WO2017185441A1 - 基于统计相对条纹去除法的红外图像条纹滤波方法 - Google Patents

基于统计相对条纹去除法的红外图像条纹滤波方法 Download PDF

Info

Publication number
WO2017185441A1
WO2017185441A1 PCT/CN2016/083215 CN2016083215W WO2017185441A1 WO 2017185441 A1 WO2017185441 A1 WO 2017185441A1 CN 2016083215 W CN2016083215 W CN 2016083215W WO 2017185441 A1 WO2017185441 A1 WO 2017185441A1
Authority
WO
WIPO (PCT)
Prior art keywords
snf
ref
stripe
row
noise
Prior art date
Application number
PCT/CN2016/083215
Other languages
English (en)
French (fr)
Inventor
谢雪平
曾衡东
章睿
董涛
Original Assignee
成都市晶林科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都市晶林科技有限公司 filed Critical 成都市晶林科技有限公司
Publication of WO2017185441A1 publication Critical patent/WO2017185441A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration using histogram techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image

Definitions

  • the present invention relates to the field of infrared image processing, and in particular to an infrared image stripe filtering method based on a statistical relative stripe removal method.
  • Infrared sensors are capable of converting infrared light into electrical signals and are the core components of infrared imaging devices.
  • Infrared sensors based on infrared focal plane array (IRPAA) are the mainstream development direction of infrared sensors because of their small size, low cost and high sensitivity.
  • IRFPA infrared focal plane array
  • the non-uniformity correction method eliminates the difference between the sensors, but since the response characteristics of the sensor vary slowly with time, they must be continually corrected during use.
  • a commonly used non-uniformity correction method is to correct the response parameters of the sensor by using a reference scene with a uniform temperature field, so that the outputs of the sensors are the same. Although this method can achieve better results, the calibration process needs to interrupt the normal shooting of the camera.
  • Harris et al. and Hayat et al. proposed a method of performing image correction using image sequences and signal processing methods captured by the camera. They assume that the input infrared radiation is an independent and identically distributed random variable, and the gain and bias voltage of the sensor are calculated by the parameter estimation method. Based on similar ideas, Torres et al. believe that the infrared radiation input by each sensor should have the same range of values and propose a kind called Constant.
  • Range correction method Ratliff et al. proposed a non-uniformity correction method based on algebraic operations. Its main advantage is that it does not depend on the diversity assumption of the scene. Torres and Hayat consider the non-uniformity correction problem as a parameter estimation problem, using Kalman filtering to estimate the gain and bias voltage of the sensor. Pezoa uses a Kalman filter to estimate the gain and offset according to their respective dynamic models. Finally, the estimated values of each filter are weighted to obtain the final estimation result.
  • the scene-based correction method can update the parameters, but it also brings two problems: 1) This type of algorithm requires a long image sequence algorithm to converge. 2) The use of a long sequence of images may result in an "artifact” phenomenon, ie the previous image is displayed on the following image.
  • the conventional fringe filtering method mainly includes: 1) Using frequency domain filtering, this variance has an effect on periodic stripes, but cannot remove random stripes, and is not easy to implement in hardware. 2) Estimate the current row mean by the variance of the mean of the adjacent rows, and replace the original mean of the current row with the estimated mean of the row. This method only works for images with a small range of scene temperature variation, and for images with large temperature differences, Adjacent row mean variance estimates that the line mean error is large, but instead introduces additional fringes.
  • the object of the present invention is to overcome the deficiencies of the prior art, and provide an infrared image stripe filtering method based on statistical relative stripe removal method, which has a certain correlation according to adjacent pixels of an image, and The statistical local variance is calculated by the pixel whose variance is smaller than the threshold.
  • the image has a good de-streak effect for images with large temperature difference and rich details.
  • the infrared image stripe filtering method based on the statistical relative stripe removal method includes an image stripe stripe removal step in N columns and M rows, and an image stripe in N columns and M rows.
  • the step of removing the horizontal stripes of the image in N columns and M lines includes the following substeps:
  • S3 calculating a local mean square error var
  • S4 calculating a local mean squared line histogram, and calculating a mean squared line probability density
  • S5 calculating a mean value of all pixels of the row corresponding to a mean square error probability density in delta as a line streak noise, and obtaining a relative stripe noise ref_snf of each line;
  • Snf(4) ref_snf(l)+ ref_snf(2) + ref_snf(3) + ref_snf(4);
  • the step S3 is based on a window of 3 ⁇ 3 or 5 ⁇ 5 to find the mean square error var.
  • the beneficial effects of the present invention are: According to the characteristics of the stripe noise, since the pixels according to the image have a certain correlation, and the statistical local variance takes the pixel whose variance is smaller than the threshold, the noise is calculated, and the image with large temperature difference and rich details is rich. There is also a good stripe effect.
  • FIG. 1 is an original fringe noise image
  • the infrared image stripe filtering method based on the statistical relative stripe removal method includes a step of removing the horizontal stripe by the N column M line image and a step of removing the vertical stripe of the image by the N column M line:
  • the step of removing the horizontal stripes of the image in N rows and M lines comprises the following substeps:
  • S3 calculating the local mean square error, based on the 3X3 or 5X5 window to find the mean square error var;
  • Pt(y,3) pl(y, l)+ pl(x, 2)+ pl(x, 3);
  • S5 calculating the mean value of all the pixel points of the row corresponding to the mean square error line probability density in the delta as stripe noise, and obtaining the relative noise re f_snf of each row ;
  • Flag (x, y) 0 (var(x, y) > var_thd(x));
  • Snf(3) ref_snf(l)+ ref_snf(2) + ref_snf(3);
  • Snf(4) ref_snf(l)+ ref_snf(2) + ref_snf(3) + ref_snf(4);
  • FIG. 1 is an original stripe noise image
  • FIG. 2 is a conventional line average effect diagram
  • FIG. 3 is a stripe effect diagram of the present invention. It can be seen from the comparison between Fig. 1 and Fig. 2 that the traditional method of estimating the mean value of the mean square variance is large, and additional fringes are introduced, and the effect of stripe removal is relatively general. As can be seen from the comparison between FIG. 1 and FIG. 3, the present invention is directed to the characteristics of the stripe noise, and the statistical local variance is calculated by the pixel whose variance is smaller than the threshold, and has a good de-striping effect on the image with large temperature difference and rich detail.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

提供了一种基于统计相对条纹去除法的红外图像条纹滤波方法,横向条纹去除步骤和纵向条纹去除步骤,横向条纹去除:横向条纹以第一行做为基准,则第一行相对条纹噪声量ref_snf(1)=0;计算当前行与前一行的差值delta;计算局部均方差var;统计局部均方差行直方图,计算均方差行概率密度;计算delta中均方差行概率密度小于30%对应的像素点的均值作为行条纹噪声,求得每一行的相对噪声ref_snf;计算每一行的绝对噪声;同理能够去除竖向条纹。本发明的有益效果是:针对于条纹噪声的特点,由于根据图像相邻像素具有一定相关性,以及统计局部方差取方差小于阈值的像素计算噪声,对于场景温差大、细节丰富的图像也有很好的去条纹效果。

Description

说明书 发明名称:基于统计相对条纹去除法的红外图像条纹滤波方法 技术领域
[0001] 本发明涉及红外图像处理领域, 特别是涉及一种基于统计相对条纹去除法的红 外图像条纹滤波方法。
背景技术
[0002] 红外传感器能够将红外光转换为电信号, 是红外成像设备的核心器件。 基于红 外焦平面阵列 (infrared focal plane array, IRFPA) 的红外传感器因为具有体积小 、 成本低、 灵敏度高等特点, 是红外传感器的主流发展方向。 但是, 由于当前 的工艺水平还无法做到使 IRFPA上的各传感器具有相同的响应特性, 因此不同传 感器对相同的红外辐射会产生不同的响应, 导致红外图像中包含大量噪声, 称 为固定模式噪声。 非均匀校正方法可以消除传感器间的差异, 但是由于传感器 的响应特性会随吋间缓慢变化, 因此必须在使用过程中不断地校正。
[0003] 一种常用的非均匀校正方法是采用温度场均匀的参考场景校正传感器的响应参 数, 使各传感器的输出相同。 这种方法虽然可以获得较好的效果, 但是校正过 程需要中断摄像机的正常拍摄。 为了避免这一问题, Harris等和 Hayat等提出了利 用摄像机正常工作吋捕获的图像序列和信号处理手段, 进行实吋校正的方法。 他们假设输入的红外辐射为独立同分布的随机变量, 通过参数估计的方法计算 传感器的增益和偏置电压。 基于相似的思想, Torres等认为各传感器输入的红外 辐射应该具有相同的取值范围, 并提出了一种称为 Constant
Range的校正方法。 Ratliff等提出了一种基于代数运算的非均匀校正方法, 其主 要优点是并不依赖于场景的多样性假设。 Torres和 Hayat将非均匀校正问题看作 是参数估计问题, 利用 Kalman滤波估计传感器的增益和偏置电压。 Pezoa采用一 组 Kalman滤波器依据各自的动态模型估计增益和偏置, 最后将各滤波器的估计 值加权, 求得最终的估计结果。
[0004] 实际上, 在红外图像中除了由于传感器的差异造成的固定模式噪声, 还存在另 外一种条纹噪声, 它是由于 IRFPA中读出电路的不同而造成的。 因为 IRFPA上位 于不同列的传感器采用不同的读出电路, 读出电路偏置电压的差异会在红外图 像上产生明暗相间的条纹, 即条纹噪声。 虽然条纹噪声与固定模式都属于非均 匀噪声, 但是其产生机理并不相同, 利用上述非均匀校正方法并不能消除条纹 噪声。 基于标定的校正方法不能实吋更新参数, 需要假设在连续 2次标定之间的 很长一段吋间内参数不变, 而列偏置电压则变化较快。 基于场景的校正方法虽 然可以实吋更新参数, 但是也带来了两个问题: 1) 这类算法需要很长吋间的图 像序列算法才能收敛。 2) 使用长吋间的图像序列可能导致"伪影"现象, 即将前 面的图像显示在后面的图像上。
[0005] 另外传统条纹滤波方法主要包括: 1) 采用频域滤波, 这种方差针对周期性条 纹有效果, 但无法滤除随机条纹, 而且不易于硬件实现。 2) 由相邻行均值方差 来估计当前行均值, 再用估计行均值来替换当前行原始均值, 该方法只对场景 温度变化范围不大的图像有效果, 而对于温差很大的图像, 由相邻行均值方差 估计行均值的误差大, 反而会引入额外的条纹。
技术问题
[0006] 本发明的目的在于克服现有技术的不足, 提供一种基于统计相对条纹去除法的 红外图像条纹滤波方法, 针对于条纹噪声的特点, 由于根据图像相邻像素具有 一定相关性, 以及统计局部方差取方差小于阈值的像素计算噪声, 对于场景温 差大、 细节丰富的图像也有很好的去条纹效果。
问题的解决方案
技术解决方案
[0007] 本发明的目的是通过以下技术方案来实现的: 基于统计相对条纹去除法的红外 图像条纹滤波方法, 包括一个以 N列 M行图像横向条纹去除步骤和一个以 N列 M 行图像纵向条纹去除步骤:
[0008] 所述以 N列 M行图像横向条纹去除步骤包括以下子步骤:
[0009] S1 : 横向条纹以第一行做为基准, 则第一行相对条纹噪声量 ref_snf(l)=0;
[0010] S2: 计算当前行与前一行的差值: delta(x,y)=I(X,y)-I(x,y-l), 其中 x是列坐标, x = 1,2,3,4,5,6,7...N-1,N; y是行坐标, y=2,3...M-l,M;
[0011] S3: 计算局部均方差 var; [0012] S4: 统计局部均方差行直方图, 计算均方差行概率密度;
[0013] S5: 计算 delta中均方差行概率密度小于 30%对应的该行所有像素点的均值作为 行条纹噪声, 求得每一行的相对条纹噪声 ref_snf;
[0014] S6: 计算每一行的绝对噪声:
[0015] Snf(l)= ref_snf(l);
[0016] Snf(2)= ref_snf(l)+ ref_snf(2);
[0017] Snf(3)= ref_snf(l)+ ref_snf(2) + ref_snf(3);
[0018] Snf(4)= ref_snf(l)+ ref_snf(2) + ref_snf(3) + ref_snf(4);
[0019]
[0020]
[0021] Snf(M)= ref_snf(l)+ ref_snf(2) + ref_snf(3) + ref_snf(4)+.. ·.+ ref_snf(M);
[0022] S7: 去除条纹噪声:
[0023] image_dout(x,y)=I(x,y)-snf(y),其中 x是列坐标, x=l,2,3,4,5,6,7...N-l,N; y是行坐 标, y=l,2,3...M-l,M;
[0024] 同理能够去除竖向条纹。
[0025] 所述的步骤 S3基于 3X3或 5X5的窗口求均方差 var。
发明的有益效果
有益效果
[0026] 本发明的有益效果是: 针对于条纹噪声的特点, 由于根据图像相邻像素具有一 定相关性, 以及统计局部方差取方差小于阈值的像素计算噪声, 对于场景温差 大、 细节丰富的图像也有很好的去条纹效果。
对附图的简要说明
附图说明
[0027] 图 1为原始条纹噪声图像;
[0028] 图 2为传统行均值效果图;
[0029] 图 3为本发明去条纹效果图。 本发明的实施方式
[0030] 下面结合附图进一步详细描述本发明的技术方案, 但本发明的保护范围不局限 于以下所述。
[0031] 基于统计相对条纹去除法的红外图像条纹滤波方法, 包括一个以 N列 M行图像 横向条纹去除步骤和一个以 N列 M行图像纵向条纹去除步骤:
[0032] 所述以 N列 M行图像横向条纹去除步骤包括以下子步骤:
[0033] S1 : 横向条纹以第一行做为基准, 则第一行相对条纹噪声量 ref_snf(l)=0;
[0034] S2: 计算当前行与前一行的差值: delta(X,y)=I(X,y)-I(x,y-l), 其中 x是列坐标, x = 1,2,3,4,5,6,7...N-1,N; y是行坐标, y=2,3...M-l,M;
[0035] S3: 计算局部均方差, 基于 3X3或 5X5的窗口求均方差 var;
[0036] S4: 统计每一行均方差直方图, pl(y,(var(x,y))=pl(y,var(x,y))+l, 其中 x是列坐 标, x=l,2,3,4,5,6,7...N-l,N; y是行坐标, y=l,2,3...M-l,M;
[0037] 计算其累积概率密度, 计算 y行累积概率密度:
[0038] pt(y,l)= pl(y, 1);
[0039] pt(y,2)= pl(y, l)+ pl(x, 2);
[0040] pt(y,3)= pl(y, l)+ pl(x, 2)+ pl(x, 3);
[0041]
[0042] pt(y,k)= pl(y, 1)+ pl(x, 2)+...+pl(x, k) ;
[0043] S5: 计算 delta中均方差行概率密度小于 30%对应的该行所有像素点的均值作为 条纹噪声, 求得每一行的相对噪声 ref_snf;
[0044] 计算每行 pt(x,k) = 0.3*N的对应 K值为 var_thd;
[0045] 标记每行概率密度小于 30%的像素点:
[0046] Flag (x,y)= 1 (var(x,y) <= var_thd(x)) ;
[0047] Flag (x,y)= 0 (var(x,y) > var_thd(x));
[0048] 计算每行概率密度小于 30%的所有像素点的和:
[0049] Snf_sum(y)= Flag (y,l)* delta(y,l)+ Flag (y,l)* delta(y,l)+..+ Flag (y,l)* delta(y,N) 计算每行概率密度小于 30%的像素点个数: [0051] Snf_num(y)= Flag (y,l)+ Flag (y,2)+...+ Flag (y,N);
[0052] 计算相对条纹噪声:
[0053] Snf(y) = Snf_sum(y)/ Snf_num(y);
[0054] S6: 计算每一行的绝对噪声:
[0055] Snf(l)= ref_snf(l);
[0056] Snf(2)= ref_snf(l)+ ref_snf(2);
[0057] Snf(3)= ref_snf(l)+ ref_snf(2) + ref_snf(3);
[0058] Snf(4)= ref_snf(l)+ ref_snf(2) + ref_snf(3) + ref_snf(4);
[0059]
[0060]
[0061] Snf(M)= ref_snf(l)+ ref_snf(2) + ref_snf(3) + ref_snf(4)+.. ·.+ ref_snf(M);
[0062] S7: 去除条纹噪声:
[0063] image_dout(x,y)=I(x,y)-snf(y),x= 1 ,2,3,4, ... ,Ν; y=l, 2,3,4,5, ...,Μ;
[0064] 同理能够去除竖向条纹。
[0065] 图 1为原始条纹噪声图像, 图 2为传统行均值效果图, 图 3为本发明去条纹效果 图。 由图 1和图 2对比可知, 传统行均值方差估计行均值的方法误差大, 会引入 额外的条纹, 条纹去除的效果比较一般。 由图 1和图 3对比可知, 本发明针对于 条纹噪声的特点, 统计局部方差取方差小于阈值的像素计算噪声, 对于场景温 差大、 细节丰富的图像有很好的去条纹效果。
[0066] 以上所述仅是本发明的优选实施方式, 应当理解本发明并非局限于本文所披露 的形式, 不应看作是对其他实施例的排除, 而可用于各种其他组合、 修改和环 境, 并能够在本文所述构想范围内, 通过上述教导或相关领域的技术或知识进 行改动。 而本领域人员所进行的改动和变化不脱离本发明的精神和范围, 则都 应在本发明所附权利要求的保护范围内。

Claims

权利要求书
[权利要求 1] 基于统计相对条纹去除法的红外图像条纹滤波方法, 其特征在于, 包 括一个以 N列 M行图像横向条纹去除步骤和一个以 N列 M行图像纵向 条纹去除步骤:
所述以 N列 M行图像横向条纹去除步骤包括以下子步骤:
S1 : 横向条纹以第一行做为基准, 则第一行相对条纹噪声量 ref_Snf(l)
=0;
S2: 计算当前行与前一行的差值: delta(X,y)=I(X,y)-I(x,y-l), 其中 x是 列坐标, x=l,2,3,4,5,6,7...N-l,N; y是行坐标, y=2,3...M-l,M;
S3: 计算局部均方差 var;
S4: 统计局部均方差行直方图, 计算均方差行概率密度;
S5: 计算 delta中均方差行概率密度小于 30%对应的该行所有像素点的 均值作为行条纹噪声, 求得每一行的相对条纹噪声 ref_Snf;
S6: 计算每一行的绝对噪声:
Snf(l)= ref_snf(l);
Snf(2)= ref_snf(l)+ ref_snf(2);
Snf(3)= ref_snf(l)+ ref_snf(2) + ref_snf(3);
Snf(4)= ref_snf(l)+ ref_snf(2) + ref_snf(3) + ref_snf(4);
Snf(M)= ref_snf(l)+ ref_snf(2) + ref_snf(3) + ref_snf(4)+.. ·.+ ref_snf(M); S7: 去除条纹噪声:
image_dout(x,y)=I(x,y)-snf(y),其中 x是列坐标, χ=1,2,3,4,5,6,7· . ·Ν-1,Ν ; y是行坐标, y=l,2,3...M-l,M;
同理能够去除竖向条纹。
[权利要求 2] 根据权利要求 1所述的基于统计相对条纹去除法的红外图像条纹滤波 方法, 其特征在于: 所述的步骤 S3基于 3X3或 5X5的窗口求均方差 var
PCT/CN2016/083215 2016-04-26 2016-05-25 基于统计相对条纹去除法的红外图像条纹滤波方法 WO2017185441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610264938.3 2016-04-26
CN201610264938.3A CN105931203B (zh) 2016-04-26 2016-04-26 基于统计相对条纹去除法的红外图像条纹滤波方法

Publications (1)

Publication Number Publication Date
WO2017185441A1 true WO2017185441A1 (zh) 2017-11-02

Family

ID=56836220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083215 WO2017185441A1 (zh) 2016-04-26 2016-05-25 基于统计相对条纹去除法的红外图像条纹滤波方法

Country Status (2)

Country Link
CN (1) CN105931203B (zh)
WO (1) WO2017185441A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106897980B (zh) * 2017-04-12 2020-01-24 湖南国科微电子股份有限公司 基于局部方差的自适应空域降噪方法
CN109360168B (zh) * 2018-10-16 2021-02-12 烟台艾睿光电科技有限公司 红外图像去条纹的方法、装置、红外探测器及存储介质
CN109903235A (zh) * 2019-01-21 2019-06-18 天津大学 一种红外图像条纹噪声的消除方法
CN110400271B (zh) * 2019-07-09 2021-06-15 浙江大华技术股份有限公司 一种条纹非均匀性校正方法、装置、电子设备及存储介质
CN112465707B (zh) * 2019-09-06 2024-03-26 浙江宇视科技有限公司 红外图像条纹噪声的处理方法、装置、介质及电子设备
CN110992244B (zh) * 2019-10-31 2023-10-13 上海扩博智能技术有限公司 带有摩尔纹的图片生成方法、系统、设备和存储介质
CN111161172B (zh) * 2019-12-18 2020-11-06 北京波谱华光科技有限公司 一种红外图像列向条纹消除方法、系统及计算机存储介质
CN112700382B (zh) * 2020-12-23 2024-03-26 杭州海康微影传感科技有限公司 一种图像接缝消除方法、装置及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2432418B (en) * 1982-07-02 2008-01-09 Secr Defence Optical sensing systems
CN102289788A (zh) * 2011-06-17 2011-12-21 中国电子科技集团公司第二十八研究所 多通道红外探测器中条纹非均匀性实时校正方法
CN104657958A (zh) * 2015-03-18 2015-05-27 西安科技大学 一种红外图像条纹噪声消除方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102855610B (zh) * 2012-08-03 2015-11-04 南京理工大学 采用参数正确性因子的红外图像非均匀性校正方法
CN104008532B (zh) * 2014-06-17 2017-01-04 中国电子科技集团公司第二十八研究所 一种基于先验概率模型的红外图像去条纹方法
CN105184753B (zh) * 2015-09-23 2018-01-12 武汉大学 一维信号处理引导下的遥感影像条带噪声快速滤除方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2432418B (en) * 1982-07-02 2008-01-09 Secr Defence Optical sensing systems
CN102289788A (zh) * 2011-06-17 2011-12-21 中国电子科技集团公司第二十八研究所 多通道红外探测器中条纹非均匀性实时校正方法
CN104657958A (zh) * 2015-03-18 2015-05-27 西安科技大学 一种红外图像条纹噪声消除方法

Also Published As

Publication number Publication date
CN105931203B (zh) 2019-07-16
CN105931203A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
WO2017185441A1 (zh) 基于统计相对条纹去除法的红外图像条纹滤波方法
KR102391619B1 (ko) 비-균일성 정정을 위한 적외선 이미지 처리 방법
JP4798400B2 (ja) 光学的黒画素と電圧固定画素とを用いて撮像装置の黒レベルを設定する方法および装置
CN106934771B (zh) 一种基于局部相关性的红外图像条纹噪声去除方法
Zuo et al. Improved interframe registration based nonuniformity correction for focal plane arrays
TWI551143B (zh) 具有完整解析度回復之高動態範圍影像感測器
Tendero et al. Efficient single image non-uniformity correction algorithm
CN108230249B (zh) 基于各向异性的l1范数全变分正则化非均匀性校正方法
US20110019039A1 (en) Solid-state imaging device and camera
Feng et al. Learnability enhancement for low-light raw image denoising: A data perspective
CN103997611B (zh) 一种基于噪声模板的图像固定模式噪声的抑制方法
Tzimopoulou et al. Scene-based techniques for nonuniformity correction of infrared focal plane arrays
Jara Chavez et al. Acceleration algorithm for constant-statistics method applied to the nonuniformity correction of infrared sequences
Geng et al. An adjacent differential statistics method for IRFPA nonuniformity correction
CN109636740B (zh) 一种红外图像多尺度智能化非均匀性校正方法
Sakoglu et al. An algebraic restoration method for estimating fixed-pattern noise in infrared imagery from a video sequence
Torle et al. Scene-based correction of image sensor deficiencies
Liu et al. A self-adaptive nonuniformity correction algorithm for infrared images combined with two-point correction along the rim
CN111998961A (zh) 基于像素点温漂估计的红外焦平面非均匀性校正方法
Wanmali et al. Survey on some scene based nonuniformity correction algorithms for infrared images
CN113375808A (zh) 一种基于场景的红外图像非均匀性校正方法
Jia et al. Noise analysis and column FPN suppression technology
Zhou et al. Nonuniformity correction algorithm with nonlinear model for infrared focal plane arrays
US11875484B2 (en) Method and device for removing remanence in an infrared image of a static scene
Bai et al. Adaptive nonuniformity correction for IRFPA sensors based on neural network framework

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899951

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899951

Country of ref document: EP

Kind code of ref document: A1