WO2017187643A1 - Reflective sheet, and solar cell module and led lighting device each using same - Google Patents

Reflective sheet, and solar cell module and led lighting device each using same Download PDF

Info

Publication number
WO2017187643A1
WO2017187643A1 PCT/JP2016/063503 JP2016063503W WO2017187643A1 WO 2017187643 A1 WO2017187643 A1 WO 2017187643A1 JP 2016063503 W JP2016063503 W JP 2016063503W WO 2017187643 A1 WO2017187643 A1 WO 2017187643A1
Authority
WO
WIPO (PCT)
Prior art keywords
white
resin
titanium oxide
reflective sheet
layer
Prior art date
Application number
PCT/JP2016/063503
Other languages
French (fr)
Japanese (ja)
Inventor
道好 鈴木
Original Assignee
東京尽陽株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京尽陽株式会社 filed Critical 東京尽陽株式会社
Priority to PCT/JP2016/063503 priority Critical patent/WO2017187643A1/en
Publication of WO2017187643A1 publication Critical patent/WO2017187643A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to a reflective sheet, and a solar cell module and LED lighting using the same.
  • the present invention is, for example, an agricultural vinyl film, a film for protecting a surface of an outer layer signboard, a barrier film for preventing discoloration, fading, light degradation, etc.
  • the present invention relates to a film, a solar cell backsheet, a reflective sheet used for LED lighting, and the like, and a solar cell module and LED lighting using the same.
  • Ultraviolet rays with a short wavelength in sunlight have a harmful effect on human bodies and animals and plants compared to visible rays and infrared rays. For this reason, for example, window glass and agricultural vinyl for houses are required to have an ultraviolet shielding or reflecting effect.
  • next-generation energy infrastructure such as solar cells, which replace energy infrastructure such as fossil fuel and electronic power, has attracted attention from the viewpoint of prevention of environmental pollution and safety.
  • Examples of a general solar battery include a silicon system using silicon as a material, a compound system that forms a compound semiconductor using copper, indium, selenium, potassium, and the like, and an organic system that uses an organic compound for a photoelectric conversion layer. . These solar cells generate power mainly by converting visible light into energy.
  • Examples of the reflection sheet for improving the reflectance of visible light and near infrared light include those provided with an aluminum film vapor deposition layer or surface roughness on the surface of the sheet.
  • these manufactures require steps such as aluminum deposition and surface treatment, leading to a decrease in production efficiency and an increase in the cost of the reflective sheet.
  • a film containing an ultraviolet reflector such as titanium oxide, sodium oxide or zinc oxide, or an ultraviolet absorber such as oxybenzone or silosoma, or a resin composition containing these is used as a conventional reflective sheet for ultraviolet rays.
  • UV rays were blocked, absorbed or reflected by being applied to a film.
  • a film containing an ultraviolet absorber is deteriorated in weather resistance due to deterioration of a resin around the ultraviolet absorber, and a film containing an ultraviolet reflector such as titanium oxide simply has no ultraviolet reflector.
  • the incident ultraviolet rays are irregularly reflected, the amount of ultraviolet absorption in the film or the reflective sheet increases due to repeated irregular reflections between these ultraviolet reflectors, leading to deterioration of the film and the reflective sheet. there were.
  • the refractive index film layer is an oxide containing Si or Al.
  • High refractive index film layer is composed of oxide, nitride oxide or nitride containing Zn, Ti, Sn, In, Nb, Si, Ta or Al).
  • a method of providing an ultraviolet reflective layer see Patent Document 1).
  • this has a problem that the working efficiency is poor because the low refractive index layer and the high refractive index layer are alternately laminated, and the cost increases because a film layer made of an oxide or the like is formed.
  • the present invention has been made in order to solve the above-described problems, and can reflect light in a wide range of wavelengths from ultraviolet rays to near infrared rays without cost and work time, and can obtain a heat absorption effect. It is an object of the present invention to provide a sheet and a solar cell module and LED lighting using the sheet.
  • the present invention has the following configuration.
  • the reflective sheet of the present invention is a reflective sheet including a base material, a white layer formed on the base material, and a resin layer provided on the white layer.
  • Resin composition comprising a thermoplastic resin and a white pigment obtained by copolymerizing a monomer comprising an aromatic dicarboxylic acid, a compound represented by the following general formula (1) and an aliphatic diol having 5 to 7 carbon atoms It is characterized by being formed using an object.
  • the white pigment is titanium oxide
  • the titanium oxide includes titanium oxide (A) having an average particle diameter of 0.1 ⁇ m to 0.3 ⁇ m and an average particle It includes titanium oxide (B) having a diameter of 0.3 ⁇ m to 0.5 ⁇ m.
  • the compounding amount of the titanium oxide (A) and the titanium oxide (B) is the titanium oxide ( A) is 17 wt% to 20 wt%, and the titanium oxide (B) is 7 wt% to 10 wt%.
  • the white layer further includes at least one of aluminum hydroxide, zinc oxide, calcium carbonate, talc, and barium.
  • At least one of the base material and the resin layer includes a white pigment.
  • the solar cell module of the present invention is characterized by using the reflection sheet described in any one of (1) to (5) above.
  • the LED illumination of the present invention is characterized by using the reflection sheet described in any one of (1) to (5) above.
  • the reflection sheet of the present invention can highly reflect light in a wide range of wavelengths from ultraviolet rays to near infrared rays without cost and work time, and can also obtain a heat absorption effect. Therefore, when this is used for a solar cell module, it is possible to obtain good power generation efficiency regardless of the type of solar cell and to suppress a temperature rise due to light reflection, not only the weather resistance of the reflective sheet itself, The weather resistance of the solar cell can also be improved.
  • the LED illumination using the reflection sheet of the present invention can highly reflect light of a wide wavelength emitted from the light source, and can suppress the temperature rise due to the light reflection, thereby further extending the product life of the LED illumination. it can.
  • the schematic sectional drawing of the reflective sheet which concerns on one Embodiment of this invention The schematic sectional drawing of the solar cell module using the reflective sheet which concerns on one Embodiment of this invention.
  • the reflective sheet of this embodiment includes a base material, a white layer formed on the base material, and a resin layer provided on the white layer.
  • Base material As a base material used for the reflective sheet of this embodiment, if it can hold
  • a resin substrate or resin film made of polyester is particularly preferably used, and among them, a resin substrate or resin film made of polyethylene naphthalate or polyethylene terephthalate is particularly preferably used.
  • a white base material in which a white pigment is blended can be used as the base material.
  • the white base material and the white pigment contained in the white layer exhibit a synergistic effect, and a reflective sheet using the white base material can highly reflect visible light particularly from ultraviolet rays.
  • titanium oxide As such a white pigment, titanium oxide, zinc oxide, lithopone and the like can be used. Of these, titanium oxide is particularly preferably used as the white pigment.
  • titanium oxide both rutile titanium oxide and anatase titanium oxide can be used.
  • titanium oxide that has been surface-treated with aluminum hydroxide and silicon, or aluminum hydroxide and zirconia can be suitably used.
  • Examples of the rutile type titanium oxide include Taipei (registered trademark) R-550, Taipei R-630, Taipei R-670, Taipei R-680, Taipei R-780, Taipei R-820, Taipei R-830, Taipei R- 850, Type R-930, Type CR-50, Type CR-57, Type CR-58, Type CR-60, Type CR-63, Type CR-67, Type CR-80, Type CR-85, Type CR-85 90, Taipei CR-93, Taipei CR-95, Taipei CR-97, Taipei UT771 (manufactured by Ishihara Sangyo Co., Ltd.), Thailand Pure (registered trademark) R-100, Thailand Pure R-101, Thailand Pure R-102, Thailand Pure R-103, Taipyu R-104, Taipure R-105, Taipure R-108, Taipure R-706, Taipure R-900, Taipure R-902
  • TITON A-110, TITON A-190, TITON A-197, TITON TCA-123E, TITON SA-1, TITON SA-1L (above, manufactured by Sakai Chemical Industry Co., Ltd.) TA-100, TA-200, TA-300, TA-400, TA-500, TP-2 (above, manufactured by Fuji Titanium Industry Co., Ltd.), TITANIX (registered trademark) JA-1, TITANIX JA-3, TITANIX JA-4, TITANIX JA-5, TITANIX JA-C, TITANIX JR-603 (above, manufactured by Teika), KA-10, KA-15, KA-20, KA-30 (above, Titanium Industry ( Co., Ltd.), Taipei A-100, Taipei A-220, Taipei W-1 (Above, Ishihara Sangyo Co., Ltd.).
  • the average particle size is preferably 0.25 ⁇ m or more, more preferably 0.28 ⁇ m or more, and particularly preferably 0.3 ⁇ m or more. If the average particle size is less than 0.25 ⁇ m, the wavelength of light that can be efficiently scattered shifts to the lower wavelength side, and thus the reflectance in the near-infrared light region may decrease. On the other hand, if the average particle size exceeds 10 ⁇ m, depending on the particle size distribution, coarse particles may be contained, so that defects such as pinholes may occur in the film.
  • the blending amount is 0.5% by weight or more, preferably 3% to 80% by weight, more preferably 20% to 80% by weight. If the amount of the white pigment exceeds 80% by weight, the substrate becomes brittle, and practical mechanical strength may not be obtained, which is not preferable.
  • the thickness of the substrate is preferably 50 ⁇ m to 200 ⁇ m.
  • a resin film for example, a film made of polyethylene terephthalate or polyethylene naphthalate is preferably used.
  • the polyester film containing a white pigment include Toraybo Co., Ltd. Krisper (registered trademark) K1212, SHINEBEAM (registered trademark) White, Teijin DuPont Films Co., Ltd. Teijin (registered trademark) Tetron (registered trademark) film VW. Etc.
  • the white layer according to this embodiment is obtained by copolymerizing a monomer containing an aromatic dicarboxylic acid, a compound represented by the following general formula (1), and an aliphatic diol having 5 to 7 carbon atoms. It is formed using a white resin composition containing a thermoplastic resin and a white pigment.
  • thermoplastic resin obtained by copolymerizing a monomer containing an aromatic dicarboxylic acid, a compound represented by the following general formula (1), and an aliphatic diol having 5 to 7 carbon atoms. It is preferred that
  • aromatic dicarboxylic acid examples include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 4,4-stilbene dicarboxylic acid, 4,4-biphenyldicarboxylic acid, orthophthalic acid, and naphthalenedicarboxylic acid. Of these, terephthalic acid and isophthalic acid are preferably used in combination.
  • Examples of the compound represented by the general formula (1) include isosorbide.
  • aliphatic diol having 5 to 7 carbon atoms both linear and branched ones can be used.
  • a method for copolymerizing the monomer containing the aromatic dicarboxylic acid, the compound represented by the general formula (1), and the aliphatic diol having 5 to 7 carbon atoms is not particularly limited. Can be used.
  • the copolymerization conditions such as the copolymerization ratio of each component and the temperature at the time of copolymerization can be appropriately changed depending on the glass transition temperature, viscosity and the like required for the obtained thermoplastic resin.
  • thermoplastic resin for the monomer components other than the aromatic dicarboxylic acid, the compound represented by the general formula (1), and the aliphatic diol having 5 to 7 carbon atoms, a glass transition temperature required for the obtained thermoplastic resin,
  • a thermoplastic resin that can be appropriately changed depending on the viscosity and the like, for example, Byron (registered trademark) (manufactured by Toyobo Co., Ltd.) can be used, among which Byron (registered trademark) TU-02HA is particularly preferable. Used.
  • the blending amount of the thermoplastic resin is preferably 50% by weight to 80% by weight with respect to the total amount of the white resin composition.
  • the white resin composition may be combined with an isocyanate compound that reacts and crosslinks with a hydroxyl group contained therein for the purpose of curing the thermoplastic resin.
  • an isocyanate compound that reacts and crosslinks with a hydroxyl group contained therein for the purpose of curing the thermoplastic resin.
  • the isocyanate compound By blending the isocyanate compound, moisture resistance and heat resistance can be imparted to the white layer to be formed, and adhesion between the substrate and the resin layer can be further improved. Therefore, the isocyanate compound preferably has a plurality of isocyanate groups in one molecule.
  • a trimethylolpropane adduct of diisocyanate an isocyanurate which is a trimer of diisocyanate
  • a burette conjugate of diisocyanate and a polymeric diisocyanate.
  • the blending amount of such an isocyanate compound is preferably 0.0
  • white pigment titanium oxide, zinc oxide, lithopone and the like can be used. Of these, titanium oxide is particularly preferably used as the white pigment.
  • titanium oxide the same titanium oxide blended in the base material can be used, but titanium oxide (A) having an average particle diameter of 0.1 ⁇ m to 0.3 ⁇ m and an average particle diameter of 0.3 ⁇ m.
  • titanium oxide (B) titanium oxides (A) and (B) are preferably coated with aluminum hydroxide and further surface-treated with silicon or zirconia. By using such titanium oxide, ultraviolet rays and visible rays can be efficiently reflected. Examples of such titanium oxide include Cr-Super 70 manufactured by Ishihara Sangyo Co., Ltd.
  • titanium oxides having different particle diameters are formed at the interfaces between the formed white layer and the base material and the resin layer. Will exist.
  • the same effect as that obtained by subjecting the base material and the resin layer to surface treatment can be obtained.
  • light having a wide wavelength from ultraviolet to near infrared
  • the white layer contains titanium oxide (B) having an average particle size of 0.3 ⁇ m to 0.5 ⁇ m and a large particle size, the heat absorption effect of the white layer can also be achieved.
  • the compounding amount of the titanium oxide (A) and the titanium oxide (B) is 17% to 20% by weight of the titanium oxide (A) and 7% of the titanium oxide (B) with respect to the total amount of the white resin composition. It is preferably from 10% to 10% by weight.
  • the white resin composition of the present embodiment may contain titanium oxide other than the titanium oxide (A) and the titanium oxide (B), and the preferred range of the total amount of titanium oxide is the white resin. It is 24 wt% to 70 wt%, more preferably 24 wt% to 50 wt%, still more preferably 24 wt% to 30 wt%, based on the total amount of the composition.
  • the white resin composition may contain, for example, other resins and at least one of aluminum hydroxide, zinc oxide, calcium carbonate, talc and barium, an organic solvent, an additive, and the like.
  • thermoplastic resins other than the thermoplastic resins examples include thermoplastic resins other than the thermoplastic resins (other thermoplastic resins), photocurable resins, and thermosetting resins.
  • thermoplastic resins include, for example, polyesters such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and liquid crystal polyester; polyolefins such as polyethylene, polypropylene, polybutene 1, and polybutylene; styrene resins, polyoxymethylene , Polyamide, polycarbonate, polymethyl methacrylate, polyvinyl chloride, polyphenylene ether, polyphenylene sulfide, polyimide, polyurethane, polyamideimide, polyetherimide, polysulfone, polyethersulfone, polyketone, polyetherketone, polyetheretherketone, polyetherketone Ketone, polyarylate, polyethernitrile, phenolic resin (example If phenol novolak), a phenoxy resin, and can be used a copolymer thereof, a modified product. These may be used alone or in combination as required.
  • polyesters such as
  • thermoplastic resins having a hydroxyl group or having a hydroxyl group added are preferably used.
  • any oligomer or polymer having a hydroxyl group can be used without any particular limitation.
  • polyamides, polyesters, vinyl polymers having a hydroxyl group, copolymers of various acrylates and methacrylates, phenol resins, cresol resins, and the like can be given.
  • polyester examples include Nipponran (registered trademark) 800, 1100, 121, 1004, 136, 141, 4070 (manufactured by Nippon Polyurethane Industry Co., Ltd.).
  • an isocyanate compound that reacts with and crosslinks with a hydroxyl group contained in the other thermoplastic resin can be blended as appropriate.
  • the blending amount of the isocyanate compound that reacts with the other thermoplastic resin is preferably 0.03% by weight to 10% by weight with respect to the total amount of the other thermoplastic resin.
  • an isocyanate compound the same thing as what is mix
  • photocurable resin known resins can be used as long as they are resin compositions that are cured by irradiation with active energy rays, and examples thereof include photopolymerizable oligomers and photopolymerizable vinyl monomers. .
  • photopolymerization initiators include acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, diethoxyacetophenone, 2,2-diethoxy.
  • Acetophenones such as -2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one; methyl Anthoraquinones such as anthraquinone, 2-ethylanthoraquinone, 2-tert-butylanthoraquinone, 1-chloroanthoraquinone, 2-amylanthoraquinone; thioxanthone, 2,4-diethylthioxanthone, 2 -Chlorothioxanthone, 2,4-dichloro Thioxanthones such as thioxanthone, 2-methylthioxanthone, and 2,4-diisopropylthioxanthone; Ketals such as acetophenone dimethyl ketal and benzyldimethyl ketal; Benzophenones such as be
  • thermosetting resin for example, epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin, dicyclopentadiene
  • examples thereof include resins, silicone resins, triazine resins, melamine resins, and urea resins.
  • an epoxy resin is preferably used.
  • the epoxy resin includes a compound having one or more epoxy groups. Of these, compounds having two or more epoxy groups are preferably used. Examples of such epoxy resins include monoepoxy compounds such as butyl glycidyl ether, phenyl glycidyl ether, and glycidyl (meth) acrylate, bisphenol A type epoxy resins, bisphenol S type epoxy resins, bisphenol F type epoxy resins, and phenol novolac type epoxies.
  • Resin cresol novolac epoxy resin, alicyclic epoxy resin, trimethylolpropane polyglycidyl ether, phenyl-1,3-diglycidyl ether, biphenyl-4,4′-diglycidyl ether, 1,6-hexanediol diglycidyl Ether, diglycidyl ether of ethylene glycol or propylene glycol, sorbitol polyglycidyl ether, tris (2,3-epoxypropyl) isocyanurate, Compounds having two or more epoxy groups in one molecule, such as Li glycidyl tris (2-hydroxyethyl) isocyanurate.
  • thermosetting resin When mix
  • a curing catalyst include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1 Imidazole derivatives such as-(2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethyl Amine compounds such as benzylamine, 4-methyl-N, N-dimethylbenzylamine, hydrazine compounds such as adipic acid dihydr
  • the amount of such a curing catalyst is 0.05 to 10% by weight, preferably 0.1 to 3% by weight, based on 100% by weight of the thermosetting resin.
  • the total amount is preferably 50% by weight to 80% by weight with respect to the total amount of the white resin composition.
  • the white resin composition can contain at least one of aluminum hydroxide, zinc oxide, calcium carbonate, talc and barium, and these can be used alone or in combination. Of these, aluminum hydroxide is particularly preferably used. By mix
  • the aluminum hydroxide known ones can be used. For example, C-3005, C-301, CL-303 (manufactured by Sumitomo Chemical Co., Ltd.), Heidilite (registered trademark) H-21, H- 31, H-32, H-42, H-42M, H-43M (above, manufactured by Showa Denko KK).
  • the blending amount of the aluminum hydroxide is preferably 0.5% by weight to 5% by weight with respect to the total amount of the white resin composition.
  • about zinc oxide, a calcium carbonate, a talc, and barium all can use a well-known thing. These total blending amounts are preferably 0.5% by weight to 5% by weight with respect to the total amount of the white resin composition.
  • the white resin composition can be blended with an organic solvent for the purpose of preparing it and adjusting the viscosity.
  • organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, Glycol ethers such as propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbitol Acetate, propylene glycol monomethyl ether acetate, dipropylene glycol
  • a polyurethane-based adhesive can be blended in order to increase the adhesion between the base material of the white layer and the resin layer.
  • polyurethane-based adhesives include Seika Bond (registered trademark) E-263, Seika Bond C-26 (manufactured by Dainichi Seika Kogyo Co., Ltd.), Takelac (registered trademark) A3210, Takenate (registered trademark). A3072 etc. (above, Mitsui Chemicals Polyurethane Co., Ltd. product) is mentioned.
  • the blending ratio of such a polyurethane adhesive is preferably 10% by weight or less based on the total amount of the white resin composition.
  • thickeners such as finely divided silica, organic bentonite, montmorillonite, antifoaming agents such as silicones and polymers, leveling agents, silanes such as imidazole, thiazole and triazole A coupling agent etc. can be mix
  • the white layer is formed, for example, by applying the white resin composition to the substrate and curing it.
  • the thickness of the formed white layer is preferably 17 ⁇ m to 30 ⁇ m. By setting the thickness of the white layer in this range, the reflectance of visible light of the reflection sheet can be further increased.
  • Resin layer is preferably a polyester film or a coating layer of a resin composition containing a polyester resin.
  • polyester film used for the resin layer examples include commonly used polyesters such as polyethylene terephthalate, polybutylene terephthalate, polynaphthalene terephthalate, or polyethylene naphthalate. Among these, polyethylene terephthalate and polyethylene naphthalate are particularly preferably used.
  • the resin layer is composed of a coating layer of a resin composition containing a polyester resin
  • a resin composition containing polyethylene terephthalate, polybutylene terephthalate, polynaphthalene terephthalate or polyethylene naphthalate is coated on the white layer.
  • the resin composition containing an unsaturated polyester resin is applied on the white layer and thermally cured.
  • a white pigment can be blended in the resin layer.
  • a white pigment the same pigments as those incorporated in the substrate can be used, and titanium oxide is particularly preferably used.
  • the blending amount is 0.5 wt% or more, preferably 3 wt% to 80 wt%, more preferably 20 wt% to 80 wt%. If the amount of the white pigment exceeds 80% by weight, the resin layer becomes brittle and a practical mechanical strength may not be obtained.
  • the polyester film when a polyester film is used as the resin layer and titanium oxide is added as a white pigment to the polyester film, the polyester film is biaxially stretched by applying heat. Since it is different from the white layer, the reflection sheet of this embodiment having such a configuration can realize high reflection of visible light in particular.
  • a polyester film containing a white pigment for example, Teijin (registered trademark) Tetron (registered trademark) film U2 manufactured by Teijin DuPont Films, Teijin (registered trademark) Tetron (registered trademark) film VW, Toyobo SHINEBEAM (registered trademark) White manufactured by Co., Ltd. can be used.
  • the resin layer may contain additives other than the polyester resin, and examples of such additives include hydrolysis resistance modifiers, solid phase polymerization accelerators, antioxidants, flame retardants, and the like. It is done.
  • the thickness of the resin layer is preferably 17 ⁇ m to 30 ⁇ m.
  • the reflective sheet of the present embodiment has an adhesive between the base material and the white layer, between the white layer and the resin layer, or on the surface of the resin layer within a range that does not affect the light reflection. Can be applied to form an adhesive layer. Thereby, the adhesive force of the said base material and the said white layer or the said white layer and the said resin layer can be improved. Moreover, when using the reflective sheet which concerns on this embodiment as a solar cell backsheet, by forming such an adhesive layer on the surface of the resin layer, the reflective sheet and EVA as a sealing material for the solar cell module Can be improved.
  • a polyurethane-based adhesive or an isocyanate-based adhesive is preferably used.
  • the polyurethane adhesive include Seika Bond (registered trademark) E-263, Seika Bond C-26 (above, manufactured by Dainichi Seika Kogyo Co., Ltd.), Takelac (registered trademark) A3210, Takenate (registered trademark) A3072 and the like. (Mitsui Chemicals Polyurethane Co., Ltd.).
  • the commercial item of Coronate (trademark) L etc. made by Nippon Polyurethane Industry Co., Ltd.
  • These polyurethane-based adhesives and isocyanate-based adhesives can be blended with reaction catalysts and other additives within a range that does not adversely affect adhesiveness and pot life.
  • the thickness of the reflective sheet according to the present embodiment can be freely adjusted according to its use, but is particularly preferably 195 ⁇ m to 350 ⁇ m.
  • the reflective sheet according to the present embodiment is manufactured by, for example, the following method.
  • a film made of polyethylene naphthalate is used as the substrate.
  • the method is not particularly limited, and a conventional method can be appropriately employed.
  • the method of adding the said white pigment in the arbitrary steps which manufacture a polyethylene naphthalate component is mentioned.
  • the polycondensation reaction may be advanced by adding the white pigment at the esterification stage or after completion of the transesterification reaction.
  • a white pigment slurry dispersed in ethylene glycol or water and a polyester raw material may be blended using a kneading extruder with a vent.
  • the method of blending the dried white pigment and the polyester raw material using a kneading extruder may be used.
  • polyethylene naphthalate is dissolved, and this is cooled and solidified using a casting drum to obtain an unstretched film.
  • the unstretched film is stretched at a glass transition temperature of Tg 121 ° C. to (Tg + 60) ° C. once or twice or more in the longitudinal direction so that the total magnification becomes 3 to 6 times. Further, this is stretched at Tg 121 ° C. to (Tg + 60) ° C. so that the magnification is 3 to 6 times in the width direction, and a polyethylene naphthalate film having a thickness of 250 ⁇ m, for example, is produced. If necessary, the film may be heat-treated at 180 to 230 ° C. for 1 to 60 seconds.
  • a white resin composition adjusted to a viscosity suitable for coating with an organic solvent is applied to the surface of the polyethylene naphthalate film on which the white layer is to be formed so that the film thickness is 17 ⁇ m to 20 ⁇ m.
  • the white resin composition preferably contains aluminum hydroxide in addition to titanium oxide (A) and titanium oxide (B) having different particle diameters.
  • the white resin composition applied to the polyethylene naphthalate film is dried at a temperature of 70 ° C. to 90 ° C., thereby volatilizing the organic solvent contained therein to form a coating film.
  • a coating method of the white resin composition a screen printing method, a curtain coating method, a spray coating method, a roll coating method, or the like can be appropriately used.
  • the reflective sheet in which the white layer was formed on the said base material can be created by maintaining the bonding roll temperature at 80 to 100 degreeC, and crimping
  • the said coating film using the dry film which consists of the said white resin composition instead of apply
  • a dry film is formed by applying the white resin composition to a carrier film made of, for example, polyethylene terephthalate and drying to form a white resin layer, and a cover film such as a peelable polyethylene film or polypropylene film is formed thereon. Laminated. Specifically, the white resin layer is obtained by applying the white resin composition to a carrier film with a blade coater, a lip coater, a comma coater, a film coater, a Mayer bar coater, a micro gravure coater, and the like. It is formed by drying.
  • the cover film of the dry film is peeled off, the white resin layer and the polyethylene naphthalate film are overlaid, and these are laminated together using a laminator or the like, thereby coating the white film layer on the polyethylene naphthalate film. Is formed. And if the said coating film is heated similarly to the above, a white layer can be formed on the said polyethylene naphthalate film.
  • a resin layer is formed on the white layer.
  • a polyethylene naphthalate film (hereinafter referred to as “resin film” to be distinguished from the base material) can be used.
  • resin film dissolved polyethylene naphthalate is cooled and solidified using a casting drum to obtain an unstretched film.
  • the unstretched film is stretched at a glass transition temperature of Tg 121 ° C. to (Tg + 60) ° C. once or twice or more in the longitudinal direction so that the total magnification becomes 3 to 6 times. Further, this is stretched at Tg 121 ° C. to (Tg + 60) ° C.
  • the magnification is 3 to 6 times in the width direction to produce a polyethylene naphthalate film which is a resin film having a thickness of 50 ⁇ m to 75 ⁇ m.
  • the film may be heat-treated at 180 to 230 ° C. for 1 to 60 seconds.
  • the reflective sheet which concerns on this embodiment is produced by adhere
  • adhesion method it carries out by carrying out the thermocompression bonding to the surface of the said white layer using the roll group etc. which heated the said resin film.
  • a reflective sheet can be produced by forming a white layer on the surface of the resin film and thermocompression bonding the polyethylene naphthalate film on the surface of the white layer.
  • a reflective sheet can be produced by using an extrusion sand laminator method in which the white resin composition is extruded and laminated between the polyethylene naphthalate film and the resin film.
  • the reflective sheet 10 of this embodiment includes a base material 1 made of a polyester film, a white layer 2, and a resin layer 3.
  • the reflective sheet which mix
  • the solar cell module 100 of this embodiment includes a reflective sheet 10 (solar cell backsheet), an encapsulant 20 made of EVA, solar cells 30, and a surface protective material substrate 40 made of glass.
  • Sunlight incident from the surface protective substrate 40 is absorbed by the solar battery cell 30 and converted into energy.
  • Sunlight that could not be absorbed by the solar battery cell 30 passes through the sealing material 20 and enters the reflection sheet 10.
  • the reflective sheet 10 can reflect the incident sunlight efficiently in a wide wavelength from ultraviolet rays to near infrared rays, and can return this to the solar battery cell 30.
  • the reflection sheet of this embodiment having such a configuration can highly reflect light having a wide range of wavelengths from ultraviolet rays to near infrared rays, and can also exhibit a heat absorption effect. Therefore, when the said reflective sheet is used as a solar cell backsheet, for example, it can improve the power generation efficiency of a solar cell module by reflecting incident sunlight efficiently in a wide wavelength from ultraviolet rays to near infrared rays.
  • near-infrared light is absorbed by the molecules of the material to which it is irradiated, and the state of quantized vibration or rotation changes.
  • ultraviolet rays deteriorate the material irradiated by ultraviolet rays
  • the reflection sheet itself and the vicinity thereof are caused by vibration of molecules due to near infrared rays and deterioration by ultraviolet rays.
  • the substance in the water is easily hydrolyzed.
  • EVA laminated on the reflective sheet is likely to be hydrolyzed.
  • the reflective sheet of the present embodiment is highly weatherable and can reflect light in a wide range of wavelengths from ultraviolet to near infrared by forming the white layer from the white resin composition having the above-described configuration.
  • the white layer highly reflects ultraviolet rays and can also reflect near infrared rays by using titanium oxides (A) and (B) having different particle diameters in combination. Therefore, when using this as a solar cell backsheet, generation
  • the reflecting sheet can highly reflect not only from the solar light irradiation side of the solar cell module but also from the opposite side (hereinafter referred to as “back surface”) from ultraviolet rays to near infrared rays. Therefore, the hydrolysis of EVA caused by near infrared rays can be suppressed, and thereby the generation of sodium ions can be further suppressed.
  • the reflective sheet of the present embodiment is preferably provided in the solar cell module such that the resin layer is on the EVA side and the substrate is on the outside.
  • the solar cell backsheet capable of highly reflecting light in a wide range of wavelengths can be used regardless of the type of solar cell.
  • a liquid crystal solar cell such as a single crystal type or a polycrystal type among silicon-based materials that are currently widely used generates power using sunlight with a wavelength of 500 nm to 900 nm.
  • a dandem type in which an amorphous type and a crystal type are combined generates power using sunlight having a wavelength of 300 nm to 900 nm.
  • the dye-sensitized type generates power using sunlight having a wavelength of 500 nm to 1500 nm.
  • the reflective sheet of the present embodiment can achieve high reflectivity at a wavelength of a desired power generation band as appropriate for solar cells having different maximum power generation bands as described above, and is suitable for any solar cell. Can be used.
  • the reflective sheet of this embodiment can implement
  • it can be used suitably also for uses, such as a reflective sheet of LED lighting.
  • Example A white resin composition was prepared by mixing and stirring the following components.
  • Byron TU02-HA Thermoplastic resin manufactured by Toyobo Co., Ltd. 250 parts by weight D-918 (Titanium oxide average particle size 0.26 ⁇ m manufactured by Sakai Chemical Industry Co., Ltd.) 70 parts by weight R-38L (Sakai Chemical Industry Co., Ltd.) Titanium oxide average particle size 0.4 ⁇ m) 30 parts by weight
  • Takenate R600 isocyanate compound manufactured by Mitsui Chemicals
  • the white resin composition was printed on one side of a 188 ⁇ m thick polyethylene terephthalate (PET) film (Crisper (registered trademark) K1212 manufactured by Toyobo Co., Ltd.) so that the dried coating film might be 17 ⁇ m to 20 ⁇ m. Thereafter, the dried coating film was heated at 120 ° C. for 60 minutes to be thermally cured to obtain a white layer. Next, a 75 ⁇ m-thick PET film (Teijin (registered trademark) Tetron (registered trademark) film VW manufactured by Teijin DuPont Films Ltd.) was laminated on the white layer, and this was thermocompression bonded. A piece was made.
  • PET polyethylene terephthalate
  • Comparative Example A white resin composition was prepared by mixing and stirring the following components.
  • Nipponran 136 Thermoplastic resin manufactured by Nippon Polyurethane Industry Co., Ltd.
  • Taipei CR-90 Ishihara Sangyo Co., Ltd. titanium oxide
  • Aluminum hydroxide 20 parts by weight
  • Takenate R600 Mitsubishi Chemicals, Inc.
  • the white resin composition is printed on one side of a 188 ⁇ m thick polyethylene naphthalate (PEN) base material (Teonex manufactured by Teijin DuPont Films Co., Ltd.) by screen printing so that the dry coating film has a thickness of 20 ⁇ m. And heated for 60 minutes to obtain a test piece having a white layer.
  • PEN polyethylene naphthalate
  • the reflectance from 300 nm to 2000 nm was measured from the resin layer (resin film) side using the ultraviolet visible spectrophotometer (Shimadzu Corporation UV-3100PC) on condition of the following.
  • the comparison results are shown in FIG.
  • light was irradiated from the 75-micrometer-thick PET film side corresponding to a resin layer, and the comparative example was irradiated from the white layer side.
  • Measurement conditions Diffuse reflection method Incident angle: 7 degrees
  • Light source Halogen lamp Detector: Photomal (300 nm to 860 nm), PbS (860 nm to 2000 nm)
  • Monocrystalline and polycrystalline solar cell modules were prepared using the reflective sheet according to the example as a solar cell backsheet. Note that.
  • the single crystal type silicon size is 66.8 cm 2
  • the polycrystalline silicon size is 50.0 cm 2 .
  • the temperature and voltage of each solar cell module were measured periodically while being left between 9 am and 12:30 pm.
  • Table 1 shows the temperature measurement results of the solar cell module
  • Table 2 shows the voltage measurement results.
  • An MF47 function analog multimeter was used for voltage measurement.
  • the unit of Table 1 is ° C.
  • the unit of Table 2 is DCV.
  • the reflective sheet of the example can sufficiently reflect light in a wide wavelength range from ultraviolet to near infrared. Further, as is clear from Table 1 and Table 2, the solar cell module using such a reflection sheet can suppress a decrease in power generation efficiency and a temperature increase in the usage time, and perform stable power generation over the long term. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide: a reflective sheet which is capable of highly reflecting light in a wide wavelength range from ultraviolet light to near infrared light without spending much cost and working time, while achieving a heat absorption effect; and a solar cell module and an LED lighting device, each of which uses this reflective sheet. In order to achieve this purpose, a reflective sheet according to the present invention comprises a base, a white layer formed on the base, and a resin layer provided on the white layer, and is characterized in that the white layer is formed using a white resin composition that contains a white pigment and a thermoplastic resin that is obtained by copolymerizing monomers including an aromatic dicarboxylic acid, a compound represented by general formula (1) and an aliphatic diol having 5-7 carbon atoms. AA General formula (1)

Description

反射シート、並びにこれを用いた太陽電池モジュールおよびLED照明Reflective sheet, and solar cell module and LED lighting using the same
 本発明は、反射シート、並びにこれを用いた太陽電池モジュールおよびLED照明に関する。 The present invention relates to a reflective sheet, and a solar cell module and LED lighting using the same.
 本発明は、例えば農業用ビニールフィルム、外層看板の表面保護用フィルム、変色、退色および光劣化等を防止するためのバリアフィルム、板ガラス、窓ガラスまたは車両用ガラス等に貼付して用いる太陽光カットフィルム、太陽電池用バックシート、LED照明等に用いられる反射シート、並びにこれを用いた太陽電池モジュールおよびLED照明に関する。 The present invention is, for example, an agricultural vinyl film, a film for protecting a surface of an outer layer signboard, a barrier film for preventing discoloration, fading, light degradation, etc. The present invention relates to a film, a solar cell backsheet, a reflective sheet used for LED lighting, and the like, and a solar cell module and LED lighting using the same.
 太陽光のうち波長の短い紫外線は、可視光線や赤外線と比較して人体や動植物に有害な影響を与える。そのため、例えば家屋の窓ガラスや農業用ビニール等には、紫外線の遮蔽または反射効果が求められている。 ◎ Ultraviolet rays with a short wavelength in sunlight have a harmful effect on human bodies and animals and plants compared to visible rays and infrared rays. For this reason, for example, window glass and agricultural vinyl for houses are required to have an ultraviolet shielding or reflecting effect.
 また近年においては、環境汚染の防止や安全性の観点から、化石燃料や電子力等のエネルギーインフラに代わる太陽電池等の次世代エネルギーインフラが注目されている。一般的な太陽電池としては、材料としてシリコンを用いるシリコン系、銅、インジウム、セレンおよびカリウム等を用いて化合物半導体を形成する化合物系、並びに光電変換層に有機化合物を用いた有機系が挙げられる。これらの太陽電池は、主に可視光線をエネルギーに変換することにより発電を行っている。 In recent years, next-generation energy infrastructure such as solar cells, which replace energy infrastructure such as fossil fuel and electronic power, has attracted attention from the viewpoint of prevention of environmental pollution and safety. Examples of a general solar battery include a silicon system using silicon as a material, a compound system that forms a compound semiconductor using copper, indium, selenium, potassium, and the like, and an organic system that uses an organic compound for a photoelectric conversion layer. . These solar cells generate power mainly by converting visible light into energy.
 このような従来の太陽電池においては、可視光線のエネルギー変換率の向上が技術的課題の一つとして挙げられる。そのため、多くの太陽光、特に可視光線を反射する反射シート(太陽電池用バックシート)は多く開発されている。 In such a conventional solar cell, improvement of the energy conversion rate of visible light is one of the technical problems. Therefore, many reflection sheets (solar cell backsheets) that reflect a large amount of sunlight, particularly visible light, have been developed.
 一方、上述の通り太陽光のエネルギー変換率の向上が求められる昨今では、可視光のみならず紫外線や近赤外線もエネルギー変換できる太陽電池の開発が進んでおり、今後は紫外線から近赤外線までの幅広い波長において太陽光を効率よく反射し得る反射シートが望まれる。 On the other hand, as described above, an improvement in the energy conversion rate of sunlight is required, and the development of solar cells capable of converting energy of not only visible light but also ultraviolet rays and near infrared rays is progressing. A reflection sheet capable of efficiently reflecting sunlight at a wavelength is desired.
 更には、近年の省エネ等の要望の高まりを受けて広まっているLED照明においても、光源であるLEDから発せられる幅広い波長の光を高反射し得る反射シートが強く望まれている。 Furthermore, even in LED lighting that has become widespread due to the recent increase in demand for energy saving and the like, there is a strong demand for a reflection sheet that can highly reflect light of a wide range of wavelengths emitted from an LED as a light source.
 可視光線や近赤外線の反射率の向上を図る反射シートとしては、アルミフィルム蒸着層を設けたり、シートの表面に表面処理を行うことで凸凹を設けたりするものが挙げられる。しかし、これらの製造にはアルミの蒸着や表面処理といった工程を経る必要があり、生産効率の低下や反射シートのコストアップに繋がる。 Examples of the reflection sheet for improving the reflectance of visible light and near infrared light include those provided with an aluminum film vapor deposition layer or surface roughness on the surface of the sheet. However, these manufactures require steps such as aluminum deposition and surface treatment, leading to a decrease in production efficiency and an increase in the cost of the reflective sheet.
 また従来の紫外線対応の反射シートとしては、酸化チタン、酸化ナトリウム、酸化亜鉛等の紫外線反射剤、若しくはオキシベンゾン、シラソーマ等の紫外線吸収剤を配合したフィルムを用いたり、これらを含有する樹脂組成物をフィルムに塗布したりすることによって、紫外線を遮断、吸収または反射させていた。しかし、紫外線吸収剤を含むフィルム等は、紫外線吸収剤の周囲の樹脂等が劣化することによって耐候性が低下し、また単に酸化チタン等の紫外線反射剤を含むフィルム等においては、紫外線反射剤が入射する紫外線を乱反射させるものの、これらの紫外線反射剤間で何度も乱反射が繰り返されることによってフィルム内または反射シートの紫外線吸収量が増大し、フィルムの劣化および反射シートの劣化を招くという問題があった。 In addition, as a conventional reflective sheet for ultraviolet rays, a film containing an ultraviolet reflector such as titanium oxide, sodium oxide or zinc oxide, or an ultraviolet absorber such as oxybenzone or silosoma, or a resin composition containing these is used. UV rays were blocked, absorbed or reflected by being applied to a film. However, a film containing an ultraviolet absorber is deteriorated in weather resistance due to deterioration of a resin around the ultraviolet absorber, and a film containing an ultraviolet reflector such as titanium oxide simply has no ultraviolet reflector. Although the incident ultraviolet rays are irregularly reflected, the amount of ultraviolet absorption in the film or the reflective sheet increases due to repeated irregular reflections between these ultraviolet reflectors, leading to deterioration of the film and the reflective sheet. there were.
 上記紫外線の問題を解決する技術としては、基材上に設けた光安定剤を含有するポリマー層の上に、更に複数の異なる屈折率を有する材料(屈折率膜層はSiまたはAlを含む酸化物、若しくは窒酸化物を含有し、高屈折率膜層はZn、Ti、Sn、In、Nb、Si、TaまたはAlを含む酸化物、窒酸化物、若しくは窒化物を含有する)から構成される紫外線反射層を設ける方法(特許文献1参照)等が挙げられる。しかし、これは低屈折率層と高屈折率層を交互に積層するために作業効率が悪く、また酸化物等からなる膜層を形成することからコストも増大するという問題がある。 As a technique for solving the above-mentioned problem of ultraviolet rays, a material having a plurality of different refractive indexes on a polymer layer containing a light stabilizer provided on a substrate (the refractive index film layer is an oxide containing Si or Al). High refractive index film layer is composed of oxide, nitride oxide or nitride containing Zn, Ti, Sn, In, Nb, Si, Ta or Al). And a method of providing an ultraviolet reflective layer (see Patent Document 1). However, this has a problem that the working efficiency is poor because the low refractive index layer and the high refractive index layer are alternately laminated, and the cost increases because a film layer made of an oxide or the like is formed.
 また反射シートを太陽電池用バックシートとして用いる場合、使用する太陽電池の種類によって高反射が望まれる波長領域は微妙に異なることから、太陽電池の種類に応じて性能の異なるバックシートを開発・用意しなければならず、相互に応用利用することが困難であるという問題もあった。 In addition, when using a reflective sheet as a back sheet for solar cells, the wavelength region where high reflection is desired differs slightly depending on the type of solar cell used. Therefore, a back sheet with different performance is developed and prepared depending on the type of solar cell. There was also a problem that it was difficult to apply and use each other.
国際公開WO2010/024193号公報International Publication WO2010 / 024193
 本発明は、上記課題を解決するためになされたものであり、コストおよび作業時間をかけることなく、紫外線から近赤外線までの幅広い波長において光を高反射し、熱吸収効果も得ることのできる反射シート並びにこれを用いた太陽電池モジュールおよびLED照明を提供することをその目的とする。 The present invention has been made in order to solve the above-described problems, and can reflect light in a wide range of wavelengths from ultraviolet rays to near infrared rays without cost and work time, and can obtain a heat absorption effect. It is an object of the present invention to provide a sheet and a solar cell module and LED lighting using the sheet.
 上記目的を達成するため、本発明は以下の構成を有する。 In order to achieve the above object, the present invention has the following configuration.
(1)本発明の反射シートは、基材と、この基材上に形成される白色層と、この白色層上に設けられる樹脂層とを含む反射シートであって、前記白色層は、芳香族ジカルボン酸と下記一般式(1)で表される化合物と炭素数が5から7の脂肪族ジオールとを含むモノマーを共重合することにより得られる熱可塑性樹脂と白色顔料とを含む白色樹脂組成物を用いて形成されることをその特徴とする。 (1) The reflective sheet of the present invention is a reflective sheet including a base material, a white layer formed on the base material, and a resin layer provided on the white layer. Resin composition comprising a thermoplastic resin and a white pigment obtained by copolymerizing a monomer comprising an aromatic dicarboxylic acid, a compound represented by the following general formula (1) and an aliphatic diol having 5 to 7 carbon atoms It is characterized by being formed using an object.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(2)上記(1)に記載の構成にあって、前記白色顔料は酸化チタンであり、この酸化チタンは、平均粒径が0.1μmから0.3μmの酸化チタン(A)と、平均粒径が0.3μmから0.5μmの酸化チタン(B)とを含むことをその特徴とする。 (2) In the configuration described in (1) above, the white pigment is titanium oxide, and the titanium oxide includes titanium oxide (A) having an average particle diameter of 0.1 μm to 0.3 μm and an average particle It includes titanium oxide (B) having a diameter of 0.3 μm to 0.5 μm.
(3)上記(1)または(2)に記載の構成にあって、前記酸化チタン(A)と前記酸化チタン(B)の配合量は、前記白色樹脂組成物全量に対して前記酸化チタン(A)が17重量%から20重量%、前記酸化チタン(B)が7重量%から10重量%であることをその特徴とする。 (3) In the configuration described in the above (1) or (2), the compounding amount of the titanium oxide (A) and the titanium oxide (B) is the titanium oxide ( A) is 17 wt% to 20 wt%, and the titanium oxide (B) is 7 wt% to 10 wt%.
(4)上記(1)から(3)のいずれか1に記載の構成にあって、前記白色層は更に水酸化アルミニウム、酸化亜鉛、炭酸カルシウム、タルクおよびバリウムの少なくとも1つを含むことをその特徴とする。 (4) In the configuration according to any one of (1) to (3), the white layer further includes at least one of aluminum hydroxide, zinc oxide, calcium carbonate, talc, and barium. Features.
(5)上記(1)から(4)のいずれか1に記載の構成にあって、前記基材および前記樹脂層の少なくとも一方は白色顔料を含むことをその特徴とする。 (5) In the configuration described in any one of (1) to (4) above, at least one of the base material and the resin layer includes a white pigment.
(6)本発明の太陽電池モジュールは、上記(1)から(5)のいずれか1に記載の反射シートを用いたことをその特徴とする。 (6) The solar cell module of the present invention is characterized by using the reflection sheet described in any one of (1) to (5) above.
(7)本発明のLED照明は、上記(1)から(5)のいずれか1に記載の反射シートを用いたことをその特徴とする。 (7) The LED illumination of the present invention is characterized by using the reflection sheet described in any one of (1) to (5) above.
 本発明の反射シートは、コストおよび作業時間をかけることなく、紫外線から近赤外線までの幅広い波長において光を高反射し、熱吸収効果も得ることができる。そのため、これを太陽電池モジュールに用いた場合、太陽電池の種類を問わず良好な発電効率を得ることができると共に、光反射による温度上昇を抑制できるため、反射シート自身の耐候性だけでなく、太陽電池の耐候性をも向上することができる。また本発明の反射シートを用いたLED照明も光源から発せされる幅広い波長の光を高反射することができると共に、光反射による温度上昇を抑制できるため、LED照明の製品寿命をより延ばすことができる。 The reflection sheet of the present invention can highly reflect light in a wide range of wavelengths from ultraviolet rays to near infrared rays without cost and work time, and can also obtain a heat absorption effect. Therefore, when this is used for a solar cell module, it is possible to obtain good power generation efficiency regardless of the type of solar cell and to suppress a temperature rise due to light reflection, not only the weather resistance of the reflective sheet itself, The weather resistance of the solar cell can also be improved. In addition, the LED illumination using the reflection sheet of the present invention can highly reflect light of a wide wavelength emitted from the light source, and can suppress the temperature rise due to the light reflection, thereby further extending the product life of the LED illumination. it can.
本発明の一実施形態に係る反射シートの概略断面図。The schematic sectional drawing of the reflective sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る反射シートを用いた太陽電池モジュールの概略断面図。The schematic sectional drawing of the solar cell module using the reflective sheet which concerns on one Embodiment of this invention. 本発明の実施例および比較例に係る反射シートについて紫外可視分光光度計を用いて光を照射した場合の300nmから2000nmの反射率を測定したグラフ。The graph which measured the reflectance of 300 nm at the time of irradiating light using the ultraviolet visible spectrophotometer about the reflective sheet which concerns on the Example and comparative example of this invention.
 以下、本発明の一実施形態について詳述する。 Hereinafter, an embodiment of the present invention will be described in detail.
 本実施形態の反射シートは、基材と、この基材上に形成される白色層と、この白色層上に設けられる樹脂層とを含む。 The reflective sheet of this embodiment includes a base material, a white layer formed on the base material, and a resin layer provided on the white layer.
1.基材
 本実施形態の反射シートに用いられる基材としては、ガラス、樹脂基材、樹脂フィルム等、前記白色層と前記樹脂層を保持することができるものであれば制限なく使用できる。この中でも特に樹脂基材または樹脂フィルムが好ましく用いられる。
1. Base material As a base material used for the reflective sheet of this embodiment, if it can hold | maintain the said white layer and the said resin layer, such as glass, a resin base material, and a resin film, it can be used without a restriction | limiting. Among these, a resin substrate or a resin film is particularly preferably used.
 前記樹脂基材または樹脂フィルムとしては、特にポリエステルからなる樹脂基材または樹脂フィルムが好ましく用いられ、その中でもポリエチレンナフタレートまたはポリエチレンテレフタレートからなる樹脂基材または樹脂フィルムが特に好ましく用いられる。 As the resin substrate or resin film, a resin substrate or resin film made of polyester is particularly preferably used, and among them, a resin substrate or resin film made of polyethylene naphthalate or polyethylene terephthalate is particularly preferably used.
 また本実施形態においては、前記基材として白色顔料を配合した白色基材を用いることができる。このような白色基材を用いることにより白色基材と白色層に含まれる白色顔料が相乗効果を発揮し、これを用いた反射シートは特に紫外線から可視光を高反射し得る。 In this embodiment, a white base material in which a white pigment is blended can be used as the base material. By using such a white base material, the white base material and the white pigment contained in the white layer exhibit a synergistic effect, and a reflective sheet using the white base material can highly reflect visible light particularly from ultraviolet rays.
 このような白色顔料としては、酸化チタン、酸化亜鉛、リトポン等を用いることができる。これらの中でも特に酸化チタンが白色顔料として好ましく用いられる。 As such a white pigment, titanium oxide, zinc oxide, lithopone and the like can be used. Of these, titanium oxide is particularly preferably used as the white pigment.
 前記酸化チタンとしては、ルチル型酸化チタン、アナターゼ酸化チタンのどちらも使用することができる。また酸化チタンに水酸化アルミニウムおよびシリコン、若しくは水酸化アルミニウムおよびジルコニアで表面処理を行ったものも好適に用いることができる。 As the titanium oxide, both rutile titanium oxide and anatase titanium oxide can be used. In addition, titanium oxide that has been surface-treated with aluminum hydroxide and silicon, or aluminum hydroxide and zirconia can be suitably used.
 ルチル型酸化チタンとしては、例えばタイペーク(登録商標)R-550、タイペークR-630、タイペークR-670、タイペークR-680、タイペークR-780、タイペークR-820、タイペークR-830、タイペークR-850、タイペークR-930、タイペークCR-50、タイペークCR-57、タイペークCR-58、タイペークCR-60、タイペークCR-63、タイペークCR-67、タイペークCR-80、タイペークCR-85、タイペークCR-90、タイペークCR-93、タイペークCR-95、タイペークCR-97、タイペークUT771(以上、石原産業(株)製)、タイピュア(登録商標)R-100、タイピュアR-101、タイピュアR-102、タイピュアR-103、タイピュアR-104、タイピュアR-105、タイピュアR-108、タイピュアR-706、タイピュアR-900、タイピュアR-902、タイピュアR-960、タイピュアR-931(以上、デュポン(株)製)、R-21、R-25、R-32、R-42、R-44、R-7E、R-5N、R-61N、R-62N、R-45M、R-49S、GTR-100、GTR-300、D-918、TCR-29、TCR-52、FTR-700(以上、堺化学工業(株)製)等が挙げられる。 Examples of the rutile type titanium oxide include Taipei (registered trademark) R-550, Taipei R-630, Taipei R-670, Taipei R-680, Taipei R-780, Taipei R-820, Taipei R-830, Taipei R- 850, Type R-930, Type CR-50, Type CR-57, Type CR-58, Type CR-60, Type CR-63, Type CR-67, Type CR-80, Type CR-85, Type CR-85 90, Taipei CR-93, Taipei CR-95, Taipei CR-97, Taipei UT771 (manufactured by Ishihara Sangyo Co., Ltd.), Thailand Pure (registered trademark) R-100, Thailand Pure R-101, Thailand Pure R-102, Thailand Pure R-103, Taipyu R-104, Taipure R-105, Taipure R-108, Taipure R-706, Taipure R-900, Taipure R-902, Taipure R-960, Taipure R-931 (above, manufactured by DuPont), R- 21, R-25, R-32, R-42, R-44, R-7E, R-5N, R-61N, R-62N, R-45M, R-49S, GTR-100, GTR-300, D-918, TCR-29, TCR-52, FTR-700 (above, manufactured by Sakai Chemical Industry Co., Ltd.) and the like.
 また、アナターゼ型酸化チタンとしては、例えばTITON A-110、TITON A-190、TITON A-197、TITON TCA-123E、TITON SA-1、TITON SA-1L(以上、堺化学工業(株)製)、TA-100、TA-200、TA-300、TA-400、TA-500、TP-2(以上、富士チタン工業(株)製)、TITANIX(登録商標) JA-1、TITANIX JA-3、TITANIX JA-4、TITANIX JA-5、TITANIX JA-C、TITANIX JR-603(以上、テイカ(株)製)、KA-10、KA-15、KA-20、KA-30(以上、チタン工業(株)製)、タイペークA-100、タイペークA-220、タイペークW-10(以上、石原産業(株)製)等が挙げられる。 As anatase type titanium oxide, for example, TITON A-110, TITON A-190, TITON A-197, TITON TCA-123E, TITON SA-1, TITON SA-1L (above, manufactured by Sakai Chemical Industry Co., Ltd.) TA-100, TA-200, TA-300, TA-400, TA-500, TP-2 (above, manufactured by Fuji Titanium Industry Co., Ltd.), TITANIX (registered trademark) JA-1, TITANIX JA-3, TITANIX JA-4, TITANIX JA-5, TITANIX JA-C, TITANIX JR-603 (above, manufactured by Teika), KA-10, KA-15, KA-20, KA-30 (above, Titanium Industry ( Co., Ltd.), Taipei A-100, Taipei A-220, Taipei W-1 (Above, Ishihara Sangyo Co., Ltd.).
 前記基材に白色顔料を配合する場合、その平均粒径は、好ましくは0.25μm以上、さらに好ましくは0.28μm以上、特に好ましくは0.3μm以上である。平均粒径が0.25μm未満であると、効率的に散乱できる光の波長が低波長側へずれるため、近赤外光領域での反射率が低下することがある。また当該平均粒径が10μmを超えると、粒度分布によっては粗大な粒子を含有するため、フィルムにピンホールを生じるなどの不具合が発生することがある。 When the white pigment is blended in the base material, the average particle size is preferably 0.25 μm or more, more preferably 0.28 μm or more, and particularly preferably 0.3 μm or more. If the average particle size is less than 0.25 μm, the wavelength of light that can be efficiently scattered shifts to the lower wavelength side, and thus the reflectance in the near-infrared light region may decrease. On the other hand, if the average particle size exceeds 10 μm, depending on the particle size distribution, coarse particles may be contained, so that defects such as pinholes may occur in the film.
 前記基材に白色顔料を配合する場合、その配合量は、0.5重量%以上、好ましくは3重量%から80重量%、さらに好ましくは20重量%から80重量%である。白色顔料の配合量が80重量%を超えると、基材が脆くなり、実用的な機械的強度が得られないことがあるため好ましくない。 When a white pigment is blended in the base material, the blending amount is 0.5% by weight or more, preferably 3% to 80% by weight, more preferably 20% to 80% by weight. If the amount of the white pigment exceeds 80% by weight, the substrate becomes brittle, and practical mechanical strength may not be obtained, which is not preferable.
 また前記基材の厚さは、50μmから200μmであることが好ましい。なお、前記基材には前記白色層を形成する面とは反対側の面に樹脂フィルムを貼り合わせても良い。このような樹脂フィルムとしては、例えばポリエチレンテレフタレートやポリエチレンナフタレートからなるフィルムが好ましく用いられる。
 更には、このような樹脂フィルムに前記白色顔料を配合しても良い。白色顔料を含むポリエステルフィルムとしては、例えば東洋紡(株)製のクリスパー(登録商標)K1212、SHINEBEAM(登録商標) White、帝人デュポンフィルム(株)製のテイジン(登録商標)テトロン(登録商標)フィルムVW等が挙げられる。
The thickness of the substrate is preferably 50 μm to 200 μm. In addition, you may affix a resin film on the surface on the opposite side to the surface which forms the said white layer in the said base material. As such a resin film, for example, a film made of polyethylene terephthalate or polyethylene naphthalate is preferably used.
Furthermore, you may mix | blend the said white pigment with such a resin film. Examples of the polyester film containing a white pigment include Toraybo Co., Ltd. Krisper (registered trademark) K1212, SHINEBEAM (registered trademark) White, Teijin DuPont Films Co., Ltd. Teijin (registered trademark) Tetron (registered trademark) film VW. Etc.
2.白色層
 本実施形態に係る白色層は、芳香族ジカルボン酸と下記一般式(1)で表される化合物と炭素数が5から7の脂肪族ジオールとを含むモノマーを共重合することにより得られる熱可塑性樹脂と、白色顔料とを含む白色樹脂組成物を用いて形成される。
2. White Layer The white layer according to this embodiment is obtained by copolymerizing a monomer containing an aromatic dicarboxylic acid, a compound represented by the following general formula (1), and an aliphatic diol having 5 to 7 carbon atoms. It is formed using a white resin composition containing a thermoplastic resin and a white pigment.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(1)熱可塑性樹脂
 前記熱可塑性樹脂は、芳香族ジカルボン酸と下記一般式(1)で表される化合物と炭素数が5から7の脂肪族ジオールとを含むモノマーを共重合することにより得られることが好ましい。
(1) Thermoplastic resin The thermoplastic resin is obtained by copolymerizing a monomer containing an aromatic dicarboxylic acid, a compound represented by the following general formula (1), and an aliphatic diol having 5 to 7 carbon atoms. It is preferred that
 前記芳香族ジカルボン酸としては、例えばテレフタル酸、イソフタル酸、4,4-スチルベンジカルボン酸、4,4-ビフェニルジカルボン酸、オルトフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸が挙げられる。この中でもテレフタル酸とイソフタル酸を併用して使用することが好ましい。 Examples of the aromatic dicarboxylic acid include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 4,4-stilbene dicarboxylic acid, 4,4-biphenyldicarboxylic acid, orthophthalic acid, and naphthalenedicarboxylic acid. Of these, terephthalic acid and isophthalic acid are preferably used in combination.
 上記一般式(1)で表される化合物としては、イソソルビドが挙げられる。 Examples of the compound represented by the general formula (1) include isosorbide.
 また前記炭素数が5から7の脂肪族ジオールとしては、直鎖のものも分岐を有するものもいずれも用いることができる。例えばネオペンチルグリコール、2,2-ジエチル-1,3-プロパンジール、2-エチル-2-メチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール等が挙げられる。  Further, as the aliphatic diol having 5 to 7 carbon atoms, both linear and branched ones can be used. For example, neopentyl glycol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2-methyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1, Examples include 5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, and the like. *
 前記芳香族ジカルボン酸、上記一般式(1)で表される化合物、および前記炭素数が5から7の脂肪族ジオールとを含むモノマーを共重合する方法は特に限定されず、一般的な方法を用いることができる。各成分の共重合比、共重合時の温度等の共重合の条件は、得られる熱可塑性樹脂に求められるガラス転移温度、粘度等によって適宜変更することができる。また前記芳香族ジカルボン酸、上記一般式(1)で表される化合物、および前記炭素数が5から7の脂肪族ジオール以外のモノマー成分についても、得られる熱可塑性樹脂に求められるガラス転移温度、粘度等によって適宜変更することができる
 このような熱可塑性樹脂としては、例えばバイロン(登録商標)(東洋紡(株)製)を用いることができ、その中でも特にバイロン(登録商標)TU-02HAが好ましく用いられる。
A method for copolymerizing the monomer containing the aromatic dicarboxylic acid, the compound represented by the general formula (1), and the aliphatic diol having 5 to 7 carbon atoms is not particularly limited. Can be used. The copolymerization conditions such as the copolymerization ratio of each component and the temperature at the time of copolymerization can be appropriately changed depending on the glass transition temperature, viscosity and the like required for the obtained thermoplastic resin. Further, for the monomer components other than the aromatic dicarboxylic acid, the compound represented by the general formula (1), and the aliphatic diol having 5 to 7 carbon atoms, a glass transition temperature required for the obtained thermoplastic resin, As such a thermoplastic resin that can be appropriately changed depending on the viscosity and the like, for example, Byron (registered trademark) (manufactured by Toyobo Co., Ltd.) can be used, among which Byron (registered trademark) TU-02HA is particularly preferable. Used.
 前記熱可塑性樹脂の配合量は、前記白色樹脂組成物全量に対して50重量%から80重量%であることが好ましい。 The blending amount of the thermoplastic resin is preferably 50% by weight to 80% by weight with respect to the total amount of the white resin composition.
 なお、前記白色樹脂組成物には、前記熱可塑性樹脂を硬化させる目的で、これに含まれる水酸基と反応して架橋するイソシアネート化合物を併せて配合することができる。イソシアネート化合物の配合により、形成される白色層に耐湿性、耐熱性を付与することができ、また前記基材および前記樹脂層との密着性をより向上することができる。そのため、イソシアネート化合物は、1分子中に複数のイソシアネート基を有することが好ましい。 The white resin composition may be combined with an isocyanate compound that reacts and crosslinks with a hydroxyl group contained therein for the purpose of curing the thermoplastic resin. By blending the isocyanate compound, moisture resistance and heat resistance can be imparted to the white layer to be formed, and adhesion between the substrate and the resin layer can be further improved. Therefore, the isocyanate compound preferably has a plurality of isocyanate groups in one molecule.
 このようなイソシアネート化合物としては、例えば、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンビス(4、1-フェニレン)=ジイソシアネート、3-イソシアネートメチル-3、5、5-トリメチルシクロヘキシルイソシアネートおよびキシリレンジイソシアネート等のジイソシアネート;ジイソシアネートのトリメチロールプロパンアダクト体;ジイソシアネートの三量体であるイソシアヌレート体;ジイソシアネートのビュレット結合体、並びにポリメリックジイソシアネート等が挙げられる。
 このようなイソシアネート化合物の配合量は、前記熱可塑性樹脂全量に対して0.03重量%から10重量%であることが好ましい。
Examples of such isocyanate compounds include diisocyanates such as trimethylene diisocyanate, hexamethylene diisocyanate, methylene bis (4,1-phenylene) = diisocyanate, 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate, and xylylene diisocyanate. A trimethylolpropane adduct of diisocyanate; an isocyanurate which is a trimer of diisocyanate; a burette conjugate of diisocyanate, and a polymeric diisocyanate.
The blending amount of such an isocyanate compound is preferably 0.03% by weight to 10% by weight with respect to the total amount of the thermoplastic resin.
(2)白色顔料
 前記白色顔料としては、酸化チタン、酸化亜鉛、リトポン等を用いることができる。これらの中でも特に酸化チタンが白色顔料として好ましく用いられる。
(2) White pigment As the white pigment, titanium oxide, zinc oxide, lithopone and the like can be used. Of these, titanium oxide is particularly preferably used as the white pigment.
 前記酸化チタンとしては、前記基材に配合する酸化チタンと同じものを用いることができるが、平均粒径が0.1μmから0.3μmの酸化チタン(A)と、平均粒径が0.3μmから0.5μmの酸化チタン(B)とを含むことが好ましい。
また前記酸化チタンとしては酸化チタン(A)および(B)共に、特に水酸化アルミニウムでコーティングし、更にその上にシリコンまたはジルコニアで表面処理を行ったものが好ましく用いられる。このような酸化チタンを用いることにより、紫外線および可視光線を効率よく反射することができる。またこのような酸化チタンとしては、石原産業(株)製のCr-Super70等が挙げられる。
As the titanium oxide, the same titanium oxide blended in the base material can be used, but titanium oxide (A) having an average particle diameter of 0.1 μm to 0.3 μm and an average particle diameter of 0.3 μm. To 0.5 μm of titanium oxide (B).
As the titanium oxide, titanium oxides (A) and (B) are preferably coated with aluminum hydroxide and further surface-treated with silicon or zirconia. By using such titanium oxide, ultraviolet rays and visible rays can be efficiently reflected. Examples of such titanium oxide include Cr-Super 70 manufactured by Ishihara Sangyo Co., Ltd.
 このように平均粒径の異なる酸化チタンを含む白色樹脂組成物を用いて白色層を形成する場合、形成される白色層と前記基材および前記樹脂層との界面に粒径の異なる酸化チタンが存在することとなる。これにより、前記基材および前記樹脂層に表面処理加工を施したものと同じ効果を奏することができ、反射方向の変化を持たせることにより、幅広い波長(紫外線から近赤外線)の光を拡散して太陽電池セル側に戻すことにより高い反射率を得ることができる。
 また前記白色層には平均粒径が0.3μmから0.5μmと粒径の大きい酸化チタン(B)が存在することにより、当該白色層による熱吸収効果をも奏することができる。
Thus, when forming a white layer using a white resin composition containing titanium oxides having different average particle diameters, titanium oxides having different particle diameters are formed at the interfaces between the formed white layer and the base material and the resin layer. Will exist. As a result, the same effect as that obtained by subjecting the base material and the resin layer to surface treatment can be obtained. By changing the reflection direction, light having a wide wavelength (from ultraviolet to near infrared) can be diffused. Thus, a high reflectance can be obtained by returning to the solar battery cell side.
In addition, since the white layer contains titanium oxide (B) having an average particle size of 0.3 μm to 0.5 μm and a large particle size, the heat absorption effect of the white layer can also be achieved.
 前記酸化チタン(A)と前記酸化チタン(B)の配合量は、前記白色樹脂組成物全量に対して前記酸化チタン(A)が17重量%から20重量%、前記酸化チタン(B)が7重量%から10重量%であることが好ましい。前記酸化チタン(A)および前記酸化チタン(B)の配合量をこのように調整することにより、反射シートの幅広い波長における高反射と熱吸収効果を更に向上することができる。
 なお、本実施形態の白色樹脂組成物には前記酸化チタン(A)と前記酸化チタン(B)以外の酸化チタンを配合してもよく、酸化チタンの総配合量の好ましい範囲は、前記白色樹脂組成物全量に対して24重量%から70重量%、より好ましくは24重量%から50重量%、更に好ましくは24重量%から30重量%である。
The compounding amount of the titanium oxide (A) and the titanium oxide (B) is 17% to 20% by weight of the titanium oxide (A) and 7% of the titanium oxide (B) with respect to the total amount of the white resin composition. It is preferably from 10% to 10% by weight. By adjusting the compounding amounts of the titanium oxide (A) and the titanium oxide (B) in this way, the high reflection and heat absorption effect in a wide wavelength range of the reflection sheet can be further improved.
The white resin composition of the present embodiment may contain titanium oxide other than the titanium oxide (A) and the titanium oxide (B), and the preferred range of the total amount of titanium oxide is the white resin. It is 24 wt% to 70 wt%, more preferably 24 wt% to 50 wt%, still more preferably 24 wt% to 30 wt%, based on the total amount of the composition.
(3)その他
 前記白色樹脂組成物には、例えば、他の樹脂、並びに水酸化アルミニウム、酸化亜鉛、炭酸カルシウム、タルクおよびバリウムの少なくとも1つ、有機溶剤、添加剤等を配合することができる。
(3) Others The white resin composition may contain, for example, other resins and at least one of aluminum hydroxide, zinc oxide, calcium carbonate, talc and barium, an organic solvent, an additive, and the like.
 前記他の樹脂としては、例えば前記熱可塑性樹脂以外の熱可塑性樹脂(その他の熱可塑性樹脂)、光硬化性樹脂、熱硬化性樹脂等が挙げられる。 Examples of the other resins include thermoplastic resins other than the thermoplastic resins (other thermoplastic resins), photocurable resins, and thermosetting resins.
 その他の熱可塑性樹脂としては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、液晶ポリエステル等のポリエステル;ポリエチレン、ポリプロピレン、ポリブテンー1、ポリブチレン等のポリオレフィン;スチレン系樹脂、ポリオキシメチレン、ポリアミド、ポリカーボネート、ポリメチルメタクリレート、ポリ塩化ビニル、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリイミド、ポリウレタン、ポリアミドイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルフォン、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリアリレート、ポリエーテルニトリル、フェノール樹脂(例えばフェノールノボラック型)、フェノキシ樹脂、並びにこれらの共重合体、変性体を用いることができる。これらは、必要に応じて単独でまたは複数を組み合わせて用いることができる。 Other thermoplastic resins include, for example, polyesters such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and liquid crystal polyester; polyolefins such as polyethylene, polypropylene, polybutene 1, and polybutylene; styrene resins, polyoxymethylene , Polyamide, polycarbonate, polymethyl methacrylate, polyvinyl chloride, polyphenylene ether, polyphenylene sulfide, polyimide, polyurethane, polyamideimide, polyetherimide, polysulfone, polyethersulfone, polyketone, polyetherketone, polyetheretherketone, polyetherketone Ketone, polyarylate, polyethernitrile, phenolic resin (example If phenol novolak), a phenoxy resin, and can be used a copolymer thereof, a modified product. These may be used alone or in combination as required.
 本実施形態においては、水酸基を有する、若しくは水酸基を付加したその他の熱可塑性樹脂が好ましく用いられる。このようなその他の熱可塑性樹脂としては、水酸基を有するオリゴマーまたはポリマーであれば、特に限定されず用いることができる。例えば、ポリアミド、ポリエステルおよび水酸基を有するビニル重合体、若しくは各種アクリレート、メタクリレートの共重合体、フェノール樹脂、クレゾール樹脂等を挙げることができる。 In the present embodiment, other thermoplastic resins having a hydroxyl group or having a hydroxyl group added are preferably used. As such other thermoplastic resins, any oligomer or polymer having a hydroxyl group can be used without any particular limitation. For example, polyamides, polyesters, vinyl polymers having a hydroxyl group, copolymers of various acrylates and methacrylates, phenol resins, cresol resins, and the like can be given.
 前記ポリエステルとしては、例えば、ニッポラン(登録商標)800、1100、121、1004、136、141、4070(以上、日本ポリウレタン工業(株)製)等を挙げることができる。 Examples of the polyester include Nipponran (registered trademark) 800, 1100, 121, 1004, 136, 141, 4070 (manufactured by Nippon Polyurethane Industry Co., Ltd.).
 前記白色樹脂組成物にその他の熱可塑性樹脂を配合する場合、当該その他の熱可塑性樹脂に含まれる水酸基と反応して架橋するイソシアネート化合物を適宜配合することができる。前記その他の熱可塑性樹脂と反応するイソシアネート化合物の配合量は、当該その他の熱可塑性樹脂全量に対して0.03重量%から10重量%であることが好ましい。
 このようなイソシアネート化合物としては、前記熱可塑性樹脂と併せて配合するものと同じものを用いることができる。
When the other thermoplastic resin is blended with the white resin composition, an isocyanate compound that reacts with and crosslinks with a hydroxyl group contained in the other thermoplastic resin can be blended as appropriate. The blending amount of the isocyanate compound that reacts with the other thermoplastic resin is preferably 0.03% by weight to 10% by weight with respect to the total amount of the other thermoplastic resin.
As such an isocyanate compound, the same thing as what is mix | blended together with the said thermoplastic resin can be used.
 次に前記光硬化性樹脂としては、活性エネルギー線照射により硬化する樹脂組成物であれば公知のものを使用することができ、例えば、光重合性オリゴマー、および光重合性ビニルモノマー等が挙げられる。 Next, as the photocurable resin, known resins can be used as long as they are resin compositions that are cured by irradiation with active energy rays, and examples thereof include photopolymerizable oligomers and photopolymerizable vinyl monomers. .
 前記白色樹脂組成物に光硬化性樹脂を配合する場合、併せて光重合開始剤を配合することが好ましい。このような光重合開始剤としては、例えばアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ジエトキシアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン等のアセトフェノン類;メチルアンソラキノン、2-エチルアンソラキノン、2-タ-シャリ-ブチルアンソラキノン、1-クロロアンソラキノン、2-アミルアンソラキノンなどのアンソラキノン類;チオキサントン、2、4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジクロロチオキサントン、2-メチルチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アセトフェノンジメチルケタ-ル、ベンジルジメチルケタ-ルなどのケタ-ル類;ベンゾフェノン、4,4-ビスメチルアミノベンゾフェノン等のベンゾフェノン類などが挙げられる。これらは単独または複数を組み合わせて使用することができる。
 前記光重合開始剤を用いる場合、その配合量は特に限定されず、使用する光硬化性樹脂の種類、量によって適宜変更することができる。
When mix | blending a photocurable resin with the said white resin composition, it is preferable to mix | blend a photoinitiator together. Examples of such photopolymerization initiators include acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, diethoxyacetophenone, 2,2-diethoxy. Acetophenones such as -2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one; methyl Anthoraquinones such as anthraquinone, 2-ethylanthoraquinone, 2-tert-butylanthoraquinone, 1-chloroanthoraquinone, 2-amylanthoraquinone; thioxanthone, 2,4-diethylthioxanthone, 2 -Chlorothioxanthone, 2,4-dichloro Thioxanthones such as thioxanthone, 2-methylthioxanthone, and 2,4-diisopropylthioxanthone; Ketals such as acetophenone dimethyl ketal and benzyldimethyl ketal; Benzophenones such as benzophenone and 4,4-bismethylaminobenzophenone Etc. These can be used alone or in combination.
When using the said photoinitiator, the compounding quantity is not specifically limited, It can change suitably with the kind and quantity of photocurable resin to be used.
 次に前記熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂およびメラミン樹脂、ユリア樹脂が挙げられる。これらの中でも、エポキシ樹脂が好ましく用いられる。 Next, as the thermosetting resin, for example, epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin, dicyclopentadiene Examples thereof include resins, silicone resins, triazine resins, melamine resins, and urea resins. Among these, an epoxy resin is preferably used.
 前記エポキシ樹脂としては、1個以上のエポキシ基を有する化合物が挙げられる。その中でも2個以上のエポキシ基を有する化合物が好ましく用いられる。このようなエポキシ樹脂としては、例えばブチルグリシジルエーテル、フェニルグリシジルエーテル、グリシジル(メタ)アクリレート等のモノエポキシ化合物、ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、トリメチロールプロパンポリグリシジルエーテル、フェニル-1,3-ジグリシジルエーテル、ビフェニル-4,4’-ジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、エチレングリコールまたはプロピレングリコールのジグリシジルエーテル、ソルビトールポリグリシジルエーテル、トリス(2,3-エポキシプロピル)イソシアヌレート、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート等の1分子中に2個以上のエポキシ基を有する化合物等が挙げられる。 The epoxy resin includes a compound having one or more epoxy groups. Of these, compounds having two or more epoxy groups are preferably used. Examples of such epoxy resins include monoepoxy compounds such as butyl glycidyl ether, phenyl glycidyl ether, and glycidyl (meth) acrylate, bisphenol A type epoxy resins, bisphenol S type epoxy resins, bisphenol F type epoxy resins, and phenol novolac type epoxies. Resin, cresol novolac epoxy resin, alicyclic epoxy resin, trimethylolpropane polyglycidyl ether, phenyl-1,3-diglycidyl ether, biphenyl-4,4′-diglycidyl ether, 1,6-hexanediol diglycidyl Ether, diglycidyl ether of ethylene glycol or propylene glycol, sorbitol polyglycidyl ether, tris (2,3-epoxypropyl) isocyanurate, Compounds having two or more epoxy groups in one molecule, such as Li glycidyl tris (2-hydroxyethyl) isocyanurate.
 前記白色樹脂組成物に前記熱硬化性樹脂を配合する場合、当該熱硬化性樹脂の熱硬化を促進するために硬化触媒を配合することが好ましい。このような硬化触媒としては、例えばイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルホスフィン等のリン化合物、ナフテン酸コバルトやナフテン酸銅等の金属石鹸等が挙げられる。
 また、密着性付与剤としても機能するグアナミン、アセトグアナミン、ベンゾグアナミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を配合することもできる。
 これらは必要に応じて単独でまたは複数を組み合わせて用いることができる。またこのような硬化触媒の配合量は、前記熱硬化性樹脂100重量%に対して0.05重量%から10重量%、好ましくは0.1重量%から3重量%である。
When mix | blending the said thermosetting resin with the said white resin composition, in order to accelerate | stimulate the thermosetting of the said thermosetting resin, it is preferable to mix | blend a curing catalyst. Examples of such a curing catalyst include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1 Imidazole derivatives such as-(2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethyl Amine compounds such as benzylamine, 4-methyl-N, N-dimethylbenzylamine, hydrazine compounds such as adipic acid dihydrazide, sebacic acid dihydrazide; phosphorus compounds such as triphenylphosphine; metal soaps such as cobalt naphthenate and copper naphthenate And the like.
Guanamine, acetoguanamine, benzoguanamine, 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-4,6-diamino-S-triazine, 2-vinyl which also function as an adhesion-imparting agent S-triazine derivatives such as -4,6-diamino-S-triazine / isocyanuric acid adduct and 2,4-diamino-6-methacryloyloxyethyl-S-triazine / isocyanuric acid adduct can also be added.
These may be used alone or in combination as required. The amount of such a curing catalyst is 0.05 to 10% by weight, preferably 0.1 to 3% by weight, based on 100% by weight of the thermosetting resin.
 前記熱可塑性樹脂と他の樹脂とを併用する場合、その合計配合量は前記白色樹脂組成物全量に対して50重量%から80重量%であることが好ましい。  When the thermoplastic resin and another resin are used in combination, the total amount is preferably 50% by weight to 80% by weight with respect to the total amount of the white resin composition. *
 また前記白色樹脂組成物には、水酸化アルミニウム、酸化亜鉛、炭酸カルシウム、タルクおよびバリウムの少なくとも1つを配合することができ、これらは単独または複数を組み合わせて使用することができる。またこれらの中でも特に水酸化アルミニウムが好ましく用いられる。これらを配合することにより、形成される白色層および反射シートの紫外線反射効果を向上することができる。
特に白色顔料としての酸化チタンと水酸化アルミニウムとを併用することにより、紫外線および可視光の両方を効率よく反射することができる。
The white resin composition can contain at least one of aluminum hydroxide, zinc oxide, calcium carbonate, talc and barium, and these can be used alone or in combination. Of these, aluminum hydroxide is particularly preferably used. By mix | blending these, the ultraviolet reflective effect of the white layer and reflection sheet to be formed can be improved.
In particular, by using titanium oxide and aluminum hydroxide as a white pigment in combination, both ultraviolet light and visible light can be efficiently reflected.
 前記水酸化アルミニウムとしては公知のものを使用することでき、例えばC-3005、C-301、CL-303(以上、住友化学(株)製)、ハイジライト(登録商標)H-21、H-31、H-32、H-42、H-42M、H-43M(以上、昭和電工(株)製)が挙げられる。
 当該水酸化アルミニウムの配合量は、白色樹脂組成物全量に対して0.5重量%から5重量%であることが好ましい。
 また、酸化亜鉛、炭酸カルシウム、タルク、バリウムについては、いずれも公知のものを使用することができる。これらの合計配合量は、白色樹脂組成物全量に対して0.5重量%から5重量%であることが好ましい。
As the aluminum hydroxide, known ones can be used. For example, C-3005, C-301, CL-303 (manufactured by Sumitomo Chemical Co., Ltd.), Heidilite (registered trademark) H-21, H- 31, H-32, H-42, H-42M, H-43M (above, manufactured by Showa Denko KK).
The blending amount of the aluminum hydroxide is preferably 0.5% by weight to 5% by weight with respect to the total amount of the white resin composition.
Moreover, about zinc oxide, a calcium carbonate, a talc, and barium, all can use a well-known thing. These total blending amounts are preferably 0.5% by weight to 5% by weight with respect to the total amount of the white resin composition.
 前記白色樹脂組成物には、これを調製したり粘度を調整する目的で有機溶剤を配合することができる。
 このような有機溶剤としては、例えばメチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ヘキサメチレンジイソシアナートジエチレングリコールモノエチルエーテルアセテート、炭酸プロピレン等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、ソルベントナフサ等の石油系溶剤等が挙げられる。これらは、単独でまたは複数を組み合わせて用いることができる。
 これらの有機溶剤の配合量は、前記白色樹脂組成物全量に対して50重量%以下であることが好ましい。
The white resin composition can be blended with an organic solvent for the purpose of preparing it and adjusting the viscosity.
Examples of such organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, Glycol ethers such as propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbitol Acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether Acetate, hexamethylene diisocyanate diethylene glycol monoethyl ether acetate, esters such as propylene carbonate; octane, aliphatic hydrocarbons decane; petroleum ether, petroleum naphtha, and petroleum solvents such as solvent naphtha. These can be used alone or in combination.
It is preferable that the compounding quantity of these organic solvents is 50 weight% or less with respect to the said white resin composition whole quantity.
 前記添加剤としては、例えば前記白色層の前記基材と前記樹脂層との密着性を増すためにポリウレタン系接着剤を配合することができる。このようなポリウレタン系接着剤としては、例えば、セイカボンド(登録商標)E-263、セイカボンドC-26(以上、大日精化工業(株)製)、タケラック(登録商標)A3210、タケネート(登録商標)A3072等(以上、三井化学ポリウレタン(株)製)が挙げられる。このようなポリウレタン系接着剤の配合率は、前記白色樹脂組成物全量に対して10重量%以下であることが好ましい。 As the additive, for example, a polyurethane-based adhesive can be blended in order to increase the adhesion between the base material of the white layer and the resin layer. Examples of such polyurethane-based adhesives include Seika Bond (registered trademark) E-263, Seika Bond C-26 (manufactured by Dainichi Seika Kogyo Co., Ltd.), Takelac (registered trademark) A3210, Takenate (registered trademark). A3072 etc. (above, Mitsui Chemicals Polyurethane Co., Ltd. product) is mentioned. The blending ratio of such a polyurethane adhesive is preferably 10% by weight or less based on the total amount of the white resin composition.
 また前記添加剤として、必要に応じて、微粉シリカ、有機ベントナイト、モンモリロナイト等の増粘剤、シリコーン系、高分子系等の消泡剤、レベリング剤、イミダゾール系、チアゾール系、トリアゾール系等のシランカップリング剤等を前記白色樹脂組成物に配合することができる。これらの配合量は、前記白色樹脂組成物全量に対して10重量%以下であることが好ましい。 Further, as the additive, if necessary, thickeners such as finely divided silica, organic bentonite, montmorillonite, antifoaming agents such as silicones and polymers, leveling agents, silanes such as imidazole, thiazole and triazole A coupling agent etc. can be mix | blended with the said white resin composition. It is preferable that these compounding quantities are 10 weight% or less with respect to the said white resin composition whole quantity.
 前記白色層は、例えば前記白色樹脂組成物を前記基材に塗布し、これを硬化することにより形成される。形成される前記白色層の厚さは、17μmから30μmであることが好ましい。前記白色層の厚さをこの範囲とすることにより、反射シートの可視光線の反射率をより高めることができる。 The white layer is formed, for example, by applying the white resin composition to the substrate and curing it. The thickness of the formed white layer is preferably 17 μm to 30 μm. By setting the thickness of the white layer in this range, the reflectance of visible light of the reflection sheet can be further increased.
3.樹脂層
 前記樹脂層としては、ポリエステルフィルム、またはポリエステル樹脂を含む樹脂組成物の塗布層からなることが好ましい。
3. Resin layer The resin layer is preferably a polyester film or a coating layer of a resin composition containing a polyester resin.
 前記樹脂層に用いられるポリエステルフィルムとしては、一般的に使用されるポリエステル、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリナフタレンテレフタレートまたはポリエチレンナフタレート等からなるフィルムが挙げられる。これらの中でも特に、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましく用いられる。 Examples of the polyester film used for the resin layer include commonly used polyesters such as polyethylene terephthalate, polybutylene terephthalate, polynaphthalene terephthalate, or polyethylene naphthalate. Among these, polyethylene terephthalate and polyethylene naphthalate are particularly preferably used.
 また、前記樹脂層がポリエステル樹脂を含む樹脂組成物の塗布層からなる場合、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリナフタレンテレフタレートまたはポリエチレンナフタレートを含む樹脂組成物を前記白色層の上に塗布して硬化させる、若しくは不飽和ポリエステル樹脂を含む樹脂組成物を前記白色層の上に塗布して熱硬化させる等によって形成される。 Further, when the resin layer is composed of a coating layer of a resin composition containing a polyester resin, for example, a resin composition containing polyethylene terephthalate, polybutylene terephthalate, polynaphthalene terephthalate or polyethylene naphthalate is coated on the white layer. The resin composition containing an unsaturated polyester resin is applied on the white layer and thermally cured.
 前記樹脂層には白色顔料を配合することができる。このような白色顔料としては前記基材に配合するものと同じものを使用することができ、特に酸化チタンが好ましく用いられる。
 前記樹脂層に白色顔料を配合する場合のその配合量は、0.5重量%以上、好ましくは3重量%から80重量%、さらに好ましくは20重量%から80重量%である。白色顔料の配合量が80重量%を超えると、前記樹脂層が脆くなり、実用的な機械的強度が得られないことがあるため好ましくない。
A white pigment can be blended in the resin layer. As such a white pigment, the same pigments as those incorporated in the substrate can be used, and titanium oxide is particularly preferably used.
When a white pigment is blended in the resin layer, the blending amount is 0.5 wt% or more, preferably 3 wt% to 80 wt%, more preferably 20 wt% to 80 wt%. If the amount of the white pigment exceeds 80% by weight, the resin layer becomes brittle and a practical mechanical strength may not be obtained.
 また特に前記樹脂層としてポリエステルフィルムを用い、これに白色顔料として酸化チタンを配合する場合、当該ポリエステルフィルムは熱をかけて2軸延伸を行うため、前記ポリエステルフィルムに存在する酸化チタンの間隔が前記白色層とそれと異なるため、このような構成となる本実施形態の反射シートは、特に可視光線の高反射を実現することができる。
 前記樹脂層として白色顔料を含むポリエステルフィルムを用いる場合、例えば帝人デュポンフィルム(株)製のテイジン(登録商標)テトロン(登録商標)フィルムU2、テイジン(登録商標)テトロン(登録商標)フィルムVW、東洋紡(株)製のSHINEBEAM(登録商標) White、等を使用することができる。
In particular, when a polyester film is used as the resin layer and titanium oxide is added as a white pigment to the polyester film, the polyester film is biaxially stretched by applying heat. Since it is different from the white layer, the reflection sheet of this embodiment having such a configuration can realize high reflection of visible light in particular.
When a polyester film containing a white pigment is used as the resin layer, for example, Teijin (registered trademark) Tetron (registered trademark) film U2 manufactured by Teijin DuPont Films, Teijin (registered trademark) Tetron (registered trademark) film VW, Toyobo SHINEBEAM (registered trademark) White manufactured by Co., Ltd. can be used.
 なお、前記樹脂層はポリエステル樹脂以外に添加剤等を含んでいてもよく、このような添加剤としては、耐加水分解改質剤、固相重合促進剤、酸化防止剤、難燃剤等が挙げられる。 The resin layer may contain additives other than the polyester resin, and examples of such additives include hydrolysis resistance modifiers, solid phase polymerization accelerators, antioxidants, flame retardants, and the like. It is done.
 前記樹脂層の厚さは、17μmから30μmであることが好ましい。 The thickness of the resin layer is preferably 17 μm to 30 μm.
 また本実施形態の反射シートは、その光反射に影響を与えない範囲内で、前記基材と前記白色層の間、前記白色層と前記樹脂層の間、または前記樹脂層の表面に接着剤を塗布し、接着層を形成することもできる。これにより、前記基材と前記白色層、または前記白色層と前記樹脂層の密着力を向上することができる。また本実施形態に係る反射シートを太陽電池用バックシートとして用いる場合、前記樹脂層の表面にこのような接着層を形成することにより、当該反射シートと太陽電池モジュールの封止材であるEVAとの密着性を向上することができる。 Further, the reflective sheet of the present embodiment has an adhesive between the base material and the white layer, between the white layer and the resin layer, or on the surface of the resin layer within a range that does not affect the light reflection. Can be applied to form an adhesive layer. Thereby, the adhesive force of the said base material and the said white layer or the said white layer and the said resin layer can be improved. Moreover, when using the reflective sheet which concerns on this embodiment as a solar cell backsheet, by forming such an adhesive layer on the surface of the resin layer, the reflective sheet and EVA as a sealing material for the solar cell module Can be improved.
 このような接着剤としては、ポリウレタン系接着剤やイソシアネート系接着剤が好ましく用いられる。
 前記ポリウレタン系接着剤としては、例えば、セイカボンド(登録商標)E-263、セイカボンドC-26(以上、大日精化工業(株)製)、タケラック(登録商標)A3210、タケネート(登録商標)A3072等(以上、三井化学ポリウレタン(株)製)が挙げられる。
 また前記イソシアネート系接着剤としては、例えばコロネート(登録商標)L等(日本ポリウレタン工業(株)製)、の市販品を用いることができる。
 これらのポリウレタン系接着剤、イソシアネート系接着剤には、接着性やポットライフに悪影響を与えない範囲で反応触媒やその他の添加剤を配合することができる。
As such an adhesive, a polyurethane-based adhesive or an isocyanate-based adhesive is preferably used.
Examples of the polyurethane adhesive include Seika Bond (registered trademark) E-263, Seika Bond C-26 (above, manufactured by Dainichi Seika Kogyo Co., Ltd.), Takelac (registered trademark) A3210, Takenate (registered trademark) A3072 and the like. (Mitsui Chemicals Polyurethane Co., Ltd.).
Moreover, as said isocyanate adhesive, the commercial item of Coronate (trademark) L etc. (made by Nippon Polyurethane Industry Co., Ltd.) can be used, for example.
These polyurethane-based adhesives and isocyanate-based adhesives can be blended with reaction catalysts and other additives within a range that does not adversely affect adhesiveness and pot life.
 本実施形態に係る反射シートの厚みは、その用途に応じて自由に調整することができるが、特に好ましくは195μmから350μmである。 The thickness of the reflective sheet according to the present embodiment can be freely adjusted according to its use, but is particularly preferably 195 μm to 350 μm.
 本実施形態に係る反射シートは、例えば以下のような方法で製造される。 The reflective sheet according to the present embodiment is manufactured by, for example, the following method.
 本実施形態においては前記基材としてポリエチレンナレフタレートからなるフィルムを用いる。
 ポリエチレンナレフタレートフィルムに白色顔料を配合する場合、その方法は特に限定されず、従来の方法を適宜採用できる。例えば、ポリエチレンナフタレート成分を製造する任意の段階において前記白色顔料を添加する方法が挙げられる。なお、好ましくはエステル化の段階、もしくはエステル交換反応終了後に前記白色顔料を添加し、重縮合反応を進めてもよい。また、ベント付き混練押出機を用い、エチレングリコールまたは水などに分散させた白色顔料のスラリーとポリエステル原料とをブレンドしてもよい。また、混練押出機を用い、乾燥させた白色顔料とポリエステル原料とをブレンドする方法でもよい。
In this embodiment, a film made of polyethylene naphthalate is used as the substrate.
When a white pigment is blended in the polyethylene naphthalate film, the method is not particularly limited, and a conventional method can be appropriately employed. For example, the method of adding the said white pigment in the arbitrary steps which manufacture a polyethylene naphthalate component is mentioned. Preferably, the polycondensation reaction may be advanced by adding the white pigment at the esterification stage or after completion of the transesterification reaction. Alternatively, a white pigment slurry dispersed in ethylene glycol or water and a polyester raw material may be blended using a kneading extruder with a vent. Moreover, the method of blending the dried white pigment and the polyester raw material using a kneading extruder may be used.
 先ずポリエチレンナフタレートを溶解し、これをキャスティングドラムを用いて冷却固化させて未延伸フィルムとする。そしてこの未延伸フィルムをガラス転移温度Tg121℃~(Tg+60)℃で長手方向に1回若しくは2回以上、その合計の倍率が3倍から6倍になるように延伸する。更にこれをTg121℃~(Tg+60)℃で幅方向に倍率が3倍から6倍になるように延伸し、例えば厚さが250μmであるポリエチレンナフタレートフィルムを作製する。また更に必要に応じて、当該フィルムを180℃から230℃で1秒から60秒間、熱処理を行ってもよい。 First, polyethylene naphthalate is dissolved, and this is cooled and solidified using a casting drum to obtain an unstretched film. The unstretched film is stretched at a glass transition temperature of Tg 121 ° C. to (Tg + 60) ° C. once or twice or more in the longitudinal direction so that the total magnification becomes 3 to 6 times. Further, this is stretched at Tg 121 ° C. to (Tg + 60) ° C. so that the magnification is 3 to 6 times in the width direction, and a polyethylene naphthalate film having a thickness of 250 μm, for example, is produced. If necessary, the film may be heat-treated at 180 to 230 ° C. for 1 to 60 seconds.
 次に前記ポリエチレンナフタレートフィルムの前記白色層を形成する面に、有機溶剤で塗布に適した粘度に調整された白色樹脂組成物をその膜厚が17μmから20μmとなるように塗布する。当該白色樹脂組成物には、粒径の異なる酸化チタン(A)および酸化チタン(B)に加え、水酸化アルミニウムを配合することが好ましい。
 その後、前記ポリエチレンナフタレートフィルムに塗布された白色樹脂組成物を70℃から90℃の温度で乾燥することにより、これに含まれる有機溶剤を揮発させて塗膜を形成する。前記白色樹脂組成物の塗布方法としては、スクリーン印刷法、カーテンコート法、スプレーコート法、ロールコート法等を適宜用いることができる。また、有機溶剤の揮発乾燥には、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等が用いられる。その後、80℃から100℃で張り合わせロール温度を保ち、前記基材を圧着させることにより、前記基材上に白色層が形成された反射シートを作成することができる。
Next, a white resin composition adjusted to a viscosity suitable for coating with an organic solvent is applied to the surface of the polyethylene naphthalate film on which the white layer is to be formed so that the film thickness is 17 μm to 20 μm. The white resin composition preferably contains aluminum hydroxide in addition to titanium oxide (A) and titanium oxide (B) having different particle diameters.
Thereafter, the white resin composition applied to the polyethylene naphthalate film is dried at a temperature of 70 ° C. to 90 ° C., thereby volatilizing the organic solvent contained therein to form a coating film. As a coating method of the white resin composition, a screen printing method, a curtain coating method, a spray coating method, a roll coating method, or the like can be appropriately used. In addition, a hot air circulation drying furnace, an IR furnace, a hot plate, a convection oven or the like is used for volatile drying of the organic solvent. Then, the reflective sheet in which the white layer was formed on the said base material can be created by maintaining the bonding roll temperature at 80 to 100 degreeC, and crimping | bonding the said base material.
 なお、上述のように前記白色樹脂組成物を前記ポリエチレンナレフタレートフィルムに塗布するのではなく、当該白色樹脂組成物からなるドライフィルムを用いて前記塗膜を形成してもよい。
 このようなドライフィルムは、例えばポリエチレンテレフタレート等からなるキャリアフィルムに前記白色樹脂組成物を塗布乾燥して白色樹脂層を形成し、その上に剥離可能なポリエチレンフィルム、ポリプロピレンフィルム等のカバーフィルムとを積層したものである。具体的には、当該白色樹脂層は、キャリアフィルムに前記白色樹脂組成物をブレードコーター、リップコーター、コンマコーター、フィルムコーター、メイヤーバーコーター、マイクログラビアコーター等で塗布し、上記と同様にこれを乾燥することにより形成される。
In addition, you may form the said coating film using the dry film which consists of the said white resin composition instead of apply | coating the said white resin composition to the said polyethylene naphthalate film as mentioned above.
Such a dry film is formed by applying the white resin composition to a carrier film made of, for example, polyethylene terephthalate and drying to form a white resin layer, and a cover film such as a peelable polyethylene film or polypropylene film is formed thereon. Laminated. Specifically, the white resin layer is obtained by applying the white resin composition to a carrier film with a blade coater, a lip coater, a comma coater, a film coater, a Mayer bar coater, a micro gravure coater, and the like. It is formed by drying.
 そして、当該ドライフィルムのカバーフィルムを剥がし、当該白色樹脂層と前記ポリエチレンナレフタレートフィルムとを重ね、ラミネーター等を用いてこれらを張り合わせることにより、前記ポリエチレンナレフタレートフィルム上に白色樹脂層の塗膜が形成される。そして、当該塗膜を上記と同様に加熱すれば、前記ポリエチレンナレフタレートフィルム上に白色層を形成することができる。 Then, the cover film of the dry film is peeled off, the white resin layer and the polyethylene naphthalate film are overlaid, and these are laminated together using a laminator or the like, thereby coating the white film layer on the polyethylene naphthalate film. Is formed. And if the said coating film is heated similarly to the above, a white layer can be formed on the said polyethylene naphthalate film.
 次いで前記白色層上に樹脂層を形成する。当該樹脂層としては、例えばポリエチレンナフタレートフィルム(以下、前記基材と区別するために「樹脂フィルム」という。)を用いることができる。このような樹脂フィルムの製造方法としては、例えば溶解されたポリエチレンナレフタレートをキャスティングドラムを用いてこれを冷却固化させて未延伸フィルムとする。そしてこの未延伸フィルムをガラス転移温度Tg121℃~(Tg+60)℃で長手方向に1回若しくは2回以上、その合計の倍率が3倍から6倍になるように延伸する。更にこれをTg121℃~(Tg+60)℃で幅方向に倍率が3倍から6倍になるように延伸し、厚さが50μmから75μmの樹脂フィルムであるポリエチレンナフタレートフィルムを作製する。また更に必要に応じて、当該フィルムを180℃から230℃で1秒から60秒間、熱処理を行ってもよい。 Next, a resin layer is formed on the white layer. As the resin layer, for example, a polyethylene naphthalate film (hereinafter referred to as “resin film” to be distinguished from the base material) can be used. As a method for producing such a resin film, for example, dissolved polyethylene naphthalate is cooled and solidified using a casting drum to obtain an unstretched film. The unstretched film is stretched at a glass transition temperature of Tg 121 ° C. to (Tg + 60) ° C. once or twice or more in the longitudinal direction so that the total magnification becomes 3 to 6 times. Further, this is stretched at Tg 121 ° C. to (Tg + 60) ° C. so that the magnification is 3 to 6 times in the width direction to produce a polyethylene naphthalate film which is a resin film having a thickness of 50 μm to 75 μm. If necessary, the film may be heat-treated at 180 to 230 ° C. for 1 to 60 seconds.
 そして当該白色層の表面に前記樹脂フィルムを接着または圧着することにより、本実施形態に係る反射シートが作製される。当該接着方法としては、前記白色層の表面に前記樹脂フィルムを加熱されたロール群等を用いて熱圧着することにより行う。 And the reflective sheet which concerns on this embodiment is produced by adhere | attaching or crimping | bonding the said resin film on the surface of the said white layer. As the said adhesion method, it carries out by carrying out the thermocompression bonding to the surface of the said white layer using the roll group etc. which heated the said resin film.
 なお、他の実施形態として、前記樹脂フィルムの表面に白色層を形成し、当該白色層の表面に前記ポリエチレンナフタレートフィルムを熱圧着することにより反射シートを製造することもできる。 As another embodiment, a reflective sheet can be produced by forming a white layer on the surface of the resin film and thermocompression bonding the polyethylene naphthalate film on the surface of the white layer.
 またこれらの実施形態以外にも、前記ポリエチレンナフタレートフィルムと前記樹脂フィルム間に前記白色樹脂組成物を押し出して積層する押出サンドラミネーター法を用いることにより反射シートを製造することもできる。 In addition to these embodiments, a reflective sheet can be produced by using an extrusion sand laminator method in which the white resin composition is extruded and laminated between the polyethylene naphthalate film and the resin film.
 次に、図1を用いて本実施形態の反射シートを簡単に説明する。
 本実施形態の反射シート10は、ポリエステルフィルムからなる基材1と、白色層2と、樹脂層3からなる。
Next, the reflective sheet of this embodiment is demonstrated easily using FIG.
The reflective sheet 10 of this embodiment includes a base material 1 made of a polyester film, a white layer 2, and a resin layer 3.
 なお、前記基材および前記樹脂層に白色顔料として酸化チタンを配合し、前記白色層に酸化チタンおよび水酸化アルミニウムを配合した反射シートは、より一層の幅広い波長における光反射を実現することができる。 In addition, the reflective sheet which mix | blended titanium oxide as a white pigment in the said base material and the said resin layer, and mix | blended titanium oxide and aluminum hydroxide in the said white layer can implement | achieve the light reflection in a much wider wavelength. .
 また、このような反射シートを結晶シリコン型太陽電池のバックシートとして用いた場合の太陽電池モジュールについて、図2を用いて説明する。 Further, a solar cell module in the case where such a reflection sheet is used as a back sheet of a crystalline silicon solar cell will be described with reference to FIG.
 本実施形態の太陽電池モジュール100は、反射シート10(太陽電池用バックシート)と、EVAからなる封止材20と、太陽電池セル30と、ガラスからなる表面保護材基材40とからなる。表面保護基材40から入射する太陽光は太陽電池セル30に吸収され、エネルギーに変換される。太陽電池セル30が吸収できなかった太陽光は、封止材20を透過して反射シート10に入射する。そして、反射シート10は、入射する太陽光を紫外線から近赤外線までの幅広い波長において効率よく反射し、これを太陽電池セル30に戻すことができる。 The solar cell module 100 of this embodiment includes a reflective sheet 10 (solar cell backsheet), an encapsulant 20 made of EVA, solar cells 30, and a surface protective material substrate 40 made of glass. Sunlight incident from the surface protective substrate 40 is absorbed by the solar battery cell 30 and converted into energy. Sunlight that could not be absorbed by the solar battery cell 30 passes through the sealing material 20 and enters the reflection sheet 10. And the reflective sheet 10 can reflect the incident sunlight efficiently in a wide wavelength from ultraviolet rays to near infrared rays, and can return this to the solar battery cell 30.
 このような構成を有する本実施形態の反射シートは、紫外線から近赤外線までの幅広い波長の光を高反射することができ、また熱吸収効果も発揮し得ることができる。そのため当該反射シートを例えば太陽電池用バックシートとして用いた場合、入射する太陽光を紫外線から近赤外線までの幅広い波長において効率よく反射することで太陽電池モジュールの発電効率を高めることができる。 The reflection sheet of this embodiment having such a configuration can highly reflect light having a wide range of wavelengths from ultraviolet rays to near infrared rays, and can also exhibit a heat absorption effect. Therefore, when the said reflective sheet is used as a solar cell backsheet, for example, it can improve the power generation efficiency of a solar cell module by reflecting incident sunlight efficiently in a wide wavelength from ultraviolet rays to near infrared rays.
即ち、近赤外線はこれが照射される物質の分子により光エネルギーが吸収され、量子化された振動あるいは回転の状態が変化する。また紫外線はこれが照射される物質を劣化させるため、紫外線および近赤外線を反射しない、若しくはこれらを少量しか反射しない反射シートの場合、近赤外線による分子の振動および紫外線による劣化により、反射シート自体および近傍にある物質が加水分解され易くなる虞がある。
 特に反射シートを太陽電池用バックシートとして用いる場合、当該反射シートに積層されるEVAは加水分解を起こしやすくなってしまう。EVAが加水分解されると酢酸と水分とが生じるが、この酢酸および水分は太陽電池用モジュールに用いられるガラスからなる表面保護材基材との接触によりナトリウムイオンを発生させてしまう。この発生したナトリウムイオンはEVA中に拡散してしまい、セルの表面や内部に侵入し、太陽電池の発電効率を妨げる原因となる。特に発電中の太陽電池モジュールはこれ自身に高電圧がかかるため、ナトリウムイオンの発生が促進されてしまう。
That is, near-infrared light is absorbed by the molecules of the material to which it is irradiated, and the state of quantized vibration or rotation changes. In addition, since ultraviolet rays deteriorate the material irradiated by ultraviolet rays, in the case of a reflective sheet that does not reflect ultraviolet rays and near infrared rays, or reflects only a small amount of these, the reflection sheet itself and the vicinity thereof are caused by vibration of molecules due to near infrared rays and deterioration by ultraviolet rays. There is a risk that the substance in the water is easily hydrolyzed.
In particular, when a reflective sheet is used as a solar cell backsheet, EVA laminated on the reflective sheet is likely to be hydrolyzed. When EVA is hydrolyzed, acetic acid and moisture are produced. The acetic acid and moisture generate sodium ions by contact with the surface protective material substrate made of glass used in the module for solar cell. The generated sodium ions diffuse into the EVA and enter the cell surface and inside, causing the power generation efficiency of the solar cell to be hindered. In particular, since a high voltage is applied to the solar cell module during power generation, generation of sodium ions is promoted.
 しかし上述の通り本実施形態の反射シートは前記白色層が上記構成の白色樹脂組成物から形成されることにより紫外線から近赤外線までの幅広い波長における光を高反射できると共に耐候性を有している。特に当該白色層は紫外線を高反射すると共に、粒径の異なる酸化チタン(A)および(B)を併用することにより近赤外線も反射し得る。そのためこれを太陽電池用バックシートとして用いる場合、ナトリウムイオンの発生を抑制することができる。
 特に当該反射シートは太陽電池モジュールの太陽光照射側からだけでなくその反対側(以下、「裏面」という。)から照射される紫外線から近赤外線までを高反射することができる。そのため、近赤外線を原因とするEVAの加水分解を抑制し、これによりナトリウムイオンの発生をより抑制し得る。
However, as described above, the reflective sheet of the present embodiment is highly weatherable and can reflect light in a wide range of wavelengths from ultraviolet to near infrared by forming the white layer from the white resin composition having the above-described configuration. . In particular, the white layer highly reflects ultraviolet rays and can also reflect near infrared rays by using titanium oxides (A) and (B) having different particle diameters in combination. Therefore, when using this as a solar cell backsheet, generation | occurrence | production of a sodium ion can be suppressed.
In particular, the reflecting sheet can highly reflect not only from the solar light irradiation side of the solar cell module but also from the opposite side (hereinafter referred to as “back surface”) from ultraviolet rays to near infrared rays. Therefore, the hydrolysis of EVA caused by near infrared rays can be suppressed, and thereby the generation of sodium ions can be further suppressed.
 本実施形態の反射シートは、樹脂層がEVA側に、基材が外側となるように太陽電池モジュールに設けられることが好ましい。 The reflective sheet of the present embodiment is preferably provided in the solar cell module such that the resin layer is on the EVA side and the substrate is on the outside.
 このように、幅広い波長において光を高反射することのできる太陽電池用バックシートは、太陽電池の種類を選ばずに使用することができる。
 例えば具体的には、現在多く使用されているシリコン系のうち単結晶型、多結晶型といった液晶型の太陽電池は500nmから900nmの波長の太陽光を利用して発電を行う。一方、アモルファス型と結晶型が組み合わさったダンデム型は300nmから900nmの波長の太陽光を利用して発電を行う。更に色素増感型は500nmから1500nmの波長の太陽光を利用して発電を行う。
 本実施形態の反射シートは、このように最大発電帯が異なる太陽電池に対して、適宜所望の発電帯の波長における高い反射率を実現することができ、いずれの太陽電池に対しても好適に用いることができる。
Thus, the solar cell backsheet capable of highly reflecting light in a wide range of wavelengths can be used regardless of the type of solar cell.
For example, specifically, a liquid crystal solar cell such as a single crystal type or a polycrystal type among silicon-based materials that are currently widely used generates power using sunlight with a wavelength of 500 nm to 900 nm. On the other hand, a dandem type in which an amorphous type and a crystal type are combined generates power using sunlight having a wavelength of 300 nm to 900 nm. Further, the dye-sensitized type generates power using sunlight having a wavelength of 500 nm to 1500 nm.
The reflective sheet of the present embodiment can achieve high reflectivity at a wavelength of a desired power generation band as appropriate for solar cells having different maximum power generation bands as described above, and is suitable for any solar cell. Can be used.
 また本実施形態の反射シートは、幅広い波長の光に対して高い反射率を実現できることから、LED照明の反射シートといった用途にも好適に使用することができる。 Moreover, since the reflective sheet of this embodiment can implement | achieve a high reflectance with respect to the light of a wide wavelength, it can be used suitably also for uses, such as a reflective sheet of LED lighting.
実施例
 以下の各成分を混合、撹拌することにより白色樹脂組成物を調製した。
バイロン TU02-HA(東洋紡(株)製 熱可塑性樹脂) 250重量部
D-918(堺化学工業(株)製 酸化チタン 平均粒径0.26μm) 70重量部
R-38L(堺化学工業(株)製 酸化チタン 平均粒径0.4μm) 30重量部
タケネートR600(三井化学(株)製 イソシアネート化合物) 10重量部
プロピレングリコールモノメチルエーテル(有機溶剤) 140重量部
Example A white resin composition was prepared by mixing and stirring the following components.
Byron TU02-HA (Thermoplastic resin manufactured by Toyobo Co., Ltd.) 250 parts by weight D-918 (Titanium oxide average particle size 0.26 μm manufactured by Sakai Chemical Industry Co., Ltd.) 70 parts by weight R-38L (Sakai Chemical Industry Co., Ltd.) Titanium oxide average particle size 0.4 μm) 30 parts by weight Takenate R600 (isocyanate compound manufactured by Mitsui Chemicals) 10 parts by weight propylene glycol monomethyl ether (organic solvent) 140 parts by weight
 厚さ188μmのポリエチレンテレフタレート(PET)フィルム(東洋紡(株)製 クリスパー(登録商標)K1212)の片面にスクリーン印刷により上記白色樹脂組成物を乾燥塗膜が17μmから20μmとなるように印刷した。その後、当該乾燥塗膜を120℃で60分加熱して熱硬化させて白色層を得た。
 次いで、当該白色層上に厚さ75μmのPETフィルム(帝人デュポンフィルム(株)製のテイジン(登録商標)テトロン(登録商標)フィルムVW)を積層してこれを熱圧着し、実施例に係る試験片を作製した。
The white resin composition was printed on one side of a 188 μm thick polyethylene terephthalate (PET) film (Crisper (registered trademark) K1212 manufactured by Toyobo Co., Ltd.) so that the dried coating film might be 17 μm to 20 μm. Thereafter, the dried coating film was heated at 120 ° C. for 60 minutes to be thermally cured to obtain a white layer.
Next, a 75 μm-thick PET film (Teijin (registered trademark) Tetron (registered trademark) film VW manufactured by Teijin DuPont Films Ltd.) was laminated on the white layer, and this was thermocompression bonded. A piece was made.
 比較例
 以下の各成分を混合、撹拌することにより白色樹脂組成物を調製した。
ニッポラン136(日本ポリウレタン工業(株)製 熱可塑性樹脂) 100重量部
タイペークCR-90(石原産業(株)製 酸化チタン) 1000重量部
水酸化アルミニウム 20重量部
タケネートR600(三井化学(株)製 イソシアネート化合物) 10重量部
プロピレングリコールモノエチルエーテル(有機溶剤) 20重量部
エクアミド(出光興産(株)製 有機溶剤:アミド系溶剤) 20重量部
AEROSIL200((株)日本アエロジル製 球状シリカ) 20重量部
スチレン-無水マレイン酸共重合体(スチレン系樹脂) 600重量部
BYK-A515(ビックケミー・ジャパン(株)製 消泡剤) 20重量部
Comparative Example A white resin composition was prepared by mixing and stirring the following components.
Nipponran 136 (Thermoplastic resin manufactured by Nippon Polyurethane Industry Co., Ltd.) 100 parts by weight Taipei CR-90 (Ishihara Sangyo Co., Ltd. titanium oxide) 1000 parts by weight Aluminum hydroxide 20 parts by weight Takenate R600 (Mitsui Chemicals, Inc. isocyanate) Compound) 10 parts by weight propylene glycol monoethyl ether (organic solvent) 20 parts by weight ecamide (organic solvent: amide solvent manufactured by Idemitsu Kosan Co., Ltd.) 20 parts by weight AEROSIL 200 (spherical silica manufactured by Nippon Aerosil Co., Ltd.) 20 parts by weight styrene -Maleic anhydride copolymer (styrene-based resin) 600 parts by weight BYK-A515 (Bubble Chemie Japan Co., Ltd. antifoaming agent) 20 parts by weight
 厚さ188μmのポリエチレンナフタレート(PEN)基材(帝人デュポンフィルム(株)製 テオネックス)の片面に上記白色樹脂組成物をスクリーン印刷により乾燥塗膜が20μmとなるように印刷し、これを120℃で60分間加熱し熱硬化させて、白色層を有する試験片を作製した。 The white resin composition is printed on one side of a 188 μm thick polyethylene naphthalate (PEN) base material (Teonex manufactured by Teijin DuPont Films Co., Ltd.) by screen printing so that the dry coating film has a thickness of 20 μm. And heated for 60 minutes to obtain a test piece having a white layer.
<反射率>
 実施例および比較例について、紫外可視分光光度計((株)島津製作所製 UV-3100PC)を用い、以下の条件にて樹脂層(樹脂フィルム)側から300nmから2000nmの反射率を測定した。これらの比較結果を図3に示す。
 なお、実施例については樹脂層に相当する厚さ75μmのPETフィルム側から、比較例については白色層側から光を照射した。
<測定条件>
 測定方法:拡散反射法
 入射角:7度
 光源:ハロゲンランプ
 検出器:フォトマル(300nmから860nm)、PbS(860nmから2000nm)
 参照:標準白色板(Labsphere社製 Soectralon)
<Reflectance>
About the Example and the comparative example, the reflectance from 300 nm to 2000 nm was measured from the resin layer (resin film) side using the ultraviolet visible spectrophotometer (Shimadzu Corporation UV-3100PC) on condition of the following. The comparison results are shown in FIG.
In addition, about the Example, light was irradiated from the 75-micrometer-thick PET film side corresponding to a resin layer, and the comparative example was irradiated from the white layer side.
<Measurement conditions>
Measurement method: Diffuse reflection method Incident angle: 7 degrees Light source: Halogen lamp Detector: Photomal (300 nm to 860 nm), PbS (860 nm to 2000 nm)
Reference: Standard white plate (Labsphere, Sectralon)
<発熱および発電>
 実施例に係る反射シートを太陽電池用バックシートとして使用した単結晶型および多結晶型の太陽電池モジュールを用意した。なお。単結晶型のシリコンサイズは66.8cm、多結晶型のシリコンサイズは50.0cmである。
 当該単結晶型および多結晶型太陽電離モジュールについて、緯度:北緯31度、経度:東経120度の地点にて、天気:快晴、気温:9℃から12℃、湿度:88%前後の条件下にて、午前9時から午後12時30分までの間放置すると共に、定期的に各太陽電池モジュールの温度と電圧を測定した。太陽電池モジュールの温度の計測結果を表1に、電圧の計測結果を表2に表す。
 なお電圧の測定にはMF47機能のアナログマルチメーターを用いた。また表1の単位は℃、表2の単位はDCVである。
<Heat generation and power generation>
Monocrystalline and polycrystalline solar cell modules were prepared using the reflective sheet according to the example as a solar cell backsheet. Note that. The single crystal type silicon size is 66.8 cm 2 , and the polycrystalline silicon size is 50.0 cm 2 .
About the said single crystal type and a polycrystal type solar ionization module, at the point of latitude: 31 degrees north latitude, longitude: 120 degrees east longitude, weather: fine weather, temperature: 9 to 12 degreeC, and humidity: about 88% In addition, the temperature and voltage of each solar cell module were measured periodically while being left between 9 am and 12:30 pm. Table 1 shows the temperature measurement results of the solar cell module, and Table 2 shows the voltage measurement results.
An MF47 function analog multimeter was used for voltage measurement. The unit of Table 1 is ° C., and the unit of Table 2 is DCV.
Figure JPOXMLDOC01-appb-T000004
※1 単結晶の初期値については測定不可(測定機器の測定可能温度以下)であった。
Figure JPOXMLDOC01-appb-T000004
* 1 The initial value of the single crystal was not measurable (below the measurable temperature of the measuring device).
Figure JPOXMLDOC01-appb-T000005
 以上、図3から明らかなように、実施例の反射シートは、紫外線から近赤外線までの幅広い波長における光を十分に反射できることが分かる。
 また表1および表2からも明らかなように、このような反射シートを用いた太陽電池モジュールは、使用時間経過における発電効率の低下および温度の上昇を抑制でき、長期的に安定した発電を行うことができる。
Figure JPOXMLDOC01-appb-T000005
As can be seen from FIG. 3, the reflective sheet of the example can sufficiently reflect light in a wide wavelength range from ultraviolet to near infrared.
Further, as is clear from Table 1 and Table 2, the solar cell module using such a reflection sheet can suppress a decrease in power generation efficiency and a temperature increase in the usage time, and perform stable power generation over the long term. be able to.
 1   基材
 2   白色層
 3   樹脂層
 10  反射シート
 20  封止材
 30  太陽電池セル
 40  表面保護材
 100 太陽電池モジュール
DESCRIPTION OF SYMBOLS 1 Base material 2 White layer 3 Resin layer 10 Reflective sheet 20 Sealing material 30 Solar cell 40 Surface protection material 100 Solar cell module

Claims (7)

  1.  基材と、この基材上に形成される白色層と、この白色層上に設けられる樹脂層とを含む反射シートであって、
     前記白色層は、芳香族ジカルボン酸と下記一般式(1)で表される化合物と炭素数が5から7の脂肪族ジオールとを含むモノマーを共重合することにより得られる熱可塑性樹脂と白色顔料とを含む白色樹脂組成物を用いて形成されることを特徴とする反射シート。
    Figure JPOXMLDOC01-appb-C000001
    A reflective sheet comprising a substrate, a white layer formed on the substrate, and a resin layer provided on the white layer,
    The white layer includes a thermoplastic resin and a white pigment obtained by copolymerizing a monomer containing an aromatic dicarboxylic acid, a compound represented by the following general formula (1), and an aliphatic diol having 5 to 7 carbon atoms. And a white resin composition comprising: a reflective sheet.
    Figure JPOXMLDOC01-appb-C000001
  2.  前記白色顔料は酸化チタンであり、
     この酸化チタンは、平均粒径が0.1μmから0.3μmの酸化チタン(A)と、平均粒径が0.3μmから0.5μmの酸化チタン(B)とを含むことを特徴とする請求項1に記載の反射シート。
    The white pigment is titanium oxide;
    The titanium oxide includes titanium oxide (A) having an average particle size of 0.1 μm to 0.3 μm and titanium oxide (B) having an average particle size of 0.3 μm to 0.5 μm. Item 2. The reflection sheet according to Item 1.
  3.  前記酸化チタン(A)と前記酸化チタン(B)の配合量は、前記白色樹脂組成物全量に対して前記酸化チタン(A)が17重量%から20重量%、前記酸化チタン(B)が7重量%から10重量%であることを特徴とする請求項1または請求項2に記載の反射シート。 The compounding amount of the titanium oxide (A) and the titanium oxide (B) is 17% to 20% by weight of the titanium oxide (A) and 7% of the titanium oxide (B) with respect to the total amount of the white resin composition. The reflective sheet according to claim 1 or 2, wherein the weight percentage is from 10% by weight to 10% by weight.
  4.  前記白色層は更に水酸化アルミニウム、酸化亜鉛、炭酸カルシウム、タルクおよびバリウムの少なくとも1つを含むことを特徴とする請求項1から請求項3のいずれか1項に記載の反射シート。 The reflection sheet according to any one of claims 1 to 3, wherein the white layer further contains at least one of aluminum hydroxide, zinc oxide, calcium carbonate, talc and barium.
  5.  前記基材および前記樹脂層の少なくとも一方は白色顔料を含むことを特徴とする請求項1から請求項4のいずれか1項に記載の反射シート。 The reflection sheet according to any one of claims 1 to 4, wherein at least one of the base material and the resin layer contains a white pigment.
  6.  請求項1から請求項5のいずれか1項に記載の反射シートを用いた太陽電池モジュール。 A solar cell module using the reflection sheet according to any one of claims 1 to 5.
  7.  請求項1から請求項5のいずれか1項に記載の反射シートを用いたLED照明。 LED lighting using the reflective sheet according to any one of claims 1 to 5.
PCT/JP2016/063503 2016-04-28 2016-04-28 Reflective sheet, and solar cell module and led lighting device each using same WO2017187643A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063503 WO2017187643A1 (en) 2016-04-28 2016-04-28 Reflective sheet, and solar cell module and led lighting device each using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063503 WO2017187643A1 (en) 2016-04-28 2016-04-28 Reflective sheet, and solar cell module and led lighting device each using same

Publications (1)

Publication Number Publication Date
WO2017187643A1 true WO2017187643A1 (en) 2017-11-02

Family

ID=60160204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063503 WO2017187643A1 (en) 2016-04-28 2016-04-28 Reflective sheet, and solar cell module and led lighting device each using same

Country Status (1)

Country Link
WO (1) WO2017187643A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688111B (en) * 2018-10-16 2020-03-11 志寶富生物科技有限公司 Solar window
CN112216758A (en) * 2020-09-29 2021-01-12 玉环晶科能源有限公司 Solar cell backboard, photovoltaic module and manufacturing method of solar cell backboard

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006506485A (en) * 2002-11-13 2006-02-23 イーストマン ケミカル カンパニー Process for producing isosorbide-containing polyester
JP2006330149A (en) * 2005-05-24 2006-12-07 Toppan Printing Co Ltd Sheet for optical sheet, optical sheet, and backlight unit
JP2007218980A (en) * 2006-02-14 2007-08-30 Idemitsu Kosan Co Ltd Reflector and its manufacturing method
JP2009248371A (en) * 2008-04-02 2009-10-29 Teijin Dupont Films Japan Ltd Laminated polyester film
JP2013077790A (en) * 2011-09-15 2013-04-25 Wei Hung Back sheet for solar battery and manufacturing method therefor
JP2013112770A (en) * 2011-11-30 2013-06-10 Toyobo Co Ltd Method of producing polyester resin composition
WO2013157512A1 (en) * 2012-04-16 2013-10-24 三菱樹脂株式会社 Scattering type polarizer and liquid crystal display device equipped with same
JP2013237183A (en) * 2012-05-15 2013-11-28 Suzhou Quanlin Electronics Technology Co Ltd Reflection sheet and back sheet for solar cell using the same
WO2015129500A1 (en) * 2014-02-27 2015-09-03 東レ株式会社 Laminate film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006506485A (en) * 2002-11-13 2006-02-23 イーストマン ケミカル カンパニー Process for producing isosorbide-containing polyester
JP2006330149A (en) * 2005-05-24 2006-12-07 Toppan Printing Co Ltd Sheet for optical sheet, optical sheet, and backlight unit
JP2007218980A (en) * 2006-02-14 2007-08-30 Idemitsu Kosan Co Ltd Reflector and its manufacturing method
JP2009248371A (en) * 2008-04-02 2009-10-29 Teijin Dupont Films Japan Ltd Laminated polyester film
JP2013077790A (en) * 2011-09-15 2013-04-25 Wei Hung Back sheet for solar battery and manufacturing method therefor
JP2013112770A (en) * 2011-11-30 2013-06-10 Toyobo Co Ltd Method of producing polyester resin composition
WO2013157512A1 (en) * 2012-04-16 2013-10-24 三菱樹脂株式会社 Scattering type polarizer and liquid crystal display device equipped with same
JP2013237183A (en) * 2012-05-15 2013-11-28 Suzhou Quanlin Electronics Technology Co Ltd Reflection sheet and back sheet for solar cell using the same
WO2015129500A1 (en) * 2014-02-27 2015-09-03 東レ株式会社 Laminate film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688111B (en) * 2018-10-16 2020-03-11 志寶富生物科技有限公司 Solar window
CN112216758A (en) * 2020-09-29 2021-01-12 玉环晶科能源有限公司 Solar cell backboard, photovoltaic module and manufacturing method of solar cell backboard
CN112216758B (en) * 2020-09-29 2022-06-10 玉环晶科能源有限公司 Solar cell backboard, photovoltaic module and manufacturing method of solar cell backboard

Similar Documents

Publication Publication Date Title
JP2013237183A (en) Reflection sheet and back sheet for solar cell using the same
WO2013031093A1 (en) Solar cell back-sheet and solar cell module
JP4996858B2 (en) Polyester film for solar cell backside sealing
KR101320024B1 (en) Back sheet for solar cell module and solar cell module comprising the same
JP5614360B2 (en) Back protection sheet for solar cell module
JP5374286B2 (en) Protective film and solar cell front sheet
US20120291845A1 (en) Solar cell backsheet and solar cell module
US9306083B2 (en) Method of producing polyester film, polyester film, and back sheet for solar cell
JP2011151094A (en) Solar cell module
WO2017033983A1 (en) Back surface protective sheet for solar cell, and solar cell module
JP2011155175A (en) Solar cell module
WO2011068132A1 (en) Readily bondable polyester film for solar cells
JP2016206464A (en) Reflection sheet, and solar cell module and led illumination using the same
CN102569440B (en) Rear panel for solar cell and method for manufacturing same
WO2017187643A1 (en) Reflective sheet, and solar cell module and led lighting device each using same
JP5834731B2 (en) Back protection sheet for solar cell module
JP5831856B2 (en) SOLAR CELL BACK SHEET AND METHOD FOR PRODUCING SOLAR CELL BACK SHEET
JPWO2019245054A1 (en) Zeolite-containing polyimide resin composites, zeolite-containing polyimide resin precursor compositions, films, and electronic devices
JP6907474B2 (en) Backside protective sheet for solar cell module and solar cell module using it
CN115274901A (en) Up-conversion photovoltaic backboard and double-sided photovoltaic module
JP5516294B2 (en) Protection sheet for solar cell module
CN115274900A (en) Quantum dot photovoltaic backboard and double-sided photovoltaic assembly
JP5423013B2 (en) Plastic sheet
JP2012064927A (en) Easily adhesive black polyester film for solar battery and back sheet using the same
JP2014067968A (en) Solar cell module

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900513

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.02.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16900513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP