WO2017187611A1 - Wireless power transfer device and reception device - Google Patents

Wireless power transfer device and reception device Download PDF

Info

Publication number
WO2017187611A1
WO2017187611A1 PCT/JP2016/063401 JP2016063401W WO2017187611A1 WO 2017187611 A1 WO2017187611 A1 WO 2017187611A1 JP 2016063401 W JP2016063401 W JP 2016063401W WO 2017187611 A1 WO2017187611 A1 WO 2017187611A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
wireless power
power transmission
reception
receiving
Prior art date
Application number
PCT/JP2016/063401
Other languages
French (fr)
Japanese (ja)
Inventor
阿久澤 好幸
Original Assignee
三菱電機エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機エンジニアリング株式会社 filed Critical 三菱電機エンジニアリング株式会社
Priority to JP2017531794A priority Critical patent/JP6444510B2/en
Priority to PCT/JP2016/063401 priority patent/WO2017187611A1/en
Publication of WO2017187611A1 publication Critical patent/WO2017187611A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the present invention relates to a wireless power transmission device and a reception device that wirelessly transmit power between a transmission antenna and a reception antenna.
  • a wireless power transmission device that wirelessly transmits power to a transport carriage (moving body) 102 that moves along a rail 101 is known (for example, see Patent Document 1).
  • a converter (not shown) smoothes commercial alternating current input from the commercial power source 103 into direct current.
  • An inverter (not shown) converts the smoothed direct current into high frequency alternating current (10 kHz).
  • This high-frequency alternating current is wirelessly transmitted by an induction line (transmission antenna) 104 provided along the rail 101 and a power reception coil (reception antenna) 105 built in the carriage 102.
  • an induction line transmission antenna
  • reception antenna reception antenna
  • the power receiving coil 105 is configured by winding a conductive wire 107 around a central convex portion of a core 106 having an E-shaped cross section. Then, the power receiving unit 108 connected to the power receiving coil 105 by the wiring smoothes the transmitted high-frequency alternating current into direct current.
  • the inverter (not shown) converts the smoothed direct current into a high frequency alternating current and outputs it to a motor (not shown) that is a load.
  • the conventional wireless power transmission apparatus performs wireless power transmission using the induction line 104. Therefore, as shown in FIG. 8, a core 106 made of ferrite or the like is required for the power receiving coil 105. Therefore, there is a problem that the power receiving coil 105 is increased in size and weight. In addition, since the power receiving coil 105 is increased in size and weight, it is difficult to make the power receiving coil 105 and the power receiving unit 108 that is a connector for connecting the power receiving coil 105 to a load, and it is necessary to configure them separately. . As a result, there is a problem that the existing load cannot be connected to the connector as it is, and a design change is required.
  • the present invention has been made to solve the above-described problems, and provides a wireless power transmission device capable of reducing the size and weight of a receiving antenna with respect to a conventional configuration in wireless power transmission over a wide range. It is aimed.
  • a wireless power transmission device is configured in a shape extending in an arbitrary direction and having a resonance frequency, a reception antenna having a resonance frequency that is formed in a rectangular or elliptical shape on a substrate, and a substrate And a receiving-side connector that connects the output end of the receiving antenna to the input end of the load.
  • the reception antenna can be reduced in size and weight compared to the conventional configuration in wireless power transmission over a wide range.
  • 1A and 1B are diagrams showing a configuration example of a wireless power transmission device according to Embodiment 1 of the present invention, a top view and a side view.
  • 1 is a basic equivalent circuit diagram of a wireless power transmission device according to a first embodiment of the present invention.
  • 3A and 3B are diagrams showing another configuration example of the wireless power transmission apparatus according to Embodiment 1 of the present invention, and are a top view and a side view.
  • 4A and 4B are top views showing another configuration example of the transmission antenna according to Embodiment 1 of the present invention. It is a side view which shows another structural example of the wireless power transmission apparatus which concerns on Embodiment 1 of this invention.
  • FIG. 7A and 7B are diagrams showing a configuration of a conventional wireless power transmission device, and are a perspective view and a cross-sectional view. It is a perspective view which shows the structure of the receiving coil in the conventional wireless power transmission apparatus.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless power transmission device according to Embodiment 1 of the present invention
  • FIG. 2 is a basic equivalent circuit diagram of the wireless power transmission device according to Embodiment 1.
  • FIG. 1B only the receiving antenna 4 is illustrated on the receiving device 8 side.
  • the wireless power transmission apparatus includes a transmission power source 1, a transmission side connector 2, a transmission antenna 3, a reception antenna 4, a reception side connector 5, and a load 6.
  • the transmission power source 1, the transmission-side connector 2, and the transmission antenna 3 constitute a transmission device 7.
  • the receiving antenna 4, the receiving connector 5 and the load 6 constitute a receiving device 8.
  • the wireless power transmission device is disposed on the metal panel 9.
  • only one receiving device 8 is illustrated, but a plurality of receiving devices 8 may be provided for one transmitting device 7.
  • the transmission power source 1 is a high-frequency power source that converts input power into power (high-frequency power) that matches the resonance frequency of the transmission antenna 3 and outputs the power to the transmission antenna 3 via the transmission-side connector 2.
  • the high frequency power is power of 2 MHz or higher.
  • the existing transmission power source 1 can be used as it is without changing the design.
  • the transmission-side connector 2 is attached to a substrate on which the transmission antenna 3 is formed, and connects the input end of the transmission antenna 3 to the output end of the transmission power source 1.
  • examples of attachment of the transmission-side connector 2 to the substrate include a case where the transmission-side connector 2 is directly attached to the substrate and a case where the transmission-side connector 2 and the substrate are connected by a conductive wire.
  • the transmission antenna 3 is configured in a shape extending in an arbitrary direction on the substrate, and resonates at the same frequency (including substantially the same meaning) as the frequency of the high-frequency power from the transmission power source 1, so that the reception antenna 4 Conduct power transmission.
  • substrate a printed circuit board, a flexible substrate, etc. are mentioned.
  • the transmission antenna 3 is configured in a rectangular shape, but may be in an elliptical shape.
  • the transmission panel 3 is at least one fifth of the minimum inner diameter (inner diameter d in FIG. 1) of the transmission antenna 3 (distance l 1 in FIG. 1). ) Arranged apart and held by the holding member 10.
  • the holding member 10 is normally comprised with nonmetallic members, such as resin or carbon.
  • the holding member 10 may be formed of a metal member as long as it has a thin cylindrical shape or the like. That is, when the magnetic flux generated from the transmitting antenna 3 and the receiving antenna 4 passes through the metal member, an eddy current loss occurs and becomes a loss. Therefore, the holding member 10 can be formed of a metal member as long as the area through which the magnetic flux passes is small.
  • the reception antenna 4 is configured in a rectangular shape or an elliptical shape on the substrate, and receives high-frequency power by resonating at the same frequency (including substantially the same meaning) as the resonance frequency of the transmission antenna 3.
  • the high frequency power (high frequency alternating current) received by the receiving antenna 4 is output to the load 6 via the receiving side connector 5.
  • substrate a printed circuit board, a flexible substrate, etc. are mentioned.
  • FIG. 1 shows a case where the receiving antenna 4 is configured in a rectangular shape. Further, the receiving antenna 4 can be disposed at any position as long as it is a position facing the transmitting antenna 3. In FIG. 1, the reception antenna 4 is disposed above the transmission antenna 3, but the reception antenna 4 may be disposed below the transmission antenna 3.
  • the reception antenna 4 when the reception antenna 4 is arranged on the metal panel 9, the reception antenna 4 is arranged at a distance of 1/5 or more of the minimum inner diameter of the transmission antenna 3 from the metal panel 9 and is held by the holding member 11.
  • the configuration of the holding member 11 is the same as that of the holding member 10.
  • the wireless power transmission method between the transmitting antenna 3 and the receiving antenna 4 is not particularly limited, and any of a magnetic field resonance method, an electric field resonance method, and an electromagnetic induction method may be used.
  • the receiving-side connector 5 is attached to the substrate on which the receiving antenna 4 is formed, and connects the output end of the receiving antenna 4 to the input end of the load 6. Note that the reception-side connector 5 can be attached to the board by directly attaching the reception-side connector 5 to the board or by connecting the reception-side connector 5 and the board with a conductive wire.
  • the load 6 is an electronic device that functions by high-frequency power from the reception antenna 4 via the reception-side connector 5. As the load 6, the existing load 6 can be used as it is without changing the design.
  • the receiving antenna 4 does not require a core such as ferrite, and the receiving antenna 4 can be configured to be smaller and lighter than the conventional configuration.
  • the receiving antenna 4 and the receiving-side connector 5 can be integrated, and the existing load 6 can be directly connected without changing the design.
  • the transmission antenna 3 is configured in an elongated coil shape.
  • the lines in which the current directions are opposite to each other are close to each other, and the magnetic flux direction is uniform and dense in a narrow region inside the loop surface, but the magnetic flux is outside the loop surface. Since they cancel each other, a magnetic field is hardly radiated around the transmitting antenna 3.
  • the wireless power transmission device according to Embodiment 1 can be applied to a device installed on the metal panel 9.
  • the reason why the antennas 3 and 4 are separated from the metal panel 9 by more than one fifth of the minimum inner diameter of the transmitting antenna 3 is that if the antennas 3 and 4 are too close to the metal panel 9, the antennas 3 and 4 and the metal panel 9 This is because the electromagnetic field interference becomes stronger and current loss due to eddy current loss or the like occurs.
  • the transmission antenna 3 is configured in a rectangular shape or an elliptical shape.
  • the present invention is not limited to this, and the transmission antenna 3 may have a shape as shown in FIG.
  • FIG. 4A shows the transmitting antenna 3 in which coils wound in a spiral shape are connected in a daisy chain. Note that the spiral coil is alternately wound in the opposite direction so that the current has an opposite phase in order to prevent electromagnetic interference with the adjacent coil.
  • FIG. 4B shows the transmitting antenna 3 in which a coil is wound in an 8-shape. In the configuration of FIG. 4B as well, since the current is in the opposite phase in the adjacent loop, electromagnetic field interference with the adjacent loop can be prevented.
  • the loop shape in the configuration of FIG. 4B is not limited to the rectangular shape as shown in the figure, and may be an elliptical shape, for example.
  • the load 6 has a built-in rectifier circuit that converts alternating current from the receiving antenna 4 into direct current (when the load 6 is an alternating current input type).
  • the load 6 does not have a built-in rectifier circuit (when the load 6 is a DC input type)
  • the reception-side connector 5 with a built-in rectifier circuit is used.
  • This rectifier circuit is interposed between the output end of the receiving antenna 4 and the input end of the load 6, converts alternating current from the receiving antenna 4 into direct current, and outputs the direct current to the load 6.
  • the wireless power transmission device according to Embodiment 1 targets high-frequency power and can reduce the size of the rectifier circuit, so that the rectifier circuit can be incorporated in the reception-side connector 5.
  • the rectifier circuit may be built in the receiving antenna 4 instead of the receiving connector 5, and in this case, the same effect as described above can be obtained.
  • a magnetic body 12 may be disposed between the transmission antenna 3 and the reception antenna 4 and the metal panel 9.
  • the magnetic body 12 is disposed away from the transmitting antenna 3 and the receiving antenna 4 by 1/10 or more of the minimum inner diameter of the transmitting antenna 3 (distance l 2 in FIG. 5).
  • the magnetic body 12 is composed of a member having a high real part of magnetic permeability and a low imaginary part, such as ferrite or amorphous, and is formed in a sheet shape.
  • the magnetic body 12 may be affixed directly or indirectly on the metal panel 9, or may be affixed to the transmission antenna 3 or the reception antenna 4 via a member such as a resin.
  • the magnetic body 12 between the transmission antenna 3 and the reception antenna 4 and the metal panel 9
  • electromagnetic field radiation from the transmission antenna 3 and the reception antenna 4 to the metal panel 9 can be reduced.
  • the distance l 1 between the transmission antenna 3 and the reception antenna 4 and the metal panel 9 can be further reduced.
  • the reason why the antennas 3 and 4 are separated from the magnetic body 12 by 1/10 or more of the minimum inner diameter of the transmitting antenna 3 is that if the antennas 3 and 4 are too close to the magnetic body 12, the antennas 3 and 4 and the magnetic body 12 This is because the electromagnetic field interference becomes stronger and power loss such as hysteresis loss occurs.
  • FIG. 6 is a diagram illustrating a configuration example of the satellite-mounted device 13 including the wireless power transmission device.
  • the wireless power transmission device according to the first embodiment is arranged in the satellite-mounted device 13.
  • four transmission devices 7 are provided.
  • the receiving device 8 is not shown.
  • the wireless power transmission device according to the first embodiment it can be arranged on the metal panel 9 and the existing load 6 can be used without changing the design. It is valid.
  • the wireless power transmission apparatus according to Embodiment 1 can be applied to, for example, a device provided in an engine room of an automobile.
  • the transmission antenna 3 is configured to extend in an arbitrary direction and has a resonance frequency, and is configured to be rectangular or elliptical on the substrate, and has the resonance frequency. Since the receiving antenna 4 and the receiving-side connector 5 that is attached to the substrate and connects the output end of the receiving antenna 4 to the input end of the load 6 are provided, the wireless power transmission over a wide range can be received with respect to the conventional configuration.
  • the antenna 4 can be reduced in size and weight. Further, since the receiving antenna 4 and the receiving connector 5 can be integrated, the existing load 6 can be used without changing the design.
  • the wireless power transmission device is arranged on the metal panel 9 .
  • the present invention is not limited to this, and the wireless power transmission device may be disposed on another member.
  • the transmitting device 7 and the transmitting antenna 3 are also shown as an integral structure, but the transmitting connector 2 and the transmitting antenna 3 may be separate.
  • the transmitting antenna 3 is configured to extend in one direction, but may be bent in an arbitrary direction.
  • the present invention can be modified with any component of the embodiment or omitted with any component of the embodiment.
  • the wireless power transmission device can reduce the size and weight of the receiving antenna compared to the conventional configuration in wireless power transmission over a wide range, and wirelessly transmit power wirelessly between the transmitting antenna and the receiving antenna. Suitable for use in devices and the like.

Abstract

The present invention comprises: a transmission antenna (3) that has a resonant frequency and is formed into a shape extending in an arbitrary direction; a reception antenna (4) that has said resonant frequency and is formed into a rectangular shape or an elliptical shape on a substrate; and a reception-side connector (5) that is attached to the substrate and connects an output end of the reception antenna (4) to an input end of a load (6).

Description

無線電力伝送装置及び受信装置Wireless power transmission apparatus and receiving apparatus
 この発明は、送信アンテナと受信アンテナとの間を無線で電力伝送する無線電力伝送装置及び受信装置に関する。 The present invention relates to a wireless power transmission device and a reception device that wirelessly transmit power between a transmission antenna and a reception antenna.
 従来から、図7に示すように、レール101に沿って移動する搬送台車(移動体)102に対して無線で電力伝送を行う無線電力伝送装置が知られている(例えば特許文献1参照)。この無線電力伝送装置では、まず、コンバータ(不図示)は、商用電源103から入力された商用交流を直流に平滑する。そして、インバータ(不図示)は、平滑された直流を高周波交流(10kHz)に変換する。この高周波交流は、レール101に沿って設けられた誘導線路(送信アンテナ)104及び搬送台車102に内蔵された受電コイル(受信アンテナ)105によって無線電力伝送される。なお、受電コイル105は、図8に示すように、断面がE字状のコア106における中央凸部に導線107が巻かれることで構成される。そして、受電コイル105に配線接続された受電ユニット108は、伝送された高周波交流を直流に平滑する。そして、インバータ(不図示)は、平滑された直流を高周波交流に変換し、負荷であるモータ(不図示)に出力する。 Conventionally, as shown in FIG. 7, a wireless power transmission device that wirelessly transmits power to a transport carriage (moving body) 102 that moves along a rail 101 is known (for example, see Patent Document 1). In this wireless power transmission device, first, a converter (not shown) smoothes commercial alternating current input from the commercial power source 103 into direct current. An inverter (not shown) converts the smoothed direct current into high frequency alternating current (10 kHz). This high-frequency alternating current is wirelessly transmitted by an induction line (transmission antenna) 104 provided along the rail 101 and a power reception coil (reception antenna) 105 built in the carriage 102. As shown in FIG. 8, the power receiving coil 105 is configured by winding a conductive wire 107 around a central convex portion of a core 106 having an E-shaped cross section. Then, the power receiving unit 108 connected to the power receiving coil 105 by the wiring smoothes the transmitted high-frequency alternating current into direct current. The inverter (not shown) converts the smoothed direct current into a high frequency alternating current and outputs it to a motor (not shown) that is a load.
特開2005-162119号公報JP 2005-162119 A
 上述したように、従来の無線電力伝送装置では、誘導線路104を用いて無線電力伝送を行っている。そのため、図8に示すように、受電コイル105に、フェライト等から成るコア106が必要となる。よって、受電コイル105が大型化及び重量化するという課題がある。
 また、受電コイル105が大型化及び重量化するため、受電コイル105と、受電コイル105を負荷に接続するコネクタである受電ユニット108との一体構造化が困難であり、別々に構成する必要がある。その結果、既存の負荷をそのままコネクタ接続できず、設計変更が必要となるという課題があった。
As described above, the conventional wireless power transmission apparatus performs wireless power transmission using the induction line 104. Therefore, as shown in FIG. 8, a core 106 made of ferrite or the like is required for the power receiving coil 105. Therefore, there is a problem that the power receiving coil 105 is increased in size and weight.
In addition, since the power receiving coil 105 is increased in size and weight, it is difficult to make the power receiving coil 105 and the power receiving unit 108 that is a connector for connecting the power receiving coil 105 to a load, and it is necessary to configure them separately. . As a result, there is a problem that the existing load cannot be connected to the connector as it is, and a design change is required.
 この発明は、上記のような課題を解決するためになされたもので、広範囲への無線電力伝送において、従来構成に対し、受信アンテナを小型化及び軽量化できる無線電力伝送装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and provides a wireless power transmission device capable of reducing the size and weight of a receiving antenna with respect to a conventional configuration in wireless power transmission over a wide range. It is aimed.
 この発明に係る無線電力伝送装置は、任意方向に伸びた形状に構成され、共振周波数を有する送信アンテナと、基板上に長方形状又は楕円形状に構成され、上記共振周波数を有する受信アンテナと、基板に取付けられ、受信アンテナにおける出力端を負荷における入力端に接続する受信側コネクタとを備えたことを特徴とする。 A wireless power transmission device according to the present invention is configured in a shape extending in an arbitrary direction and having a resonance frequency, a reception antenna having a resonance frequency that is formed in a rectangular or elliptical shape on a substrate, and a substrate And a receiving-side connector that connects the output end of the receiving antenna to the input end of the load.
 この発明によれば、上記のように構成したので、広範囲への無線電力伝送において、従来構成に対し、受信アンテナを小型化及び軽量化できる。 According to the present invention, since it is configured as described above, the reception antenna can be reduced in size and weight compared to the conventional configuration in wireless power transmission over a wide range.
図1A、図1Bは、この発明の実施の形態1に係る無線電力伝送装置の構成例を示す図であり、上面図と、側面図である。1A and 1B are diagrams showing a configuration example of a wireless power transmission device according to Embodiment 1 of the present invention, a top view and a side view. この発明の実施の形態1に係る無線電力伝送装置の基本等価回路図である。1 is a basic equivalent circuit diagram of a wireless power transmission device according to a first embodiment of the present invention. 図3A、図3Bは、この発明の実施の形態1に係る無線電力伝送装置の別の構成例を示す図であり、上面図と、側面図である。3A and 3B are diagrams showing another configuration example of the wireless power transmission apparatus according to Embodiment 1 of the present invention, and are a top view and a side view. 図4A、図4Bは、この発明の実施の形態1における送信アンテナの別の構成例を示す上面図である。4A and 4B are top views showing another configuration example of the transmission antenna according to Embodiment 1 of the present invention. この発明の実施の形態1に係る無線電力伝送装置の別の構成例を示す側面図である。It is a side view which shows another structural example of the wireless power transmission apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る無線電力伝送装置を衛星搭載機器に適用した場合の構成例を示す上面図である。It is a top view which shows the structural example at the time of applying the wireless power transmission apparatus which concerns on Embodiment 1 of this invention to a satellite mounting apparatus. 図7A、図7Bは、従来の無線電力伝送装置の構成を示す図であり、斜視図と断面図である。7A and 7B are diagrams showing a configuration of a conventional wireless power transmission device, and are a perspective view and a cross-sectional view. 従来の無線電力伝送装置における受電コイルの構成を示す斜視図である。It is a perspective view which shows the structure of the receiving coil in the conventional wireless power transmission apparatus.
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る無線電力伝送装置の構成例を示す図であり、図2は実施の形態1に係る無線電力伝送装置の基本等価回路図である。なお図1Bでは、受信装置8側は受信アンテナ4のみを図示している。
 無線電力伝送装置は、図1,2に示すように、送信電源1、送信側コネクタ2、送信アンテナ3、受信アンテナ4、受信側コネクタ5及び負荷6を備えている。なお、送信電源1、送信側コネクタ2及び送信アンテナ3は、送信装置7を構成する。また、受信アンテナ4、受信側コネクタ5及び負荷6は、受信装置8を構成する。なお図1では、無線電力伝送装置は金属パネル9上に配置されている。また図1では、受信装置8を1つのみ図示しているが、1つの送信装置7に対して複数の受信装置8を設けてもよい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
1 is a diagram illustrating a configuration example of a wireless power transmission device according to Embodiment 1 of the present invention, and FIG. 2 is a basic equivalent circuit diagram of the wireless power transmission device according to Embodiment 1. FIG. In FIG. 1B, only the receiving antenna 4 is illustrated on the receiving device 8 side.
As shown in FIGS. 1 and 2, the wireless power transmission apparatus includes a transmission power source 1, a transmission side connector 2, a transmission antenna 3, a reception antenna 4, a reception side connector 5, and a load 6. Note that the transmission power source 1, the transmission-side connector 2, and the transmission antenna 3 constitute a transmission device 7. In addition, the receiving antenna 4, the receiving connector 5 and the load 6 constitute a receiving device 8. In FIG. 1, the wireless power transmission device is disposed on the metal panel 9. In FIG. 1, only one receiving device 8 is illustrated, but a plurality of receiving devices 8 may be provided for one transmitting device 7.
 送信電源1は、入力電力を、送信アンテナ3が有する共振周波数に合わせた電力(高周波電力)に変換し、送信側コネクタ2を介して送信アンテナ3に出力する高周波電源である。なお、上記高周波電力とは、2MHz以上の電力である。また、送信電源1としては、既存の送信電源1を設計変更せずにそのまま用いることができる。 The transmission power source 1 is a high-frequency power source that converts input power into power (high-frequency power) that matches the resonance frequency of the transmission antenna 3 and outputs the power to the transmission antenna 3 via the transmission-side connector 2. The high frequency power is power of 2 MHz or higher. As the transmission power source 1, the existing transmission power source 1 can be used as it is without changing the design.
 送信側コネクタ2は、送信アンテナ3が形成された基板に取付けられ、当該送信アンテナ3における入力端を送信電源1における出力端に接続する。なお、送信側コネクタ2の基板への取付けとしては、送信側コネクタ2を基板に直接取付ける場合と、送信側コネクタ2と基板との間を導線で接続する場合が挙げられる。 The transmission-side connector 2 is attached to a substrate on which the transmission antenna 3 is formed, and connects the input end of the transmission antenna 3 to the output end of the transmission power source 1. Note that examples of attachment of the transmission-side connector 2 to the substrate include a case where the transmission-side connector 2 is directly attached to the substrate and a case where the transmission-side connector 2 and the substrate are connected by a conductive wire.
 送信アンテナ3は、基板上に任意方向に伸びた形状に構成され、送信電源1からの高周波電力の周波数と同一(略同一の意味を含む)周波数で共振することで、受信アンテナ4に対して電力伝送を行う。なお、基板としては、プリント基板又はフレキシブル基板等が挙げられる。また図1では、送信アンテナ3は、長方形状に構成されているが、楕円形状でもよい。 The transmission antenna 3 is configured in a shape extending in an arbitrary direction on the substrate, and resonates at the same frequency (including substantially the same meaning) as the frequency of the high-frequency power from the transmission power source 1, so that the reception antenna 4 Conduct power transmission. In addition, as a board | substrate, a printed circuit board, a flexible substrate, etc. are mentioned. In FIG. 1, the transmission antenna 3 is configured in a rectangular shape, but may be in an elliptical shape.
 また、送信アンテナ3は、金属パネル9上に配置される場合、当該金属パネル9から、当該送信アンテナ3における最小内径(図1では内径d)の5分の1以上(図1における距離l)離して配置され、保持部材10により保持される。 Further, when the transmission antenna 3 is disposed on the metal panel 9, the transmission panel 3 is at least one fifth of the minimum inner diameter (inner diameter d in FIG. 1) of the transmission antenna 3 (distance l 1 in FIG. 1). ) Arranged apart and held by the holding member 10.
 なお、保持部材10は、通常は、樹脂又はカーボン等の非金属部材により構成される。
 一方、保持部材10は、例えば図3に示すように、細い円柱状等の形状であれば、金属部材からも構成可能である。すなわち、送信アンテナ3及び受信アンテナ4から発生した磁束が金属部材を通ると、渦電流損が生じて損失となる。よって、保持部材10は、磁束が通る面積が小さい形状であれば、金属部材から構成可能である。
In addition, the holding member 10 is normally comprised with nonmetallic members, such as resin or carbon.
On the other hand, as shown in FIG. 3, for example, the holding member 10 may be formed of a metal member as long as it has a thin cylindrical shape or the like. That is, when the magnetic flux generated from the transmitting antenna 3 and the receiving antenna 4 passes through the metal member, an eddy current loss occurs and becomes a loss. Therefore, the holding member 10 can be formed of a metal member as long as the area through which the magnetic flux passes is small.
 受信アンテナ4は、基板上に長方形状又は楕円形状に構成され、送信アンテナ3が有する共振周波数と同一(略同一の意味を含む)周波数で共振することで、高周波電力を受信する。この受信アンテナ4により受信された高周波電力(高周波交流)は、受信側コネクタ5を介して負荷6に出力される。なお、基板としては、プリント基板又はフレキシブル基板等が挙げられる。また図1では、受信アンテナ4は長方形状に構成された場合を示している。また、受信アンテナ4は、送信アンテナ3と対向する位置であれば、任意の位置に配置可能である。また図1では、送信アンテナ3の上方に受信アンテナ4が配置されているが、送信アンテナ3の下方に受信アンテナ4が配置されてもよい。 The reception antenna 4 is configured in a rectangular shape or an elliptical shape on the substrate, and receives high-frequency power by resonating at the same frequency (including substantially the same meaning) as the resonance frequency of the transmission antenna 3. The high frequency power (high frequency alternating current) received by the receiving antenna 4 is output to the load 6 via the receiving side connector 5. In addition, as a board | substrate, a printed circuit board, a flexible substrate, etc. are mentioned. FIG. 1 shows a case where the receiving antenna 4 is configured in a rectangular shape. Further, the receiving antenna 4 can be disposed at any position as long as it is a position facing the transmitting antenna 3. In FIG. 1, the reception antenna 4 is disposed above the transmission antenna 3, but the reception antenna 4 may be disposed below the transmission antenna 3.
 また、受信アンテナ4は、金属パネル9上に配置される場合、当該金属パネル9から、送信アンテナ3における最小内径の5分の1以上離して配置され、保持部材11により保持される。なお、保持部材11の構成は、保持部材10と同様である。 Further, when the reception antenna 4 is arranged on the metal panel 9, the reception antenna 4 is arranged at a distance of 1/5 or more of the minimum inner diameter of the transmission antenna 3 from the metal panel 9 and is held by the holding member 11. The configuration of the holding member 11 is the same as that of the holding member 10.
 なお、送信アンテナ3と受信アンテナ4との間の無線電力伝送方式は特に限定されず、磁界共鳴による方式、電界共鳴による方式、電磁誘導による方式の何れであってもよい。 The wireless power transmission method between the transmitting antenna 3 and the receiving antenna 4 is not particularly limited, and any of a magnetic field resonance method, an electric field resonance method, and an electromagnetic induction method may be used.
 受信側コネクタ5は、受信アンテナ4が形成された基板に取付けられ、当該受信アンテナ4における出力端を負荷6における入力端に接続する。なお、受信側コネクタ5の基板への取付けとしては、受信側コネクタ5を基板に直接取付ける場合と、受信側コネクタ5と基板との間を導線で接続する場合とが挙げられる。 The receiving-side connector 5 is attached to the substrate on which the receiving antenna 4 is formed, and connects the output end of the receiving antenna 4 to the input end of the load 6. Note that the reception-side connector 5 can be attached to the board by directly attaching the reception-side connector 5 to the board or by connecting the reception-side connector 5 and the board with a conductive wire.
 負荷6は、受信側コネクタ5を介した受信アンテナ4からの高周波電力により機能する電子機器である。負荷6としては、既存の負荷6を設計変更せずにそのまま用いることができる。 The load 6 is an electronic device that functions by high-frequency power from the reception antenna 4 via the reception-side connector 5. As the load 6, the existing load 6 can be used as it is without changing the design.
 上記のように構成された無線電力伝送装置では、無線電力伝送方式として共振結合型電力伝送方式を用い、高周波電力を伝送している。よって、受信アンテナ4はフェライト等のコアが不要であり、従来構成に対し、受信アンテナ4を小型且つ軽量に構成可能である。また、受信アンテナ4を小型且つ軽量に構成可能であるため、受信アンテナ4及び受信側コネクタ5の一体構造化が可能となり、既存の負荷6を設計変更せずにそのままコネクタ接続できる。 In the wireless power transmission device configured as described above, a resonant coupling type power transmission method is used as a wireless power transmission method, and high frequency power is transmitted. Therefore, the receiving antenna 4 does not require a core such as ferrite, and the receiving antenna 4 can be configured to be smaller and lighter than the conventional configuration. In addition, since the receiving antenna 4 can be configured to be small and light, the receiving antenna 4 and the receiving-side connector 5 can be integrated, and the existing load 6 can be directly connected without changing the design.
 また、送信アンテナ3は、細長いコイル形状に構成されている。これにより、送信アンテナ3において、電流の向きが逆方向となる線路同士が近接し、ループ面の内側の狭い領域では磁束方向が一様となって密となるが、ループ面の外側では磁束が打ち消し合うため、送信アンテナ3の周囲には磁界が放射され難くなる。受信アンテナ4についても同様である。よって、漏洩磁界の発生を抑制でき、隣接する送信アンテナ3及び受信アンテナ4や、周囲の金属部材による影響を抑えることができる。その結果、実施の形態1に係る無線電力伝送装置を、金属パネル9上に設置される機器に適用可能となる。
 なお、アンテナ3,4を金属パネル9から当該送信アンテナ3における最小内径の5分の1以上離す理由は、アンテナ3,4を金属パネル9に近づけすぎると、アンテナ3,4と金属パネル9との電磁界干渉が強くなり、渦電流損等による電流損失が生じるからである。
Further, the transmission antenna 3 is configured in an elongated coil shape. As a result, in the transmission antenna 3, the lines in which the current directions are opposite to each other are close to each other, and the magnetic flux direction is uniform and dense in a narrow region inside the loop surface, but the magnetic flux is outside the loop surface. Since they cancel each other, a magnetic field is hardly radiated around the transmitting antenna 3. The same applies to the receiving antenna 4. Therefore, generation | occurrence | production of a leakage magnetic field can be suppressed and the influence by the adjacent transmission antenna 3 and the receiving antenna 4, and the surrounding metal member can be suppressed. As a result, the wireless power transmission device according to Embodiment 1 can be applied to a device installed on the metal panel 9.
The reason why the antennas 3 and 4 are separated from the metal panel 9 by more than one fifth of the minimum inner diameter of the transmitting antenna 3 is that if the antennas 3 and 4 are too close to the metal panel 9, the antennas 3 and 4 and the metal panel 9 This is because the electromagnetic field interference becomes stronger and current loss due to eddy current loss or the like occurs.
 なお上記では、送信アンテナ3が長方形状又は楕円形状に構成された場合を示した。しかしながら、これに限らず、送信アンテナ3を、例えば図4に示すような形状としてもよい。図4Aは、スパイラル状に巻かれたコイルを数珠つなぎとした送信アンテナ3を示している。なお、スパイラル状のコイルは、隣接するコイルとの電磁界干渉を防ぐため、電流が逆位相となるように交互に逆向きに巻かれる。また、図4Bは、コイルが8の字状に巻かれた送信アンテナ3を示している。図4Bの構成でも、隣接するループにおいて、電流が逆位相となるため、隣接するループとの電磁界干渉を防ぐことができる。なお、図4Bの構成におけるループ形状は、図に示すような矩形状に限らず、例えば楕円状であってもよい。 In the above, the case where the transmission antenna 3 is configured in a rectangular shape or an elliptical shape is shown. However, the present invention is not limited to this, and the transmission antenna 3 may have a shape as shown in FIG. FIG. 4A shows the transmitting antenna 3 in which coils wound in a spiral shape are connected in a daisy chain. Note that the spiral coil is alternately wound in the opposite direction so that the current has an opposite phase in order to prevent electromagnetic interference with the adjacent coil. FIG. 4B shows the transmitting antenna 3 in which a coil is wound in an 8-shape. In the configuration of FIG. 4B as well, since the current is in the opposite phase in the adjacent loop, electromagnetic field interference with the adjacent loop can be prevented. Note that the loop shape in the configuration of FIG. 4B is not limited to the rectangular shape as shown in the figure, and may be an elliptical shape, for example.
 また図1,2では、負荷6が、受信アンテナ4からの交流を直流に変換する整流回路を内蔵している場合(負荷6が交流入力型である場合)を想定している。一方、負荷6が整流回路を内蔵していない場合(負荷6が直流入力型である場合)には、整流回路が内蔵された受信側コネクタ5を用いる。この整流回路は、受信アンテナ4における出力端と負荷6における入力端との間に介在され、受信アンテナ4からの交流を直流に変換して負荷6に出力する。なお、実施の形態1に係る無線電力伝送装置では、高周波電力を対象としており、整流回路を小型化できるため、整流回路を受信側コネクタ5に内蔵可能である。又は、整流回路を受信側コネクタ5ではなく、受信アンテナ4に内蔵してもよく、その場合においても上記と同様の効果が得られる。 1 and 2, it is assumed that the load 6 has a built-in rectifier circuit that converts alternating current from the receiving antenna 4 into direct current (when the load 6 is an alternating current input type). On the other hand, when the load 6 does not have a built-in rectifier circuit (when the load 6 is a DC input type), the reception-side connector 5 with a built-in rectifier circuit is used. This rectifier circuit is interposed between the output end of the receiving antenna 4 and the input end of the load 6, converts alternating current from the receiving antenna 4 into direct current, and outputs the direct current to the load 6. Note that the wireless power transmission device according to Embodiment 1 targets high-frequency power and can reduce the size of the rectifier circuit, so that the rectifier circuit can be incorporated in the reception-side connector 5. Alternatively, the rectifier circuit may be built in the receiving antenna 4 instead of the receiving connector 5, and in this case, the same effect as described above can be obtained.
 また、図5に示すように、送信アンテナ3及び受信アンテナ4と、金属パネル9との間に、磁性体12を配置してもよい。なお図5では、保持部材10,11の図示を省略している。磁性体12は、送信アンテナ3及び受信アンテナ4から、当該送信アンテナ3における最小内径の10分の1以上(図5における距離l)離して配置される。磁性体12は、フェライト又はアモルファス等のように透磁率の実部が高く虚部が低い部材から成り、シート状に構成される。また、磁性体12は、金属パネル9上に直接又間接的に貼り付けられてもよいし、送信アンテナ3又は受信アンテナ4に樹脂等の部材を介して貼り付けられてもよい。このように、送信アンテナ3及び受信アンテナ4と金属パネル9との間に磁性体12を配置することで、送信アンテナ3及び受信アンテナ4から金属パネル9への電磁界放射を低減できる。また、送信アンテナ3及び受信アンテナ4と金属パネル9との間に磁性体12を配置することで、送信アンテナ3及び受信アンテナ4と金属パネル9との距離lを更に近づけることができる。
 なお、アンテナ3,4を磁性体12から当該送信アンテナ3における最小内径の10分の1以上離す理由は、アンテナ3,4を磁性体12に近づけすぎると、アンテナ3,4と磁性体12との電磁界干渉が強くなり、ヒステリシス損等の電力損失が生じるからである。
In addition, as shown in FIG. 5, a magnetic body 12 may be disposed between the transmission antenna 3 and the reception antenna 4 and the metal panel 9. In FIG. 5, the holding members 10 and 11 are not shown. The magnetic body 12 is disposed away from the transmitting antenna 3 and the receiving antenna 4 by 1/10 or more of the minimum inner diameter of the transmitting antenna 3 (distance l 2 in FIG. 5). The magnetic body 12 is composed of a member having a high real part of magnetic permeability and a low imaginary part, such as ferrite or amorphous, and is formed in a sheet shape. Moreover, the magnetic body 12 may be affixed directly or indirectly on the metal panel 9, or may be affixed to the transmission antenna 3 or the reception antenna 4 via a member such as a resin. Thus, by arranging the magnetic body 12 between the transmission antenna 3 and the reception antenna 4 and the metal panel 9, electromagnetic field radiation from the transmission antenna 3 and the reception antenna 4 to the metal panel 9 can be reduced. Further, by disposing the magnetic body 12 between the transmission antenna 3 and the reception antenna 4 and the metal panel 9, the distance l 1 between the transmission antenna 3 and the reception antenna 4 and the metal panel 9 can be further reduced.
The reason why the antennas 3 and 4 are separated from the magnetic body 12 by 1/10 or more of the minimum inner diameter of the transmitting antenna 3 is that if the antennas 3 and 4 are too close to the magnetic body 12, the antennas 3 and 4 and the magnetic body 12 This is because the electromagnetic field interference becomes stronger and power loss such as hysteresis loss occurs.
 次に、実施の形態1に係る無線電力伝送装置の適用例について説明する。
 実施の形態1に係る無線電力伝送装置は、例えば、衛星に搭載される機器(衛星搭載機器)13に適用可能である。図6は無線電力伝送装置を備えた衛星搭載機器13の構成例を示す図である。
 図6に示すように、衛星搭載機器13内に、実施の形態1に係る無線電力伝送装置が配置される。図6の例では、4台の送信装置7が設けられている。また図6では受信装置8の図示を省略している。実施の形態1に係る無線電力伝送装置では、金属パネル9上に配置可能であり、且つ、既存の負荷6を設計変更せずに用いることが可能であるため、衛星搭載機器13への適用が有効である。
 また、実施の形態1に係る無線電力伝送装置は、例えば、自動車のエンジンルーム内に設けられる機器にも適用可能である。
Next, an application example of the wireless power transmission apparatus according to Embodiment 1 will be described.
The wireless power transmission apparatus according to Embodiment 1 can be applied to, for example, a device (satellite mounted device) 13 mounted on a satellite. FIG. 6 is a diagram illustrating a configuration example of the satellite-mounted device 13 including the wireless power transmission device.
As shown in FIG. 6, the wireless power transmission device according to the first embodiment is arranged in the satellite-mounted device 13. In the example of FIG. 6, four transmission devices 7 are provided. In FIG. 6, the receiving device 8 is not shown. In the wireless power transmission device according to the first embodiment, it can be arranged on the metal panel 9 and the existing load 6 can be used without changing the design. It is valid.
Moreover, the wireless power transmission apparatus according to Embodiment 1 can be applied to, for example, a device provided in an engine room of an automobile.
 以上のように、この実施の形態1によれば、任意方向に伸びた形状に構成され、共振周波数を有する送信アンテナ3と、基板上に長方形状又は楕円形状に構成され、上記共振周波数を有する受信アンテナ4と、上記基板に取付けられ、受信アンテナ4における出力端を負荷6における入力端に接続する受信側コネクタ5とを備えたので、広範囲への無線電力伝送において、従来構成に対し、受信アンテナ4を小型化及び軽量化できる。また、受信アンテナ4及び受信側コネクタ5を一体構造化できるため、既存の負荷6を設計変更せずに用いることができる。 As described above, according to the first embodiment, the transmission antenna 3 is configured to extend in an arbitrary direction and has a resonance frequency, and is configured to be rectangular or elliptical on the substrate, and has the resonance frequency. Since the receiving antenna 4 and the receiving-side connector 5 that is attached to the substrate and connects the output end of the receiving antenna 4 to the input end of the load 6 are provided, the wireless power transmission over a wide range can be received with respect to the conventional configuration. The antenna 4 can be reduced in size and weight. Further, since the receiving antenna 4 and the receiving connector 5 can be integrated, the existing load 6 can be used without changing the design.
 なお上記では、無線電力伝送装置を金属パネル9上に配置した場合を示した。しかしながら、これに限らず、無線電力伝送装置をその他の部材上に配置してもよい。
 また上記では、送信装置7についても、送信側コネクタ2及び送信アンテナ3を一体構造化した場合を示したが、送信側コネクタ2及び送信アンテナ3は別体であってもよい。
 また図1,3,6では、送信アンテナ3が一方向に伸びた形状に構成されているが、任意方向に曲げられた形状でもよい。
In the above description, the case where the wireless power transmission device is arranged on the metal panel 9 is shown. However, the present invention is not limited to this, and the wireless power transmission device may be disposed on another member.
In the above description, the transmitting device 7 and the transmitting antenna 3 are also shown as an integral structure, but the transmitting connector 2 and the transmitting antenna 3 may be separate.
In FIGS. 1, 3, and 6, the transmitting antenna 3 is configured to extend in one direction, but may be bent in an arbitrary direction.
 また、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 In addition, within the scope of the present invention, the present invention can be modified with any component of the embodiment or omitted with any component of the embodiment.
 この発明に係る無線電力伝送装置は、広範囲への無線電力伝送において、従来構成に対し、受信アンテナを小型化及び軽量化でき、送信アンテナと受信アンテナとの間を無線で電力伝送する無線電力伝送装置等に用いるのに適している。 The wireless power transmission device according to the present invention can reduce the size and weight of the receiving antenna compared to the conventional configuration in wireless power transmission over a wide range, and wirelessly transmit power wirelessly between the transmitting antenna and the receiving antenna. Suitable for use in devices and the like.
 1 送信電源、2 送信側コネクタ、3 送信アンテナ、4 受信アンテナ、5 受信側コネクタ、6 負荷、7 送信装置、8 受信装置、9 金属パネル、10,11 保持部材、12 磁性体、13 衛星搭載機器。 1 transmit power, 2 transmit connector, 3 transmit antenna, 4 receive antenna, 5 receive connector, 6 load, 7 transmit device, 8 receive device, 9 metal panel, 10, 11 holding member, 12 magnetic body, 13 satellite mounted machine.

Claims (7)

  1.  任意方向に伸びた形状に構成され、共振周波数を有する送信アンテナと、
     基板上に長方形状又は楕円形状に構成され、前記共振周波数を有する受信アンテナと、
     前記基板に取付けられ、前記受信アンテナにおける出力端を負荷における入力端に接続する受信側コネクタと
     を備えた無線電力伝送装置。
    A transmitting antenna configured in a shape extending in an arbitrary direction and having a resonance frequency;
    A receiving antenna configured in a rectangular or elliptical shape on the substrate and having the resonance frequency;
    A wireless power transmission device, comprising: a reception-side connector that is attached to the substrate and connects an output end of the reception antenna to an input end of a load.
  2.  前記送信アンテナ及び前記受信アンテナは、金属パネル上に、当該送信アンテナにおける最小内径の5分の1以上離して配置された
     ことを特徴とする請求項1記載の無線電力伝送装置。
    The wireless power transmission device according to claim 1, wherein the transmitting antenna and the receiving antenna are arranged on a metal panel so as to be separated from each other by one fifth or more of a minimum inner diameter of the transmitting antenna.
  3.  前記送信アンテナ及び前記受信アンテナから、当該送信アンテナにおける最小内径の10分の1以上離して配置された磁性体を備え、
     前記送信アンテナ及び前記受信アンテナは、前記磁性体を挟んで金属パネル上に配置された
     ことを特徴とする請求項1記載の無線電力伝送装置。
    A magnetic body disposed away from the transmitting antenna and the receiving antenna by 1/10 or more of the minimum inner diameter of the transmitting antenna;
    The wireless power transmission device according to claim 1, wherein the transmission antenna and the reception antenna are disposed on a metal panel with the magnetic material interposed therebetween.
  4.  前記受信側コネクタは、前記受信アンテナにおける出力端と前記負荷における入力端との間に介在される整流回路を内蔵した
     ことを特徴とする請求項1記載の無線電力伝送装置。
    The wireless power transmission device according to claim 1, wherein the reception-side connector includes a rectifier circuit interposed between an output end of the reception antenna and an input end of the load.
  5.  前記受信アンテナは、当該受信アンテナにおける出力端と前記負荷における入力端との間に介在される整流回路を内蔵した
     ことを特徴とする請求項1記載の無線電力伝送装置。
    The wireless power transmission device according to claim 1, wherein the reception antenna includes a rectifier circuit interposed between an output end of the reception antenna and an input end of the load.
  6.  前記送信アンテナと前記受信アンテナは、磁界共鳴、電界共鳴又は電磁誘導により電力伝送を行う
     ことを特徴とする請求項1記載の無線電力伝送装置。
    The wireless power transmission apparatus according to claim 1, wherein the transmission antenna and the reception antenna perform power transmission by magnetic field resonance, electric field resonance, or electromagnetic induction.
  7.  基板上に長方形状又は楕円形状に構成され、共振周波数を有する受信アンテナと、
     前記基板に取付けられ、当該受信アンテナにおける出力端を負荷における入力端に接続する受信側コネクタと
     を備えた受信装置。
    A receiving antenna that is configured in a rectangular or elliptical shape on a substrate and has a resonant frequency;
    A receiving device comprising: a receiving-side connector attached to the substrate and connecting an output end of the receiving antenna to an input end of a load.
PCT/JP2016/063401 2016-04-28 2016-04-28 Wireless power transfer device and reception device WO2017187611A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017531794A JP6444510B2 (en) 2016-04-28 2016-04-28 Wireless power transmission apparatus and receiving apparatus
PCT/JP2016/063401 WO2017187611A1 (en) 2016-04-28 2016-04-28 Wireless power transfer device and reception device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063401 WO2017187611A1 (en) 2016-04-28 2016-04-28 Wireless power transfer device and reception device

Publications (1)

Publication Number Publication Date
WO2017187611A1 true WO2017187611A1 (en) 2017-11-02

Family

ID=60160214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063401 WO2017187611A1 (en) 2016-04-28 2016-04-28 Wireless power transfer device and reception device

Country Status (2)

Country Link
JP (1) JP6444510B2 (en)
WO (1) WO2017187611A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7438193B2 (en) 2018-08-24 2024-02-26 イーサーダイン テクノロジーズ インコーポレイテッド Large area power transmitter for wireless power transfer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013165190A (en) * 2012-02-10 2013-08-22 Seiko Instruments Inc Flexible coil and wireless power reception device using the same
JP2014075975A (en) * 2009-12-17 2014-04-24 Toyota Motor Corp Shield and vehicle equipped with the same
WO2014136839A1 (en) * 2013-03-06 2014-09-12 株式会社ヘッズ Contactless power supply device
JP2016063699A (en) * 2014-09-19 2016-04-25 株式会社日本自動車部品総合研究所 Wireless power supply device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223536A (en) * 2001-01-26 2002-08-09 Tokyo Rikoushiya:Kk Feeder system for working machine
US20090273242A1 (en) * 2008-05-05 2009-11-05 Nigelpower, Llc Wireless Delivery of power to a Fixed-Geometry power part
JP4572953B2 (en) * 2008-05-14 2010-11-04 セイコーエプソン株式会社 Coil unit and electronic device using the same
JP2012028235A (en) * 2010-07-27 2012-02-09 Panasonic Electric Works Co Ltd Non-contact power supply type electric fixture
JP2014197937A (en) * 2013-03-29 2014-10-16 沖電気工業株式会社 Non-contact power transmission device, non-contact power transmission system, and automatic transaction device
JP6588190B2 (en) * 2014-03-28 2019-10-09 株式会社デンソー Wireless power feeder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075975A (en) * 2009-12-17 2014-04-24 Toyota Motor Corp Shield and vehicle equipped with the same
JP2013165190A (en) * 2012-02-10 2013-08-22 Seiko Instruments Inc Flexible coil and wireless power reception device using the same
WO2014136839A1 (en) * 2013-03-06 2014-09-12 株式会社ヘッズ Contactless power supply device
JP2016063699A (en) * 2014-09-19 2016-04-25 株式会社日本自動車部品総合研究所 Wireless power supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7438193B2 (en) 2018-08-24 2024-02-26 イーサーダイン テクノロジーズ インコーポレイテッド Large area power transmitter for wireless power transfer

Also Published As

Publication number Publication date
JPWO2017187611A1 (en) 2018-05-10
JP6444510B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
JP5360202B2 (en) Antenna device
JP5781882B2 (en) Power transmission device, vehicle, and power transmission system
JP6696573B2 (en) Wireless module, RFID system and wireless power supply device
JPWO2013046366A1 (en) Power receiving device, power transmitting device, and power transmission system
JP2012049434A (en) Electronic component, feeder device, power receiver, and wireless feeder system
CN110620408A (en) Wireless charger with electromagnetic shielding function
JP2011045045A (en) Power transmitting/receiving antenna and power transmitter
CN111670518A (en) Antenna module including shielding layer and wireless power receiving apparatus
JP2012115069A (en) Antenna, power transmission device, power reception device, and non-contact communication device
KR20140090045A (en) Antenna for wireless charging and Dual mode antenna having the same
JP2012222961A (en) Antenna module and non-contact power transmission system
CN108695988B (en) Magnetic coupling device and wireless power transmission system using the same
JP2018011475A (en) Receiving device and radio transmission system
JP6444510B2 (en) Wireless power transmission apparatus and receiving apparatus
KR20140013015A (en) Transmission coil for wireless power transmission
JP2013214613A (en) Coil unit and power transmission device having coil unit
WO2017086083A1 (en) Antenna device for power transmission, electronic device and power transmission system
JP7118532B2 (en) Connector and power supply system
KR102258919B1 (en) Antenna module includeing sheilding layer and wireless power receiving apparatus
CN108599394B (en) Wireless charging system capable of realizing energy funnel effect and wireless charging method thereof
JP2015089259A (en) Antenna coil unit
WO2018003239A2 (en) Antenna device and electronic equipment
JP6173588B2 (en) Antenna device
EP3706286B1 (en) Power reception device and non-contact power transmission system
JP2014050302A (en) Non-contact power supply device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017531794

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900481

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900481

Country of ref document: EP

Kind code of ref document: A1