WO2017183876A1 - Plasticizer composition, and resin composition comprising same - Google Patents

Plasticizer composition, and resin composition comprising same Download PDF

Info

Publication number
WO2017183876A1
WO2017183876A1 PCT/KR2017/004117 KR2017004117W WO2017183876A1 WO 2017183876 A1 WO2017183876 A1 WO 2017183876A1 KR 2017004117 W KR2017004117 W KR 2017004117W WO 2017183876 A1 WO2017183876 A1 WO 2017183876A1
Authority
WO
WIPO (PCT)
Prior art keywords
citrate
based material
diester
cyclohexane
weight
Prior art date
Application number
PCT/KR2017/004117
Other languages
French (fr)
Korean (ko)
Inventor
김현규
이미연
조윤기
문정주
김주호
정석호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170047831A external-priority patent/KR102090294B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to ES17786144T priority Critical patent/ES2973381T3/en
Priority to CN201780002270.8A priority patent/CN107849299B/en
Priority to US15/737,686 priority patent/US11407882B2/en
Priority to EP17786144.0A priority patent/EP3293225B1/en
Publication of WO2017183876A1 publication Critical patent/WO2017183876A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/62Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/75Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of acids with a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/18Plasticising macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids

Definitions

  • the present invention relates to a plasticizer composition and a resin composition comprising the same.
  • plasticizers react with alcohols to polycarboxylic acids such as phthalic acid and adipic acid to form the corresponding esters.
  • polycarboxylic acids such as phthalic acid and adipic acid
  • plasticizer compositions that can replace phthalate-based plasticizers such as terephthalate-based, adipate-based, and other polymer-based plastics is being continued.
  • plasticizers should be used in consideration of discoloration, transferability, and mechanical properties.
  • plasticizers, fillers, stabilizers, viscosity-reducing agents, dispersants, antifoaming agents, foaming agents, etc. are blended with PVC resins according to the characteristics required for different industries such as tensile strength, elongation, light resistance, transition, gelling or absorption rate. Done.
  • the plasticizer compositions applicable to PVC when the most widely used di (2-ethylhexyl) terephthalate is applied, the hardness or sol viscosity is high and the absorption rate of the plasticizer is relatively high. It was slow, and the performance and stress performance were not good.
  • the hydrogenated material of di (2-ethylhexyl) terephthalate can be considered as an improvement, the plasticization efficiency is improved, while the migration efficiency and thermal stability are poor, and the production cost is increased due to the hydrogenation reaction. Having difficulty with
  • the present invention is a plasticizer which can improve the physical properties such as plasticization efficiency, transferability, gelling properties, etc. required for the prescription of calendering sheet, plastisol and extrusion / injection compound as a plasticizer used in the resin composition and a manufacturing method thereof. And to provide a resin composition comprising them.
  • the present invention can improve the performance of the hydrogenation by mixing a certain amount of citrate-based plasticizers in order to solve the problems of the migration and heating loss of the hydrogenated di (2-ethylhexyl) terephthalate, and the economics.
  • a single material it is noted that the use of alkyl having 9 or 10 carbon atoms is excellent in tensile strength and elongation, heating loss, transferability, plasticizer absorption rate and stress transferability.
  • a plasticizer composition comprising a 4-cyclohexane diester-based material and a citrate-based material is provided.
  • one kind of cyclohexane 1,4-diester material and citrate-based material, wherein the weight ratio of the cyclohexane 1,4-diester-based material and the citrate-based material is 99: 1 to 1:99.
  • the citrate-based material may include any one selected from the group consisting of a hybrid alkyl substituted citrate-based material having 4 to 10 carbon atoms and a non-hybrid alkyl substituted citrate-based material having 4 to 10 carbon atoms.
  • the plasticizer composition may further comprise an epoxidized material.
  • the epoxidized material may further include 1 to 100 parts by weight based on 100 parts by weight of the mixed weight of the cyclohexane 1,4-diester-based material and the citrate-based material.
  • a method of preparing a plasticizer composition is provided.
  • the resin may be at least one member selected from the group consisting of ethylene vinyl acetate, polyethylene, polypropylene, polyketone, polyvinyl chloride, polystyrene, polyurethane, and thermoplastic elastomers.
  • the plasticizer composition according to an embodiment of the present invention may provide excellent physical properties such as migration resistance and volatility, as well as excellent plasticization efficiency and tensile strength and elongation.
  • 1 is an image showing the improvement of heat resistance according to the addition of the epoxidized material.
  • butyl refers to an alkyl group having 4 carbon atoms, and may be used as a term including both straight and branched chains, and may be, for example, n-butyl, isobutyl, or t-butyl. But preferably n-butyl or isobutyl.
  • octyl and “2-ethylhexyl” are alkyl groups having 8 carbon atoms, and may be used in combination with octyl as an abbreviation of 2-ethylhexyl, and in some cases, may refer to octyl which is a linear alkyl group. However, it can be interpreted to mean a branched alkyl group, 2-ethylhexyl.
  • the present invention it is possible to provide a plasticizer composition including one cyclohexane 1,4-diester-based material.
  • the cyclohexane 1,4-diester material is 1 to 99% by weight, 20 to 99% by weight, 40 to 99% by weight, 50 to 95% by weight or 60 to 90% by weight based on the total weight of the composition The content selected in the range of the like may be applied.
  • cyclohexane 1,4-diester material may be named, for example, dialkyl cyclohexane-1,4-diester when R1 and R2 are the same.
  • the cyclohexane 1,4-diester-based material is diisononyl cyclohexane-1,4-diester (1,4-DINCH), diisodecyl cyclohexane-1,4-diester (1, 4-DIDCH), di (2-propylheptyl) cyclohexane-1,4-diester (1,4-DPHCH) may be selected.
  • the transition characteristics and the heating loss can be improved, which may be advantageous in mechanical properties.
  • the plasticizer composition comprises a citrate-based material
  • the citrate-based material is a mixed alkyl substituted citrate-based material having 4 to 10 carbon atoms and a non-hybridized alkyl substitution having 4 to 10 carbon atoms It may include one or more compounds selected from the group consisting of citrate-based materials.
  • the mixed alkyl substituted citrate-based material having 4 to 10 carbon atoms may be, for example, 1,2-dibutyl 3- (2-ethylhexyl) 2-hydroxypropane-1,2,3-tricarboxylate, 1,3-dibutyl 2- (2-ethylhexyl) 2-hydroxypropane-1,2,3-tricarboxylate, 1-butyl 2,3-di (2-ethylhexyl) 2-hydroxypropane 4 and 8 carbon atoms, such as -1,2,3-tricarboxylate or 2-butyl 1,3-di (2-ethylhexyl) 2-hydroxypropane-1,2,3-tricarboxylate Citrate having a combination substituent of an alkyl group; 1,2-dipentyl 3-heptyl 2-hydroxypropane-1,2,3-tricarboxylate, 1,3-dipentyl 2-heptyl 2-hydroxypropane-1,2,3-tricarboxyl Rate, 1-penty
  • the alkyl group having 4 to 10 carbon atoms may be linear or branched.
  • Trihexyl citrate THC
  • THPC triheptyl citrate
  • TOC tri (2-ethylhexyl) citrate
  • THC trinonyl citrate
  • TPHC tri (2-propylheptyl) citrate
  • the butyl group to nonyl group may be applied to each of the structural isomers such as isobutyl group for butyl group, octyl group for 2-ethylhexyl group, isononyl group for nonyl group, and 2-propylheptyl group. In this case, all of isodecyl may be included.
  • non-hybrid alkyl substituted citrate materials having 4 to 10 carbon atoms may be preferred, compared to hybrid alkyl substituted citrate materials, and tributyl citrate and / or tri (2-ethylhexyl) sheets.
  • the rate may be used at a slightly more frequent frequency.
  • trialkyl citrate, or dinalkyl-malkyl citrate, such as the hybrid or non-hybrid alkyl substituted citrate compound may be applied.
  • the acetyl group is present in the citrate-based material, the physical properties of the plasticizer, particularly There exists a possibility that workability and gelling property may deteriorate with the fall of plasticization efficiency.
  • the citrate-based material is an acetyl citrate compound in which an acetyl group is substituted for hydrogen of the remaining hydroxy group in addition to the three ester groups, the plasticization efficiency is lowered, the amount of plasticizer to be overcome is increased, and the product price is increased. Due to such problems, deterioration in various aspects such as marketability, economic feasibility and physical properties may be a problem.
  • the cyclohexane 1,4-diester-based material and the citrate-based material in the plasticizer composition the upper limit is 99: 1, 95: 5, 90:10, 85:15, 80:20, 70 by weight ratio : 30 or 60:40 and the lower limit may be 1:99, 5:95, 10:90, 15:85, 20:80, 30:70 or 40:60.
  • the plasticizer composition may include a cyclohexane 1,4-diester-based material and a citrate-based material, and may further include an epoxidized material.
  • the heat resistance may not be excellent, and the heat resistance may further include the epoxidized material. This can be supplemented.
  • the addition amount of the epoxidized material for supplementing the heat resistance property may be 1 to 100 parts by weight based on 100 parts by weight of the mixed weight of cyclohexane 1,4-diester-based material and citrate-based material, preferably 5 to 80 parts by weight Can be.
  • the heat resistance property can be compensated for.
  • the amount of the epoxidized material is added in excess, the cyclohexane 1,4-diester material and the citrate material are relatively low. There is a fear that the physical properties of the basic plasticizer is included, it is necessary to adjust the content.
  • the epoxidized material is, for example, epoxidized soybean oil, epoxidized castor oil, epoxidized linseed oil, epoxidized palm oil, epoxidized palm oil (epoxidized stearate), epoxidized oleate, epoxidized tallate and epoxidized linoleate or mixtures thereof.
  • epoxidized soybean oil (ESO), epoxidized linseed oil (ELO) and epoxidized ester derivatives thereof may be applied, but are not limited thereto.
  • the terephthalate-based material is a direct esterification reaction of at least one alcohol selected from the group consisting of 2-ethylhexyl alcohol, isononyl alcohol, 2-propylheptyl alcohol, butyl alcohol and isobutyl alcohol and terephthalic acid; Terephthalate-based materials can be prepared.
  • the direct esterification may include adding terephthalic acid to an alcohol, then adding a catalyst and reacting under a nitrogen atmosphere; Removing unreacted alcohol and neutralizing unreacted acid; And dehydration and filtration by distillation under reduced pressure.
  • the alcohol may be used in the range of 150 to 500 mol%, 200 to 400 mol%, 200 to 350 mol%, 250 to 400 mol%, or 270 to 330 mol% based on 100 mol% of terephthalic acid.
  • the catalyst is, for example, acid catalysts such as sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, paratoluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, alkyl sulfuric acid, aluminum lactic acid, lithium fluoride, potassium chloride, cesium chloride, Metal salts such as calcium chloride, iron chloride, aluminum phosphate, metal oxides such as heteropolyacids, natural / synthetic zeolites, cation and anion exchange resins, tetraalkyl titanate and organic metals such as polymers thereof. .
  • the catalyst may use tetraalkyl titanate.
  • the amount of the catalyst used may vary depending on the type, for example, in the case of a homogeneous catalyst, 0.01 to 5% by weight, 0.01 to 3% by weight, 1 to 5% by weight or 2 to 4% by weight based on 100% by weight of the total reactants. And, in the case of heterogeneous catalysts, it may be in the range of 5 to 200%, 5 to 100%, 20 to 200%, or 20 to 150% by weight of the total amount of reactants.
  • the direct esterification reaction is 10 minutes to 10 hours, preferably 30 minutes to 8 hours, more preferably 1 to 6 hours in the temperature range of 80 °C to 270 °C, preferably 150 °C to 250 °C It is preferably carried out in, it is possible to effectively obtain a terephthalate-based material in the appropriate temperature, catalyst and time range in consideration of the boiling point of alcohol and the like.
  • the hydrogenation step may be a step of converting the terephthalate-based material into cyclohexane 1,4-diester-based material by hydrogenation of the terephthalate-based material in the presence of a metal catalyst.
  • the hydrogenation step is a reaction for removing the aromaticity of the benzene ring of the terephthalate-based materials by adding hydrogen in the presence of a metal catalyst, may be a kind of reduction reaction.
  • the hydrogenation reaction is a reaction of the terephthalate-based material with hydrogen under a metal catalyst to synthesize a cyclohexane 1,4-diester-based material, the reaction conditions of the benzene without affecting the carbonyl group substituted in the benzene It may include all conventional reaction conditions capable of hydrogenating only the ring.
  • the hydrogenation reaction may be performed by further including an organic solvent such as ethanol, but is not limited thereto.
  • an organic solvent such as ethanol
  • a Rh / C catalyst, a Pt catalyst, a Pd catalyst, and the like which are generally used to hydrogenate a benzene ring, may be used.
  • the metal catalyst is not limited thereto.
  • the pressure during hydrogenation in the hydrogenation reaction may be about 3 to 15 MPa, the reaction may be carried out for about 2 to 10 hours, it may be carried out at a temperature of about 80 °C to 200 °C.
  • the blending may be performed by blending the cyclohexane 1,4-diester-based material and the citrate-based material in which the terephthalate-based material is converted through a hydrogenation reaction in a ratio of 1:99 to 99: 1 by weight.
  • a plasticizer composition may be prepared, wherein the cyclohexane 1,4-diester material is characterized in that it is a single compound.
  • the citrate-based material may be prepared by a direct esterification reaction of citric acid and one or more alkyl alcohols or a trans esterification reaction of trialkyl citrate and alkyl alcohols. It may be applied equivalently to that applied to the Sein 1,4-diester-based material, and in the case of the trans esterification reaction, the contents as illustrated below may be applied.
  • trans esterification reaction refers to a reaction in which an alcohol and an ester react with each other, as shown in Scheme 1 below, so that R of the ester is interchanged with R 'of an alcohol.
  • the trans-esterification reaction has the advantage that does not cause a waste water problem compared to the acid-alcohol esterification reaction, and can proceed under a non-catalyst, it can solve the problem when using an acid catalyst.
  • tri (2-ethylhexyl) citrate and butyl alcohol can be prepared by tri- (2-ethylhexyl) citrate, di (2-ethylhexyl) butyl citrate, dibutyl ( A mixture of 2-ethylhexyl) citrate and tributyl citrate can be produced, wherein the four citrates have 3.0 to 70 weight percent tri (2-ethylhexyl) citrate relative to the total weight of the mixture, Two types of citrate having a mixed alkyl may be formed in an amount of 0.5 wt% to 50 wt%, and tributyl citrate in an amount of 0.5 wt% to 85 wt%, specifically 10 wt% to 50 wt%, 0.5 Weight percent to 50 weight percent, and 35 to 80 weight percent. Within this range, there is an effect of obtaining a citrate-based material (mixture) having high process efficiency and excellent processability and absorption rate.
  • the mixture prepared by the trans-esterification reaction can control the composition ratio of the mixture according to the amount of alcohol added.
  • the addition amount of the alcohol may be 0.1 to 89.9 parts by weight, specifically 3 to 50 parts by weight, and more specifically 5 to 40 parts by weight based on 100 parts by weight of the citrate-based material.
  • the more the amount of alcohol added the greater the mole fraction of the citrate participating in the trans-esterification reaction, and thus the citrate produced by attacking only one or two ester groups in the product.
  • the content of citrate attacked by three ester groups may increase.
  • the content of unreacted citrate may tend to decrease.
  • the molar ratio of reactant citrate and alcohol is, for example, 1: 0.005 to 5.0, 1: 0.05 to 2.5, or 1: 0.1 to 1.0, within this range, the process efficiency is high and the processability is improved. There is an effect of obtaining an ester plasticizer composition having excellent effects.
  • composition ratio of the mixture of the three citrate is not limited to the above range, the composition ratio can be changed by adding any one of the three citrate, the possible mixed composition ratio is as described above .
  • the ester composition prepared by the trans esterification step may include all of the single attack ester compound, the double attack ester compound, and the reaction residual ester compound, and control the composition ratio of the ester composition according to the amount of the alcohol added. can do.
  • the trans esterification reaction is carried out at a reaction temperature of 120 ° C to 190 ° C, preferably 135 ° C to 180 ° C, more preferably 141 ° C to 179 ° C, for 10 minutes to 10 hours, preferably 30 minutes to 8 hours, more Preferably it is carried out in 1 to 6 hours. It is possible to effectively obtain a mixture that is a terephthalate-based material of a desired composition ratio within the temperature and time range. In this case, the reaction time may be calculated from the time point at which the reaction temperature is reached after the reaction temperature is raised.
  • the trans esterification reaction may be performed under a non-catalyst, but in some cases, may be performed under an acid catalyst or a metal catalyst, in which case the reaction time may be shortened.
  • the acid catalyst may be, for example, sulfuric acid, methanesulfonic acid or p-toluenesulfonic acid, and the like, and the metal catalyst may be, for example, an organometallic catalyst, a metal oxide catalyst, a metal salt catalyst, or the metal itself.
  • the metal component may be any one selected from the group consisting of tin, titanium and zirconium, or a mixture of two or more thereof.
  • the method may further include distilling off the unreacted alcohol and reaction by-products, for example, an ester compound after the trans-esterification reaction.
  • the distillation may be, for example, two-stage distillation separately using the boiling point difference of the alcohol and the reaction by-product.
  • the distillation may be mixed distillation.
  • the mixed distillation means distilling butanol and reaction by-products simultaneously.
  • the method may further include adding an epoxidized material. Since the content in the case of adding the said epoxidation material further, and the kind of epoxidation material were mentioned above, the description is abbreviate
  • a resin composition comprising the plasticizer composition and the resin described above.
  • the resin may be a resin known in the art.
  • one or more mixtures selected from ethylene vinyl acetate, polyethylene, polyketone, polypropylene, polyvinyl chloride, polystyrene, polyurethane, thermoplastic elastomer, and polylactic acid may be used, but is not limited thereto.
  • the plasticizer composition may be included in 5 to 150 parts by weight based on 100 parts by weight of the resin.
  • the content of the plasticizer may be changed according to the method of processing the resin composition.
  • the plasticizer is preferably 5 to 100 parts by weight of the resin. 100 parts by weight, 5 to 60 parts by weight, or 5 to 50 parts by weight.
  • a plasticizer may be included as 30 to 150 parts by weight, 40 to 130 parts by weight, and 60 to 120 parts by weight.
  • the resin composition may further include a filler.
  • the filler may be 0 to 300 parts by weight, preferably 50 to 200 parts by weight, more preferably 100 to 200 parts by weight based on 100 parts by weight of the resin.
  • the filler may be a filler known in the art, it is not particularly limited.
  • it may be at least one mixture selected from silica, magnesium carbonate, calcium carbonate, hard coal, talc, magnesium hydroxide, titanium dioxide, magnesium oxide, calcium hydroxide, aluminum hydroxide, aluminum silicate, magnesium silicate and barium sulfate.
  • the resin composition may further include other additives such as stabilizers, if necessary.
  • additives such as the stabilizer may be, for example, 0 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the resin.
  • the stabilizer may be, for example, a calcium-zinc-based (Ca-Zn-based) stabilizer such as calcium stearate salts, but is not particularly limited thereto.
  • Ca-Zn-based stabilizer such as calcium stearate salts
  • the resin composition may be applied to all resins used for melt processing and plastisol processing, and may be applied to compound industries such as extrusion or injection, calendering and plastisol, for example.
  • Examples of the product may include various electric wires, flooring materials, automotive interior materials, films, sheets, wallpaper, toys, and the like.
  • distillation is performed under reduced pressure for 0.5 to 4 hours to remove unreacted raw materials.
  • steam extraction is performed under reduced pressure using steam for 0.5 to 3 hours, the reaction solution temperature is cooled to about 90 ° C., and neutralization is performed using an alkaline solution. .
  • washing with water may be performed, and then the reaction solution is dehydrated to remove moisture.
  • the filtrate was added to the reaction solution from which the water was removed, the resultant was stirred for a while, and then filtered to obtain 1,243 g (yield: 99.0%) of diisononyl terephthalate.
  • Examples 9 to 11 were configured as shown in Table 2 below.
  • the specimen is prepared by referring to ASTM D638, 40 parts by weight of the plasticizer composition of Examples 1 to 11 and Comparative Examples 1 to 5, 3 parts by weight of stabilizer (BZ-153T) in 100 parts by weight of PVC (LS100S) 3L super mixer ( after mixing at 98 and 700 rpm in a super mixer, and then working with a roll mill for 4 minutes at 160 ° C. to produce 5 mm sheets, press work at 180 ° C. for 2.5 minutes at low pressure and 2 minutes at high pressure, and then make 1T and 3T sheets. Specimen was produced. Each specimen was used to evaluate physical properties according to the test items below, and the results are summarized in Tables 3 and 4 below.
  • Tensile Strength (kgf / mm2) Load Value (kgf) / Thickness (mm) ⁇ Width (mm)
  • Elongation (%) [length after extension / initial length] x 100 was calculated.
  • Specimens with a thickness of 2 mm or more were obtained according to KSM-3156.
  • a PS plate was attached to both sides of the specimen and a load of 1 kgf / cm 2 was applied.
  • the specimen was left in a hot air circulation oven (80 ° C.) for 72 hours and then taken out and cooled at room temperature for 4 hours. Then, after removing the PS attached to both sides of the test piece, the weight before and after leaving in the oven was measured and the transfer loss was calculated by the following equation.
  • Transfer loss (%) [(Initial weight of specimen at room temperature-weight of specimen after leaving the oven) / Initial weight of specimen at room temperature] ⁇ 100
  • Heating loss (%) [(initial specimen weight-specimen weight after operation) / initial specimen weight] x 100.
  • the specimen was bent at room temperature for a period of time, and then observed the degree of transition (the degree of bleeding), and the degree was expressed as a numerical value, the closer to 0, the better and the closer to 3, the worse. It is a characteristic.
  • the thermal stability of the specimen against high temperature contact was tested by moving 0.5T specimen prepared by roll-mill operation using Mathis Oven at a speed of 10mm / 25sec at 220 °C.
  • Example 1 82.5 192.1 337.5 2.58 2.22 0.5 Example 2 77.5 174.6 304.6 3.56 3.40 0 Example 3 84.0 198.5 320.1 2.56 1.88 0 Example 4 85.5 208.7 314.2 1.21 1.20 0.5 Example 5 85.5 220.5 320.4 1.68 1.31 0.5 Example 6 86.0 224.7 318.5 1.56 1.11 0.5 Example 7 80.0 198.6 325.6 2.54 2.43 0 Example 8 85.0 211.1 308.4 2.86 1.77 0.5 Comparative Example 1 84.0 185.3 287.4 3.57 2.48 2.0 Comparative Example 2 78.5 168.4 267.1 4.88 4.50 1.5 Comparative Example 3 82.0 170.5 271.3 5.66 6.58 2.0 Comparative Example 4 87.0 200.7 295.4 3.56 1.50 3.0 Comparative Example 5 83.5 178.5 288.0 3.60 3.20 1.5 Comparative Example 6 83.0 187.0 290.3 4.11 3.87 0.5 Comparative Example 7 81.0 174.5
  • Example 9 82.5 214.5 348.0 2.20 1.76 0
  • Example 10 83.0 228.4 345.8 1.62 1.22 0
  • Example 11 84.5 208.7 314.2 1.22 1.01 1.5
  • the diester group is bonded to the 1,2 positions instead of the 1,4 position, the tensile strength, elongation, transfer loss, and heating loss are more obvious than the effects of carbon number. It can be seen that the physical property level is poor.
  • cyclohexane 1,4-diester is prepared in order to produce a resin having satisfactory physical properties in all aspects of mechanical properties (tensile strength and elongation) and physical properties related to the total amount of plasticizer (transition loss and heating loss). It was confirmed that it is preferable to mix the system material with the citrate material by applying an alkyl group having 9 or more carbon atoms.
  • Examples 9 to 11 are each added to the epoxidized soybean oil in Example 1 in the ratio of 7: 3, 5: 5, and 4: 6, respectively, It can be confirmed that heating loss and transition loss are excellent, and mechanical properties such as tensile strength and elongation can be obtained at an excellent level.
  • cyclohexane 1,4 is preferred.
  • the epoxidation material is preferably contained in an amount of 100 parts by weight or less relative to 100 parts by weight of the mixture of the diester material and the citrate material.
  • Example 9 in Examples 1 and 5 without adding an epoxidation material, it was confirmed that the specimen was burned and burned to a degree close to black, but in Example 9, discoloration was hardly achieved. It can be seen that the naked eye, and accordingly it can be seen that the thermal stability can be improved through the addition of the epoxidized material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a plasticizer composition and resin composition and a method for preparing same and can provide a plasticizer and a resin composition comprising same, wherein the plasticizer can improve physical properties, such as plasticizing efficiency, migration, tensile strength, elongation rate, stress migration, and light stability, which are required from a sheet prescription when the plasticizer is used as a plasticizer of a resin composition, by making improvement on bad physical properties which have occurred due to structural limits.

Description

가소제 조성물 및 이를 포함하는 수지 조성물Plasticizer composition and resin composition containing same
[관련출원과의 상호인용][Citations with Related Applications]
본 발명은 2016.04.22에 출원된 한국 특허 출원 제10-2016-0049081호 및 2017.04.13에 출원된 한국 특허 출원 제10-2017-0047831호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.The present invention claims the benefit of priority based on Korean Patent Application No. 10-2016-0049081 filed on Apr. 22, 2016 and Korean Patent Application No. 10-2017-0047831 filed on Apr. 13, 2017, All content disclosed in the literature is included as part of this specification.
[기술분야][Technical Field]
본 발명은 가소제 조성물 및 이를 포함하는 수지 조성물에 관한 것이다. The present invention relates to a plasticizer composition and a resin composition comprising the same.
통상적으로 가소제는 알코올이 프탈산 및 아디프산과 같은 폴리카복시산과 반응하여 이에 상응하는 에스터를 형성한다. 또한 인체에 유해한 프탈레이트계 가소제의 국내외 규제를 고려하여, 테레프탈레이트계, 아디페이트계, 기타 고분자계 등의 프탈레이트계 가소제를 대체할 수 있는 가소제 조성물들에 대한 연구가 계속되고 있다. Typically, plasticizers react with alcohols to polycarboxylic acids such as phthalic acid and adipic acid to form the corresponding esters. In addition, in consideration of domestic and international regulations on phthalate-based plasticizers that are harmful to humans, research on plasticizer compositions that can replace phthalate-based plasticizers such as terephthalate-based, adipate-based, and other polymer-based plastics is being continued.
한편, 바닥재, 벽지, 연질 및 경질 시트 등의 플라스티졸 업종, 캘린더링 업종, 압출/사출 컴파운드 업종을 막론하고, 이러한 친환경 제품에 대한 요구가 증대고 있으며, 이에 대한 완제품별 품질 특성, 가공성 및 생산성을 강화하기 위하여 변색 및 이행성, 기계적 물성 등을 고려하여 적절한 가소제를 사용하여야 한다. On the other hand, regardless of the plastisol industry such as flooring, wallpaper, soft and hard sheets, calendaring industry, extrusion / injection compound industry, there is an increasing demand for such eco-friendly products, quality characteristics, processability and In order to enhance productivity, appropriate plasticizers should be used in consideration of discoloration, transferability, and mechanical properties.
이러한 다양한 사용 영역에서 업종별 요구되는 특성인 인장강도, 신율, 내광성, 이행성, 겔링성 혹은 흡수속도 등에 따라 PVC 수지에 가소제, 충전제, 안정제, 점도저하제, 분산제, 소포제, 발포제 등의 부원료등을 배합하게 된다.In these various fields of use, plasticizers, fillers, stabilizers, viscosity-reducing agents, dispersants, antifoaming agents, foaming agents, etc. are blended with PVC resins according to the characteristics required for different industries such as tensile strength, elongation, light resistance, transition, gelling or absorption rate. Done.
일례로, PVC에 적용 가능한 가소제 조성물 중, 가격이 상대적으로 저렴하면서 가장 범용적으로 사용되는 디(2-에틸헥실)테레프탈레이트를 적용할 경우, 경도 혹은 졸 점도가 높고 가소제의 흡수 속도가 상대적으로 느리며, 이행성 및 스트레스 이행성도 양호하지 않았다. For example, among the plasticizer compositions applicable to PVC, when the most widely used di (2-ethylhexyl) terephthalate is applied, the hardness or sol viscosity is high and the absorption rate of the plasticizer is relatively high. It was slow, and the performance and stress performance were not good.
이에 대한 개선으로 디(2-에틸헥실)테레프탈레이트의 수소화 물질을 고려할 수 있으나, 가소화 효율은 개선되는 반면, 이행성이나 열안정성 등이 열악하고, 수소화 반응에 따른 제조원가 상승을 수반하기 때문에 경제성을 갖는데 어려움을 안고 있다. Although the hydrogenated material of di (2-ethylhexyl) terephthalate can be considered as an improvement, the plasticization efficiency is improved, while the migration efficiency and thermal stability are poor, and the production cost is increased due to the hydrogenation reaction. Having difficulty with
이러한 문제점을 극복하고자 상기 수소화된 디(2-에틸헥실)테레프탈레이트인 디(2-에틸헥실) 1,4-사이클로헥사노에이트 보다 물성적인 측면에서 우수한 물질, 혹은 이의 신규한 유도체를 포함하는 신규 조성물 제품의 개발에 대한 요구가 지속적으로 존재하며, 염화비닐계 수지에 대한 친환경 가소제로서 제품 및 용도 개발에 대한 연구가 계속되고 있다. In order to overcome this problem, a novel material comprising a material having superior physical properties or a novel derivative thereof than the hydrogenated di (2-ethylhexyl) terephthalate di (2-ethylhexyl) 1,4-cyclohexanoate There is a continuing need for the development of composition products, and research on the development of products and uses as an environmentally friendly plasticizer for vinyl chloride resins continues.
본 발명은 수지 조성물에 사용되는 가소제로서 캘린더링 시트, 플라스티졸 및 압출/사출 컴파운드 등의 처방에서 요구되는 가소화 효율, 이행성, 겔링성 등의 물성을 개선시킬 수 있는 가소제와 그 제조 방법 및 이들을 포함한 수지 조성물을 제공하고자 한다.The present invention is a plasticizer which can improve the physical properties such as plasticization efficiency, transferability, gelling properties, etc. required for the prescription of calendering sheet, plastisol and extrusion / injection compound as a plasticizer used in the resin composition and a manufacturing method thereof. And to provide a resin composition comprising them.
구체적으로, 본 발명은 수소화된 디(2-에틸헥실)테레프탈레이트의 이행성 및 가열감량, 그리고 경제성 문제를 해결하기 위하여 시트레이트계 가소제를 일정량 혼용하면 이행성을 개선할 수 있다는 점과, 수소화된 단일 물질을 혼용하는 경우 알킬의 탄소수를 9 또는 10인 것으로 적용하는 것이 인장강도 및 신율, 가열감량, 이행성, 가소제 흡수속도 및 스트레스 이행성이 우수하다는 점에 착안하여, 1 종의 1,4-사이클로헥세인 디에스테르계 물질과 시트레이트계 물질을 포함하는 가소제 조성물을 제공하고자 한다.Specifically, the present invention can improve the performance of the hydrogenation by mixing a certain amount of citrate-based plasticizers in order to solve the problems of the migration and heating loss of the hydrogenated di (2-ethylhexyl) terephthalate, and the economics. In the case of using a single material, it is noted that the use of alkyl having 9 or 10 carbon atoms is excellent in tensile strength and elongation, heating loss, transferability, plasticizer absorption rate and stress transferability. A plasticizer composition comprising a 4-cyclohexane diester-based material and a citrate-based material is provided.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 1 종의 사이클로헥세인 1,4-디에스테르계 물질; 및 시트레이트계 물질;을 포함하고, 상기 사이클로헥세인 1,4-디에스테르계 물질 및 시트레이트계 물질의 중량비는 99:1 내지 1:99 인 것인 가소제 조성물이 제공된다.According to an embodiment of the present invention to solve the above problems, one kind of cyclohexane 1,4-diester material; And citrate-based material, wherein the weight ratio of the cyclohexane 1,4-diester-based material and the citrate-based material is 99: 1 to 1:99.
상기 시트레이트계 물질은 탄소수 4 내지 10의 혼성 알킬 치환 시트레이트계 물질 및 탄소수 4 내지 10의 비혼성 알킬 치환 시트레이트계 물질로 이루어진 군에서 선택된 어느 하나를 포함할 수 있다.The citrate-based material may include any one selected from the group consisting of a hybrid alkyl substituted citrate-based material having 4 to 10 carbon atoms and a non-hybrid alkyl substituted citrate-based material having 4 to 10 carbon atoms.
상기 가소제 조성물은 에폭시화 물질을 더 포함할 수 있다.The plasticizer composition may further comprise an epoxidized material.
상기 에폭시화 물질은 사이클로헥세인 1,4-디에스테르계 물질 및 시트레이트계 물질의 혼합 중량 100 중량부 대비 1 내지 100 중량부를 더 포함하는 것일 수 있다.The epoxidized material may further include 1 to 100 parts by weight based on 100 parts by weight of the mixed weight of the cyclohexane 1,4-diester-based material and the citrate-based material.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 테레프탈레이트계 물질을 금속 촉매의 존재 하에 수소화 반응시켜 사이클로헥세인 1,4-디에스테르계 물질을 제조하는 단계; 및 상기 사이클로헥세인 1,4-디에스테르계 물질 및 시트레이트계 물질을 중량비가 99:1 내지 1:99가 되도록 블렌딩하여 가소제 조성물을 얻는 단계;를 포함하고, 상기 테레프탈레이트계 물질은 혼합물인 것인 가소제 조성물의 제조방법이 제공된다. According to an embodiment of the present invention to solve the above problems, a step of producing a cyclohexane 1,4-diester material by hydrogenation of a terephthalate-based material in the presence of a metal catalyst; And blending the cyclohexane 1,4-diester-based material and the citrate-based material in a weight ratio of 99: 1 to 1:99 to obtain a plasticizer composition, wherein the terephthalate-based material is a mixture. Provided is a method of preparing a plasticizer composition.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 수지 100 중량부; 및 제1항의 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물이 제공된다.According to an embodiment of the present invention to solve the above problems, 100 parts by weight of resin; And 5 to 150 parts by weight of the plasticizer composition of claim 1 is provided.
상기 수지는 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리케톤, 폴리염화비닐, 폴리스타이렌, 폴리우레탄 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1 종 이상일 수 있다.The resin may be at least one member selected from the group consisting of ethylene vinyl acetate, polyethylene, polypropylene, polyketone, polyvinyl chloride, polystyrene, polyurethane, and thermoplastic elastomers.
본 발명의 일 실시예에 따른 가소제 조성물은, 수지 조성물에 사용할 경우, 우수한 가소화 효율 및 인장강도와 신율 뿐만 아니라, 내이행성 및 내휘발성 등의 우수한 물성을 제공할 수 있다. When used in a resin composition, the plasticizer composition according to an embodiment of the present invention may provide excellent physical properties such as migration resistance and volatility, as well as excellent plasticization efficiency and tensile strength and elongation.
도 1은 에폭시화 물질의 첨가에 따른 내열성 향상을 보여주는 이미지이다.1 is an image showing the improvement of heat resistance according to the addition of the epoxidized material.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 명세서에서 사용되는 용어 “부틸”은 탄소수가 4개인 알킬기를 의미하고, 직쇄 및 분지쇄를 모두 포함하는 용어로 사용될 수 있으며, 예를 들면, n-부틸, 이소부틸, 또는 t-부틸일 수 있으나, 바람직하게는 n-부틸 또는 이소부틸일 수 있다.As used herein, the term “butyl” refers to an alkyl group having 4 carbon atoms, and may be used as a term including both straight and branched chains, and may be, for example, n-butyl, isobutyl, or t-butyl. But preferably n-butyl or isobutyl.
본 명세서에서 사용되는 용어 “옥틸” 및 “2-에틸헥실”은 탄소수가 8개인 알킬기로서, 2-에틸헥실의 약어로 옥틸이 혼용될 수 있고, 경우에 따라서는 직쇄 알킬기인 옥틸을 의미할 수 있으나, 분지쇄 알킬기인 2-에틸헥실을 의미하는 것으로 해석될 수 있다.As used herein, the terms “octyl” and “2-ethylhexyl” are alkyl groups having 8 carbon atoms, and may be used in combination with octyl as an abbreviation of 2-ethylhexyl, and in some cases, may refer to octyl which is a linear alkyl group. However, it can be interpreted to mean a branched alkyl group, 2-ethylhexyl.
가소제 조성물Plasticizer composition
본 발명의 일 실시예에 따르면 1 종의 사이클로헥세인 1,4-디에스테르계 물질이 포함된 가소제 조성물을 제공할 수 있다. 구체적으로, 상기 사이클로헥세인 1,4-디에스테르계 물질은 조성물 총 중량 기준으로 1 내지 99 중량%, 20 내지 99 중량%, 40 내지 99 중량%, 50 내지 95 중량% 또는 60 내지 90 중량% 등의 범위에서 선택된 함량이 적용될 수 있다.According to one embodiment of the present invention, it is possible to provide a plasticizer composition including one cyclohexane 1,4-diester-based material. Specifically, the cyclohexane 1,4-diester material is 1 to 99% by weight, 20 to 99% by weight, 40 to 99% by weight, 50 to 95% by weight or 60 to 90% by weight based on the total weight of the composition The content selected in the range of the like may be applied.
본 명세서에서 상기 사이클로헥세인 1,4-디에스테르계 물질은, 예컨대 R1과 R2가 동일한 경우 디알킬 사이클로헥세인-1,4-디에스테르로 명명될 수 있다.In the present specification, the cyclohexane 1,4-diester material may be named, for example, dialkyl cyclohexane-1,4-diester when R1 and R2 are the same.
상기 사이클로헥세인 1,4-디에스테르계 물질은 디이소노닐 사이클로헥세인-1,4-디에스테르(1,4-DINCH), 디이소데실 사이클로헥세인-1,4-디에스테르(1,4-DIDCH), 디(2-프로필헵틸) 사이클로헥세인-1,4-디에스테르(1,4-DPHCH)로 이루어진 군에서 선택된 것일 수 있다. The cyclohexane 1,4-diester-based material is diisononyl cyclohexane-1,4-diester (1,4-DINCH), diisodecyl cyclohexane-1,4-diester (1, 4-DIDCH), di (2-propylheptyl) cyclohexane-1,4-diester (1,4-DPHCH) may be selected.
상기와 같이, 디에스테르에 결합된 알킬기의 탄소수가 9 이상인 경우, 바람직하게는 9 또는 10인 경우에는 이행 특성과 가열 감량을 개선할 수 있고, 기계적 물성에 있어서 유리할 수 있다.As described above, when the number of carbon atoms of the alkyl group bonded to the diester is 9 or more, preferably 9 or 10, the transition characteristics and the heating loss can be improved, which may be advantageous in mechanical properties.
또한 본 발명의 일 실시예에 따르면, 상기 가소제 조성물은 시트레이트계 물질을 포함하고, 상기 시트레이트계 물질은 탄소수 4 내지 10의 혼성 알킬 치환 시트레이트계 물질 및 탄소수 4 내지 10의 비혼성 알킬 치환 시트레이트계 물질로 이루어진 군에서 선택된 1 이상의 화합물을 포함할 수 있다.In addition, according to an embodiment of the present invention, the plasticizer composition comprises a citrate-based material, the citrate-based material is a mixed alkyl substituted citrate-based material having 4 to 10 carbon atoms and a non-hybridized alkyl substitution having 4 to 10 carbon atoms It may include one or more compounds selected from the group consisting of citrate-based materials.
상기 탄소수 4 내지 10의 혼성 알킬 치환 시트레이트계 물질은, 예를 들면, 1,2-디부틸 3-(2-에틸헥실) 2-히드록시프로판-1,2,3-트리카르복실레이트, 1,3-디부틸 2-(2-에틸헥실) 2-히드록시프로판-1,2,3-트리카르복실레이트, 1-부틸 2,3-디(2-에틸헥실) 2-히드록시프로판-1,2,3-트리카르복실레이트, 또는 2-부틸 1,3-디(2-에틸헥실) 2-히드록시프로판-1,2,3-트리카르복실레이트와 같은 탄소수 4와 8인 알킬기의 조합 치환기를 갖는 시트레이트; 1,2-디펜틸 3-헵틸 2-히드록시프로판-1,2,3-트리카르복실레이트, 1,3-디펜틸 2-헵틸 2-히드록시프로판-1,2,3-트리카르복실레이트, 1-펜틸 2,3-디헵틸 2-히드록시프로판-1,2,3-트리카르복실레이트, 또는 2-부틸 1,3-디헵틸 2-히드록시프로판-1,2,3-트리카르복실레이트와 같은 탄소수 5와 7인 알킬기의 조합 치환기를 갖는 시트레이트 등이 있을 수 있고, 이 외에도 탄소수 4 내지 10 사이에서 선택되고, 탄소수가 서로 다른 두 알킬기의 조합 치환기를 갖는 시트레이트 등이 적용될 수 있으며, 상기 알킬기는 직쇄 또는 분지쇄일 수 있다.The mixed alkyl substituted citrate-based material having 4 to 10 carbon atoms may be, for example, 1,2-dibutyl 3- (2-ethylhexyl) 2-hydroxypropane-1,2,3-tricarboxylate, 1,3-dibutyl 2- (2-ethylhexyl) 2-hydroxypropane-1,2,3-tricarboxylate, 1-butyl 2,3-di (2-ethylhexyl) 2-hydroxypropane 4 and 8 carbon atoms, such as -1,2,3-tricarboxylate or 2-butyl 1,3-di (2-ethylhexyl) 2-hydroxypropane-1,2,3-tricarboxylate Citrate having a combination substituent of an alkyl group; 1,2-dipentyl 3-heptyl 2-hydroxypropane-1,2,3-tricarboxylate, 1,3-dipentyl 2-heptyl 2-hydroxypropane-1,2,3-tricarboxyl Rate, 1-pentyl 2,3-diheptyl 2-hydroxypropane-1,2,3-tricarboxylate, or 2-butyl 1,3-diheptyl 2-hydroxypropane-1,2,3- Citrate having a combination substituent of an alkyl group having 5 and 7 carbon atoms, such as tricarboxylate, and the like. In addition to this, a citrate having a combination substituent of two alkyl groups having 4 to 10 carbon atoms and having different carbon atoms may be selected. This may be applied, the alkyl group may be straight or branched chain.
상기 탄소수 4 내지 10의 비혼성 알킬 치환 시트레이트계 물질은, 상기탄소수 4 내지 10의 알킬기가 직쇄 또는 분지쇄일 수 있고, 예를 들면, 트리부틸 시트레이트(TBC), 트리펜틸 시트레이트(TPC), 트리헥실 시트레이트(THC), 트리헵틸 시트레이트(THPC), 트리(2-에틸헥실) 시트레이트(TOC), 트리노닐 시트레이트(TNC), 트리(2-프로필헵틸) 시트레이트(TPHC)등이 적용될 수 있으며, 상기 부틸기 내지 노닐기는 각각의 구조 이성질체, 예컨대 부틸기의 경우 이소부틸기, 2-에틸헥실기의 경우 옥틸기, 노닐기의 경우 이소노닐기, 2-프로필헵틸기의 경우 이소데실기 등도 모두 포함할 수 있다. In the non-hybrid alkyl substituted citrate-based material having 4 to 10 carbon atoms, the alkyl group having 4 to 10 carbon atoms may be linear or branched. For example, tributyl citrate (TBC) and tripentyl citrate (TPC). , Trihexyl citrate (THC), triheptyl citrate (THPC), tri (2-ethylhexyl) citrate (TOC), trinonyl citrate (TNC), tri (2-propylheptyl) citrate (TPHC) The butyl group to nonyl group may be applied to each of the structural isomers such as isobutyl group for butyl group, octyl group for 2-ethylhexyl group, isononyl group for nonyl group, and 2-propylheptyl group. In this case, all of isodecyl may be included.
이에 한정되는 것은 아니지만, 혼성 알킬 치환 시트레이트계 물질에 비하여, 탄소수 4 내지 10의 비혼성 알킬 치환 시트레이트계 물질이 바람직할 수 있고, 트리부틸시트레이트 및/또는 트리(2-에틸헥실)시트레이트가 조금 더 잦은 빈도로 사용될 수도 있다.Although not limited thereto, non-hybrid alkyl substituted citrate materials having 4 to 10 carbon atoms may be preferred, compared to hybrid alkyl substituted citrate materials, and tributyl citrate and / or tri (2-ethylhexyl) sheets. The rate may be used at a slightly more frequent frequency.
한편, 상기 혼성 또는 비혼성 알킬 치환 시트레이트 화합물과 같이 트리 알킬 시트레이트, 혹은 디n알킬-m알킬 시트레이트 등이 적용될 수 있는데, 시트레이트계 물질에 아세틸기가 존재하는 경우에는 가소제의 물성, 특히 가소화 효율의 저하에 따른 가공성, 겔링성이 악화될 우려가 있다.On the other hand, trialkyl citrate, or dinalkyl-malkyl citrate, such as the hybrid or non-hybrid alkyl substituted citrate compound, may be applied. When the acetyl group is present in the citrate-based material, the physical properties of the plasticizer, particularly There exists a possibility that workability and gelling property may deteriorate with the fall of plasticization efficiency.
다시 말해서, 시트레이트계 물질이 3 개의 에스테르기 외에 나머지 히드록시기의 수소 대신 아세틸기가 치환된 아세틸 시트레이트 화합물인 경우에는, 가소화 효율의 저하, 이를 극복하기 위한 가소제의 증량 투입 및 이를 통한 제품 가격 상승 등의 문제로 인하여, 시장성, 경제성 및 물성 등 다양한 측면에서의 저하가 문제될 수 있다.In other words, when the citrate-based material is an acetyl citrate compound in which an acetyl group is substituted for hydrogen of the remaining hydroxy group in addition to the three ester groups, the plasticization efficiency is lowered, the amount of plasticizer to be overcome is increased, and the product price is increased. Due to such problems, deterioration in various aspects such as marketability, economic feasibility and physical properties may be a problem.
여기서, 상기 가소제 조성물 내에 사이클로헥세인 1,4-디에스테르계 물질과 시트레이트계 물질은 중량비로는, 상한이 99:1, 95:5, 90:10, 85:15, 80:20, 70:30 또는 60:40일 수 있고, 하한이 1:99, 5:95, 10:90, 15:85, 20:80, 30:70 또는 40:60일 수 있다. 바람직하게는 90:10 내지 20:80, 더 바람직하게는 90:10 내지 30:70일 수 있다.Here, the cyclohexane 1,4-diester-based material and the citrate-based material in the plasticizer composition, the upper limit is 99: 1, 95: 5, 90:10, 85:15, 80:20, 70 by weight ratio : 30 or 60:40 and the lower limit may be 1:99, 5:95, 10:90, 15:85, 20:80, 30:70 or 40:60. Preferably 90:10 to 20:80, more preferably 90:10 to 30:70.
상기 가소제 조성물은 사이클로헥세인 1,4-디에스테르계 물질과 시트레이트계 물질을 포함하며, 또한 에폭시화 물질을 더 포함할 수 있다.The plasticizer composition may include a cyclohexane 1,4-diester-based material and a citrate-based material, and may further include an epoxidized material.
상기 사이클로헥세인 1,4-디에스테르계 물질과 시트레이트계 물질의 혼합 가소제 조성물의 경우, 다양한 물성들 중에서 상대적으로 내열 특성이 우수하지 못할 수 있고, 이러한 내열 특성은 상기 에폭시화 물질을 더 포함함으로써 보완이 가능하다.In the case of the mixed plasticizer composition of the cyclohexane 1,4-diester-based material and the citrate-based material, among the various physical properties, the heat resistance may not be excellent, and the heat resistance may further include the epoxidized material. This can be supplemented.
상기 내열 특성 보완을 위한 에폭시화 물질의 첨가량은 사이클로헥세인 1,4-디에스테르계 물질과 시트레이트계 물질의 혼합 중량 100 중량부 대비 1 내지 100 중량부일 수 있고, 바람직하게 5 내지 80 중량부일 수 있다. 상기 범위로 에폭시화 물질을 첨가하는 경우에는 내열 특성을 보완할 수 있으나, 너무 과량 첨가하여 100 중량부를 초과하는 경우에는 상대적으로 사이클로헥세인 1,4-디에스테르계 물질과 시트레이트계 물질이 적게 포함되어 기본적인 가소제의 물성이 저하될 우려가 있어, 함량의 조절이 필요하다.The addition amount of the epoxidized material for supplementing the heat resistance property may be 1 to 100 parts by weight based on 100 parts by weight of the mixed weight of cyclohexane 1,4-diester-based material and citrate-based material, preferably 5 to 80 parts by weight Can be. When the epoxidation material is added in the above range, the heat resistance property can be compensated for. However, when the amount of the epoxidized material is added in excess, the cyclohexane 1,4-diester material and the citrate material are relatively low. There is a fear that the physical properties of the basic plasticizer is included, it is necessary to adjust the content.
상기 에폭시화 물질은, 예컨대, 에폭시화 대두유(epoxidized soybean oil), 에폭시화 피마자유(epoxidized castor oil), 에폭시화 아마인유(epoxidized linseed oil), 에폭시화 팜유(epoxidized palm oil), 에폭시화 스테아레이트(epoxidized stearate), 에폭시화 올리에이트(epoxidized oleate), 에폭시화 톨리에이트(epoxidized tallate) 및 에폭시화 리놀리에이트(epoxidized linoleate) 또는 이들의 혼합물일 수 있다. 바람직하게는, 에폭시화 대두유(ESO), 에폭시화 아마인유(ELO) 및 이들의 에폭시화 에스테르 유도체가 적용될 수 있으나, 이에 제한되는 것은 아니다.The epoxidized material is, for example, epoxidized soybean oil, epoxidized castor oil, epoxidized linseed oil, epoxidized palm oil, epoxidized palm oil (epoxidized stearate), epoxidized oleate, epoxidized tallate and epoxidized linoleate or mixtures thereof. Preferably, epoxidized soybean oil (ESO), epoxidized linseed oil (ELO) and epoxidized ester derivatives thereof may be applied, but are not limited thereto.
가소제 조성물의 제조방법Method of Preparation of Plasticizer Composition
본 발명의 일 실시예에 따르면, 테레프탈레이트계 물질을 금속 촉매의 존재 하에 수소화 반응시켜 사이클로헥세인 1,4-디에스테르계 물질을 제조하는 단계; 및 상기 사이클로헥세인 1,4-디에스테르계 물질 및 시트레이트계 물질을 중량비가 99:1내지 1:99가 되도록 블렌딩하여 가소제 조성물을 얻는 단계;를 포함하는 가소제 조성물의 제조방법이 제공된다. According to one embodiment of the invention, the step of hydrogenating the terephthalate-based material in the presence of a metal catalyst to prepare a cyclohexane 1,4-diester-based material; And blending the cyclohexane 1,4-diester-based material and the citrate-based material in a weight ratio of 99: 1 to 1:99 to obtain a plasticizer composition.
상기 테레프탈레이트계 물질은, 2-에틸헥실 알코올, 이소노닐 알코올, 2-프로필헵틸 알코올, 부틸 알코올 및 이소부틸 알코올로 이루어진 군에서 선택된 1 이상의 알코올과, 테레프탈산이 반응하는 직접 에스테르화 반응;을 통하여 테레프탈레이트계 물질을 제조할 수 있다.The terephthalate-based material is a direct esterification reaction of at least one alcohol selected from the group consisting of 2-ethylhexyl alcohol, isononyl alcohol, 2-propylheptyl alcohol, butyl alcohol and isobutyl alcohol and terephthalic acid; Terephthalate-based materials can be prepared.
상기 직접 에스테르화 반응은, 알코올에 테레프탈산을 투입한 다음 촉매를 첨가하고 질소분위기 하에서 반응시키는 단계; 미반응 알코올을 제거하고, 미반응 산을 중화시키는 단계; 및 감압증류에 의해 탈수 및 여과하는 단계;로 준비될 수 있다. The direct esterification may include adding terephthalic acid to an alcohol, then adding a catalyst and reacting under a nitrogen atmosphere; Removing unreacted alcohol and neutralizing unreacted acid; And dehydration and filtration by distillation under reduced pressure.
상기 알코올은, 테레프탈산 100 몰% 기준으로 150 내지 500 몰%, 200 내지 400 몰%, 200 내지 350 몰%, 250 내지 400 몰%, 혹은 270 내지 330 몰% 범위 내로 사용될 수 있다. The alcohol may be used in the range of 150 to 500 mol%, 200 to 400 mol%, 200 to 350 mol%, 250 to 400 mol%, or 270 to 330 mol% based on 100 mol% of terephthalic acid.
한편, 상기 촉매는 일례로, 황산, 염산, 인산, 질산, 파라톨루엔술폰산, 메탄술폰산, 에탄술폰산, 프로판술폰산, 부탄술폰산, 알킬 황산 등의 산 촉매, 유산 알루미늄, 불화리튬, 염화칼륨, 염화세슘, 염화칼슘, 염화철, 인산알루미늄 등의 금속염, 헤테로폴리산 등의 금속 산화물, 천연/합성 제올라이트, 양이온 및 음이온 교환수지, 테트라알킬 티타네이트(tetra alkyl titanate) 및 그 폴리머 등의 유기금속 중에서 선택된 1종 이상일 수 있다. 구체적인 예로, 상기 촉매는 테트라알킬 티타네이트를 사용할 수 있다. On the other hand, the catalyst is, for example, acid catalysts such as sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, paratoluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, alkyl sulfuric acid, aluminum lactic acid, lithium fluoride, potassium chloride, cesium chloride, Metal salts such as calcium chloride, iron chloride, aluminum phosphate, metal oxides such as heteropolyacids, natural / synthetic zeolites, cation and anion exchange resins, tetraalkyl titanate and organic metals such as polymers thereof. . As a specific example, the catalyst may use tetraalkyl titanate.
촉매의 사용량은 종류에 따라 상이할 수 있으며, 일례로 균일 촉매의 경우에는 반응물 총 100 중량%에 대하여 0.01 내지 5 중량%, 0.01 내지 3 중량%, 1 내지 5 중량% 혹은 2 내지 4 중량% 범위 내, 그리고 불균일 촉매의 경우에는 반응물 총량의 5 내지 200 중량%, 5 내지 100 중량%, 20 내지 200 중량%, 혹은 20 내지 150 중량% 범위 내일 수 있다. The amount of the catalyst used may vary depending on the type, for example, in the case of a homogeneous catalyst, 0.01 to 5% by weight, 0.01 to 3% by weight, 1 to 5% by weight or 2 to 4% by weight based on 100% by weight of the total reactants. And, in the case of heterogeneous catalysts, it may be in the range of 5 to 200%, 5 to 100%, 20 to 200%, or 20 to 150% by weight of the total amount of reactants.
상기 직접 에스테르화 반응은 80℃ 내지 270℃의 온도 범위, 바람직하게는 150℃ 내지 250℃의 온도 범위에서 10 분 내지 10 시간, 바람직하게는 30 분 내지 8 시간, 더욱 바람직하게는 1 내지 6 시간에서 수행되는 것이 바람직하며, 알코올의 끓는점 등을 고려하여 적정한 상기 온도, 촉매 및 시간 범위에서 테레프탈레이트계 물질을 효과적으로 얻을 수 있다.The direct esterification reaction is 10 minutes to 10 hours, preferably 30 minutes to 8 hours, more preferably 1 to 6 hours in the temperature range of 80 ℃ to 270 ℃, preferably 150 ℃ to 250 ℃ It is preferably carried out in, it is possible to effectively obtain a terephthalate-based material in the appropriate temperature, catalyst and time range in consideration of the boiling point of alcohol and the like.
상기 수소화 반응 단계는 테레프탈레이트계 물질을 금속 촉매의 존재 하에서 수소화 반응시킴으로써, 테레프탈레이트계 물질을 사이클로헥세인 1,4-디에스테르계 물질로 변환하는 단계일 수 있다.The hydrogenation step may be a step of converting the terephthalate-based material into cyclohexane 1,4-diester-based material by hydrogenation of the terephthalate-based material in the presence of a metal catalyst.
상기 수소화 반응 단계는 금속 촉매의 존재하에, 수소를 첨가하여 테레프탈레이트계 물질들의 벤젠 고리의 방향성을 제거하는 반응으로서, 일종의 환원 반응일 수 있다.The hydrogenation step is a reaction for removing the aromaticity of the benzene ring of the terephthalate-based materials by adding hydrogen in the presence of a metal catalyst, may be a kind of reduction reaction.
상기 수소화 반응은 금속 촉매하에서 상기 테레프탈레이트계 물질과 수소를 반응시켜 사이클로헥세인 1,4-디에스테르계 물질을 합성하는 것으로, 그 반응조건은 벤젠에 치환되어 있는 카르보닐기에는 영향을 주지 않으면서 벤젠 고리만을 수소화시킬 수 있는 통상적인 반응조건을 모두 포함할 수 있다.The hydrogenation reaction is a reaction of the terephthalate-based material with hydrogen under a metal catalyst to synthesize a cyclohexane 1,4-diester-based material, the reaction conditions of the benzene without affecting the carbonyl group substituted in the benzene It may include all conventional reaction conditions capable of hydrogenating only the ring.
상기 수소화 반응은 에탄올 등과 같은 유기용매를 더 포함하여 실시될 수 있으나, 이에 제한되는 것은 아니다. 상기 금속 촉매로는 일반적으로 벤젠 고리를 수소화 하는데 사용되는 Rh/C 촉매, Pt 촉매, Pd 촉매 등을 사용할 수 있으나, 상기와 같은 수소화 반응이 가능한 것이면 이에 제한되지 않는다.The hydrogenation reaction may be performed by further including an organic solvent such as ethanol, but is not limited thereto. As the metal catalyst, a Rh / C catalyst, a Pt catalyst, a Pd catalyst, and the like, which are generally used to hydrogenate a benzene ring, may be used. However, the metal catalyst is not limited thereto.
예를 들면, 상기 수소화 반응에서 수소 첨가시의 압력은 약 3 내지 15 MPa일 수 있고, 반응은 약 2 내지 10시간 동안 수행될 수 있으며, 약 80℃ 내지 200℃의 온도로 수행될 수 있다.For example, the pressure during hydrogenation in the hydrogenation reaction may be about 3 to 15 MPa, the reaction may be carried out for about 2 to 10 hours, it may be carried out at a temperature of about 80 ℃ to 200 ℃.
상기 블렌딩 하는 단계는 상기 테레프탈레이트계 물질이 수소화 반응을 통해 변환된 사이클로헥세인 1,4-디에스테르계 물질과 시트레이트계 물질을 중량비로서, 1:99 내지 99:1의 비율로 블렌딩하여 상기 가소제 조성물을 제조할 수 있으며, 상기 사이클로헥세인 1,4-디에스테르계 물질은 단일 화합물인 것을 특징으로 한다. The blending may be performed by blending the cyclohexane 1,4-diester-based material and the citrate-based material in which the terephthalate-based material is converted through a hydrogenation reaction in a ratio of 1:99 to 99: 1 by weight. A plasticizer composition may be prepared, wherein the cyclohexane 1,4-diester material is characterized in that it is a single compound.
상기 시트레이트계 물질은 시트르산과 1 이상의 알킬 알코올이 반응하는 직접 에스테르화 반응 또는 트리알킬 시트레이트와 알킬 알코올이 반응하는 트랜스 에스테르화 반응으로 제조될 수 있으며, 직접 에스테르화 반응의 경우 전술한 사이클로헥세인 1,4-디에스테르계 물질에 적용되는 것과 동등하게 적용될 수 있으며, 트랜스 에스테르화 반응의 경우 하기에 예시하는 바와 같은 내용이 적용될 수 있다.The citrate-based material may be prepared by a direct esterification reaction of citric acid and one or more alkyl alcohols or a trans esterification reaction of trialkyl citrate and alkyl alcohols. It may be applied equivalently to that applied to the Sein 1,4-diester-based material, and in the case of the trans esterification reaction, the contents as illustrated below may be applied.
본 발명에서 사용되는 “트랜스 에스테르화 반응”은 하기 반응식 1과 같이 알코올과 에스테르가 반응하여 이하 반응식 1에서 나타나듯이 에스테르의 R”가 알코올의 R’와 서로 상호교환되는 반응을 의미한다.As used in the present invention, "trans esterification reaction" refers to a reaction in which an alcohol and an ester react with each other, as shown in Scheme 1 below, so that R of the ester is interchanged with R 'of an alcohol.
[반응식 1]Scheme 1
Figure PCTKR2017004117-appb-I000001
Figure PCTKR2017004117-appb-I000001
본 발명의 일 실시예에 따르면, 상기 트랜스-에스테르화 반응이 이루어지면 알코올의 알콕사이드가 에스테르계 화합물에 존재하는 두 개의 에스테르(RCOOR”)기의 탄소를 공격할 경우; 에스테르계 화합물에 존재하는 한 개의 에스테르(RCOOR”)기의 탄소를 공격할 경우; 반응이 이루어지지 않은 미반응인 경우;와 같이, 세 가지의 경우에 수에 의해서 3 종의 에스테르 조성물이 생성될 수 있다.According to an embodiment of the present invention, when the trans-esterification reaction is carried out when the alkoxide of the alcohol attacks the carbon of two ester (RCOOR ″) groups present in the ester compound; When attacking the carbon of one ester (RCOOR ”) group present in the ester compound; In the three cases, three kinds of ester compositions may be generated by water.
또한, 상기 트랜스-에스테르화 반응은 산-알코올간 에스테르화 반응과 비교하여 폐수 문제가 야기되지 않는 장점이 있으며, 무촉매하에서 진행될 수 있으므로, 산촉매 사용시의 문제점을 해결할 수 있다.In addition, the trans-esterification reaction has the advantage that does not cause a waste water problem compared to the acid-alcohol esterification reaction, and can proceed under a non-catalyst, it can solve the problem when using an acid catalyst.
예를 들어, 트리(2-에틸헥실) 시트레이트와 부틸 알코올은 상기 트랜스-에스테르화 반응에 의해, 트리(2-에틸헥실) 시트레이트, 디(2-에틸헥실) 부틸 시트레이트, 디부틸 (2-에틸헥실) 시트레이트 및 트리부틸 시트레이트의 혼합물이 생성될 수 있고, 상기 4 종의 시트레이트는 혼합물 총 중량에 대해 트리(2-에틸헥실) 시트레이트가 3.0 중량% 내지 70 중량%, 혼성 알킬을 갖는 2 종의 시트레이트가 0.5 중량% 내지 50 중량%, 그리고 트리부틸 시트레이트가 0.5 중량% 내지 85 중량%의 양으로 형성될 수 있으며, 구체적으로 10 중량% 내지 50 중량%, 0.5 중량% 내지 50 중량%, 및 35 중량% 내지 80 중량%의 양으로 형성될 수 있다. 상기 범위 내에서는 공정 효율이 높고 가공성 및 흡수속도가 우수한 시트레이트계 물질(혼합물)을 수득하는 효과가 있다.For example, tri (2-ethylhexyl) citrate and butyl alcohol can be prepared by tri- (2-ethylhexyl) citrate, di (2-ethylhexyl) butyl citrate, dibutyl ( A mixture of 2-ethylhexyl) citrate and tributyl citrate can be produced, wherein the four citrates have 3.0 to 70 weight percent tri (2-ethylhexyl) citrate relative to the total weight of the mixture, Two types of citrate having a mixed alkyl may be formed in an amount of 0.5 wt% to 50 wt%, and tributyl citrate in an amount of 0.5 wt% to 85 wt%, specifically 10 wt% to 50 wt%, 0.5 Weight percent to 50 weight percent, and 35 to 80 weight percent. Within this range, there is an effect of obtaining a citrate-based material (mixture) having high process efficiency and excellent processability and absorption rate.
또한, 상기 트랜스-에스테르화 반응에 의해 제조된 혼합물은 알코올의 첨가량에 따라 상기 혼합물의 조성 비율을 제어할 수 있다.In addition, the mixture prepared by the trans-esterification reaction can control the composition ratio of the mixture according to the amount of alcohol added.
상기 알코올의 첨가량은 시트레이트계 물질 100 중량부에 대해 0.1 내지 89.9 중량부, 구체적으로는 3 내지 50 중량부, 더욱 구체적으로는 5 내지 40 중량부일 수 있다.The addition amount of the alcohol may be 0.1 to 89.9 parts by weight, specifically 3 to 50 parts by weight, and more specifically 5 to 40 parts by weight based on 100 parts by weight of the citrate-based material.
상기 시트레이트는 알코올의 첨가량이 많을수록, 트랜스-에스테르화 반응에 참여하는 시트레이트의 몰분율(mole fraction)이 커질 것이므로, 이에 따라 상기 생성물에 있어서 상기 1 또는 2개의 에스테르기만 공격 받아 생성된 시트레이트와 3 개의 에스테르기를 공격 받은 시트레이트의 함량이 증가할 수 있다.The more the amount of alcohol added, the greater the mole fraction of the citrate participating in the trans-esterification reaction, and thus the citrate produced by attacking only one or two ester groups in the product. The content of citrate attacked by three ester groups may increase.
이에 상응하여 미반응으로 존재하는 시트레이트의 함량은 감소하는 경향을 보일 수 있다. Correspondingly, the content of unreacted citrate may tend to decrease.
본 발명의 일 실시예에 따르면, 반응물인 시트레이트와 알코올의 몰비는 일례로 1:0.005 내지 5.0, 1:0.05 내지 2.5, 혹은 1:0.1 내지 1.0이고, 이 범위 내에서 공정 효율이 높으며 가공성 개선 효과가 뛰어난 에스테르계 가소제 조성물을 수득하는 효과가 있다.According to one embodiment of the present invention, the molar ratio of reactant citrate and alcohol is, for example, 1: 0.005 to 5.0, 1: 0.05 to 2.5, or 1: 0.1 to 1.0, within this range, the process efficiency is high and the processability is improved. There is an effect of obtaining an ester plasticizer composition having excellent effects.
다만, 상기 3 종의 시트레이트의 혼합물의 조성 비율이 상기 범위에 제한되는 것은 아니며, 3 종의 시트레이트 중 어느 하나를 추가 투입하여 그 조성비를 변경할 수 있으며, 가능한 혼합 조성 비율은 전술한 바와 같다.However, the composition ratio of the mixture of the three citrate is not limited to the above range, the composition ratio can be changed by adding any one of the three citrate, the possible mixed composition ratio is as described above .
상기 트랜스 에스테르화 반응 단계로 제조된 에스테르계 조성물은 단일 공격 에스테르 화합물, 이중 공격 에스테르 화합물, 및 반응 잔류 에스테르 화합물 모두를 포함할 수 있으며, 상기 알코올의 첨가량에 따라 상기 에스테르계 조성물의 조성 비율을 제어할 수 있다.The ester composition prepared by the trans esterification step may include all of the single attack ester compound, the double attack ester compound, and the reaction residual ester compound, and control the composition ratio of the ester composition according to the amount of the alcohol added. can do.
상기 트랜스 에스테르화 반응은 120℃ 내지 190℃, 바람직하게는 135℃ 내지 180℃, 더욱 바람직하게는 141℃ 내지 179℃의 반응 온도 하에서 10 분 내지 10 시간, 바람직하게는 30 분 내지 8 시간, 더욱 바람직하게는 1 내지 6 시간에서 수행되는 것이 바람직하다. 상기 온도 및 시간 범위 내에서 원하는 조성비의 테레프탈레이트계 물질인 혼합물을 효과적으로 얻을 수 있다. 이때, 상기 반응 시간은 반응물을 승온 후 반응 온도에 도달한 시점부터 계산될 수 있다.The trans esterification reaction is carried out at a reaction temperature of 120 ° C to 190 ° C, preferably 135 ° C to 180 ° C, more preferably 141 ° C to 179 ° C, for 10 minutes to 10 hours, preferably 30 minutes to 8 hours, more Preferably it is carried out in 1 to 6 hours. It is possible to effectively obtain a mixture that is a terephthalate-based material of a desired composition ratio within the temperature and time range. In this case, the reaction time may be calculated from the time point at which the reaction temperature is reached after the reaction temperature is raised.
상기 트랜스 에스테르화 반응은 무촉매 하에서 진행될 수 있으나, 경우에 따라서는 산 촉매 또는 금속 촉매 하에서 실시될 수 있고, 이 경우 반응시간이 단축되는 효과가 있다.The trans esterification reaction may be performed under a non-catalyst, but in some cases, may be performed under an acid catalyst or a metal catalyst, in which case the reaction time may be shortened.
상기 산 촉매는 일례로 황산, 메탄설폰산 또는 p-톨루엔설폰산 등일 수 있고, 상기 금속 촉매는 일례로 유기금속 촉매, 금속 산화물 촉매, 금속염 촉매 또는 금속 자체일 수 있다.The acid catalyst may be, for example, sulfuric acid, methanesulfonic acid or p-toluenesulfonic acid, and the like, and the metal catalyst may be, for example, an organometallic catalyst, a metal oxide catalyst, a metal salt catalyst, or the metal itself.
상기 금속 성분은 일례로 주석, 티탄 및 지르코늄으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.The metal component may be any one selected from the group consisting of tin, titanium and zirconium, or a mixture of two or more thereof.
또한, 상기 트랜스-에스테르화 반응 후 미반응 알코올과 반응 부산물, 예를 들면 에스테르계 화합물을 증류시켜 제거하는 단계를 더 포함할 수 있다.In addition, the method may further include distilling off the unreacted alcohol and reaction by-products, for example, an ester compound after the trans-esterification reaction.
상기 증류는 일례로 상기 알코올과 반응 부산물의 비점 차이를 이용하여 따로 분리하는 2단계 증류일 수 있다. The distillation may be, for example, two-stage distillation separately using the boiling point difference of the alcohol and the reaction by-product.
또 다른 일례로, 상기 증류는 혼합증류일 수 있다. 이 경우 에스테르계 가소제 조성물을 원하는 조성비로 비교적 안정적으로 확보할 수 있는 효과가 있다. 상기 혼합증류는 부탄올과 반응 부산물을 동시에 증류하는 것을 의미한다.In another example, the distillation may be mixed distillation. In this case, there is an effect that the ester plasticizer composition can be relatively stable at a desired composition ratio. The mixed distillation means distilling butanol and reaction by-products simultaneously.
상기 블렌딩시 혼합되는 사이클로헥세인 1,4-디에스테르계 물질과 시트레이트계 물질의 함량, 종류, 혼합 비율에 관해서는 전술한 바 있으므로, 그 기재를 생략한다.Since the content, type, and mixing ratio of the cyclohexane 1,4-diester-based material and the citrate-based material mixed during the blending have been described above, the description thereof is omitted.
상기 블렌딩 하는 단계 이후에, 에폭시화 물질을 첨가하는 단계를 더 포함할 수 있다. 상기 에폭시화 물질을 더 첨가하는 경우의 함량, 에폭시화 물질의 종류에 관해서는 전술한 바 있으므로, 그 기재를 생략한다.After the blending, the method may further include adding an epoxidized material. Since the content in the case of adding the said epoxidation material further, and the kind of epoxidation material were mentioned above, the description is abbreviate | omitted.
본 발명의 다른 일 실시예에 따르면, 전술한 가소제 조성물 및 수지를 포함하는 수지 조성물이 제공된다.According to another embodiment of the present invention, there is provided a resin composition comprising the plasticizer composition and the resin described above.
상기 수지는 당 분야에 알려져 있는 수지를 사용할 수 있다. 예를 들면, 에틸렌 초산 비닐, 폴리에틸렌, 폴리케톤, 폴리프로필렌, 폴리염화비닐, 폴리 스타이렌, 폴리우레탄, 열가소성 엘라스토머 및 폴리유산 중에서 선택된 1종 이상의 혼합물 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. The resin may be a resin known in the art. For example, one or more mixtures selected from ethylene vinyl acetate, polyethylene, polyketone, polypropylene, polyvinyl chloride, polystyrene, polyurethane, thermoplastic elastomer, and polylactic acid may be used, but is not limited thereto.
상기 가소제 조성물은 상기 수지 100 중량부를 기준으로 5 내지 150 중량부로 포함될 수 있다.The plasticizer composition may be included in 5 to 150 parts by weight based on 100 parts by weight of the resin.
다만, 수지 조성물을 가공하는 방법에 따라서 상기 가소제의 함량이 변경될 수 있으며, 예컨대, 압출, 사출 또는 캘린더링 등의 용융 가공이 수행되는 수지의 경우에는 가소제가 수지 100 중량부 대비 바람직하게 5 내지 100 중량부, 5 내지 60 중량부, 또는 5 내지 50 중량부로 포함될 수 있다.However, the content of the plasticizer may be changed according to the method of processing the resin composition. For example, in the case of a resin in which melt processing such as extrusion, injection, or calendering is performed, the plasticizer is preferably 5 to 100 parts by weight of the resin. 100 parts by weight, 5 to 60 parts by weight, or 5 to 50 parts by weight.
또한, 스프레드 코팅, 스프레이 코팅 또는 딥 코팅 등의 플라스티졸 가공이 수행되는 수지의 경우에는 가소제가 30 내지 150 중량부, 40 내지 130 중량부, 60 내지 120 중량부로 포함될 수 있다.In addition, in the case of a resin in which plastisol processing such as spread coating, spray coating or dip coating is performed, a plasticizer may be included as 30 to 150 parts by weight, 40 to 130 parts by weight, and 60 to 120 parts by weight.
상기 수지 조성물은 충진제를 더 포함할 수 있다. 상기 충진제는 상기 수지 100 중량부를 기준으로 0 내지 300 중량부, 바람직하게는 50 내지 200 중량부, 더욱 바람직하게는 100 내지 200 중량부일 수 있다. The resin composition may further include a filler. The filler may be 0 to 300 parts by weight, preferably 50 to 200 parts by weight, more preferably 100 to 200 parts by weight based on 100 parts by weight of the resin.
상기 충진제는 당 분야에 알려져 있는 충진제를 사용할 수 있으며, 특별히 제한되지 않는다. 예를 들면, 실리카, 마그네슘 카보네이트, 칼슘 카보네이트, 경탄, 탈크, 수산화 마그네슘, 티타늄 디옥사이드, 마그네슘 옥사이드, 수산화 칼슘, 수산화 알루미늄, 알루미늄 실리케이트, 마그네슘 실리케이트 및 황산바륨 중에서 선택된 1종 이상의 혼합물일 수 있다. The filler may be a filler known in the art, it is not particularly limited. For example, it may be at least one mixture selected from silica, magnesium carbonate, calcium carbonate, hard coal, talc, magnesium hydroxide, titanium dioxide, magnesium oxide, calcium hydroxide, aluminum hydroxide, aluminum silicate, magnesium silicate and barium sulfate.
또한, 상기 수지 조성물은 필요에 따라 안정화제 등의 기타 첨가제를 더 포함할 수 있다. 상기 안정화제 등의 기타 첨가제는 일례로 각각 상기 수지 100 중량부를 기준으로 0 내지 20 중량부, 바람직하게는 1 내지 15 중량부일 수 있다.In addition, the resin composition may further include other additives such as stabilizers, if necessary. Other additives such as the stabilizer may be, for example, 0 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the resin.
상기 안정화제는 예를 들어 칼슘-아연의 복합 스테아린산 염 등의 칼슘-아연계(Ca-Zn계) 안정화제를 사용할 수 있으나, 이에 특별히 제한되는 것은 아니다.The stabilizer may be, for example, a calcium-zinc-based (Ca-Zn-based) stabilizer such as calcium stearate salts, but is not particularly limited thereto.
상기 수지 조성물은 용융 가공 및 플라스티졸 가공에 사용되는 수지에 모두 적용될 수 있고, 예를 들면 압출 또는 사출 등의 컴파운드 업종, 캘린더링 업종 및 플라스디졸 업종에 적용할 수 있으며, 이와 같은 가공으로 제조되는 제품으로는, 예컨대, 각종 전선, 바닥재, 자동차 내장재, 필름, 시트, 벽지 및 완구 등이 있을 수 있다.The resin composition may be applied to all resins used for melt processing and plastisol processing, and may be applied to compound industries such as extrusion or injection, calendering and plastisol, for example. Examples of the product may include various electric wires, flooring materials, automotive interior materials, films, sheets, wallpaper, toys, and the like.
실시예Example
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
제조예Production Example 1:  One: 디이소노닐Diisononyl 사이클로헥세인Cyclohexane -1,4--1,4- 디에스테르의Diester 제조 Produce
1) One) 에스테르화Esterification 반응 reaction
냉각기, 콘덴서, 디캔터, 환류 펌프, 온도 컨트롤러, 교반기 등을 갖춘 4구의 3 리터 반응기에 정제 테레프탈산(purified terephthalic acid; PTA) 498.0g, 이소노난올(INA) 1,300g (PTA:INA의 몰비 (1.0): (3.0)), 촉매로써 티타늄계 촉매 (TIPT, tetra isopropyl titanate)를 1.54g(PTA 100 중량부에 대해 0.31 중량부)을 투입하고, 약 170℃까지 서서히 승온시켰다. 약 170℃ 근처에서 생성수 발생이 시작되었으며, 반응 온도 약 220℃, 상압 조건에서 질소 가스를 계속 투입하면서 약 4.5 시간 동안 에스테르 반응을 수행하고 산가가 0.01에 도달하면 반응을 종결한다.498.0 g of purified terephthalic acid (PTA), 1,300 g of isononanol (INA) (molar ratio of PTA: INA (1.0) ): (3.0)), 1.54 g (0.31 parts by weight of 100 parts by weight of PTA) of a titanium catalyst (TIPT, tetra isopropyl titanate) was added as a catalyst, and the temperature was gradually raised to about 170 ° C. The production of water was started at about 170 ° C., and the reaction was carried out for about 4.5 hours while nitrogen gas was continuously added at a reaction temperature of about 220 ° C. and atmospheric pressure. The reaction was terminated when the acid value reached 0.01.
반응 완료 후, 미반응 원료를 제거하기 위해서 감압하에서 증류추출을 0.5 내지 4 시간 동안 실시한다. 일정 함량 수준 이하로 미반응 원료를 제거하기 위해 스팀을 사용하여 감압하에서 0.5 내지 3 시간 동안 스팀추출을 시행하고, 반응액 온도를 약 90℃로 냉각하여, 알카리 용액을 이용하여 중화 처리를 실시한다. 추가로, 수세를 실시할 수도 있으며, 이후 반응액을 탈수하여 수분을 제거한다. 수분이 제거된 반응액에 여재를 투입하여 일정시간 교반한 다음, 여과하여 최종적으로 디이소노닐테레프탈레이트 1,243g (수율: 99.0 %)을 얻었다.After the reaction is completed, distillation is performed under reduced pressure for 0.5 to 4 hours to remove unreacted raw materials. In order to remove unreacted raw materials below a certain content level, steam extraction is performed under reduced pressure using steam for 0.5 to 3 hours, the reaction solution temperature is cooled to about 90 ° C., and neutralization is performed using an alkaline solution. . In addition, washing with water may be performed, and then the reaction solution is dehydrated to remove moisture. The filtrate was added to the reaction solution from which the water was removed, the resultant was stirred for a while, and then filtered to obtain 1,243 g (yield: 99.0%) of diisononyl terephthalate.
2) 수소화 반응2) hydrogenation reaction
1.5L 고압반응기에 원료로 상기 에스테르화 반응으로 생성된 조성물 1000g 및 루테늄 촉매(N.E chemcat) 20g을 충진하고, 압력 8 MPa로 수소를 첨가하여, 3시간 동안 150℃의 온도에서 수소화 반응을 실시하여, 반응을 완료하였다. 반응 완료 후 촉매를 여과하고, 통상의 정제공정을 거쳐 99%의 수율로 수소화된 혼합 조성물을 제조하였다.In a 1.5L high pressure reactor, 1000 g of the composition produced by the esterification reaction and 20 g of ruthenium catalyst (NE chemcat) were charged with raw materials, hydrogen was added at a pressure of 8 MPa, and hydrogenation was performed at a temperature of 150 ° C. for 3 hours. , Reaction was completed. After the reaction was completed, the catalyst was filtered, and a mixture composition hydrogenated in a yield of 99% was prepared through a conventional purification process.
제조예Production Example 2: 디(2-프로필헵틸) 사이클로헥세인-1,4-디에스테르의 제조 2: Preparation of di (2-propylheptyl) cyclohexane-1,4-diester
상기 제조예 1에서 에스테르화 반응시 이소노닐 알코올을 사용하는 대신 2-프로필헵틸 알코올을 사용하여, 제조예 1과 동일한 방법으로 에스테르화 및 수소화 반응을 수행하여 수소화된 혼합 조성물을 얻었다.Instead of using isononyl alcohol in esterification in Preparation Example 1, 2-propylheptyl alcohol was used to perform esterification and hydrogenation in the same manner as Preparation Example 1 to obtain a hydrogenated mixed composition.
제조예Production Example 3: TBC의 제조 3: manufacture of TBC
반응 원료로서 시트릭산 384 g과 부탄올 580 g을 사용하여, 최종적으로 트리부틸시트레이트(tributyl citrate) 706 g(수율: 98%)을 얻었다.384 g of citric acid and 580 g of butanol were used as reaction raw materials, and finally, 706 g (yield: 98%) of tributyl citrate were obtained.
제조예Production Example 4:  4: TOC의Of TOC 제조 Produce
반응 원료로서 시트릭산 384 g과 2-에틸헥산올 1014 g을 사용하여, 최종적으로 트리-2-에틸헥실시트레이트(tri-2-ethylhexyl citrate) 1,029 g(수율: 98%)을 얻었다.Finally, 1,029 g (yield: 98%) of tri-2-ethylhexyl citrate were finally obtained using 384 g of citric acid and 1014 g of 2-ethylhexanol as reaction raw materials.
제조예Production Example 5:  5: TiNC의TiNC 제조 Produce
반응 원료로서 시트릭산 384 g과 이소노난올 1,123 g을 사용하여, 최종적으로 트리이소노닐시트레이트(triisobutyl citrate) 1111 g(수율: 98%)을 얻었다.As a reaction raw material, 384 g of citric acid and 1,123 g of isononanol were used to finally obtain 1111 g (yield: 98%) of triisobutyl citrate.
제조예Production Example 6:  6: TPHC의TPHC 제조 Produce
반응 원료로서 시트릭산 384 g과 2-프로필헵탄올 1,235g을 사용하여, 최종적으로 트리(2-프로필헵틸)시트레이트(tri(2-propylheptyl citrate) 1,200g(수율: 98%)을 얻었다.384 g of citric acid and 1,235 g of 2-propylheptanol were used as reaction raw materials, and finally 1,200 g of tri (2-propylheptyl citrate) (yield: 98%) was obtained.
실시예Example 1 내지 8 및  1 to 8 and 비교예Comparative example 1 내지 10 1 to 10
실시예 및 비교예의 구성은 다음의 표 1과 같이 하였다.The structure of the Example and the comparative example was carried out as Table 1 below.
구분division 수소화된 혼합 조성물Hydrogenated Mixed Composition 시트레이트계 물질Citrate 혼합 비율Mixing ratio
실시예 1Example 1 1,4-DINCH1,4-DINCH TBCTBC 7:37: 3
실시예 2Example 2 1,4-DINCH1,4-DINCH TBCTBC 3:73: 7
실시예 3Example 3 1,4-DINCH1,4-DINCH TOCTOC 8:28: 2
실시예 4Example 4 1,4-DINCH1,4-DINCH TOCTOC 2:82: 8
실시예 5Example 5 1,4-DPHCH1,4-DPHCH TINCTINC 6:46: 4
실시예 6Example 6 1,4-DPHCH1,4-DPHCH TPHCTPHC 6:46: 4
실시예 7Example 7 1,4-DPHCH1,4-DPHCH TBCTBC 5:55: 5
실시예 8Example 8 1,4-DPHCH1,4-DPHCH TOCTOC 5:55: 5
비교예 1Comparative Example 1 1,4-DEHCH1,4-DEHCH TOCTOC 5:55: 5
비교예 2Comparative Example 2 1,4-DHpCH1,4-DHpCH TBCTBC 5:55: 5
비교예 3Comparative Example 3 1,4-DBCH1,4-DBCH TOCTOC 5:55: 5
비교예 4Comparative Example 4 1,4-DBenCH1,4-DBenCH TOCTOC 5:55: 5
비교예 5Comparative Example 5 1,4-DCyHCH1,4-DCyHCH TBCTBC 5:55: 5
비교예 6Comparative Example 6 1,2-DEHCH1,2-DEHCH TOCTOC 5:55: 5
비교예 7Comparative Example 7 1,2-DINCH1,2-DINCH TBCTBC 5:55: 5
비교예 8Comparative Example 8 1,2-DPHCH1,2-DPHCH TBCTBC 5:55: 5
비교예 9Comparative Example 9 1,4-DPHCH1,4-DPHCH -- --
비교예 10Comparative Example 10 -- TOCTOC --
실시예Example 9 내지 11 9 to 11
에폭시화 물질을 이용한 내열성 개선을 확인하기 위하여 실시예 9 내지 11을 아래 표 2와 같이 구성하였다.In order to confirm the heat resistance improvement using the epoxidized material, Examples 9 to 11 were configured as shown in Table 2 below.
구분division 가소제 조성물Plasticizer composition 에폭시화 물질Epoxidized materials 혼합 비율Mixing ratio
실시예 9Example 9 실시예 1Example 1 ESOESO 7:37: 3
실시예 10Example 10 실시예 1Example 1 ESOESO 5:55: 5
실시예 11Example 11 실시예 1Example 1 ESOESO 4:64: 6
실험예Experimental Example 1: 물성 평가 1: Physical property evaluation
상기 표 1 및 2에 기재된 실시예 및 비교예의 가소제 조성물을 이용하여 실험용 시편을 제작하였다. Experimental specimens were prepared using the plasticizer compositions of Examples and Comparative Examples described in Tables 1 and 2.
상기 시편 제작은 ASTM D638을 참조하여, PVC(LS100S) 100 중량부에 상기 실시예 1 내지 11 및 비교예 1 내지 5의 가소제 조성물 40 중량부, 안정제(BZ-153T) 3 중량부를 3L 슈퍼 믹서(super mixer)로 98 및 700 rpm 하에서 믹싱 후, 롤 밀로 160℃에서 4 분간 작업하여 5 mm 시트를 만들고, 180℃에서 저압에서 2.5 분, 고압에서 2분 동안 프레스 작업 후, 1T 및 3T 시트를 만들어 시편을 제작하였다. 각 시편을 사용하여 아래의 시험 항목대로 물성을 평가하여 그 결과를 하기 표 3 및 4에 정리하였다.The specimen is prepared by referring to ASTM D638, 40 parts by weight of the plasticizer composition of Examples 1 to 11 and Comparative Examples 1 to 5, 3 parts by weight of stabilizer (BZ-153T) in 100 parts by weight of PVC (LS100S) 3L super mixer ( after mixing at 98 and 700 rpm in a super mixer, and then working with a roll mill for 4 minutes at 160 ° C. to produce 5 mm sheets, press work at 180 ° C. for 2.5 minutes at low pressure and 2 minutes at high pressure, and then make 1T and 3T sheets. Specimen was produced. Each specimen was used to evaluate physical properties according to the test items below, and the results are summarized in Tables 3 and 4 below.
<시험 항목><Test item>
경도(hardness) 측정Hardness Measurement
ASTM D2240을 이용하여, 25℃에서의 쇼어(shore "A")경도, 3T 및 10s 조건에서 측정하였다.Using ASTM D2240, measurements were taken at 25 ° C. shore (A) hardness, 3T and 10s conditions.
인장강도(tensile strength) 측정Tensile strength measurement
ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min (1T)으로 당긴 후, 시편이 절단되는 지점을 측정하였다. 인장강도는 다음과 같이 계산하였다:By the ASTM D638 method, the cross head speed was pulled to 200 mm / min (1T) using a test instrument, UTM (manufacturer; Instron, model name; 4466), and the point where the specimen was cut was measured. . Tensile strength was calculated as follows:
인장 강도(kgf/㎟) = 로드 (load)값(kgf) / 두께(㎜) × 폭(㎜)Tensile Strength (kgf / mm2) = Load Value (kgf) / Thickness (mm) × Width (mm)
신율Elongation (elongation rate) 측정(elongation rate) measurement
ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정한 후, 신율을 다음과 같이 계산하였다:By using the ASTM D638 method, the crosshead speed was pulled to 200 mm / min (1T) using the U.T.M, and then measured at the point where the specimen was cut, the elongation was calculated as follows:
신율 (%) = [신장 후 길이 / 초기 길이] × 100으로 계산하였다.Elongation (%) = [length after extension / initial length] x 100 was calculated.
이행 손실(migration loss) 측정Migration loss measurement
KSM-3156에 따라 두께 2 mm 이상의 시편을 얻었고, 시편 양면에 PS Plate를 붙인 후 1 kgf/cm2 의 하중을 가하였다. 시편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시켰다. 그런 후 시험편의 양면에 부착된 PS를 제거한 후 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 아래와 같은 식에 의하여 계산하였다.Specimens with a thickness of 2 mm or more were obtained according to KSM-3156. A PS plate was attached to both sides of the specimen and a load of 1 kgf / cm 2 was applied. The specimen was left in a hot air circulation oven (80 ° C.) for 72 hours and then taken out and cooled at room temperature for 4 hours. Then, after removing the PS attached to both sides of the test piece, the weight before and after leaving in the oven was measured and the transfer loss was calculated by the following equation.
이행손실량 (%) = [(상온에서의 시편의 초기 중량 - 오븐 방치 후 시편의 중량) / 상온에서의 시편의 초기 중량] × 100 Transfer loss (%) = [(Initial weight of specimen at room temperature-weight of specimen after leaving the oven) / Initial weight of specimen at room temperature] × 100
가열 감량(volatile loss) 측정Measurement of volatile loss
제작된 시편을 80℃에서 72 시간 동안 작업한 후, 시편의 무게를 측정하였다. After working the prepared specimen at 80 ℃ for 72 hours, the weight of the specimen was measured.
가열 감량 (%) = [(초기 시편 무게 - 작업 후 시편 무게) / 초기 시편 무게] × 100으로 계산하였다.Heating loss (%) = [(initial specimen weight-specimen weight after operation) / initial specimen weight] x 100.
스트레스 테스트Stress testing
스트레스 테스트는 상기 시편을 구부린 상태로 상온에서 일정 시간 동안 방치한 후, 이행 정도(배어나오는 정도)를 관찰하여, 그 정도를 수치로 표현하였으며, 수치는 0에 가까울수록 우수하고 3에 가까울수록 열악한 특성임을 나타낸다.In the stress test, the specimen was bent at room temperature for a period of time, and then observed the degree of transition (the degree of bleeding), and the degree was expressed as a numerical value, the closer to 0, the better and the closer to 3, the worse. It is a characteristic.
열 안정성 테스트Thermal stability test
Roll-mill 작업을 통해 준비된 0.5T의 시편을 Mathis Oven을 이용하여 220℃ 온도에서 10mm/25초의 속도로 이동하면서 고온접촉에 대한 시편의 열안정성을 테스트하였다.The thermal stability of the specimen against high temperature contact was tested by moving 0.5T specimen prepared by roll-mill operation using Mathis Oven at a speed of 10mm / 25sec at 220 ℃.
구분division 경도(Shore "A")Shore "A" 인장강도(kg/cm2)Tensile Strength (kg / cm 2 ) 신율(%)% Elongation 이행손실(%)Performance loss (%) 가열감량(%)Heating loss (%) 스트레스테스트Stress test
실시예 1Example 1 82.582.5 192.1192.1 337.5337.5 2.582.58 2.222.22 0.50.5
실시예 2Example 2 77.577.5 174.6174.6 304.6304.6 3.563.56 3.403.40 00
실시예 3Example 3 84.084.0 198.5198.5 320.1320.1 2.562.56 1.881.88 00
실시예 4Example 4 85.585.5 208.7208.7 314.2314.2 1.211.21 1.201.20 0.50.5
실시예 5Example 5 85.585.5 220.5220.5 320.4320.4 1.681.68 1.311.31 0.50.5
실시예 6Example 6 86.086.0 224.7224.7 318.5318.5 1.561.56 1.111.11 0.50.5
실시예 7Example 7 80.080.0 198.6198.6 325.6325.6 2.542.54 2.432.43 00
실시예 8Example 8 85.085.0 211.1211.1 308.4308.4 2.862.86 1.771.77 0.50.5
비교예 1Comparative Example 1 84.084.0 185.3185.3 287.4287.4 3.573.57 2.482.48 2.02.0
비교예 2Comparative Example 2 78.578.5 168.4168.4 267.1267.1 4.884.88 4.504.50 1.51.5
비교예 3Comparative Example 3 82.082.0 170.5170.5 271.3271.3 5.665.66 6.586.58 2.02.0
비교예 4Comparative Example 4 87.087.0 200.7200.7 295.4295.4 3.563.56 1.501.50 3.03.0
비교예 5Comparative Example 5 83.583.5 178.5178.5 288.0288.0 3.603.60 3.203.20 1.51.5
비교예 6Comparative Example 6 83.083.0 187.0187.0 290.3290.3 4.114.11 3.873.87 0.50.5
비교예 7Comparative Example 7 81.081.0 174.5174.5 268.4268.4 5.245.24 5.795.79 0.50.5
비교예 8Comparative Example 8 83.583.5 180.2180.2 288.0288.0 5.605.60 5.815.81 1.01.0
비교예 9Comparative Example 9 85.085.0 165.5165.5 274.3274.3 3.603.60 3.473.47 2.02.0
비교예 10Comparative Example 10 87.587.5 172.3172.3 290.2290.2 3.103.10 2.582.58 2.52.5
구분division 경도(Shore "A")Shore "A" 인장강도(kg/cm2)Tensile Strength (kg / cm 2 ) 신율(%)% Elongation 이행손실(%)Performance loss (%) 가열감량(%)Heating loss (%) 스트레스테스트Stress test
실시예 9Example 9 82.582.5 214.5214.5 348.0348.0 2.202.20 1.761.76 00
실시예 10Example 10 83.083.0 228.4228.4 345.8345.8 1.621.62 1.221.22 00
실시예 11Example 11 84.584.5 208.7208.7 314.2314.2 1.221.22 1.011.01 1.51.5
상기 표 3을 참조하면, 사이클로헥세인 1,4-디에스테르계 물질의 탄소수가 9 미만인 비교예 1 내지 5를 보면, 동일 시트레이트계 물질을 첨가한 것과 비교하였을 때, 인장강도와 신율과 같은 기계적 물성은 물론 이행손실과 가열감량 특성이 매우 열악하다는 점을 확인할 수 있다. 또한, 대체적으로 스트레스에 대한 내성이 약하여 수지 내의 가소제가 쉽게 삼출된다는 것을 확인할 수 있다.Referring to Table 3, in Comparative Examples 1 to 5 in which the carbon number of the cyclohexane 1,4-diester-based material is less than 9, the tensile strength and elongation are the same as those in which the same citrate-based material is added. It can be seen that the mechanical properties as well as the transfer loss and heat loss characteristics are very poor. In addition, it can be confirmed that the plasticizer in the resin is easily exuded because the resistance to stress is generally weak.
또한, 1,4 위치에 디에스테르기가 결합된 것이 아니라, 1,2 위치에 디에스테르기가 결합된 물질을 사용하는 경우에는 탄소수에 따른 효과 보다도 더 확연하게 인장강도 및 신율과 이행손실 및 가열감량 측면에서 물성 수준이 열악하다는 점을 알 수 있다. In addition, in the case where the diester group is bonded to the 1,2 positions instead of the 1,4 position, the tensile strength, elongation, transfer loss, and heating loss are more obvious than the effects of carbon number. It can be seen that the physical property level is poor.
이를 통해서, 기계적 물성(인장강도와 신율), 가소제의 총량과 관련된 물성(이행 손실 및 가열 감량)의 모든 측면에서, 만족할 만한 물성을 갖는 수지를 제조하기 위해서는, 사이클로헥세인 1,4-디에스테르계 물질을 탄소수가 9 이상인 알킬기를 적용하여 시트레이트계 물질과 혼합하는 것이 바람직하다는 것을 확인하였다.Through this, cyclohexane 1,4-diester is prepared in order to produce a resin having satisfactory physical properties in all aspects of mechanical properties (tensile strength and elongation) and physical properties related to the total amount of plasticizer (transition loss and heating loss). It was confirmed that it is preferable to mix the system material with the citrate material by applying an alkyl group having 9 or more carbon atoms.
또한, 상기 표 4를 참조하면, 상기 실시예 9 내지 11은 실시예 1에 각각 에폭시화 대두유를 7:3, 5:5 및 4:6의 비율로 각각 첨가한 것으로서, 에폭시화 물질을 첨가할수록 가열 감량과 이행 손실이 우수해짐을 확인할 수 있으며, 인장강도, 신율 등의 기계적 물성까지도 우수한 수준으로 확보할 수 있다는 점을 확인할 수 있다. In addition, referring to Table 4, Examples 9 to 11 are each added to the epoxidized soybean oil in Example 1 in the ratio of 7: 3, 5: 5, and 4: 6, respectively, It can be confirmed that heating loss and transition loss are excellent, and mechanical properties such as tensile strength and elongation can be obtained at an excellent level.
다만, 너무 과량 사용하게 되는 경우에는 실시예 11에서와 같이, 신율이나 인장강도와 같은 기계적인 물성이 급격하게 저하될 수 있으며, 스트레스에 대한 내성까지 열악해질 우려가 있으므로, 가급적 사이클로헥산 1,4-디에스테르계 물질 및 시트레이트계 물질의 혼합비 100 중량부 대비 에폭시화 물질은 100 중량부 이하의 양으로 포함하는 것이 바람직하다.However, when excessively used, mechanical properties such as elongation and tensile strength may be drastically lowered as in Example 11, and the resistance to stress may be deteriorated. Thus, cyclohexane 1,4 is preferred. -The epoxidation material is preferably contained in an amount of 100 parts by weight or less relative to 100 parts by weight of the mixture of the diester material and the citrate material.
나아가, 도 1을 참조하여 보면, 에폭시화 물질을 첨가하지 않은 실시예 1 및 5의 경우에는 시편이 연소되어 흑색에 가까울 정도로 그을림이 생김을 확인할 수 있지만, 실시예 9의 경우에는 변색이 거의 되지 않았음을 육안으로도 확인할 수 있으며, 이에 따라 에폭시화 물질의 첨가를 통하여 열안정성이 개선될 수 있음을 알 수 있다.Further, referring to FIG. 1, in Examples 1 and 5 without adding an epoxidation material, it was confirmed that the specimen was burned and burned to a degree close to black, but in Example 9, discoloration was hardly achieved. It can be seen that the naked eye, and accordingly it can be seen that the thermal stability can be improved through the addition of the epoxidized material.
즉, 에폭시화 물질을 보조안정제의 역할을 하는 것이 아니라 10 중량부 이상으로 ‘가소제’의 역할을 할 수 있도록 혼합하는 경우에는 모든 물성에서 개선이 있다는 점을 확인할 수 있다.In other words, when the epoxidized material is mixed so as to act as a 'plasticizer' to more than 10 parts by weight, rather than a secondary stabilizer, it can be seen that there are improvements in all physical properties.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (11)

1 종의 사이클로헥세인 1,4-디에스테르계 물질; 및 시트레이트계 물질;을 포함하고,One cyclohexane 1,4-diester material; And citrate-based materials;
상기 사이클로헥세인 1,4-디에스테르계 물질 및 시트레이트계 물질의 중량비는 99:1 내지 1:99 인 것인 가소제 조성물.The plasticizer composition of the cyclohexane 1,4-diester-based material and the citrate-based material is 99: 1 to 1:99.
제1항에 있어서, The method of claim 1,
상기 사이클로헥세인 1,4-디에스테르계 물질 및 시트레이트계 물질의 중량비는 95:5 내지 50:50인 것인 가소제 조성물.The plasticizer composition of the cyclohexane 1,4-diester-based material and the citrate-based material is 95: 5 to 50:50.
제2항에 있어서, The method of claim 2,
상기 사이클로헥세인 1,4-디에스테르계 물질 및 시트레이트계 물질의 중량비는 95:5 내지 60:40인 것인 가소제 조성물.The plasticizer composition of the cyclohexane 1,4-diester-based material and the citrate-based material is 95: 5 to 60:40.
제1항에 있어서,The method of claim 1,
상기 사이클로헥세인 1,4-디에스테르계 물질은 디이소노닐 사이클로헥세인-1,4-디에스테르(1,4-DINCH), 디이소데실 사이클로헥세인-1,4-디에스테르(1,4-DIDCH), 디(2-프로필헵틸) 사이클로헥세인-1,4-디에스테르(1,4-DPHCH)로 이루어진 군에서 선택된 2 이상이 혼합된 혼합물인 것인 가소제 조성물.The cyclohexane 1,4-diester-based material is diisononyl cyclohexane-1,4-diester (1,4-DINCH), diisodecyl cyclohexane-1,4-diester (1, Plasticizer composition is a mixture of two or more selected from the group consisting of 4-DIDCH), di (2-propylheptyl) cyclohexane-1,4-diester (1,4-DPHCH).
제1항에 있어서,The method of claim 1,
상기 시트레이트계 물질은 탄소수 4 내지 10의 혼성 알킬 치환 시트레이트계 물질 및 탄소수 4 내지 10의 비혼성 알킬 치환 시트레이트계 물질로 이루어진 군에서 선택된 어느 하나를 포함하는 것인 가소제 조성물. The citrate-based material is a plasticizer composition comprising any one selected from the group consisting of a 4 to 10 carbon-based alkyl substituted citrate-based material and a 4 to 10 carbon-based non-hybrid alkyl substituted citrate-based material.
제1항에 있어서,The method of claim 1,
상기 시트레이트계 물질은 탄소수 4 내지 10의 비혼성 알킬 치환 시트레이트계 물질이고, The citrate-based material is a non-hybrid alkyl substituted citrate-based material having 4 to 10 carbon atoms,
상기 시트레이트계 물질의 탄소수 4 내지 10의 알킬기는 직쇄 또는 분지쇄인 것인 가소제 조성물. Plasticizer composition of the alkyl group having 4 to 10 carbon atoms of the citrate-based material is a straight chain or branched chain.
제1항에 있어서,The method of claim 1,
에폭시화 물질을 더 포함하는 것인 가소제 조성물.A plasticizer composition further comprising an epoxidation material.
제7항에 있어서,The method of claim 7, wherein
상기 에폭시화 물질은 사이클로헥세인 1,4-디에스테르계 물질 및 시트레이트계 물질의 혼합 중량 100 중량부 대비 1 내지 100 중량부를 더 포함하는 것인 가소제 조성물.The epoxidation material is a plasticizer composition further comprises 1 to 100 parts by weight based on 100 parts by weight of the mixed weight of cyclohexane 1,4-diester-based material and citrate-based material.
제7항에 있어서,The method of claim 7, wherein
상기 에폭시화 물질은 에폭시화 대두유(epoxidized soybean oil), 에폭시화 피마자유(epoxidized castor oil), 에폭시화 아마인유(epoxidized linseed oil), 에폭시화 팜유(epoxidized palm oil), 에폭시화 스테아레이트(epoxidized stearate), 에폭시화 올리에이트(epoxidized oleate), 에폭시화 톨리에이트(epoxidized tallate) 및 에폭시화 리놀리에이트(epoxidized linoleate)로 이루어진 군에서 선택된 1 이상을 포함하는 것인 가소제 조성물.The epoxidized material is epoxidized soybean oil, epoxidized castor oil, epoxidized linseed oil, epoxidized palm oil, epoxidized stearate Plasticizer composition comprising one or more selected from the group consisting of epoxidized oleate, epoxidized tallate and epoxidized linoleate.
수지 100 중량부; 및 제1항의 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물.100 parts by weight of resin; And 5 to 150 parts by weight of the plasticizer composition of claim 1.
제10항에 있어서, The method of claim 10,
상기 수지는 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리케톤, 폴리염화비닐, 폴리스타이렌, 폴리우레탄 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1 종 이상인 것인 수지 조성물.The resin composition is one or more selected from the group consisting of ethylene vinyl acetate, polyethylene, polypropylene, polyketone, polyvinyl chloride, polystyrene, polyurethane, and thermoplastic elastomer.
PCT/KR2017/004117 2016-04-22 2017-04-17 Plasticizer composition, and resin composition comprising same WO2017183876A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES17786144T ES2973381T3 (en) 2016-04-22 2017-04-17 Plasticizer composition and resin composition comprising the same
CN201780002270.8A CN107849299B (en) 2016-04-22 2017-04-17 Plasticizer composition and resin composition comprising the same
US15/737,686 US11407882B2 (en) 2016-04-22 2017-04-17 Plasticizer composition and resin composition including the same
EP17786144.0A EP3293225B1 (en) 2016-04-22 2017-04-17 Plasticizer composition, and resin composition comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160049081 2016-04-22
KR10-2016-0049081 2016-04-22
KR10-2017-0047831 2017-04-13
KR1020170047831A KR102090294B1 (en) 2016-04-22 2017-04-13 Plasticizer and resin composition comprising the same

Publications (1)

Publication Number Publication Date
WO2017183876A1 true WO2017183876A1 (en) 2017-10-26

Family

ID=60116176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004117 WO2017183876A1 (en) 2016-04-22 2017-04-17 Plasticizer composition, and resin composition comprising same

Country Status (2)

Country Link
ES (1) ES2973381T3 (en)
WO (1) WO2017183876A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3805302A4 (en) * 2018-06-11 2021-07-28 Lg Chem, Ltd. Plasticizer composition, and resin composition comprising same
CN113968783A (en) * 2020-07-22 2022-01-25 中国石油化工股份有限公司 Method for preparing short-carbon-chain dicarboxylic acid ester derivative

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090038514A (en) * 2007-10-16 2009-04-21 주식회사 엘지화학 Composition of 1,4-cyclohexanedicarboxylates for polymer resin and method for manufacturing the same
US8283411B2 (en) * 2001-09-25 2012-10-09 Exxonmobil Chemical Patents Inc. Plasticised polyvinyl chloride
WO2013004265A1 (en) * 2011-07-01 2013-01-10 Tarkett Gdl Surface covering comprising a citrate-based plasticizer
US20130137789A1 (en) * 2005-08-12 2013-05-30 Eastman Chemical Company Polyvinyl chloride compositions
CN103965564A (en) * 2013-01-25 2014-08-06 北京化工大学 Plasticized polyvinyl chloride material and preparation method thereof
WO2015101569A1 (en) * 2014-01-03 2015-07-09 Tarkett Gdl Improved phtalate-free polyvinyl chloride plastisol compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8283411B2 (en) * 2001-09-25 2012-10-09 Exxonmobil Chemical Patents Inc. Plasticised polyvinyl chloride
US20130137789A1 (en) * 2005-08-12 2013-05-30 Eastman Chemical Company Polyvinyl chloride compositions
KR20090038514A (en) * 2007-10-16 2009-04-21 주식회사 엘지화학 Composition of 1,4-cyclohexanedicarboxylates for polymer resin and method for manufacturing the same
WO2013004265A1 (en) * 2011-07-01 2013-01-10 Tarkett Gdl Surface covering comprising a citrate-based plasticizer
CN103965564A (en) * 2013-01-25 2014-08-06 北京化工大学 Plasticized polyvinyl chloride material and preparation method thereof
WO2015101569A1 (en) * 2014-01-03 2015-07-09 Tarkett Gdl Improved phtalate-free polyvinyl chloride plastisol compositions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3805302A4 (en) * 2018-06-11 2021-07-28 Lg Chem, Ltd. Plasticizer composition, and resin composition comprising same
US11746079B2 (en) 2018-06-11 2023-09-05 Lg Chem, Ltd. Plasticizer composition and resin composition including the same
CN113968783A (en) * 2020-07-22 2022-01-25 中国石油化工股份有限公司 Method for preparing short-carbon-chain dicarboxylic acid ester derivative
CN113968783B (en) * 2020-07-22 2023-10-10 中国石油化工股份有限公司 Method for preparing short carbon chain dicarboxylic ester derivative

Also Published As

Publication number Publication date
ES2973381T3 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
WO2018048170A1 (en) Plasticizer composition and resin composition comprising same
WO2018147690A1 (en) Plasticizer composition and resin composition comprising same
WO2018110923A1 (en) Plasticizer composition and resin composition comprising same
WO2017222232A1 (en) Plasticizer composition, resin composition, and preparation method for both compositions
WO2018216985A1 (en) Citrate-based plasticizer and resin composition containing same
WO2014058122A1 (en) Plasticizer, plasticizer composition, heat-resistant resin composition and method for preparing same
WO2019088736A2 (en) Plasticizer composition and resin composition comprising same
WO2018008913A1 (en) Plasticizing composition, resin composition, and method for producing both
WO2020222536A1 (en) Cyclohexane triester plasticizer composition and resin composition comprising same
WO2021020878A1 (en) Citrate-based plasticizer composition and resin composition comprising same
WO2020122591A1 (en) Plasticizer composition and resin composition comprising same
WO2017183877A1 (en) Plasticizer composition, and resin composition comprising same
WO2020251266A1 (en) Plasticizer composition and resin composition including same
WO2016153235A1 (en) Plasticizer composition and resin composition, and method for preparing same
WO2019240418A1 (en) Plasticizer composition, and resin composition comprising same
WO2017091040A1 (en) Plasticizer composition, resin composition, and preparation methods therefor
WO2017018740A1 (en) Plasticizer composition, resin composition, and preparation methods therefor
WO2017074057A1 (en) Plasticizer composition, resin composition, and methods for preparing same
WO2017183876A1 (en) Plasticizer composition, and resin composition comprising same
WO2020222494A1 (en) Plasticizer composition and resin composition comprising same
WO2021145643A1 (en) Citrate-based plasticizer composition and resin composition comprising same
WO2016182376A1 (en) Ester-based compound, composition containing same, method for preparing same, and resin composition containing same
WO2018110922A1 (en) Plasticizer composition and resin composition comprising same
WO2018128314A1 (en) Plasticizer composition comprising cyclohexane 1,4-diester-based compound, and resin composition comprising same
WO2022270910A1 (en) Triester-based plasticizer composition and resin composition comprising same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017786144

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15737686

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE