WO2017187574A1 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
WO2017187574A1
WO2017187574A1 PCT/JP2016/063279 JP2016063279W WO2017187574A1 WO 2017187574 A1 WO2017187574 A1 WO 2017187574A1 JP 2016063279 W JP2016063279 W JP 2016063279W WO 2017187574 A1 WO2017187574 A1 WO 2017187574A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
central axis
coil
axial direction
armature core
Prior art date
Application number
PCT/JP2016/063279
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 落合
哲哉 植田
大輔 川口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016564100A priority Critical patent/JP6081040B1/en
Priority to PCT/JP2016/063279 priority patent/WO2017187574A1/en
Priority to TW105128227A priority patent/TWI613879B/en
Publication of WO2017187574A1 publication Critical patent/WO2017187574A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators

Definitions

  • the present invention relates to a rotary motor having a stator and a rotor.
  • a direct drive motor is known.
  • the direct drive motor has less backlash and backlash, is highly rigid, and can be controlled with high precision compared to a motor through a reduction gear.
  • downsizing and flattening of devices have been required. In order to reduce the size and flatten the device, it is required to reduce the size and flatten the direct drive motor.
  • Patent Document 1 describes a configuration in which a plurality of motor units are stacked in the axial direction of the central axis.
  • Patent Document 1 by using a configuration in which a plurality of motor units are stacked, the parts can be shared and the torque required by the customer can be satisfied.
  • the number of wires increases. Therefore, there is a possibility that the copper loss of the wiring increases and the efficiency decreases.
  • a connection space increases.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a rotary electric motor that can be reduced in size and flattened while suppressing a decrease in efficiency and can reduce a connection space.
  • the present invention provides a stator having an armature core wound with a coil, a rotor provided rotatably with respect to the stator, and supplying power to the stator.
  • a plurality of stators arranged side by side in the axial direction of the central axis of the rotor, and coils of adjacent stators are electrically connected to each other along the axial direction of the central axis among the plurality of stators.
  • the power supply unit is electrically connected to the coils of the stator and can drive the plurality of stators by supplying power to the stator.
  • FIG. The perspective view which shows the structure of the armature core which concerns on Embodiment 1.
  • FIG. The figure which shows arrangement
  • the figure which shows the state of the connection of the rotary electric motor which concerns on Embodiment 1 typically Sectional drawing which shows the rotary electric motor which concerns on Embodiment 2.
  • FIG. The figure which shows typically the state of the connection of the rotary electric motor which concerns on Embodiment 2.
  • FIG. 1 is a cross-sectional view showing a rotary electric motor 1 according to the first embodiment.
  • the rotary electric motor 1 is a direct drive motor.
  • the rotary electric motor 1 has a plurality of motor units having a stator 2 and a rotor 3.
  • the two motor units 11 and 12 are provided in two stages along the axial direction D1 of the central axis AX of the rotary electric motor 1. Since the rotary electric motor 1 has the two-stage motor units 11 and 12, the output torque obtained compared to the one-stage motor unit is doubled.
  • the first-stage motor unit 11 and the second-stage motor unit 12 are fixed by bolts 36a.
  • the motor units 11 and 12 adjacent to each other along the axial direction D1 of the central axis AX are integrally connected. Therefore, the adjacent stators 2 along the axial direction D1 of the central axis AX are integrally connected.
  • the stator 2 has a plurality of armature cores 21 arranged in the direction D2 around the axis of the central axis AX.
  • the stator 2 is formed in an annular shape by a plurality of armature cores 21.
  • the outer peripheral surface of the stator 2 is fixed to the frame 36.
  • the armature core 21 is wound with multiple wires to form a coil.
  • the stator 2 has the armature core 21 around which the coil 20 is wound.
  • the armature core 21 is formed by stacking a plurality of plate-shaped core members and fixed by punching.
  • the armature core 21 is provided with an insulator 24 and a slot cell 27.
  • One insulator 24 is arranged on each side of the armature core 21 in the axial direction D1 of the central axis AX of the rotary electric motor 1.
  • the insulator 24 is an insulator and is formed using a synthetic resin.
  • the slot cell 27 is disposed at a position that covers both sides of the coil 20 in the direction D2 around the axis of the central axis AX.
  • the slot cell 27 is an insulator, and a composite film formed using PPS resin or PET resin is used.
  • the rotor 3 has a rotor sleeve 33 fixed to the shaft 6 and a plurality of permanent magnets 30 fixed to the rotor sleeve 33.
  • the rotor sleeve 33 is formed in a cylindrical shape.
  • the rotor sleeve 33 disposed in the motor unit 11 and the rotor sleeve 33 disposed in the motor unit 12 are fixed by bolts 33a. Therefore, the rotor 3 is integrally provided in the axial direction D1 of the central axis AX.
  • the permanent magnet 30 is fixed to the outer peripheral surface of the rotor sleeve 33. In the rotor 3, the permanent magnet 30 is arranged to face the armature core 21. In FIG.
  • the stator 2 is disposed on the outer peripheral side of the rotor 3, but the stator 2 may be disposed on the inner peripheral side of the rotor 3.
  • the rotary motor 1 rotates the rotor 3 by forming a magnetic pole in the air gap between the armature core 21 and the permanent magnet 30 and generating a repulsive attractive force.
  • the bearing 7 is fixed between the rotor 3 and the shaft 6.
  • the bracket 4 is fixed to the frame 36 by bolts 4a. Wiring is drawn from the bracket 4, and the power connector 5 is attached in a state of covering the drawing portion of the wiring. Note that one wiring lead-out portion and one power connector 5 are provided for one rotary motor 1.
  • a detector 8 is attached to the end of the shaft 6 on the side opposite to the load in the axial direction D1 of the central axis AX.
  • FIG. 2 is a perspective view showing the configuration of the armature core 21 according to the first embodiment.
  • FIG. 2 shows one armature core 21.
  • 3 and 4 are diagrams showing the arrangement of the armature cores 21 in the plurality of stators 2.
  • FIG. 4 shows an enlarged part of FIG.
  • the insulator 24 of the armature core 21 is provided with a pin 9 for electrically connecting the first-stage motor unit 11 and the second-stage motor unit 12.
  • the pins 9 are provided so as to protrude from the armature core 21 on both sides in the axial direction D1 of the central axis AX.
  • One end of the coil 20 is connected to one end of the two pins 9 and the other end of the coil 20 is connected to the other end.
  • the armature core 21 of the motor unit 11 and the armature core 21 of the motor unit 12 are electrically connected by pins 9.
  • the pin 9 has a dimension capable of connecting the motor unit 11 and the motor unit 12.
  • the connection configuration between the coil 20 and the pin 9 is not particularly limited.
  • a plurality of armature cores 21 are arranged side by side with an equal pitch P around the axis of the central axis AX.
  • the coils 20 provided in the plurality of armature cores 21 are arranged side by side at an equal pitch P around the axis of the central axis AX.
  • the phase of the armature core 21, that is, the phase of the coil 20 is different from the motor unit 11 in the axial direction D ⁇ b> 2 of the central axis AX.
  • the coil 20 is arranged with respect to the motor unit 11 in a phase shifted by half the pitch P in the direction D2 around the axis of the central axis AX, that is, at a position shifted by P / 2.
  • the armature core 21 is shifted in the axial direction D2 of the central axis AX by a phase P / 2 that is half the pitch P.
  • interference with the coil end in the armature core 21 of the motor unit 11 and the coil end in the armature core 21 of the motor unit 12 can be suppressed. That is, one coil end of the motor unit 11 and the motor unit 12 enters a state between the other coil ends. For this reason, size reduction and flattening of the rotary electric motor 1 can be achieved.
  • FIG. 5 is a diagram schematically illustrating a connection state of the rotary electric motor 1 according to the first embodiment.
  • the direction in which the armature cores 21 are arranged is a direction D2 around the axis of the central axis AX.
  • FIG. 5 illustrates the connection state in the U phase.
  • the armature core 21A at the right end of FIG. 5 among the plurality of armature cores 21 of the motor unit 11 one end of the coil 20 is connected to the pin 9a.
  • a lead wire A0 is connected to the pin 9a.
  • the lead wire A0 is connected to the power supply unit 40.
  • the power supply unit 40 supplies power to the armature core 21.
  • the power supply unit 40 is connected to the controller 50.
  • the controller 50 supplies a command signal to the power supply unit 40.
  • the other end of the coil 20 is connected to the pin 9b.
  • a lead wire A1 is connected to the pin 9b.
  • one end of the coil 20 is connected to the pin 9c.
  • a lead wire A1 is connected to the pin 9c.
  • the armature core 21A of the motor unit 11 and the armature core 21B of the motor unit 12 are electrically connected via the lead wire A1.
  • the other end of the coil 20 is connected to the pin 9d.
  • the lead wire A2 is connected to the pin 9d.
  • one end of the coil 20 is connected to the pin 9e.
  • a lead wire A2 is connected to the pin 9e.
  • the armature core 21C is electrically connected to the armature core 21B through the lead wire A2.
  • the armature core 21C is a U ′ phase in which the winding direction of the coil 20 is opposite to the direction of the coil 20 of the armature core 21B.
  • the other end of the coil 20 is connected to the pin 9f.
  • a lead wire A3 is connected to the pin 9f.
  • the armature core 21D is adjacent to the armature core 21A, one end of the coil 20 is connected to the pin 9g.
  • a lead wire A3 is connected to the pin 9g.
  • the armature core 21D is electrically connected to the armature core 21C through the lead wire A3.
  • the armature core 21D is a U ′ phase in which the winding direction of the coil 20 is opposite to that of the coil 20 of the armature core 21A.
  • the other end of the coil 20 is connected to the pin 9h.
  • a lead wire A4 is connected to the pin 9h.
  • the V phase and the W phase are also connected in the same manner as the U phase. For this reason, the lead wires are not drawn out from the motor unit 12 but are collected from the motor unit 11 and drawn out.
  • the power supply unit 40 can drive the plurality of stators 2 synchronously by supplying power to the lead wires including the lead wires A0 and A4 drawn from the motor unit 11.
  • a plurality of stators 2 are arranged in the axial direction D1 of the central axis AX, and among the plurality of stators 2, the coils 20 of the stator 2 adjacent to each other along the axial direction D1 of the central axis AX.
  • the power supply unit 40 is electrically connected to the coil 20 of the stator 2 disposed at the end of the central axis AX in the axial direction D1, and supplies power to the stator 2 at the end.
  • the plurality of stators 2 can be driven synchronously, lead wire lead-out portions are integrated into the motor unit 11. For this reason, a reduction in efficiency can be suppressed, and the connection space can be reduced. For this reason, the rotary electric motor 1 can be downsized.
  • the motor units 11 and 12 having the stator 2 and the rotor 3 are arranged in two stages in the axial direction D1 of the central axis AX. Output torque can be obtained. Further, since the rotor 3 and the stator 2 are unitized and can be divided as the same part, the parts can be shared, and the number of parts can be reduced.
  • FIG. FIG. 6 is a cross-sectional view showing a rotary electric motor 1A according to the second embodiment.
  • rotary electric motor 1A is a direct drive motor.
  • the same components as those in the rotary electric motor 1 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.
  • the rotary electric motor 1 ⁇ / b> A has a plurality of motor units having a stator 2 and a rotor 3.
  • three motor units 11, 12, and 13 are provided in three stages in the axial direction D1 of the central axis AX of the rotary electric motor 1A.
  • a bolt 36a fixes between the first-stage motor unit 11 and the second-stage motor unit 12, and between the second-stage motor unit 12 and the third-stage motor unit 13.
  • the motor units 11, 12, and 13 adjacent to each other along the axial direction D1 of the central axis AX are integrally connected. Therefore, the adjacent stators 2 along the axial direction D1 of the central axis AX are integrally connected.
  • a rotor sleeve 33 disposed in the motor unit 11 and a rotor sleeve 33 disposed in the motor unit 12 are fixed by bolts 33a.
  • the rotor sleeve 33 disposed in the motor unit 12 and the rotor sleeve 33 disposed in the motor unit 13 are fixed by bolts 33b. Therefore, the rotor 3 is integrally provided in the axial direction D1 of the central axis AX.
  • FIG. 7 is a diagram schematically illustrating a connection state of the rotary electric motor 1A according to the second embodiment.
  • the direction in which the armature cores 21 are arranged is a direction D2 around the axis of the central axis AX.
  • the connection state in the U phase will be described.
  • the armature core 21A at the right end of FIG. 7 among the plurality of armature cores 21 of the motor unit 11 one end of the coil 20 is connected to the pin 9a.
  • a lead wire A0 is connected to the pin 9a.
  • the lead wire A0 is connected to the power supply unit 40.
  • the power supply unit 40 supplies power to the armature core 21.
  • the power supply unit 40 is connected to the controller 50.
  • the controller 50 supplies a command signal to the power supply unit 40.
  • the other end of the coil 20 is connected to the pin 9b.
  • a lead wire A1 is connected to the pin 9b.
  • one end of the coil 20 is connected to the pin 9c.
  • a lead wire A1 is connected to the pin 9c.
  • the armature core 21A of the motor unit 11 and the armature core 21B of the motor unit 12 are electrically connected via the lead wire A1.
  • the other end of the coil 20 is connected to the pin 9d.
  • a lead wire A5 is connected to the pin 9d.
  • one end of the coil 20 is connected to the pin 9i.
  • a lead wire A5 is connected to the pin 9i.
  • the armature core 21B of the motor unit 12 and the armature core 21E of the motor unit 13 are electrically connected via a lead wire A5.
  • the other end of the coil 20 is connected to the pin 9j.
  • a lead wire A6 is connected to the pin 9j.
  • one end of the coil 20 is connected to the pin 9k.
  • a lead wire A6 is connected to the pin 9k.
  • the armature core 21F is electrically connected to the armature core 21E through the lead wire A6.
  • the armature core 21F is a U ′ phase in which the winding direction of the coil 20 is opposite to that of the coil 20 of the armature core 21E.
  • the other end of the coil 20 is connected to the pin 9l.
  • a lead wire A7 is connected to the pin 9l.
  • one end of the coil 20 is connected to the pin 9e.
  • a lead wire A7 is connected to the pin 9e.
  • the armature core 21C is electrically connected to the armature core 21F via the lead wire A7.
  • the armature core 21C is a U ′ phase in which the winding direction of the coil 20 is opposite to the direction of the coil 20 of the armature core 21B.
  • the other end of the coil 20 is connected to the pin 9f.
  • a lead wire A3 is connected to the pin 9f.
  • the armature core 21D is a U ′ phase in which the winding direction of the coil 20 is opposite to that of the coil 20 of the armature core 21A.
  • the other end of the coil 20 is connected to the pin 9h.
  • a lead wire A4 is connected to the pin 9h.
  • a plurality of armature cores 21 are arranged side by side at an equal pitch P around the axis of the central axis AX.
  • the coils 20 provided in the plurality of armature cores 21 are arranged side by side at an equal pitch P around the axis of the central axis AX.
  • the phase of the armature core 21, that is, the phase of the coil 20, is different from the motor unit 11 in the direction D2 around the axis of the central axis AX.
  • the coil 20 is arranged with respect to the motor unit 11 in a phase that is half the pitch P in the direction D2 around the axis of the central axis AX, that is, at a position shifted by P / 2.
  • the phase of the armature core 21, that is, the phase of the coil 20 is different from the motor unit 12 in the direction D 2 around the axis of the central axis AX.
  • the coil 20 is arranged with respect to the motor unit 12 at a phase shifted by half the pitch P in the direction D2 around the axis of the central axis AX, that is, at a position shifted by P / 2.
  • the phase of the coil 20 in the direction D2 around the axis of the central axis AX is equal to that of the motor unit 11.
  • the lead wire lead-out portion is integrated into the motor unit 11. For this reason, the number of lead wires drawn out to the power supply unit 40 can be reduced. Therefore, a connection space can be reduced and a reduction in efficiency can be suppressed. Thereby, size reduction of 1 A of rotary electric motors is attained. Moreover, since only one power supply unit 40 is connected to the rotary motor 1A, it can be manufactured at low cost. Further, since the motor units 11, 12, and 13 having the stator 2 and the rotor 3 are arranged in three stages in the axial direction D1 of the central axis AX, an output torque that is three times that in the case where they are arranged in one stage is obtained. Is possible.
  • FIG. 8 is a cross-sectional view showing a rotary electric motor 1B according to the third embodiment.
  • rotary electric motor 1B is a direct drive motor.
  • the same components as those in the rotary electric motor 1 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.
  • the rotary electric motor 1 ⁇ / b> B has a plurality of motor units each having a stator 2 and a rotor 3.
  • four or more motor units 10 are provided in a plurality of stages in the axial direction D1 of the central axis AX of the rotary electric motor 1B.
  • the adjacent motor units 10 are fixed by bolts 36m. As described above, the motor units 10 adjacent to each other along the axial direction D1 of the central axis AX are integrally connected. Therefore, the adjacent stators 2 along the axial direction D1 of the central axis AX are integrally connected.
  • the rotor sleeves 33 arranged in the adjacent motor units 10 along the axial direction D1 of the central axis AX are fixed by bolts 33m. Therefore, the rotor 3 is integrally provided in the axial direction D1 of the central axis AX.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • the armature cores 21 are connected to each other by connecting the pins 9 of the armature cores 21 of the stator 2 adjacent to each other along the axial direction D ⁇ b> 1 of the central axis AX.
  • the rotary electric motors 1, 1 ⁇ / b> A, 1 ⁇ / b> B may be configured such that the pins 9 are in direct contact with each other when the stator 2 is arranged in the axial direction D ⁇ b> 1 of the central axis AX. Thereby, the armature cores 21 are electrically connected.
  • the rotary electric motors 1A and 1B have a configuration in which the power supply unit 40 is electrically connected to the coil 20 of the stator 2 at the end portion disposed along the axial direction D1 of the central axis AX, but is not limited thereto. Not what you want.
  • the rotary electric motors 1A and 1B may be configured to be electrically connected to the coil 20 provided in the stator 2 other than the end of the central axis AX in the axial direction D1.
  • the above rotary electric motors 1, 1A, 1B have a configuration in which the power supply unit 40 drives the plurality of stators 2 synchronously, but is not limited thereto.
  • the rotary electric motors 1, 1 ⁇ / b> A, 1 ⁇ / b> B may be configured to individually drive a plurality of stators 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

A rotating electric machine is provided with: a stator 2 having an armature core 21 around which a coil 20 is wound; a rotor 3 provided rotatably with respect to the stator 2; and a power supply unit for supplying power to the stator 2. A plurality of stators 2 are arranged side by side in the axial line direction of a central axis AX. Among the plurality of stators 2, the stators 2 adjacent to each other along the axial line direction of the central axis AX have the coils 20 electrically connected with each other. The power supply unit is electrically connected to the coil 20 of the stator 2 arranged at an end in the axial line direction of the central axis AX and supplies power to the stator 2 arranged at the end, thereby enabling the plurality of stators 2 to be synchronously driven.

Description

回転電動機Rotating motor
 本発明は、ステータ及びロータを有する回転電動機に関する。 The present invention relates to a rotary motor having a stator and a rotor.
 減速機を介さずに直接駆動できる回転電動機のうち、例えばダイレクトドライブモータが知られている。ダイレクトドライブモータは、減速機を介したモータと比べて、ガタやバックラッシュが小さく、高剛性であり、高精度な制御が可能である。近年、例えば液晶装置及び半導体装置の分野において、装置の小型化及び扁平化が要求されている。装置の小型化及び扁平化を図るため、ダイレクトドライブモータの小型化及び扁平化を図ることが求められる。 Among rotary motors that can be driven directly without using a reduction gear, for example, a direct drive motor is known. The direct drive motor has less backlash and backlash, is highly rigid, and can be controlled with high precision compared to a motor through a reduction gear. In recent years, for example, in the field of liquid crystal devices and semiconductor devices, downsizing and flattening of devices have been required. In order to reduce the size and flatten the device, it is required to reduce the size and flatten the direct drive motor.
 例えば、特許文献1には、複数のモータユニットを中心軸の軸線方向に積み重ねた構成が記載されている。 For example, Patent Document 1 describes a configuration in which a plurality of motor units are stacked in the axial direction of the central axis.
特表2012-518376号公報Special table 2012-518376 gazette
 特許文献1の構成では、モータユニットを複数積み重ねた構成とすることにより、部品の共通化を図ることができ、かつ顧客要求トルクを満たすことができる。しかしながら、複数のモータユニットから電力供給部に複数のモータユニット分だけ配線が引き出されるため、配線の本数が増加する。そのため、配線の銅損が増加して効率が低下する可能性がある。また、各モータユニットにおいて結線をする必要があるため、結線スペースが増加する。 In the configuration of Patent Document 1, by using a configuration in which a plurality of motor units are stacked, the parts can be shared and the torque required by the customer can be satisfied. However, since wires are drawn from the plurality of motor units to the power supply unit by the number of motor units, the number of wires increases. Therefore, there is a possibility that the copper loss of the wiring increases and the efficiency decreases. Moreover, since it is necessary to connect in each motor unit, a connection space increases.
 本発明は、上記に鑑みてなされたものであって、効率の低下を抑制しつつ小型化及び扁平化を図ることができ、結線スペースを縮小可能な回転電動機を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a rotary electric motor that can be reduced in size and flattened while suppressing a decrease in efficiency and can reduce a connection space.
 上述した課題を解決し、目的を達成するために、本発明は、コイルが巻かれた電機子コアを有するステータと、ステータに対して回転可能に設けられたロータと、ステータに電力を供給する電力供給部と、を備え、ステータは、ロータの中心軸の軸線方向に複数並んで配置され、複数のステータのうち中心軸の軸線方向に沿って隣り合うステータのコイル同士が電気的に接続され、電力供給部は、ステータのコイルに電気的に接続され、ステータに電力を供給することで複数のステータを駆動可能である。 In order to solve the above-described problems and achieve the object, the present invention provides a stator having an armature core wound with a coil, a rotor provided rotatably with respect to the stator, and supplying power to the stator. A plurality of stators arranged side by side in the axial direction of the central axis of the rotor, and coils of adjacent stators are electrically connected to each other along the axial direction of the central axis among the plurality of stators. The power supply unit is electrically connected to the coils of the stator and can drive the plurality of stators by supplying power to the stator.
 本発明によれば、効率の低下を抑制しつつ小型化及び扁平化を図ることができ、結線スペースを縮小可能となる、という効果を奏する。 According to the present invention, it is possible to achieve a reduction in size and flattening while suppressing a decrease in efficiency, and it is possible to reduce a connection space.
実施の形態1に係る回転電動機を示す断面図Sectional drawing which shows the rotary electric motor which concerns on Embodiment 1. FIG. 実施の形態1に係る電機子コアの構成を示す斜視図The perspective view which shows the structure of the armature core which concerns on Embodiment 1. FIG. 実施の形態1に係る複数のステータにおける電機子コアの配置を示す図The figure which shows arrangement | positioning of the armature core in the some stator which concerns on Embodiment 1 実施の形態1に係る複数のステータにおける電機子コアの配置を示す図The figure which shows arrangement | positioning of the armature core in the some stator which concerns on Embodiment 1 実施の形態1に係る回転電動機の結線の状態を模式的に示す図The figure which shows the state of the connection of the rotary electric motor which concerns on Embodiment 1 typically 実施の形態2に係る回転電動機を示す断面図Sectional drawing which shows the rotary electric motor which concerns on Embodiment 2. FIG. 実施の形態2に係る回転電動機の結線の状態を模式的に示す図The figure which shows typically the state of the connection of the rotary electric motor which concerns on Embodiment 2. FIG. 実施の形態3に係る回転電動機を示す断面図Sectional drawing which shows the rotary electric motor which concerns on Embodiment 3.
 以下に、本発明の実施の形態に係る回転電動機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではなく、一般的な回転電動機にも適用可能である。 Hereinafter, a rotary electric motor according to an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment, It is applicable also to a general rotary electric motor.
実施の形態1.
 図1は、実施の形態1に係る回転電動機1を示す断面図である。実施の形態1において、回転電動機1は、ダイレクトドライブモータである。回転電動機1は、ステータ2及びロータ3を有するモータユニットを複数有している。実施の形態1では、2つのモータユニット11及び12が、回転電動機1の中心軸AXの軸線方向D1に沿って2段に設けられている。回転電動機1は、2段のモータユニット11及び12を有することにより、1段のモータユニットに比べて得られる出力トルクが二倍となる。1段目のモータユニット11と2段目のモータユニット12とは、ボルト36aによって固定されている。このように、中心軸AXの軸線方向D1に沿って隣り合うモータユニット11及び12は、一体に連結されている。したがって、中心軸AXの軸線方向D1に沿って隣り合うステータ2同士は、一体に連結されている。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a rotary electric motor 1 according to the first embodiment. In Embodiment 1, the rotary electric motor 1 is a direct drive motor. The rotary electric motor 1 has a plurality of motor units having a stator 2 and a rotor 3. In the first embodiment, the two motor units 11 and 12 are provided in two stages along the axial direction D1 of the central axis AX of the rotary electric motor 1. Since the rotary electric motor 1 has the two- stage motor units 11 and 12, the output torque obtained compared to the one-stage motor unit is doubled. The first-stage motor unit 11 and the second-stage motor unit 12 are fixed by bolts 36a. As described above, the motor units 11 and 12 adjacent to each other along the axial direction D1 of the central axis AX are integrally connected. Therefore, the adjacent stators 2 along the axial direction D1 of the central axis AX are integrally connected.
 ステータ2は、中心軸AXの軸線周り方向D2に並んで配置された複数の電機子コア21を有している。ステータ2は、複数の電機子コア21により環状に形成されている。ステータ2は、外周面がフレーム36に固定されている。電機子コア21には、電線が多重に巻かれてコイルを形成する。このように、ステータ2は、コイル20が巻かれた電機子コア21を有する。電機子コア21は、板状のコア部材が複数積層され、抜きカシメによって固定されている。電機子コア21には、インシュレータ24と、スロットセル27とが設けられている。インシュレータ24は、電機子コア21に対して、回転電動機1の中心軸AXの軸線方向D1の両側に1つずつ配置されている。インシュレータ24は、絶縁体であり、合成樹脂を用いて形成されている。スロットセル27は、コイル20のうち中心軸AXの軸線周り方向D2の両側を覆う位置に配置されている。スロットセル27は、絶縁体であり、PPS樹脂、PET樹脂を用いて形成された複合フィルムが用いられる。 The stator 2 has a plurality of armature cores 21 arranged in the direction D2 around the axis of the central axis AX. The stator 2 is formed in an annular shape by a plurality of armature cores 21. The outer peripheral surface of the stator 2 is fixed to the frame 36. The armature core 21 is wound with multiple wires to form a coil. Thus, the stator 2 has the armature core 21 around which the coil 20 is wound. The armature core 21 is formed by stacking a plurality of plate-shaped core members and fixed by punching. The armature core 21 is provided with an insulator 24 and a slot cell 27. One insulator 24 is arranged on each side of the armature core 21 in the axial direction D1 of the central axis AX of the rotary electric motor 1. The insulator 24 is an insulator and is formed using a synthetic resin. The slot cell 27 is disposed at a position that covers both sides of the coil 20 in the direction D2 around the axis of the central axis AX. The slot cell 27 is an insulator, and a composite film formed using PPS resin or PET resin is used.
 ロータ3は、シャフト6に固定されたロータスリーブ33と、ロータスリーブ33に固定された複数の永久磁石30とを有している。ロータスリーブ33は、円筒状に形成されている。モータユニット11に配置されるロータスリーブ33と、モータユニット12に配置されるロータスリーブ33との間は、ボルト33aによって固定されている。したがって、ロータ3は、中心軸AXの軸線方向D1に一体に設けられている。永久磁石30は、ロータスリーブ33の外周面に固定されている。ロータ3は、永久磁石30が電機子コア21と対向して配置される。図1では、ロータ3の外周側にステータ2が配置されているが、ロータ3の内周側にステータ2が配置されてもよい。回転電動機1は、電機子コア21と永久磁石30との間のエアギャップに磁極を形成し反発吸引力を発生させることで、ロータ3を回転させる。 The rotor 3 has a rotor sleeve 33 fixed to the shaft 6 and a plurality of permanent magnets 30 fixed to the rotor sleeve 33. The rotor sleeve 33 is formed in a cylindrical shape. The rotor sleeve 33 disposed in the motor unit 11 and the rotor sleeve 33 disposed in the motor unit 12 are fixed by bolts 33a. Therefore, the rotor 3 is integrally provided in the axial direction D1 of the central axis AX. The permanent magnet 30 is fixed to the outer peripheral surface of the rotor sleeve 33. In the rotor 3, the permanent magnet 30 is arranged to face the armature core 21. In FIG. 1, the stator 2 is disposed on the outer peripheral side of the rotor 3, but the stator 2 may be disposed on the inner peripheral side of the rotor 3. The rotary motor 1 rotates the rotor 3 by forming a magnetic pole in the air gap between the armature core 21 and the permanent magnet 30 and generating a repulsive attractive force.
 ベアリング7は、ロータ3とシャフト6の間に固定されている。ブラケット4は、ボルト4aによってフレーム36に固定されている。ブラケット4からは配線が引き出されており、当該配線の引出部を覆った状態で電源コネクタ5が取り付けられている。なお、配線の引出部及び電源コネクタ5は、1つの回転電動機1に対し、1つ設けられる。また、シャフト6のうち中心軸AXの軸線方向D1において反負荷側の端部には、検出器8が取り付けられている。 The bearing 7 is fixed between the rotor 3 and the shaft 6. The bracket 4 is fixed to the frame 36 by bolts 4a. Wiring is drawn from the bracket 4, and the power connector 5 is attached in a state of covering the drawing portion of the wiring. Note that one wiring lead-out portion and one power connector 5 are provided for one rotary motor 1. A detector 8 is attached to the end of the shaft 6 on the side opposite to the load in the axial direction D1 of the central axis AX.
 図2は、実施の形態1に係る電機子コア21の構成を示す斜視図である。図2は、1つの電機子コア21を示している。図3及び図4は、複数のステータ2における電機子コア21の配置を示す図である。図4は、図3の一部を拡大して示している。 FIG. 2 is a perspective view showing the configuration of the armature core 21 according to the first embodiment. FIG. 2 shows one armature core 21. 3 and 4 are diagrams showing the arrangement of the armature cores 21 in the plurality of stators 2. FIG. 4 shows an enlarged part of FIG.
 図2に示すように、電機子コア21のインシュレータ24には、一段目のモータユニット11と二段目のモータユニット12とを導通させるためのピン9が設けられている。ピン9は、電機子コア21から中心軸AXの軸線方向D1の両側に突出して設けられる。2つのピン9の一方にはコイル20の巻き始めの端部が接続され、他方にはコイル20の巻き終わりの端部が接続されている。モータユニット11の電機子コア21と、モータユニット12の電機子コア21との間は、ピン9によって電気的に接続されている。ピン9は、モータユニット11とモータユニット12とを接続可能な寸法を有している。コイル20とピン9との接続構成については特に限定されない。 As shown in FIG. 2, the insulator 24 of the armature core 21 is provided with a pin 9 for electrically connecting the first-stage motor unit 11 and the second-stage motor unit 12. The pins 9 are provided so as to protrude from the armature core 21 on both sides in the axial direction D1 of the central axis AX. One end of the coil 20 is connected to one end of the two pins 9 and the other end of the coil 20 is connected to the other end. The armature core 21 of the motor unit 11 and the armature core 21 of the motor unit 12 are electrically connected by pins 9. The pin 9 has a dimension capable of connecting the motor unit 11 and the motor unit 12. The connection configuration between the coil 20 and the pin 9 is not particularly limited.
 図3に示すように、モータユニット12及びモータユニット11では、複数の電機子コア21が中心軸AXの軸線周りに等しいピッチPで並んで配置されている。これにより、複数の電機子コア21に設けられるコイル20は、中心軸AXの軸線周りに等しいピッチPで並んで配置されることになる。 As shown in FIG. 3, in the motor unit 12 and the motor unit 11, a plurality of armature cores 21 are arranged side by side with an equal pitch P around the axis of the central axis AX. Thereby, the coils 20 provided in the plurality of armature cores 21 are arranged side by side at an equal pitch P around the axis of the central axis AX.
 図4に示すように、モータユニット12では、モータユニット11に対して、中心軸AXの軸線周り方向D2に電機子コア21の位相、つまりコイル20の位相が異なっている。実施の形態1では、モータユニット12では、モータユニット11に対して、中心軸AXの軸線周り方向D2にピッチPの半分の位相、つまりP/2ずれた位置にコイル20が配置されている。ピッチPの半分の位相P/2は、電機子コア21の個数によって異なる。つまり、電機子コア21の個数をNとすると、
 P/2=180°/N
となる。
As shown in FIG. 4, in the motor unit 12, the phase of the armature core 21, that is, the phase of the coil 20 is different from the motor unit 11 in the axial direction D <b> 2 of the central axis AX. In the first embodiment, in the motor unit 12, the coil 20 is arranged with respect to the motor unit 11 in a phase shifted by half the pitch P in the direction D2 around the axis of the central axis AX, that is, at a position shifted by P / 2. The half phase P / 2 of the pitch P varies depending on the number of armature cores 21. That is, if the number of armature cores 21 is N,
P / 2 = 180 ° / N
It becomes.
 中心軸AXの軸線方向D1に沿って隣り合うモータユニット11とモータユニット12との間で、電機子コア21をピッチPの半分の位相P/2だけ中心軸AXの軸線周り方向D2にずらすことにより、モータユニット11の電機子コア21におけるコイルエンドと、モータユニット12の電機子コア21におけるコイルエンドとの干渉を抑制できる。つまり、モータユニット11及びモータユニット12の一方のコイルエンドが、他方のコイルエンドの間に入り込んだ状態となる。このため、回転電動機1の小型化及び扁平化を図ることができる。 Between the motor unit 11 and the motor unit 12 adjacent to each other along the axial direction D1 of the central axis AX, the armature core 21 is shifted in the axial direction D2 of the central axis AX by a phase P / 2 that is half the pitch P. Thereby, interference with the coil end in the armature core 21 of the motor unit 11 and the coil end in the armature core 21 of the motor unit 12 can be suppressed. That is, one coil end of the motor unit 11 and the motor unit 12 enters a state between the other coil ends. For this reason, size reduction and flattening of the rotary electric motor 1 can be achieved.
 図5は、実施の形態1に係る回転電動機1の結線の状態を模式的に示す図である。図5において、電機子コア21が並ぶ方向が中心軸AXの軸線周り方向D2である。図5では、U相における結線状態を説明する。モータユニット11の複数の電機子コア21のうち図5の右端の電機子コア21Aでは、コイル20の一端部がピン9aに接続されている。ピン9aには、リード線A0が接続されている。リード線A0は、電力供給部40に接続されている。電力供給部40は、電機子コア21に電力を供給する。電力供給部40は、コントローラ50に接続されている。コントローラ50は、電力供給部40に指令信号を供給する。また、コイル20の他端部がピン9bに接続されている。ピン9bには、リード線A1が接続されている。 FIG. 5 is a diagram schematically illustrating a connection state of the rotary electric motor 1 according to the first embodiment. In FIG. 5, the direction in which the armature cores 21 are arranged is a direction D2 around the axis of the central axis AX. FIG. 5 illustrates the connection state in the U phase. In the armature core 21A at the right end of FIG. 5 among the plurality of armature cores 21 of the motor unit 11, one end of the coil 20 is connected to the pin 9a. A lead wire A0 is connected to the pin 9a. The lead wire A0 is connected to the power supply unit 40. The power supply unit 40 supplies power to the armature core 21. The power supply unit 40 is connected to the controller 50. The controller 50 supplies a command signal to the power supply unit 40. The other end of the coil 20 is connected to the pin 9b. A lead wire A1 is connected to the pin 9b.
 モータユニット12の複数の電機子コア21のうち図5の右端の電機子コア21Bでは、コイル20の一端部がピン9cに接続されている。ピン9cには、リード線A1が接続されている。モータユニット11の電機子コア21Aと、モータユニット12の電機子コア21Bとの間は、リード線A1を介して電気的に接続されている。また、コイル20の他端部がピン9dに接続されている。なお、ピン9dには、リード線A2が接続されている。 Among the plurality of armature cores 21 of the motor unit 12, in the armature core 21B at the right end in FIG. 5, one end of the coil 20 is connected to the pin 9c. A lead wire A1 is connected to the pin 9c. The armature core 21A of the motor unit 11 and the armature core 21B of the motor unit 12 are electrically connected via the lead wire A1. The other end of the coil 20 is connected to the pin 9d. The lead wire A2 is connected to the pin 9d.
 モータユニット12の複数の電機子コア21のうち、電機子コア21Bと隣り合う電機子コア21Cでは、コイル20の一端部がピン9eに接続されている。ピン9eには、リード線A2が接続されている。電機子コア21Cは、リード線A2を介して電機子コア21Bと電気的に接続されている。電機子コア21Cは、コイル20の巻線方向が電機子コア21Bのコイル20とは逆方向となるU´相である。また、コイル20の他端部がピン9fに接続されている。ピン9fには、リード線A3が接続されている。 In the armature core 21C adjacent to the armature core 21B among the plurality of armature cores 21 of the motor unit 12, one end of the coil 20 is connected to the pin 9e. A lead wire A2 is connected to the pin 9e. The armature core 21C is electrically connected to the armature core 21B through the lead wire A2. The armature core 21C is a U ′ phase in which the winding direction of the coil 20 is opposite to the direction of the coil 20 of the armature core 21B. The other end of the coil 20 is connected to the pin 9f. A lead wire A3 is connected to the pin 9f.
 モータユニット11の複数の電機子コア21のうち、電機子コア21Aと隣り合う電機子コア21Dでは、コイル20の一端部がピン9gに接続されている。ピン9gには、リード線A3が接続されている。電機子コア21Dは、リード線A3を介して電機子コア21Cと電気的に接続されている。電機子コア21Dは、コイル20の巻線方向が電機子コア21Aのコイル20とは逆方向となるU´相である。また、コイル20の他端部がピン9hに接続されている。ピン9hには、リード線A4が接続されている。このように、U相においては、リード線A0及びA4がモータユニット11から集約されて引き出される。V相及びW相についても、U相と同様の結線状態である。このため、リード線は、モータユニット12からは引き出されず、モータユニット11から集約されて引き出される。電力供給部40は、モータユニット11から引き出されたリード線A0及びA4を含むリード線に電力を供給することで、複数のステータ2を同期して駆動可能である。 Among the armature cores 21 of the motor unit 11, in the armature core 21D adjacent to the armature core 21A, one end of the coil 20 is connected to the pin 9g. A lead wire A3 is connected to the pin 9g. The armature core 21D is electrically connected to the armature core 21C through the lead wire A3. The armature core 21D is a U ′ phase in which the winding direction of the coil 20 is opposite to that of the coil 20 of the armature core 21A. The other end of the coil 20 is connected to the pin 9h. A lead wire A4 is connected to the pin 9h. Thus, in the U phase, the lead wires A0 and A4 are collected from the motor unit 11 and pulled out. The V phase and the W phase are also connected in the same manner as the U phase. For this reason, the lead wires are not drawn out from the motor unit 12 but are collected from the motor unit 11 and drawn out. The power supply unit 40 can drive the plurality of stators 2 synchronously by supplying power to the lead wires including the lead wires A0 and A4 drawn from the motor unit 11.
 実施の形態1によれば、ステータ2は、中心軸AXの軸線方向D1に複数並んで配置され、複数のステータ2のうち中心軸AXの軸線方向D1に沿って隣り合うステータ2のコイル20同士が電気的に接続され、電力供給部40は、中心軸AXの軸線方向D1の端部に配置されるステータ2のコイル20に電気的に接続され、端部のステータ2に電力を供給することで複数のステータ2を同期して駆動可能であるため、リード線の引出部がモータユニット11に集約される。このため、効率の低下を抑制でき、結線スペースを縮小可能となる。このため、回転電動機1の小型化が可能となる。また、回転電動機1に接続する電力供給部40が1つで済むため、顧客側において設備投入費用の削減が可能である。 According to the first embodiment, a plurality of stators 2 are arranged in the axial direction D1 of the central axis AX, and among the plurality of stators 2, the coils 20 of the stator 2 adjacent to each other along the axial direction D1 of the central axis AX. Are electrically connected, and the power supply unit 40 is electrically connected to the coil 20 of the stator 2 disposed at the end of the central axis AX in the axial direction D1, and supplies power to the stator 2 at the end. Since the plurality of stators 2 can be driven synchronously, lead wire lead-out portions are integrated into the motor unit 11. For this reason, a reduction in efficiency can be suppressed, and the connection space can be reduced. For this reason, the rotary electric motor 1 can be downsized. In addition, since only one power supply unit 40 is connected to the rotary motor 1, it is possible to reduce the facility input cost on the customer side.
 また、実施の形態1によれば、ステータ2及びロータ3を有するモータユニット11及び12が中心軸AXの軸線方向D1に2段に並んで配置されるため、1段に配置した場合の2倍の出力トルクを得ることが可能となる。また、ロータ3及びステータ2がユニット化されており、同一部品として分割可能な構造であるため、部品の共通化が可能となり、部品点数を削減することが可能となる。 Further, according to the first embodiment, the motor units 11 and 12 having the stator 2 and the rotor 3 are arranged in two stages in the axial direction D1 of the central axis AX. Output torque can be obtained. Further, since the rotor 3 and the stator 2 are unitized and can be divided as the same part, the parts can be shared, and the number of parts can be reduced.
実施の形態2.
 図6は、実施の形態2に係る回転電動機1Aを示す断面図である。実施の形態2において、回転電動機1Aは、ダイレクトドライブモータである。実施の形態2では、実施の形態1に係る回転電動機1と同一の構成要素には同一の符号を付すこととし、説明を省略又は簡素化する。
Embodiment 2. FIG.
FIG. 6 is a cross-sectional view showing a rotary electric motor 1A according to the second embodiment. In the second embodiment, rotary electric motor 1A is a direct drive motor. In the second embodiment, the same components as those in the rotary electric motor 1 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.
 図6に示すように、回転電動機1Aは、ステータ2及びロータ3を有するモータユニットを複数有している。実施の形態2では、3つのモータユニット11,12及び13が、回転電動機1Aの中心軸AXの軸線方向D1に3段に設けられている。3段のモータユニット11,12及び13を設けることにより、1段のモータユニットに比べて得られる出力トルクが3倍となる。1段目のモータユニット11と2段目のモータユニット12との間、2段目のモータユニット12と3段目のモータユニット13との間は、ボルト36aによって固定されている。このように、中心軸AXの軸線方向D1に沿って隣り合うモータユニット11,12及び13は、一体に連結されている。したがって、中心軸AXの軸線方向D1に沿って隣り合うステータ2同士は、一体に連結されている。 As shown in FIG. 6, the rotary electric motor 1 </ b> A has a plurality of motor units having a stator 2 and a rotor 3. In the second embodiment, three motor units 11, 12, and 13 are provided in three stages in the axial direction D1 of the central axis AX of the rotary electric motor 1A. By providing the three- stage motor units 11, 12, and 13, the output torque obtained compared to the one-stage motor unit is tripled. A bolt 36a fixes between the first-stage motor unit 11 and the second-stage motor unit 12, and between the second-stage motor unit 12 and the third-stage motor unit 13. Thus, the motor units 11, 12, and 13 adjacent to each other along the axial direction D1 of the central axis AX are integrally connected. Therefore, the adjacent stators 2 along the axial direction D1 of the central axis AX are integrally connected.
 ロータ3においては、モータユニット11に配置されるロータスリーブ33と、モータユニット12に配置されるロータスリーブ33とが、ボルト33aによって固定されている。また、モータユニット12に配置されるロータスリーブ33と、モータユニット13に配置されるロータスリーブ33とが、ボルト33bによって固定されている。したがって、ロータ3は、中心軸AXの軸線方向D1に一体に設けられている。 In the rotor 3, a rotor sleeve 33 disposed in the motor unit 11 and a rotor sleeve 33 disposed in the motor unit 12 are fixed by bolts 33a. The rotor sleeve 33 disposed in the motor unit 12 and the rotor sleeve 33 disposed in the motor unit 13 are fixed by bolts 33b. Therefore, the rotor 3 is integrally provided in the axial direction D1 of the central axis AX.
 図7は、実施の形態2に係る回転電動機1Aの結線の状態を模式的に示す図である。図7において、電機子コア21が並ぶ方向が中心軸AXの軸線周り方向D2である。図7では、U相における結線状態を説明する。モータユニット11の複数の電機子コア21のうち図7の右端の電機子コア21Aでは、コイル20の一端部がピン9aに接続されている。ピン9aには、リード線A0が接続されている。リード線A0は、電力供給部40に接続されている。電力供給部40は、電機子コア21に電力を供給する。電力供給部40は、コントローラ50に接続されている。コントローラ50は、電力供給部40に指令信号を供給する。また、コイル20の他端部がピン9bに接続されている。ピン9bには、リード線A1が接続されている。 FIG. 7 is a diagram schematically illustrating a connection state of the rotary electric motor 1A according to the second embodiment. In FIG. 7, the direction in which the armature cores 21 are arranged is a direction D2 around the axis of the central axis AX. In FIG. 7, the connection state in the U phase will be described. In the armature core 21A at the right end of FIG. 7 among the plurality of armature cores 21 of the motor unit 11, one end of the coil 20 is connected to the pin 9a. A lead wire A0 is connected to the pin 9a. The lead wire A0 is connected to the power supply unit 40. The power supply unit 40 supplies power to the armature core 21. The power supply unit 40 is connected to the controller 50. The controller 50 supplies a command signal to the power supply unit 40. The other end of the coil 20 is connected to the pin 9b. A lead wire A1 is connected to the pin 9b.
 モータユニット12の複数の電機子コア21のうち図7の右端の電機子コア21Bでは、コイル20の一端部がピン9cに接続されている。ピン9cには、リード線A1が接続されている。モータユニット11の電機子コア21Aと、モータユニット12の電機子コア21Bとの間は、リード線A1を介して電気的に接続されている。また、コイル20の他端部がピン9dに接続されている。ピン9dには、リード線A5が接続されている。 Among the armature cores 21 of the motor unit 12, in the armature core 21B at the right end in FIG. 7, one end of the coil 20 is connected to the pin 9c. A lead wire A1 is connected to the pin 9c. The armature core 21A of the motor unit 11 and the armature core 21B of the motor unit 12 are electrically connected via the lead wire A1. The other end of the coil 20 is connected to the pin 9d. A lead wire A5 is connected to the pin 9d.
 モータユニット13の複数の電機子コア21のうち図7の右端の電機子コア21Eでは、コイル20の一端部がピン9iに接続されている。ピン9iには、リード線A5が接続されている。モータユニット12の電機子コア21Bと、モータユニット13の電機子コア21Eとの間は、リード線A5を介して電気的に接続されている。また、コイル20の他端部がピン9jに接続されている。なお、ピン9jには、リード線A6が接続されている。 Among the armature cores 21 of the motor unit 13, in the armature core 21E at the right end in FIG. 7, one end of the coil 20 is connected to the pin 9i. A lead wire A5 is connected to the pin 9i. The armature core 21B of the motor unit 12 and the armature core 21E of the motor unit 13 are electrically connected via a lead wire A5. The other end of the coil 20 is connected to the pin 9j. Note that a lead wire A6 is connected to the pin 9j.
 モータユニット13の複数の電機子コア21のうち、電機子コア21Eと隣り合う電機子コア21Fでは、コイル20の一端部がピン9kに接続されている。ピン9kには、リード線A6が接続されている。電機子コア21Fは、リード線A6を介して電機子コア21Eと電気的に接続されている。電機子コア21Fは、コイル20の巻線方向が電機子コア21Eのコイル20とは逆方向となるU´相である。また、コイル20の他端部がピン9lに接続されている。ピン9lには、リード線A7が接続されている。 Among the plurality of armature cores 21 of the motor unit 13, in the armature core 21F adjacent to the armature core 21E, one end of the coil 20 is connected to the pin 9k. A lead wire A6 is connected to the pin 9k. The armature core 21F is electrically connected to the armature core 21E through the lead wire A6. The armature core 21F is a U ′ phase in which the winding direction of the coil 20 is opposite to that of the coil 20 of the armature core 21E. The other end of the coil 20 is connected to the pin 9l. A lead wire A7 is connected to the pin 9l.
 モータユニット12の複数の電機子コア21のうち、電機子コア21Bと隣り合う電機子コア21Cでは、コイル20の一端部がピン9eに接続されている。ピン9eには、リード線A7が接続されている。電機子コア21Cは、リード線A7を介して電機子コア21Fと電気的に接続されている。電機子コア21Cは、コイル20の巻線方向が電機子コア21Bのコイル20とは逆方向となるU´相である。また、コイル20の他端部がピン9fに接続されている。ピン9fには、リード線A3が接続されている。 In the armature core 21C adjacent to the armature core 21B among the plurality of armature cores 21 of the motor unit 12, one end of the coil 20 is connected to the pin 9e. A lead wire A7 is connected to the pin 9e. The armature core 21C is electrically connected to the armature core 21F via the lead wire A7. The armature core 21C is a U ′ phase in which the winding direction of the coil 20 is opposite to the direction of the coil 20 of the armature core 21B. The other end of the coil 20 is connected to the pin 9f. A lead wire A3 is connected to the pin 9f.
 モータユニット11の複数の電機子コア21のうち、電機子コア21Aと隣り合う電機子コア21Dでは、コイル20の一端部がピン9gに接続されている。ピン9gには、リード線A3が接続されている。電機子コア21Dは、リード線A3を介して電機子コア21Cと電気的に接続されている。電機子コア21Dは、コイル20の巻線方向が電機子コア21Aのコイル20とは逆方向となるU´相である。また、コイル20の他端部がピン9hに接続されている。ピン9hには、リード線A4が接続されている。このように、U相においては、リード線A0及びA4がモータユニット11から集約されて引き出される。V相及びW相についても、U相と同様の結線状態である。このため、リード線は、モータユニット12及び13からは引き出されず、モータユニット11から集約されて引き出される。 Among the armature cores 21 of the motor unit 11, in the armature core 21D adjacent to the armature core 21A, one end of the coil 20 is connected to the pin 9g. A lead wire A3 is connected to the pin 9g. The armature core 21D is electrically connected to the armature core 21C through the lead wire A3. The armature core 21D is a U ′ phase in which the winding direction of the coil 20 is opposite to that of the coil 20 of the armature core 21A. The other end of the coil 20 is connected to the pin 9h. A lead wire A4 is connected to the pin 9h. Thus, in the U phase, the lead wires A0 and A4 are collected from the motor unit 11 and pulled out. The V phase and the W phase are also connected in the same manner as the U phase. For this reason, the lead wires are not drawn out from the motor units 12 and 13 but are collected from the motor unit 11 and drawn out.
 図7に示すように、モータユニット11,12及び13では、複数の電機子コア21が中心軸AXの軸線周りに等しいピッチPで並んで配置されている。これにより、複数の電機子コア21に設けられるコイル20は、中心軸AXの軸線周りに等しいピッチPで並んで配置されることになる。 7, in the motor units 11, 12 and 13, a plurality of armature cores 21 are arranged side by side at an equal pitch P around the axis of the central axis AX. Thereby, the coils 20 provided in the plurality of armature cores 21 are arranged side by side at an equal pitch P around the axis of the central axis AX.
 モータユニット12では、モータユニット11に対して、中心軸AXの軸線周り方向D2に電機子コア21の位相、つまりコイル20の位相が異なっている。実施の形態2では、モータユニット12では、モータユニット11に対して、中心軸AXの軸線周り方向D2にピッチPの半分の位相、つまりP/2ずれた位置にコイル20が配置されている。 In the motor unit 12, the phase of the armature core 21, that is, the phase of the coil 20, is different from the motor unit 11 in the direction D2 around the axis of the central axis AX. In the second embodiment, in the motor unit 12, the coil 20 is arranged with respect to the motor unit 11 in a phase that is half the pitch P in the direction D2 around the axis of the central axis AX, that is, at a position shifted by P / 2.
 モータユニット13では、モータユニット12に対して、中心軸AXの軸線周り方向D2に電機子コア21の位相、つまりコイル20の位相が異なっている。実施の形態2では、モータユニット13では、モータユニット12に対して、中心軸AXの軸線周り方向D2にピッチPの半分の位相、つまりP/2ずれた位置にコイル20が配置されている。なお、モータユニット13では、中心軸AXの軸線周り方向D2におけるコイル20の位相が、モータユニット11と等しくなっている。 In the motor unit 13, the phase of the armature core 21, that is, the phase of the coil 20 is different from the motor unit 12 in the direction D 2 around the axis of the central axis AX. In the second embodiment, in the motor unit 13, the coil 20 is arranged with respect to the motor unit 12 at a phase shifted by half the pitch P in the direction D2 around the axis of the central axis AX, that is, at a position shifted by P / 2. In the motor unit 13, the phase of the coil 20 in the direction D2 around the axis of the central axis AX is equal to that of the motor unit 11.
 実施の形態2によれば、リード線の引出部がモータユニット11に集約される。このため、電力供給部40に引き出されるリード線の本数を減少させることができる。よって、結線スペースを縮小することができ、効率の低下を抑制できる。これにより、回転電動機1Aの小型化が可能となる。また、回転電動機1Aに接続する電力供給部40が1つで済むため、低コストでの製造が可能である。また、ステータ2及びロータ3を有するモータユニット11,12及び13が中心軸AXの軸線方向D1に3段に並んで配置されるため、1段に配置した場合の3倍の出力トルクを得ることが可能となる。 According to the second embodiment, the lead wire lead-out portion is integrated into the motor unit 11. For this reason, the number of lead wires drawn out to the power supply unit 40 can be reduced. Therefore, a connection space can be reduced and a reduction in efficiency can be suppressed. Thereby, size reduction of 1 A of rotary electric motors is attained. Moreover, since only one power supply unit 40 is connected to the rotary motor 1A, it can be manufactured at low cost. Further, since the motor units 11, 12, and 13 having the stator 2 and the rotor 3 are arranged in three stages in the axial direction D1 of the central axis AX, an output torque that is three times that in the case where they are arranged in one stage is obtained. Is possible.
実施の形態3.
 図8は、実施の形態3に係る回転電動機1Bを示す断面図である。実施の形態3において、回転電動機1Bは、ダイレクトドライブモータである。実施の形態3では、実施の形態1に係る回転電動機1と同一の構成要素には同一の符号を付すこととし、説明を省略又は簡素化する。
Embodiment 3 FIG.
FIG. 8 is a cross-sectional view showing a rotary electric motor 1B according to the third embodiment. In Embodiment 3, rotary electric motor 1B is a direct drive motor. In the third embodiment, the same components as those in the rotary electric motor 1 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.
 図8に示すように、回転電動機1Bは、ステータ2及びロータ3を有するモータユニットを複数有している。実施の形態3では、4つ以上のモータユニット10が、回転電動機1Bの中心軸AXの軸線方向D1に複数段に設けられている。複数段のモータユニット10を設けることにより、1段のモータユニットに比べて得られる出力トルクが複数倍となる。隣り合うモータユニット10同士の間は、ボルト36mによって固定されている。このように、中心軸AXの軸線方向D1に沿って隣り合うモータユニット10同士は、一体に連結されている。したがって、中心軸AXの軸線方向D1に沿って隣り合うステータ2同士は、一体に連結されている。 As shown in FIG. 8, the rotary electric motor 1 </ b> B has a plurality of motor units each having a stator 2 and a rotor 3. In Embodiment 3, four or more motor units 10 are provided in a plurality of stages in the axial direction D1 of the central axis AX of the rotary electric motor 1B. By providing the multi-stage motor unit 10, the output torque obtained as compared with the single-stage motor unit is multiple times. The adjacent motor units 10 are fixed by bolts 36m. As described above, the motor units 10 adjacent to each other along the axial direction D1 of the central axis AX are integrally connected. Therefore, the adjacent stators 2 along the axial direction D1 of the central axis AX are integrally connected.
 また、ロータ3においては、中心軸AXの軸線方向D1に沿って隣り合うモータユニット10に配置されるロータスリーブ33同士が、ボルト33mによって固定されている。したがって、ロータ3は、中心軸AXの軸線方向D1に一体に設けられている。 Further, in the rotor 3, the rotor sleeves 33 arranged in the adjacent motor units 10 along the axial direction D1 of the central axis AX are fixed by bolts 33m. Therefore, the rotor 3 is integrally provided in the axial direction D1 of the central axis AX.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 上記の回転電動機1,1A,1Bは、中心軸AXの軸線方向D1に沿って隣り合うステータ2の電機子コア21のピン9同士がリード線によって接続されることで、電機子コア21同士が電気的に接続される構成であるが、これに限定するものではない。回転電動機1,1A,1Bは、中心軸AXの軸線方向D1にステータ2を配置した場合に、ピン9同士が直接接触する構成であってもよい。これにより、電機子コア21同士が電気的に接続される。また、回転電動機1,1A,1Bは、電機子コア21がピン9に代えてコネクタを有し、中心軸AXの軸線方向D1にステータ2を配置した場合に、中心軸AXの軸線方向D1に沿って隣り合う電機子コア21の間でコネクタ同士が嵌合する構成であってもよい。これにより、電機子コア同士が電気的に接続される。 In the rotary electric motors 1, 1 </ b> A, 1 </ b> B, the armature cores 21 are connected to each other by connecting the pins 9 of the armature cores 21 of the stator 2 adjacent to each other along the axial direction D <b> 1 of the central axis AX. Although it is a structure electrically connected, it is not limited to this. The rotary electric motors 1, 1 </ b> A, 1 </ b> B may be configured such that the pins 9 are in direct contact with each other when the stator 2 is arranged in the axial direction D <b> 1 of the central axis AX. Thereby, the armature cores 21 are electrically connected. In the rotary motors 1, 1 </ b> A, 1 </ b> B, when the armature core 21 has a connector instead of the pin 9 and the stator 2 is arranged in the axial direction D <b> 1 of the central axis AX, A configuration in which connectors are fitted between the armature cores 21 adjacent to each other may be employed. Thereby, armature cores are electrically connected.
 上記の回転電動機1A,1Bは、電力供給部40が中心軸AXの軸線方向D1に沿って配置される端部のステータ2のコイル20に電気的に接続された構成であるが、これに限定するものではない。回転電動機1A,1Bは、中心軸AXの軸線方向D1の端部以外のステータ2に設けられるコイル20に電気的に接続された構成であってもよい。 The rotary electric motors 1A and 1B have a configuration in which the power supply unit 40 is electrically connected to the coil 20 of the stator 2 at the end portion disposed along the axial direction D1 of the central axis AX, but is not limited thereto. Not what you want. The rotary electric motors 1A and 1B may be configured to be electrically connected to the coil 20 provided in the stator 2 other than the end of the central axis AX in the axial direction D1.
 上記の回転電動機1,1A,1Bは、電力供給部40が複数のステータ2を同期して駆動する構成であるが、これに限定するものではない。回転電動機1,1A,1Bは、複数のステータ2を個別に駆動する構成であってもよい。 The above rotary electric motors 1, 1A, 1B have a configuration in which the power supply unit 40 drives the plurality of stators 2 synchronously, but is not limited thereto. The rotary electric motors 1, 1 </ b> A, 1 </ b> B may be configured to individually drive a plurality of stators 2.
 A0,A1,A2,A3,A4,A5,A6,A7 リード線、AX 中心軸、D1 軸線方向、D2 軸線周り方向、P ピッチ、1,1A,1B 回転電動機、2 ステータ、3 ロータ、4 ブラケット、5 電源コネクタ、6 シャフト、7 ベアリング、9,9a,9b,9c,9d,9e,9f,9g,9h,9i,9j,9k,9l ピン、10,11,12,13 モータユニット、20 コイル、21,21A,21B,21C,21D,21E,21F 電機子コア、24 インシュレータ、27 スロットセル、30 永久磁石、33 ロータスリーブ、36 フレーム、40 電力供給部、50 コントローラ。 A0, A1, A2, A3, A4, A5, A6, A7 Lead wire, AX central axis, D1 axial direction, D2 axial direction, P pitch, 1,1A, 1B rotary motor, 2 stator, 3 rotor, 4 bracket 5, power connector, 6 shaft, 7 bearing, 9, 9a, 9b, 9c, 9d, 9e, 9f, 9g, 9h, 9i, 9j, 9k, 9l pin, 10, 11, 12, 13 motor unit, 20 coils 21, 21A, 21B, 21C, 21D, 21E, 21F Armature core, 24 insulator, 27 slot cell, 30 permanent magnet, 33 rotor sleeve, 36 frame, 40 power supply unit, 50 controller.

Claims (7)

  1.  コイルが巻かれた電機子コアを有するステータと、
     前記ステータに対して回転可能に設けられたロータと、
     前記ステータに電力を供給する電力供給部と、を備え、
     前記ステータは、前記ロータの中心軸の軸線方向に複数並んで配置され、
     複数の前記ステータのうち前記中心軸の軸線方向に沿って隣り合う前記ステータの前記コイル同士が電気的に接続され、
     前記電力供給部は、前記ステータの前記コイルに電気的に接続され、前記ステータに電力を供給することで複数の前記ステータを駆動可能である
     ことを特徴とする回転電動機。
    A stator having an armature core wound with a coil;
    A rotor provided rotatably with respect to the stator;
    A power supply unit for supplying power to the stator,
    The stator is arranged side by side in the axial direction of the central axis of the rotor,
    The coils of the stator adjacent to each other along the axial direction of the central axis among the plurality of stators are electrically connected,
    The electric power supply unit is electrically connected to the coil of the stator, and can drive the plurality of stators by supplying electric power to the stator.
  2.  前記ロータは、前記中心軸の軸線方向に一体に設けられている
     ことを特徴とする請求項1に記載の回転電動機。
    The rotary electric motor according to claim 1, wherein the rotor is integrally provided in an axial direction of the central axis.
  3.  前記コイルは、前記中心軸の軸線方向に等しいピッチで複数並んで配置され、
     少なくとも1つの前記ステータは、前記中心軸の軸線方向の隣に配置される前記ステータに対して、前記中心軸の軸線周りの方向について前記コイルの位相が異なる状態で配置される
     ことを特徴とする請求項1又は請求項2に記載の回転電動機。
    A plurality of the coils are arranged side by side at a pitch equal to the axial direction of the central axis,
    At least one of the stators is arranged in a state where the phase of the coil is different in a direction around the axis of the central axis with respect to the stator arranged next to the axial direction of the central axis. The rotary electric motor according to claim 1 or 2.
  4.  少なくとも1つの前記ステータは、前記中心軸の軸線方向の隣に配置される前記ステータに対して、前記コイルの位相が前記ピッチの半分の位相分ずれた状態で配置されている
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の回転電動機。
    At least one of the stators is arranged in a state in which the phase of the coil is shifted by a half phase of the pitch with respect to the stator arranged next to the axial direction of the central axis. The rotary electric motor according to any one of claims 1 to 3.
  5.  前記中心軸の軸線方向に沿って隣り合う前記ステータ同士は、一体に連結されている
     ことを特徴とする請求項1から請求項4のいずれか一項に記載の回転電動機。
    The rotary electric motor according to any one of claims 1 to 4, wherein the stators adjacent to each other along the axial direction of the central axis are integrally connected.
  6.  前記電力供給部は、前記中心軸の軸線方向の端部に配置される前記ステータの前記コイルに電気的に接続される
     ことを特徴とする請求項1から請求項5のいずれか一項に記載の回転電動機。
    The said electric power supply part is electrically connected to the said coil of the said stator arrange | positioned at the edge part of the axial direction of the said center axis | shaft. The Claim 1 characterized by the above-mentioned. Rotating electric motor.
  7.  前記電力供給部は、複数の前記ステータを同期して駆動可能である
     ことを特徴とする請求項1から請求項6のいずれか一項に記載の回転電動機。
    The rotary electric motor according to any one of claims 1 to 6, wherein the power supply unit can drive the plurality of stators in synchronization.
PCT/JP2016/063279 2016-04-27 2016-04-27 Rotating electric machine WO2017187574A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016564100A JP6081040B1 (en) 2016-04-27 2016-04-27 Rotating motor
PCT/JP2016/063279 WO2017187574A1 (en) 2016-04-27 2016-04-27 Rotating electric machine
TW105128227A TWI613879B (en) 2016-04-27 2016-09-01 Rotating electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063279 WO2017187574A1 (en) 2016-04-27 2016-04-27 Rotating electric machine

Publications (1)

Publication Number Publication Date
WO2017187574A1 true WO2017187574A1 (en) 2017-11-02

Family

ID=58043308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063279 WO2017187574A1 (en) 2016-04-27 2016-04-27 Rotating electric machine

Country Status (3)

Country Link
JP (1) JP6081040B1 (en)
TW (1) TWI613879B (en)
WO (1) WO2017187574A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6765542B2 (en) * 2017-08-29 2020-10-07 三菱電機株式会社 Motor and air conditioner
WO2019043766A1 (en) * 2017-08-29 2019-03-07 三菱電機株式会社 Motor and air conditioning device
DE102018201985A1 (en) * 2018-02-08 2019-08-08 Siemens Aktiengesellschaft Modular design of higher performance electric machines with improved power density

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399408A (en) * 1977-02-09 1978-08-30 Toshiba Corp Low speed motor
JPS607669U (en) * 1983-06-24 1985-01-19 三菱電機株式会社 squirrel cage induction machine
JPS607667U (en) * 1983-06-24 1985-01-19 三菱電機株式会社 squirrel cage induction machine
JP2013066347A (en) * 2011-09-20 2013-04-11 Kazuaki Kobayashi Rotary electric machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141274U (en) * 1979-03-27 1980-10-08
SE0300799D0 (en) * 2003-03-24 2003-03-24 Hoeganaes Ab Stator of an electrical machine
JP2014064361A (en) * 2012-09-20 2014-04-10 Nissan Motor Co Ltd Power distribution component and dynamo-electric machine
JP6190694B2 (en) * 2013-07-30 2017-08-30 アスモ株式会社 Rotor, stator, and motor
TWI530057B (en) * 2014-06-04 2016-04-11 建準電機工業股份有限公司 Motor stator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399408A (en) * 1977-02-09 1978-08-30 Toshiba Corp Low speed motor
JPS607669U (en) * 1983-06-24 1985-01-19 三菱電機株式会社 squirrel cage induction machine
JPS607667U (en) * 1983-06-24 1985-01-19 三菱電機株式会社 squirrel cage induction machine
JP2013066347A (en) * 2011-09-20 2013-04-11 Kazuaki Kobayashi Rotary electric machine

Also Published As

Publication number Publication date
JPWO2017187574A1 (en) 2018-05-17
TWI613879B (en) 2018-02-01
TW201739148A (en) 2017-11-01
JP6081040B1 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6223835B2 (en) Axial gap type motor
JP6457198B2 (en) Brushless motor
JP6336193B2 (en) Permanent magnet type three-phase duplex motor and electric power steering device
US9553487B2 (en) Radial and axial flux motor using integrated windings
WO2013145976A1 (en) Stator structure for rotary electric machine
WO2009084197A1 (en) Permanent-magnet synchronous motor
JP6247595B2 (en) Armature, armature manufacturing method, rotating electric machine, rotating electric machine manufacturing method
JPWO2014125646A1 (en) Rotating electric machine
JP6081040B1 (en) Rotating motor
US11855500B2 (en) Generator-motor and method for manufacturing generator-motor
JP6626514B2 (en) Rotating electric machine
JP6337132B2 (en) Rotating electric machine stator and rotating electric machine equipped with the same
JP5626758B2 (en) Stator
WO2015146019A1 (en) Outer rotor-type electric motor and ceiling fan mounted with same
JP6305203B2 (en) Stator for rotating electrical machine and method for manufacturing stator
KR102485024B1 (en) Stator and motor including the same
JP5496159B2 (en) Cylindrical linear motor and winding method of stator coil of cylindrical linear motor
JP5487733B2 (en) Switching element integrated rotating electric machine
US20190312476A1 (en) Motor
JP2007267523A (en) Wire connection structure of stator coil
CZ2021374A3 (en) Stator, electric motor and compressor
JP2019037103A (en) Stator and motor
EP3566286B1 (en) Motor with internal claw pole stator
US8643963B2 (en) Permanent magnet electric motor
JP2012235572A (en) Capacitor motor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016564100

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900446

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900446

Country of ref document: EP

Kind code of ref document: A1