WO2017183647A1 - Gas-discharging structure and injection molding die - Google Patents

Gas-discharging structure and injection molding die Download PDF

Info

Publication number
WO2017183647A1
WO2017183647A1 PCT/JP2017/015649 JP2017015649W WO2017183647A1 WO 2017183647 A1 WO2017183647 A1 WO 2017183647A1 JP 2017015649 W JP2017015649 W JP 2017015649W WO 2017183647 A1 WO2017183647 A1 WO 2017183647A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectangular
gas
gas discharge
rectangular grooves
grooves
Prior art date
Application number
PCT/JP2017/015649
Other languages
French (fr)
Japanese (ja)
Inventor
博樹 布瀬
敏雄 満嶋
真紀 小林
Original Assignee
三光合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三光合成株式会社 filed Critical 三光合成株式会社
Publication of WO2017183647A1 publication Critical patent/WO2017183647A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/10Moulds or cores; Details thereof or accessories therefor with incorporated venting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/34Moulds having venting means

Definitions

  • the present invention relates to a gas discharge structure and an injection mold.
  • This gas discharge structure has a slit that forms a gas flow path, and the rectangular groove serving as the slit has a groove width and length so that the resin does not flow into the gas discharge structure on the product surface.
  • the laminated structure has a longer interval between adjacent rectangular grooves, and as a result, the ratio of the rectangular groove length / plate length has been reduced (Patent Document 1). ). Further, the thickness of the plate forming the gas discharge structure is set to be thick in consideration of deformation of the rectangular groove constituting plate due to machining or molding pressure. As a result, there is a commercial product that has a laminated structure in which the ratio of the rectangular groove width / plate thickness is reduced to reduce the number of laminated plates at a constant thickness.
  • the distribution of the slit grooves in the stacking direction is rough, the position of the resin merging and the position of the gas discharge path do not coincide with each other, and it is necessary to change the stack thickness in order to adjust this. Furthermore, because of the structure having bolt fastening and positioning pins, when assembling the structure into the mold, assembly work or positioning work of the structure itself is required. In addition, since the rectangular groove extends deeper than the product surface, it is easy for gas residue to accumulate, and it is difficult to remove the gas residue even after cleaning, requiring disassembly and cleaning / assembly.
  • the present invention is an integral structure that has an efficient and high opening ratio that can easily discharge the gas in the cavity and does not require assembly or positioning, and can be used for molding pressure.
  • An object of the present invention is to provide a gas discharge structure that has a gas discharge path that is straight and has no steps, and an injection mold using the same, in order to prevent gas residue from being provided with a structure that can withstand reinforcing bars.
  • a gas discharge structure includes one flow path cross section derived from a pressure loss equation, a reinforcing flow beam derived from a flow channel total area satisfying a gas discharge rate, and a strength calculation equation.
  • a gas discharge structure with a flow path plane having a checkerboard pattern and a depth is formed, and a change in the cross section of the gas flow path is eliminated, gas residue accumulation is prevented, and assembly bolts and positioning pins are not used. It was constructed in consideration of preventing the road from decreasing.
  • a unit thin plate in which a plurality of rectangular grooves are provided on one side plane of the thin piece and a plurality of protrusions are provided through the plurality of rectangular grooves is formed in the direction of the rectangular grooves and the protrusions.
  • a plurality of rectangular holes and reinforcing bars are formed by joining and integrating a plane opposite to the surface having the rectangular groove and the protruding portion and a top plane of the protruding portion.
  • a unit thin plate comprising a plurality of rectangular grooves having a certain width and a certain depth and penetrating through the plurality of rectangular grooves and arranged in parallel through the plurality of rectangular grooves is formed into a rectangular shape on one side plane of the thin piece.
  • the top surface of the protrusion of the surface having the groove and the protrusion and the flat surface opposite to the surface having the rectangular groove and the protrusion are aligned and joined together by aligning the directions of the rectangular groove and the protrusion. It can be made up of a rectangular hole and a reinforcing bar.
  • the rectangular groove of the unit thin plate and the protruding portion arranged in parallel through the rectangular groove are formed by one or more of photoetching, milling, grinding, die-sinking electric discharge machining, and wire cut electric discharge machining. Further, a rectangular groove penetrating through the unit thin plate with a certain width and a certain depth, and a plurality of protrusions having a certain height projecting in parallel from the plane portion through the plurality of rectangular grooves are formed by photoetching and It can be formed by one or more of milling, grinding, die-sinking electric discharge machining, and wire cut electric discharge machining.
  • the plane opposite to the surface having the rectangular groove and the protruding portion and the top plane of the protruding portion can be joined by diffusion bonding.
  • the entire surface excluding the rectangular groove is diffusion bonded, so that an integrated gas discharge structure that does not require the use of assembly bolts or positioning pins can be obtained.
  • the flow path can be prevented from decreasing.
  • the injection mold of the present invention comprises a unit thin plate having a plurality of rectangular grooves provided on one side plane of a thin piece, and a plurality of protrusions arranged in parallel via the plurality of rectangular grooves.
  • the top flat surface of the projecting portion of the surface having the rectangular groove and the surface opposite to the surface having the projecting portion are joined and integrated by aligning the directions of the rectangular groove and the projecting portion, and a plurality of layers are laminated to form a rectangular hole and a reinforcing bar.
  • the gas discharge structure is fitted into the mold body so as to constitute a part of the molding surface.
  • a plurality of rectangular grooves having a certain width and a certain depth are provided on one side plane of the thin piece, and a plurality of protrusions having a certain height are arranged in parallel through the plurality of rectangular grooves.
  • a plurality of unit thin plates are stacked with the top flat surface of the protruding portion of the surface having the rectangular groove and the protruding portion and the plane opposite to the surface having the rectangular groove and the protruding portion aligned in the direction of the rectangular groove and the protruding portion. They may be joined and integrated to form a plurality of rectangular holes and reinforcing bars.
  • the gas discharge structure incorporated in the injection mold has a strength that can withstand the resin pressure and the vicinity of the end of the one-way flow of the resin over the entire mass production period.
  • the gas discharge structure incorporated in the injection mold has a strength that can withstand the resin pressure and the vicinity of the end of the one-way flow of the resin over the entire mass production period.
  • it In the vicinity of the merging position of the counterflow and the counterflow, it has a high opening ratio from the inlet to the outlet in order to easily discharge the gas in the cavity, and there are fastening bolts and positioning pins to eliminate the need for operations such as assembly and positioning.
  • FIG. 18 is a partially enlarged perspective view of the gas discharge structure shown in FIG. 17.
  • the gas discharge structure 1 of the present embodiment is formed by laminating a plurality of unit thin plates 2 and joining them together.
  • a plurality of rectangular grooves 4 having a constant width and a predetermined depth are provided on one side plane 3 of the unit thin plate 2.
  • a plurality of projecting portions 5 having a certain height projecting from the one-side plane 3 through the plurality of rectangular grooves 4 are provided.
  • the rectangular grooves 4 and the protrusions 5 are aligned in a manner in which the top flat surface 7 of the protruding portion 5 is brought into contact with the flat surface 6 opposite to the one-side flat surface 3 of the unit thin plate 2, and a plurality of layers are laminated together.
  • the gas discharge structure 1 of the present embodiment including a large number of rectangular holes 8 and reinforcing bars 9 is obtained by joining and integrating the flat surface 6 and the top flat surface 7 of the protruding portion 5.
  • the gas discharge structure 1 has a unit thin plate thickness of 1 mm or less, a depth of the rectangular groove 4 of 0.03 mm or less, a width / depth ratio which is a ratio of the width to the depth of 50 or more, and the rectangular groove 4 It can be formed by setting the gap length to 1 mm or less, the end processed portions at both ends to 0.5 mm or more, and the number of stacked layers to 5 or more.
  • a rectangular groove 4 passing through the unit thin plate 2 having a certain width and a certain depth and a plurality of protrusions 5 having a certain height projecting from the planar portion through the plurality of rectangular grooves 4 are formed by a photoetching process. be able to.
  • the photo-etching removes and cleans the front and back surfaces of the material flakes, and after applying a photosensitive resin (resist), the groove pattern film prepared in advance is applied to the photosensitive resin (resist).
  • the groove pattern is formed by attaching and generally baking by UV irradiation. After etching this to form a groove in the material, the photosensitive resin is removed by peeling, washing and drying.
  • the thinner unit thin plate 2 can be used as necessary, and the number of stacked layers per unit thickness can be increased.
  • the ratio of the depth of the rectangular groove 4 to the thickness of the unit thin plate 2 can be increased, and a high aperture ratio of the rectangular hole 8 can be realized during lamination.
  • Bonding and integration of the flat surface 6 and the top flat surface 7 of the protrusion 5 can be performed by diffusion bonding.
  • Diffusion bonding is performed by bringing the flat surface 6 and the top flat surface 7 of the protruding portion 5 into close contact and pressurizing and heating in a controlled atmosphere such as a vacuum or an inert gas.
  • a controlled atmosphere such as a vacuum or an inert gas.
  • bonding can be performed using diffusion of atoms generated on the bonding surface.
  • an integrated gas discharge structure 1 that does not require the use of assembly bolts or positioning pins is obtained.
  • the flow path can be prevented from decreasing.
  • the reinforcing bar 9 can be set to be thin, and a high opening ratio of the rectangular hole 8 can be realized.
  • FIG. 7 shows an injection mold 10 according to an embodiment of the present invention to which the gas discharge structure 1 according to the present embodiment is applied.
  • the injection mold 10 includes a fixed mold 11 and a movable mold 12.
  • a cavity 13 is formed between the fixed mold 11 and the movable mold 12.
  • the cavity 13 is provided with a rib forming region 13a, a boss forming region 13b, a protrusion forming region 13c, and the like according to the design based on the attributes of the target product.
  • the movable mold 12 is configured by combining the main body 14 and the cavity forming portion 15, and the cooling hole 16 is disposed in the cavity forming portion 15.
  • the main body portion 14 is provided with a gas flow path 17 connected to the rib forming region 13a, the boss forming region 13b, and the protrusion forming region 13c.
  • the gas flow path 17 has a connecting portion for each of the rib forming region 13a, the boss forming region 13b, and the protrusion forming region 13c in the cavity forming portion 15, and the gas discharge structure 1 is disposed in each of the connecting portions.
  • the gas discharge structure 1 incorporated in the injection mold 10 has a strength that can withstand the resin pressure, and the end of the one-way flow of the resin and the confluence of the counter flow over the entire mass production period. In the vicinity of the position, it has a high opening ratio that allows the gas in the cavity to be easily discharged, and it is an integrated structure that does not have fastening bolts or positioning pins to eliminate work such as assembly and positioning. In addition, in order to prevent gas residue accumulation, it is possible to simultaneously satisfy that the gas flow path 17 is linear and has no step.
  • the gas in the cavity 13 including the rib forming region 13a, the boss forming region 13b, and the protrusion forming region 13c is smoothly filled with the resin through the gas discharge structure 1 and the gas flow path 17 connected to each forming region.
  • the rib forming region 13a, the boss forming region 13b, and the protrusion forming region 13c can be filled with 100% resin.
  • Resins for injection molding using the above molds are polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polybutylene-ethylene terephthalate (PBT-PET copolymer resin), polyether ether ketone (PEEK resin), polyphenylene.
  • PVC polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PBT-PET copolymer resin polyether ether ketone
  • PEEK resin polyphenylene.
  • Thermosetting resins such as phenol resin (PF), epoxy resin (EP), diallyl phthalate resin (PDAP), silicone resin (SI), polyimide resin (PI), melamine resin (MF), urea resin (UF) It is.
  • inorganic fillers such as carbon fibers, glass fibers, glass beads, and talc may be appropriately blended with these thermoplastic resins and thermosetting resins.
  • blend organic fillers such as a cellulose nanofiber suitably.
  • the gas discharge structure 1 shown in FIG. 8 was prepared as follows, and resin molding was performed with an injection mold 10 using the gas discharge structure 1.
  • L21.6mm ⁇ W10.1mm ⁇ t0.2mm SUS plate L21.6mm, W10.1mm on one surface, 1.0mm away from both ends of L21.6mm, and the groove spacing is set to L0.4mm at equal intervals.
  • a rectangular groove 4 of 6 mm ⁇ D 0.025 mm was repeatedly provided at five locations by etching.
  • 45 unit thin plates 2 having the same groove shape and outer shape are overlapped, and L21.6 mm ⁇ W10.1 mm ⁇ t0.5 mm reinforcing SUS plates are overlapped on both longitudinal sides of the unit thin plate 2.
  • a thin plate laminate which is a laminate consisting of a single thin plate, was constructed. After that, 47 thin plate laminates were made into an integral component of L21.6 mm ⁇ W10.1 mm ⁇ H10 mm using diffusion bonding.
  • the gas discharge structure 1 as an integrated component is L21.6 mm ⁇ H10.
  • the rectangular groove 4 of L3.6 mm ⁇ D0.025 mm penetrates the back surface of L21.6 mm ⁇ H10 mm at equal intervals of H10 mm direction pitch 0.2 mm and L21.6 mm direction pitch 4.0 mm. 225 pieces were formed.
  • FIG. 9 shows a molded product obtained by resin molding with the injection mold 10 using the gas discharge structure 1.
  • FIG. 10 shows a molded product obtained by an injection mold without using the gas discharge structure 1 as a comparative example.
  • the obtained molded product was an automobile exterior part, and the molded product weight was 580 gr.
  • Polypropylene (black coloring) was used as the resin material, and a molding machine having a clamping force of 1250 tons was used.
  • a three-point hot runner gate was used as the mold.
  • the molding conditions were a resin temperature of 220 ° C., a mold temperature of 30 ° C., and an injection speed of 25% (screw diameter ⁇ 105 mm).
  • FIG. 10 shows a molded product obtained by resin molding with the injection mold 10 using the gas discharge structure 1.
  • FIG. 10 shows a molded product obtained by an injection mold without using the gas discharge structure 1 as a comparative example.
  • the obtained molded product was an automobile exterior part, and the molded product weight was 580 gr
  • the gas vent groove range A provided on the end face of the insert piece wire was 0.03 mm ⁇ 60 mm in size, but the resin merging position and the degassing die insert piece position are different. The gas was collected at this position and the filling failure occurred.
  • the resin joining position C fluctuated in the range of 4 mm during molding, but it fits in the gas discharge block. The gas escaped and the resin filling defect was solved.
  • a rectangular groove 4 that penetrates the unit thin plate 2 with a certain width and a certain depth and a plurality of protruding parts 5 that protrude from the flat surface through the plurality of rectangular grooves 4 are photo-etched, milled and ground. It can be formed by one or more processes of machining, die-sinking electric discharge machining, and wire cut electric discharge machining.
  • the one side plane 3 of the unit thin plate 2 is cut using a milling drill 18 that rotates at high speed.
  • the unit thin plate 2 is fixed on a table (not shown), and the milling drill 18 moves in the Z direction (up and down), and moves the table in the XY direction (front and rear, left and right) for processing.
  • the metal is melted in the machining liquid 20 by the electric spark discharge heat between the wire electrode 22 and the unit thin plate 2 to form the wire electrode 22 on the unit thin plate 2. It is processed so as to be carved into a shape corresponding to the movement locus 23.
  • the gas discharge structure 1 shown in FIGS. 15 and 16 has a flange 1a on the upper surface. By having this flange 1a, it is possible to prevent the product from coming off after being assembled into the injection mold 10.
  • the collar 1a is formed, for example, by performing processing for removing the upper surface portion of the gas discharge structure 1 shown in FIG. 8 by wire-cut electric discharge machining, milling, grinding, or the like.
  • the gas discharge structure 1 shown in FIGS. 17 and 18 has flanges 1b on both sides. The flange 1b can also be prevented from coming off after being incorporated into the injection mold 10, and is formed by performing a process of removing a required portion by wire-cut electric discharge machining, milling, grinding, or the like.
  • SYMBOLS 1 Gas discharge structure, 2 ... Unit thin plate, 4 ... Rectangular groove, 5 ... Projection part, 8 ... -Rectangular hole, 6 ... plane, 7 ... top plane.

Abstract

[Problem] To provide: a gas discharge structure, which has a high opening area ratio efficiently allowing gas inside a cavity to be discharged easily, is an integrated structure that does not require work such as assembly or alignment, and is a structure with reinforcing crosspieces that can withstand molding pressure, and which has a gas discharge passage that is linear and does not have level differences; and an injection molding die obtained using same. [Solution] In a mode in which the flat apical surfaces 7 of protruding parts 5 are abutted against the flat surfaces 6 opposite flat surfaces 3 on one side of unit thin plates 2, the directions of rectangular grooves 4 and protruding parts 5 are made to coincide and matched and multiple unit thin plates are stacked. By bonding and integrating the flat surfaces 6 with the flat apical surfaces 7 of the protruding parts 5 in said configuration, a gas-discharging structure 1 according to an embodiment that is made of multiple rectangular holes 3 and reinforcing crosspieces 4 is obtained. Said gas-discharging structure 1 can be formed with: a unit thin plate thickness of 1 mm or less; a rectangular groove 4 depth of 0.03 mm or less; a width/depth ratio, which is the ratio of the width to depth thereof, of at least 50; a length between the rectangular grooves 4 of 1 mm or less; end-processed portions at the two ends of at least 0.5 mm; and the number of stacked plates being at least five.

Description

ガス排出構造体及び射出成形金型Gas exhaust structure and injection mold
 本発明は、ガス排出構造体及び射出成形金型に関する。 The present invention relates to a gas discharge structure and an injection mold.
 樹脂成形品の射出成形に当たっては、成形金型への樹脂の射出に伴い成形金型内の空気を外部へ排出する必要があることから、成形金型に微細間隙のガス排出構造体を配置している。このガス排出構造体は、ガス流路を形成するスリットを有してなり、このスリットとなる矩形溝は製品面ではガス排出構造体に樹脂が流入しないような溝幅と長さとし、製品面から離れた奥で断面が広く取られた矩形溝を複数設けた板を、ボルトを利用して締結した構造やピンを利用して位置決めした構造としていた。その様に、締結部ボルトや位置決めピンを設けるため、隣接する矩形溝の間隔を長く取った積層構造体としている結果、矩形溝長さ/板長さの比を小さくしていた(特許文献1)。
 またこのガス排出構造体を形成する板の厚みは、機械加工や成形圧力による矩形溝構成板の変形を考慮して厚く設定していた。その結果、矩形溝幅/板厚の比を小さくして一定厚みにおける板の積層枚数が少ない積層構造体としている市販品が存在した。
In the injection molding of resin molded products, it is necessary to discharge the air in the molding die to the outside as the resin is injected into the molding die, so a gas discharge structure with a fine gap is arranged in the molding die. ing. This gas discharge structure has a slit that forms a gas flow path, and the rectangular groove serving as the slit has a groove width and length so that the resin does not flow into the gas discharge structure on the product surface. A structure in which a plate provided with a plurality of rectangular grooves having a wide cross section at the far back is provided with a structure fastened using a bolt or a pin. As described above, since the fastening portion bolt and the positioning pin are provided, the laminated structure has a longer interval between adjacent rectangular grooves, and as a result, the ratio of the rectangular groove length / plate length has been reduced (Patent Document 1). ).
Further, the thickness of the plate forming the gas discharge structure is set to be thick in consideration of deformation of the rectangular groove constituting plate due to machining or molding pressure. As a result, there is a commercial product that has a laminated structure in which the ratio of the rectangular groove width / plate thickness is reduced to reduce the number of laminated plates at a constant thickness.
特開2004-167714号公報JP 2004-167714 A
 以上の特許文献1に示されるガス排出構造体や市販品では構造体長さに対しスリット溝の合計長さが短いこと、構造体厚みに対し、板の積層枚数が少ないことなどから、開口率が低くガス排出効率が悪かった。このため金型キャビティー内への樹脂充填に伴い、単位時間あたりに排出が必要なガス排出量に比べ、スリット溝を通じて金型キャビティー外へ排出する能力が低いことから、ガスがキャビティー内に残留し、得られる樹脂製品の品質悪化の原因となっていた。 In the gas exhaust structure and the commercial product shown in the above-mentioned Patent Document 1, since the total length of the slit grooves is short with respect to the structure length, and the number of laminated plates is small with respect to the structure thickness, the aperture ratio is low. Low gas emission efficiency. For this reason, as the resin is filled into the mold cavity, the ability to discharge out of the mold cavity through the slit groove is lower than the amount of gas that needs to be discharged per unit time. In other words, the quality of the obtained resin product deteriorated.
 積層方向のスリット溝の分布が粗であるために、樹脂合流の位置とガス排出路の位置が一致しないことが発生し、これを調整するために積層厚みを変える必要が生じていた。
 さらにボルト締結や位置決めピンを有する構造のため、金型へ構造体を組み込む際に、構造体自身の組み立て作業や位置決め作業などを必要とした。
 加えて矩形溝が製品面より奥で広がっているために、ガス残滓が集積しやすく、洗浄を行った際もガス残滓を除去しにくく、分解洗浄・組み立てが必要であった。
Since the distribution of the slit grooves in the stacking direction is rough, the position of the resin merging and the position of the gas discharge path do not coincide with each other, and it is necessary to change the stack thickness in order to adjust this.
Furthermore, because of the structure having bolt fastening and positioning pins, when assembling the structure into the mold, assembly work or positioning work of the structure itself is required.
In addition, since the rectangular groove extends deeper than the product surface, it is easy for gas residue to accumulate, and it is difficult to remove the gas residue even after cleaning, requiring disassembly and cleaning / assembly.
 本発明は以上の従来技術における問題に鑑み、キャビティー内のガスを容易に排出できる効率の良い高い開口率を有し、組み立てや位置決め等の作業を必要としない一体構造であり、成形圧に耐える補強桟を有する構造であると共にガス残滓を防止するため、直線状で段差のないガス排出路を有するガス排出構造体及びこれを用いてなる射出成形金型を提供することを目的とする。 In view of the problems in the prior art described above, the present invention is an integral structure that has an efficient and high opening ratio that can easily discharge the gas in the cavity and does not require assembly or positioning, and can be used for molding pressure. An object of the present invention is to provide a gas discharge structure that has a gas discharge path that is straight and has no steps, and an injection mold using the same, in order to prevent gas residue from being provided with a structure that can withstand reinforcing bars.
 上記課題を解決するために、本発明に係るガス排出構造体は、圧力損失式から導かれる1つの流路断面と、ガス排出率を満たす流路総面積と強度計算式から導かれる補強桟などを勘案し、流路平面が升目模様で奥行きを有するガス排出構造体とし、また、ガス流路断面の変化をなくし、ガス残滓堆積を防止すると共に組み立て用ボルトと位置決めピンを使用せず、流路の減少を防止することを勘案して構成された。 In order to solve the above-described problems, a gas discharge structure according to the present invention includes one flow path cross section derived from a pressure loss equation, a reinforcing flow beam derived from a flow channel total area satisfying a gas discharge rate, and a strength calculation equation. In consideration of the above, a gas discharge structure with a flow path plane having a checkerboard pattern and a depth is formed, and a change in the cross section of the gas flow path is eliminated, gas residue accumulation is prevented, and assembly bolts and positioning pins are not used. It was constructed in consideration of preventing the road from decreasing.
 すなわち本発明に係るガス排出構造体は薄片の片側平面に矩形溝を複数設け、その複数の矩形溝を介して複数の突出部を設けてなる単位薄板を、前記矩形溝及び前記突出部の方向を揃えて複数積層し、前記矩形溝及び前記突出部を有する面とは反対側の平面と前記突出部の頂部平面とを接合一体化してなり、複数の矩形穴と補強桟とからなることを特徴とする。 That is, in the gas discharge structure according to the present invention, a unit thin plate in which a plurality of rectangular grooves are provided on one side plane of the thin piece and a plurality of protrusions are provided through the plurality of rectangular grooves is formed in the direction of the rectangular grooves and the protrusions. And a plurality of rectangular holes and reinforcing bars are formed by joining and integrating a plane opposite to the surface having the rectangular groove and the protruding portion and a top plane of the protruding portion. Features.
 薄片の片側平面に、一定幅と一定深さを有し貫通する矩形溝を複数設けてその複数の矩形溝を介して並列する一定高さの複数の突出部を設けてなる単位薄板を、矩形溝及び突出部を有する面の突出部の頂部平面と矩形溝及び突出部を有する面と反対側の平面とを矩形溝及び突出部の方向を揃えて複数積層して接合一体化してなり、多数の矩形穴と補強桟とからなるようにすることができる。 A unit thin plate comprising a plurality of rectangular grooves having a certain width and a certain depth and penetrating through the plurality of rectangular grooves and arranged in parallel through the plurality of rectangular grooves is formed into a rectangular shape on one side plane of the thin piece. The top surface of the protrusion of the surface having the groove and the protrusion and the flat surface opposite to the surface having the rectangular groove and the protrusion are aligned and joined together by aligning the directions of the rectangular groove and the protrusion. It can be made up of a rectangular hole and a reinforcing bar.
 前記単位薄板の矩形溝及びその矩形溝を介して並列する突出部はフォトエッチング及びフライス加工及び研削加工及び型彫り放電加工及びワイヤカット放電加工のうちの一以上により形成されてなるようにすることができ、さらに前記単位薄板の一定幅と一定深さを有し貫通する矩形溝及びその複数の矩形溝を介して平面部から並列して突出する一定高さの複数の突出部はフォトエッチング及びフライス加工及び研削加工及び型彫り放電加工及びワイヤカット放電加工のうちの一以上により形成されてなるようにすることができる。 The rectangular groove of the unit thin plate and the protruding portion arranged in parallel through the rectangular groove are formed by one or more of photoetching, milling, grinding, die-sinking electric discharge machining, and wire cut electric discharge machining. Further, a rectangular groove penetrating through the unit thin plate with a certain width and a certain depth, and a plurality of protrusions having a certain height projecting in parallel from the plane portion through the plurality of rectangular grooves are formed by photoetching and It can be formed by one or more of milling, grinding, die-sinking electric discharge machining, and wire cut electric discharge machining.
 これによって精密にガス流路断面の変化をなくし、ガス残滓堆積を防止することができる。特に矩形溝を加工圧力のないエッチング加工によって形成したことにより、必要に応じてより薄い板の使用が可能となり単位厚みあたりの積層枚数を増やすことができる。また、矩形溝深さの対薄板厚みの比率を高くすることが可能となり積層時に高い開口率を実現することができる。 This makes it possible to eliminate changes in the gas channel cross section precisely and prevent gas residue accumulation. In particular, since the rectangular grooves are formed by etching without processing pressure, thinner plates can be used as necessary, and the number of stacked layers per unit thickness can be increased. Further, the ratio of the thickness of the rectangular groove to the thickness of the thin plate can be increased, and a high aperture ratio can be realized during lamination.
 前記矩形溝及び突出部を有する面と反対側の平面と前記突出部の頂部平面とを拡散接合によって接合してなるようにすることができる。このように矩形溝を除く全面を拡散接合としたことにより、組み立てボルトや位置決めピンの使用が不要な一体化されたガス排出構造体とすることが可能となる。また同時に流路の減少を防止することができる。さらに補強桟を細く設定することが可能となり、高い開口率を実現できた。 The plane opposite to the surface having the rectangular groove and the protruding portion and the top plane of the protruding portion can be joined by diffusion bonding. As described above, the entire surface excluding the rectangular groove is diffusion bonded, so that an integrated gas discharge structure that does not require the use of assembly bolts or positioning pins can be obtained. At the same time, the flow path can be prevented from decreasing. In addition, it was possible to set the reinforcing bars to be thin, and a high aperture ratio was achieved.
 また本発明の射出成形金型は、薄片の片側平面に、矩形溝を複数設け、その複数の矩形溝を介して並列する複数の突出部を設けてなる単位薄板を、矩形溝及び突出部を有する面の突出部の頂部平面と矩形溝及び突出部を有する面と反対側の平面とを矩形溝及び突出部の方向を揃えて接合一体化して複数積層して矩形穴と補強桟とからなるガス排出構造体が成形面の一部を構成するように金型本体へ嵌め込んだことを特徴とする。 Further, the injection mold of the present invention comprises a unit thin plate having a plurality of rectangular grooves provided on one side plane of a thin piece, and a plurality of protrusions arranged in parallel via the plurality of rectangular grooves. The top flat surface of the projecting portion of the surface having the rectangular groove and the surface opposite to the surface having the projecting portion are joined and integrated by aligning the directions of the rectangular groove and the projecting portion, and a plurality of layers are laminated to form a rectangular hole and a reinforcing bar. The gas discharge structure is fitted into the mold body so as to constitute a part of the molding surface.
 前記ガス排出構造体は、薄片の片側平面に、一定幅と一定深さを有し貫通する矩形溝を複数設けてその複数の矩形溝を介して並列する一定高さの複数の突出部を設けてなる単位薄板を、矩形溝及び突出部を有する面の突出部の頂部平面と矩形溝及び突出部を有する面と反対側の平面とを矩形溝及び突出部の方向を揃えて複数積層して接合一体化してなり、複数の矩形穴と補強桟からなるようにしてもよい。 In the gas discharge structure, a plurality of rectangular grooves having a certain width and a certain depth are provided on one side plane of the thin piece, and a plurality of protrusions having a certain height are arranged in parallel through the plurality of rectangular grooves. A plurality of unit thin plates are stacked with the top flat surface of the protruding portion of the surface having the rectangular groove and the protruding portion and the plane opposite to the surface having the rectangular groove and the protruding portion aligned in the direction of the rectangular groove and the protruding portion. They may be joined and integrated to form a plurality of rectangular holes and reinforcing bars.
 本発明のガス排出構造体及び射出成形金型によれば、射出成形金型に組み込まれるガス排出構造体には、樹脂圧に耐える強度と、量産全期間にわたって、樹脂の1方向流れの末端付近や対向流の合流位置付近において、キャビティー内のガスを容易に排出するため入り口から出口まで高い開口率を有すること、また組立や位置決めなどの作業を不要とするため締結ボルトや位置決めピンを有しない一体構造であること、更にガス残滓堆積を防止するためガス流路は直線状で段差がないことなどを同時に満たすことが可能となる。 According to the gas discharge structure and the injection mold of the present invention, the gas discharge structure incorporated in the injection mold has a strength that can withstand the resin pressure and the vicinity of the end of the one-way flow of the resin over the entire mass production period. In the vicinity of the merging position of the counterflow and the counterflow, it has a high opening ratio from the inlet to the outlet in order to easily discharge the gas in the cavity, and there are fastening bolts and positioning pins to eliminate the need for operations such as assembly and positioning. In addition, it is possible to simultaneously satisfy the fact that the gas flow path is straight and has no steps in order to prevent gas residue accumulation.
本発明に係るガス排出構造体の一実施の形態の正面図である。It is a front view of one embodiment of a gas discharge structure concerning the present invention. 本発明に係るガス排出構造体の一実施の形態の部分正面図である。It is a partial front view of one embodiment of a gas discharge structure concerning the present invention. 図2に示す部分の平面図である。It is a top view of the part shown in FIG. 図1に示すガス排出構造体の側面図である。It is a side view of the gas exhaust structure shown in FIG. 図1に示すガス排出構造体の部分拡大図である。It is the elements on larger scale of the gas exhaust structure shown in FIG. 本発明に係るガス排出構造体の製造プロセスを示す説明図である。It is explanatory drawing which shows the manufacturing process of the gas exhaustion structure which concerns on this invention. 本発明に係る射出成形金型の一実施の形態の断面模式図である。It is a cross-sectional schematic diagram of one embodiment of an injection mold according to the present invention. 本発明の実施例で作成したガス排出構造体の斜視図である。It is a perspective view of the gas exhaust structure created in the Example of this invention. 本発明に係る射出成形金型の実施例で作成した製品の写真である。It is a photograph of the product created in the Example of the injection mold concerning the present invention. 本発明に係る射出成形金型の実施例に対する比較例で作成した製品の写真である。It is a photograph of the product created by the comparative example with respect to the Example of the injection mold which concerns on this invention. 本発明に係るガス排出構造体の製造プロセスの他の態様を示す説明図である。It is explanatory drawing which shows the other aspect of the manufacturing process of the gas exhaustion structure which concerns on this invention. 本発明に係るガス排出構造体の製造プロセスの別の態様を示す説明図である。It is explanatory drawing which shows another aspect of the manufacturing process of the gas exhaustion structure which concerns on this invention. 本発明に係るガス排出構造体の製造プロセスのさらに他の態様を示す説明図である。It is explanatory drawing which shows the other aspect of the manufacturing process of the gas exhaustion structure which concerns on this invention. 本発明に係るガス排出構造体の製造プロセスのさらに別の態様を示す説明図であり、(a)はその平面図、(b)はその正面図である。It is explanatory drawing which shows another aspect of the manufacturing process of the gas exhaust structure which concerns on this invention, (a) is the top view, (b) is the front view. 本発明の他の実施の形態のガス排出構造体の斜視図である。It is a perspective view of the gas exhaust structure of other embodiment of this invention. 図15に示すガス排出構造体の右側面図である。It is a right view of the gas exhaust structure shown in FIG. 本発明のさらに他の実施の形態のガス排出構造体の斜視図である。It is a perspective view of the gas exhaust structure of further another embodiment of the present invention. 図17に示すガス排出構造体の部分拡大斜視図である。FIG. 18 is a partially enlarged perspective view of the gas discharge structure shown in FIG. 17.
 以下に本発明の一実施の形態のガス排出構造体につき図面を参照して説明する。
 図1~図5に示す様に本実施の形態のガス排出構造体1は、単位薄板2を、複数積層して接合一体化してなる。単位薄板2の片側平面3には、一定幅と一定深さを有し貫通する矩形溝4が複数設けられる。その複数の矩形溝4を介して片側平面3から突出する一定高さの複数の突出部5が設けられる。
 この単位薄板2の片側平面3の反対側の平面6に突出部5の頂部平面7を当接させる態様で矩形溝4及び突出部5の方向を一致させ、揃えて複数積層する。
 その状態で平面6と突出部5の頂部平面7とを接合一体化することによって多数の矩形穴8と補強桟9とからなる本実施の形態のガス排出構造体1が得られる。
 このガス排出構造体1は単位薄板厚み1mm以下とし、矩形溝4の深さを0.03mm以下として、その幅と深さの比である幅/深さ比を50以上とし,また矩形溝4間長さを1mm以下、両端の末加工部分を0.5mm以上とし、積層枚数を5以上として形成することができる。
A gas discharge structure according to an embodiment of the present invention will be described below with reference to the drawings.
As shown in FIGS. 1 to 5, the gas discharge structure 1 of the present embodiment is formed by laminating a plurality of unit thin plates 2 and joining them together. A plurality of rectangular grooves 4 having a constant width and a predetermined depth are provided on one side plane 3 of the unit thin plate 2. A plurality of projecting portions 5 having a certain height projecting from the one-side plane 3 through the plurality of rectangular grooves 4 are provided.
The rectangular grooves 4 and the protrusions 5 are aligned in a manner in which the top flat surface 7 of the protruding portion 5 is brought into contact with the flat surface 6 opposite to the one-side flat surface 3 of the unit thin plate 2, and a plurality of layers are laminated together.
In this state, the gas discharge structure 1 of the present embodiment including a large number of rectangular holes 8 and reinforcing bars 9 is obtained by joining and integrating the flat surface 6 and the top flat surface 7 of the protruding portion 5.
The gas discharge structure 1 has a unit thin plate thickness of 1 mm or less, a depth of the rectangular groove 4 of 0.03 mm or less, a width / depth ratio which is a ratio of the width to the depth of 50 or more, and the rectangular groove 4 It can be formed by setting the gap length to 1 mm or less, the end processed portions at both ends to 0.5 mm or more, and the number of stacked layers to 5 or more.
 前記単位薄板2の一定幅と一定深さを有し貫通する矩形溝4及びその複数の矩形溝4を介して平面部から突出する一定高さの複数の突出部5はフォトエッチング工程により形成することができる。
 フォトエッチングは図6に示されるように材料薄片の表裏面の汚れを除去して清浄化し、感光性樹脂(レジスト)を塗付後、予め作成された溝パターンフィルムを感光性樹脂(レジスト)に貼付して一般的にはUV照射で焼付けることによって溝パターンを形成する
 これをエッチングして材料に溝を形成した後、剥離・洗浄・乾燥することによって感光性樹脂を除去する。この様にエッチング加工によって形成することにより、必要に応じてより薄い単位薄板2の使用が可能となり単位厚みあたりの積層枚数を増やすことができる。また、矩形溝4の深さの対単位薄板2厚みの比率を高くすることが可能となり積層時に矩形穴8の高い開口率を実現することができる。
A rectangular groove 4 passing through the unit thin plate 2 having a certain width and a certain depth and a plurality of protrusions 5 having a certain height projecting from the planar portion through the plurality of rectangular grooves 4 are formed by a photoetching process. be able to.
As shown in FIG. 6, the photo-etching removes and cleans the front and back surfaces of the material flakes, and after applying a photosensitive resin (resist), the groove pattern film prepared in advance is applied to the photosensitive resin (resist). The groove pattern is formed by attaching and generally baking by UV irradiation. After etching this to form a groove in the material, the photosensitive resin is removed by peeling, washing and drying. By forming by etching in this way, the thinner unit thin plate 2 can be used as necessary, and the number of stacked layers per unit thickness can be increased. In addition, the ratio of the depth of the rectangular groove 4 to the thickness of the unit thin plate 2 can be increased, and a high aperture ratio of the rectangular hole 8 can be realized during lamination.
 平面6と突出部5の頂部平面7との接合一体化は拡散接合によって行うことができる。
 拡散接合は,平面6と突出部5の頂部平面7とを密着させ,真空や不活性ガス中などの制御された雰囲気中で,加圧・加熱して行う。これによって接合面に生じる原子の拡散を利用して接合することができる。このように拡散接合とする場合には、組み立てボルトや位置決めピンの使用が不要な一体化されたガス排出構造体1が得られる。また同時に流路の減少を防止することができる。さらに補強桟9を細く設定することが可能となり、矩形穴8の高い開口率を実現することができる。
Bonding and integration of the flat surface 6 and the top flat surface 7 of the protrusion 5 can be performed by diffusion bonding.
Diffusion bonding is performed by bringing the flat surface 6 and the top flat surface 7 of the protruding portion 5 into close contact and pressurizing and heating in a controlled atmosphere such as a vacuum or an inert gas. As a result, bonding can be performed using diffusion of atoms generated on the bonding surface. Thus, in the case of diffusion bonding, an integrated gas discharge structure 1 that does not require the use of assembly bolts or positioning pins is obtained. At the same time, the flow path can be prevented from decreasing. Further, the reinforcing bar 9 can be set to be thin, and a high opening ratio of the rectangular hole 8 can be realized.
 図7は以上の本実施の形態のガス排出構造体1を適用した本発明の一実施の形態の射出成形金型10を示す。
 射出成形金型10は固定側金型11と可動側金型12とよりなる。固定側金型11と可動側金型12間にはキャビティ13が形成される。キャビティ13はリブ形成領域13a、ボス形成領域13b、突起形成領域13c等が対象製品の属性に基づく設計に応じて設けられる。
 一方、可動側金型12は本体部14とキャビティ形成部15とを組み合わせて構成され、このキャビティ形成部15に冷却孔16が配置される。また本体部14にはリブ形成領域13a、ボス形成領域13b、突起形成領域13cに連結されるガス流路17が設けられる。
 このガス流路17はキャビティ形成部15においてリブ形成領域13a、ボス形成領域13b、突起形成領域13cそれぞれに対する連結部分を有し、その連結部分にそれぞれガス排出構造体1が配置される。
FIG. 7 shows an injection mold 10 according to an embodiment of the present invention to which the gas discharge structure 1 according to the present embodiment is applied.
The injection mold 10 includes a fixed mold 11 and a movable mold 12. A cavity 13 is formed between the fixed mold 11 and the movable mold 12. The cavity 13 is provided with a rib forming region 13a, a boss forming region 13b, a protrusion forming region 13c, and the like according to the design based on the attributes of the target product.
On the other hand, the movable mold 12 is configured by combining the main body 14 and the cavity forming portion 15, and the cooling hole 16 is disposed in the cavity forming portion 15. The main body portion 14 is provided with a gas flow path 17 connected to the rib forming region 13a, the boss forming region 13b, and the protrusion forming region 13c.
The gas flow path 17 has a connecting portion for each of the rib forming region 13a, the boss forming region 13b, and the protrusion forming region 13c in the cavity forming portion 15, and the gas discharge structure 1 is disposed in each of the connecting portions.
 射出成形金型10によれば、射出成形金型10に組み込まれるガス排出構造体1には、樹脂圧に耐える強度と、量産全期間にわたって、樹脂の1方向流れの末端付近や対向流の合流位置付近において、キャビティー内のガスを容易に排出することを可能とする高い開口率を有し、また組立や位置決めなどの作業を不要とするため締結ボルトや位置決めピンを有しない一体構造であること、更にガス残滓堆積を防止するためガス流路17は直線状で段差がないことなどを同時に満たすことが可能となる。
 すなわちリブ形成領域13a、ボス形成領域13b、突起形成領域13cを含めたキャビティ13内のガスを樹脂の充填に伴い、各形成領域に連結したガス排出構造体1およびガス流路17を通じて、スムーズに排出することが可能となり、リブ形成領域13a、ボス形成領域13b、突起形成領域13cに樹脂を100%充填させることができる。
According to the injection mold 10, the gas discharge structure 1 incorporated in the injection mold 10 has a strength that can withstand the resin pressure, and the end of the one-way flow of the resin and the confluence of the counter flow over the entire mass production period. In the vicinity of the position, it has a high opening ratio that allows the gas in the cavity to be easily discharged, and it is an integrated structure that does not have fastening bolts or positioning pins to eliminate work such as assembly and positioning. In addition, in order to prevent gas residue accumulation, it is possible to simultaneously satisfy that the gas flow path 17 is linear and has no step.
That is, the gas in the cavity 13 including the rib forming region 13a, the boss forming region 13b, and the protrusion forming region 13c is smoothly filled with the resin through the gas discharge structure 1 and the gas flow path 17 connected to each forming region. Thus, the rib forming region 13a, the boss forming region 13b, and the protrusion forming region 13c can be filled with 100% resin.
 上記金型を用いて射出成形を行なう樹脂は、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリブチレレン-エチレンテレフタレート(PBT-PET共重合樹脂)、ポリエーテル・エーテルケトン(PEEK樹脂)、ポリフェニレンサルファイド(PPS)、ポリエーテルイミド(PEI)、6ナイロン(PA6)、6-6ナイロン(PA66)、6Tナイロン(PA6T)、ポリフタルアミド(PPA)、ポリスチレン(PS)、ABS樹脂(ABS)、塩化ビニル樹脂(PVC)、ポリアセタール(POM)、液晶ポリマー(LCP)、ポリサルホン(PSU)、ポリプロピレン(PP)、ポリカーボネート(PC)、等の熱可塑性樹脂である。これらを単独又は混合して用いることができる。また、フェノール樹脂(PF)、エポキシ樹脂(EP)、ジ
アリルフタレート樹脂(PDAP)、シリコーン樹脂(SI)、ポリイミド樹脂(PI)、メラミン樹脂(MF)、ユリア樹脂(UF)等の熱硬化性樹脂である。これらの熱可塑性樹脂ならびに熱硬化性樹脂に、耐熱性や寸法安定性を向上させる目的で、炭素繊維、ガラス繊維、ガラスビーズ、タルク等の無機充填材を適宜配合してもよい。またセルロースナノファイバー等の有機充填剤を適宜配合しても良い。



Resins for injection molding using the above molds are polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polybutylene-ethylene terephthalate (PBT-PET copolymer resin), polyether ether ketone (PEEK resin), polyphenylene. Sulfide (PPS), polyetherimide (PEI), 6 nylon (PA6), 6-6 nylon (PA66), 6T nylon (PA6T), polyphthalamide (PPA), polystyrene (PS), ABS resin (ABS), Thermoplastic resins such as vinyl chloride resin (PVC), polyacetal (POM), liquid crystal polymer (LCP), polysulfone (PSU), polypropylene (PP), and polycarbonate (PC). These can be used alone or in combination. Thermosetting resins such as phenol resin (PF), epoxy resin (EP), diallyl phthalate resin (PDAP), silicone resin (SI), polyimide resin (PI), melamine resin (MF), urea resin (UF) It is. In order to improve heat resistance and dimensional stability, inorganic fillers such as carbon fibers, glass fibers, glass beads, and talc may be appropriately blended with these thermoplastic resins and thermosetting resins. Moreover, you may mix | blend organic fillers, such as a cellulose nanofiber suitably.



 以下のようにして図8に示すガス排出構造体1を作成し、これを用いた射出成形金型10によって樹脂成形を行った。
 L21.6mm×W10.1mm×t0.2mmのSUS板のL21.6mm、W10.1mmの一面に、L21.6mmの両端から各1.0mm離し、溝間を等間隔にL0.4mmとして、L3.6mm×D0.025mmの矩形溝4をエッチング加工により5カ所繰り返して設けた。同様に溝加工した単位薄板2を矩形溝4の方向と外形を揃えて45枚重ね、更にその長手両側面に、L21.6mm×W10.1mm×t0.5mmの補強用SUS板を重ね、47枚の薄板からなる積層品である薄板積層品を構成した。その後、47枚の薄板積層品を拡散接合を利用してL21.6mm×W10.1mm×H10mmの一体構成品とした。この一体構成品であるガス排出構造体1をL21.6mm×H10
mmの方向から見ると、L3.6mm×D0.025mmの矩形溝4が、H10mm方向
ピッチ0.2mm、L21.6mm方向ピッチ4.0mmの等間隔に、L21.6mm×H10mmの裏面に貫通して、225個形成された。結果、約9.4%の高い開口率と、奥行き方向に段差のないガス抜き矩形穴8と、耐成形圧力用の補強桟9などを有し、ボルト締結や位置決めピンを不要とする一体構造を形成するガス排出構造体1を実現できた。
The gas discharge structure 1 shown in FIG. 8 was prepared as follows, and resin molding was performed with an injection mold 10 using the gas discharge structure 1.
L21.6mm × W10.1mm × t0.2mm SUS plate L21.6mm, W10.1mm on one surface, 1.0mm away from both ends of L21.6mm, and the groove spacing is set to L0.4mm at equal intervals. A rectangular groove 4 of 6 mm × D 0.025 mm was repeatedly provided at five locations by etching. Similarly, 45 unit thin plates 2 having the same groove shape and outer shape are overlapped, and L21.6 mm × W10.1 mm × t0.5 mm reinforcing SUS plates are overlapped on both longitudinal sides of the unit thin plate 2. A thin plate laminate, which is a laminate consisting of a single thin plate, was constructed. After that, 47 thin plate laminates were made into an integral component of L21.6 mm × W10.1 mm × H10 mm using diffusion bonding. The gas discharge structure 1 as an integrated component is L21.6 mm × H10.
When viewed from the direction of mm, the rectangular groove 4 of L3.6 mm × D0.025 mm penetrates the back surface of L21.6 mm × H10 mm at equal intervals of H10 mm direction pitch 0.2 mm and L21.6 mm direction pitch 4.0 mm. 225 pieces were formed. As a result, it has a high opening ratio of about 9.4%, a gas vent rectangular hole 8 with no step in the depth direction, a reinforcing bar 9 for molding pressure resistance, etc., and an integrated structure that eliminates the need for bolt fastening or positioning pins The gas discharge structure 1 which forms can be realized.
 ガス排出構造体1を用い射出成形金型10によって樹脂成形を行い得られた成形品を図9に示す。またガス排出構造体1を用いない射出成形金型によって得られた成形品を比較例として図10に示す。
 得られた成形品は自動車外装部品であり、その成形品重量は580grであった。樹脂材料としてポリプロピレン(黒色着色)を用い、型締力1250トンの成形機を使用した。
金型は3点ホットランナーゲートを用いた。成形条件は樹脂温度220℃、金型温度30℃、射出速度25%(スクリュー径φ105mm)とした。
図10に示す比較例では入れ駒線の端面に設けたガス抜き溝範囲Aは0.03mm×60mmの大きさであったが、樹脂合流位置とガス抜き用金型入れ駒位置が異なり、ガスの抜けが悪くこの位置にガスが集まり、充填不良が発生した。
 これに対し図9に示す実施例ではガス排出構造体1(W10×L21.6)を2個配置した結果、成形時に、樹脂合流位置Cが4mm範囲で変動したが、ガス排出ブロック内に納まり、ガスが抜け、樹脂充填不良が解消した。
FIG. 9 shows a molded product obtained by resin molding with the injection mold 10 using the gas discharge structure 1. FIG. 10 shows a molded product obtained by an injection mold without using the gas discharge structure 1 as a comparative example.
The obtained molded product was an automobile exterior part, and the molded product weight was 580 gr. Polypropylene (black coloring) was used as the resin material, and a molding machine having a clamping force of 1250 tons was used.
A three-point hot runner gate was used as the mold. The molding conditions were a resin temperature of 220 ° C., a mold temperature of 30 ° C., and an injection speed of 25% (screw diameter φ105 mm).
In the comparative example shown in FIG. 10, the gas vent groove range A provided on the end face of the insert piece wire was 0.03 mm × 60 mm in size, but the resin merging position and the degassing die insert piece position are different. The gas was collected at this position and the filling failure occurred.
On the other hand, in the embodiment shown in FIG. 9, as a result of arranging two gas discharge structures 1 (W10 × L21.6), the resin joining position C fluctuated in the range of 4 mm during molding, but it fits in the gas discharge block. The gas escaped and the resin filling defect was solved.
 以下に本発明のガス排出構造体の製造プロセスの各種態様につき図面を参照して説明する。単位薄板2の一定幅と一定深さを有し貫通する矩形溝4及びその複数の矩形溝4を介して平面部から突出する一定高さの複数の突出部5はフォトエッチング及びフライス加工及び研削加工及び型彫り放電加工及びワイヤカット放電加工のうちの一以上の工程により形成することができる。 Hereinafter, various aspects of the manufacturing process of the gas discharge structure of the present invention will be described with reference to the drawings. A rectangular groove 4 that penetrates the unit thin plate 2 with a certain width and a certain depth and a plurality of protruding parts 5 that protrude from the flat surface through the plurality of rectangular grooves 4 are photo-etched, milled and ground. It can be formed by one or more processes of machining, die-sinking electric discharge machining, and wire cut electric discharge machining.
 フライス加工を適用する場合には図11に示す様に高速で回転するフライス加工用ドリル18を用いて単位薄板2の片側平面3の切削を行う。単位薄板2は図示しないテーブルの上に固定されており、フライス加工用ドリル18はZ方向(上下)に移動し、テーブルをX-Y方向(前後左右)に移動させて加工する。 When applying milling, as shown in FIG. 11, the one side plane 3 of the unit thin plate 2 is cut using a milling drill 18 that rotates at high speed. The unit thin plate 2 is fixed on a table (not shown), and the milling drill 18 moves in the Z direction (up and down), and moves the table in the XY direction (front and rear, left and right) for processing.
 研削加工を適用する場合には図12に示す様に高速で回転している研削加工用砥石19を用いて、その砥石19を構成するきわめて硬く微細な砥粒によって単位薄板2を削り取ってゆき所定の形状に成形する。 When applying the grinding process, as shown in FIG. 12, a grinding wheel 19 rotating at a high speed is used, and the unit thin plate 2 is scraped off by extremely hard and fine abrasive grains constituting the grinding wheel 19. Mold to the shape of
 型彫り放電加工を適用する場合には図13に示す様に、加工液20中で、電極21と単位薄板2との間で、一秒間に1000~10万回の火花を断続的に飛ばして、その熱で金属を溶かして電極21の形状を単位薄板2に彫るように加工する。 When applying the die-sinking electric discharge machining, as shown in FIG. 13, 1000 to 100,000 sparks are intermittently blown in the machining liquid 20 between the electrode 21 and the unit thin plate 2 per second. Then, the metal is melted by the heat so that the shape of the electrode 21 is carved into the unit thin plate 2.
 ワイヤ放電加工を適用する場合には図14に示す様に加工液20中で、ワイヤー電極22と単位薄板2との間の電気火花放電の熱で金属を溶かして単位薄板2にワイヤー電極22の移動軌跡23に応じた形状に彫るように加工する。 When applying the wire electric discharge machining, as shown in FIG. 14, the metal is melted in the machining liquid 20 by the electric spark discharge heat between the wire electrode 22 and the unit thin plate 2 to form the wire electrode 22 on the unit thin plate 2. It is processed so as to be carved into a shape corresponding to the movement locus 23.
 以下に本発明の他の実施の形態のガス排出構造体につき図面を参照して説明する。
 図15、図16に示すガス排出構造体1は上面にツバ1a付きのものとされる。このツバ1aを有することによって射出成形金型10に組込んだ後の抜け防止を図ることができる。ツバ1aは例えば図8に示すガス排出構造体1の上面部分をワイヤカット放電加工、フライス加工、研削加工などで除去する加工を行うことで形成する。
 図17、図18に示すガス排出構造体1は両側部にツバ1bを有するものとされる。ツバ1bも射出成形金型10に組込んだ後の抜け防止を図ることができワイヤカット放電加工、フライス加工、研削加工などで所要の部分を除去する加工を行うことで形成する。
The gas discharge structure according to another embodiment of the present invention will be described below with reference to the drawings.
The gas discharge structure 1 shown in FIGS. 15 and 16 has a flange 1a on the upper surface. By having this flange 1a, it is possible to prevent the product from coming off after being assembled into the injection mold 10. The collar 1a is formed, for example, by performing processing for removing the upper surface portion of the gas discharge structure 1 shown in FIG. 8 by wire-cut electric discharge machining, milling, grinding, or the like.
The gas discharge structure 1 shown in FIGS. 17 and 18 has flanges 1b on both sides. The flange 1b can also be prevented from coming off after being incorporated into the injection mold 10, and is formed by performing a process of removing a required portion by wire-cut electric discharge machining, milling, grinding, or the like.
1・・・ガス排出構造体、2・・・単位薄板、4・・・矩形溝、5・・・突出部、8・・
・矩形穴、6・・・平面、7・・・頂部平面。
DESCRIPTION OF SYMBOLS 1 ... Gas discharge structure, 2 ... Unit thin plate, 4 ... Rectangular groove, 5 ... Projection part, 8 ...
-Rectangular hole, 6 ... plane, 7 ... top plane.

Claims (4)

  1. 薄片の片側平面に矩形溝を複数設け、その複数の矩形溝を介して複数の突出部を設けてなる単位薄板を、前記矩形溝及び前記突出部の方向を揃えて複数積層し、前記矩形溝及び前記突出部を有する面とは反対側の平面と前記突出部の頂部平面とを接合一体化してなり、複数の矩形穴と補強桟とからなることを特徴とするガス排出構造体。 A plurality of unit thin plates in which a plurality of rectangular grooves are provided on one side plane of the thin piece and a plurality of projecting portions are provided through the plurality of rectangular grooves are laminated in a direction in which the directions of the rectangular grooves and the projecting portions are aligned. A gas discharge structure comprising a plurality of rectangular holes and reinforcing bars formed by joining and integrating a plane opposite to the surface having the projections and a top plane of the projections.
  2. 前記単位薄板の矩形溝及びその矩形溝を介して並列する突出部はフォトエッチング及びフライス加工及び研削加工及び型彫り放電加工及びワイヤカット放電加工のうちの一以上により形成されてなる請求項1記載のガス排出構造体。 2. The rectangular groove of the unit thin plate and the protruding portion arranged in parallel through the rectangular groove are formed by one or more of photoetching, milling, grinding, die-sinking electric discharge machining, and wire cut electric discharge machining. Gas exhaust structure.
  3. 前記矩形溝及び突出部を有する面と反対側の平面と前記突出部の頂部平面とを拡散接合によって接合してなる請求項1又は請求項2記載のガス排出構造体。 The gas discharge structure according to claim 1 or 2, wherein a plane opposite to the surface having the rectangular groove and the protruding portion and a top plane of the protruding portion are joined by diffusion bonding.
  4. 薄片の片側平面に、矩形溝を複数設け、その複数の矩形溝を介して並列する複数の突出部を設けてなる単位薄板を、矩形溝及び突出部を有する面の突出部の頂部平面と矩形溝及び突出部を有する面と反対側の平面とを矩形溝及び突出部の方向を揃えて接合一体化して複数積層して矩形穴と補強桟とからなるガス排出構造体が成形面の一部を構成するように金型本体へ嵌め込んだことを特徴とする射出成形金型。

     
    A unit thin plate formed by providing a plurality of rectangular grooves on one side plane of the thin piece and providing a plurality of projecting portions arranged in parallel through the plurality of rectangular grooves, the top flat surface of the projecting portion of the surface having the rectangular grooves and projecting portions and the rectangular shape A gas discharge structure comprising a rectangular hole and a reinforcing bar is partly formed by laminating and integrating a plurality of flat surfaces on the opposite side of the surface having the grooves and the protrusions by aligning the directions of the rectangular grooves and the protrusions. An injection mold characterized by being fitted into the mold main body so as to constitute.

PCT/JP2017/015649 2015-07-22 2017-04-19 Gas-discharging structure and injection molding die WO2017183647A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015144587 2015-07-22
JP2016-085127 2016-04-21
JP2016085127A JP7241453B2 (en) 2015-07-22 2016-04-21 Gas exhaust structure and injection mold

Publications (1)

Publication Number Publication Date
WO2017183647A1 true WO2017183647A1 (en) 2017-10-26

Family

ID=57834408

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/071099 WO2017014208A1 (en) 2015-07-22 2016-07-19 Gas discharging structure and injection mold
PCT/JP2017/015649 WO2017183647A1 (en) 2015-07-22 2017-04-19 Gas-discharging structure and injection molding die

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071099 WO2017014208A1 (en) 2015-07-22 2016-07-19 Gas discharging structure and injection mold

Country Status (2)

Country Link
JP (1) JP7241453B2 (en)
WO (2) WO2017014208A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019123118A (en) * 2018-01-15 2019-07-25 トヨタ車体株式会社 Injection molding die

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109016397B (en) * 2018-07-16 2020-09-01 宁波利安科技股份有限公司 Injection mold convenient to exhaust and capable of improving injection molding quality
CN110001011B (en) * 2019-04-16 2024-03-08 上饶师范学院 Multi-layer porous external air auxiliary injection mould
CN113245525B (en) * 2021-07-07 2021-09-07 南通科美自动化科技有限公司 High-exhaust type die-casting die for integrated lamp shell
JP7182345B1 (en) * 2021-07-27 2022-12-02 パンチ工業株式会社 Molded die parts and method for manufacturing molded die parts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144787Y1 (en) * 1966-10-20 1976-10-29
JPS5287670U (en) * 1975-12-26 1977-06-30
JPH07178783A (en) * 1993-12-24 1995-07-18 Sekisui Chem Co Ltd Injection molding apparatus and method
JP2006264163A (en) * 2005-03-24 2006-10-05 Sekiso Kanagata Kenkyusho:Kk Vacuum forming mold and its manufacturing method
JP2009000713A (en) * 2007-06-21 2009-01-08 Aronshiya:Kk Diffusion bonding article and its manufacturing method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081300A (en) * 1994-06-14 1996-01-09 Mitsui Eng & Shipbuild Co Ltd Metal mold material and its production
JPH08257674A (en) * 1995-03-22 1996-10-08 Shinwa Shokai:Kk Manufacture of material for constituting permeable die
JPH105968A (en) * 1996-06-14 1998-01-13 Toyota Motor Corp Gas-venting structure in mold
JP2002067041A (en) * 2000-09-01 2002-03-05 Aiotec:Kk Gas evacuating component for mold for molding
JP2003103344A (en) * 2001-09-28 2003-04-08 Asahi Tec Corp Manufacturing method for molding mold and molding mold manufactured thereby
JP2003133500A (en) * 2001-10-24 2003-05-09 Apic Yamada Corp Lead frame and method for sealing with resin by using the same
JP3953943B2 (en) 2002-11-18 2007-08-08 新神戸電機株式会社 Resin mold
JP2005074633A (en) * 2003-08-29 2005-03-24 Mitsubishi Materials Corp Injection mold
JP2006327101A (en) * 2005-05-27 2006-12-07 Toyota Motor Corp Deaeration core and shaping mold
JP5144911B2 (en) * 2006-09-12 2013-02-13 アピックヤマダ株式会社 Resin molding method
JP2011235622A (en) * 2010-05-08 2011-11-24 Pla Moul Seiko Co Ltd Gas venting square core pin in injection molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144787Y1 (en) * 1966-10-20 1976-10-29
JPS5287670U (en) * 1975-12-26 1977-06-30
JPH07178783A (en) * 1993-12-24 1995-07-18 Sekisui Chem Co Ltd Injection molding apparatus and method
JP2006264163A (en) * 2005-03-24 2006-10-05 Sekiso Kanagata Kenkyusho:Kk Vacuum forming mold and its manufacturing method
JP2009000713A (en) * 2007-06-21 2009-01-08 Aronshiya:Kk Diffusion bonding article and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019123118A (en) * 2018-01-15 2019-07-25 トヨタ車体株式会社 Injection molding die

Also Published As

Publication number Publication date
JP2017024393A (en) 2017-02-02
WO2017014208A1 (en) 2017-01-26
JP7241453B2 (en) 2023-03-17

Similar Documents

Publication Publication Date Title
WO2017183647A1 (en) Gas-discharging structure and injection molding die
EP1448350B1 (en) Form tool for producing particle foam moulded parts
EP3291991B1 (en) Printhead
CN106183427B (en) The manufacturing method and manufacturing equipment of liquid supplying member
US9764554B2 (en) Method for manufacturing molded member and liquid ejecting head, liquid ejecting head, and mold
KR102056479B1 (en) Slot-die performing multi-coating
JP6963286B2 (en) Mold equipment and resin molding method
JP6709648B2 (en) Electrodialysis machine
EP3362291A1 (en) Printhead
JP6723787B2 (en) Gas discharge structure and method for manufacturing gas discharge structure
JP6366352B2 (en) Transfer molding method, transfer molding apparatus and molded product
JP2004167714A (en) Mold for molding resin
JP2008221801A (en) Mold component member and its manufacturing method
US9969167B2 (en) Liquid ejection head and method for manufacturing the same
JP2009072935A (en) Manufacturing method of perforated plate made of synthetic resin
JP6952837B2 (en) Gas discharge structure and manufacturing method of gas discharge structure
US7934795B2 (en) Ink jet recording head and ink jet recording apparatus
JP6702772B2 (en) Liquid supply member manufacturing method and manufacturing apparatus
KR100845275B1 (en) Structure of an extruding die for an extruding forming panel
DE102015112527A1 (en) Apparatus and method for pouring a ring-shaped plastic frame into a recess of a rotor disk of a double-side processing machine
WO2015185250A1 (en) Housing, method for producing a housing, and injection moulding device for producing a housing
CN219445950U (en) Flow passage controllable mould blank assembly
KR100886829B1 (en) Gas Discharge Block For Mold
US20140170258A1 (en) Injection mold with gate insert defining inclined gate
JP2009034893A (en) Urethane molding die

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785985

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785985

Country of ref document: EP

Kind code of ref document: A1