WO2017187504A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2017187504A1
WO2017187504A1 PCT/JP2016/063020 JP2016063020W WO2017187504A1 WO 2017187504 A1 WO2017187504 A1 WO 2017187504A1 JP 2016063020 W JP2016063020 W JP 2016063020W WO 2017187504 A1 WO2017187504 A1 WO 2017187504A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
valve body
heat recovery
exhaust
Prior art date
Application number
PCT/JP2016/063020
Other languages
French (fr)
Japanese (ja)
Inventor
和博 伊藤
▲高▼田 茂生
染谷 潤
浩司 陸川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018513977A priority Critical patent/JP6727293B2/en
Priority to PCT/JP2016/063020 priority patent/WO2017187504A1/en
Publication of WO2017187504A1 publication Critical patent/WO2017187504A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to an air conditioner that utilizes exhaust heat of a ventilator.
  • a heat exchanger is installed on the exhaust air passage of the total heat exchanger and is supplied by the exhaust heat of the ventilation device. Ventilators that adjust the air temperature have been proposed.
  • a ventilator incorporating a total heat exchanger is provided separately from the air conditioner to reduce the outside air load itself.
  • Patent Document 2 For energy saving of the air conditioner, for example, as in Patent Document 2, the indoor air is exhausted to the outside after passing the outdoor heat exchanger, and the outdoor air is allowed to pass through the indoor heat exchanger.
  • an air conditioner configured to be supplied indoors.
  • Patent Document 3 it is described that an air conditioner having a ventilation function and capable of recovering exhaust heat accompanying ventilation is described.
  • the auxiliary circuit for ventilation for the purpose of adjusting the supply air temperature from a ventilator is incorporated in the refrigerant circuit of an air conditioning apparatus. This configuration is expected to save energy by collecting exhaust heat from the ventilator and to reduce the cost of the heat exchange ventilator.
  • JP 2006-317078 A Japanese Patent Application Laid-Open No. 5-272784 JP-A-11-257793
  • Patent Documents 1 to 3 even when Patent Documents 1 to 3 are adopted, not only the reinforcement is necessary and the installation work is difficult, but also it is difficult to avoid the complicated refrigerant circuit and the enlargement of the system.
  • the present invention has been made in order to solve the above-described problems, while effectively utilizing the exhaust heat of the ventilation device, without restricting the number of indoor units installed, and having good workability.
  • the object is to provide an air conditioner.
  • An air conditioner includes a refrigerant circuit in which a compressor, an indoor heat exchanger, a throttling device, and an outdoor heat exchanger are connected by a pipe line, and the refrigerant circuit includes the chamber
  • An exhaust heat recovery heat exchanger is provided between the outer heat exchanger and the expansion device and exchanges heat with the exhaust of indoor air.
  • the heat exchanger for exhaust heat recovery is connected to the refrigerant circuit, and heat exchange with the exhaust air is performed, so that energy saving can be realized.
  • the heat exchanger for exhaust heat recovery is connected in series with the indoor unit, the restriction on the number of indoor units installed can be eliminated, and the workability for installation can be improved.
  • FIG. 2 is a refrigerant circuit configuration diagram of the air-conditioning apparatus according to Embodiment 1.
  • FIG. 1 is a configuration diagram of a ventilation device according to Embodiment 1.
  • FIG. It is a refrigerant circuit block diagram at the time of providing the several indoor unit in the air conditioning apparatus which concerns on Embodiment 1.
  • FIG. 3 is a pressure-enthalpy diagram for explaining a change in refrigerant state during the cooling operation of the air-conditioning apparatus according to Embodiment 1.
  • FIG. 3 is a pressure-enthalpy diagram for explaining a change in refrigerant state during the heating operation of the air-conditioning apparatus according to Embodiment 1.
  • FIG. 6 is a refrigerant circuit configuration diagram of an air-conditioning apparatus according to Embodiment 2.
  • FIG. 6 is a refrigerant circuit configuration diagram in an exhaust heat recovery mode according to Embodiment 2.
  • FIG. No. 2 according to the second embodiment It is a figure which shows the flow path of the refrigerant
  • 6 is a refrigerant circuit configuration diagram in a first defrosting mode according to Embodiment 2.
  • FIG. 6 is a refrigerant circuit configuration diagram in a refrigerant leakage prevention mode according to Embodiment 2.
  • FIG. 6 is a refrigerant circuit configuration diagram in a refrigerant leakage prevention mode according to Embodiment 2.
  • FIG. No. 2 according to the second embodiment. 3 or No. It is a figure which shows the flow path of the refrigerant
  • It is a refrigerant circuit block diagram of the 2nd defrost mode which concerns on Embodiment 2.
  • FIG. is a refrigerant circuit block diagram of the 2nd defrost mode which concerns on Embodiment 2.
  • FIG. No. 2 according to the second embodiment. It is a figure which shows the flow path of the refrigerant
  • No. 2 according to the second embodiment. It is a figure which shows the flow path of the refrigerant
  • coolant in 6 switching patterns. 10 is a flowchart illustrating a method for selecting a switching pattern by the control device according to the second embodiment.
  • 6 is a schematic diagram showing the arrangement of a rotary flow path opening / closing valve in an air-conditioning apparatus according to Embodiment 3.
  • FIG. It is a schematic diagram when the 1st cylindrical valve body and 2nd cylindrical valve body which are accommodated in the valve body outer peripheral part which concerns on Embodiment 3 are seen in the axial direction, respectively. It is a schematic diagram explaining the structure around the 1st cylindrical valve body and 2nd cylindrical valve body which concern on Embodiment 3.
  • FIG. 6 is a refrigerant circuit configuration diagram in a state where a rotary flow path opening / closing valve according to Embodiment 3 is incorporated in a refrigerant circuit.
  • 6 is a schematic diagram showing a first cylindrical valve body and a second cylindrical valve body at a rotation angle ⁇ according to Embodiment 3.
  • FIG. 6 is a schematic diagram showing a first cylindrical valve body and a second cylindrical valve body at a rotation angle ⁇ according to Embodiment 3.
  • FIG. 6 is a part of a refrigerant circuit configuration diagram in an exhaust heat recovery mode according to Embodiment 3.
  • FIG. 6 It is a part of refrigerant circuit block diagram at the time of the 1st defrost mode which concerns on Embodiment 3.
  • FIG. 6 is a part of a refrigerant circuit configuration diagram in a refrigerant leakage prevention mode according to Embodiment 3.
  • FIG. 6 It is a part of refrigerant circuit block diagram at the time of the 2nd defrost mode which concerns on Embodiment 3.
  • FIG. 6 is a part of a refrigerant circuit configuration diagram in a conventional mode according to Embodiment 3.
  • FIG. ⁇ Configuration of Air Conditioner 100> 1 is a refrigerant circuit configuration diagram of an air-conditioning apparatus 100 according to Embodiment 1.
  • the air conditioning apparatus 100 has a refrigerant circuit in which a compressor 1, an outdoor heat exchanger 3, an expansion device 5a, and an indoor heat exchanger 6a are sequentially connected by a pipe line.
  • the compressor 1 and the outdoor side heat exchanger 3 comprise the outdoor unit 30, and the expansion apparatus 5a and the indoor side heat exchanger 6a comprise the indoor unit 60a.
  • the flow path switching device 2 is provided in the refrigerant circuit of the air conditioning apparatus 100, and the cooling operation or the heating operation can be performed by switching the flow direction of the refrigerant to the direction of the solid line arrow or the broken line arrow. Is possible.
  • a heat exchanger 4 for exhaust heat recovery is connected between the outdoor heat exchanger 3 and the expansion device 5a, and is installed on an exhaust air passage that flows out from the room toward the outside. In the vicinity of the outdoor heat exchanger 3 and the indoor heat exchanger 6a, outdoor air and indoor air are blown to the outdoor heat exchanger 3 and the indoor heat exchanger 6a. An outdoor blower and an indoor blower are arranged.
  • each component of the air conditioning apparatus 100 is controlled by control means (not shown) configured by a microcomputer or the like.
  • FIG. 2 is a configuration diagram of the ventilation device 10 according to the first embodiment.
  • the exhaust heat recovery heat exchanger 4 is disposed, for example, in an exhaust air passage of the ventilation device 10.
  • the heat exchanger 4 for exhaust heat recovery includes a total heat exchanger 11, an exhaust fan 13, and a ventilator 10 including a total heat exchanger 11, an air supply fan 12, and an exhaust fan 13.
  • the total heat exchanger 11 provided in the ventilating device 10 is formed in a laminated structure having a rectangular parallelepiped shape, and allows outside air and indoor air to flow in directions orthogonal to each other. It is something that is introduced into the room after being replaced.
  • the outside air forms a supply air passage 14 by the supply air blower 12, exchanges heat with the air exhausted from the room while passing through the total heat exchanger 11, and is supplied to the room as the supply air. Inflow. Further, the exhaust air exhausted from the room forms an exhaust air passage 15 by the exhaust air blower 13, exchanges heat with the outside air while passing through the total heat exchanger 11, becomes exhaust gas, and becomes an exhaust heat recovery heat exchanger. 4 and flows out of the room.
  • FIG. 3 is a refrigerant circuit configuration diagram in the case where a plurality of indoor units 60a and 60b are provided in the air-conditioning apparatus 100 according to Embodiment 1.
  • the plurality of indoor units 60a and 60b are connected in parallel to the branched refrigerant circuit.
  • the expansion devices 5a and 5b and the indoor heat exchangers 6a and 6b are connected in series to the indoor units 60a and 60b, respectively.
  • the exhaust heat recovery heat exchanger 4 is a refrigerant circuit between the indoor units 60 a and 60 b and the outdoor heat exchanger 3. Of these, it is connected to a region that is not branched and is disposed on the exhaust air passage.
  • the flow direction switching device 2 switches the refrigerant flow direction to the direction indicated by the solid line arrow in FIG.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 1 passes through the outdoor heat exchanger 3 and the exhaust heat recovery heat exchanger 4 and condenses, and is decompressed by the expansion device 5a to become a low-temperature and low-pressure two-phase.
  • the evaporated refrigerant is again sucked into the compressor 1 and is compressed to a high temperature and a high pressure, and the discharge cycle is repeated.
  • FIG. 4 is a pressure-enthalpy diagram for explaining the state change of the refrigerant during the cooling operation of the air-conditioning apparatus 100 according to Embodiment 1, in which the horizontal axis indicates the specific enthalpy and the vertical axis indicates the pressure. .
  • the refrigerant that has become high temperature and high pressure in the state B performs heat exchange with the outdoor air blown by the outdoor blower while passing through the outdoor heat exchanger 3, and then heat for heat recovery. While passing through the exchanger 4, heat exchange is performed with the exhaust of the ventilation device 10.
  • the exhaust since the exhaust is closer to the indoor comfortable temperature than the outdoor air, in the process of condensing the refrigerant, the exhaust can be radiated to the exhaust from the ventilator 10 in addition to the heat radiated to the outdoor air.
  • the end point of the condensation stroke changes from the C state to the C ′ state and the degree of supercooling increases, so the amount of heat exchange with the room air in the evaporation stroke increases, and the cooling capacity improves.
  • the rotational speed of the outdoor fan is reduced, the cooling capacity is maintained, and the power consumed by the outdoor fan is reduced.
  • the flow direction of the refrigerant is switched by the flow path switching device 2 to the direction indicated by the broken line arrow in FIG.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 6a, and is condensed by exchanging heat with indoor air.
  • the condensed refrigerant is decompressed by the expansion device 5a, and sequentially flows into the exhaust heat recovery heat exchanger 4 and the outdoor heat exchanger 3 to evaporate.
  • the evaporated refrigerant is again sucked into the compressor 1 and compressed, and the cycle of being discharged at a high temperature and high pressure is repeated.
  • FIG. 5 is a pressure-enthalpy diagram for explaining a change in refrigerant state during the heating operation of the air-conditioning apparatus 100 according to Embodiment 1.
  • the low-temperature refrigerant condensed in the state D first exchanges heat with the exhaust of the ventilator 10 while passing through the heat exchanger 4 for exhaust heat recovery, and then the outdoor heat exchanger. Heat exchange with outdoor air is performed while passing through 3.
  • the exhaust is closer to the indoor comfortable temperature than the outdoor air, and heat exchange between the refrigerant and the exhaust is performed in advance, and the heat exchange amount of the outdoor heat exchanger 3 is reduced. That is, the refrigerant performs the refrigeration cycle A ′ ⁇ B ⁇ C ⁇ D ′ in FIG. 5.
  • the defrosting operation is performed.
  • the defrosting operation is performed in order to remove ice formed by condensation of moisture contained in the air on the surface of the evaporator when the evaporator cools the air to 0 ° C. or lower.
  • the defrosting operation is an operation for preventing the ice thickness from gradually increasing and hindering the heat exchange in the evaporator, and is generally performed during the winter heating operation.
  • FIG. 6 is a refrigerant circuit configuration diagram when the bypass circuit 44 is provided in the air-conditioning apparatus 100 according to Embodiment 1.
  • the bypass circuit 44 that bypasses the heat exchanger 4 for exhaust heat recovery is provided between the outdoor heat exchanger 3 and the expansion device 5a, and the electromagnetic valve 7 is connected thereto.
  • the defrosting ability is reduced.
  • the electromagnetic valve 7 the refrigerant recovers the exhaust heat.
  • the heat exchanger 4 is bypassed, and the exhaust heat recovery heat exchanger 4 is not circulated.
  • the bypass circuit 44 provided with the solenoid valve 7 prevents the refrigerant from flowing through the heat exchanger 4 for exhaust heat recovery, so that the effect of defrosting can be maximized.
  • the exhaust gas and the refrigerant are separated by the heat exchanger 4 for exhaust heat recovery connected between the outdoor heat exchanger 3 and the expansion device 5a. Perform heat exchange. Therefore, the exhausted heat is recovered by the exhaust heat recovery heat exchanger 4, and the burden on the outdoor unit 30 and the indoor unit 60a can be reduced. Moreover, since the heat exchanger 4 for exhaust heat recovery is connected in series with the indoor unit 60a, the restriction on the number of installed indoor units 60a can be eliminated, and the installation work can be easily performed.
  • the defrosting operation is performed by forming the bypass circuit 44 that bypasses the heat exchanger 4 for exhaust heat recovery by operating the electromagnetic valve 7. You can maximize your ability.
  • the indoor heat exchangers 6a and 6b and the expansion devices 5a and 5b are connected in series to the exhaust heat recovery heat exchanger 4 so that the indoor unit 60a is connected. It is configured. Therefore, the restriction on the number of installed indoor units 60a can be eliminated, and construction for attaching the indoor units 60a is easy.
  • a four-way valve, a two-way valve, or a three-way valve may be used alone, or a combination of a plurality of valves may be used.
  • FIG. FIG. 7 is a refrigerant circuit configuration diagram of the air-conditioning apparatus 102 according to Embodiment 2.
  • the air-conditioning apparatus 102 according to the present embodiment is different from the first embodiment in that an exhaust heat recovery auxiliary circuit 8 is provided between the outdoor unit 30 and the indoor unit 60a.
  • the exhaust heat recovery auxiliary circuit 8 is another example of the switching device of the present invention.
  • the auxiliary circuit 8 for exhaust heat recovery causes the air conditioner 102 to perform an exhaust heat recovery mode, a first defrosting mode, a refrigerant leakage prevention mode, and a second defrosting mode.
  • the other configuration of the air conditioner 102 is the same as that of the first embodiment, and thus the description thereof is omitted.
  • the exhaust heat recovery auxiliary circuit 8 is formed of the exhaust heat recovery heat exchanger 4, a defrosting expansion device 9, and a plurality of electromagnetic valves 7a, 7b, 7c, 7d, 7e, and 7f.
  • the exhaust heat recovery auxiliary circuit 8 including the plurality of electromagnetic valves 7a, 7b, 7c, 7d, 7e, and 7f is an example of the switching device of the present invention.
  • the electromagnetic valve 7a is disposed between the indoor heat exchanger 6a and the flow path switching device 2
  • the electromagnetic valve 7f is disposed between the expansion device 5a and the outdoor heat exchanger 3.
  • the solenoid valve b and the solenoid valve d are arranged in a circuit that connects the flow path switching device 2 side of the solenoid valve 7a and the outdoor heat exchanger 3 side of the solenoid valve 7f.
  • the solenoid valve c and the solenoid valve e are arranged in a circuit that connects the indoor heat exchanger 6a side of the solenoid valve 7a and the expansion device 5a side of the solenoid valve 7f.
  • the heat exchanger 4 for exhaust heat recovery and the expansion device 9 for defrosting are arranged. Is done.
  • the plurality of solenoid valves 7a, 7b, 7c, 7d, 7e, and 7f are controlled to be turned on and off according to the operation content of the air conditioner 102 by the control device, and change the route through which the refrigerant flows.
  • Table 1 shows the configuration diagram of the refrigerant circuit, the operation mode, and the effect of ON / OFF of the solenoid valves 7a, 7b, 7c, 7d, 7e, and 7f in each switching pattern. .
  • each of the solenoid valves 7a, 7b, 7c, 7d, 7e, and 7f of the exhaust heat recovery auxiliary circuit 8 is switched between ON and OFF, that is, an open state and a closed state
  • the refrigerant circuit shown in FIGS. 8, 10, 12, 14 and 16 is configured.
  • an electromagnetic valve that is ON and in an open state is shown in white
  • an electromagnetic valve that is OFF and in a closed state is shown in black.
  • FIG. 8 is a refrigerant circuit configuration diagram in the exhaust heat recovery mode according to the second embodiment.
  • the electromagnetic valves 7a, 7d, and 7e are turned on, and the electromagnetic valves 7b, 7c, and 7f are turned off.
  • FIG. 9 shows No. 2 according to Embodiment 2. It is a figure which shows the flow path of the refrigerant
  • the exhaust heat recovery heat exchanger 4 is connected in series between the outdoor heat exchanger 3 and the expansion device 5 a to form a refrigerant circuit having the same configuration as the refrigerant circuit of FIG. 1.
  • the refrigerant circulates.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 1 exchanges heat with outdoor air in the outdoor heat exchanger 3, and then exhausts and heats of the ventilator 10 in the exhaust heat recovery heat exchanger 4. Exchange.
  • the cooling heat is recovered from the exhaust without increasing the heat exchange amount of the outdoor heat exchanger 3 to improve the cooling capacity, or the heat exchange of the outdoor heat exchanger 3 while maintaining the cooling capacity. The amount can be reduced.
  • the low-temperature refrigerant condensed in the indoor heat exchanger 6a exchanges heat with the exhaust of the ventilator 10 in the exhaust heat recovery heat exchanger 4, and then outdoor in the outdoor heat exchanger 3. Exchange heat with air.
  • FIG. 10 is a refrigerant circuit configuration diagram of the first defrosting mode according to the second embodiment.
  • the electromagnetic valves 7b, 7c, and 7f are turned on, and the electromagnetic valves 7a, 7d, and 7e are turned off.
  • the refrigerant circuit of 2 switching patterns is comprised, and the 1st defrost mode which promoted the defrost effect in the defrost operation is implemented.
  • FIG. 11 shows No. 2 according to the second embodiment. It is a figure which shows the flow path of the refrigerant
  • the exhaust heat recovery heat exchanger 4 is connected in series between the compressor 1 and the indoor heat exchanger 6 a.
  • the flow direction of the refrigerant is switched by the flow path switching device 2 in the direction of the solid arrow, and the high-temperature and high-pressure refrigerant discharged from the compressor 1 is caused to flow into the outdoor heat exchanger 3.
  • This is a flow direction similar to that of cooling operation holding.
  • the refrigerant that has flowed out of the outdoor heat exchanger 3 flows into the indoor unit 60a, and then flows into the heat exchanger 4 for exhaust heat recovery.
  • the refrigerant exchanges heat with the exhaust of the ventilator 10 in the exhaust heat recovery heat exchanger 4, then flows into the compressor 1, and defrosts again in the outdoor heat exchanger 3.
  • the refrigerant can promote the effect of the defrosting operation by utilizing the amount of heat exchanged. If the rotational speed of the indoor unit blower is reduced and the rotational speed is low enough to maintain the defrosting capability when the heat exchanger 4 for exhaust heat recovery is not installed, the cold air is generated in the indoor units 60a and 60b during the defrosting operation. The unpleasant feeling given to the user by blowing out from is reduced.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 1 may be caused to flow into the exhaust heat recovery heat exchanger 4. Thereby, it controls so that the defrosting operation
  • ⁇ Refrigerant leakage prevention mode> 12 and 13 are refrigerant circuit configuration diagrams in the refrigerant leakage prevention mode according to the second embodiment. As shown in FIG. 12, the electromagnetic valves 7b and 7d are turned on, and the electromagnetic valves 7a, 7c, 7e and 7f are turned off. A refrigerant circuit having three switching patterns is configured. Further, as shown in FIG. 13, the solenoid valves 7a, 7c, 7e, and 7f are turned on, the solenoid valves 7b and 7d are turned off, and no. A refrigerant circuit having four switching patterns is configured.
  • FIG. 14 shows No. 2 according to the second embodiment. 3 or No. It is a figure which shows the flow path of the refrigerant
  • the exhaust heat recovery heat exchanger 4 and the indoor heat exchanger 6 a are separated from the refrigerant circuit.
  • the heat exchanger 4 for exhaust heat recovery and the indoor heat exchanger 6a are separated from the refrigerant circuit. Thereby, the amount of refrigerant leakage into the room is reduced.
  • FIGS. 15 and 16 are refrigerant circuit configuration diagrams in the second defrosting mode according to the second embodiment.
  • the solenoid valves 7a, 7c, and 7d are turned on, and the solenoid valves 7b, 7e, and 7f are turned off.
  • a refrigerant circuit having five switching patterns is configured.
  • the solenoid valves 7b, 7e, and 7f are turned on, and the solenoid valves 7a, 7c, and 7d are turned off.
  • a refrigerant circuit having six switching patterns is configured. No. 4, no.
  • FIG. 17 shows No. 2 according to Embodiment 2. It is a figure which shows the flow path of the refrigerant
  • no. 6 the refrigerant is allowed to flow from the compressor 1 to the outdoor heat exchanger 3, and to the defrosting expansion device 9 and the exhaust heat recovery heat exchanger 4 without going through the indoor heat exchanger 6 a. Let it flow.
  • the defrosting expansion device 9 may be fully closed when the air conditioner 102 performs an operation other than the defrosting operation.
  • FIG. 19 is a flowchart showing a method for selecting a switching pattern by the control device according to the second embodiment.
  • the switching pattern of the electromagnetic valves 7a, 7b, 7c, 7d, 7e, and 7f of the auxiliary circuit 8 for exhaust heat recovery is selected by the control device.
  • the control by the control device is performed regularly and continuously while the air conditioner 102 is operating.
  • step S1 the control device determines whether or not there is a refrigerant leak. 3 or No. 4 switching patterns are selected.
  • the control device proceeds to step S3.
  • step S3 it is determined whether or not the defrosting operation is being performed.
  • step S4 If it is determined that the defrosting operation is being performed, the process proceeds to step S4. If it is determined that the defrosting operation is not being performed, the process proceeds to step S5. Then, in step S5, the control device determines the pattern No. 2, No. 5 or No. 6 is selected, and in step S5, the pattern No. Select 1. Thereby, the path
  • the refrigerant is turned on and off by the electromagnetic valves 7a, 7b, 7c, 7d, 7e, and 7f provided in the heat exchanger 4 for exhaust heat recovery.
  • the operation content can be changed by switching the flow path.
  • the air conditioner 102 includes the defrosting expansion device 9 connected in series with the exhaust heat recovery heat exchanger 4. Therefore, in the defrosting operation mode, the indoor heat exchanger The defrosting operation can be performed without going through 6a and 6b.
  • the exhaust heat recovery heat exchanger 4 is connected between the outdoor heat exchanger 3 and the expansion devices 5a and 5b, and the exhaust heat is cooled. Since the exhaust heat recovery mode used for heating operation is executed, the exhaust heat can be used effectively.
  • the air conditioner 102 when refrigerant leakage is detected, the operation of the compressor 1 is stopped and the electromagnetic valves 7a, 7b, 7c, 7d, 7e, and 7f are turned on. , Switch off. Then, the refrigerant leakage prevention mode is executed in which the refrigerant is circulated through the compressor 1 and the outdoor heat exchanger 3 and the circulation of the refrigerant to the indoor heat exchangers 6a and 6b is stopped. Thereby, the heat exchanger 4 for exhaust heat recovery and the indoor heat exchanger 6a are disconnected from the refrigerant circuit, and the amount of refrigerant leakage can be reduced.
  • the electromagnetic valves 7a, 7b, 7c, 7d, 7e, and 7f are switched on and off, the compressor 1, the outdoor heat exchanger 3, and the exhaust heat.
  • the refrigerant is circulated through the recovery heat exchanger 4 and the indoor heat exchangers 6a and 6b. Thereby, the defrosting effect of the outdoor heat exchanger 3 can be promoted in the defrosting operation in which the first defrosting mode is executed.
  • the electromagnetic valves 7a, 7b, 7c, 7d, 7e, and 7f are switched on and off, the compressor 1, the outdoor heat exchanger 3, and A refrigerant is circulated through the heat exchanger 4 for exhaust heat recovery.
  • the second defrosting mode in which the cold air is prevented from being blown out from the indoor units 60a and 60b is executed.
  • any one of the exhaust heat recovery mode, the refrigerant leakage prevention mode, the first defrosting mode, and the second defrosting mode can be selected and executed. .
  • Embodiment 3 FIG.
  • the air conditioner 103 according to the third embodiment includes a rotary flow path opening / closing valve 80 as a switching device instead of the switching device configured by the plurality of electromagnetic valves 7a to 7f described in the second embodiment. It is different from the first and second embodiments in that it is a refrigerant circuit.
  • a rotary flow path opening / closing valve 80 is disposed between the outdoor unit 30 and the indoor unit 60a.
  • the rotary flow path opening / closing valve 80 is similar to the exhaust heat recovery auxiliary circuit 8 described in the second embodiment in the air conditioner 103 in the exhaust heat recovery mode, the first defrosting mode, the refrigerant leakage prevention mode, the second It is the switching apparatus which builds the refrigerant circuit which implements defrost mode.
  • FIG. 20 is a schematic diagram showing the arrangement of the rotary flow path opening / closing valve 80 in the air-conditioning apparatus 103 according to Embodiment 3.
  • the rotary flow path opening / closing valve 80 includes a valve body outer peripheral portion 80a, and a first cylindrical valve body 81 and a second cylindrical valve body 82 housed inside the valve body outer peripheral portion 80a.
  • the rotary flow path opening / closing valve 80 is connected to refrigerant pipes respectively connected to the expansion device 5a, the flow path switching device 2, the outdoor heat exchanger 3, and the indoor heat exchanger 6a.
  • the rotary flow path opening / closing valve 80 is also connected to a refrigerant pipe that connects the exhaust heat recovery heat exchanger 4 and a refrigerant pipe that forms a bypass circuit 84.
  • the rotary flow path opening / closing valve 80 is equipped with an electric motor such as a motor 83, and the valve body of the rotary flow path opening / closing valve 80 is rotated by driving the motor 83.
  • connection openings 81a, 81b, 81c, 81d and connection openings 82a, 82b, 82c, 82d penetrating the valve body outer periphery 80a are formed in the valve body outer periphery 80a.
  • the connection openings 81a to 81d and the connection openings 82a to 82d are connected to refrigerant pipes constituting a refrigerant circuit, and the refrigerant is connected to the valve body outer peripheral portion 80a via the connection openings 81a to 81d and the connection openings 82a to 82d. Flows in and out.
  • the connection opening is an example of the second opening of the present invention.
  • connection openings 81a to 81d are arranged in a line at equal intervals on the same circumference of the valve body outer periphery 80a.
  • the connection openings 82a to 82d are arranged in a line at equal intervals on the same circumference of the valve body outer peripheral portion 80a at the positions in the axial direction of the connection openings 81a to 81d.
  • the connection opening 81b is connected to the refrigerant pipe connected to the expansion device 5a of the indoor unit 60a, and the connection opening 81d is connected to the refrigerant pipe connected to the flow path switching device 2 of the outdoor unit 30.
  • connection opening 82b is connected to a refrigerant pipe connected to the indoor heat exchanger 6a of the indoor unit 60a, and the connection opening 82d is connected to a refrigerant pipe connected to the outdoor heat exchanger 3 of the outdoor unit 30.
  • the connection opening 81a and the connection opening 82a are connected to a refrigerant pipe constituting a circuit to which the exhaust heat recovery heat exchanger 4 is connected.
  • the connection opening 81c and the connection opening 82c are connected to a refrigerant pipe constituting the bypass circuit 84.
  • a defrosting expansion device (not shown) may be connected in series with the heat exchanger 4 for exhaust heat recovery to the circuit connecting the connection opening 81a and the connection opening 82a.
  • FIG. 21 is a schematic view when the first cylindrical valve body 81 and the second cylindrical valve body 82 housed in the valve body outer peripheral portion 80a according to the third embodiment are viewed in the axial direction.
  • the 1st cylindrical valve body 81 and the 2nd cylindrical valve body 82 which are accommodated in the valve body outer peripheral part 80a have the cylindrical shape of the same circular cross section.
  • the refrigerant flowing through the connection openings 81 a to 81 d and the connection openings 82 a to 82 d of the valve body outer peripheral portion 80 a is connected to the outer peripheral space 801 and the outer peripheral space 802. Flows in and out through the inside.
  • the outer peripheral space 801 is formed between the first cylindrical valve body 81 and the valve body outer peripheral portion 80a, and connection openings 81a to 81d are opened.
  • the outer peripheral space 802 is formed between the second cylindrical valve body 82 and the valve body outer peripheral portion 80a, and connection openings 82a to 82d are opened.
  • the outer peripheral surfaces of the first cylindrical valve body 81 and the second cylindrical valve body 82 and the inner surface of the valve body outer peripheral portion 80a are partitioned by a wall plate 80b projecting in the inner surface direction of the valve body outer peripheral portion 80a.
  • an outer peripheral space 802 is formed.
  • the wall plate 80b is slidably in contact with the inner surface of the valve body outer peripheral portion 80a.
  • the outer peripheral space 801 and the outer peripheral space 802 are divided in the circumferential direction by a plurality of partition plates 85 protruding from the outer peripheral surfaces of the first cylindrical valve body 81 and the second cylindrical valve body 82 toward the inner surface direction of the valve body outer peripheral portion 80a. .
  • Pipe lines 811, 812, and 813 are formed inside the first cylindrical valve body 81, and pipe lines 821, 822, and 823 are formed inside the second cylindrical valve body 82, and the pipe lines 811, Areas F other than 812 and 813 and the pipe lines 821, 822 and 823 are the region F.
  • FIG. 22 is a schematic diagram for explaining the configuration around the first cylindrical valve element 81 and the second cylindrical valve element 82 according to the third embodiment.
  • a plurality of space portions 81 (i) and 82 (i) are formed.
  • the space portions 81 (i) and 82 (i) are defined as space portions 81 (1) to 81 (16) and 82 (1) to 82 (16) counterclockwise.
  • a part of the space portions 81 (i) and 82 (i) has openings in the outer peripheral surfaces 810 and 820, and the first through the openings in the outer peripheral surfaces 810 and 820 of the space portions 81 (i) and 82 (i).
  • the refrigerant flows into and out of the first cylindrical valve body 81 and the second cylindrical valve body 82.
  • Out of the space portions 81 (i) and 82 (i), the space portions 81 (10), 81 (14), 82 (10), and 82 (14) have the outer peripheral surfaces 810 and 820 closed, and the refrigerant Do not distribute.
  • the openings on the outer peripheral surfaces 810 and 820 are an example of the first opening of the present invention.
  • Both ends of the pipe lines 811, 812, 813 and the pipe lines 821, 822, 823 are connected to the openings of the outer peripheral surfaces 810, 820, and the refrigerant flows through the first cylindrical valve body 81 and the second cylinder through a predetermined path.
  • a flow path is defined so as to flow inside the valve body 82.
  • the pipe lines 811, 812, and 813 allow the refrigerant flowing from the space portion 81 (i) connected at one end to flow only toward the space portions 81 (i) and 82 (i) connected at the other end.
  • the flow path is defined.
  • the pipe line 811 is connected to the space portion 81 (16) and the space portion 81 (4).
  • the pipe line 812 is connected to the space part 81 (2) and the space part 81 (6). Further, the pipe line 813 is connected to the space portions 81 (7) to 81 (9) and the space portions 81 (11) to 81 (13). Similarly, at both ends of the pipes 821, 822, and 823, the refrigerant flowing from the space portion 82 (i) to which one end is connected flows only toward the space portion 82 (i) to which the other end is connected. Specifically, the pipe line 821 is connected to the space part 82 (12) and the space part 82 (16), and the pipe line 822 is connected to the space part 82 (2) and the space part 82 (6).
  • the pipe line 823 is connected to the space portions 82 (3) to 82 (5) and the space portions 82 (7) to 82 (9).
  • the adjacent space portions 81 (i) and 82 (i) are provided with a partition plate 85 between them. It is not done.
  • the first cylindrical valve body 81 and the second cylindrical valve body 82 are arranged coaxially, are joined so that the inside communicates, and are accommodated in the valve body outer peripheral portion 80a.
  • the wall plate 80b that partitions the outer peripheral surface of the first cylindrical valve body 81 and the second cylindrical valve body 82 and the inner peripheral surface of the valve body outer peripheral portion 80a into the outer peripheral space 801 and the outer peripheral space 802 is the first cylindrical valve body. 81 and the second cylindrical valve body 82. Similar to the plurality of partition plates 85, the outer peripheral end of the wall plate 80b is slidably in contact with the inner surface of the valve body outer peripheral portion 80a.
  • the refrigerant flow path is restricted. It is an area that can be freely distributed.
  • the space portions 81 (i) and 82 (i) connected to the region F are connected to the region F without circulating refrigerant flowing toward the specific space portions 81 (i) and 82 (i). It can be distributed to any other space 81 (i), 82 (i). Specifically, the space portions 81 (1), 81 (3), 81 (5), 81 (15), and the space portions 82 (1), 82 (11), 82 (13), 82 (15).
  • the outer peripheral surfaces 810 and 820 are connected to a region F where the flow path of the refrigerant is not restricted.
  • the refrigerant that has flowed from the openings of the outer peripheral surfaces 810 and 820 of the space portion 81 (1) can flow out of the space portion 82 (15).
  • FIG. 23 is a schematic diagram showing a state in which the first cylindrical valve body 81 and the second cylindrical valve body 82 according to the third embodiment are accommodated in the valve body outer peripheral portion 80a.
  • a first cylindrical valve body 81 and a second cylindrical valve body 82 are accommodated in the valve body outer peripheral portion 80a, and refrigerant pipes are respectively connected to the connection openings 81a to 81d and the connection openings 82a to 82d. Is connected.
  • the connection openings 81a to 81d and the connection openings 82a to 82d of the valve body outer peripheral portion 80a coincide with the space portions 81 (i) and 82 (i) of the first cylindrical valve body 81 and the second cylindrical valve body 82.
  • the flow path of the refrigerant flowing into the rotary flow path opening / closing valve 80 is formed.
  • the valve body outer peripheral portion 80a and the first cylindrical valve body 81 and the second cylindrical valve body 82 are relative to each other.
  • the positional relationship changes.
  • the connection openings 81a to 81d and the space portions 81 (i) and 82 (i) corresponding to the connection openings 82a to 82d are changed. Then, the flow path of the refrigerant is switched.
  • the refrigerant flows in from the connection openings 81a to 81d and the connection openings 82a to 82d formed in the outer peripheral portion 80a of the rotary flow path opening / closing valve 80, and is connected to the connection openings 81a to 81d and the connection openings 82a to 82d. Flows into the space portions 81 (i) and 82 (i) that coincide with each other. Then, it passes through the openings of the space portions 81 (i) and 82 (i) and flows into the first cylindrical valve body 81 and the second cylindrical valve body 82.
  • the refrigerant flows through the pipe lines 811, 812, 813 and the pipe lines 821, 822, 823 or the region F of the first cylindrical valve body 81 and the second cylindrical valve body 82, and the space portions 81 (i), 82 ( It flows out from the opening of i).
  • the refrigerant passes through any one of the connection openings 81a to 81d and the connection openings 82a to 82d of the valve body outer peripheral portion 80a that coincides with the spaces 81 (i) and 82 (i) through which the refrigerant has passed.
  • the refrigerant pipes connected to the connection openings 82a to 82d are circulated.
  • FIG. 24 is a refrigerant circuit configuration diagram in a state where the rotary flow path opening / closing valve 80 according to Embodiment 3 is incorporated in the refrigerant circuit.
  • the rotary flow path opening / closing valve 80 includes the expansion device 5a of the indoor unit 60a, the indoor heat exchanger 6a, and the outdoor unit 30 at the connection openings 81a to 81d and the connection openings 82a to 82d.
  • the flow path switching device 2 and the outdoor heat exchanger 3 are connected to each other.
  • the rotary flow path opening / closing valve 80 forms a refrigerant circuit whose rotation angle is controlled by the control device in accordance with the operation content of the air conditioner 103, and the desired operation content can be realized by changing the refrigerant path.
  • the motor 83 of the rotary flow path opening / closing valve 80 is driven, the first cylindrical valve body 81 and the second cylindrical valve body 82 inside the valve body outer peripheral portion 80a have a predetermined rotation angle with respect to the valve body outer peripheral portion 80a. It rotates by n ⁇ ⁇ .
  • FIGS. 25 and 26 are schematic diagrams showing the first cylindrical valve body 81 and the second cylindrical valve body 82 at the rotation angle ⁇ according to the third embodiment.
  • the predetermined rotation angle n ⁇ ⁇ is represented by an angle ⁇ between two wall surfaces that define the space portions 81 (i) and 82 (i). That is, ⁇ is a multiple of 360 ° / i.
  • the path through which the refrigerant circulates is configured with a pattern of the number of spaces.
  • the rotary flow path opening / closing valve 80 rotates the first cylindrical valve body 81 and the second cylindrical valve body 82 at a predetermined rotation angle n ⁇ ⁇ , and the valve body outer peripheral portion 80a, the first cylindrical valve body 81, and the first cylindrical valve body 81
  • the relative position with respect to the two cylindrical valve bodies 82 is changed.
  • the connection openings 81a to 81d and the space portions 81 (i) and 82 (i) corresponding to the connection openings 82a to 82d are changed, and the path through which the refrigerant circulates is switched.
  • the connection openings 81a to 81d and the connection openings 82a to 82d communicate with the spaces 81 (i) and 82 (i), and the refrigerant flows.
  • connection openings 81a to 81d of the rotary flow path opening / closing valve 80 passes through the opening of the space 81 (i) that coincides with the connection openings 81a to 81d from the connection openings 81a to 81d. , Flows into the second cylindrical valve element 82.
  • the refrigerant that has reached the connection openings 82a to 82d passes through the openings in the space 82 (i) that coincide with the connection openings 82a to 82d from the connection openings 82a to 82d, and then the first cylindrical valve body 81 and the second cylindrical valve body 82. Flow into.
  • connection openings 81a to 81d and the connection openings 82a to 82d flows through the inside of the valve body outer peripheral portion 80a. Then, through the openings of the space portions 81 (i) and 82 (i), any of the other connection openings 81a to 81d and the connection openings 82a to 82d that coincide with the space portions 81 (i) and 82 (i) Spill from.
  • the air conditioner 103 performs the exhaust heat recovery mode, the first defrosting mode, the refrigerant leakage prevention mode, or the second defrosting mode, and therefore the rotation of the rotary flow path opening / closing valve 80 according to the content of each operation.
  • the moving angle is controlled to switch the route through which the refrigerant circulates.
  • the air conditioner 103 can also include a refrigerant circuit that implements the conventional mode in which the exhaust heat recovery auxiliary circuit 8 is not connected in the operation content.
  • Table 2 shows the correspondence between the rotation angle of the rotary flow path opening / closing valve 80, the connection openings 81a to 81d, the connection openings 82a to 82d, and the spaces 81 (i) and 82 (i) corresponding to the respective connection openings. It is a table
  • connection openings 81a to 81d and the connection openings 82a to 82d are respectively corresponding to the rotation angles.
  • the space portions 81 (i) and 82 (i) that match are switched.
  • the connection partners of the connection openings 81a to 81d and the connection openings 82a to 82d are changed, and the exhaust heat recovery mode, the first defrosting mode, the refrigerant leakage prevention mode, or the second defrosting mode is performed.
  • a refrigerant circuit is configured.
  • the refrigerant circuit in the exhaust heat recovery mode is configured by setting the rotation angle to 90 ° or 270 °.
  • the refrigerant circuit in the first defrosting mode is configured, and 112.5 °, 247.5 °, 292.5 °, or 315 °.
  • the refrigerant circuit of the 2nd defrost mode is comprised by setting it as 45 degrees or 67.5 degrees. If the rotation angle is 22.5 ° or 337.5 °, a circuit in which the conventional exhaust heat recovery heat exchanger 4 is not used is configured.
  • the connection openings 81d and 82d coincide with the space portion 81 (10) or the space portion 81 (14), the space portion 82 (10), or the space portion 82 (14).
  • the circuit does not include the outdoor heat exchanger 3 and the flow path switching device 2, the refrigerant circuit is not established, and the air conditioner 103 does not function.
  • the rotation angles are 0 ° to 45 ° and 270 ° to 337.5 °, and the refrigerant circuits of all patterns are almost continuous. Therefore, there is no intervening refrigerant circuit that appears in the middle.
  • FIG. 27 is a part of a refrigerant circuit configuration diagram in the exhaust heat recovery mode according to the third embodiment.
  • the connection openings 81a to 81d have the space portion 81 (12), the space portion 81 (8), the space portion 81 (4), and the space portion. 81 (16).
  • the connection openings 82a to 82d communicate with the space 82 (12), the space 82 (8), the space 82 (4), and the space 82 (16).
  • connection opening 81a and the connection opening 81b, and the connection opening 81d and the connection opening 81c are connected by the first cylindrical valve body 81, and the connection opening 82a and the connection opening 82d are connected by the second cylindrical valve body 82, and The connection opening 82b and the connection opening 82c are connected. That is, the connection opening 81a and the connection opening 81b are connected by the pipe line 813 that defines the flow path from the space portion 81 (12) to the space portion 81 (8). Further, the connection opening 81d and the connection opening 81c are connected by a pipe line 811 that defines a flow path from the space portion 81 (16) to the space portion 81 (4).
  • connection opening 82a and the connection opening 82d are connected by a pipe line 823 that defines a flow path from the space 82 (12) to the space 82 (16), and the connection opening 82c and the connection opening 82b are connected to the space 82. It is connected by a pipe line 823 that defines a flow path from (4) to the space portion 82 (8).
  • the flow path switching device 2, the bypass circuit 84, and the indoor heat exchanger 6a are connected, the expansion device 5a and the exhaust heat recovery heat exchanger 4 are connected, and the exhaust heat recovery heat exchanger 4 and the chamber are connected.
  • the refrigerant circuit in the exhaust heat recovery mode is configured by connecting to the outer heat exchanger 3.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 1 exchanges heat with outdoor air in the outdoor heat exchanger 3, and then exhausts and heats of the ventilator 10 in the exhaust heat recovery heat exchanger 4. Exchange. Further, during the heating operation, the low-temperature refrigerant condensed in the indoor heat exchanger 6a exchanges heat with the exhaust of the ventilator 10 in the exhaust heat recovery heat exchanger 4, and then outdoor in the outdoor heat exchanger 3. Exchange heat with air.
  • FIG. 28 is a part of a refrigerant circuit configuration diagram in the first defrosting mode according to the third embodiment.
  • the connection openings 81a to 81d have the space portion 81 (16), the space portion 81 (12), the space portion 81 (8), and the space portion. 81 (4).
  • the connection openings 82a to 82d communicate with the space portion 82 (16), the space portion 82 (12), the space portion 82 (8), and the space portion 82 (4).
  • connection opening 81a and the connection opening 81d, and the connection opening 81b and the connection opening 81c are connected by the first cylindrical valve body 81, and the connection opening 82a and the connection opening 82b are connected by the second cylindrical valve body 82, and The connection opening 82c and the connection opening 82d are connected. That is, the connection opening 81a and the connection opening 81d are connected by the pipe line 811 that defines the flow path from the space portion 81 (16) to the space portion 81 (4). And the connection opening 81b and the connection opening 81c are connected by the pipe line 813 which prescribes
  • connection opening 82a and the connection opening 82b are connected by the pipe line 821 which prescribes
  • the connection opening 82c and the connection opening 82d are connected to each other by a pipe line 823 that defines a flow path from the space portion 82 (8) to the space portion 82 (4).
  • the flow path switching device 2 and the heat exchanger 4 for exhaust heat recovery are connected, and the expansion device 5a and the bypass circuit 84 are connected.
  • the heat exchanger 4 for exhaust heat recovery and the indoor heat exchanger 6a are connected, and the outdoor heat exchanger 3 and the bypass circuit 84 are connected to constitute a refrigerant circuit in the first defrosting mode.
  • the refrigerant that has flowed out of the outdoor heat exchanger 3 flows into the indoor unit 60a, and then flows into the heat exchanger 4 for exhaust heat recovery.
  • the refrigerant exchanges heat with the exhaust of the ventilator 10 in the exhaust heat recovery heat exchanger 4, then flows into the compressor 1, and defrosts again in the outdoor heat exchanger 3.
  • FIG. 29 is a part of a refrigerant circuit configuration diagram in the refrigerant leakage prevention mode according to Embodiment 3.
  • the connection openings 81a to 81d are the space portion 81 (14), the space portion 81 (10), the space portion 81 (6), and the space portion. 81 (2).
  • the connection openings 82a to 81d communicate with the space portion 82 (14), the space portion 82 (10), the space portion 82 (6), and the space portion 82 (2).
  • connection opening 81c and the connection opening 81d are connected by the first cylindrical valve body 81, and the connection opening 82c and the connection opening 82d are connected by the second cylindrical valve body 82. That is, the connection opening 81c and the connection opening 81d are connected by the pipe line 812 that defines the flow path from the space portion 81 (6) to the space portion 81 (2). In addition, the connection opening 82c and the connection opening 82d are connected by a pipe line 822 that defines a flow path from the space portion 82 (6) to the space portion 82 (2).
  • connection opening 81a and the connection opening 81b, and the connection opening 82a and the connection opening 82b are the closed space part 81 (14), the space part 81 (10), the space part 82 (14), and the space.
  • the flow path is not formed in communication with the portion 82 (10).
  • the heat exchanger 4 for exhaust heat recovery and the indoor heat exchanger 6a are disconnected from the refrigerant circuit, and the refrigerant circuit in the refrigerant leakage prevention mode is configured.
  • this mode can also be utilized as a defrosting mode by what is called triangular operation with the operation of the compressor 1.
  • the refrigerant circuit in which the refrigerant circuit is closed by the outer peripheral surfaces 810 and 820 of the space portions 81 (i) and 82 (i) is not configured, and the flow path of the refrigerant is restricted by the pressure relationship. become.
  • FIG. 30 is a part of a refrigerant circuit configuration diagram in the second defrosting mode according to the third embodiment.
  • the connection openings 81a to 81d are the space portion 81 (2), the space portion 81 (14), the space portion 81 (10), and the space portion. 81 (6).
  • the connection openings 82a to 82d communicate with the space portion 82 (2), the space portion 82 (14), the space portion 82 (10), and the space portion 82 (6).
  • connection opening 81a and the connection opening 81d of the first cylindrical valve body 81 are connected, and the connection opening 82a and the connection opening 82d of the second cylindrical valve body 82 are connected. That is, the connection opening 81a and the connection opening 81d are connected by the pipe line 812 that defines the flow path from the space portion 81 (2) to the space portion 81 (6), and the connection opening 82a and the connection opening 82d are connected to the space portion 82. They are connected by a pipe line 822 that defines a flow path from (2) to the space 82 (6).
  • connection opening 81b and the connection opening 81c, and the connection opening 82b and the connection opening 82c are closed space part 81 (14), space part 81 (10), space part 82 (14), space part. 82 (10) communicates and no flow path is formed.
  • the flow path switching device 2, the exhaust heat recovery heat exchanger 4 and the outdoor heat exchanger 3 are connected to form a refrigerant circuit in the second defrosting mode.
  • the refrigerant circuit in which the refrigerant circuit is closed by the outer peripheral surfaces 810 and 820 of the space portions 81 (i) and 82 (i) is not configured, and the refrigerant flow path is restricted by the pressure relationship.
  • FIG. 31 is a part of a refrigerant circuit configuration diagram in the conventional mode according to the third embodiment.
  • a refrigerant circuit in the conventional mode is configured.
  • the connection openings 81a to 81d have the space portion 81 (1), the space portion 81 (13), the space portion 81 (9), It communicates with the space part 81 (5).
  • the connection openings 82a to 82d communicate with the space portion 82 (1), the space portion 82 (13), the space portion 82 (9), and the space portion 82 (5).
  • the first cylindrical valve body 81 connects the connection opening 81b and the connection opening 81c
  • the second cylindrical valve body 82 connects the connection opening 82a and the connection opening 82d. That is, the connection opening 81b and the connection opening 81c are connected by the pipe line 813 that defines the flow path from the space portion 81 (13) to the space portion 81 (9).
  • the connection opening 82c and the connection opening 82d are connected by a pipe line 822 that defines a flow path from the space portion 82 (9) to the space portion 82 (10).
  • connection opening 81a and the connection opening 81d, and the connection opening 82a and the connection opening 82b are the space portion 81 (1), the space portion 81 (5), the space portion 82 (1), and the space portion 82 ( 13).
  • the space portion 81 (1), the space portion 81 (5), the space portion 82 (1), and the space portion 82 (13) have flow paths inside the first cylindrical valve body 81 and the second cylindrical valve body 82. It is connected to a region F that is not defined, and the flow path of the refrigerant is regulated by the pressure relationship.
  • the outdoor side heat exchanger 3, the flow path switching device 2, the expansion device 5a, and the indoor side heat exchanger 6a are connected to form a conventional refrigerant circuit.
  • the space portion 81 (15), the space portion 81 (3), the space portion 82 (15), and the space portion 82 (11) are connected to the first cylindrical valve body 81 and the second cylindrical valve body 82.
  • the refrigerant is connected to a region F where the flow path is not defined inside, and the flow path of the refrigerant is regulated by the pressure relationship.
  • valve body outer peripheral portion 80a has been described as an example in which the first cylindrical valve body 81 and the second cylindrical valve body 82 are accommodated.
  • a plurality of bodies may be accommodated, and the number of cylindrical valve bodies is not limited.
  • the path of the pipeline formed inside each cylindrical valve body, the configuration of the region F, and the number and position of the connection openings are not limited.
  • the route through which the refrigerant flows is determined and the desired route is realized. can do.
  • the rotary flow path opening / closing valve 80 that switches the flow path of the refrigerant by rotation is disposed between the outdoor unit 30 and the indoor unit 60a.
  • the rotary flow path opening / closing valve 80 is configured by a first cylindrical valve body 81 and a second cylindrical valve body 82 that are coaxially arranged.
  • the first cylindrical valve body 81 and the second cylindrical valve body 82 are configured to exhaust heat.
  • the recovery heat exchanger 4 and the bypass circuit 84 are connected. For this reason, it is only necessary to provide one electric motor for adjusting the rotation angle between the first cylindrical valve element 81 and the second cylindrical valve element 82, and since the motor is stopped at a predetermined rotation angle, there is no power consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is an air conditioning device which is capable of effectively utilizing exhaust heat of a ventilation device, has no restrictions with regard to the number of installed indoor units, and exhibits excellent workability. This air conditioning device is provided with a refrigerant circuit in which a compressor, an indoor heat exchanger, a throttle device, and an outdoor heat exchanger are connected by ducts. The refrigerant circuit is provided with a heat exchanger for recovering exhaust heat which is provided between the outdoor heat exchanger and the throttle device, and which exchanges heat with indoor air exhaust.

Description

空気調和装置Air conditioner
 本発明は、換気装置の排熱を活用する空気調和装置に関するものである。 The present invention relates to an air conditioner that utilizes exhaust heat of a ventilator.
 省エネルギー化に対する重要度の増大に伴い、建物の高気密化、高断熱化により空気調和装置の冷暖房負荷を低減する対策が進められている。 With the increasing importance of energy saving, measures are being taken to reduce the air-conditioning load of air conditioners by making buildings airtight and heat insulating.
 冷暖房負荷の要素の一つである換気による外気負荷に対しては、例えば、特許文献1のように、全熱交換器の排気風路上に熱交換器を設置し、換気装置の排熱で給気温度の調整を行う換気装置が提案されている。空気調和装置に加え、全熱交換器が組み込まれた換気装置を、空気調和装置と別個に設けることで外気負荷自体を低減させている。 For the outside air load due to ventilation, which is one of the elements of the air-conditioning load, for example, as disclosed in Patent Document 1, a heat exchanger is installed on the exhaust air passage of the total heat exchanger and is supplied by the exhaust heat of the ventilation device. Ventilators that adjust the air temperature have been proposed. In addition to the air conditioner, a ventilator incorporating a total heat exchanger is provided separately from the air conditioner to reduce the outside air load itself.
 空気調和装置の省エネルギー化に対しては、例えば、特許文献2のように、室内空気を、室外側熱交換器を通過させた後室外に排出し、室外空気を、室内熱交換器を通過させた後室内に供給するように構成した空気調和装置が提案されている。特許文献2の構成によれば、換気機能を備え、且つ、換気に伴う排熱を回収することができる空気調和装置が得られることが記載されている。また、例えば、特許文献3においては、空気調和装置の冷媒回路に、換気装置からの給気温度調整を目的とした換気用補助回路が組み込まれている。この構成により、換気装置の排熱回収による省エネルギー化と、熱交換型換気装置の低コスト化が期待されている。 For energy saving of the air conditioner, for example, as in Patent Document 2, the indoor air is exhausted to the outside after passing the outdoor heat exchanger, and the outdoor air is allowed to pass through the indoor heat exchanger. After that, an air conditioner configured to be supplied indoors has been proposed. According to the configuration of Patent Document 2, it is described that an air conditioner having a ventilation function and capable of recovering exhaust heat accompanying ventilation is described. For example, in patent document 3, the auxiliary circuit for ventilation for the purpose of adjusting the supply air temperature from a ventilator is incorporated in the refrigerant circuit of an air conditioning apparatus. This configuration is expected to save energy by collecting exhaust heat from the ventilator and to reduce the cost of the heat exchange ventilator.
特開2006-317078号公報JP 2006-317078 A 特開平5-272782号公報Japanese Patent Application Laid-Open No. 5-272784 特開平11-257793号公報JP-A-11-257793
 全熱交換器を組み込んだ換気装置を用いる方法は、広く採用されている一方で、全熱交換器におけるエンタルピ交換効率は100%とならないため、換気装置で回収できない熱量が排気と共に室外に流出する。つまり、換気装置から室外に流出する排気は、一般的に室外の空気温度よりも室内の快適温度に近く、空気調和装置の冷凍サイクルに有用な熱量を保持しているにも関わらず、その熱量が空気調和装置に有効活用されていない。 While a method using a ventilator incorporating a total heat exchanger is widely adopted, since the enthalpy exchange efficiency in the total heat exchanger does not become 100%, the amount of heat that cannot be recovered by the ventilator flows out together with the exhaust. . In other words, the exhaust that flows out of the room from the ventilator is generally closer to the indoor comfortable temperature than the outdoor air temperature, and the heat quantity that is useful for the refrigeration cycle of the air conditioner is maintained. Is not effectively utilized in air conditioning equipment.
 また、特許文献1~3を採用した場合でも、補強等が必要となり取り付け時の施工が困難となるだけでなく、冷媒回路の複雑化や、システムの大規模化を避けることが難しい。 In addition, even when Patent Documents 1 to 3 are adopted, not only the reinforcement is necessary and the installation work is difficult, but also it is difficult to avoid the complicated refrigerant circuit and the enlargement of the system.
 本発明は、上述のような課題を解決するためになされたものであり、換気装置の排熱を有効活用しながら、室内機の設置台数に制約を設けることなく、且つ、施工性が良好な空気調和装置を提供することを目的としている。 The present invention has been made in order to solve the above-described problems, while effectively utilizing the exhaust heat of the ventilation device, without restricting the number of indoor units installed, and having good workability. The object is to provide an air conditioner.
 本発明に係る空気調和装置は、圧縮機と、室内側熱交換器と、絞り装置と、室外側熱交換器と、を管路で接続した冷媒回路を有し、前記冷媒回路は、前記室外側熱交換器と、前記絞り装置との間に配置され、室内空気の排気と熱交換する排熱回収用熱交換器を備えている。 An air conditioner according to the present invention includes a refrigerant circuit in which a compressor, an indoor heat exchanger, a throttling device, and an outdoor heat exchanger are connected by a pipe line, and the refrigerant circuit includes the chamber An exhaust heat recovery heat exchanger is provided between the outer heat exchanger and the expansion device and exchanges heat with the exhaust of indoor air.
 本発明に係る空気調和装置によれば、冷媒回路に排熱回収用熱交換器が接続され、排気空気と熱交換が行われるため、省エネルギー化を実現できる。また、排熱回収用熱交換器は、室内機と直列に接続されるため、室内機の設置台数の制約を排除でき、且つ、取り付けのための施工性を向上させることができる。 According to the air conditioner according to the present invention, the heat exchanger for exhaust heat recovery is connected to the refrigerant circuit, and heat exchange with the exhaust air is performed, so that energy saving can be realized. In addition, since the heat exchanger for exhaust heat recovery is connected in series with the indoor unit, the restriction on the number of indoor units installed can be eliminated, and the workability for installation can be improved.
実施の形態1に係る空気調和装置の冷媒回路構成図である。2 is a refrigerant circuit configuration diagram of the air-conditioning apparatus according to Embodiment 1. FIG. 実施の形態1に係る換気装置の構成図である。1 is a configuration diagram of a ventilation device according to Embodiment 1. FIG. 実施の形態1に係る空気調和装置に複数の室内機を設けた場合の冷媒回路構成図である。It is a refrigerant circuit block diagram at the time of providing the several indoor unit in the air conditioning apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置の冷房運転時の冷媒の状態変化を説明する圧力-エンタルピ線図である。FIG. 3 is a pressure-enthalpy diagram for explaining a change in refrigerant state during the cooling operation of the air-conditioning apparatus according to Embodiment 1. 実施の形態1に係る空気調和装置の暖房運転時の冷媒の状態変化を説明する圧力-エンタルピ線図である。FIG. 3 is a pressure-enthalpy diagram for explaining a change in refrigerant state during the heating operation of the air-conditioning apparatus according to Embodiment 1. 実施の形態1に係る空気調和装置にバイパス回路を設けた場合の冷媒回路構成図である。It is a refrigerant circuit block diagram at the time of providing a bypass circuit in the air conditioning apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る空気調和装置の冷媒回路構成図である。6 is a refrigerant circuit configuration diagram of an air-conditioning apparatus according to Embodiment 2. FIG. 実施の形態2に係る排熱回収モードの冷媒回路構成図である。6 is a refrigerant circuit configuration diagram in an exhaust heat recovery mode according to Embodiment 2. FIG. 実施の形態2に係るNo.1の切り替えパターンにおける冷媒の流路を示す図である。No. 2 according to the second embodiment. It is a figure which shows the flow path of the refrigerant | coolant in 1 switching pattern. 実施の形態2に係る第1霜取モードの冷媒回路構成図である。6 is a refrigerant circuit configuration diagram in a first defrosting mode according to Embodiment 2. FIG. 実施の形態2に係るNo.2の切り替えパターンにおける冷媒の流路を示す図である。No. 2 according to the second embodiment. It is a figure which shows the flow path of the refrigerant | coolant in 2 switching patterns. 実施の形態2に係る冷媒漏洩防止モードの冷媒回路構成図である。6 is a refrigerant circuit configuration diagram in a refrigerant leakage prevention mode according to Embodiment 2. FIG. 実施の形態2に係る冷媒漏洩防止モードの冷媒回路構成図である。6 is a refrigerant circuit configuration diagram in a refrigerant leakage prevention mode according to Embodiment 2. FIG. 実施の形態2に係るNo.3又はNo.4の切り替えパターンにおける冷媒の流路を示す図である。No. 2 according to the second embodiment. 3 or No. It is a figure which shows the flow path of the refrigerant | coolant in 4 switching patterns. 実施の形態2に係る第2霜取モードの冷媒回路構成図である。It is a refrigerant circuit block diagram of the 2nd defrost mode which concerns on Embodiment 2. FIG. 実施の形態2に係る第2霜取モードの冷媒回路構成図である。It is a refrigerant circuit block diagram of the 2nd defrost mode which concerns on Embodiment 2. FIG. 実施の形態2に係るNo.5の切り替えパターンにおける冷媒の流路を示す図である。No. 2 according to the second embodiment. It is a figure which shows the flow path of the refrigerant | coolant in 5 switching patterns. 実施の形態2に係るNo.6の切り替えパターンにおける冷媒の流路を示す図である。No. 2 according to the second embodiment. It is a figure which shows the flow path of the refrigerant | coolant in 6 switching patterns. 実施の形態2に係る制御装置による切り替えパターンの選択方法を示すフローチャートである。10 is a flowchart illustrating a method for selecting a switching pattern by the control device according to the second embodiment. 実施の形態3に係る空気調和装置における回転式流路開閉弁の配置を示す模式図である。6 is a schematic diagram showing the arrangement of a rotary flow path opening / closing valve in an air-conditioning apparatus according to Embodiment 3. FIG. 実施の形態3に係る弁体外周部に収容される第1円筒弁体及び第2円筒弁体をそれぞれ軸方向に見たときの模式図である。It is a schematic diagram when the 1st cylindrical valve body and 2nd cylindrical valve body which are accommodated in the valve body outer peripheral part which concerns on Embodiment 3 are seen in the axial direction, respectively. 実施の形態3に係る第1円筒弁体及び第2円筒弁体の周囲の構成を説明する模式図である。It is a schematic diagram explaining the structure around the 1st cylindrical valve body and 2nd cylindrical valve body which concern on Embodiment 3. FIG. 実施の形態3に係る第1円筒弁体及び第2円筒弁体が弁体外周部に収容された状態を示す模式図である。It is a schematic diagram which shows the state by which the 1st cylindrical valve body and 2nd cylindrical valve body which concern on Embodiment 3 were accommodated in the valve body outer peripheral part. 実施の形態3に係る回転式流路開閉弁が冷媒回路に組み込まれた状態の冷媒回路構成図である。FIG. 6 is a refrigerant circuit configuration diagram in a state where a rotary flow path opening / closing valve according to Embodiment 3 is incorporated in a refrigerant circuit. 実施の形態3に係る回動角度θにおける第1円筒弁体及び第2円筒弁体を示す模式図である。6 is a schematic diagram showing a first cylindrical valve body and a second cylindrical valve body at a rotation angle θ according to Embodiment 3. FIG. 実施の形態3に係る回動角度θにおける第1円筒弁体及び第2円筒弁体を示す模式図である。6 is a schematic diagram showing a first cylindrical valve body and a second cylindrical valve body at a rotation angle θ according to Embodiment 3. FIG. 実施の形態3に係る排熱回収モード時の冷媒回路構成図の一部である。6 is a part of a refrigerant circuit configuration diagram in an exhaust heat recovery mode according to Embodiment 3. FIG. 実施の形態3に係る第1霜取モード時の冷媒回路構成図の一部である。It is a part of refrigerant circuit block diagram at the time of the 1st defrost mode which concerns on Embodiment 3. FIG. 実施の形態3に係る冷媒漏洩防止モード時の冷媒回路構成図の一部である。6 is a part of a refrigerant circuit configuration diagram in a refrigerant leakage prevention mode according to Embodiment 3. FIG. 実施の形態3に係る第2霜取モード時の冷媒回路構成図の一部である。It is a part of refrigerant circuit block diagram at the time of the 2nd defrost mode which concerns on Embodiment 3. FIG. 実施の形態3に係る従来モード時の冷媒回路構成図の一部である。6 is a part of a refrigerant circuit configuration diagram in a conventional mode according to Embodiment 3. FIG.
 実施の形態1.
 <空気調和装置100の構成>
 図1は、実施の形態1に係る空気調和装置100の冷媒回路構成図である。図1に示すように、空気調和装置100は、圧縮機1、室外側熱交換器3、絞り装置5a、及び、室内側熱交換器6aが管路により順次接続された冷媒回路を有する。このうち、圧縮機1、及び、室外側熱交換器3は、室外機30を構成し、絞り装置5a、及び、室内側熱交換器6aは、室内機60aを構成する。空気調和装置100の冷媒回路には、流路切替装置2が設けられており、冷媒の流れ方向を実線矢印、又は、破線矢印の方向に切り替えることで、冷房運転、又は、暖房運転の実施が可能である。室外側熱交換器3と、絞り装置5aとの間には、排熱回収用熱交換器4が接続されており、室内から室外に向けて流出する排気風路上に設置されている。室外側熱交換器3、及び、室内側熱交換器6aの近傍には、室外側熱交換器3、及び、室内側熱交換器6aに室外空気、及び、室内空気を送風する、不図示の室外送風機、及び、室内送風機が配置されている。また、空気調和装置100の各構成要素は、マイコンなどで構成される不図示の制御手段により制御されている。
Embodiment 1 FIG.
<Configuration of Air Conditioner 100>
1 is a refrigerant circuit configuration diagram of an air-conditioning apparatus 100 according to Embodiment 1. FIG. As shown in FIG. 1, the air conditioning apparatus 100 has a refrigerant circuit in which a compressor 1, an outdoor heat exchanger 3, an expansion device 5a, and an indoor heat exchanger 6a are sequentially connected by a pipe line. Among these, the compressor 1 and the outdoor side heat exchanger 3 comprise the outdoor unit 30, and the expansion apparatus 5a and the indoor side heat exchanger 6a comprise the indoor unit 60a. The flow path switching device 2 is provided in the refrigerant circuit of the air conditioning apparatus 100, and the cooling operation or the heating operation can be performed by switching the flow direction of the refrigerant to the direction of the solid line arrow or the broken line arrow. Is possible. A heat exchanger 4 for exhaust heat recovery is connected between the outdoor heat exchanger 3 and the expansion device 5a, and is installed on an exhaust air passage that flows out from the room toward the outside. In the vicinity of the outdoor heat exchanger 3 and the indoor heat exchanger 6a, outdoor air and indoor air are blown to the outdoor heat exchanger 3 and the indoor heat exchanger 6a. An outdoor blower and an indoor blower are arranged. Moreover, each component of the air conditioning apparatus 100 is controlled by control means (not shown) configured by a microcomputer or the like.
 <換気装置10の構成>
 図2は、実施の形態1に係る換気装置10の構成図である。図2に示すように、排熱回収用熱交換器4は、例えば、換気装置10の排気風路に配置される。具体的には、排熱回収用熱交換器4は、全熱交換器11、給気送風機12、及び、排気送風機13を備えた換気装置10において、全熱交換器11と、排気送風機13との間に形成する排気風路15に配置される。換気装置10が備える全熱交換器11は、直方体形状を有する積層構造に形成され、互いに直交する方向に外気と、室内からの環気とを通流させ、外気を室内からの環気と熱交換させてから室内に導入するものなどである。換気装置10において、外気は、給気送風機12により給気風路14を形成し、全熱交換器11を通過しながら室内から排出される環気と熱交換を行い、給気となって室内に流入する。また、室内から排出される環気は、排気送風機13により排気風路15を形成し、全熱交換器11を通過しながら外気と熱交換を行い、排気となって排熱回収用熱交換器4を通過し、室外に流出する。
<Configuration of ventilation device 10>
FIG. 2 is a configuration diagram of the ventilation device 10 according to the first embodiment. As shown in FIG. 2, the exhaust heat recovery heat exchanger 4 is disposed, for example, in an exhaust air passage of the ventilation device 10. Specifically, the heat exchanger 4 for exhaust heat recovery includes a total heat exchanger 11, an exhaust fan 13, and a ventilator 10 including a total heat exchanger 11, an air supply fan 12, and an exhaust fan 13. Are arranged in an exhaust air passage 15 formed between the two. The total heat exchanger 11 provided in the ventilating device 10 is formed in a laminated structure having a rectangular parallelepiped shape, and allows outside air and indoor air to flow in directions orthogonal to each other. It is something that is introduced into the room after being replaced. In the ventilator 10, the outside air forms a supply air passage 14 by the supply air blower 12, exchanges heat with the air exhausted from the room while passing through the total heat exchanger 11, and is supplied to the room as the supply air. Inflow. Further, the exhaust air exhausted from the room forms an exhaust air passage 15 by the exhaust air blower 13, exchanges heat with the outside air while passing through the total heat exchanger 11, becomes exhaust gas, and becomes an exhaust heat recovery heat exchanger. 4 and flows out of the room.
 図3は、実施の形態1に係る空気調和装置100に複数の室内機60a、60bを設けた場合の冷媒回路構成図である。図3に示すように、複数の室内機60a、60bは、分岐した冷媒回路に互いに並列に接続されている。室内機60a、60bのそれぞれには、絞り装置5a、5b及び室内側熱交換器6a、6bが直列に接続されている。空気調和装置100に複数の室内機60a、60bが接続される場合においては、排熱回収用熱交換器4は、室内機60a、60bと、室外側熱交換器3との間の冷媒回路のうち、分岐していない領域に接続され、排気風路上に配置される。 FIG. 3 is a refrigerant circuit configuration diagram in the case where a plurality of indoor units 60a and 60b are provided in the air-conditioning apparatus 100 according to Embodiment 1. As shown in FIG. 3, the plurality of indoor units 60a and 60b are connected in parallel to the branched refrigerant circuit. The expansion devices 5a and 5b and the indoor heat exchangers 6a and 6b are connected in series to the indoor units 60a and 60b, respectively. When a plurality of indoor units 60 a and 60 b are connected to the air conditioner 100, the exhaust heat recovery heat exchanger 4 is a refrigerant circuit between the indoor units 60 a and 60 b and the outdoor heat exchanger 3. Of these, it is connected to a region that is not branched and is disposed on the exhaust air passage.
 続いて、空気調和装置100の冷房運転時、及び、暖房運転時の動作について説明する。
 <冷房運転時>
 冷房運転時には、流路切替装置2により冷媒の流れ方向が図1の実線矢印で示す方向に切り替えられる。圧縮機1より吐出された高温高圧の冷媒は、室外側熱交換器3と、排熱回収用熱交換器4とを通過して凝縮し、絞り装置5aにより減圧され低温低圧の二相となって室内側熱交換器6aに流入して室内空気と熱交換を行い蒸発する。蒸発した冷媒は、再び圧縮機1に吸入され、圧縮されて高温高圧となり、吐出されるサイクルを繰り返す。
Subsequently, the operation of the air conditioner 100 during the cooling operation and the heating operation will be described.
<During cooling operation>
During the cooling operation, the flow direction switching device 2 switches the refrigerant flow direction to the direction indicated by the solid line arrow in FIG. The high-temperature and high-pressure refrigerant discharged from the compressor 1 passes through the outdoor heat exchanger 3 and the exhaust heat recovery heat exchanger 4 and condenses, and is decompressed by the expansion device 5a to become a low-temperature and low-pressure two-phase. Then, it flows into the indoor heat exchanger 6a and evaporates by exchanging heat with the indoor air. The evaporated refrigerant is again sucked into the compressor 1 and is compressed to a high temperature and a high pressure, and the discharge cycle is repeated.
 図4は、実施の形態1に係る空気調和装置100の冷房運転時の冷媒の状態変化を説明する圧力-エンタルピ線図であり、横軸に比エンタルピを示し、縦軸に圧力を示している。図4に示すように、Bの状態において高温高圧となった冷媒は、室外側熱交換器3を通過しながら室外送風機により送風された室外空気と熱交換を行い、その後、排熱回収用熱交換器4を通過しながら換気装置10の排気と熱交換を行う。このとき、排気は、室外空気より室内の快適温度に近いため、冷媒が凝縮する行程において、室外空気への放熱に加え、換気装置10からの排気に対しても放熱することができる。これにより、凝縮行程の到達点がCの状態からC’の状態に遷移して過冷却度が増加するため、蒸発行程における室内空気との熱交換量が増大し、冷房能力が向上する。また、室外送風機の回転速度を落としても、冷房能力が維持され、室外送風機が消費する電力が低減される。 FIG. 4 is a pressure-enthalpy diagram for explaining the state change of the refrigerant during the cooling operation of the air-conditioning apparatus 100 according to Embodiment 1, in which the horizontal axis indicates the specific enthalpy and the vertical axis indicates the pressure. . As shown in FIG. 4, the refrigerant that has become high temperature and high pressure in the state B performs heat exchange with the outdoor air blown by the outdoor blower while passing through the outdoor heat exchanger 3, and then heat for heat recovery. While passing through the exchanger 4, heat exchange is performed with the exhaust of the ventilation device 10. At this time, since the exhaust is closer to the indoor comfortable temperature than the outdoor air, in the process of condensing the refrigerant, the exhaust can be radiated to the exhaust from the ventilator 10 in addition to the heat radiated to the outdoor air. As a result, the end point of the condensation stroke changes from the C state to the C ′ state and the degree of supercooling increases, so the amount of heat exchange with the room air in the evaporation stroke increases, and the cooling capacity improves. Moreover, even if the rotational speed of the outdoor fan is reduced, the cooling capacity is maintained, and the power consumed by the outdoor fan is reduced.
 <暖房運転時>
 暖房運転時には、流路切替装置2により冷媒の流れ方向が図1の破線矢印で示す方向に切り替えられる。圧縮機1より吐出された高温高圧の冷媒は、室内側熱交換器6aに流入し、室内空気と熱交換して凝縮する。凝縮した冷媒は、絞り装置5aによって減圧され、排熱回収用熱交換器4、室外側熱交換器3に順次流入して蒸発する。蒸発した冷媒は、再び圧縮機1に吸入、圧縮され高温高圧となって吐出されるサイクルを繰り返す。
<During heating operation>
During the heating operation, the flow direction of the refrigerant is switched by the flow path switching device 2 to the direction indicated by the broken line arrow in FIG. The high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 6a, and is condensed by exchanging heat with indoor air. The condensed refrigerant is decompressed by the expansion device 5a, and sequentially flows into the exhaust heat recovery heat exchanger 4 and the outdoor heat exchanger 3 to evaporate. The evaporated refrigerant is again sucked into the compressor 1 and compressed, and the cycle of being discharged at a high temperature and high pressure is repeated.
 図5は、実施の形態1に係る空気調和装置100の暖房運転時の冷媒の状態変化を説明する圧力-エンタルピ線図である。図5に示すように、Dの状態において凝縮した低温の冷媒は、まず、排熱回収用熱交換器4を通過しながら換気装置10の排気と熱交換を行い、その後、室外側熱交換器3を通過しながら室外空気と熱交換を行う。このとき、排気は、室外空気より室内の快適温度に近く、冷媒と排気との熱交換が先行して実施され、室外側熱交換器3の熱交換量が低減される。つまり、冷媒は、図5のA’→B→C→D’の冷凍サイクルを実施することになる。これにより、室外送風機の回転速度を低下させても暖房能力が維持され、消費電力が低減される。また、例えば、室外送風機の回転速度を低下させず、D’→A’の圧力をより高圧にした場合には、熱交換器への着霜が抑制され、連続暖房が促進される。 FIG. 5 is a pressure-enthalpy diagram for explaining a change in refrigerant state during the heating operation of the air-conditioning apparatus 100 according to Embodiment 1. As shown in FIG. 5, the low-temperature refrigerant condensed in the state D first exchanges heat with the exhaust of the ventilator 10 while passing through the heat exchanger 4 for exhaust heat recovery, and then the outdoor heat exchanger. Heat exchange with outdoor air is performed while passing through 3. At this time, the exhaust is closer to the indoor comfortable temperature than the outdoor air, and heat exchange between the refrigerant and the exhaust is performed in advance, and the heat exchange amount of the outdoor heat exchanger 3 is reduced. That is, the refrigerant performs the refrigeration cycle A ′ → B → C → D ′ in FIG. 5. Thereby, even if it reduces the rotational speed of an outdoor air blower, heating capability is maintained and power consumption is reduced. Further, for example, when the pressure of D ′ → A ′ is increased without reducing the rotation speed of the outdoor blower, frost formation on the heat exchanger is suppressed, and continuous heating is promoted.
 <霜取り運転時>
 霜取り運転時には、流路切替装置2により冷媒の流れ方向を図1の実線矢印で示す方向に一時的に切り替え、圧縮機1から吐出された高温高圧の冷媒を室外側熱交換器3に流入させて室外側熱交換器3の霜取りが行われる。なお、霜取り運転は、蒸発器が空気を0℃以下まで冷却した場合に、蒸発器の表面の空気に含まれる水分が凝結して形成された氷を取り除くために実施される。霜取り運転は、氷の厚さが次第に増加し、蒸発器での熱交換が阻害されることを防止するための運転であり、一般的に冬季暖房運転中に実施される。
<During defrosting operation>
During the defrosting operation, the flow direction of the refrigerant is temporarily switched by the flow path switching device 2 in the direction indicated by the solid line arrow in FIG. 1 so that the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3. The defrosting of the outdoor heat exchanger 3 is performed. The defrosting operation is performed in order to remove ice formed by condensation of moisture contained in the air on the surface of the evaporator when the evaporator cools the air to 0 ° C. or lower. The defrosting operation is an operation for preventing the ice thickness from gradually increasing and hindering the heat exchange in the evaporator, and is generally performed during the winter heating operation.
 図6は、実施の形態1に係る空気調和装置100にバイパス回路44を設けた場合の冷媒回路構成図である。図6に示すように、排熱回収用熱交換器4をバイパスするバイパス回路44は、室外側熱交換器3と、絞り装置5aとの間に設けられ、電磁弁7が接続されている。暖房運転中に実施される霜取り運転において、冷媒を排熱回収用熱交換器4に流通させると、霜取りの能力が減退してしまうが、電磁弁7を操作することで、冷媒が排熱回収用熱交換器4をバイパスし、排熱回収用熱交換器4を流通しない構成となる。電磁弁7が設けられたバイパス回路44により、冷媒が排熱回収用熱交換器4を流通することがなくなり、霜取りの効果を最大限に得られる。 FIG. 6 is a refrigerant circuit configuration diagram when the bypass circuit 44 is provided in the air-conditioning apparatus 100 according to Embodiment 1. As shown in FIG. 6, the bypass circuit 44 that bypasses the heat exchanger 4 for exhaust heat recovery is provided between the outdoor heat exchanger 3 and the expansion device 5a, and the electromagnetic valve 7 is connected thereto. In the defrosting operation performed during the heating operation, if the refrigerant is circulated through the heat exchanger 4 for exhaust heat recovery, the defrosting ability is reduced. However, by operating the electromagnetic valve 7, the refrigerant recovers the exhaust heat. The heat exchanger 4 is bypassed, and the exhaust heat recovery heat exchanger 4 is not circulated. The bypass circuit 44 provided with the solenoid valve 7 prevents the refrigerant from flowing through the heat exchanger 4 for exhaust heat recovery, so that the effect of defrosting can be maximized.
 <効果>
 以上説明した、実施の形態1に係る空気調和装置100においては、室外側熱交換器3と、絞り装置5aとの間に接続された排熱回収用熱交換器4により、排気と冷媒とが熱交換を行う。そのため、排気されていた熱を排熱回収用熱交換器4で回収して、室外機30、室内機60aの負担を軽減できる。また、排熱回収用熱交換器4は、室内機60aと直列に接続されるため、室内機60aの設置台数の制約を排除でき、且つ、取り付けのための施工が容易である。
<Effect>
In the air conditioning apparatus 100 according to Embodiment 1 described above, the exhaust gas and the refrigerant are separated by the heat exchanger 4 for exhaust heat recovery connected between the outdoor heat exchanger 3 and the expansion device 5a. Perform heat exchange. Therefore, the exhausted heat is recovered by the exhaust heat recovery heat exchanger 4, and the burden on the outdoor unit 30 and the indoor unit 60a can be reduced. Moreover, since the heat exchanger 4 for exhaust heat recovery is connected in series with the indoor unit 60a, the restriction on the number of installed indoor units 60a can be eliminated, and the installation work can be easily performed.
 また、実施の形態1に係る空気調和装置100においては、霜取運転中には、電磁弁7の操作により排熱回収用熱交換器4をバイパスするバイパス回路44を形成することで、霜取能力を最大限に発揮させることができる。 In the air conditioner 100 according to Embodiment 1, during the defrosting operation, the defrosting operation is performed by forming the bypass circuit 44 that bypasses the heat exchanger 4 for exhaust heat recovery by operating the electromagnetic valve 7. You can maximize your ability.
 また、実施の形態1に係る空気調和装置100においては、室内側熱交換器6a、6b及び絞り装置5a、5bが、排熱回収用熱交換器4に対し直列に接続されて室内機60aが構成されている。そのため、室内機60aの設置台数の制約を排除でき、且つ、室内機60aを取り付けるための施工が容易である。 In the air conditioner 100 according to Embodiment 1, the indoor heat exchangers 6a and 6b and the expansion devices 5a and 5b are connected in series to the exhaust heat recovery heat exchanger 4 so that the indoor unit 60a is connected. It is configured. Therefore, the restriction on the number of installed indoor units 60a can be eliminated, and construction for attaching the indoor units 60a is easy.
 なお、流路切替装置2としては、四方弁、二方弁、又は、三方弁を単体で用いていてもよく、複数を組み合わせたものを用いていてもよい。 In addition, as the flow path switching device 2, a four-way valve, a two-way valve, or a three-way valve may be used alone, or a combination of a plurality of valves may be used.
 実施の形態2.
 図7は、実施の形態2に係る空気調和装置102の冷媒回路構成図である。図7に示すように、本実施の形態に係る空気調和装置102は、室外機30と、室内機60aとの間に排熱回収用補助回路8を備えている点で実施の形態1と異なる。排熱回収用補助回路8は、本発明の切替装置の別の一例である。排熱回収用補助回路8は、空気調和装置102において、排熱回収モード、第1霜取モード、冷媒漏洩防止モード、第2霜取モードを実施させる。なお、空気調和装置102のその他の構成は、実施の形態1と同様であるため、説明を省略する。
Embodiment 2. FIG.
FIG. 7 is a refrigerant circuit configuration diagram of the air-conditioning apparatus 102 according to Embodiment 2. As shown in FIG. 7, the air-conditioning apparatus 102 according to the present embodiment is different from the first embodiment in that an exhaust heat recovery auxiliary circuit 8 is provided between the outdoor unit 30 and the indoor unit 60a. . The exhaust heat recovery auxiliary circuit 8 is another example of the switching device of the present invention. The auxiliary circuit 8 for exhaust heat recovery causes the air conditioner 102 to perform an exhaust heat recovery mode, a first defrosting mode, a refrigerant leakage prevention mode, and a second defrosting mode. The other configuration of the air conditioner 102 is the same as that of the first embodiment, and thus the description thereof is omitted.
 <排熱回収用補助回路8の構成>
 排熱回収用補助回路8は、排熱回収用熱交換器4と、霜取り用絞り装置9と、複数の電磁弁7a、7b、7c、7d、7e、及び、7fとから形成されている。複数の電磁弁7a、7b、7c、7d、7e、及び、7fにより構成される排熱回収用補助回路8は、本発明の切替装置の一例である。具体的には、電磁弁7aは、室内側熱交換器6aと流路切替装置2との間に、電磁弁7fは、絞り装置5aと室外側熱交換器3との間に配置される。電磁弁bと電磁弁dとは、電磁弁7aの流路切替装置2側と、電磁弁7fの室外側熱交換器3側とを接続する回路に配置される。電磁弁cと電磁弁eとは、電磁弁7aの室内側熱交換器6a側と、電磁弁7fの絞り装置5a側とを接続する回路に配置される。そして、電磁弁bと電磁弁dとの間、及び、電磁弁cと電磁弁eとの間を接続する回路には、排熱回収用熱交換器4と、霜取り用絞り装置9とが配置される。複数の電磁弁7a、7b、7c、7d、7e、及び、7fは、制御装置により空気調和装置102の動作内容に応じてON、OFFが制御され、冷媒が流通する経路を変更する。
<Configuration of auxiliary circuit 8 for exhaust heat recovery>
The exhaust heat recovery auxiliary circuit 8 is formed of the exhaust heat recovery heat exchanger 4, a defrosting expansion device 9, and a plurality of electromagnetic valves 7a, 7b, 7c, 7d, 7e, and 7f. The exhaust heat recovery auxiliary circuit 8 including the plurality of electromagnetic valves 7a, 7b, 7c, 7d, 7e, and 7f is an example of the switching device of the present invention. Specifically, the electromagnetic valve 7a is disposed between the indoor heat exchanger 6a and the flow path switching device 2, and the electromagnetic valve 7f is disposed between the expansion device 5a and the outdoor heat exchanger 3. The solenoid valve b and the solenoid valve d are arranged in a circuit that connects the flow path switching device 2 side of the solenoid valve 7a and the outdoor heat exchanger 3 side of the solenoid valve 7f. The solenoid valve c and the solenoid valve e are arranged in a circuit that connects the indoor heat exchanger 6a side of the solenoid valve 7a and the expansion device 5a side of the solenoid valve 7f. And in the circuit which connects between the solenoid valve b and the solenoid valve d and between the solenoid valve c and the solenoid valve e, the heat exchanger 4 for exhaust heat recovery and the expansion device 9 for defrosting are arranged. Is done. The plurality of solenoid valves 7a, 7b, 7c, 7d, 7e, and 7f are controlled to be turned on and off according to the operation content of the air conditioner 102 by the control device, and change the route through which the refrigerant flows.
 表1は、それぞれの切り替えのパターンにおける電磁弁7a、7b、7c、7d、7e、及び、7fのON、OFF、構成される冷媒回路の構成図、運転のモード、及び、効果について示している。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the configuration diagram of the refrigerant circuit, the operation mode, and the effect of ON / OFF of the solenoid valves 7a, 7b, 7c, 7d, 7e, and 7f in each switching pattern. .
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、排熱回収用補助回路8の電磁弁7a、7b、7c、7d、7e、及び、7fのそれぞれは、ON、OFF、つまり、開状態と閉状態とが切り替えられ、図8、10、12、14及び16に示す冷媒回路が構成される。なお、図中ONであり開状態である電磁弁を白抜きで示し、OFFであり閉状態である電磁弁を黒抜きで示す。 As shown in Table 1, each of the solenoid valves 7a, 7b, 7c, 7d, 7e, and 7f of the exhaust heat recovery auxiliary circuit 8 is switched between ON and OFF, that is, an open state and a closed state, The refrigerant circuit shown in FIGS. 8, 10, 12, 14 and 16 is configured. In the figure, an electromagnetic valve that is ON and in an open state is shown in white, and an electromagnetic valve that is OFF and in a closed state is shown in black.
 <排熱回収モード>
 図8は、実施の形態2に係る排熱回収モードの冷媒回路構成図である。排熱回収モードでは、電磁弁7a、7d、及び、7eは、ONとなり、電磁弁7b、7c、及び、7fは、OFFとなる。すると、図8に示すように、No.1の切り替えパターンの冷媒回路が構成され、換気の排熱を回収することで省エネルギー化を図った排熱回収モードが実施される。図9は、実施の形態2に係るNo.1の切り替えパターンにおける冷媒の流路を示す図である。図9に示すように、No.1の切り替えパターンでは、排熱回収用熱交換器4が、室外側熱交換器3と、絞り装置5aとの間に直列に接続され、図1の冷媒回路と同様の構成の冷媒回路を形成し、冷媒が循環する。冷房運転時には、圧縮機1から吐出された高温高圧の冷媒が、室外側熱交換器3において室外空気と熱交換を行い、その後、排熱回収用熱交換器4において換気装置10の排気と熱交換を行う。これにより、室外側熱交換器3の熱交換量を増大させずに排気から冷熱を回収して、冷房能力を向上させる、又は、冷房能力を維持しながら、室外側熱交換器3の熱交換量を低減させることができる。また、暖房運転時には、室内側熱交換器6aにおいて凝縮した低温の冷媒が、排熱回収用熱交換器4において換気装置10の排気と熱交換を行い、その後、室外側熱交換器3において室外空気と熱交換を行う。これにより、暖房能力を低下させることなく、排熱から温熱を回収して室外側熱交換器3の熱交換量を低減させる、又は、室外側熱交換器3の熱交換量を維持しながら暖房能力を向上させることが可能となる。したがって、実施の形態1において説明した場合と同様、換気装置10からの排熱を空気調和装置102における冷房運転、暖房運転に有効活用することができる。
<Exhaust heat recovery mode>
FIG. 8 is a refrigerant circuit configuration diagram in the exhaust heat recovery mode according to the second embodiment. In the exhaust heat recovery mode, the electromagnetic valves 7a, 7d, and 7e are turned on, and the electromagnetic valves 7b, 7c, and 7f are turned off. Then, as shown in FIG. A refrigerant circuit having a switching pattern of 1 is configured, and an exhaust heat recovery mode is implemented in which energy is saved by recovering exhaust heat of ventilation. FIG. 9 shows No. 2 according to Embodiment 2. It is a figure which shows the flow path of the refrigerant | coolant in 1 switching pattern. As shown in FIG. In the switching pattern 1, the exhaust heat recovery heat exchanger 4 is connected in series between the outdoor heat exchanger 3 and the expansion device 5 a to form a refrigerant circuit having the same configuration as the refrigerant circuit of FIG. 1. The refrigerant circulates. During the cooling operation, the high-temperature and high-pressure refrigerant discharged from the compressor 1 exchanges heat with outdoor air in the outdoor heat exchanger 3, and then exhausts and heats of the ventilator 10 in the exhaust heat recovery heat exchanger 4. Exchange. As a result, the cooling heat is recovered from the exhaust without increasing the heat exchange amount of the outdoor heat exchanger 3 to improve the cooling capacity, or the heat exchange of the outdoor heat exchanger 3 while maintaining the cooling capacity. The amount can be reduced. Further, during the heating operation, the low-temperature refrigerant condensed in the indoor heat exchanger 6a exchanges heat with the exhaust of the ventilator 10 in the exhaust heat recovery heat exchanger 4, and then outdoor in the outdoor heat exchanger 3. Exchange heat with air. This reduces the heat exchange amount of the outdoor heat exchanger 3 by reducing the heat from the exhaust heat without reducing the heating capacity, or heating while maintaining the heat exchange amount of the outdoor heat exchanger 3 Capability can be improved. Therefore, as in the case described in the first embodiment, the exhaust heat from the ventilator 10 can be effectively used for the cooling operation and the heating operation in the air conditioner 102.
 <第1霜取モード>
 図10は、実施の形態2に係る第1霜取モードの冷媒回路構成図である。図10に示すように、電磁弁7b、7c、及び、7fは、ONとなり、電磁弁7a、7d、及び、7eは、OFFとなって、No.2の切り替えパターンの冷媒回路が構成され、霜取運転において、霜取効果を促進させた第1霜取モードが実施される。図11は、実施の形態2に係るNo.2の切り替えパターンにおける冷媒の流路を示す図である。図11に示すように、No.2の切り替えパターンでは、排熱回収用熱交換器4が圧縮機1と室内側熱交換器6aとの間に直列に接続される。この場合には、流路切替装置2により、冷媒の流れ方向が実線矢印の方向に切替えられ、圧縮機1から吐出された高温・高圧の冷媒を室外側熱交換器3に流入させる。これは、冷房運転持と同様の流れ方向である。室外側熱交換器3から流出した冷媒は、室内機60aに流入し、その後、排熱回収用熱交換器4に流入する。冷媒は、排熱回収用熱交換器4において換気装置10の排気と熱交換した後、圧縮機1に流入し、再び室外側熱交換器3において霜取りを実施する。霜取り運転において、冷媒は、熱交換した熱量を活用し、霜取り運転の効果を促進させることができる。室内機送風機の回転速度を低減させ、排熱回収用熱交換器4が設置されない場合の霜取り能力を維持するのに足りる回転速度に低減させれば、霜取り運転時、冷風が室内機60a、60bから吹き出ることで利用者に与える不快感が低減される。霜取り運転開始前の暖房運転時において、予めNo.2の切り替えパターンとし、排熱回収用熱交換器4に圧縮機1から吐出される高温高圧の冷媒を流入させておいてもよい。これにより、室外側熱交換器3の霜取り運転が促進するように制御される。
<First defrosting mode>
FIG. 10 is a refrigerant circuit configuration diagram of the first defrosting mode according to the second embodiment. As shown in FIG. 10, the electromagnetic valves 7b, 7c, and 7f are turned on, and the electromagnetic valves 7a, 7d, and 7e are turned off. The refrigerant circuit of 2 switching patterns is comprised, and the 1st defrost mode which promoted the defrost effect in the defrost operation is implemented. FIG. 11 shows No. 2 according to the second embodiment. It is a figure which shows the flow path of the refrigerant | coolant in 2 switching patterns. As shown in FIG. In the switching pattern 2, the exhaust heat recovery heat exchanger 4 is connected in series between the compressor 1 and the indoor heat exchanger 6 a. In this case, the flow direction of the refrigerant is switched by the flow path switching device 2 in the direction of the solid arrow, and the high-temperature and high-pressure refrigerant discharged from the compressor 1 is caused to flow into the outdoor heat exchanger 3. This is a flow direction similar to that of cooling operation holding. The refrigerant that has flowed out of the outdoor heat exchanger 3 flows into the indoor unit 60a, and then flows into the heat exchanger 4 for exhaust heat recovery. The refrigerant exchanges heat with the exhaust of the ventilator 10 in the exhaust heat recovery heat exchanger 4, then flows into the compressor 1, and defrosts again in the outdoor heat exchanger 3. In the defrosting operation, the refrigerant can promote the effect of the defrosting operation by utilizing the amount of heat exchanged. If the rotational speed of the indoor unit blower is reduced and the rotational speed is low enough to maintain the defrosting capability when the heat exchanger 4 for exhaust heat recovery is not installed, the cold air is generated in the indoor units 60a and 60b during the defrosting operation. The unpleasant feeling given to the user by blowing out from is reduced. In the heating operation before the start of the defrosting operation, No. The high-temperature and high-pressure refrigerant discharged from the compressor 1 may be caused to flow into the exhaust heat recovery heat exchanger 4. Thereby, it controls so that the defrosting operation | movement of the outdoor side heat exchanger 3 is accelerated | stimulated.
 <冷媒漏洩防止モード>
 図12、及び、図13は、実施の形態2に係る冷媒漏洩防止モードの冷媒回路構成図である。図12に示すように、電磁弁7b、及び、7dは、ONとなり、電磁弁7a、7c、7e、及び、7fは、OFFとなって、No.3の切り替えパターンの冷媒回路が構成される。また、図13に示すように、電磁弁7a、7c、7e、及び、7fが、ONとなり、電磁弁7b、及び、7dが、OFFとなって、No.4の切り替えパターンの冷媒回路が構成される。そして、冷媒の漏洩が発生した場合において、室内への冷媒漏洩量を軽減させる冷媒漏洩防止モードが実施される。図14は、実施の形態2に係るNo.3又はNo.4の切り替えパターンにおける冷媒の流路を示す図である。図14に示すように、No.3又はNo.4の切り替えパターンでは、排熱回収用熱交換器4と室内側熱交換器6aとが冷媒回路から切り離された構成となる。このように、冷媒漏洩が検知された際には、圧縮機1の運転を停止すると共に、No.3、又は、No.4の切り替えパターンとして、排熱回収用熱交換器4と室内側熱交換器6aとが冷媒回路から切り離された構成にする。これにより、室内への冷媒の漏洩量が軽減される。
<Refrigerant leakage prevention mode>
12 and 13 are refrigerant circuit configuration diagrams in the refrigerant leakage prevention mode according to the second embodiment. As shown in FIG. 12, the electromagnetic valves 7b and 7d are turned on, and the electromagnetic valves 7a, 7c, 7e and 7f are turned off. A refrigerant circuit having three switching patterns is configured. Further, as shown in FIG. 13, the solenoid valves 7a, 7c, 7e, and 7f are turned on, the solenoid valves 7b and 7d are turned off, and no. A refrigerant circuit having four switching patterns is configured. And when the leakage of a refrigerant | coolant generate | occur | produces, the refrigerant | coolant leakage prevention mode which reduces the refrigerant | coolant leakage amount to room | chamber interior is implemented. FIG. 14 shows No. 2 according to the second embodiment. 3 or No. It is a figure which shows the flow path of the refrigerant | coolant in 4 switching patterns. As shown in FIG. 3 or No. In the switching pattern 4, the exhaust heat recovery heat exchanger 4 and the indoor heat exchanger 6 a are separated from the refrigerant circuit. Thus, when refrigerant leakage is detected, the operation of the compressor 1 is stopped and 3 or No. As the switching pattern 4, the heat exchanger 4 for exhaust heat recovery and the indoor heat exchanger 6a are separated from the refrigerant circuit. Thereby, the amount of refrigerant leakage into the room is reduced.
 <第2霜取モード>
 図15、及び、図16は、実施の形態2に係る第2霜取モードの冷媒回路構成図である。図15に示すように、電磁弁7a、7c、及び、7dは、ONとなり、電磁弁7b、7e、及び、7fは、OFFとなって、No.5の切り替えパターンの冷媒回路が構成される。また、図16に示すように、電磁弁7b、7e、及び、7fは、ONとなり、電磁弁7a、7c、及び、7dは、OFFとなって、No.6の切り替えパターンの冷媒回路を構成する。No.4、No.5の切り替えパターンの冷媒回路により、霜取り運転中に利用者が感じる冷風感を低減する第2霜取モードが実施される。図17は、実施の形態2に係るNo.5の切り替えパターンにおける冷媒の流路を示す図である。図18は、実施の形態2に係るNo.6の切り替えパターンにおける冷媒の流路を示す図である。図17、及び、図18に示すように、No.5、No.6のいずれの切り替えパターンでは、冷媒を圧縮機1から室外側熱交換器3に流入させ、室内側熱交換器6aを介さず霜取り用絞り装置9と、排熱回収用熱交換器4とに流入させる。これにより、室内側熱交換器6aを介さない冷凍サイクルが形成され、霜取り運転中に室内機60a、60bから冷風が吹出すことを防止することができる。なお、霜取り用絞り装置9は、空気調和装置102が霜取り運転以外の運転を実施する際には、全閉としておけばよい。
<Second defrosting mode>
FIGS. 15 and 16 are refrigerant circuit configuration diagrams in the second defrosting mode according to the second embodiment. As shown in FIG. 15, the solenoid valves 7a, 7c, and 7d are turned on, and the solenoid valves 7b, 7e, and 7f are turned off. A refrigerant circuit having five switching patterns is configured. Further, as shown in FIG. 16, the solenoid valves 7b, 7e, and 7f are turned on, and the solenoid valves 7a, 7c, and 7d are turned off. A refrigerant circuit having six switching patterns is configured. No. 4, no. With the refrigerant circuit having the switching pattern of 5, the second defrosting mode for reducing the cool wind feeling felt by the user during the defrosting operation is performed. FIG. 17 shows No. 2 according to Embodiment 2. It is a figure which shows the flow path of the refrigerant | coolant in 5 switching patterns. 18 shows No. 2 according to the second embodiment. It is a figure which shows the flow path of the refrigerant | coolant in 6 switching patterns. As shown in FIG. 17 and FIG. 5, no. 6, the refrigerant is allowed to flow from the compressor 1 to the outdoor heat exchanger 3, and to the defrosting expansion device 9 and the exhaust heat recovery heat exchanger 4 without going through the indoor heat exchanger 6 a. Let it flow. Thereby, the refrigerating cycle which does not go through the indoor side heat exchanger 6a is formed, and it can prevent that cool air blows off from the indoor units 60a and 60b during the defrosting operation. The defrosting expansion device 9 may be fully closed when the air conditioner 102 performs an operation other than the defrosting operation.
 図19は、実施の形態2に係る制御装置による切り替えパターンの選択方法を示すフローチャートである。排熱回収用補助回路8の電磁弁7a、7b、7c、7d、7e、及び、7fの切り替えパターンは、制御装置により選択される。制御装置による制御は、空気調和装置102が運転している間、定期的、且つ、連続的に実施される。図19に示すように、制御装置は、ステップS1において、冷媒漏洩の有無を判断し、漏洩があると判断すると、ステップS2に移行し、No.3、又はNo.4の切り替えパターンを選択する。制御装置は、ステップS1において、冷媒漏洩がないと判断すると、ステップS3に移行する。ステップS3において、霜取り運転中か否かを判断し、霜取り運転中であると判断すると、ステップS4に移行し、霜取り運転中ではないと判断すると、ステップS5に移行する。そして、制御装置は、ステップS5において、パターンNo.2、No.5、又は、No.6を選択し、ステップS5において、パターンNo.1を選択する。これにより、空気調和装置102の動作内容に応じて冷媒が流通する経路を変更することができる。 FIG. 19 is a flowchart showing a method for selecting a switching pattern by the control device according to the second embodiment. The switching pattern of the electromagnetic valves 7a, 7b, 7c, 7d, 7e, and 7f of the auxiliary circuit 8 for exhaust heat recovery is selected by the control device. The control by the control device is performed regularly and continuously while the air conditioner 102 is operating. As shown in FIG. 19, in step S1, the control device determines whether or not there is a refrigerant leak. 3 or No. 4 switching patterns are selected. When the control device determines that there is no refrigerant leakage in step S1, the control device proceeds to step S3. In step S3, it is determined whether or not the defrosting operation is being performed. If it is determined that the defrosting operation is being performed, the process proceeds to step S4. If it is determined that the defrosting operation is not being performed, the process proceeds to step S5. Then, in step S5, the control device determines the pattern No. 2, No. 5 or No. 6 is selected, and in step S5, the pattern No. Select 1. Thereby, the path | route through which a refrigerant | coolant distribute | circulates according to the operation | movement content of the air conditioning apparatus 102 can be changed.
 以上説明した、実施の形態2に係る空気調和装置102においては、排熱回収用熱交換器4に設けられた電磁弁7a、7b、7c、7d、7e、及び、7fのON、OFFにより冷媒の流路を切り替えて運転内容を変更することができる。 In the air conditioning apparatus 102 according to the second embodiment described above, the refrigerant is turned on and off by the electromagnetic valves 7a, 7b, 7c, 7d, 7e, and 7f provided in the heat exchanger 4 for exhaust heat recovery. The operation content can be changed by switching the flow path.
 また、実施の形態2に係る空気調和装置102においては、排熱回収用熱交換器4と直列に接続された霜取り用絞り装置9を備えているため、霜取り運転モードにおいて、室内側熱交換器6a、6bを介さずに霜取運転を実施することができる。 In addition, the air conditioner 102 according to the second embodiment includes the defrosting expansion device 9 connected in series with the exhaust heat recovery heat exchanger 4. Therefore, in the defrosting operation mode, the indoor heat exchanger The defrosting operation can be performed without going through 6a and 6b.
 また、実施の形態2に係る空気調和装置102においては、室外側熱交換器3と、絞り装置5a、5bとの間に排熱回収用熱交換器4を接続し、排熱を冷房運転、暖房運転に活用する排熱回収モードが実行されるため、排熱を有効活用できる。 In the air conditioner 102 according to the second embodiment, the exhaust heat recovery heat exchanger 4 is connected between the outdoor heat exchanger 3 and the expansion devices 5a and 5b, and the exhaust heat is cooled. Since the exhaust heat recovery mode used for heating operation is executed, the exhaust heat can be used effectively.
 また、実施の形態2に係る空気調和装置102においては、冷媒漏洩が検出されると、圧縮機1の運転を停止させると共に、電磁弁7a、7b、7c、7d、7e、及び、7fのON、OFFを切り替える。そして、圧縮機1及び室外側熱交換器3に冷媒を循環させ、室内側熱交換器6a、6bへの冷媒の循環を停止させた、冷媒漏洩防止モードが実行される。これにより、排熱回収用熱交換器4と室内側熱交換器6aとが冷媒回路から切り離され、冷媒の漏洩量を軽減することができる。 Further, in the air conditioner 102 according to Embodiment 2, when refrigerant leakage is detected, the operation of the compressor 1 is stopped and the electromagnetic valves 7a, 7b, 7c, 7d, 7e, and 7f are turned on. , Switch off. Then, the refrigerant leakage prevention mode is executed in which the refrigerant is circulated through the compressor 1 and the outdoor heat exchanger 3 and the circulation of the refrigerant to the indoor heat exchangers 6a and 6b is stopped. Thereby, the heat exchanger 4 for exhaust heat recovery and the indoor heat exchanger 6a are disconnected from the refrigerant circuit, and the amount of refrigerant leakage can be reduced.
 また、実施の形態2に係る空気調和装置102においては、電磁弁7a、7b、7c、7d、7e、及び、7fのON、OFFを切り替え、圧縮機1、室外側熱交換器3、排熱回収用熱交換器4、及び、室内側熱交換器6a、6bに冷媒を循環させる。これにより、第1霜取りモードが実行される霜取運転において、室外側熱交換器3の霜取効果を促進させることができる。 In the air conditioner 102 according to the second embodiment, the electromagnetic valves 7a, 7b, 7c, 7d, 7e, and 7f are switched on and off, the compressor 1, the outdoor heat exchanger 3, and the exhaust heat. The refrigerant is circulated through the recovery heat exchanger 4 and the indoor heat exchangers 6a and 6b. Thereby, the defrosting effect of the outdoor heat exchanger 3 can be promoted in the defrosting operation in which the first defrosting mode is executed.
 また、実施の形態2に係る空気調和装置102においては、電磁弁7a、7b、7c、7d、7e、及び、7fのON、OFFを切り替え、圧縮機1、室外側熱交換器3、及び、排熱回収用熱交換器4に冷媒を循環させる。これにより、霜取り運転において、室内機60a、60bから冷風が吹出すことが防止された、第2霜取りモードが実行される。 In the air conditioner 102 according to the second embodiment, the electromagnetic valves 7a, 7b, 7c, 7d, 7e, and 7f are switched on and off, the compressor 1, the outdoor heat exchanger 3, and A refrigerant is circulated through the heat exchanger 4 for exhaust heat recovery. Thereby, in the defrosting operation, the second defrosting mode in which the cold air is prevented from being blown out from the indoor units 60a and 60b is executed.
 また、実施の形態2に係る空気調和装置102においては、排熱回収モードと、冷媒漏洩防止モードと、第1霜取りモードと、第2霜取りモードとのいずれかを選択し、実行させることができる。これにより、実施の形態1の効果に加え、冷媒漏洩時の冷媒漏洩量を抑制する、又は、霜取運転時の冷風感を低減することが可能となる。 Further, in the air conditioning apparatus 102 according to Embodiment 2, any one of the exhaust heat recovery mode, the refrigerant leakage prevention mode, the first defrosting mode, and the second defrosting mode can be selected and executed. . Thereby, in addition to the effect of Embodiment 1, it becomes possible to suppress the amount of refrigerant leakage at the time of refrigerant leakage, or to reduce the feeling of cold air during defrosting operation.
 実施の形態3.
 実施の形態3に係る空気調和装置103は、実施の形態2で説明した、複数の電磁弁7a~7fから構成される切替装置に代えて、切替装置として回転式流路開閉弁80を備えた冷媒回路である点で実施の形態1、2と異なる。本実施の形態に係る空気調和装置103においては、室外機30と、室内機60aとの間に回転式流路開閉弁80が配置されている。回転式流路開閉弁80は、実施の形態2において説明した排熱回収用補助回路8と同様、空気調和装置103において、排熱回収モード、第1霜取モード、冷媒漏洩防止モード、第2霜取モードを実施する冷媒回路を構築する切替装置である。
Embodiment 3 FIG.
The air conditioner 103 according to the third embodiment includes a rotary flow path opening / closing valve 80 as a switching device instead of the switching device configured by the plurality of electromagnetic valves 7a to 7f described in the second embodiment. It is different from the first and second embodiments in that it is a refrigerant circuit. In the air conditioner 103 according to the present embodiment, a rotary flow path opening / closing valve 80 is disposed between the outdoor unit 30 and the indoor unit 60a. The rotary flow path opening / closing valve 80 is similar to the exhaust heat recovery auxiliary circuit 8 described in the second embodiment in the air conditioner 103 in the exhaust heat recovery mode, the first defrosting mode, the refrigerant leakage prevention mode, the second It is the switching apparatus which builds the refrigerant circuit which implements defrost mode.
 <回転式流路開閉弁80の構成>
 図20は、実施の形態3に係る空気調和装置103における回転式流路開閉弁80の配置を示す模式図である。図20に示すように、回転式流路開閉弁80は、弁体外周部80aと、弁体外周部80aの内部に収容された第1円筒弁体81及び第2円筒弁体82とにより構成されている。回転式流路開閉弁80は、絞り装置5aと、流路切替装置2と、室外側熱交換器3と、室内側熱交換器6aとにそれぞれ接続される冷媒配管が接続されている。また、回転式流路開閉弁80には、排熱回収用熱交換器4を接続する冷媒配管、及び、バイパス回路84を形成する冷媒配管も接続されている。回転式流路開閉弁80には、モータ83などの電動機が搭載されており、モータ83の駆動により回転式流路開閉弁80の弁体が回動する。
<Configuration of the rotary flow path opening / closing valve 80>
FIG. 20 is a schematic diagram showing the arrangement of the rotary flow path opening / closing valve 80 in the air-conditioning apparatus 103 according to Embodiment 3. As shown in FIG. 20, the rotary flow path opening / closing valve 80 includes a valve body outer peripheral portion 80a, and a first cylindrical valve body 81 and a second cylindrical valve body 82 housed inside the valve body outer peripheral portion 80a. Has been. The rotary flow path opening / closing valve 80 is connected to refrigerant pipes respectively connected to the expansion device 5a, the flow path switching device 2, the outdoor heat exchanger 3, and the indoor heat exchanger 6a. The rotary flow path opening / closing valve 80 is also connected to a refrigerant pipe that connects the exhaust heat recovery heat exchanger 4 and a refrigerant pipe that forms a bypass circuit 84. The rotary flow path opening / closing valve 80 is equipped with an electric motor such as a motor 83, and the valve body of the rotary flow path opening / closing valve 80 is rotated by driving the motor 83.
 弁体外周部80aには、弁体外周部80aを貫通する複数の接続開口81a、81b、81c、81d、及び、接続開口82a、82b、82c、82dが形成されている。接続開口81a~81d、及び、接続開口82a~82dは、冷媒回路を構成する冷媒配管が接続されており、接続開口81a~81d、接続開口82a~82dを介して、弁体外周部80aに冷媒が流出入する。なお、接続開口は、本発明の第2開口部の一例である。 A plurality of connection openings 81a, 81b, 81c, 81d and connection openings 82a, 82b, 82c, 82d penetrating the valve body outer periphery 80a are formed in the valve body outer periphery 80a. The connection openings 81a to 81d and the connection openings 82a to 82d are connected to refrigerant pipes constituting a refrigerant circuit, and the refrigerant is connected to the valve body outer peripheral portion 80a via the connection openings 81a to 81d and the connection openings 82a to 82d. Flows in and out. The connection opening is an example of the second opening of the present invention.
 接続開口81a~81dは、弁体外周部80aの同一円周上に一列、等間隔に配置されている。接続開口82a~82dは、接続開口81a~81dを軸方向の位置において、弁体外周部80aの同一円周上に一列、等間隔に配置されている。接続開口81bは、室内機60aの絞り装置5aに接続される冷媒配管に接続し、接続開口81dは、室外機30の流路切替装置2に接続される冷媒配管に接続している。接続開口82bは、室内機60aの室内側熱交換器6aに接続される冷媒配管に接続し、接続開口82dは、室外機30の室外側熱交換器3に接続される冷媒配管に接続している。接続開口81aと接続開口82aとは、排熱回収用熱交換器4が接続された回路を構成する冷媒配管に接続している。接続開口81cと接続開口82cとは、バイパス回路84を構成する冷媒配管に接続している。接続開口81aと接続開口82aとを接続する回路には、排熱回収用熱交換器4と共に、不図示の霜取り用絞り装置が直列に接続されていてもよい。 The connection openings 81a to 81d are arranged in a line at equal intervals on the same circumference of the valve body outer periphery 80a. The connection openings 82a to 82d are arranged in a line at equal intervals on the same circumference of the valve body outer peripheral portion 80a at the positions in the axial direction of the connection openings 81a to 81d. The connection opening 81b is connected to the refrigerant pipe connected to the expansion device 5a of the indoor unit 60a, and the connection opening 81d is connected to the refrigerant pipe connected to the flow path switching device 2 of the outdoor unit 30. The connection opening 82b is connected to a refrigerant pipe connected to the indoor heat exchanger 6a of the indoor unit 60a, and the connection opening 82d is connected to a refrigerant pipe connected to the outdoor heat exchanger 3 of the outdoor unit 30. Yes. The connection opening 81a and the connection opening 82a are connected to a refrigerant pipe constituting a circuit to which the exhaust heat recovery heat exchanger 4 is connected. The connection opening 81c and the connection opening 82c are connected to a refrigerant pipe constituting the bypass circuit 84. A defrosting expansion device (not shown) may be connected in series with the heat exchanger 4 for exhaust heat recovery to the circuit connecting the connection opening 81a and the connection opening 82a.
 <第1円筒弁体81及び第2円筒弁体82の構成>
 図21は、実施の形態3に係る弁体外周部80aに収容される第1円筒弁体81及び第2円筒弁体82をそれぞれ軸方向に見たときの模式図である。図21に示すように、弁体外周部80aに収容される第1円筒弁体81及び第2円筒弁体82は、同一の円形断面の円筒形状を有する。第1円筒弁体81及び第2円筒弁体82には、弁体外周部80aの接続開口81a~81d、及び、接続開口82a~82dを流通した冷媒が、外周空間801、及び、外周空間802を介して流出入し、内部を流通する。外周空間801は、第1円筒弁体81と弁体外周部80aとの間に形成され、接続開口81a~81dが開口している。外周空間802は、第2円筒弁体82と弁体外周部80aとの間に形成され、接続開口82a~82dが開口している。第1円筒弁体81及び第2円筒弁体82の外周面と弁体外周部80aの内面との間は、弁体外周部80aの内面方向に突出する壁板80bにより仕切られ、外周空間801及び外周空間802が形成されている。壁板80bは、端部が弁体外周部80aの内面に摺動可能に当接している。外周空間801及び外周空間802は、第1円筒弁体81及び第2円筒弁体82の外周面から弁体外周部80aの内面方向に突出する複数の仕切板85により周方向に分割されている。第1円筒弁体81の内部には、管路811、812、813が形成され、第2円筒弁体82の内部には、管路821、822、823が形成されており、管路811、812、813、及び、管路821、822、823以外が領域Fとなっている。
<Configuration of first cylindrical valve body 81 and second cylindrical valve body 82>
FIG. 21 is a schematic view when the first cylindrical valve body 81 and the second cylindrical valve body 82 housed in the valve body outer peripheral portion 80a according to the third embodiment are viewed in the axial direction. As shown in FIG. 21, the 1st cylindrical valve body 81 and the 2nd cylindrical valve body 82 which are accommodated in the valve body outer peripheral part 80a have the cylindrical shape of the same circular cross section. In the first cylindrical valve body 81 and the second cylindrical valve body 82, the refrigerant flowing through the connection openings 81 a to 81 d and the connection openings 82 a to 82 d of the valve body outer peripheral portion 80 a is connected to the outer peripheral space 801 and the outer peripheral space 802. Flows in and out through the inside. The outer peripheral space 801 is formed between the first cylindrical valve body 81 and the valve body outer peripheral portion 80a, and connection openings 81a to 81d are opened. The outer peripheral space 802 is formed between the second cylindrical valve body 82 and the valve body outer peripheral portion 80a, and connection openings 82a to 82d are opened. The outer peripheral surfaces of the first cylindrical valve body 81 and the second cylindrical valve body 82 and the inner surface of the valve body outer peripheral portion 80a are partitioned by a wall plate 80b projecting in the inner surface direction of the valve body outer peripheral portion 80a. In addition, an outer peripheral space 802 is formed. The wall plate 80b is slidably in contact with the inner surface of the valve body outer peripheral portion 80a. The outer peripheral space 801 and the outer peripheral space 802 are divided in the circumferential direction by a plurality of partition plates 85 protruding from the outer peripheral surfaces of the first cylindrical valve body 81 and the second cylindrical valve body 82 toward the inner surface direction of the valve body outer peripheral portion 80a. . Pipe lines 811, 812, and 813 are formed inside the first cylindrical valve body 81, and pipe lines 821, 822, and 823 are formed inside the second cylindrical valve body 82, and the pipe lines 811, Areas F other than 812 and 813 and the pipe lines 821, 822 and 823 are the region F.
 図22は、実施の形態3に係る第1円筒弁体81及び第2円筒弁体82の周囲の構成を説明する模式図である。図22に示すように、第1円筒弁体81及び第2円筒弁体82の外周面810、820に形成された外周空間801及び外周空間802は、複数の仕切板85により周方向にi=16分割されており、複数の空間部81(i)、82(i)が形成されている。以下の説明において、それぞれの空間部81(i)、82(i)を、反時計回りに空間部81(1)~81(16)、82(1)~82(16)とする。空間部81(i)、82(i)のうちの一部は、外周面810、820が開口し、空間部81(i)、82(i)の外周面810、820の開口を介して第1円筒弁体81及び第2円筒弁体82の内部に冷媒を流出入させる。空間部81(i)、82(i)のうち、空間部81(10)、81(14)、82(10)、82(14)は、外周面810、820が閉塞されており、冷媒を流通させない。なお、外周面810、820の開口は、本発明の第1開口部の一例である。 FIG. 22 is a schematic diagram for explaining the configuration around the first cylindrical valve element 81 and the second cylindrical valve element 82 according to the third embodiment. As shown in FIG. 22, the outer circumferential space 801 and the outer circumferential space 802 formed on the outer circumferential surfaces 810 and 820 of the first cylindrical valve body 81 and the second cylindrical valve body 82 are i = in the circumferential direction by a plurality of partition plates 85. A plurality of space portions 81 (i) and 82 (i) are formed. In the following description, the space portions 81 (i) and 82 (i) are defined as space portions 81 (1) to 81 (16) and 82 (1) to 82 (16) counterclockwise. A part of the space portions 81 (i) and 82 (i) has openings in the outer peripheral surfaces 810 and 820, and the first through the openings in the outer peripheral surfaces 810 and 820 of the space portions 81 (i) and 82 (i). The refrigerant flows into and out of the first cylindrical valve body 81 and the second cylindrical valve body 82. Out of the space portions 81 (i) and 82 (i), the space portions 81 (10), 81 (14), 82 (10), and 82 (14) have the outer peripheral surfaces 810 and 820 closed, and the refrigerant Do not distribute. The openings on the outer peripheral surfaces 810 and 820 are an example of the first opening of the present invention.
 管路811、812、813、及び、管路821、822、823は、両端が外周面810、820の開口に接続されており、冷媒が所定の経路で第1円筒弁体81及び第2円筒弁体82内部を流通するように流路を規定する。管路811、812、813は、一端が接続する空間部81(i)から流入した冷媒を、他端が接続する空間部81(i)、82(i)に向けてのみ流通させることで冷媒の流路を規定する。具体的には、管路811は、空間部81(16)と、空間部81(4)とに接続する。管路812は、空間部81(2)と、空間部81(6)とに接続する。また、管路813は、空間部81(7)~81(9)と、空間部81(11)~81(13)とに接続する。管路821、822、823の両端も同様に、一端が接続する空間部82(i)から流入した冷媒を、他端が接続する空間部82(i)に向けてのみ流通させる。具体的には、管路821は、空間部82(12)と、空間部82(16)とに接続し、管路822は、空間部82(2)と、空間部82(6)とに接続し、管路823は、空間部82(3)~82(5)と、空間部82(7)~82(9)とに接続する。なお、管路813及び管路823に接続するそれぞれの空間部81(i)、82(i)のうち、隣接する空間部81(i)、82(i)は、間に仕切板85が設けられていない。 Both ends of the pipe lines 811, 812, 813 and the pipe lines 821, 822, 823 are connected to the openings of the outer peripheral surfaces 810, 820, and the refrigerant flows through the first cylindrical valve body 81 and the second cylinder through a predetermined path. A flow path is defined so as to flow inside the valve body 82. The pipe lines 811, 812, and 813 allow the refrigerant flowing from the space portion 81 (i) connected at one end to flow only toward the space portions 81 (i) and 82 (i) connected at the other end. The flow path is defined. Specifically, the pipe line 811 is connected to the space portion 81 (16) and the space portion 81 (4). The pipe line 812 is connected to the space part 81 (2) and the space part 81 (6). Further, the pipe line 813 is connected to the space portions 81 (7) to 81 (9) and the space portions 81 (11) to 81 (13). Similarly, at both ends of the pipes 821, 822, and 823, the refrigerant flowing from the space portion 82 (i) to which one end is connected flows only toward the space portion 82 (i) to which the other end is connected. Specifically, the pipe line 821 is connected to the space part 82 (12) and the space part 82 (16), and the pipe line 822 is connected to the space part 82 (2) and the space part 82 (6). The pipe line 823 is connected to the space portions 82 (3) to 82 (5) and the space portions 82 (7) to 82 (9). Of the space portions 81 (i) and 82 (i) connected to the pipe line 813 and the pipe line 823, the adjacent space portions 81 (i) and 82 (i) are provided with a partition plate 85 between them. It is not done.
 第1円筒弁体81及び第2円筒弁体82は、同軸上に配置され、内部が連通するように接合され、弁体外周部80aに収容されている。第1円筒弁体81及び第2円筒弁体82の外周面と、弁体外周部80aの内周面との間を外周空間801及び外周空間802に仕切る壁板80bは、第1円筒弁体81及び第2円筒弁体82との接合部分に設けられている。壁板80bの外周端は、複数の仕切板85と同様、弁体外周部80aの内面に摺動可能に当接している。第1円筒弁体81及び第2円筒弁体82の内部が連通することで、管路811、812、813、及び、管路821、822、823以外の領域Fは、冷媒の流路が規制されず、自由に流通することができる領域となる。領域Fに接続する空間部81(i)、82(i)は、流通する冷媒が特定の空間部81(i)、82(i)に向けて流通することがなく、領域Fに接続されたその他のいずれの空間部81(i)、82(i)に向けても流通することができる。具体的には、空間部81(1)、81(3)、81(5)、81(15)、及び、空間部82(1)、82(11)、82(13)、82(15)の外周面810、820が冷媒の流路が規制されない領域Fに接続する。例えば、空間部81(1)の外周面810、820の開口から流入した冷媒が、空間部82(15)から流出することができる。 The first cylindrical valve body 81 and the second cylindrical valve body 82 are arranged coaxially, are joined so that the inside communicates, and are accommodated in the valve body outer peripheral portion 80a. The wall plate 80b that partitions the outer peripheral surface of the first cylindrical valve body 81 and the second cylindrical valve body 82 and the inner peripheral surface of the valve body outer peripheral portion 80a into the outer peripheral space 801 and the outer peripheral space 802 is the first cylindrical valve body. 81 and the second cylindrical valve body 82. Similar to the plurality of partition plates 85, the outer peripheral end of the wall plate 80b is slidably in contact with the inner surface of the valve body outer peripheral portion 80a. Since the insides of the first cylindrical valve body 81 and the second cylindrical valve body 82 communicate with each other, in the region F other than the pipe lines 811, 812, 813 and the pipe lines 821, 822, 823, the refrigerant flow path is restricted. It is an area that can be freely distributed. The space portions 81 (i) and 82 (i) connected to the region F are connected to the region F without circulating refrigerant flowing toward the specific space portions 81 (i) and 82 (i). It can be distributed to any other space 81 (i), 82 (i). Specifically, the space portions 81 (1), 81 (3), 81 (5), 81 (15), and the space portions 82 (1), 82 (11), 82 (13), 82 (15). The outer peripheral surfaces 810 and 820 are connected to a region F where the flow path of the refrigerant is not restricted. For example, the refrigerant that has flowed from the openings of the outer peripheral surfaces 810 and 820 of the space portion 81 (1) can flow out of the space portion 82 (15).
 図23は、実施の形態3に係る第1円筒弁体81及び第2円筒弁体82が弁体外周部80aに収容された状態を示す模式図である。図23に示すように、弁体外周部80aには、第1円筒弁体81及び第2円筒弁体82が収容され、接続開口81a~81d、及び、接続開口82a~82dのそれぞれに冷媒配管が接続される。弁体外周部80aの接続開口81a~81d、及び、接続開口82a~82dと、第1円筒弁体81及び第2円筒弁体82の空間部81(i)、82(i)とが一致することで、回転式流路開閉弁80に流入した冷媒の流路が形成される。弁体外周部80aの内部で第1円筒弁体81及び第2円筒弁体82が回動すると、弁体外周部80aと、第1円筒弁体81及び第2円筒弁体82との相対的な位置関係が変化する。第1円筒弁体81及び第2円筒弁体82が回動されることで、接続開口81a~81d、及び、接続開口82a~82dに一致する空間部81(i)、82(i)が変更され、冷媒の流路が切り替えられる。 FIG. 23 is a schematic diagram showing a state in which the first cylindrical valve body 81 and the second cylindrical valve body 82 according to the third embodiment are accommodated in the valve body outer peripheral portion 80a. As shown in FIG. 23, a first cylindrical valve body 81 and a second cylindrical valve body 82 are accommodated in the valve body outer peripheral portion 80a, and refrigerant pipes are respectively connected to the connection openings 81a to 81d and the connection openings 82a to 82d. Is connected. The connection openings 81a to 81d and the connection openings 82a to 82d of the valve body outer peripheral portion 80a coincide with the space portions 81 (i) and 82 (i) of the first cylindrical valve body 81 and the second cylindrical valve body 82. Thereby, the flow path of the refrigerant flowing into the rotary flow path opening / closing valve 80 is formed. When the first cylindrical valve body 81 and the second cylindrical valve body 82 rotate inside the valve body outer peripheral portion 80a, the valve body outer peripheral portion 80a and the first cylindrical valve body 81 and the second cylindrical valve body 82 are relative to each other. The positional relationship changes. By rotating the first cylindrical valve body 81 and the second cylindrical valve body 82, the connection openings 81a to 81d and the space portions 81 (i) and 82 (i) corresponding to the connection openings 82a to 82d are changed. Then, the flow path of the refrigerant is switched.
 <冷媒の流通経路>
 冷媒は、回転式流路開閉弁80の弁体外周部80aに形成された接続開口81a~81d、及び、接続開口82a~82dから流入し、接続開口81a~81d、及び、接続開口82a~82dに一致する空間部81(i)、82(i)に流入する。そして、空間部81(i)、82(i)の開口を通過して、第1円筒弁体81及び第2円筒弁体82の内部に流入する。冷媒は、第1円筒弁体81及び第2円筒弁体82の管路811、812、813、及び、管路821、822、823又は領域Fを流通し、空間部81(i)、82(i)の開口から流出する。冷媒は、通過した空間部81(i)、82(i)と一致する弁体外周部80aの接続開口81a~81d、及び、接続開口82a~82dのいずれかから、接続開口81a~81d、及び、接続開口82a~82dに接続された冷媒配管を流通する。
<Distribution route of refrigerant>
The refrigerant flows in from the connection openings 81a to 81d and the connection openings 82a to 82d formed in the outer peripheral portion 80a of the rotary flow path opening / closing valve 80, and is connected to the connection openings 81a to 81d and the connection openings 82a to 82d. Flows into the space portions 81 (i) and 82 (i) that coincide with each other. Then, it passes through the openings of the space portions 81 (i) and 82 (i) and flows into the first cylindrical valve body 81 and the second cylindrical valve body 82. The refrigerant flows through the pipe lines 811, 812, 813 and the pipe lines 821, 822, 823 or the region F of the first cylindrical valve body 81 and the second cylindrical valve body 82, and the space portions 81 (i), 82 ( It flows out from the opening of i). The refrigerant passes through any one of the connection openings 81a to 81d and the connection openings 82a to 82d of the valve body outer peripheral portion 80a that coincides with the spaces 81 (i) and 82 (i) through which the refrigerant has passed. The refrigerant pipes connected to the connection openings 82a to 82d are circulated.
 <回転式流路開閉弁80の動作>
 図24は、実施の形態3に係る回転式流路開閉弁80が冷媒回路に組み込まれた状態の冷媒回路構成図である。図24に示すように、回転式流路開閉弁80は、接続開口81a~81d、及び、接続開口82a~82dにおいて、室内機60aの絞り装置5a及び室内側熱交換器6a、室外機30の流路切替装置2及び室外側熱交換器3のそれぞれに接続されている。回転式流路開閉弁80は、制御装置により空気調和装置103の動作内容に応じて回転角度が制御され、冷媒の経路を変更させて所望の動作内容を実現できる冷媒回路を構成する。回転式流路開閉弁80のモータ83を駆動すると、弁体外周部80aの内部の第1円筒弁体81及び第2円筒弁体82が、弁体外周部80aに対して所定の回動角度n×θで回動する。
<Operation of the rotary flow path opening / closing valve 80>
FIG. 24 is a refrigerant circuit configuration diagram in a state where the rotary flow path opening / closing valve 80 according to Embodiment 3 is incorporated in the refrigerant circuit. As shown in FIG. 24, the rotary flow path opening / closing valve 80 includes the expansion device 5a of the indoor unit 60a, the indoor heat exchanger 6a, and the outdoor unit 30 at the connection openings 81a to 81d and the connection openings 82a to 82d. The flow path switching device 2 and the outdoor heat exchanger 3 are connected to each other. The rotary flow path opening / closing valve 80 forms a refrigerant circuit whose rotation angle is controlled by the control device in accordance with the operation content of the air conditioner 103, and the desired operation content can be realized by changing the refrigerant path. When the motor 83 of the rotary flow path opening / closing valve 80 is driven, the first cylindrical valve body 81 and the second cylindrical valve body 82 inside the valve body outer peripheral portion 80a have a predetermined rotation angle with respect to the valve body outer peripheral portion 80a. It rotates by n × θ.
 図25、及び、図26は、実施の形態3に係る回動角度θにおける第1円筒弁体81及び第2円筒弁体82を示す模式図である。なお、回動角度θは、接続開口81aと空間部81(16)とが一致する回動角度=θを基準位置とした場合、第1円筒弁体81及び第2円筒弁体82を時計回りに回動させたときの基準位置からの回動角度である。図25、及び、図26に示すように、所定の回動角度n×θは、それぞれの空間部81(i)、82(i)を画定する2つの壁面の角度θで表される。つまり、θ=360°/iの倍数である。第1円筒弁体81及び第2円筒弁体82を所定の回動角度θで回動させることで、冷媒が循環する経路が空間部の数のパターンで構成される。本実施の形態においては、空間部81(i)、82(i)は、第1円筒弁体81及び第2円筒弁体82の外周を壁面によりi=16分割されて画定される。従って、角度θ=360°/16=22.5°であり、冷媒の循環する経路のパターンは16通り得られる。 25 and 26 are schematic diagrams showing the first cylindrical valve body 81 and the second cylindrical valve body 82 at the rotation angle θ according to the third embodiment. Note that the rotation angle θ is a clockwise rotation of the first cylindrical valve body 81 and the second cylindrical valve body 82 when the rotation angle = θ at which the connection opening 81a and the space portion 81 (16) coincide is the reference position. It is a rotation angle from the reference position when it is rotated to the position. As shown in FIGS. 25 and 26, the predetermined rotation angle n × θ is represented by an angle θ between two wall surfaces that define the space portions 81 (i) and 82 (i). That is, θ is a multiple of 360 ° / i. By rotating the first cylindrical valve body 81 and the second cylindrical valve body 82 at a predetermined rotation angle θ, the path through which the refrigerant circulates is configured with a pattern of the number of spaces. In the present embodiment, the spaces 81 (i) and 82 (i) are defined by dividing the outer periphery of the first cylindrical valve body 81 and the second cylindrical valve body 82 by i = 16 by wall surfaces. Therefore, the angle θ = 360 ° / 16 = 22.5 °, and 16 patterns of paths through which the refrigerant circulates are obtained.
 回転式流路開閉弁80は、第1円筒弁体81及び第2円筒弁体82を所定の回動角度n×θで回動させ、弁体外周部80aと第1円筒弁体81及び第2円筒弁体82との相対的な位置を変更させる。これにより、接続開口81a~81d、及び、接続開口82a~82dに一致する空間部81(i)、82(i)が変更されて冷媒が循環する経路が切り替えられる。そして、接続開口81a~81d、及び、接続開口82a~82dと空間部81(i)、82(i)とが連通して冷媒が流通する。 The rotary flow path opening / closing valve 80 rotates the first cylindrical valve body 81 and the second cylindrical valve body 82 at a predetermined rotation angle n × θ, and the valve body outer peripheral portion 80a, the first cylindrical valve body 81, and the first cylindrical valve body 81 The relative position with respect to the two cylindrical valve bodies 82 is changed. As a result, the connection openings 81a to 81d and the space portions 81 (i) and 82 (i) corresponding to the connection openings 82a to 82d are changed, and the path through which the refrigerant circulates is switched. Then, the connection openings 81a to 81d and the connection openings 82a to 82d communicate with the spaces 81 (i) and 82 (i), and the refrigerant flows.
 <冷媒の動作>
 回転式流路開閉弁80の接続開口81a~81dに到達した冷媒は、接続開口81a~81dから接続開口81a~81dに一致する空間部81(i)の開口を経て、第1円筒弁体81、第2円筒弁体82に流入する。接続開口82a~82dに到達した冷媒は、接続開口82a~82dから、接続開口82a~82dに一致する空間部82(i)の開口を経て、第1円筒弁体81、第2円筒弁体82に流入する。接続開口81a~81d、及び、接続開口82a~82dから流入した冷媒は、弁体外周部80aの内部を流通する。そして、空間部81(i)、82(i)の開口を経て、空間部81(i)、82(i)に一致する他の接続開口81a~81d、及び、接続開口82a~82dのいずれかから流出する。
<Operation of refrigerant>
The refrigerant that has reached the connection openings 81a to 81d of the rotary flow path opening / closing valve 80 passes through the opening of the space 81 (i) that coincides with the connection openings 81a to 81d from the connection openings 81a to 81d. , Flows into the second cylindrical valve element 82. The refrigerant that has reached the connection openings 82a to 82d passes through the openings in the space 82 (i) that coincide with the connection openings 82a to 82d from the connection openings 82a to 82d, and then the first cylindrical valve body 81 and the second cylindrical valve body 82. Flow into. The refrigerant flowing in from the connection openings 81a to 81d and the connection openings 82a to 82d flows through the inside of the valve body outer peripheral portion 80a. Then, through the openings of the space portions 81 (i) and 82 (i), any of the other connection openings 81a to 81d and the connection openings 82a to 82d that coincide with the space portions 81 (i) and 82 (i) Spill from.
 <空気調和装置103の動作>
 空気調和装置103は、排熱回収モード、第1霜取モード、冷媒漏洩防止モード、又は、第2霜取モードを実施するため、それぞれの動作内容に応じて回転式流路開閉弁80の回動角度を制御し、冷媒の循環する経路を切り替える。空気調和装置103は、動作内容に、排熱回収用補助回路8が接続されない従来モードを実施する冷媒回路も含むことができる。
<Operation of Air Conditioner 103>
The air conditioner 103 performs the exhaust heat recovery mode, the first defrosting mode, the refrigerant leakage prevention mode, or the second defrosting mode, and therefore the rotation of the rotary flow path opening / closing valve 80 according to the content of each operation. The moving angle is controlled to switch the route through which the refrigerant circulates. The air conditioner 103 can also include a refrigerant circuit that implements the conventional mode in which the exhaust heat recovery auxiliary circuit 8 is not connected in the operation content.
 表2は、回転式流路開閉弁80の回動角度、接続開口81a~81d、接続開口82a~82d、及び、それぞれの接続開口に一致する空間部81(i)、82(i)の対応関係を示す表である。なお、表2において、空間部81(i)=81(1)~81(16)、及び、空間部82(i)=82(1)~82(16)をi=1~16として示している。i=0~9、11~13、及び、15~16は、外周面810、820が開口し、i=10及び14は、外周面810、820が閉塞された空間部81(i)、82(i)である。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、回転式流路開閉弁80は、所定の回動角度n×θで回動されると、回動角度に応じてそれぞれの接続開口81a~81d、接続開口82a~82dに一致する空間部81(i)、82(i)が切り替わる。そして、接続開口81a~81d、及び、接続開口82a~82dのそれぞれの接続相手が変更され、排熱回収モード、第1霜取モード、冷媒漏洩防止モード、又は、第2霜取モードを実施する冷媒回路が構成される。具体的には、回動角度が90°又は270°とすることで、排熱回収モードの冷媒回路が構成される。0°、157.5°、180°又は202.5°とすることで、第1霜取りモードの冷媒回路が構成され、112.5°、247.5°、292.5°又は315°とすることで冷媒漏洩防止モードの冷媒回路が構成される。45°又は67.5°とすることで第2霜取りモードの冷媒回路が構成される。なお、回動角度が22.5°又は337.5°とすると、従来の排熱回収用熱交換器4が用いられていない回路が構成される。回動角度が135°、225°であると、接続開口81d、82dが、空間部81(10)又は空間部81(14)、空間部82(10)又は空間部82(14)に一致する。この場合は、室外側熱交換器3及び流路切替装置2を含まない回路となり、冷媒回路が成立せず、空気調和装置103が機能しない。回転式流路開閉弁80は、n=1~3、13~16であると、回動角度が0°~45°及び270°~337.5°となり、全てのパターンの冷媒回路がほぼ連続的に出現し、間に成立しない冷媒回路が介在することがない。
Table 2 shows the correspondence between the rotation angle of the rotary flow path opening / closing valve 80, the connection openings 81a to 81d, the connection openings 82a to 82d, and the spaces 81 (i) and 82 (i) corresponding to the respective connection openings. It is a table | surface which shows a relationship. In Table 2, the space portion 81 (i) = 81 (1) to 81 (16) and the space portion 82 (i) = 82 (1) to 82 (16) are shown as i = 1 to 16. Yes. When i = 0 to 9, 11 to 13, and 15 to 16, the outer peripheral surfaces 810 and 820 are open, and i = 10 and 14 are the spaces 81 (i) and 82 where the outer peripheral surfaces 810 and 820 are closed. (I).
Figure JPOXMLDOC01-appb-T000002
As shown in Table 2, when the rotary flow path opening / closing valve 80 is rotated at a predetermined rotation angle n × θ, the connection openings 81a to 81d and the connection openings 82a to 82d are respectively corresponding to the rotation angles. The space portions 81 (i) and 82 (i) that match are switched. Then, the connection partners of the connection openings 81a to 81d and the connection openings 82a to 82d are changed, and the exhaust heat recovery mode, the first defrosting mode, the refrigerant leakage prevention mode, or the second defrosting mode is performed. A refrigerant circuit is configured. Specifically, the refrigerant circuit in the exhaust heat recovery mode is configured by setting the rotation angle to 90 ° or 270 °. By setting 0 °, 157.5 °, 180 °, or 202.5 °, the refrigerant circuit in the first defrosting mode is configured, and 112.5 °, 247.5 °, 292.5 °, or 315 °. Thus, the refrigerant circuit in the refrigerant leakage prevention mode is configured. The refrigerant circuit of the 2nd defrost mode is comprised by setting it as 45 degrees or 67.5 degrees. If the rotation angle is 22.5 ° or 337.5 °, a circuit in which the conventional exhaust heat recovery heat exchanger 4 is not used is configured. When the rotation angle is 135 ° and 225 °, the connection openings 81d and 82d coincide with the space portion 81 (10) or the space portion 81 (14), the space portion 82 (10), or the space portion 82 (14). . In this case, the circuit does not include the outdoor heat exchanger 3 and the flow path switching device 2, the refrigerant circuit is not established, and the air conditioner 103 does not function. In the rotary flow path opening / closing valve 80, when n = 1 to 3 and 13 to 16, the rotation angles are 0 ° to 45 ° and 270 ° to 337.5 °, and the refrigerant circuits of all patterns are almost continuous. Therefore, there is no intervening refrigerant circuit that appears in the middle.
 <排熱回収モード>
 図27は、実施の形態3に係る排熱回収モード時の冷媒回路構成図の一部である。図27に示すように、排熱回収モードでは、回転式流路開閉弁80が、例えば、回動角度n×θ=270°で回動される。ここで、表2を参照すると、回動角度n×θ=270°においては、接続開口81a~81dが空間部81(12)、空間部81(8)、空間部81(4)、空間部81(16)に連通する。また接続開口82a~82dが空間部82(12)、空間部82(8)、空間部82(4)、空間部82(16)に連通する。
<Exhaust heat recovery mode>
FIG. 27 is a part of a refrigerant circuit configuration diagram in the exhaust heat recovery mode according to the third embodiment. As shown in FIG. 27, in the exhaust heat recovery mode, the rotary flow path opening / closing valve 80 is rotated at, for example, a rotation angle n × θ = 270 °. Here, referring to Table 2, at the rotation angle n × θ = 270 °, the connection openings 81a to 81d have the space portion 81 (12), the space portion 81 (8), the space portion 81 (4), and the space portion. 81 (16). The connection openings 82a to 82d communicate with the space 82 (12), the space 82 (8), the space 82 (4), and the space 82 (16).
 冷媒回路は、第1円筒弁体81により接続開口81aと接続開口81bと、及び接続開口81dと接続開口81cとが接続され、第2円筒弁体82により接続開口82aと接続開口82dと、及び接続開口82bと接続開口82cとが接続されて構成される。つまり、接続開口81aと接続開口81bとが、空間部81(12)から空間部81(8)への流路を規定する管路813により接続される。また、接続開口81dと接続開口81cとが、空間部81(16)から空間部81(4)への流路を規定する管路811により接続される。接続開口82aと接続開口82dとが、空間部82(12)から空間部82(16)への流路を規定する管路823により接続され、接続開口82cと接続開口82bとが、空間部82(4)から空間部82(8)への流路を規定する管路823により接続される。これにより、流路切替装置2とバイパス回路84と室内側熱交換器6aとが接続され、絞り装置5aと排熱回収用熱交換器4が接続され、排熱回収用熱交換器4と室外側熱交換器3とが接続されて、排熱回収モードの冷媒回路が構成される。 In the refrigerant circuit, the connection opening 81a and the connection opening 81b, and the connection opening 81d and the connection opening 81c are connected by the first cylindrical valve body 81, and the connection opening 82a and the connection opening 82d are connected by the second cylindrical valve body 82, and The connection opening 82b and the connection opening 82c are connected. That is, the connection opening 81a and the connection opening 81b are connected by the pipe line 813 that defines the flow path from the space portion 81 (12) to the space portion 81 (8). Further, the connection opening 81d and the connection opening 81c are connected by a pipe line 811 that defines a flow path from the space portion 81 (16) to the space portion 81 (4). The connection opening 82a and the connection opening 82d are connected by a pipe line 823 that defines a flow path from the space 82 (12) to the space 82 (16), and the connection opening 82c and the connection opening 82b are connected to the space 82. It is connected by a pipe line 823 that defines a flow path from (4) to the space portion 82 (8). As a result, the flow path switching device 2, the bypass circuit 84, and the indoor heat exchanger 6a are connected, the expansion device 5a and the exhaust heat recovery heat exchanger 4 are connected, and the exhaust heat recovery heat exchanger 4 and the chamber are connected. The refrigerant circuit in the exhaust heat recovery mode is configured by connecting to the outer heat exchanger 3.
 冷房運転時には、圧縮機1から吐出された高温高圧の冷媒が、室外側熱交換器3において室外空気と熱交換を行い、その後、排熱回収用熱交換器4において換気装置10の排気と熱交換を行う。また、暖房運転時には、室内側熱交換器6aにおいて凝縮した低温の冷媒が、排熱回収用熱交換器4において換気装置10の排気と熱交換を行い、その後、室外側熱交換器3において室外空気と熱交換を行う。 During the cooling operation, the high-temperature and high-pressure refrigerant discharged from the compressor 1 exchanges heat with outdoor air in the outdoor heat exchanger 3, and then exhausts and heats of the ventilator 10 in the exhaust heat recovery heat exchanger 4. Exchange. Further, during the heating operation, the low-temperature refrigerant condensed in the indoor heat exchanger 6a exchanges heat with the exhaust of the ventilator 10 in the exhaust heat recovery heat exchanger 4, and then outdoor in the outdoor heat exchanger 3. Exchange heat with air.
 上記において、回動角度n×θ=270°について説明しているが、回動角度n×θ=90°としても同様の冷媒回路が構成される。 In the above description, the rotation angle n × θ = 270 ° has been described, but a similar refrigerant circuit is configured even when the rotation angle n × θ = 90 °.
 <第1霜取モード>
 図28は、実施の形態3に係る第1霜取モード時の冷媒回路構成図の一部である。図28に示すように、第1霜取モードでは、回転式流路開閉弁80が、例えば、回動角度n×θ=0°で回動される。なお、回動角度n×θ=0°は、基準位置の回動角度である。ここで、表2を参照すると、回動角度n×θ=0°においては、接続開口81a~81dが空間部81(16)、空間部81(12)、空間部81(8)、空間部81(4)に連通する。また、接続開口82a~82dは、空間部82(16)、空間部82(12)、空間部82(8)、空間部82(4)に連通する。
<First defrosting mode>
FIG. 28 is a part of a refrigerant circuit configuration diagram in the first defrosting mode according to the third embodiment. As shown in FIG. 28, in the first defrosting mode, the rotary flow path opening / closing valve 80 is rotated at, for example, a rotation angle n × θ = 0 °. The rotation angle n × θ = 0 ° is the rotation angle of the reference position. Here, referring to Table 2, at the rotation angle n × θ = 0 °, the connection openings 81a to 81d have the space portion 81 (16), the space portion 81 (12), the space portion 81 (8), and the space portion. 81 (4). The connection openings 82a to 82d communicate with the space portion 82 (16), the space portion 82 (12), the space portion 82 (8), and the space portion 82 (4).
 冷媒回路は、第1円筒弁体81により接続開口81aと接続開口81dと、及び接続開口81bと接続開口81cとが接続され、第2円筒弁体82により接続開口82aと接続開口82bと、及び接続開口82cと接続開口82dとが接続されて構成される。つまり、接続開口81aと接続開口81dとが、空間部81(16)から空間部81(4)への流路を規定する管路811により接続される。そして、接続開口81bと接続開口81cとが、空間部81(12)から空間部81(8)への流路を規定する管路813により接続される。また、接続開口82aと接続開口82bとが、空間部81(16)から空間部81(12)への流路を規定する管路821により接続される。そして、接続開口82cと接続開口82dとが、空間部82(8)から空間部82(4)へ流路を規定する管路823により接続される。これにより、流路切替装置2と、排熱回収用熱交換器4とが接続され、絞り装置5aとバイパス回路84とが接続される。また、排熱回収用熱交換器4と室内側熱交換器6aとが接続され、室外側熱交換器3とバイパス回路84とが接続されて第1霜取りモードの冷媒回路が構成される。 In the refrigerant circuit, the connection opening 81a and the connection opening 81d, and the connection opening 81b and the connection opening 81c are connected by the first cylindrical valve body 81, and the connection opening 82a and the connection opening 82b are connected by the second cylindrical valve body 82, and The connection opening 82c and the connection opening 82d are connected. That is, the connection opening 81a and the connection opening 81d are connected by the pipe line 811 that defines the flow path from the space portion 81 (16) to the space portion 81 (4). And the connection opening 81b and the connection opening 81c are connected by the pipe line 813 which prescribes | regulates the flow path from the space part 81 (12) to the space part 81 (8). Moreover, the connection opening 82a and the connection opening 82b are connected by the pipe line 821 which prescribes | regulates the flow path from the space part 81 (16) to the space part 81 (12). The connection opening 82c and the connection opening 82d are connected to each other by a pipe line 823 that defines a flow path from the space portion 82 (8) to the space portion 82 (4). Thereby, the flow path switching device 2 and the heat exchanger 4 for exhaust heat recovery are connected, and the expansion device 5a and the bypass circuit 84 are connected. Further, the heat exchanger 4 for exhaust heat recovery and the indoor heat exchanger 6a are connected, and the outdoor heat exchanger 3 and the bypass circuit 84 are connected to constitute a refrigerant circuit in the first defrosting mode.
 室外側熱交換器3から流出した冷媒は、室内機60aに流入し、その後、排熱回収用熱交換器4に流入する。冷媒は、排熱回収用熱交換器4において換気装置10の排気と熱交換した後、圧縮機1に流入し、再び室外側熱交換器3において霜取りを実施する。 The refrigerant that has flowed out of the outdoor heat exchanger 3 flows into the indoor unit 60a, and then flows into the heat exchanger 4 for exhaust heat recovery. The refrigerant exchanges heat with the exhaust of the ventilator 10 in the exhaust heat recovery heat exchanger 4, then flows into the compressor 1, and defrosts again in the outdoor heat exchanger 3.
 上記において、回動角度n×θ=0°について説明しているが、回動角度n×θ=157.5°、180°又は202.5°としても同様の冷媒回路が構成される。 In the above description, the rotation angle n × θ = 0 ° has been described, but a similar refrigerant circuit is configured even when the rotation angle n × θ = 157.5 °, 180 °, or 202.5 °.
 <冷媒漏洩防止モード>
 図29は、実施の形態3に係る冷媒漏洩防止モード時の冷媒回路構成図の一部である。図29に示すように、冷媒漏洩防止モードでは、回転式流路開閉弁80が、例えば、回動角度n×θ=315°で回動される。ここで、表2を参照すると、回動角度n×θ=315°においては、接続開口81a~81dが空間部81(14)、空間部81(10)、空間部81(6)、空間部81(2)に連通する。また、接続開口82a~81dは、空間部82(14)、空間部82(10)、空間部82(6)、空間部82(2)に連通する。
<Refrigerant leakage prevention mode>
FIG. 29 is a part of a refrigerant circuit configuration diagram in the refrigerant leakage prevention mode according to Embodiment 3. As shown in FIG. 29, in the refrigerant leakage prevention mode, the rotary flow path opening / closing valve 80 is rotated at, for example, a rotation angle n × θ = 315 °. Here, referring to Table 2, when the rotation angle is n × θ = 315 °, the connection openings 81a to 81d are the space portion 81 (14), the space portion 81 (10), the space portion 81 (6), and the space portion. 81 (2). Further, the connection openings 82a to 81d communicate with the space portion 82 (14), the space portion 82 (10), the space portion 82 (6), and the space portion 82 (2).
 冷媒回路は、第1円筒弁体81により接続開口81cと接続開口81dとが接続され、第2円筒弁体82により接続開口82cと接続開口82dとが接続される。つまり、接続開口81cと接続開口81dとが、空間部81(6)から空間部81(2)への流路を規定する管路812により接続される。また、接続開口82cと接続開口82dとが、空間部82(6)から空間部82(2)への流路を規定する管路822により接続される。一方、接続開口81aと接続開口81bと、及び、接続開口82aと接続開口82bとは、閉塞された空間部81(14)、空間部81(10)、及び、空間部82(14)、空間部82(10)に連通し流路が形成されない。これにより、排熱回収用熱交換器4と室内側熱交換器6aとが冷媒回路から切り離されて冷媒漏洩防止モードの冷媒回路が構成される。冷媒漏洩が検知された際には、圧縮機1の運転を停止すると共に、排熱回収用熱交換器4と室内側熱交換器6aとが冷媒回路から切り離される。なお、このモードは圧縮機1の運転に伴い、いわゆる三角運転による霜取りモードとして活用することもできる。 In the refrigerant circuit, the connection opening 81c and the connection opening 81d are connected by the first cylindrical valve body 81, and the connection opening 82c and the connection opening 82d are connected by the second cylindrical valve body 82. That is, the connection opening 81c and the connection opening 81d are connected by the pipe line 812 that defines the flow path from the space portion 81 (6) to the space portion 81 (2). In addition, the connection opening 82c and the connection opening 82d are connected by a pipe line 822 that defines a flow path from the space portion 82 (6) to the space portion 82 (2). On the other hand, the connection opening 81a and the connection opening 81b, and the connection opening 82a and the connection opening 82b are the closed space part 81 (14), the space part 81 (10), the space part 82 (14), and the space. The flow path is not formed in communication with the portion 82 (10). As a result, the heat exchanger 4 for exhaust heat recovery and the indoor heat exchanger 6a are disconnected from the refrigerant circuit, and the refrigerant circuit in the refrigerant leakage prevention mode is configured. When the refrigerant leakage is detected, the operation of the compressor 1 is stopped, and the exhaust heat recovery heat exchanger 4 and the indoor heat exchanger 6a are disconnected from the refrigerant circuit. In addition, this mode can also be utilized as a defrosting mode by what is called triangular operation with the operation of the compressor 1.
 上記において、回動角度n×θ=315°について説明しているが、回動角度n×θ=112.5°、247.5°、又は292.5°としても同様の冷媒回路が構成される。この場合には、空間部81(i)、82(i)の外周面810、820により冷媒回路が閉塞される冷媒回路は構成されず、圧力の大小関係により冷媒の流路が規制されることになる。 In the above description, the rotation angle n × θ = 315 ° has been described, but a similar refrigerant circuit is configured even when the rotation angle n × θ = 112.5 °, 247.5 °, or 292.5 °. The In this case, the refrigerant circuit in which the refrigerant circuit is closed by the outer peripheral surfaces 810 and 820 of the space portions 81 (i) and 82 (i) is not configured, and the flow path of the refrigerant is restricted by the pressure relationship. become.
 <第2霜取モード>
 図30は、実施の形態3に係る第2霜取モード時の冷媒回路構成図の一部である。図30に示すように、第2霜取モードでは、回転式流路開閉弁80が、例えば、回動角度n×θ=45°で回動される。ここで、表2を参照すると、回動角度n×θ=45°においては、接続開口81a~81dが空間部81(2)、空間部81(14)、空間部81(10)、空間部81(6)に連通する。また、接続開口82a~82dが空間部82(2)、空間部82(14)、空間部82(10)、空間部82(6)に連通する。
<Second defrosting mode>
FIG. 30 is a part of a refrigerant circuit configuration diagram in the second defrosting mode according to the third embodiment. As shown in FIG. 30, in the second defrosting mode, the rotary flow path opening / closing valve 80 is rotated at, for example, a rotation angle n × θ = 45 °. Here, referring to Table 2, at the rotation angle n × θ = 45 °, the connection openings 81a to 81d are the space portion 81 (2), the space portion 81 (14), the space portion 81 (10), and the space portion. 81 (6). The connection openings 82a to 82d communicate with the space portion 82 (2), the space portion 82 (14), the space portion 82 (10), and the space portion 82 (6).
 冷媒回路は、第1円筒弁体81の接続開口81aと接続開口81dとが接続され、第2円筒弁体82の接続開口82aと接続開口82dとが接続される。つまり、接続開口81aと接続開口81dとが空間部81(2)から空間部81(6)への流路を規定する管路812により接続され、接続開口82aと接続開口82dとが空間部82(2)から空間部82(6)への流路を規定する管路822により接続される。一方、接続開口81bと接続開口81cと、及び、接続開口82bと接続開口82cとは閉塞された空間部81(14)、空間部81(10)、及び、空間部82(14)、空間部82(10)に連通し流路が形成されない。これにより、流路切替装置2と排熱回収用熱交換器4と室外側熱交換器3とが接続されて第2霜取りモードの冷媒回路が構成される。 In the refrigerant circuit, the connection opening 81a and the connection opening 81d of the first cylindrical valve body 81 are connected, and the connection opening 82a and the connection opening 82d of the second cylindrical valve body 82 are connected. That is, the connection opening 81a and the connection opening 81d are connected by the pipe line 812 that defines the flow path from the space portion 81 (2) to the space portion 81 (6), and the connection opening 82a and the connection opening 82d are connected to the space portion 82. They are connected by a pipe line 822 that defines a flow path from (2) to the space 82 (6). On the other hand, the connection opening 81b and the connection opening 81c, and the connection opening 82b and the connection opening 82c are closed space part 81 (14), space part 81 (10), space part 82 (14), space part. 82 (10) communicates and no flow path is formed. Thereby, the flow path switching device 2, the exhaust heat recovery heat exchanger 4 and the outdoor heat exchanger 3 are connected to form a refrigerant circuit in the second defrosting mode.
 上記において、回動角度n×θ=45°について説明しているが、回動角度n×θ=67.5°としても同様の冷媒回路が構成される。この場合には、空間部81(i)、82(i)の外周面810、820により冷媒回路が閉塞される冷媒回路は構成されず、圧力の大小関係により冷媒の流路が規制される。 In the above description, the rotation angle n × θ = 45 ° has been described, but a similar refrigerant circuit is configured even when the rotation angle n × θ = 67.5 °. In this case, the refrigerant circuit in which the refrigerant circuit is closed by the outer peripheral surfaces 810 and 820 of the space portions 81 (i) and 82 (i) is not configured, and the refrigerant flow path is restricted by the pressure relationship.
 <従来モード>
 図31は、実施の形態3に係る従来モード時の冷媒回路構成図の一部である。図31に示すように、回転式流路開閉弁80が、例えば、回動角度n×θ=22.5°で回動されると、従来モードの冷媒回路が構成される。ここで、表2を参照すると、回動角度n×θ=22.5°においては、接続開口81a~81dが空間部81(1)、空間部81(13)、空間部81(9)、空間部81(5)に連通する。また、接続開口82a~82dは、空間部82(1)、空間部82(13)、空間部82(9)、空間部82(5)に連通する。
<Conventional mode>
FIG. 31 is a part of a refrigerant circuit configuration diagram in the conventional mode according to the third embodiment. As shown in FIG. 31, when the rotary flow path opening / closing valve 80 is rotated at, for example, a rotation angle n × θ = 22.5 °, a refrigerant circuit in the conventional mode is configured. Here, referring to Table 2, when the rotation angle is n × θ = 22.5 °, the connection openings 81a to 81d have the space portion 81 (1), the space portion 81 (13), the space portion 81 (9), It communicates with the space part 81 (5). The connection openings 82a to 82d communicate with the space portion 82 (1), the space portion 82 (13), the space portion 82 (9), and the space portion 82 (5).
 冷媒回路は、第1円筒弁体81により接続開口81bと接続開口81cとが接続され、第2円筒弁体82により接続開口82aと接続開口82dとが接続される。つまり、接続開口81bと接続開口81cとが、空間部81(13)から空間部81(9)への流路を規定する管路813により接続される。また、接続開口82cと接続開口82dとが、空間部82(9)から空間部82(10)への流路を規定する管路822により接続される。一方、接続開口81aと接続開口81dと、及び、接続開口82aと接続開口82bとは、空間部81(1)、空間部81(5)、及び、空間部82(1)、空間部82(13)に接続する。空間部81(1)、空間部81(5)、及び、空間部82(1)、空間部82(13)は、第1円筒弁体81及び第2円筒弁体82の内部において流路が規定されていない領域Fに接続しており、圧力の大小関係により冷媒の流路が規制される。これにより、室外側熱交換器3と、流路切替装置2と、絞り装置5aと、室内側熱交換器6aとが接続されて従来の冷媒回路が構成される。 In the refrigerant circuit, the first cylindrical valve body 81 connects the connection opening 81b and the connection opening 81c, and the second cylindrical valve body 82 connects the connection opening 82a and the connection opening 82d. That is, the connection opening 81b and the connection opening 81c are connected by the pipe line 813 that defines the flow path from the space portion 81 (13) to the space portion 81 (9). The connection opening 82c and the connection opening 82d are connected by a pipe line 822 that defines a flow path from the space portion 82 (9) to the space portion 82 (10). On the other hand, the connection opening 81a and the connection opening 81d, and the connection opening 82a and the connection opening 82b are the space portion 81 (1), the space portion 81 (5), the space portion 82 (1), and the space portion 82 ( 13). The space portion 81 (1), the space portion 81 (5), the space portion 82 (1), and the space portion 82 (13) have flow paths inside the first cylindrical valve body 81 and the second cylindrical valve body 82. It is connected to a region F that is not defined, and the flow path of the refrigerant is regulated by the pressure relationship. Thereby, the outdoor side heat exchanger 3, the flow path switching device 2, the expansion device 5a, and the indoor side heat exchanger 6a are connected to form a conventional refrigerant circuit.
 上記において、回動角度n×θ=22.5°について説明しているが、回動角度n×θ=337.5°としても同様の冷媒回路が構成される。この場合にも、空間部81(15)、空間部81(3)、及び、空間部82(15)、空間部82(11)は、第1円筒弁体81及び第2円筒弁体82の内部において流路が規定されていない領域Fに接続し、圧力の大小関係により冷媒の流路が規制される。 In the above description, the rotation angle n × θ = 22.5 ° has been described, but a similar refrigerant circuit is configured even when the rotation angle n × θ = 337.5 °. Also in this case, the space portion 81 (15), the space portion 81 (3), the space portion 82 (15), and the space portion 82 (11) are connected to the first cylindrical valve body 81 and the second cylindrical valve body 82. The refrigerant is connected to a region F where the flow path is not defined inside, and the flow path of the refrigerant is regulated by the pressure relationship.
 なお、本実施の形態においては、弁体外周部80aは、第1円筒弁体81及び第2円筒弁体82を収容した例について説明しているが、2つの円筒弁体ではなく、円筒弁体を複数収容していてもよく、円筒弁体の数は限定されない。また、それぞれの円筒弁体の内部に形成される管路の経路、領域Fの構成、及び、接続開口の数、位置なども限定されない。更に、弁体外周部80aと、第1円筒弁体81及び第2円筒弁体82との間の外周空間801及び外周空間802がi=16分割された例を説明しているが、分割数は限定されず、外周面810、820が閉塞された空間部の数も限定されない。円筒弁体の数、管路が辿る経路、領域Fの構成、接続開口の数及び位置、空間の分割数、を適宜変更することで、冷媒が流通する経路が決定され、所望の経路を実現することができる。 In the present embodiment, the valve body outer peripheral portion 80a has been described as an example in which the first cylindrical valve body 81 and the second cylindrical valve body 82 are accommodated. A plurality of bodies may be accommodated, and the number of cylindrical valve bodies is not limited. Further, the path of the pipeline formed inside each cylindrical valve body, the configuration of the region F, and the number and position of the connection openings are not limited. Further, an example is described in which the outer peripheral space 801 and the outer peripheral space 802 between the valve body outer peripheral portion 80a and the first cylindrical valve body 81 and the second cylindrical valve body 82 are divided by i = 16. Is not limited, and the number of spaces in which the outer peripheral surfaces 810 and 820 are closed is not limited. By appropriately changing the number of cylindrical valve bodies, the route followed by the pipeline, the configuration of the region F, the number and position of the connection openings, and the number of divisions of the space, the route through which the refrigerant flows is determined and the desired route is realized. can do.
 以上説明した、実施の形態3に係る空気調和装置103においては、室外機30と、室内機60aとの間に、回転により冷媒の流路を切り替える回転式流路開閉弁80が配置されている。回転式流路開閉弁80は、同軸上に配置された第1円筒弁体81及び第2円筒弁体82により構成され、第1円筒弁体81と第2円筒弁体82とが、排熱回収用熱交換器4、及び、バイパス回路84により連結されている。このため、第1円筒弁体81と第2円筒弁体82との回転角度を調整する電動機を1台設ければよく、所定の回転角度に停止させているため、消費電力がない。また、所定の回転角度を中間位置とすることで開閉状態を微調整し、流量を増減させる絞り機能を付加することもできる。更に、切り替え時において、圧力変動が徐々に発生するため、冷媒音の発生や液冷媒の急膨張を防止することができる。 In the air conditioning apparatus 103 according to Embodiment 3 described above, the rotary flow path opening / closing valve 80 that switches the flow path of the refrigerant by rotation is disposed between the outdoor unit 30 and the indoor unit 60a. . The rotary flow path opening / closing valve 80 is configured by a first cylindrical valve body 81 and a second cylindrical valve body 82 that are coaxially arranged. The first cylindrical valve body 81 and the second cylindrical valve body 82 are configured to exhaust heat. The recovery heat exchanger 4 and the bypass circuit 84 are connected. For this reason, it is only necessary to provide one electric motor for adjusting the rotation angle between the first cylindrical valve element 81 and the second cylindrical valve element 82, and since the motor is stopped at a predetermined rotation angle, there is no power consumption. In addition, it is possible to finely adjust the open / close state by setting the predetermined rotation angle as an intermediate position, and to add a throttle function for increasing or decreasing the flow rate. Furthermore, since pressure fluctuations gradually occur at the time of switching, it is possible to prevent the generation of refrigerant noise and the rapid expansion of liquid refrigerant.
 1 圧縮機、2 流路切替装置、3 室外側熱交換器、4 排熱回収用熱交換器、5a、5b 絞り装置、6a、6b 室内側熱交換器、7、7a、7b、7c、7d、7e、7f 電磁弁、7a 電磁弁、7b 電磁弁、7c 電磁弁、7d 電磁弁、7e 電磁弁、7f 電磁弁、8 排熱回収用補助回路、9 霜取り用絞り装置、10 換気装置、11 全熱交換器、12 給気送風機、13 排気送風機、14 給気風路、15 排気風路、30 室外機、44 バイパス回路、60a、60b 室内機、80 回転式流路開閉弁、80a 弁体外周部、80b 壁板、81 第1円筒弁体、81(1)~81(16)、82(1)~82(16) 空間部、81a、81b、81c、81d、82a、82b、82c、82d 接続開口、82 第2円筒弁体、83 モータ、84 バイパス回路、85 仕切板、100、102、103 空気調和装置、801、802 外周空間、810 外周面、811、812、813、821、822、823 管路。 1 compressor, 2 flow switching device, 3 outdoor heat exchanger, 4 heat exchanger for exhaust heat recovery, 5a, 5b expansion device, 6a, 6b indoor heat exchanger, 7, 7a, 7b, 7c, 7d 7e, 7f Solenoid valve, 7a Solenoid valve, 7b Solenoid valve, 7c Solenoid valve, 7d Solenoid valve, 7e Solenoid valve, 7f Solenoid valve, 8 Exhaust heat recovery auxiliary circuit, 9 Defrosting throttling device, 10 Ventilation device, 11 Total heat exchanger, 12 supply air blower, 13 exhaust air blower, 14 supply air flow path, 15 exhaust air flow path, 30 outdoor unit, 44 bypass circuit, 60a, 60b indoor unit, 80 rotary flow path opening / closing valve, 80a valve body outer periphery Part, 80b wall plate, 81 first cylindrical valve body, 81 (1) to 81 (16), 82 (1) to 82 (16) space part, 81a, 81b, 81c, 81d, 82a, 82b, 82c, 82dContinuation opening, 82 second cylindrical valve body, 83 motor, 84 bypass circuit, 85 partition plate, 100, 102, 103 air conditioner, 801, 802 outer peripheral space, 810 outer peripheral surface, 811, 812, 813, 821, 822, 823 conduit.

Claims (13)

  1.  圧縮機と、室内側熱交換器と、絞り装置と、室外側熱交換器と、を管路で接続した冷媒回路を有し、
     前記冷媒回路は、前記室外側熱交換器と、前記絞り装置との間に配置され、室内空気の排気と熱交換する排熱回収用熱交換器を備えた
     空気調和装置。
    A refrigerant circuit in which a compressor, an indoor heat exchanger, an expansion device, and an outdoor heat exchanger are connected by a pipe line;
    The refrigerant circuit is disposed between the outdoor heat exchanger and the expansion device, and includes an exhaust heat recovery heat exchanger that exchanges heat with exhaust of indoor air.
  2.  前記排熱回収用熱交換器をバイパスするバイパス回路が設けられ、
     前記バイパス回路に電磁弁が設けられた
     請求項1に記載の空気調和装置。
    A bypass circuit for bypassing the heat exchanger for exhaust heat recovery is provided,
    The air conditioner according to claim 1, wherein an electromagnetic valve is provided in the bypass circuit.
  3.  圧縮機と、室内側熱交換器と、絞り装置と、室外側熱交換器と、を配管で接続した冷媒回路と、
     前記圧縮機及び前記室内側熱交換器と、前記絞り装置及び前記室外側熱交換器との間に配置された排熱回収用補助回路と、を備え、
     前記排熱回収用補助回路は、排熱回収用熱交換器と、冷媒の流路を切り替える切替装置とを備えた
     空気調和装置。
    A refrigerant circuit in which a compressor, an indoor heat exchanger, an expansion device, and an outdoor heat exchanger are connected by piping;
    An auxiliary circuit for exhaust heat recovery disposed between the compressor and the indoor heat exchanger, and the expansion device and the outdoor heat exchanger;
    The exhaust heat recovery auxiliary circuit includes an exhaust heat recovery heat exchanger and a switching device that switches a refrigerant flow path.
  4.  前記排熱回収用補助回路は、
     前記排熱回収用熱交換器と直列に接続された霜取り用絞り装置を備えている、
     請求項3に記載の空気調和装置。
    The exhaust heat recovery auxiliary circuit is
    A defrosting throttling device connected in series with the exhaust heat recovery heat exchanger;
    The air conditioning apparatus according to claim 3.
  5.  制御装置を有し、
     前記制御装置は、
     前記切替装置を、前記室外側熱交換器と、前記絞り装置との間に前記排熱回収用熱交換器が接続された前記排熱回収用補助回路を構成するように切り替える、排熱回収モードを実行させる
     請求項3又は4に記載の空気調和装置。
    Having a control device,
    The control device includes:
    An exhaust heat recovery mode for switching the switching device to configure the exhaust heat recovery auxiliary circuit in which the exhaust heat recovery heat exchanger is connected between the outdoor heat exchanger and the expansion device. The air conditioner according to claim 3 or 4.
  6.  制御装置を有し、
     前記制御装置は、
     冷媒漏洩が検出されると、
     前記圧縮機の運転を停止させ、
     前記切替装置を、前記圧縮機、及び、前記室外側熱交換器に冷媒を循環させ、前記室内側熱交換器への冷媒の循環を停止させるように切り替える、冷媒漏洩防止モードを実行させる
     請求項3又は4に記載の空気調和装置。
    Having a control device,
    The control device includes:
    When refrigerant leakage is detected,
    Stop the operation of the compressor,
    The refrigerant switching prevention mode is executed by switching the switching device so that the refrigerant circulates in the compressor and the outdoor heat exchanger and the circulation of the refrigerant to the indoor heat exchanger is stopped. The air conditioning apparatus according to 3 or 4.
  7.  制御装置を有し、
     前記制御装置は、
     前記切替装置を、前記圧縮機、前記室外側熱交換器、前記排熱回収用熱交換器、及び、前記室内側熱交換器に冷媒を循環させるように切り替える、第1霜取りモードを実行させる
     請求項3又は4に記載の空気調和装置。
    Having a control device,
    The control device includes:
    A first defrosting mode is executed in which the switching device is switched to circulate refrigerant through the compressor, the outdoor heat exchanger, the exhaust heat recovery heat exchanger, and the indoor heat exchanger. Item 5. The air conditioner according to Item 3 or 4.
  8.  制御装置を有し、
     前記制御装置は、
     前記切替装置を、前記圧縮機、前記室外側熱交換器、及び、前記排熱回収用熱交換器に冷媒を循環させるように切り替える、第2霜取りモードを実行させる
     請求項3又は4に記載の空気調和装置。
    Having a control device,
    The control device includes:
    5. The second defrosting mode is executed, wherein the switching device is switched so as to circulate refrigerant through the compressor, the outdoor heat exchanger, and the exhaust heat recovery heat exchanger. Air conditioner.
  9.  制御装置を有し、
     前記制御装置は、
     前記切替装置を、前記室外側熱交換器、前記排熱回収用熱交換器、及び、前記絞り装置に冷媒を循環させるように切り替える、排熱回収モードと、
     前記切替装置を、前記圧縮機、及び、前記室外側熱交換器に冷媒を循環させるように切り替える、冷媒漏洩防止モードと、
     前記切替装置を、前記圧縮機、前記室外側熱交換器、前記排熱回収用熱交換器、及び、前記室内側熱交換器に冷媒を循環させるように切り替える、第1霜取りモードと、
     前記切替装置を、前記圧縮機、前記室外側熱交換器、及び、前記排熱回収用熱交換器に冷媒を循環させるように切り替える、第2霜取りモードと、のいずれかを選択する
     請求項3又は4に記載の空気調和装置。
    Having a control device,
    The control device includes:
    An exhaust heat recovery mode in which the switching device is switched to circulate refrigerant through the outdoor heat exchanger, the exhaust heat recovery heat exchanger, and the expansion device;
    A refrigerant leakage prevention mode in which the switching device is switched to circulate the refrigerant in the compressor and the outdoor heat exchanger;
    A first defrosting mode in which the switching device is switched to circulate refrigerant to the compressor, the outdoor heat exchanger, the exhaust heat recovery heat exchanger, and the indoor heat exchanger;
    The switching device is selected from any one of a second defrosting mode in which the refrigerant is circulated to the compressor, the outdoor heat exchanger, and the exhaust heat recovery heat exchanger. Or the air conditioning apparatus of 4.
  10.  前記切替装置は、複数の電磁弁で構成されている、
     請求項3~9のいずれか一項に記載の空気調和装置。
    The switching device is composed of a plurality of solenoid valves.
    The air conditioner according to any one of claims 3 to 9.
  11.  前記切替装置は、弁体の回転により冷媒の流路を切り替える回転式流路開閉弁で構成されている、
     請求項3~9のいずれか一項に記載の空気調和装置。
    The switching device is composed of a rotary flow path opening / closing valve that switches the flow path of the refrigerant by the rotation of the valve body,
    The air conditioner according to any one of claims 3 to 9.
  12.  前記回転式流路開閉弁は、
     複数の第1開口部を有し、内部を冷媒が流通する円筒形状の円筒弁体と、
     前記円筒弁体の内部に形成され、両端が前記第1開口部に接続された複数の管路と、
     前記円筒弁体を同軸上に収容する円筒形状の弁体外周部と、
     前記弁体外周部に形成され、冷媒回路に接続されて冷媒が流通する複数の第2開口部と、
     前記円筒弁体の外周面と、前記弁体外周部の内周面との間に形成され、複数の仕切板により分割された複数の空間部と、
     を備え、
     前記円筒弁体は、
     前記弁体外周部に対して回動することで、前記第1開口部と、前記第2開口部とが連通するように構成されている、
     請求項3~10のいずれか一項に記載の空気調和装置。
    The rotary flow path opening / closing valve is
    A cylindrical cylindrical valve body having a plurality of first openings and through which the refrigerant flows;
    A plurality of conduits formed inside the cylindrical valve body, both ends of which are connected to the first opening;
    A cylindrical valve body outer peripheral portion that coaxially accommodates the cylindrical valve body; and
    A plurality of second openings formed in the outer periphery of the valve body, connected to a refrigerant circuit and through which the refrigerant flows;
    A plurality of space portions formed between an outer peripheral surface of the cylindrical valve body and an inner peripheral surface of the valve body outer peripheral portion and divided by a plurality of partition plates;
    With
    The cylindrical valve body is
    The first opening and the second opening are configured to communicate with each other by rotating with respect to the outer periphery of the valve body.
    The air conditioner according to any one of claims 3 to 10.
  13.  前記室内側熱交換器、及び、前記絞り装置は、前記排熱回収用熱交換器に対し直列に接続されている、
     請求項1~12のいずれか一項に記載の空気調和装置。
    The indoor heat exchanger and the expansion device are connected in series to the exhaust heat recovery heat exchanger,
    The air conditioner according to any one of claims 1 to 12.
PCT/JP2016/063020 2016-04-26 2016-04-26 Air conditioning device WO2017187504A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018513977A JP6727293B2 (en) 2016-04-26 2016-04-26 Air conditioner
PCT/JP2016/063020 WO2017187504A1 (en) 2016-04-26 2016-04-26 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063020 WO2017187504A1 (en) 2016-04-26 2016-04-26 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2017187504A1 true WO2017187504A1 (en) 2017-11-02

Family

ID=60160311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063020 WO2017187504A1 (en) 2016-04-26 2016-04-26 Air conditioning device

Country Status (2)

Country Link
JP (1) JP6727293B2 (en)
WO (1) WO2017187504A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162053A1 (en) * 2019-02-07 2020-08-13 三菱重工マリンマシナリ株式会社 Waste heat recovery device, and method for controlling same
CN112033182A (en) * 2020-08-26 2020-12-04 珠海格力电器股份有限公司 Shell and tube heat exchanger, unit with heat recovery function and heat recovery control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022245A (en) * 2000-07-13 2002-01-23 Daikin Ind Ltd Air conditioning system
JP2010249485A (en) * 2009-03-24 2010-11-04 Mitsubishi Electric Corp Air conditioner and air conditioning system
JP2014130003A (en) * 2010-11-24 2014-07-10 Mitsubishi Electric Corp Air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036843Y2 (en) * 1981-02-12 1985-11-01 三菱電機株式会社 heat pump equipment
JP2523031Y2 (en) * 1990-03-05 1997-01-22 横浜ハイデックス株式会社 Four-way valve
JP2563904Y2 (en) * 1991-09-02 1998-03-04 シャープ株式会社 Switching valve
JP3384614B2 (en) * 1994-05-31 2003-03-10 三洋電機株式会社 Air conditioner
JP2013212820A (en) * 2012-04-04 2013-10-17 Calsonic Kansei Corp Air conditioner for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022245A (en) * 2000-07-13 2002-01-23 Daikin Ind Ltd Air conditioning system
JP2010249485A (en) * 2009-03-24 2010-11-04 Mitsubishi Electric Corp Air conditioner and air conditioning system
JP2014130003A (en) * 2010-11-24 2014-07-10 Mitsubishi Electric Corp Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162053A1 (en) * 2019-02-07 2020-08-13 三菱重工マリンマシナリ株式会社 Waste heat recovery device, and method for controlling same
CN112033182A (en) * 2020-08-26 2020-12-04 珠海格力电器股份有限公司 Shell and tube heat exchanger, unit with heat recovery function and heat recovery control method

Also Published As

Publication number Publication date
JPWO2017187504A1 (en) 2018-11-22
JP6727293B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
JP6735933B2 (en) Heat pump system
US10830502B2 (en) Air conditioner
EP3569430B1 (en) Vehicle comprising a heat pump system
JP3800210B2 (en) Water source heat pump unit
JP2006292313A (en) Geothermal unit
JP2005299935A (en) Air conditioner
JP2014156143A (en) Vehicular air-conditioning device
WO2017187504A1 (en) Air conditioning device
JP4277456B2 (en) Dehumidifier
JP4647399B2 (en) Ventilation air conditioner
JP2002228187A (en) Outdoor-air treating air-conditioner of air-cooled heat- pump type
JP2005147440A (en) Multiroom-type air conditioner
JP4273588B2 (en) Air conditioner refrigerant circuit
JP4270555B2 (en) Reheat dehumidification type air conditioner
JP2010243005A (en) Dehumidification system
JPH0894205A (en) Air conditioner
CN110207417B (en) Air conditioning system
JP2008082609A (en) Air conditioner
KR20210063506A (en) Automotive air conditioning system
KR101127463B1 (en) The air-conditioning and heating cycle for the vehicle
KR20180117935A (en) Multi-type air conditioner
US12000635B2 (en) Reversible device for the production of hot and cold air
JP2008082608A (en) Air conditioner
KR20040090129A (en) Multi-air conditioner capable of heating and cooling simultaneously for building
KR20040054297A (en) structure for draining condensing water in the air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018513977

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900377

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900377

Country of ref document: EP

Kind code of ref document: A1