WO2017185893A1 - 数据发送方法、装置及rlc实体 - Google Patents

数据发送方法、装置及rlc实体 Download PDF

Info

Publication number
WO2017185893A1
WO2017185893A1 PCT/CN2017/076624 CN2017076624W WO2017185893A1 WO 2017185893 A1 WO2017185893 A1 WO 2017185893A1 CN 2017076624 W CN2017076624 W CN 2017076624W WO 2017185893 A1 WO2017185893 A1 WO 2017185893A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
rate
transmission
determining
amount
Prior art date
Application number
PCT/CN2017/076624
Other languages
English (en)
French (fr)
Inventor
吕应权
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017185893A1 publication Critical patent/WO2017185893A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04TINDEXING SCHEME RELATING TO STANDARDS FOR ELECTRIC COMMUNICATION TECHNIQUE
    • H04T2001/00Standards for wireless communication networks
    • H04T2001/203Traffic; Transport

Definitions

  • the present disclosure relates to the field of communications, and in particular to a data transmission method and apparatus, and a Radio Link Control (RLC) entity.
  • RLC Radio Link Control
  • the RLC layer in the Long Term Evolution (LTE) system is located in the Media Access Control (MAC) layer and the Packet Data Convergence Protocol (Packet Data Convergence Protocol). Between the PDCP) layers, functions such as assembling PDUs, reassembling SDUs, and retransmitting PDUs are mainly performed. It supports three data transfer modes: Transparent ModeTM, Unacknowledged Mode UM, and Acknowledge Mode AM. In order to ensure the effective transmission of data, the protocol stipulates that the RLC needs to segment and concatenate the RLC data according to the air interface capability reported by the bottom layer and send it to the bottom layer. Otherwise, if the amount of transmission exceeds the air interface transmission capability, the polling retransmission timer will time out. If the number of retransmissions exceeds the configured threshold, packet loss or even service interruption will occur.
  • MAC Media Access Control
  • Packet Data Convergence Protocol Packet Data Convergence Protocol
  • the general MAC will calculate the transmission capability for each air interface transmission time interval (TTI), and the TTI is small (1 ms). If each TTI is reported by the MAC to the RLC, then the layer The message interaction is very large and has a significant impact on the system load. Especially in future 5G systems, this interaction between RLC and MAC will greatly restrict the independent deployment of these protocol functional entities.
  • TTI air interface transmission time interval
  • the embodiments of the present disclosure provide a data transmission method and apparatus, and a radio link control RLC entity, to at least solve the problem that the inter-layer message interaction is too large and causes a serious system burden when transmitting data in the related art.
  • a data sending method determining a first sending rate of current data transmission; determining, according to the obtained first sending rate, an allowable sending rate of currently allowed data sending; The allowed transmission rate transmits data.
  • determining the first sending rate of the current data transmission comprises: determining that the first average rate of data transmission in the current first predetermined time period is the first sending rate.
  • determining the allowed transmission rate of the currently allowed data transmission according to the obtained first sending rate includes: acquiring a difference between the first average rate and a second average rate, where The second average rate is an average rate of data transmission in a second predetermined time period of the same predetermined time period before the current first predetermined time period; determining the allowed transmission rate as the first transmission rate and the difference Sum.
  • the first average rate of data transmission in the current first predetermined time period is the first sending rate, further comprising: receiving from a start time in the first predetermined time period Data status report Obtaining a first data amount of data transmitted before the start time, and acquiring, from a data status report received at an end time within the first predetermined time period, second data that transmits data before the end time And determining, according to the first data amount and the second data amount, a total amount of data to be sent in the first predetermined time period; according to the determined total amount of data, and the first predetermined time Segment, determining the first average rate.
  • sending the data according to the determined allowed transmission rate includes: determining, according to the determined allowed transmission rate, an allowable transmission data amount of data currently allowed to be sent; and counting the amount of unconfirmed data data currently sent but not confirmed.
  • a data transmitting apparatus including: a first determining module, configured to determine a first sending rate of current data transmission; and a second determining module, configured to obtain the first according to the first The sending rate determines the allowed sending rate of the currently allowed data transmission; the sending module is configured to send data according to the determined allowed sending rate.
  • the first determining module includes: a first determining unit, configured to determine that the first average rate of data transmission in the current first predetermined time period is the first sending rate.
  • the second determining module includes: a first acquiring unit, configured to acquire a difference between the first average rate and a second average rate, where the second average rate is the current An average rate of data transmission in a second predetermined time period of a predetermined predetermined time period before a predetermined time period; a second determining unit, configured to determine that the allowable transmission rate is a sum of the first transmission rate and the difference .
  • the first determining module further includes: a second acquiring unit, configured to send data before the start time from a data status report received at a start time in the first predetermined time period a first data amount, and a data status report received from the end time in the first predetermined time period, acquiring a second data amount of data before the end time; a third determining unit, configured to: Determining, according to the first data amount and the second data amount, a total amount of data that is sent in the first predetermined time period; and a fourth determining unit, configured to determine, according to the determined total amount of data, Determining the first average time rate for the first predetermined time period.
  • a second acquiring unit configured to send data before the start time from a data status report received at a start time in the first predetermined time period a first data amount, and a data status report received from the end time in the first predetermined time period, acquiring a second data amount of data before the end time
  • a third determining unit configured to: Determining, according to the first data
  • the sending module includes: a fifth determining unit, configured to determine, according to the determined allowed sending rate, an allowable sending data amount of data currently allowed to be sent; a statistics unit, configured to collect the current sent but not confirmed The unconfirmed data data amount; the sending unit is configured to send the data to be sent, wherein the data amount of the data to be sent is a difference between the amount of the allowed data to be sent and the amount of the unconfirmed data.
  • radio link control RLC entity comprising the apparatus of any of the above.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the following steps: determining a first transmission rate of current data transmission; determining, according to the obtained first transmission rate, an allowable transmission rate of currently allowed data transmission; The transmission rate is allowed to be sent.
  • the storage medium is further configured to store program code for performing the step of determining that the first transmission rate of the current data transmission comprises: determining that the first average rate of data transmission during the first first predetermined time period is the first Send rate.
  • the storage medium is further configured to store program code for: determining, according to the obtained first transmission rate, the allowed transmission rate of the currently allowed data transmission comprises: acquiring the first average rate a difference from a second average rate, wherein the second average rate is an average rate of data transmission during a second predetermined time period of the same predetermined time period prior to the current first predetermined time period; determining the The allowed transmission rate is the sum of the first transmission rate and the difference.
  • the storage medium is further configured to store program code for performing the following steps: before determining that the first average rate of data transmission in the current first predetermined time period is the first sending rate, further comprising: Obtaining, in a data status report received at a start time within the first predetermined time period, a first data amount of data transmitted before the start time, and receiving from an end time within the first predetermined time period Obtaining, in the data status report, obtaining a second data amount of data sent before the end time; determining, according to the first data quantity and the second data quantity, sending data in the first predetermined time period The total amount of data; determining the first average rate based on the determined total amount of data, and the first predetermined time period.
  • the storage medium is further configured to store program code for performing the following steps: transmitting the data according to the determined allowed transmission rate comprises: determining, according to the determined allowed transmission rate, the allowable transmission data of the data currently allowed to be sent. The amount of unacknowledged data data that has been sent but not acknowledged; the data to be transmitted is sent, wherein the data amount of the data to be transmitted is the difference between the amount of the data to be transmitted and the amount of the unconfirmed data of the statistics. .
  • the allowable transmission rate is determined by itself according to the current transmission rate, the inter-layer interaction is required to determine the allowable transmission rate with respect to the related art, and therefore, a large number of inter-layer interactions involved in the related art can be solved.
  • the problem of serious system burden is achieved by directly determining the allowable transmission rate for data transmission according to its own state, and improving the efficiency and accuracy of data transmission.
  • FIG. 1 is a block diagram showing the hardware structure of an RLC entity for a data transmitting method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a data transmitting method according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a process when an AM RLC receives a status report in an adaptive adjustment method of an AM RLC transmission rate according to a preferred embodiment of the present disclosure
  • FIG. 4 is a flowchart of a process of AM RLC scheduling transmission data in an adaptive adjustment method of an AM RLC transmission rate according to a preferred embodiment of the present disclosure
  • FIG. 5 is a structural block diagram of a data transmitting apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a block diagram 1 of a preferred structure of a first determining module 52 in a data transmitting apparatus according to an embodiment of the present disclosure
  • FIG. 7 is a block diagram showing a preferred structure of a second determining module 54 in a data transmitting apparatus according to an embodiment of the present disclosure
  • FIG. 8 is a block diagram 2 of a preferred structure of the first determining module 52 in the data transmitting apparatus according to an embodiment of the present disclosure
  • FIG. 9 is a block diagram showing a preferred structure of a transmitting module 56 in a data transmitting apparatus according to an embodiment of the present disclosure
  • FIG. 10 is a structural block diagram of a radio link control RLC entity according to an embodiment of the present disclosure.
  • Embodiment 1 of the present application can be performed on a network entity that sends data.
  • the RLC 10 entity may include one or more (in the figure). Only one processor 102 is shown (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA), a memory 104 for storing data, and a transmission device 106 for communication functions. . It will be understood by those skilled in the art that the structure shown in FIG. 1 is merely illustrative and does not limit the structure of the above electronic device.
  • the RLC entity 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
  • the memory 104 can be used to store software programs and modules of application software, such as program instructions/modules corresponding to the data transmission method in the embodiment of the present disclosure, and the processor 102 executes various kinds by executing software programs and modules stored in the memory 104. Functional application and data processing, that is, the above method is implemented.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 may include memory remotely located relative to processor 102, which may be connected to RLC 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is for receiving or transmitting data via a network.
  • the network specific example described above may include a wireless network provided by a communication provider of the RLC entity 10.
  • the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 2 is a flowchart of a data sending method according to an embodiment of the present disclosure. As shown in FIG. 2, the process includes the following steps:
  • Step S202 determining a first transmission rate of current data transmission
  • Step S204 determining, according to the obtained first sending rate, an allowable sending rate of the currently allowed data transmission
  • Step S206 sending data according to the determined allowable transmission rate.
  • execution body of the foregoing steps may be any network element entity used for data transmission, for example, may be a radio link control RLC entity or the like, but is not limited thereto.
  • the execution entity determines the allowable transmission rate of the currently allowed data transmission directly according to the data transmission state, and does not need to interact with other layer entities to determine the allowable transmission rate, and solves the inter-layer involved in the related art.
  • a large number of interactions cause serious system burdens, and achieve the effect of directly determining the allowable transmission rate for data transmission according to its own state, improving data transmission efficiency and accuracy.
  • the first sending rate may be directly based on a relatively stable sending rate within a predetermined time period; or may be predetermined.
  • the agreed transmission rate (for example, the highest transmission rate) in the time period is the first transmission rate; of course, in order to make the determined result more accurate, it may be determined that the first average rate of data transmission in the current first predetermined time period is the first A transmission rate.
  • the allowable transmission rate may be determined in a similarly estimated manner: first, a difference between the first average rate and the second average rate is obtained, wherein the second average rate is one before the current first predetermined time period The average rate of data transmission during the second predetermined time period of the same predetermined time period; thereafter, determining the allowable transmission rate as the sum of the first transmission rate and the difference. It should be noted that in the above estimation method, it is assumed that the transmission rate is increasing over time.
  • the manner of determining the first average rate may also be multiple, for example, may be determined according to a data status report.
  • the method includes: acquiring, from a data status report received at a start time within the first predetermined time period, a first data amount of transmitting data before the start time, and an end time from the first predetermined time period Receiving, in the received data status report, acquiring a second data amount of the data sent before the end time; determining, according to the first data quantity and the second data quantity, the total amount of data sent in the first predetermined time period; The total amount of data, and the first predetermined time period, determines a first average rate, for example, directly dividing the determined total amount of data by the first predetermined time period to obtain a first average rate.
  • the allowed transmission rate may be directly determined according to the allowed transmission rate. Determining the allowable transmission data amount of the data to be transmitted to transmit data; and when the data has been transmitted within the scheduling period of transmitting the data, determining the allowable transmission data amount of the data currently allowed to be transmitted according to the determined allowable transmission rate; The amount of unacknowledged data data that has been sent but not acknowledged is counted; then the data to be transmitted is sent, wherein the amount of data to be transmitted is the difference between the amount of data to be transmitted and the amount of unconfirmed data of the statistics.
  • the data transmission process is not only flexible but also accurate.
  • an AM RLC adaptive adjustment transmission rate when applied to an AM RLC scenario, can be implemented.
  • the specific processing involved in the above embodiments and preferred embodiments will be described below in conjunction with the AM RLC scenario.
  • the method for adaptively adjusting the transmission rate by the AM RLC includes: recording the current time Tick and the confirmed acknowledgement data amount ACK_SN in the status packet each time the status report of the AM RLC is received, and calculating in combination with the last recorded value, where Remember the last time for Tick1, ACK_SN1, this time for Tick2, ACK_SN2;
  • the number of unacknowledged transmitted data between ACK_SN2 and AM RLC last packet data (number VtS-1) is UnAckBytes; the process is the step involved in the above preferred embodiment: statistics are currently sent but not The amount of unconfirmed data data confirmed.
  • the foregoing method for adaptively adjusting the transmission rate by the RLC uses the information of the AM RLC state packet to estimate the amount of data that can be currently transmitted, thereby removing the message interaction between the MAC and the RLC, and reducing the coupling of the two protocol layers.
  • the method for adaptively adjusting the transmission rate of the AM RLC in the LTE mobile communication system provided by the preferred embodiment of the present disclosure will be described below with reference to specific flow processing steps.
  • the main content includes: AM RLC calculates the current air interface transmission rate and the two previous increments according to the reception status report, and estimates the transmission rate of the current period and the number of bytes that the air interface can send, minus the part that has been sent yet. That is, the new upper layer data CanSendBytes allowed to be transmitted in this period. After this period, the AM RLC takes the data of the CanSendBytes byte from the upper layer PDCP, segments it, and transmits it in series. Of course, in the end, you need to consider whether PDCP has so much data and whether the AM RLC transmission window allows these restrictions.
  • this embodiment takes a 4G system as an example and is applicable to a 5G system at the same time.
  • FIG. 3 is a flowchart of a process when an AM RLC receives a status report in an adaptive adjustment method of an AM RLC transmission rate according to a preferred embodiment of the present disclosure. As shown in FIG. 3, the process includes the following steps:
  • the AM RLC receives the uplink status report, parses the ACK_SN in the packet, records it as NEW_ACK_SN, and records the current time Tick;
  • FIG. 4 is a process flowchart of an AM RLC scheduling transmission data in an adaptive adjustment method of an AM RLC transmission rate according to a preferred embodiment of the present disclosure. As shown in FIG. 4, the process includes the following steps:
  • the AM RLC scheduling time is up
  • the AM RLC obtains CanSendBytes from the upper layer for segmentation, concatenation, and transmission.
  • a data transmitting apparatus and an RLC entity are provided, which are used to implement the foregoing embodiments and preferred embodiments, and are not described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 5 is a structural block diagram of a data transmitting apparatus according to an embodiment of the present disclosure. As shown in FIG. 5, the apparatus includes: a first determining module 52, a second determining module 54, and a transmitting module 56, which will be described below.
  • the first determining module 52 is configured to determine a first sending rate of the current data transmission
  • the second determining module 54 is connected to the first determining module 52, configured to determine, according to the obtained first sending rate, the currently allowed data transmission.
  • the transmission rate is allowed; the sending module 56 is connected to the second determining module 54 for transmitting data according to the determined allowed transmission rate.
  • FIG. 6 is a block diagram of a preferred structure of the first determining module 52 in the data transmitting apparatus according to an embodiment of the present disclosure.
  • the first determining module 52 includes: a first determining unit 62, which is the first The determination unit 62 will be described.
  • the first determining unit 62 is configured to determine that the first average rate of data transmission in the current first predetermined time period is the first sending rate.
  • FIG. 7 is a block diagram showing a preferred structure of the second determining module 54 in the data transmitting apparatus according to an embodiment of the present disclosure.
  • the second determining module 54 includes: a first obtaining unit 72 and a second determining unit 74, The second determination module 54 is described.
  • the first obtaining unit 72 is configured to obtain a difference between the first average rate and the second average rate, where the second average rate is within a second predetermined time period of the same first predetermined time period before the current first predetermined time period
  • the average rate of data transmission; the second determining unit 74 is coupled to the first obtaining unit 72 for determining that the allowed transmission rate is the sum of the first transmission rate and the difference.
  • FIG. 8 is a block diagram of a preferred structure of the first determining module 52 in the data transmitting apparatus according to an embodiment of the present disclosure.
  • the first determining module 52 includes, in addition to all the structures shown in FIG.
  • the second obtaining unit 82, the third determining unit 84 and the fourth determining unit 86, the first determining module 52 will be described below.
  • a second obtaining unit 82 configured to acquire, from a data status report received at a start time within the first predetermined time period, a first data amount of data sent before the start time, and from a first predetermined time period Obtaining, in the data status report received at the end time, the second data amount of the data before the end time; the third determining unit 84 is connected to the second acquiring unit 82, configured to use the first data amount and the second data quantity. Determining a total amount of data for transmitting data in the first predetermined time period; the fourth determining unit 86 is connected to the third determining unit 84, for determining the first according to the determined total data amount and the first predetermined time period Average rate.
  • FIG. 9 is a block diagram showing a preferred structure of a transmitting module 56 in a data transmitting apparatus according to an embodiment of the present disclosure.
  • the transmitting module 56 includes: a fifth determining unit 92, a statistic unit 94, and a transmitting unit 96. The transmitting module 56 will be described.
  • the fifth determining unit 92 is configured to determine, according to the determined allowed transmission rate, the amount of data to be transmitted that is currently allowed to be sent; the statistics unit 94 is connected to the fifth determining unit 92, and is configured to collect the currently sent but unacknowledged The data unit is not confirmed; the sending unit 96 is connected to the fifth determining unit 92 and the counting unit 94, and is configured to send data to be sent, where the data volume of the data to be sent is an unconfirmed data data that allows the data volume to be sent and the statistics. The difference between the quantities.
  • FIG. 10 is a structural block diagram of a radio link control RLC entity, as shown in FIG. 10, including the data transmitting apparatus 12 of any of the above, in accordance with an embodiment of the present disclosure.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present disclosure also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • Determining the first transmission rate of current data transmission includes:
  • the storage medium is further arranged to store program code for performing the following steps:
  • Determining the allowable transmission rate of the currently allowed data transmission according to the obtained first transmission rate includes:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the method further includes:
  • the storage medium is further arranged to store program code for performing the following steps:
  • Sending data according to the determined allowable transmission rate includes:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs, according to the stored program code in the storage medium, determining a first sending rate of the current data sending, and determining, according to the obtained first sending rate, the allowable sending of the currently allowed data sending. Rate; sends data based on the determined allowed transmission rate.
  • the processor performs, according to the stored program code in the storage medium, determining that the first sending rate of the current data transmission comprises: determining that the first average rate of data transmission in the current first predetermined time period is The first transmission rate.
  • the processor performs, according to the stored program code in the storage medium, determining, according to the obtained first sending rate, the allowable sending rate of the currently allowed data sending, including: acquiring the first average rate and the first a difference between two average rates, wherein the second average rate is an average rate of data transmission during a second predetermined time period of a same predetermined time period before the first first predetermined time period; determining that the allowed transmission rate is the first transmission rate The sum of the differences.
  • the processor performs, according to the stored program code in the storage medium, before determining that the first average rate of data transmission in the current first predetermined time period is the first sending rate, further comprising: In the data status report received at the start time of the first predetermined time period, the first data amount of the data transmitted before the start time is acquired, and the data status report received from the end time within the first predetermined time period is obtained. Obtaining a second data amount of data sent before the end time; determining, according to the first data quantity and the second data quantity, a total amount of data sent in the first predetermined time period; according to the determined total data amount, and the first The first average rate is determined for a predetermined period of time.
  • sending the data according to the determined allowed transmission rate includes: determining, according to the determined allowed transmission rate, the allowable transmission data of the data currently allowed to be sent. The amount of unacknowledged data data that has been sent but not acknowledged; the data to be transmitted is sent, wherein the amount of data to be transmitted is the difference between the amount of data to be transmitted and the amount of unconfirmed data.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the data sending method provided by the embodiment of the present disclosure may be applied to a network entity that sends data to run on a network entity RLC as an example, which solves a large number of inter-layer interactions involved in the related art and causes a serious system load.
  • the problem in turn, achieves the effect of directly determining the allowable transmission rate for data transmission according to its own state, improving data transmission efficiency and accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种数据发送方法、装置及RLC实体,其中,该方法包括:确定当前数据发送的第一发送速率;依据获取的第一发送速率,确定当前允许的数据发送的允许发送速率;依据确定的允许发送速率发送数据,通过本公开,解决了相关技术中涉及到的层间大量交互,造成严重系统负担的问题,进而达到了直接依据自身状态来确定允许发送速率进行数据发送,提高数据发送效率以及准确性的效果。 (图1)

Description

数据发送方法、装置及RLC实体 技术领域
本公开涉及通信领域,具体而言,涉及一种数据发送方法、装置及无线链路控制(Radio Link Control,简称为RLC)实体。
背景技术
长期演进(Long Term Evolution,简称为LTE)系统中的RLC层位于协议栈接入层的媒体接入控制(Media Access Control,简称为MAC)层和分组数据汇聚协议(Packet Data Convergence Protocol,简称为PDCP)层之间,主要执行组装PDU,重组SDU,重传PDU等功能。它支持3种数据传输模式:透明模式TM,非确认模式UM,和确认模式AM。为保证数据的有效发送,协议规定RLC需要根据底层上报的空口能力进行RLC数据的分段和串联以及向底层发送。否则如对于AM RLC,如果发送量超过空口发送能力,会导致轮询重传定时器超时,如果重传次数超过配置门限,就会导致丢包甚至业务中断。
在LTE系统中,一般MAC会每个空口传输时间间隔(Transmission Time Interval,简称为TTI)计算一次发送能力,TTI很小(1ms),如果每个TTI都由MAC上报空口能力给RLC,那么层间消息交互很大,对系统负荷有明显的影响。尤其在未来5G系统,RLC和MAC的这种交互将很大程度制约这些协议功能实体的独立部署。
因此,在相关技术中,在对数据进行发送时,存在层间消息交互太大,造成严重系统负担的问题。
发明内容
本公开实施例提供了一种数据发送方法、装置及无线链路控制RLC实体,以至少解决相关技术中在对数据进行发送时,存在层间消息交互太大,造成严重系统负担的问题。
根据本公开的一个实施例,提供了一种数据发送方法,确定当前数据发送的第一发送速率;依据获取的所述第一发送速率,确定当前允许的数据发送的允许发送速率;依据确定的所述允许发送速率发送数据。
可选地,确定当前数据发送的所述第一发送速率包括:确定当前第一预定时间段内数据发送的第一平均速率为所述第一发送速率。
可选地,依据获取的所述第一发送速率,确定当前允许的数据发送的所述允许发送速率包括:获取所述第一平均速率与第二平均速率之间的差值,其中,所述第二平均速率为所述当前第一预定时间段前一个相同预定时间段的第二预定时间段内数据发送的平均速率;确定所述允许发送速率为所述第一发送速率与所述差值之和。
可选地,在确定当前第一预定时间段内数据发送的所述第一平均速率为所述第一发送速率之前,还包括:从在所述第一预定时间段内的开始时刻接收到的数据状态报告中,获 取在所述开始时刻之前发送数据的第一数据量,以及从在所述第一预定时间段内的结束时刻接收到的数据状态报告中,获取在所述结束时刻之前发送数据的第二数据量;依据所述第一数据量以及所述第二数据量,确定在所述第一预定时间段内发送数据的数据总量;依据确定的所述数据总量,以及所述第一预定时间段,确定所述第一平均速率。
可选地,依据确定的所述允许发送速率发送数据包括:依据确定的所述允许发送速率,确定当前允许发送的数据的允许发送数据量;统计当前已发送但未确认的未确认数据数据量;发送待发送数据,其中,所述待发送数据的数据量为所述允许发送数据量与统计的所述未确认数据数据量之差。
根据本公开的另一个实施例,提供了一种数据发送装置,包括:第一确定模块,用于确定当前数据发送的第一发送速率;第二确定模块,用于依据获取的所述第一发送速率,确定当前允许的数据发送的允许发送速率;发送模块,用于依据确定的所述允许发送速率发送数据。
可选地,所述第一确定模块包括:第一确定单元,用于确定当前第一预定时间段内数据发送的第一平均速率为所述第一发送速率。
可选地,所述第二确定模块包括:第一获取单元,用于获取所述第一平均速率与第二平均速率之间的差值,其中,所述第二平均速率为所述当前第一预定时间段前一个相同预定时间段的第二预定时间段内数据发送的平均速率;第二确定单元,用于确定所述允许发送速率为所述第一发送速率与所述差值之和。
可选地,所述第一确定模块还包括:第二获取单元,用于从在所述第一预定时间段内的开始时刻接收到的数据状态报告中,获取在所述开始时刻之前发送数据的第一数据量,以及从在所述第一预定时间段内的结束时刻接收到的数据状态报告中,获取在所述结束时刻之前发送数据的第二数据量;第三确定单元,用于依据所述第一数据量以及所述第二数据量,确定在所述第一预定时间段内发送数据的数据总量;第四确定单元,用于依据确定的所述数据总量,以及所述第一预定时间段,确定所述第一平均速率。
可选地,所述发送模块包括:第五确定单元,用于依据确定的所述允许发送速率,确定当前允许发送的数据的允许发送数据量;统计单元,用于统计当前已发送但未确认的未确认数据数据量;发送单元,用于发送待发送数据,其中,所述待发送数据的数据量为所述允许发送数据量与统计的所述未确认数据数据量之差。
根据本公开的又一个实施例,还提供了一种无线链路控制RLC实体,包括上述任一项所述的装置。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:确定当前数据发送的第一发送速率;依据获取的所述第一发送速率,确定当前允许的数据发送的允许发送速率;依据确定的所述允许发送速率发送数据。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:确定当前数据发送的所述第一发送速率包括:确定当前第一预定时间段内数据发送的第一平均速率为所述第一 发送速率。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:依据获取的所述第一发送速率,确定当前允许的数据发送的所述允许发送速率包括:获取所述第一平均速率与第二平均速率之间的差值,其中,所述第二平均速率为所述当前第一预定时间段前一个相同预定时间段的第二预定时间段内数据发送的平均速率;确定所述允许发送速率为所述第一发送速率与所述差值之和。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在确定当前第一预定时间段内数据发送的所述第一平均速率为所述第一发送速率之前,还包括:从在所述第一预定时间段内的开始时刻接收到的数据状态报告中,获取在所述开始时刻之前发送数据的第一数据量,以及从在所述第一预定时间段内的结束时刻接收到的数据状态报告中,获取在所述结束时刻之前发送数据的第二数据量;依据所述第一数据量以及所述第二数据量,确定在所述第一预定时间段内发送数据的数据总量;依据确定的所述数据总量,以及所述第一预定时间段,确定所述第一平均速率。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:依据确定的所述允许发送速率发送数据包括:依据确定的所述允许发送速率,确定当前允许发送的数据的允许发送数据量;统计当前已发送但未确认的未确认数据数据量;发送待发送数据,其中,所述待发送数据的数据量为所述允许发送数据量与统计的所述未确认数据数据量之差。
通过本公开,由于由自身依据当前的发送速率来确定允许发送速率,相对于相关技术而言,需要层间交互才能确定允许发送速率,因此,可以解决相关技术中涉及到的层间大量交互,造成严重系统负担的问题,达到直接依据自身状态来确定允许发送速率进行数据发送,提高数据发送效率以及准确性的效果。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开实施例的一种用于数据发送方法的RLC实体的硬件结构框图;
图2是根据本公开实施例的数据发送方法的流程图;
图3是根据本公开优选实施例的AM RLC发送速率的自适应调整方法中AM RLC接收到状态报告时的处理流程图;
图4是根据本公开优选实施例的AM RLC发送速率的自适应调整方法中AM RLC调度发送数据的处理流程图;
图5是根据本公开实施例的数据发送装置的结构框图;
图6是根据本公开实施例的数据发送装置中第一确定模块52的优选结构框图一;
图7是根据本公开实施例的数据发送装置中第二确定模块54的优选结构框图;
图8是根据本公开实施例的数据发送装置中第一确定模块52的优选结构框图二;
图9是根据本公开实施例的数据发送装置中发送模块56的优选结构框图;
图10是根据本公开实施例的无线链路控制RLC实体的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例1所提供的方法实施例可以用于发送数据的网络实体上执行。以运行在网络实体RLC上为例,图1是本公开实施例的一种用于数据发送方法的RLC实体的硬件结构框图,如图1所示,RLC10实体可以包括一个或多个(图中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器104、以及用于通信功能的传输装置106。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,RLC实体10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储应用软件的软件程序以及模块,如本公开实施例中的数据发送方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至RLC 10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括RLC实体10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于RLC实体的数据发送方法,图2是根据本公开实施例的数据发送方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,确定当前数据发送的第一发送速率;
步骤S204,依据获取的第一发送速率,确定当前允许的数据发送的允许发送速率;
步骤S206,依据确定的允许发送速率发送数据。
需要说明的是,上述步骤的执行主体可以为用于数据发送的任何网元实体,例如,可以是无线链路控制RLC实体等,但不限于此。
通过上述步骤,由执行实体直接依据数据发送状态来确定当前允许的数据发送的允许发送速率,而不需要与其它层的实体进行交互才能确定允许发送速率,解决了相关技术中涉及到的层间大量交互,造成严重系统负担的问题,达到直接依据自身状态来确定允许发送速率进行数据发送,提高数据发送效率以及准确性的效果。
可选地,确定当前数据发送的第一发送速率时,可以采用多种方式,例如,可以直接依据某一预定时间段内的比较稳定的发送速率为该第一发送速率;也可以以一预定时间段内的约定的发送速率(例如,最高发送速率)为该第一发送速率;当然为了使得确定的结果更为准确,可以确定当前第一预定时间段内数据发送的第一平均速率为第一发送速率。
可选地,在依据上述各种方式确定当前第一预定时间段内数据发送的第一平均速率为第一发送速率之后,在依据获取的第一发送速率,确定当前允许的数据发送的允许发送速率时,可以采用一种类似估算的方式来确定该允许发送速率:先获取第一平均速率与第二平均速率之间的差值,其中,第二平均速率为当前第一预定时间段前一个相同预定时间段的第二预定时间段内数据发送的平均速率;之后,确定允许发送速率为第一发送速率与差值之和。需要说明的是,上述估算方法中,假设随着时间的推移发送速率在增加。
可选地,在确定当前第一预定时间段内数据发送的第一平均速率为第一发送速率之前,确定上述第一平均速率的方式也可以多种,例如,可以依据数据状态报告来确定,具体来说,包括:从在第一预定时间段内的开始时刻接收到的数据状态报告中,获取在开始时刻之前发送数据的第一数据量,以及从在第一预定时间段内的结束时刻接收到的数据状态报告中,获取在结束时刻之前发送数据的第二数据量;依据第一数据量以及第二数据量,确定在第一预定时间段内发送数据的数据总量;依据确定的数据总量,以及第一预定时间段,确定第一平均速率,例如,直接将确定的数据总量除以上述第一预定时间段即可以得到第一平均速率。
可选地,在依据确定的允许发送速率发送数据时,依据不同的情景,可以采用不同的处理方式,例如,在发送数据的调度周期之内没有发送过数据时,可以直接依据该允许发送速率确定允许发送的数据的允许发送数据量发送数据;而当在发送数据的调度周期之内已发送过数据时,可以依据确定的允许发送速率,确定当前允许发送的数据的允许发送数据量;以及统计当前已发送但未确认的未确认数据数据量;之后发送待发送数据,其中,待发送数据的数据量为允许发送数据量与统计的未确认数据数据量之差。采用上述处理,使得数据发送过程不仅灵活,而且准确。
结合上述实施例及优选实施方式,当应用于AM RLC情景时,能够实现AM RLC自适应调整发送速率。下面结合AM RLC情景,说明上述实施例及优选实施方式所涉及的具体处理。
AM RLC自适应调整发送速率的方法包括:每次在收到AM RLC的状态报告时记录当前时刻Tick以及状态包中的确认的确认数据量ACK_SN,并与上一次记录值结合计算,其中,这里记上一次的为Tick1,ACK_SN1,这一次的为Tick2,ACK_SN2;
统计已发送队列中ACK_SN1和ACK_SN2之间这些数据的字节数(即上述所指的数据量,字节数为数据量的一种表述方式)AckBytes,计算当前空口的发送速率为:CurAirRate=AckBytes/(Tick2-Tick1);并与上次的结果LastAirRate计算得到差值CurAirRate_Delta=CurAirRate-LastAirRate;假设当前允许发送的空口速率为:CanSendRate=CurAirRate+CurAirRate_Delta=2*CurAirRate-LastAirRate;上述处理即为上述实施例及优选实施方式中所涉及的步骤:确定当前允许的数据发送的允许发送速率。
统计从ACK_SN2到AM RLC最后一包数据(序号为VtS-1)之间这些尚未确认的已发送数据量为UnAckBytes;该处理即为上述优选实施方式中所涉及的步骤:统计当前已发送但未确认的未确认数据数据量。
设AM RLC的数据发送的调度周期为Period,在调度时刻计算本次调度允许发送的数据量为:CanSendBytes=(CurAirRate+CurAirRate_Delta)*Period–UnAckBytes;此处理即为上述优选实施方式中所涉及的确定待发送数据的数据量的步骤。
如果是业务初始阶段,还没有获取到Tick1,SN1,以及CurAirRate_Delta,那么允许发送字节数CanSendBytes为可以配置的初始值;
AM RLC依据CanSendBytes对上层数据进行分段,串接。
上述RLC自适应调整发送速率的方法,利用AM RLC状态包的信息,估算得到当前可以发送的数据量,从而去除了MAC与RLC的这种消息交互,减少两个协议层的耦合。
下面结合具体的流程处理步骤,对本公开优选实施例所提供的LTE移动通信系统中,AM RLC对发送速率进行自适应动态调整方法进行说明。主要内容包括:AM RLC依据接收状态报告,计算得到当前空口的发送速率以及前后两次变化增量,估算得到本周期的发送速率以及空口可以发送的字节数,减去已经发送尚未确认的部分,即是本周期允许发送的新的上层数据CanSendBytes,之后,在本周期,AM RLC从上层PDCP取CanSendBytes字节的数据进行分段,串联并发送。当然,最终还需要考虑PDCP是否有这么多数据以及AM RLC的发送窗口是否允许等这些限制条件。
需要说明的是,本实施例以4G系统为例,同时适用于5G系统。
图3是根据本公开优选实施例的AM RLC发送速率的自适应调整方法中AM RLC接收到状态报告时的处理流程图,如图3所示,该流程包括如下步骤:
S302,AM RLC接收到上行状态报告,解析得到报文中的ACK_SN,记为NEW_ACK_SN,并记录当前时刻Tick;
S304,判断是否是第一次收到状态包(之前记录的Tick1为0);
S306,在判断结果为是时,记录Tick1为当前时刻Tick,ACK_SN1为NEW_ACK_SN;结束,等待下一次接收再处理;
S308,在判断结果为否时,计算与上次状态报告的时间差Time=Tick-Tick1;
S310,计算发送队列中ACK_SN1与NEW_ACK_SN之间数据的字节数AckBytes;
S312,计算当前的空口速率CurAirRate=AckBytes/Time;
S314,判断是否是第一次计算得到CurAirRate(上次记录值LastAirRate为初值);
S316,在判断结果为是时,设置CanSendRate为初值;
S318,在判断结果为否时,确定CanSendRate=2*CurAirRate–LastAirRate;
S320,记录LastAirRate为CurAirRate。
图4是根据本公开优选实施例的AM RLC发送速率的自适应调整方法中AM RLC调度发送数据的处理流程图,如图4所示,该流程包括如下步骤:
S402,AM RLC调度时刻到;
S404,获取图3过程得到的CanSendRate;
S406,统计AM RLC从ACK_SN2到最后一包发送数据的序号VtS-1之间数据的所有字节数UnAckBytes;
S408,计算本周期可以获取新数据的字节数CanSendBytes=CanSendRate*Period–UnAckBytes;
S410,AM RLC最多从上层获取CanSendBytes进行分段,串接以及发送。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例的方法。
实施例2
在本实施例中还提供了一种数据发送装置及RLC实体,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本公开实施例的数据发送装置的结构框图,如图5所示,该装置包括:第一确定模块52、第二确定模块54和发送模块56,下面对该装置进行说明。
第一确定模块52,用于确定当前数据发送的第一发送速率;第二确定模块54,连接至上述第一确定模块52,用于依据获取的第一发送速率,确定当前允许的数据发送的允许发送速率;发送模块56,连接至上述第二确定模块54,用于依据确定的允许发送速率发送数据。
图6是根据本公开实施例的数据发送装置中第一确定模块52的优选结构框图一,如图6所示,该第一确定模块52包括:第一确定单元62,下面对该第一确定单元62进行说明。
第一确定单元62,用于确定当前第一预定时间段内数据发送的第一平均速率为第一发送速率。
图7是根据本公开实施例的数据发送装置中第二确定模块54的优选结构框图,如图7所示,该第二确定模块54包括:第一获取单元72和第二确定单元74,下面对该第二确定模块54进行说明。
第一获取单元72,用于获取第一平均速率与第二平均速率之间的差值,其中,第二平均速率为当前第一预定时间段前一个相同预定时间段的第二预定时间段内数据发送的平均速率;第二确定单元74,连接至上述第一获取单元72,用于确定允许发送速率为第一发送速率与差值之和。
图8是根据本公开实施例的数据发送装置中第一确定模块52的优选结构框图二,如图8所示,第一确定模块52除包括图6所示的所有结构外,还包括:第二获取单元82,第三确定单元84和第四确定单元86,下面对该第一确定模块52进行说明。
第二获取单元82,用于从在第一预定时间段内的开始时刻接收到的数据状态报告中,获取在开始时刻之前发送数据的第一数据量,以及从在第一预定时间段内的结束时刻接收到的数据状态报告中,获取在结束时刻之前发送数据的第二数据量;第三确定单元84,连接至上述第二获取单元82,用于依据第一数据量以及第二数据量,确定在第一预定时间段内发送数据的数据总量;第四确定单元86,连接至上述第三确定单元84,用于依据确定的数据总量,以及第一预定时间段,确定第一平均速率。
图9是根据本公开实施例的数据发送装置中发送模块56的优选结构框图,如图9所示,发送模块56包括:第五确定单元92、统计单元94和发送单元96,下面对该发送模块56进行说明。
第五确定单元92,用于依据确定的允许发送速率,确定当前允许发送的数据的允许发送数据量;统计单元94,连接至上述第五确定单元92,用于统计当前已发送但未确认的未确认数据数据量;发送单元96,连接至上述第五确定单元92和统计单元94,用于发送待发送数据,其中,待发送数据的数据量为允许发送数据量与统计的未确认数据数据量之差。
图10是根据本公开实施例的无线链路控制RLC实体的结构框图,如图10所示,该RLC实体10包括上述任一项的数据发送装置12。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本公开的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,确定当前数据发送的第一发送速率;
S2,依据获取的第一发送速率,确定当前允许的数据发送的允许发送速率;
S3,依据确定的允许发送速率发送数据。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
确定当前数据发送的第一发送速率包括:
S1,确定当前第一预定时间段内数据发送的第一平均速率为第一发送速率。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
依据获取的第一发送速率,确定当前允许的数据发送的允许发送速率包括:
S1,获取第一平均速率与第二平均速率之间的差值,其中,第二平均速率为当前第一预定时间段前一个相同预定时间段的第二预定时间段内数据发送的平均速率;
S2,确定允许发送速率为第一发送速率与差值之和。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
在确定当前第一预定时间段内数据发送的第一平均速率为第一发送速率之前,还包括:
S1,从在第一预定时间段内的开始时刻接收到的数据状态报告中,获取在开始时刻之前发送数据的第一数据量,以及从在第一预定时间段内的结束时刻接收到的数据状态报告中,获取在结束时刻之前发送数据的第二数据量;
S2,依据第一数据量以及第二数据量,确定在第一预定时间段内发送数据的数据总量;
S3,依据确定的数据总量,以及第一预定时间段,确定第一平均速率。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
依据确定的允许发送速率发送数据包括:
S1,依据确定的允许发送速率,确定当前允许发送的数据的允许发送数据量;
S2,统计当前已发送但未确认的未确认数据数据量;
S3,发送待发送数据,其中,待发送数据的数据量为允许发送数据量与统计的未确认数据数据量之差。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:确定当前数据发送的第一发送速率;依据获取的第一发送速率,确定当前允许的数据发送的允许发送速率;依据确定的允许发送速率发送数据。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:确定当前数据发送的第一发送速率包括:确定当前第一预定时间段内数据发送的第一平均速率为第一发送速率。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:依据获取的第一发送速率,确定当前允许的数据发送的允许发送速率包括:获取第一平均速率与第二平均速率之间的差值,其中,第二平均速率为当前第一预定时间段前一个相同预定时间段的第二预定时间段内数据发送的平均速率;确定允许发送速率为第一发送速率与差值之和。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在确定当前第一预定时间段内数据发送的第一平均速率为第一发送速率之前,还包括:从在第一预定时间段内的开始时刻接收到的数据状态报告中,获取在开始时刻之前发送数据的第一数据量,以及从在第一预定时间段内的结束时刻接收到的数据状态报告中,获取在结束时刻之前发送数据的第二数据量;依据第一数据量以及第二数据量,确定在第一预定时间段内发送数据的数据总量;依据确定的数据总量,以及第一预定时间段,确定第一平均速率。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:依据确定的允许发送速率发送数据包括:依据确定的允许发送速率,确定当前允许发送的数据的允许发送数据量;统计当前已发送但未确认的未确认数据数据量;发送待发送数据,其中,待发送数据的数据量为允许发送数据量与统计的未确认数据数据量之差。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开实施例提供的数据发送方法,可以应用于发送数据的网络实体上执行,以运行在网络实体RLC上为例,其解决了相关技术中涉及到的层间大量交互,造成严重系统负担的问题,进而达到了直接依据自身状态来确定允许发送速率进行数据发送,提高数据发送效率以及准确性的效果。

Claims (11)

  1. 一种数据发送方法,包括:
    确定当前数据发送的第一发送速率;
    依据获取的所述第一发送速率,确定当前允许的数据发送的允许发送速率;
    依据确定的所述允许发送速率发送数据。
  2. 根据权利要求1所述的方法,其中,确定当前数据发送的所述第一发送速率包括:
    确定当前第一预定时间段内数据发送的第一平均速率为所述第一发送速率。
  3. 根据权利要求2所述的方法,其中,依据获取的所述第一发送速率,确定当前允许的数据发送的所述允许发送速率包括:
    获取所述第一平均速率与第二平均速率之间的差值,其中,所述第二平均速率为所述当前第一预定时间段前一个相同预定时间段的第二预定时间段内数据发送的平均速率;
    确定所述允许发送速率为所述第一发送速率与所述差值之和。
  4. 根据权利要求2所述的方法,其中,在确定当前第一预定时间段内数据发送的所述第一平均速率为所述第一发送速率之前,还包括:
    从在所述第一预定时间段内的开始时刻接收到的数据状态报告中,获取在所述开始时刻之前发送数据的第一数据量,以及从在所述第一预定时间段内的结束时刻接收到的数据状态报告中,获取在所述结束时刻之前发送数据的第二数据量;
    依据所述第一数据量以及所述第二数据量,确定在所述第一预定时间段内发送数据的数据总量;
    依据确定的所述数据总量,以及所述第一预定时间段,确定所述第一平均速率。
  5. 根据权利要求1至4中任一项所述的方法,其中,依据确定的所述允许发送速率发送数据包括:
    依据确定的所述允许发送速率,确定当前允许发送的数据的允许发送数据量;
    统计当前已发送但未确认的未确认数据数据量;
    发送待发送数据,其中,所述待发送数据的数据量为所述允许发送数据量与统计的所述未确认数据数据量之差。
  6. 一种数据发送装置,包括:
    第一确定模块,设置为确定当前数据发送的第一发送速率;
    第二确定模块,设置为依据获取的所述第一发送速率,确定当前允许的数据发送的允许发送速率;
    发送模块,设置为依据确定的所述允许发送速率发送数据。
  7. 根据权利要求6所述的装置,其中,所述第一确定模块包括:
    第一确定单元,设置为确定当前第一预定时间段内数据发送的第一平均速率为所述第一发送速率。
  8. 根据权利要求7所述的装置,其中,所述第二确定模块包括:
    第一获取单元,设置为获取所述第一平均速率与第二平均速率之间的差值,其中,所述第二平均速率为所述当前第一预定时间段前一个相同预定时间段的第二预定时间段内数据发送的平均速率;
    第二确定单元,设置为确定所述允许发送速率为所述第一发送速率与所述差值之和。
  9. 根据权利要求7所述的装置,其中,还包括:
    第二获取单元,设置为从在所述第一预定时间段内的开始时刻接收到的数据状态报告中,获取在所述开始时刻之前发送数据的第一数据量,以及从在所述第一预定时间段内的结束时刻接收到的数据状态报告中,获取在所述结束时刻之前发送数据的第二数据量;
    第三确定单元,设置为依据所述第一数据量以及所述第二数据量,确定在所述第一预定时间段内发送数据的数据总量;
    第四确定单元,设置为依据确定的所述数据总量,以及所述第一预定时间段,确定所述第一平均速率。
  10. 根据权利要求6至9中任一项所述的装置,其中,所述发送模块包括:
    第五确定单元,设置为依据确定的所述允许发送速率,确定当前允许发送的数据的允许发送数据量;
    统计单元,设置为统计当前已发送但未确认的未确认数据数据量;
    发送单元,设置为发送待发送数据,其中,所述待发送数据的数据量为所述允许发送数据量与统计的所述未确认数据数据量之差。
  11. 一种无线链路控制RLC实体,包括权利要求6至10中任一项所述的装置。
PCT/CN2017/076624 2016-04-27 2017-03-14 数据发送方法、装置及rlc实体 WO2017185893A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610270641.8 2016-04-27
CN201610270641.8A CN107318126A (zh) 2016-04-27 2016-04-27 数据发送方法、装置及rlc实体

Publications (1)

Publication Number Publication Date
WO2017185893A1 true WO2017185893A1 (zh) 2017-11-02

Family

ID=60161803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076624 WO2017185893A1 (zh) 2016-04-27 2017-03-14 数据发送方法、装置及rlc实体

Country Status (2)

Country Link
CN (1) CN107318126A (zh)
WO (1) WO2017185893A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621457A (zh) * 2008-07-01 2010-01-06 大唐移动通信设备有限公司 一种多业务调度方法和系统
CN102457438A (zh) * 2010-10-29 2012-05-16 三星Sds株式会社 用于发送数据的方法和设备
CN102752072A (zh) * 2011-04-21 2012-10-24 王静远 一种网络传输速率控制方法和装置
US20160037500A1 (en) * 2014-08-01 2016-02-04 Spreadtrum Communications (Shanghai) Co., Ltd. Method and apparatus for controlling transmission rate of physical layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621457A (zh) * 2008-07-01 2010-01-06 大唐移动通信设备有限公司 一种多业务调度方法和系统
CN102457438A (zh) * 2010-10-29 2012-05-16 三星Sds株式会社 用于发送数据的方法和设备
CN102752072A (zh) * 2011-04-21 2012-10-24 王静远 一种网络传输速率控制方法和装置
US20160037500A1 (en) * 2014-08-01 2016-02-04 Spreadtrum Communications (Shanghai) Co., Ltd. Method and apparatus for controlling transmission rate of physical layer

Also Published As

Publication number Publication date
CN107318126A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
US9985749B2 (en) Method and system for improving wireless link efficiency
JP5179505B2 (ja) 通信ネットワークにおいて無線リソースを効率よく利用する方法及び装置
JP7376363B2 (ja) 無線リンク制御ステータスのレポーティング
EP2094049B1 (en) Method and apparatus for sending RLC PDU in a mobile communications system
JP2017502545A5 (zh)
US8681608B2 (en) Method for enhancing of controlling radio resources and transmitting status report in mobile telecommunications system and receiver of mobile telecommunications system
US10932159B2 (en) Data transmission method, data receiving device, and data sending device
EP3480983A1 (en) Data transmission method and apparatus
JP6627966B2 (ja) 無線アクセスネットワークノード、外部ノード、及びこれらの方法
JP2017526296A (ja) データ送信方法および基地局
EP3641389B1 (en) Terminal and base station in wireless communication system, and communication method thereof
EP2498474A1 (en) Communication terminal and communication method
US20200344174A1 (en) Radio link control (rlc) acknowledged mode (am) data reception
WO2017185893A1 (zh) 数据发送方法、装置及rlc实体
JP5784834B2 (ja) ステータスレポートの処理方法、通信装置及び通信システム
WO2017071281A1 (zh) 无线链路控制层轮询定时器的时长调整方法及装置
Abu-Sharkh et al. The impact of multi-rate operation on A-MSDU, A-MPDU and block acknowledgment in greenfield IEEE802. 11n wireless LANs
JP7327738B2 (ja) パラメータ最適化方法、装置、基地局、サーバ、及び記憶媒体
WO2017012290A1 (zh) 一种报文传输方法、装置、设备及计算机存储介质
EP2023524A2 (en) Communication control method, transmission device and computer program
WO2021148854A1 (en) Uplink data transmission scheduling
US10135742B2 (en) Data transmission apparatus and method
WO2019071463A1 (en) REQUEST FOR AUTOMATIC HYBRID REPEAT WITHOUT GRANT
WO2016183751A1 (zh) 信息传输的方法、用户设备和基站

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788547

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788547

Country of ref document: EP

Kind code of ref document: A1