WO2017185708A1 - 多联机系统及其制热节流元件的控制方法 - Google Patents

多联机系统及其制热节流元件的控制方法 Download PDF

Info

Publication number
WO2017185708A1
WO2017185708A1 PCT/CN2016/104720 CN2016104720W WO2017185708A1 WO 2017185708 A1 WO2017185708 A1 WO 2017185708A1 CN 2016104720 W CN2016104720 W CN 2016104720W WO 2017185708 A1 WO2017185708 A1 WO 2017185708A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
current
heating
exhaust superheat
target exhaust
Prior art date
Application number
PCT/CN2016/104720
Other languages
English (en)
French (fr)
Inventor
李元阳
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Publication of WO2017185708A1 publication Critical patent/WO2017185708A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the invention relates to the technical field of air conditioners, in particular to a control method of a heating throttling element in a multi-line system and a multi-line system.
  • the outdoor unit is an evaporator and the indoor unit is a condenser.
  • an object of the present invention is to provide a control method for a heating throttling element in a multi-line system, which can ensure heating of the system for different outdoor ambient temperatures and when the operating frequency of the compressor is maximized. The effect is better and maintains high energy efficiency.
  • Another object of the present invention is to propose a multi-line system.
  • an embodiment of the present invention provides a control method of a heating throttling element in a multi-line system, the multi-line system including an outdoor unit and a plurality of indoor units, the outdoor unit including a compressor,
  • the heating indoor unit of the plurality of indoor units is correspondingly provided with a heating and throttling element, and the heating and throttling element is configured to perform throttling control on the refrigerant entering the heating indoor unit
  • the method comprises the following steps: receiving Obtaining a heating energy generated by any one of the plurality of indoor units, obtaining a target exhaust pressure of the compressor or a saturation temperature corresponding to the target exhaust pressure, and acquiring a current outdoor ambient temperature; Controlling the compressor according to the target exhaust pressure or a saturation temperature corresponding to the target exhaust pressure to acquire a current exhaust superheat of the compressor after the compressor is stably operated;
  • the current outdoor ambient temperature acquires a target exhaust superheat of the compressor, and the heating throttling element is based on the target
  • the target exhaust pressure or the target of the compressor is acquired.
  • the saturation temperature corresponding to the exhaust pressure and obtain the current outdoor ambient temperature, and then control the compressor according to the target exhaust pressure or the saturation temperature corresponding to the target exhaust pressure to obtain the current row of the compressor after the compressor is stably operated. Gas superheat, And obtaining the target exhaust superheat degree of the compressor according to the current outdoor ambient temperature.
  • the target exhaust superheat of the compressor is obtained by the following formula:
  • DSHm is the target exhaust superheat of the compressor
  • A C ⁇ T0+D
  • T0 is the current outdoor ambient temperature
  • Pc is the current exhaust pressure of the compressor after the compressor is stably operated
  • Pe is the current return pressure of the compressor after the compressor is stably operated
  • A, B, C, and D are calculation coefficients.
  • the target exhaust superheat of the compressor is obtained by the following formula:
  • DSHm is the target exhaust superheat of the compressor
  • A C ⁇ T0+D
  • T0 is the current outdoor ambient temperature
  • Tc is the current exhaust pressure of the compressor after the compressor is stably operated.
  • Corresponding saturation temperature, Te is the saturation temperature corresponding to the current return pressure of the compressor after the compressor is stably operated
  • A, B, C and D are calculation coefficients.
  • the adjusting the opening degree of the heating throttle element according to the target exhaust superheat degree and the current exhaust superheat degree comprises: if the current exhaust superheat degree If the target exhaust superheat degree is less than the target exhaust superheat degree, the opening degree of the heating throttling element is gradually reduced; if the current exhaust superheat degree is greater than the target exhaust superheat degree, controlling the heating throttling The opening of the component is gradually increased.
  • the current exhaust superheat of the compressor is obtained by the following formula:
  • DSH is the current exhaust superheat of the compressor
  • Tp is the current exhaust temperature of the compressor after the compressor is stably operated
  • Tc is the current row of the compressor after the compressor is stably operated. The saturation temperature corresponding to the gas pressure.
  • another embodiment of the present invention provides a multi-line system, including: an outdoor unit, the outdoor unit includes a compressor, and a plurality of indoor units, wherein the plurality of indoor units correspond to a heating indoor unit Providing a heating and throttling element for throttling control of refrigerant entering the heating indoor unit; and a control module, wherein the control module receives any one of the plurality of indoor units
  • the heating energy emitted by the hot indoor unit takes time, acquires a target exhaust pressure of the compressor or a saturation temperature corresponding to the target exhaust pressure, and acquires a current outdoor ambient temperature, and the control module according to the target exhaust pressure Or controlling the compressor according to a saturation temperature corresponding to the target exhaust pressure to acquire a current exhaust superheat of the compressor after the compressor is stably operated, and acquiring the current outdoor ambient temperature according to the current outdoor ambient temperature
  • the control module when receiving heating energy from any one of the plurality of indoor units, acquires a target exhaust pressure of the compressor or a saturation temperature corresponding to the target exhaust pressure. ,and Obtain the current outdoor ambient temperature, and then control the compressor according to the target exhaust pressure or the saturation temperature corresponding to the target exhaust pressure to obtain the current exhaust superheat of the compressor after the compressor is stably operated, and according to the current outdoor environment The temperature acquires the target exhaust superheat of the compressor, and finally, adjusts the opening degree of the heating throttling element according to the target exhaust superheat and the current exhaust superheat, thereby being able to target different outdoor ambient temperatures and in the compressor When the operating frequency reaches the maximum, the heating effect of the system is guaranteed to be better, and the energy efficiency is maintained.
  • control module obtains the target exhaust superheat of the compressor by the following formula:
  • DSHm is the target exhaust superheat of the compressor
  • A C ⁇ T0+D
  • T0 is the current outdoor ambient temperature
  • Pc is the current exhaust pressure of the compressor after the compressor is stably operated
  • Pe is the current return pressure of the compressor after the compressor is stably operated
  • A, B, C, and D are calculation coefficients.
  • control module obtains the target exhaust superheat of the compressor by the following formula:
  • DSHm is the target exhaust superheat of the compressor
  • A C ⁇ T0+D
  • T0 is the current outdoor ambient temperature
  • Tc is the current exhaust pressure of the compressor after the compressor is stably operated.
  • Corresponding saturation temperature, Te is the saturation temperature corresponding to the current return pressure of the compressor after the compressor is stably operated
  • A, B, C and D are calculation coefficients.
  • the control module adjusts an opening degree of the heating and throttling element according to the target exhaust superheat degree and the current exhaust superheat degree, wherein if the current The exhaust superheat is less than the target exhaust superheat, and the control module controls the opening of the heating throttling element to gradually decrease; if the current exhaust superheat is greater than the target exhaust superheat, The control module then controls the opening degree of the heating and throttling element to gradually increase.
  • control module obtains the current exhaust superheat of the compressor by the following formula:
  • DSH is the current exhaust superheat of the compressor
  • Tp is the current exhaust temperature of the compressor after the compressor is stably operated
  • Tc is the current row of the compressor after the compressor is stably operated. The saturation temperature corresponding to the gas pressure.
  • FIG. 1 is a block schematic diagram of a multi-line system in accordance with one embodiment of the present invention.
  • FIG. 2 is a flow chart of a method of controlling a heating throttle element in a multiple-line system in accordance with an embodiment of the present invention.
  • FIG. 3 is a flow chart of a method of controlling a heating throttle element in a multiple-line system in accordance with one embodiment of the present invention.
  • the multi-line system may include an outdoor unit and a plurality of indoor units, and the outdoor unit includes a compressor, and the plurality of indoor units in the indoor unit are provided with heating and throttling elements, and the heating and throttling elements are used. Throttle control is performed on the refrigerant entering the heating indoor unit.
  • the multi-line system heating operation including running in the pure heating mode or the main heating mode
  • the high-pressure gaseous refrigerant from the high-pressure pipe of the outdoor unit enters the heating indoor unit, in the heating room.
  • the machine releases heat, it expands into a low-pressure gaseous refrigerant through the heating throttling element (heating electronic expansion valve) and flows back to the outdoor unit.
  • the opening of the heating throttling element will affect the flow rate of the refrigerant entering the heating indoor unit and affect the condensation temperature of the heating indoor unit. Therefore, the appropriate heating throttling element is opened. The degree will make the heating indoor unit have higher refrigerant flow rate and higher condensing temperature, so as to output higher heating capacity, so that the heating effect of the system is better.
  • FIG. 2 is a flow chart of a method of controlling a heating throttle element in a multiple-line system in accordance with an embodiment of the present invention. As shown in FIG. 2, the control method of the heating throttling element in the multi-line system includes the following steps:
  • S1 Acquire a target exhaust pressure of the compressor or a saturation temperature corresponding to the target exhaust pressure when receiving heating energy generated by any one of the plurality of indoor units, and obtain a current outdoor ambient temperature.
  • the target exhaust pressure or target of the compressor is acquired.
  • the saturation temperature corresponding to the exhaust pressure is acquired.
  • the compressor is subjected to PI (Proportional Integral) adjustment according to the pressure difference between the target exhaust pressure and the exhaust pressure of the compressor obtained in real time, or according to the saturation temperature corresponding to the target exhaust pressure and real time.
  • the temperature difference between the saturation temperatures corresponding to the obtained exhaust pressure of the compressor adjusts the PI to the compressor until the compressor operates stably, that is, the compressor operates stably according to the calculated target frequency. After the compressor is in stable operation, the current exhaust superheat of the compressor is obtained.
  • the current exhaust superheat of the compressor is obtained by the following formula (1):
  • DSH is the current exhaust superheat of the compressor
  • Tp is the current exhaust temperature of the compressor after the compressor is stably operated
  • Tc is the saturation temperature corresponding to the current exhaust pressure of the compressor after the compressor is stably operated.
  • the target exhaust superheat of the compressor is obtained by the following formula (2):
  • DSHm is the target exhaust superheat of the compressor
  • A C ⁇ T0+D
  • T0 is the current outdoor ambient temperature
  • Pc is the current exhaust pressure of the compressor after the compressor is running stably
  • Pe is the stable operation of the compressor.
  • the current return pressure of the compressor, A, B, C and D are the calculation coefficients, and the calculation coefficients B, C and D can be obtained experimentally.
  • the target exhaust superheat of the compressor is obtained by the following formula (3):
  • DSHm is the target exhaust superheat of the compressor
  • A C ⁇ T0+D
  • T0 is the current outdoor ambient temperature
  • Tc is the saturation temperature corresponding to the current exhaust pressure of the compressor after the compressor is stably operated
  • Te is compression The saturation temperature corresponding to the current return pressure of the compressor after stable operation of the machine
  • A, B, C and D are the calculation coefficients.
  • the current exhaust pressure of the compressor and the current return air pressure, or the saturation temperature corresponding to the current exhaust pressure of the compressor and the saturation temperature corresponding to the current return air pressure are acquired, and the outdoor temperature is acquired.
  • the ambient temperature and the calculation factor A are calculated based on the outdoor environmental thermometer.
  • the current exhaust pressure of the obtained compressor, the current return pressure and the calculation coefficient A are brought into the above formula (2) to calculate the target exhaust superheat of the compressor at the current outdoor ambient temperature, or it will be acquired.
  • the saturation temperature corresponding to the current exhaust pressure of the compressor, the saturation temperature corresponding to the current return pressure, and the calculation coefficient A are taken into the above formula (3) to calculate the target exhaust gas of the compressor at the current outdoor ambient temperature. heat.
  • PI adjustment is performed on the opening degree of the heating throttle element according to the target exhaust superheat and the current exhaust superheat.
  • the opening degree of the heating throttle element is adjusted according to the target exhaust superheat degree and the current exhaust superheat degree, including: if the current exhaust superheat degree is less than the target exhaust superheat degree, the control system The opening degree of the thermal throttling element is gradually reduced; if the current exhaust superheat degree is greater than the target exhaust superheat degree, the opening degree of the control heating throttling element is gradually increased.
  • the opening of the heating throttling element will gradually be closed to gradually increase the exhaust temperature of the compressor, thereby improving the heating indoor unit. Heating capacity; if the current exhaust superheat is greater than the target exhaust superheat, the opening of the heating throttling element will gradually increase to reduce the exhaust temperature of the compressor and reduce the heating capacity of the heating indoor unit . Finally, when the current exhaust superheat is equal to the target exhaust superheat, the optimal opening of the heating throttling element is obtained.
  • the method for controlling the heating throttling element in the multi-line system of the embodiment of the present invention may include the following steps:
  • the target exhaust pressure or the target of the compressor is acquired.
  • the saturation temperature corresponding to the exhaust pressure and obtain the current outdoor ambient temperature, and then control the compressor according to the target exhaust pressure or the saturation temperature corresponding to the target exhaust pressure to obtain the current row of the compressor after the compressor is stably operated.
  • the degree of superheat of the gas is obtained, and the target exhaust superheat degree of the compressor is obtained according to the current outdoor ambient temperature.
  • the opening degree of the heating throttling element is adjusted according to the target exhaust superheat degree and the current exhaust superheat degree, thereby being able to be different
  • FIG. 1 is a block schematic diagram of a multi-line system in accordance with one embodiment of the present invention.
  • the multi-line system includes an outdoor unit 10, a plurality of indoor units 20, and a control module (not specifically shown in the drawings).
  • the outdoor unit 10 includes a compressor 11.
  • the heating indoor unit 21 of the plurality of indoor units 20 is provided with a heating throttle element 22 for throttling control of the refrigerant entering the heating indoor unit 21.
  • the control module acquires the target exhaust pressure of the compressor 11 or the saturation temperature corresponding to the target exhaust pressure when receiving the heating energy generated by any one of the plurality of indoor units 20, and acquires the current outdoor ambient temperature.
  • the control module controls the compressor 11 according to the target exhaust pressure or the saturation temperature corresponding to the target exhaust pressure to acquire the current exhaust superheat of the compressor 11 after the compressor 11 is stably operated, and obtain compression according to the current outdoor ambient temperature.
  • the target exhaust superheat of the machine 11 and the opening degree of the heating throttle element 22 are adjusted in accordance with the target exhaust superheat and the current exhaust superheat.
  • the control module acquires the target exhaust of the compressor 11.
  • the saturation temperature corresponding to the pressure or target exhaust pressure is received.
  • the control module performs PI adjustment on the compressor 11 according to the pressure difference between the target exhaust pressure and the exhaust pressure of the compressor 11 acquired in real time, or according to the saturation temperature corresponding to the target exhaust pressure and the compression acquired in real time.
  • the temperature difference between the saturation temperatures corresponding to the discharge pressure of the machine 11 is PI adjusted to the compressor 11 until the compressor 11 is stably operated, i.e., the compressor 11 is stably operated at the calculated target frequency. After the compressor 11 is stably operated, the current exhaust superheat of the compressor 11 is obtained.
  • the control module acquires the current exhaust superheat of the compressor 11 by the above formula (1).
  • the control module acquires the target exhaust superheat of the compressor 11 by the above formula (2).
  • the control module obtains the target exhaust superheat of the compressor 11 by the above formula (3).
  • the control module acquires the current exhaust pressure of the compressor 11 and the current return air pressure, or the saturation temperature corresponding to the current exhaust pressure of the compressor 11 and the saturation corresponding to the current return air pressure.
  • the temperature is simultaneously obtained from the outdoor ambient temperature, and the calculation coefficient A is calculated based on the outdoor environmental thermometer.
  • the control module brings the acquired current exhaust pressure of the compressor 11, the current return pressure, and the calculation coefficient A into the above formula (2) to calculate the target exhaust superheat of the compressor 11 at the current outdoor ambient temperature.
  • the obtained saturation temperature corresponding to the current exhaust pressure of the compressor 11, the saturation temperature corresponding to the current return pressure, and the calculation coefficient A are brought into the above formula (3) to calculate the compressor 11 in the current outdoor environment.
  • Target exhaust superheat at temperature the control module performs PI adjustment on the opening of the heating throttle element 22 based on the target exhaust superheat and the current exhaust superheat.
  • the control module adjusts the opening degree of the heating and throttling element 22 according to the target exhaust superheat degree and the current exhaust superheat degree, wherein if the current exhaust superheat degree is less than the target exhaust gas
  • the control module controls the opening degree of the heating and throttling element 22 to gradually decrease; if the current exhaust superheat is greater than the target exhaust superheat, the control module controls the opening of the heating and throttling element 22 to gradually increase.
  • the opening degree of the heating throttle element 22 is gradually turned off, so that the exhaust temperature of the compressor 11 is gradually increased, thereby improving the heating chamber.
  • the heating capacity of the machine 21 if the current exhaust superheat is greater than the target exhaust superheat, the opening of the heating throttle element 22 is gradually increased to reduce the exhaust temperature of the compressor 11 and reduce the heating chamber The heating capacity of the machine 21. Finally, when the current exhaust superheat is equal to the target exhaust superheat, the optimum opening of the heating throttle element 22 is obtained.
  • the control module when receiving heating energy from any one of the plurality of indoor units, acquires a target exhaust pressure of the compressor or a saturation temperature corresponding to the target exhaust pressure. And obtaining the current outdoor ambient temperature, and then controlling the compressor according to the target exhaust pressure or the saturation temperature corresponding to the target exhaust pressure, to obtain the current exhaust superheat of the compressor after the compressor is stably operated, and according to the current Outdoor ring
  • the ambient temperature acquires the target exhaust superheat of the compressor.
  • the opening of the heating throttling element is adjusted according to the target exhaust superheat and the current exhaust superheat, thereby being able to target different outdoor ambient temperatures and in the compressor
  • the running frequency reaches the maximum, the heating effect of the system is guaranteed to be better, and the energy efficiency is maintained.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality" is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.

Abstract

一种多联机系统的制热节流元件的控制方法,包括以下步骤:在接收到多个室内机中任意一个制热室内机发出的制热能需时,获取压缩机的目标排气压力或者目标排气压力对应的饱和温度,并获取当前室外环境温度;根据目标排气压力或者目标排气压力对应的饱和温度对压缩机进行控制以在压缩机稳定运行后获取压缩机的当前排气过热度;以及根据当前室外环境温度获取压缩机的目标排气过热度,并根据目标排气过热度和当前排气过热度对制热节流元件的开度进行调节。

Description

多联机系统及其制热节流元件的控制方法 技术领域
本发明涉及空调技术领域,特别涉及一种多联机系统中制热节流元件的控制方法以及一种多联机系统。
背景技术
当空调系统制热运行时,室外机为蒸发器,室内机为冷凝器。
对于空调系统,尤其是多联机系统,在制热运行时,需要控制好制热电子膨胀阀的开度,才能满足不同制热室内机的能需。即使是同一个制热室内机,在相同室内工况下,当室外环境温度发生变化,也需要对制热电子膨胀阀的开度进行实时调节,以使该室内机能够达到更好的制热效果。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种多联机系统中制热节流元件的控制方法,能够针对不同室外环境温度,并在压缩机的运行频率达到最大的情况下,保证系统的制热效果达到更优,且保持较高的能效。
本发明的另一个目的在于提出一种多联机系统。
为实现上述目的,本发明一方面实施例提出了一种多联机系统中制热节流元件的控制方法,所述多联机系统包括室外机和多个室内机,所述室外机包括压缩机,所述多个室内机中制热室内机对应设置制热节流元件,所述制热节流元件用以对进入制热室内机的冷媒进行节流控制,所述方法包括以下步骤:在接收到所述多个室内机中任意一个制热室内机发出的制热能需时,获取所述压缩机的目标排气压力或者所述目标排气压力对应的饱和温度,并获取当前室外环境温度;根据所述目标排气压力或者所述目标排气压力对应的饱和温度对所述压缩机进行控制以在所述压缩机稳定运行后获取所述压缩机的当前排气过热度;以及根据所述当前室外环境温度获取所述压缩机的目标排气过热度,并根据所述目标排气过热度和所述当前排气过热度对所述制热节流元件的开度进行调节。
根据本发明实施例的多联机系统中制热节流元件的控制方法,在接收到多个室内机中任意一个制热室内机发出的制热能需时,获取压缩机的目标排气压力或者目标排气压力对应的饱和温度,并获取当前室外环境温度,然后根据目标排气压力或者目标排气压力对应的饱和温度对压缩机进行控制,以在压缩机稳定运行后,获取压缩机的当前排气过热度, 并根据当前室外环境温度获取压缩机的目标排气过热度,最后,根据目标排气过热度和当前排气过热度对制热节流元件的开度进行调节,从而能够针对不同室外环境温度,并在压缩机的运行频率达到最大的情况下,保证系统的制热效果达到更优,且保持较高的能效。
根据本发明的一个实施例,通过以下公式获取所述压缩机的目标排气过热度:
DSHm=A×(Pc-Pe)+B,
其中,DSHm为所述压缩机的目标排气过热度,A=C×T0+D,T0为所述当前室外环境温度,Pc为所述压缩机稳定运行后所述压缩机的当前排气压力,Pe为所述压缩机稳定运行后所述压缩机的当前回气压力,A、B、C和D为计算系数。
根据本发明的一个实施例,通过以下公式获取所述压缩机的目标排气过热度:
DSHm=A×(Tc-Te)+B,
其中,DSHm为所述压缩机的目标排气过热度,A=C×T0+D,T0为所述当前室外环境温度,Tc为所述压缩机稳定运行后所述压缩机的当前排气压力对应的饱和温度,Te为所述压缩机稳定运行后所述压缩机的当前回气压力对应的饱和温度,A、B、C和D为计算系数。
根据本发明的一个实施例,所述根据所述目标排气过热度和所述当前排气过热度对所述制热节流元件的开度进行调节,包括:如果所述当前排气过热度小于所述目标排气过热度,则控制所述制热节流元件的开度逐渐调小;如果所述当前排气过热度大于所述目标排气过热度,则控制所述制热节流元件的开度逐渐调大。
根据本发明的一个实施例,通过以下公式获取所述压缩机的当前排气过热度:
DSH=Tp-Tc,
其中,DSH为所述压缩机的当前排气过热度,Tp为所述压缩机稳定运行后所述压缩机的当前排气温度,Tc为所述压缩机稳定运行后所述压缩机的当前排气压力对应的饱和温度。
为实现上述目的,本发明另一方面实施例提出了一种多联机系统,包括:室外机,所述室外机包括压缩机;多个室内机,所述多个室内机中制热室内机对应设置制热节流元件,所述制热节流元件用以对进入制热室内机的冷媒进行节流控制;以及控制模块,所述控制模块在接收到所述多个室内机中任意一个制热室内机发出的制热能需时,获取所述压缩机的目标排气压力或者所述目标排气压力对应的饱和温度,并获取当前室外环境温度,所述控制模块根据所述目标排气压力或者所述目标排气压力对应的饱和温度对所述压缩机进行控制以在所述压缩机稳定运行后获取所述压缩机的当前排气过热度,并根据所述当前室外环境温度获取所述压缩机的目标排气过热度,以及根据所述目标排气过热度和所述当前排气过热度对所述制热节流元件的开度进行调节。
根据本发明实施例的多联机系统,在接收到多个室内机中任意一个制热室内机发出的制热能需时,控制模块获取压缩机的目标排气压力或者目标排气压力对应的饱和温度,并 获取当前室外环境温度,然后根据目标排气压力或者目标排气压力对应的饱和温度对压缩机进行控制,以在压缩机稳定运行后,获取压缩机的当前排气过热度,并根据当前室外环境温度获取压缩机的目标排气过热度,最后,根据目标排气过热度和当前排气过热度对制热节流元件的开度进行调节,从而能够针对不同室外环境温度,并在压缩机的运行频率达到最大的情况下,保证系统的制热效果达到更优,且保持较高的能效。
根据本发明的一个实施例,所述控制模块通过以下公式获取所述压缩机的目标排气过热度:
DSHm=A×(Pc-Pe)+B,
其中,DSHm为所述压缩机的目标排气过热度,A=C×T0+D,T0为所述当前室外环境温度,Pc为所述压缩机稳定运行后所述压缩机的当前排气压力,Pe为所述压缩机稳定运行后所述压缩机的当前回气压力,A、B、C和D为计算系数。
根据本发明的一个实施例,所述控制模块通过以下公式获取所述压缩机的目标排气过热度:
DSHm=A×(Tc-Te)+B,
其中,DSHm为所述压缩机的目标排气过热度,A=C×T0+D,T0为所述当前室外环境温度,Tc为所述压缩机稳定运行后所述压缩机的当前排气压力对应的饱和温度,Te为所述压缩机稳定运行后所述压缩机的当前回气压力对应的饱和温度,A、B、C和D为计算系数。
根据本发明的一个实施例,所述控制模块在根据所述目标排气过热度和所述当前排气过热度对所述制热节流元件的开度进行调节时,其中,如果所述当前排气过热度小于所述目标排气过热度,所述控制模块则控制所述制热节流元件的开度逐渐调小;如果所述当前排气过热度大于所述目标排气过热度,所述控制模块则控制所述制热节流元件的开度逐渐调大。
根据本发明的一个实施例,所述控制模块通过以下公式获取所述压缩机的当前排气过热度:
DSH=Tp-Tc,
其中,DSH为所述压缩机的当前排气过热度,Tp为所述压缩机稳定运行后所述压缩机的当前排气温度,Tc为所述压缩机稳定运行后所述压缩机的当前排气压力对应的饱和温度。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的多联机系统的方框示意图。
图2是根据本发明实施例的多联机系统中制热节流元件的控制方法的流程图。
图3是根据本发明一个实施例的多联机系统中制热节流元件的控制方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图来描述根据本发明实施例提出的多联机系统中制热节流元件的控制方法以及多联机系统。
在本发明的实施例中,多联机系统可以包括室外机和多个室内机,室外机包括压缩机,多个室内机中制热室内机对应设置制热节流元件,制热节流元件用以对进入制热室内机的冷媒进行节流控制。
如图1所示,当多联机系统制热运行(包括以纯制热模式运行或者主制热模式运行)时,从室外机的高压管出来的高压气态冷媒进入制热室内机,在制热室内机放热后,通过制热节流元件(制热电子膨胀阀)膨胀成低压气态冷媒流回室外机。在多联机系统制热运行过程中,制热节流元件的开度将影响进入制热室内机的冷媒流量,同时影响制热室内机的冷凝温度,因此,合适的制热节流元件的开度将会使得制热室内机既具有较高的冷媒流量,同时也会有较高的冷凝温度,从而输出更高的制热量,以使系统的制热效果达到更优。
图2是根据本发明实施例的多联机系统中制热节流元件的控制方法的流程图。如图2所示,该多联机系统中制热节流元件的控制方法包括以下步骤:
S1,在接收到多个室内机中任意一个制热室内机发出的制热能需时,获取压缩机的目标排气压力或者目标排气压力对应的饱和温度,并获取当前室外环境温度。
S2,根据目标排气压力或者目标排气压力对应的饱和温度对压缩机进行控制以在压缩机稳定运行后获取压缩机的当前排气过热度。
具体地,在多联机系统以纯制热模式或者主制热模式运行时,如果接收到多个室内机中任意一个制热室内机发出的制热能需,则获取压缩机的目标排气压力或者目标排气压力对应的饱和温度。然后,根据目标排气压力与实时获取的压缩机的排气压力之间的压力差值对压缩机进行PI(Proportional Integral,比例积分)调节,或者,根据目标排气压力对应的饱和温度与实时获取的压缩机的排气压力对应的饱和温度之间的温度差值对压缩机进行PI调节,直至压缩机稳定运行,即压缩机按照计算出的目标频率稳定运行。在压缩机稳定运行后,获取压缩机的当前排气过热度。
根据本发明的一个实施例,通过下述公式(1)获取压缩机的当前排气过热度:
DSH=Tp-Tc                                             (1)
其中,DSH为压缩机的当前排气过热度,Tp为压缩机稳定运行后压缩机的当前排气温度,Tc为压缩机稳定运行后压缩机的当前排气压力对应的饱和温度。
S3,根据当前室外环境温度获取压缩机的目标排气过热度,并根据目标排气过热度和当前排气过热度对制热节流元件的开度进行调节。
根据本发明的一个实施例,通过下述公式(2)获取压缩机的目标排气过热度:
DSHm=A×(Pc-Pe)+B                                   (2)
其中,DSHm为压缩机的目标排气过热度,A=C×T0+D,T0为当前室外环境温度,Pc为压缩机稳定运行后压缩机的当前排气压力,Pe为压缩机稳定运行后压缩机的当前回气压力,A、B、C和D为计算系数,计算系数B、C和D可以通过实验获得。
根据本发明的一个实施例,通过下述公式(3)获取压缩机的目标排气过热度:
DSHm=A×(Tc-Te)+B                                   (3)
其中,DSHm为压缩机的目标排气过热度,A=C×T0+D,T0为当前室外环境温度,Tc为压缩机稳定运行后压缩机的当前排气压力对应的饱和温度,Te为压缩机稳定运行后压缩机的当前回气压力对应的饱和温度,A、B、C和D为计算系数。
具体而言,在压缩机稳定运行后,获取压缩机的当前排气压力和当前回气压力,或者压缩机的当前排气压力对应的饱和温度和当前回气压力对应的饱和温度,同时获取室外环境温度,并根据室外环境温度计算出计算系数A。然后将获取的压缩机的当前排气压力、当前回气压力和计算系数A带入上述公式(2),以计算出压缩机在当前室外环境温度下的目标排气过热度,或者,将获取的压缩机的当前排气压力对应的饱和温度、当前回气压力对应的饱和温度和计算系数A带入上述公式(3)中,以计算出压缩机在当前室外环境温度下的目标排气过热度。最后,根据目标排气过热度和当前排气过热度对制热节流元件的开度进行PI调节。
根据本发明的一个实施例,根据目标排气过热度和当前排气过热度对制热节流元件的开度进行调节,包括:如果当前排气过热度小于目标排气过热度,则控制制热节流元件的开度逐渐调小;如果当前排气过热度大于目标排气过热度,则控制制热节流元件的开度逐渐调大。
也就是说,如果当前排气过热度小于目标排气过热度,则制热节流元件的开度会逐渐关小,以使压缩机的排气温度逐渐升高,从而提高制热室内机的制热能力;如果当前排气过热度大于目标排气过热度,则制热节流元件的开度会逐渐开大,以使压缩机的排气温度降低,减少制热室内机的制热能力。最终当当前排气过热度等于目标排气过热度时,得到最优的制热节流元件的开度。
具体地,如图3所示,本发明实施例的多联机系统中制热节流元件的控制方法可以包括以下步骤:
S101,接收到多个室内机中任意一个制热室内机发出的制热能需。
S102,获取当前室外环境温度T0。
S103,根据T0计算计算系数A=C×T0+D。
S104,获取压缩机的目标排气压力Pcs(或目标排气压力对应的饱和温度Tcs)。
S105,根据Pcs(或Tcs)对压缩机的运行频率进行PI调节,以获得新的压缩机的当前排气压力Pc(或当前排气压力对应的饱和温度Tc)、当前回气压力Pe(或当前回气压力对应的饱和温度Te)和当前排气过热度DSH。
S106,计算压缩机的目标排气过热度DSHm=A×(Pc-Pe)+B,或者DSHm=A×(Tc-Te)+B。
S107,根据DSH和DSHm之间的关系对制热节流元件进行PI调节。
S108,如果DSH<DSHm,则制热节流元件的开度逐渐开小。
S109,如果DSH>DSHm,则制热节流元件的开度逐渐开大。
S110,如果DSH=DSHm,则制热节流元件的开度不变,达到最优开度。
根据本发明实施例的多联机系统中制热节流元件的控制方法,在接收到多个室内机中任意一个制热室内机发出的制热能需时,获取压缩机的目标排气压力或者目标排气压力对应的饱和温度,并获取当前室外环境温度,然后根据目标排气压力或者目标排气压力对应的饱和温度对压缩机进行控制,以在压缩机稳定运行后,获取压缩机的当前排气过热度,并根据当前室外环境温度获取压缩机的目标排气过热度,最后,根据目标排气过热度和当前排气过热度对制热节流元件的开度进行调节,从而能够针对不同室外环境温度,尤其是在室外环境温度较低时,并在压缩机的运行频率达到最大的情况下,保证系统的制热效果达到更优,且保持较高的能效。
图1是根据本发明一个实施例的多联机系统的方框示意图。如图1所示,该多联机系统包括:室外机10、多个室内机20和控制模块(图中未具体示出)。
其中,室外机10包括压缩机11。多个室内机20中制热室内机21对应设置制热节流元件22,制热节流元件22用以对进入制热室内机21的冷媒进行节流控制。控制模块在接收到多个室内机20中任意一个制热室内机21发出的制热能需时,获取压缩机11的目标排气压力或者目标排气压力对应的饱和温度,并获取当前室外环境温度,控制模块根据目标排气压力或者目标排气压力对应的饱和温度对压缩机11进行控制以在压缩机11稳定运行后获取压缩机11的当前排气过热度,并根据当前室外环境温度获取压缩机11的目标排气过热度,以及根据目标排气过热度和当前排气过热度对制热节流元件22的开度进行调节。
具体地,在多联机系统以纯制热模式或者主制热模式运行时,如果接收到多个室内机中任意一个制热室内机发出的制热能需,控制模块则获取压缩机11的目标排气压力或者目标排气压力对应的饱和温度。然后,控制模块根据目标排气压力与实时获取的压缩机11的排气压力之间的压力差值对压缩机11进行PI调节,或者,根据目标排气压力对应的饱和温度与实时获取的压缩机11的排气压力对应的饱和温度之间的温度差值对压缩机11进行PI调节,直至压缩机11稳定运行,即压缩机11按照计算出的目标频率稳定运行。在压缩机11稳定运行后,获取压缩机11的当前排气过热度。根据本发明的一个实施例,控制模块通过上述公式(1)获取压缩机11的当前排气过热度。
在压缩机11稳定运行后,还根据当前室外环境温度获取压缩机的目标排气过热度。根据本发明的一个实施例,控制模块通过上述公式(2)获取压缩机11的目标排气过热度。或者,控制模块通过上述公式(3)获取压缩机11的目标排气过热度。
具体而言,在压缩机11稳定运行后,控制模块获取压缩机11的当前排气压力和当前回气压力,或者压缩机11的当前排气压力对应的饱和温度和当前回气压力对应的饱和温度,同时获取室外环境温度,并根据室外环境温度计算出计算系数A。然后,控制模块将获取的压缩机11的当前排气压力、当前回气压力和计算系数A带入上述公式(2),以计算出压缩机11在当前室外环境温度下的目标排气过热度,或者,将获取的压缩机11的当前排气压力对应的饱和温度、当前回气压力对应的饱和温度和计算系数A带入上述公式(3)中,以计算出压缩机11在当前室外环境温度下的目标排气过热度。最后,控制模块根据目标排气过热度和当前排气过热度对制热节流元件22的开度进行PI调节。
根据本发明的一个实施例,控制模块在根据目标排气过热度和当前排气过热度对制热节流元件22的开度进行调节时,其中,如果当前排气过热度小于目标排气过热度,控制模块则控制制热节流元件22的开度逐渐调小;如果当前排气过热度大于目标排气过热度,控制模块则控制制热节流元件22的开度逐渐调大。
也就是说,如果当前排气过热度小于目标排气过热度,则制热节流元件22的开度会逐渐关小,以使压缩机11的排气温度逐渐升高,从而提高制热室内机21的制热能力;如果当前排气过热度大于目标排气过热度,则制热节流元件22的开度会逐渐开大,以使压缩机11的排气温度降低,减少制热室内机21的制热能力。最终当当前排气过热度等于目标排气过热度时,得到最优的制热节流元件22的开度。
根据本发明实施例的多联机系统,在接收到多个室内机中任意一个制热室内机发出的制热能需时,控制模块获取压缩机的目标排气压力或者目标排气压力对应的饱和温度,并获取当前室外环境温度,然后根据目标排气压力或者目标排气压力对应的饱和温度对压缩机进行控制,以在压缩机稳定运行后,获取压缩机的当前排气过热度,并根据当前室外环 境温度获取压缩机的目标排气过热度,最后,根据目标排气过热度和当前排气过热度对制热节流元件的开度进行调节,从而能够针对不同室外环境温度,并在压缩机的运行频率达到最大的情况下,保证系统的制热效果达到更优,且保持较高的能效。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种多联机系统中制热节流元件的控制方法,其特征在于,所述多联机系统包括室外机和多个室内机,所述室外机包括压缩机,所述多个室内机中制热室内机对应设置制热节流元件,所述制热节流元件用以对进入制热室内机的冷媒进行节流控制,所述方法包括以下步骤:
    在接收到所述多个室内机中任意一个制热室内机发出的制热能需时,获取所述压缩机的目标排气压力或者所述目标排气压力对应的饱和温度,并获取当前室外环境温度;
    根据所述目标排气压力或者所述目标排气压力对应的饱和温度对所述压缩机进行控制以在所述压缩机稳定运行后获取所述压缩机的当前排气过热度;以及
    根据所述当前室外环境温度获取所述压缩机的目标排气过热度,并根据所述目标排气过热度和所述当前排气过热度对所述制热节流元件的开度进行调节。
  2. 根据权利要求1所述的多联机系统中制热节流元件的控制方法,其特征在于,通过以下公式获取所述压缩机的目标排气过热度:
    DSHm=A×(Pc-Pe)+B,
    其中,DSHm为所述压缩机的目标排气过热度,A=C×T0+D,T0为所述当前室外环境温度,Pc为所述压缩机稳定运行后所述压缩机的当前排气压力,Pe为所述压缩机稳定运行后所述压缩机的当前回气压力,A、B、C和D为计算系数。
  3. 根据权利要求1所述的多联机系统中制热节流元件的控制方法,其特征在于,通过以下公式获取所述压缩机的目标排气过热度:
    DSHm=A×(Tc-Te)+B,
    其中,DSHm为所述压缩机的目标排气过热度,A=C×T0+D,T0为所述当前室外环境温度,Tc为所述压缩机稳定运行后所述压缩机的当前排气压力对应的饱和温度,Te为所述压缩机稳定运行后所述压缩机的当前回气压力对应的饱和温度,A、B、C和D为计算系数。
  4. 根据权利要求1-3中任一项所述的多联机系统中制热节流元件的控制方法,其特征在于,所述根据所述目标排气过热度和所述当前排气过热度对所述制热节流元件的开度进行调节,包括:
    如果所述当前排气过热度小于所述目标排气过热度,则控制所述制热节流元件的开度逐渐调小;
    如果所述当前排气过热度大于所述目标排气过热度,则控制所述制热节流元件的开度逐渐调大。
  5. 根据权利要求4所述的多联机系统中制热节流元件的控制方法,其特征在于,通过 以下公式获取所述压缩机的当前排气过热度:
    DSH=Tp-Tc,
    其中,DSH为所述压缩机的当前排气过热度,Tp为所述压缩机稳定运行后所述压缩机的当前排气温度,Tc为所述压缩机稳定运行后所述压缩机的当前排气压力对应的饱和温度。
  6. 一种多联机系统,其特征在于,包括:
    室外机,所述室外机包括压缩机;
    多个室内机,所述多个室内机中制热室内机对应设置制热节流元件,所述制热节流元件用以对进入制热室内机的冷媒进行节流控制;以及
    控制模块,所述控制模块在接收到所述多个室内机中任意一个制热室内机发出的制热能需时,获取所述压缩机的目标排气压力或者所述目标排气压力对应的饱和温度,并获取当前室外环境温度,所述控制模块根据所述目标排气压力或者所述目标排气压力对应的饱和温度对所述压缩机进行控制以在所述压缩机稳定运行后获取所述压缩机的当前排气过热度,并根据所述当前室外环境温度获取所述压缩机的目标排气过热度,以及根据所述目标排气过热度和所述当前排气过热度对所述制热节流元件的开度进行调节。
  7. 根据权利要求6所述的多联机系统,其特征在于,所述控制模块通过以下公式获取所述压缩机的目标排气过热度:
    DSHm=A×(Pc-Pe)+B,
    其中,DSHm为所述压缩机的目标排气过热度,A=C×T0+D,T0为所述当前室外环境温度,Pc为所述压缩机稳定运行后所述压缩机的当前排气压力,Pe为所述压缩机稳定运行后所述压缩机的当前回气压力,A、B、C和D为计算系数。
  8. 根据权利要求6所述的多联机系统,其特征在于,所述控制模块通过以下公式获取所述压缩机的目标排气过热度:
    DSHm=A×(Tc-Te)+B,
    其中,DSHm为所述压缩机的目标排气过热度,A=C×T0+D,T0为所述当前室外环境温度,Tc为所述压缩机稳定运行后所述压缩机的当前排气压力对应的饱和温度,Te为所述压缩机稳定运行后所述压缩机的当前回气压力对应的饱和温度,A、B、C和D为计算系数。
  9. 根据权利要求6-8中任一项所述的多联机系统,其特征在于,所述控制模块在根据所述目标排气过热度和所述当前排气过热度对所述制热节流元件的开度进行调节时,其中,
    如果所述当前排气过热度小于所述目标排气过热度,所述控制模块则控制所述制热节流元件的开度逐渐调小;
    如果所述当前排气过热度大于所述目标排气过热度,所述控制模块则控制所述制热节流元件的开度逐渐调大。
  10. 根据权利要求9所述的多联机系统,其特征在于,所述控制模块通过以下公式获取所述压缩机的当前排气过热度:
    DSH=Tp-Tc,
    其中,DSH为所述压缩机的当前排气过热度,Tp为所述压缩机稳定运行后所述压缩机的当前排气温度,Tc为所述压缩机稳定运行后所述压缩机的当前排气压力对应的饱和温度。
PCT/CN2016/104720 2016-04-25 2016-11-04 多联机系统及其制热节流元件的控制方法 WO2017185708A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610264509.6A CN105865074B (zh) 2016-04-25 2016-04-25 多联机系统及其制热节流元件的控制方法
CN201610264509.6 2016-04-25

Publications (1)

Publication Number Publication Date
WO2017185708A1 true WO2017185708A1 (zh) 2017-11-02

Family

ID=56629167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104720 WO2017185708A1 (zh) 2016-04-25 2016-11-04 多联机系统及其制热节流元件的控制方法

Country Status (2)

Country Link
CN (1) CN105865074B (zh)
WO (1) WO2017185708A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218056A (zh) * 2021-05-21 2021-08-06 青岛海尔空调电子有限公司 电子膨胀阀的开度控制方法、装置及空调器
CN113639485A (zh) * 2021-07-23 2021-11-12 青岛海尔空调电子有限公司 用于调节热泵设备排气过热度的方法、装置和热泵设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105865074B (zh) * 2016-04-25 2018-09-07 广东美的暖通设备有限公司 多联机系统及其制热节流元件的控制方法
CN106545969A (zh) * 2016-11-22 2017-03-29 广东美的暖通设备有限公司 多联机系统及其的室外节流元件的控制方法
CN107120786B (zh) * 2017-04-12 2019-11-05 广东美的暖通设备有限公司 空调器及空调器中内机节流元件的控制方法和装置
CN107860103B (zh) * 2017-10-27 2020-04-03 广东美的暖通设备有限公司 多联机系统的控制方法、装置及具有其的系统
CN110671799B (zh) * 2019-10-12 2021-02-19 青岛海信日立空调系统有限公司 一种空调系统及制冷剂流量控制方法
CN113375319A (zh) * 2020-02-25 2021-09-10 青岛海尔空调电子有限公司 制冷状态下定频空调的控制方法
CN111426030A (zh) * 2020-02-25 2020-07-17 青岛海尔空调电子有限公司 制热状态下定频空调的控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200943982Y (zh) * 2006-08-11 2007-09-05 无锡同方人工环境有限公司 一种逻辑控制节流方式的定速热泵机组
CN102032648A (zh) * 2010-12-07 2011-04-27 海信(山东)空调有限公司 多联空调系统制热时冷媒流量的控制方法
CN103017295A (zh) * 2012-12-05 2013-04-03 宁波奥克斯电气有限公司 多联机空调的制冷转制热模式启动方法
CN203231415U (zh) * 2013-03-27 2013-10-09 宁波奥克斯空调有限公司 一种多联机空调系统
CN103486691A (zh) * 2013-09-17 2014-01-01 青岛海信日立空调系统有限公司 多联机空调系统的制冷剂流量控制方法和装置
CN104266318A (zh) * 2014-10-24 2015-01-07 珠海格力电器股份有限公司 多联式空调机组的控制方法和系统
CN104729023A (zh) * 2015-04-09 2015-06-24 宁波奥克斯电气有限公司 多联式空调机组制热时冷媒的动态平衡控制方法
CN105423668A (zh) * 2015-12-09 2016-03-23 三菱重工海尔(青岛)空调机有限公司 电子膨胀阀的控制方法
CN105423497A (zh) * 2015-12-18 2016-03-23 Tcl空调器(中山)有限公司 电子膨胀阀的控制方法及装置
CN105865074A (zh) * 2016-04-25 2016-08-17 广东美的暖通设备有限公司 多联机系统及其制热节流元件的控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100505237B1 (ko) * 2002-12-18 2005-08-03 엘지전자 주식회사 공기조화기의 운전 제어방법
US7784296B2 (en) * 2007-03-08 2010-08-31 Nordyne Inc. System and method for controlling an air conditioner or heat pump
CN103196202B (zh) * 2012-01-09 2015-08-05 珠海格力电器股份有限公司 空调器及其控制方法
CN104949269A (zh) * 2015-06-08 2015-09-30 广东美的暖通设备有限公司 一种模块温度过高的系统控制方法以及装置
CN104976840B (zh) * 2015-07-03 2017-09-29 南京天加空调设备有限公司 一种风冷冷水或热水机组的电子膨胀阀控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200943982Y (zh) * 2006-08-11 2007-09-05 无锡同方人工环境有限公司 一种逻辑控制节流方式的定速热泵机组
CN102032648A (zh) * 2010-12-07 2011-04-27 海信(山东)空调有限公司 多联空调系统制热时冷媒流量的控制方法
CN103017295A (zh) * 2012-12-05 2013-04-03 宁波奥克斯电气有限公司 多联机空调的制冷转制热模式启动方法
CN203231415U (zh) * 2013-03-27 2013-10-09 宁波奥克斯空调有限公司 一种多联机空调系统
CN103486691A (zh) * 2013-09-17 2014-01-01 青岛海信日立空调系统有限公司 多联机空调系统的制冷剂流量控制方法和装置
CN104266318A (zh) * 2014-10-24 2015-01-07 珠海格力电器股份有限公司 多联式空调机组的控制方法和系统
CN104729023A (zh) * 2015-04-09 2015-06-24 宁波奥克斯电气有限公司 多联式空调机组制热时冷媒的动态平衡控制方法
CN105423668A (zh) * 2015-12-09 2016-03-23 三菱重工海尔(青岛)空调机有限公司 电子膨胀阀的控制方法
CN105423497A (zh) * 2015-12-18 2016-03-23 Tcl空调器(中山)有限公司 电子膨胀阀的控制方法及装置
CN105865074A (zh) * 2016-04-25 2016-08-17 广东美的暖通设备有限公司 多联机系统及其制热节流元件的控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218056A (zh) * 2021-05-21 2021-08-06 青岛海尔空调电子有限公司 电子膨胀阀的开度控制方法、装置及空调器
CN113218056B (zh) * 2021-05-21 2023-06-16 青岛海尔空调电子有限公司 电子膨胀阀的开度控制方法、装置及空调器
CN113639485A (zh) * 2021-07-23 2021-11-12 青岛海尔空调电子有限公司 用于调节热泵设备排气过热度的方法、装置和热泵设备

Also Published As

Publication number Publication date
CN105865074B (zh) 2018-09-07
CN105865074A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2017185708A1 (zh) 多联机系统及其制热节流元件的控制方法
US9074787B2 (en) Operation controller for compressor and air conditioner having the same
CN110715466A (zh) 一种多联式空调系统及其控制方法
CN108759029B (zh) 空调系统、空调系统的控制方法及空调器
JP5598353B2 (ja) 空気調和装置
CN109458683B (zh) 干式辐射热泵与单元式分户空调一体机及其控制方法
MY153453A (en) Air conditioner, and method and program for controlling opening of expansion valve
WO2017202198A1 (zh) 多联机系统及其制热节流元件的控制方法
EP3101362B1 (en) Air-conditioning device
CN107101347A (zh) 空调压缩机频率的控制方法及空调
EP3587948A1 (en) Air conditioner
CN113865029B (zh) 空调器
WO2014061130A1 (ja) 空気調和装置
JP6072424B2 (ja) 空気調和装置
JP5960173B2 (ja) 空気調和機
CN108224823A (zh) 全负荷空调装置及其控制方法
CN103759395A (zh) 一种适应空调工况变化的调节系统
WO2018018767A1 (zh) 冷暖型空调器及控制方法
CN208012134U (zh) 全负荷空调装置
JP3686815B2 (ja) 多室形空気調和機の冷媒制御
CN113959080B (zh) 用于空调机组的电子膨胀阀的控制方法
CN109253495A (zh) 一种单元式分户空调机组及控制方法
CN105066326A (zh) 一种空调控制方法、系统及空调
CN203719044U (zh) 一种适应空调工况变化的调节系统
EP1422486A2 (en) Combined regeneration heating and cooling system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900216

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900216

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900216

Country of ref document: EP

Kind code of ref document: A1