
 前記第1および第2の画素以外の各画素に対して、画像表示用の第1の電圧波形を印加して前記駆動を行い、
 前記第1および第2の画素の一方または両方に対して、前記第1の電圧波形の一部が置換されてなる第2の電圧波形を印加して前記駆動を行う
 上記(1)に記載の表示装置。
(3)
 前記第1の電圧波形を保持する第1の保持部と、
 前記第2の電圧波形を保持する第2の保持部と
 を更に備えた
 上記(2)に記載の表示装置。
(4)
 前記駆動部は、前記第1および第2の電圧波形をそれぞれ演算処理によって生成する
 上記(2)に記載の表示装置。
(5)
 前記画素部に表示される画像において前記第1および第2の画素を含む輪郭部分を検出する検出部を更に備えた
 上記(1)~(4)のいずれか1つに記載の表示装置。
(6)
 前記電圧波形は、少なくとも、負の第1電圧値と正の第2電圧値とを切り替える形状を有する
 上記(1)~(5)のいずれか1つに記載の表示装置。
(7)
 前記電圧波形はそれぞれ、前記第1電圧値と、前記第2電圧値と、前記第1電圧値および前記第2電圧値の中間の第3電圧値とを切り替える形状を有する
 上記(6)に記載の表示装置。
(8)
 前記第1および第2の画素に印加される各電圧波形の組み合わせは、前記第1および第2の画素のうちの一方の画素に前記第1電圧値が、他方の画素に前記第2電圧値がそれぞれ印加されるフレームが相対的に少ない組み合わせである
 上記(6)に記載の表示装置。
(9)
 前記第1および第2の画素に印加される各電圧波形の組み合わせでは、各フレームにおいて、
 前記第1の画素に対して、前記第1電圧値、前記第2電圧値および前記第3電圧値のうちのいずれかが印加され、
 前記第2の画素に対して、前記第1の画素に前記第1電圧値または前記第2電圧値が印加される場合には前記第1の画素と同電圧または前記第3電圧値が印加され、前記第1の画素に前記第3電圧値が印加される場合には前記第1電圧値、前記第2電圧値および前記第3電圧値のうちのいずれかが印加される
 上記(7)に記載の表示装置。
(10)
 前記電気泳動素子は、
 前記画素毎に設けられた第1電極と、
 複数の前記第1電極に対向して配置された第2電極と、
 前記複数の第1電極と前記第2電極との間に封止され、泳動粒子を含むと共に印加電圧に応じて光反射特性が変化する表示体と
 を有する
 上記(1)~(9)のいずれか1つに記載の表示装置。
(11)
 電気泳動素子を含む複数の画素のそれぞれに対し、少なくとも2値を切り替える電圧波形を複数フレームにわたって印加して前記画素の表示状態を変化させる駆動を行い、
 前記複数の画素のうちの隣り合う第1および第2の画素が互いに異なる表示状態を有する場合に、前記第1および第2の画素に印加する各電圧波形の組み合わせとして、前記第1および第2の画素に対して印加される各電圧値の差分がより小さくなる組み合わせを用いて、前記駆動を行う
 駆動方法。
(12)
 前記第1および第2の画素以外の各画素に対して、画像表示用の第1の電圧波形を印加して前記駆動を行い、
 前記第1および第2の画素の一方または両方に対して、前記第1の電圧波形の一部が置換されてなる第2の電圧波形を印加して前記駆動を行う
 上記(11)に記載の駆動方法。
(13)
 前記画像における前記第1および第2の画素を含む輪郭部分を検出する
 上記(11)または(12)に記載の駆動方法。
(14)
 前記電圧波形は、少なくとも、負の第1電圧値と正の第2電圧値とを切り替える形状を有する
 上記(11)~(13)のいずれか1つに記載の駆動方法。
(15)
 前記電圧波形はそれぞれ、前記第1電圧値と、前記第2電圧値と、前記第1電圧値および前記第2電圧値の中間の第3電圧値とを切り替える形状を有する
 上記(14)に記載の駆動方法。
(16)
 前記第1および第2の画素に印加される各電圧波形の組み合わせは、前記第1および第2の画素のうちの一方の画素に前記第1電圧値が、他方の画素に前記第2電圧値がそれぞれ印加されるフレームが相対的に少ない組み合わせである
 上記(14)に記載の駆動方法。
(17)
 前記第1および第2の画素に印加される各電圧波形の組み合わせでは、各フレームにおいて、
 前記第1の画素に対して、前記第1電圧値、前記第2電圧値および前記第3電圧値のうちのいずれかが印加され、
 前記第2の画素に対して、前記第1の画素に前記第1電圧値または前記第2電圧値が印加される場合には前記第1の画素と同電圧または前記第3電圧値が印加され、前記第1の画素に前記第3電圧値が印加される場合には前記第1電圧値、前記第2電圧値および前記第3電圧値のうちのいずれかが印加される
 上記(15)に記載の駆動方法。
(18)
 電気泳動素子を含むと共に複数の画素を有する画素部と、
 前記画素部の各画素に対し、少なくとも2値を切り替える電圧波形を複数フレームにわたって印加することにより前記画素の表示状態を変化させる駆動を行う駆動部と
 を備え、
 前記駆動部は、前記複数の画素のうちの隣り合う第1および第2の画素が互いに異なる表示状態を有する場合に、
 前記第1および第2の画素に印加する各電圧波形の組み合わせとして、前記第1および第2の画素に対して印加される各電圧値の差分がより小さくなる組み合わせを用いて、前記駆動を行う
 表示装置
 を備えた電子機器。
Note that the present disclosure may be configured as follows.
(1)
A pixel portion including an electrophoretic element and having a plurality of pixels;
A drive unit that performs driving to change the display state of the pixel by applying a voltage waveform that switches at least two values over a plurality of frames to each pixel of the pixel unit;
With
In the case where the first and second pixels adjacent to each other among the plurality of pixels have different display states,
The driving is performed using a combination of smaller voltage values applied to the first and second pixels as a combination of voltage waveforms applied to the first and second pixels. Display device.
(2)
The drive unit is
Applying the first voltage waveform for image display to each pixel other than the first and second pixels to perform the driving,
The driving is performed by applying a second voltage waveform obtained by replacing a part of the first voltage waveform to one or both of the first and second pixels. Display device.
(3)
A first holding unit for holding the first voltage waveform;
The display device according to (2), further comprising: a second holding unit that holds the second voltage waveform.
(4)
The display device according to (2), wherein the driving unit generates the first and second voltage waveforms by arithmetic processing.
(5)
5. The display device according to any one of (1) to (4), further including a detection unit that detects a contour portion including the first and second pixels in an image displayed on the pixel unit.
(6)
The display device according to any one of (1) to (5), wherein the voltage waveform has a shape that switches between at least a negative first voltage value and a positive second voltage value.
(7)
Each of the voltage waveforms has a shape for switching the first voltage value, the second voltage value, and a third voltage value intermediate between the first voltage value and the second voltage value. Display device.
(8)
The combination of the voltage waveforms applied to the first and second pixels is such that one of the first and second pixels has the first voltage value and the other pixel has the second voltage value. The display device according to (6), wherein each frame is a combination in which relatively few frames are applied.
(9)
In each voltage waveform combination applied to the first and second pixels, in each frame,
One of the first voltage value, the second voltage value, and the third voltage value is applied to the first pixel,
When the first voltage value or the second voltage value is applied to the first pixel, the same voltage as the first pixel or the third voltage value is applied to the second pixel. When the third voltage value is applied to the first pixel, any one of the first voltage value, the second voltage value, and the third voltage value is applied. (7) The display device described.
(10)
The electrophoretic element is:
A first electrode provided for each pixel;
A second electrode disposed opposite to the plurality of first electrodes;
Any of the above (1) to (9), comprising: a display body that is sealed between the plurality of first electrodes and the second electrode, includes migrating particles, and changes light reflection characteristics according to an applied voltage. The display apparatus as described in any one.
(11)
For each of the plurality of pixels including the electrophoretic element, a voltage waveform for switching at least two values is applied over a plurality of frames to change the display state of the pixel,
When the first and second pixels adjacent to each other in the plurality of pixels have different display states, the first and second are combinations of voltage waveforms applied to the first and second pixels. A driving method in which the driving is performed using a combination in which the difference between the voltage values applied to the pixels is smaller.
(12)
Applying the first voltage waveform for image display to each pixel other than the first and second pixels to perform the driving,
The driving is performed by applying a second voltage waveform obtained by replacing a part of the first voltage waveform to one or both of the first and second pixels. Driving method.
(13)
The driving method according to (11) or (12), wherein a contour portion including the first and second pixels in the image is detected.
(14)
The driving method according to any one of (11) to (13), wherein the voltage waveform has a shape that switches between at least a negative first voltage value and a positive second voltage value.
(15)
Each of the voltage waveforms has a shape for switching the first voltage value, the second voltage value, and a third voltage value intermediate between the first voltage value and the second voltage value. Driving method.
(16)
The combination of the voltage waveforms applied to the first and second pixels is such that one of the first and second pixels has the first voltage value and the other pixel has the second voltage value. The driving method according to (14), wherein each of the frames is a combination in which relatively few frames are applied.
(17)
In each voltage waveform combination applied to the first and second pixels, in each frame,
One of the first voltage value, the second voltage value, and the third voltage value is applied to the first pixel,
When the first voltage value or the second voltage value is applied to the first pixel, the same voltage as the first pixel or the third voltage value is applied to the second pixel. When the third voltage value is applied to the first pixel, any one of the first voltage value, the second voltage value, and the third voltage value is applied. (15) The driving method described.
(18)
A pixel portion including an electrophoretic element and having a plurality of pixels;
A driving unit that performs driving to change a display state of the pixel by applying a voltage waveform that switches at least two values over a plurality of frames to each pixel of the pixel unit; and
In the case where the first and second pixels adjacent to each other among the plurality of pixels have different display states,
The drive is performed using a combination of smaller voltage values applied to the first and second pixels as a combination of voltage waveforms applied to the first and second pixels. Electronic equipment with a display device.
 本出願は、日本国特許庁において2015年12月28日に出願された日本特許出願番号第2015-256653号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2015-256653 filed on December 28, 2015 at the Japan Patent Office. The entire contents of this application are incorporated herein by reference. This is incorporated into the application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (18)

  1.  電気泳動素子を含むと共に複数の画素を有する画素部と、
     前記画素部の各画素に対し、少なくとも2値を切り替える電圧波形を複数フレームにわたって印加することにより前記画素の表示状態を変化させる駆動を行う駆動部と、
     を備え、
     前記駆動部は、前記複数の画素のうちの隣り合う第1および第2の画素が互いに異なる表示状態を有する場合に、
     前記第1および第2の画素に印加する各電圧波形の組み合わせとして、前記第1および第2の画素に対して印加される各電圧値の差分がより小さくなる組み合わせを用いて、前記駆動を行う
     表示装置。
    A pixel portion including an electrophoretic element and having a plurality of pixels;
    A drive unit that performs driving to change the display state of the pixel by applying a voltage waveform that switches at least two values over a plurality of frames to each pixel of the pixel unit;
    With
    In the case where the first and second pixels adjacent to each other among the plurality of pixels have different display states,
    The driving is performed using a combination of smaller voltage values applied to the first and second pixels as a combination of voltage waveforms applied to the first and second pixels. Display device.
  2.  前記駆動部は、
     前記第1および第2の画素以外の各画素に対して、画像表示用の第1の電圧波形を印加して前記駆動を行い、
     前記第1および第2の画素の一方または両方に対して、前記第1の電圧波形の一部が置換されてなる第2の電圧波形を印加して前記駆動を行う
     請求項1に記載の表示装置。
    The drive unit is
    Applying the first voltage waveform for image display to each pixel other than the first and second pixels to perform the driving,
    The display according to claim 1, wherein the driving is performed by applying a second voltage waveform obtained by replacing a part of the first voltage waveform to one or both of the first and second pixels. apparatus.
  3.  前記第1の電圧波形を保持する第1の保持部と、
     前記第2の電圧波形を保持する第2の保持部と
     を更に備えた
     請求項2に記載の表示装置。
    A first holding unit for holding the first voltage waveform;
    The display device according to claim 2, further comprising: a second holding unit that holds the second voltage waveform.
  4.  前記駆動部は、前記第1および第2の電圧波形をそれぞれ演算処理によって生成する
     請求項2に記載の表示装置。
    The display device according to claim 2, wherein the driving unit generates the first and second voltage waveforms by arithmetic processing.
  5.  前記画素部に表示される画像において前記第1および第2の画素を含む輪郭部分を検出する検出部を更に備えた
     請求項1に記載の表示装置。
    The display device according to claim 1, further comprising a detection unit that detects a contour portion including the first and second pixels in an image displayed on the pixel unit.
  6.  前記電圧波形は、少なくとも、負の第1電圧値と正の第2電圧値とを切り替える形状を有する
     請求項1に記載の表示装置。
    The display device according to claim 1, wherein the voltage waveform has a shape that switches at least between a negative first voltage value and a positive second voltage value.
  7.  前記電圧波形はそれぞれ、前記第1電圧値と、前記第2電圧値と、前記第1電圧値および前記第2電圧値の中間の第3電圧値とを切り替える形状を有する
     請求項6に記載の表示装置。
    The voltage waveform has a shape for switching the first voltage value, the second voltage value, and a third voltage value intermediate between the first voltage value and the second voltage value, respectively. Display device.
  8.  前記第1および第2の画素に印加される各電圧波形の組み合わせは、前記第1および第2の画素のうちの一方の画素に前記第1電圧値が、他方の画素に前記第2電圧値がそれぞれ印加されるフレームが相対的に少ない組み合わせである
     請求項6に記載の表示装置。
    The combination of the voltage waveforms applied to the first and second pixels is such that one of the first and second pixels has the first voltage value and the other pixel has the second voltage value. The display device according to claim 6, wherein each frame is a combination in which relatively few frames are applied.
  9.  前記第1および第2の画素に印加される各電圧波形の組み合わせでは、各フレームにおいて、
     前記第1の画素に対して、前記第1電圧値、前記第2電圧値および前記第3電圧値のうちのいずれかが印加され、
     前記第2の画素に対して、前記第1の画素に前記第1電圧値または前記第2電圧値が印加される場合には前記第1の画素と同電圧または前記第3電圧値が印加され、前記第1の画素に前記第3電圧値が印加される場合には前記第1電圧値、前記第2電圧値および前記第3電圧値のうちのいずれかが印加される
     請求項7に記載の表示装置。
    In each voltage waveform combination applied to the first and second pixels, in each frame,
    One of the first voltage value, the second voltage value, and the third voltage value is applied to the first pixel,
    When the first voltage value or the second voltage value is applied to the first pixel, the same voltage as the first pixel or the third voltage value is applied to the second pixel. The one of the first voltage value, the second voltage value, and the third voltage value is applied when the third voltage value is applied to the first pixel. Display device.
  10.  前記電気泳動素子は、
     前記画素毎に設けられた第1電極と、
     複数の前記第1電極に対向して配置された第2電極と、
     前記複数の第1電極と前記第2電極との間に封止され、泳動粒子を含むと共に印加電圧に応じて光反射特性が変化する表示体と
     を有する
     請求項1に記載の表示装置。
    The electrophoretic element is:
    A first electrode provided for each pixel;
    A second electrode disposed opposite to the plurality of first electrodes;
    The display device according to claim 1, further comprising: a display body that is sealed between the plurality of first electrodes and the second electrode, includes migrating particles, and changes light reflection characteristics according to an applied voltage.
  11.  電気泳動素子を含む複数の画素のそれぞれに対し、少なくとも2値を切り替える電圧波形を複数フレームにわたって印加して前記画素の表示状態を変化させる駆動を行い、
     前記複数の画素のうちの隣り合う第1および第2の画素が互いに異なる表示状態を有する場合に、前記第1および第2の画素に印加する各電圧波形の組み合わせとして、前記第1および第2の画素に対して印加される各電圧値の差分がより小さくなる組み合わせを用いて、前記駆動を行う
     駆動方法。
    For each of the plurality of pixels including the electrophoretic element, a voltage waveform for switching at least two values is applied over a plurality of frames to change the display state of the pixel,
    When the first and second pixels adjacent to each other in the plurality of pixels have different display states, the first and second are combinations of voltage waveforms applied to the first and second pixels. A driving method in which the driving is performed using a combination in which the difference between the voltage values applied to the pixels is smaller.
  12.  前記第1および第2の画素以外の各画素に対して、画像表示用の第1の電圧波形を印加して前記駆動を行い、
     前記第1および第2の画素の一方または両方に対して、前記第1の電圧波形の一部が置換されてなる第2の電圧波形を印加して前記駆動を行う
     請求項11に記載の駆動方法。
    Applying the first voltage waveform for image display to each pixel other than the first and second pixels to perform the driving,
    The driving according to claim 11, wherein the driving is performed by applying a second voltage waveform obtained by replacing a part of the first voltage waveform to one or both of the first and second pixels. Method.
  13.  前記画像における前記第1および第2の画素を含む輪郭部分を検出する
     請求項11に記載の駆動方法。
    The driving method according to claim 11, wherein a contour portion including the first and second pixels in the image is detected.
  14.  前記電圧波形は、少なくとも、負の第1電圧値と正の第2電圧値とを切り替える形状を有する
     請求項11に記載の駆動方法。
    The driving method according to claim 11, wherein the voltage waveform has a shape that switches at least a negative first voltage value and a positive second voltage value.
  15.  前記電圧波形はそれぞれ、前記第1電圧値と、前記第2電圧値と、前記第1電圧値および前記第2電圧値の中間の第3電圧値とを切り替える形状を有する
     請求項14に記載の駆動方法。
    The voltage waveform has a shape for switching the first voltage value, the second voltage value, and a third voltage value intermediate between the first voltage value and the second voltage value, respectively. Driving method.
  16.  前記第1および第2の画素に印加される各電圧波形の組み合わせは、前記第1および第2の画素のうちの一方の画素に前記第1電圧値が、他方の画素に前記第2電圧値がそれぞれ印加されるフレームが相対的に少ない組み合わせである
     請求項14に記載の駆動方法。
    The combination of the voltage waveforms applied to the first and second pixels is such that one of the first and second pixels has the first voltage value and the other pixel has the second voltage value. The driving method according to claim 14, wherein each is applied in a combination of relatively few frames.
  17.  前記第1および第2の画素に印加される各電圧波形の組み合わせでは、各フレームにおいて、
     前記第1の画素に対して、前記第1電圧値、前記第2電圧値および前記第3電圧値のうちのいずれかが印加され、
     前記第2の画素に対して、前記第1の画素に前記第1電圧値または前記第2電圧値が印加される場合には前記第1の画素と同電圧または前記第3電圧値が印加され、前記第1の画素に前記第3電圧値が印加される場合には前記第1電圧値、前記第2電圧値および前記第3電圧値のうちのいずれかが印加される
     請求項15に記載の駆動方法。
    In each voltage waveform combination applied to the first and second pixels, in each frame,
    One of the first voltage value, the second voltage value, and the third voltage value is applied to the first pixel,
    When the first voltage value or the second voltage value is applied to the first pixel, the same voltage as the first pixel or the third voltage value is applied to the second pixel. The first voltage value, the second voltage value, or the third voltage value is applied when the third voltage value is applied to the first pixel. Driving method.
  18.  電気泳動素子を含むと共に複数の画素を有する画素部と、
     前記画素部の各画素に対し、少なくとも2値を切り替える電圧波形を複数フレームにわたって印加することにより前記画素の表示状態を変化させる駆動を行う駆動部と
     を備え、
     前記駆動部は、前記複数の画素のうちの隣り合う第1および第2の画素が互いに異なる表示状態を有する場合に、
     前記第1および第2の画素に印加する各電圧波形の組み合わせとして、前記第1および第2の画素に対して印加される各電圧値の差分がより小さくなる組み合わせを用いて、前記駆動を行う
     表示装置
     を備えた電子機器。
    A pixel portion including an electrophoretic element and having a plurality of pixels;
    A driving unit that performs driving to change a display state of the pixel by applying a voltage waveform that switches at least two values over a plurality of frames to each pixel of the pixel unit; and
    In the case where the first and second pixels adjacent to each other among the plurality of pixels have different display states,
    The driving is performed using a combination of smaller voltage values applied to the first and second pixels as a combination of voltage waveforms applied to the first and second pixels. Electronic equipment with a display device.
PCT/JP2016/087085 2015-12-28 2016-12-13 Display device, drive method, and electronic apparatus WO2017115645A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015256653A JP2017120315A (en) 2015-12-28 2015-12-28 Display device, drive method, and electronic apparatus
JP2015-256653 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017115645A1 true WO2017115645A1 (en) 2017-07-06

Family

ID=59224822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087085 WO2017115645A1 (en) 2015-12-28 2016-12-13 Display device, drive method, and electronic apparatus

Country Status (2)

Country Link
JP (1) JP2017120315A (en)
WO (1) WO2017115645A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11721295B2 (en) 2017-09-12 2023-08-08 E Ink Corporation Electro-optic displays, and methods for driving same
US11423852B2 (en) 2017-09-12 2022-08-23 E Ink Corporation Methods for driving electro-optic displays
CN111615724B (en) * 2018-01-22 2023-01-31 伊英克公司 Electro-optic display and method for driving an electro-optic display
JP2020154072A (en) * 2019-03-19 2020-09-24 株式会社リコー Electrochromic device, as well as device, window, projector screen, decorative member and ornament member with the same
CN112331154B (en) * 2021-01-07 2021-04-13 发明之家(北京)科技有限公司 Electronic paper display system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031264A (en) * 2003-07-09 2005-02-03 Canon Inc Display device
JP2008508549A (en) * 2004-07-27 2008-03-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrophoretic display driving apparatus and driving method
JP2012220826A (en) * 2011-04-12 2012-11-12 Seiko Epson Corp Control method of electro-optical device, controller of electro-optical device, electro-optical device and electronic apparatus
JP2015158624A (en) * 2014-02-25 2015-09-03 セイコーエプソン株式会社 Control device, display device, control method and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031264A (en) * 2003-07-09 2005-02-03 Canon Inc Display device
JP2008508549A (en) * 2004-07-27 2008-03-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrophoretic display driving apparatus and driving method
JP2012220826A (en) * 2011-04-12 2012-11-12 Seiko Epson Corp Control method of electro-optical device, controller of electro-optical device, electro-optical device and electronic apparatus
JP2015158624A (en) * 2014-02-25 2015-09-03 セイコーエプソン株式会社 Control device, display device, control method and program

Also Published As

Publication number Publication date
JP2017120315A (en) 2017-07-06

Similar Documents

Publication Publication Date Title
WO2017115645A1 (en) Display device, drive method, and electronic apparatus
KR101551981B1 (en) Electrophoretic display device driving method electrophoretic display device and electronic apparatus
US8629832B2 (en) Electrophoretic display device, electronic device, and drive method for an electrophoretic display panel
US8174494B2 (en) Electrophoretic display device, electronic device, and drive method for an electrophoretic display panel
US11935496B2 (en) Electro-optic displays, and methods for driving same
US11568827B2 (en) Methods for driving electro-optic displays to minimize edge ghosting
JP5958003B2 (en) Display device control device, display device control method, display device, and electronic apparatus
US10347195B2 (en) Display unit, method of driving display unit, and electronic apparatus
WO2016088502A1 (en) Display device, driving method, and electronic device
CN104205200A (en) Device for controlling display device, method for controlling display device, display device, and electronic instrument
JP2013061592A (en) Method for driving electrophoretic display device, electrophoretic display device, electronic equipment and electronic clock
JP2010197571A (en) Electrophoretic display device, method for driving electrophoretic display device, and electronic apparatus
JP2013054202A (en) Drive method of electrophoretic display device, electrophoretic display device, electronic equipment and electronic clock
JP2011095479A (en) Method of driving electrophoresis display panel, electrophoresis display device, and electronic apparatus
JP5286680B2 (en) Electrophoretic display device, electrophoretic display device driving method, and electronic apparatus
JP2012194344A (en) Method for driving electro-optic device, control device of electro-optic device, electro-optic device, and electronic apparatus
US11289036B2 (en) Methods for driving electro-optic displays
KR102435841B1 (en) Electro-optical displays and their driving methods
WO2017187826A1 (en) Display device, drive method, and electronic apparatus
JP2013130629A (en) Electrophoretic display device driving method, electrophoretic display device, electronic apparatus and electronic clock
JP5910259B2 (en) Control device, display device, electronic device, and control method
WO2016194629A1 (en) Display device
JP2013061595A (en) Method for driving electrophoretic display device, electrophoretic display device, electronic equipment and electronic clock
JP2016130828A (en) Storage type display device, drive method of storage type display device, and electronic device
JP2010197563A (en) Method for driving electrophoresis display panel, electrophoresis display device and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881624

Country of ref document: EP

Kind code of ref document: A1