WO2017183640A1 - SHEET-LIKE HEMOSTATIC MATERIAL EMPLOYING POLY-γ-GLUTAMIC ACID, AND METHOD OF MANUFACTURING SAME - Google Patents

SHEET-LIKE HEMOSTATIC MATERIAL EMPLOYING POLY-γ-GLUTAMIC ACID, AND METHOD OF MANUFACTURING SAME Download PDF

Info

Publication number
WO2017183640A1
WO2017183640A1 PCT/JP2017/015604 JP2017015604W WO2017183640A1 WO 2017183640 A1 WO2017183640 A1 WO 2017183640A1 JP 2017015604 W JP2017015604 W JP 2017015604W WO 2017183640 A1 WO2017183640 A1 WO 2017183640A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
adhesive layer
hemostatic material
pga
sponge
Prior art date
Application number
PCT/JP2017/015604
Other languages
French (fr)
Japanese (ja)
Inventor
友亮 中村
吉克 菅原
和久 松田
Original Assignee
ニプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016084552A external-priority patent/JP2017192560A/en
Priority claimed from JP2017078019A external-priority patent/JP2017196406A/en
Application filed by ニプロ株式会社 filed Critical ニプロ株式会社
Priority to US16/095,317 priority Critical patent/US20190134260A1/en
Priority to EP17785978.2A priority patent/EP3446719A4/en
Priority to EP20182793.8A priority patent/EP3733218A1/en
Publication of WO2017183640A1 publication Critical patent/WO2017183640A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/26Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/32Proteins, polypeptides; Degradation products or derivatives thereof, e.g. albumin, collagen, fibrin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/56Wetness-indicators or colourants

Definitions

  • the present invention relates to a sheet-like hemostatic material using poly- ⁇ -glutamic acid that can be suitably used for local hemostasis, and a method for producing the sheet-like hemostatic material.
  • the sheet-like hemostatic material is configured by molding a medical material that can be decomposed in a living body into a sheet shape.
  • the materials used for the sheet-like hemostatic material are typically animal protein-derived materials (animal materials), polysaccharide-derived materials (polysaccharide materials), and synthetic polymer-derived materials (polymer materials). Etc. Animal materials typically include fibrin, collagen, etc., polysaccharide materials typically include cellulose-based and starch-based materials, and polymer materials include polyacrylic acid-based materials. Are known.
  • Taco Seal As a typical sheet-like hemostatic material that is commercially available, “Taco Seal” (registered trademark, CSL Behring Co., Ltd.) using animal materials, and “Surge Cell” (registered trademark, Johnson End Johnson, Inc.) is known.
  • Taco seal is a slightly hard sponge-like sheet containing human-derived fibrinogen and thrombin, and has high adhesive strength and excellent hemostatic performance.
  • Surge cells are made of regenerated oxidized cellulose derived from wood pulp, and include gauze type, cotton type, and knit type (new knit). In particular, the knit type is suitably used as a sheet-like hemostatic material.
  • the sheet-like hemostatic material described in these patent documents is a fiber molded body composed of biodegradable polymer fibers such as polylactic acid, a sheet on which fibrinogen is immobilized, and fiber molding composed of biodegradable polymer fibers, It consists of a sheet on which thrombin is fixed.
  • fibrinogen and thrombin By holding fibrinogen and thrombin on separate fiber molded bodies, hemostasis is improved.
  • Patent Document 1 By changing the density of the bulk density of the fiber molded body (Patent Document 1), or by forming a fiber molded body by combining fiber structure layers having different bulk densities (Patent Document 2), The flexibility of the fiber molded body is improved.
  • a trocar In laparoscopic surgery, an instrument having a cylindrical portion called a trocar is first inserted into the abdomen, and a laparoscope and a surgical instrument are inserted into the trocar. Since the operative field (the site to be operated on) taken with the laparoscope is enlarged and displayed on the monitor, the surgeon performs the operation using the surgical instrument while observing the monitor. Since the inner diameter of the trocar is usually about 5 to 12 mm, the sheet-like hemostatic material is required to be flexible enough to be folded or rolled so that it can be inserted into such a small hole. In addition, a surgical instrument used for laparoscopic surgery is operated in a small space in the abdominal cavity via a trocar. Therefore, the sheet-like hemostatic material is also required to have good handleability.
  • the above-mentioned octopus seal has good hemostatic performance, it has a slightly hard sponge shape as described above, and is not flexible enough to be inserted into a trocar.
  • the sheet-like hemostatic material disclosed in Patent Documents 1 and 2 together with the octopus seal contains fibrinogen. Fibrinogen becomes fibrin by the action of thrombin, and this fibrin reacts biochemically to realize hemostasis. Therefore, the sheet-like hemostatic material containing fibrinogen is firmly fixed once applied within the abdominal cavity, and it becomes difficult to peel off and reattach.
  • the surge cell new knit described above is an oxidized cellulose-based hemostatic material, is more flexible than octopus seal, and does not use fibrinogen, so it is not firmly attached.
  • the surge cell achieves hemostasis by contacting with blood to form a gelatinous clot. Therefore, after pasting on the hemostatic site, it is necessary to hold down for several minutes until a clot is formed. Therefore, it can hardly be said that the surge cell new knit has sufficient handleability for use in laparoscopic surgery.
  • the fibrinogen-based sheet hemostatic material is a preparation (blood preparation) using human-derived components, there is a risk of infectious diseases and the like. Therefore, in use, it is necessary to exchange risk explanations and consent forms with humans (patients) for being human-derived products (blood products). Furthermore, since fibrinogen is a reactive protein and thrombin is an enzyme, it needs to be stored at a low temperature of 10 ° C. or less in the case of tachoseal. Although the main component of the surge cell is oxidized cellulose, it must be stored at 25 ° C. or lower. Therefore, it is difficult to say that any of the commercially available sheet-like hemostatic materials that are commercially available have sufficient handling properties in terms of restrictions on transportation and storage.
  • the present invention has been made to solve such problems, and in a sheet-like hemostatic material, realizes a good hemostatic performance without the need to use fibrinogen, and also realizes a good flexibility and handleability.
  • the purpose is to do.
  • the sheet-like hemostatic material according to the present invention is configured to include an adhesive layer that is provided on the attachment surface to the bleeding site and is composed of at least poly- ⁇ -glutamic acid.
  • the adhesive surface of the sheet-like hemostatic material is an adhesive layer composed of poly- ⁇ -glutamic acid ( ⁇ -PGA)
  • animal material such as fibrinogen is added by ⁇ -PGA of the adhesive layer.
  • ⁇ -PGA has good adhesiveness without causing a biochemical reaction, for example, even when a hemostatic material cannot be applied at an appropriate position, Unlike a hemostatic material, it can be re-applied to a living tissue.
  • the sheet-like hemostatic material having the above structure further includes a coating layer provided on the opposite surface of the sticking surface and made of at least one biodegradable material excluding the poly- ⁇ -glutamic acid. And the structure that at least one of the said coating layers is a single sheet
  • an adhesive layer made of poly- ⁇ -glutamic acid ( ⁇ -PGA) is provided on the affixing surface, and a biodegradability other than ⁇ -PGA is provided on the non-affixing surface.
  • a coating layer made of a material (coating material) is provided. Therefore, ⁇ -PGA of the adhesive layer can realize good adhesion to living tissue and good hemostatic performance without using animal materials such as fibrinogen, and the coating material of the coating layer It is possible to effectively suppress the sheet-like hemostatic material from inadvertently adhering to a tissue or a surgical instrument other than the pasted portion.
  • the adhesive layer and the coating layer can function as a base material for the sheet-like hemostatic material. Furthermore, since the adhesive layer is ⁇ -PGA, it is possible to store at room temperature for a long period of time as compared with a conventional sheet-like hemostatic material by appropriately selecting a coating material to be a coating layer.
  • the adhesive layer when the adhesive layer is the single sheet, the adhesive layer may be a sponge-like sheet.
  • the adhesive layer when the adhesive layer is a partial layer that is not the single sheet, the adhesive layer is a sponge-like sheet composed of at least poly- ⁇ -glutamic acid, or non- It may be a porous layer.
  • the adhesive layer if the adhesive layer is sponge-like or the adhesive layer is a non-porous partial layer, the adhesive layer can achieve moderate flexibility or good flexibility.
  • the covering layer can also realize flexibility, it is possible to realize good flexibility as the sheet-like hemostatic material. Therefore, even if the sheet-like hemostatic material is rolled or bent, the hemostatic material can be effectively prevented from being damaged.
  • it since it has the characteristic of favorable softness
  • the coating layer may be a sponge-like sheet composed of at least crosslinked collagen.
  • both the adhesive layer and the coating layer are a single sheet, or the coating layer is a partial layer partially provided on the opposite surface. It may be a configuration.
  • the adhesive layer and the coating layer may be configured such that at least a part thereof has a different color.
  • the sheet-like hemostatic material having the above-described configuration may be configured such that the weight ratio of the adhesive layer is within a range of 10 to 90% by weight of the total weight of the sheet-like hemostatic material.
  • the sheet-like hemostatic material having the above-described structure further includes at least one intermediate layer interposed between the adhesive layer and the coating layer, and these layers are integrally fixed. Also good.
  • the method for producing a sheet hemostatic material according to the present invention includes a first layered body composed of at least poly- ⁇ -glutamic acid, and at least excluding the poly- ⁇ -glutamic acid.
  • a step of laminating a second layered body composed of one kind of biodegradable material to form a layered body, and an adhesion composed of at least poly- ⁇ -glutamic acid by bonding or pressure-bonding the layered body And a step of forming a sheet-like hemostatic material comprising a layer and a coating layer composed of the biodegradable material.
  • the first layered body is a first sponge-like porous body composed of at least poly- ⁇ -glutamic acid, and pressure is applied to the first sponge-like porous body.
  • the second layered body is a second sponge-like porous body composed of the biodegradable material, a sponge-like second sheet obtained by applying pressure to the second sponge-like porous body, or
  • seat may be sufficient.
  • the second sponge-like porous body is pressurized to form the sponge-like second sheet, and then laminated on the first sponge-like porous body.
  • bonding may be sufficient.
  • another sheet-like hemostatic material according to the present invention is configured to include, as an adhesive layer, a sheet made of at least poly- ⁇ -glutamic acid and further added with saccharides in order to solve the above-described problems.
  • the adhesive layer is composed of a sheet containing poly- ⁇ -glutamic acid ( ⁇ -PGA) as a main component and added with saccharides.
  • ⁇ -PGA poly- ⁇ -glutamic acid
  • a ⁇ -PGA sheet substantially composed only of ⁇ -PGA is not flexible and will be damaged when it is deformed.
  • a ⁇ -PGA sheet containing saccharides exhibits good flexibility. Can do. Therefore, ⁇ -PGA of the adhesive layer can realize good adhesion to living tissue and good hemostatic performance without using animal material such as fibrinogen, and can also roll sheet-like hemostatic material. Even if it bends, damage to the adhesive layer can be effectively suppressed.
  • ⁇ -PGA has good adhesiveness without causing a biochemical reaction, it can be reattached to a living tissue as compared with a conventional sheet-like hemostatic material.
  • the adhesive layer is ⁇ -PGA, it can be stored for a long time at room temperature as compared with a conventional sheet-like hemostatic material. That is, according to the said structure, since it has the characteristic of favorable softness
  • the saccharide may be a monosaccharide, an oligosaccharide, or a polysaccharide.
  • the saccharide may be added so as to be in the range of 10 to 90% by weight with respect to the total weight of the sheet.
  • the sheet-like hemostatic material having the above-described structure may further have a structure in which collagen is added to the sheet.
  • the present invention also includes a sheet-like hemostatic material comprising at least a sheet made of poly- ⁇ -glutamic acid and further having collagen added thereto as an adhesive layer.
  • the method for producing a sheet hemostatic material according to the present invention includes adding at least one of saccharides and collagen to poly- ⁇ -glutamic acid and forming the sheet into a sheet shape. It is the structure including the process of forming.
  • FIG. 1A and 1B are schematic cross-sectional views illustrating a schematic structure of a sheet-like hemostatic material according to Embodiment 1 of the present disclosure.
  • 2A, 2B, and 2C are schematic cross-sectional views showing modifications of the sheet-like hemostatic material according to Embodiment 1.
  • FIG. 3A, FIG. 3B, and FIG. 3C are schematic plan views showing an example of the surface opposite to the application surface of the sheet-like hemostatic material shown in FIG. 2A.
  • the sheet hemostatic material according to the present disclosure is configured using at least poly- ⁇ -glutamic acid. Specifically, it is provided on the surface to be attached to the bleeding site and has an adhesive layer composed of at least poly- ⁇ -glutamic acid, at least composed of poly- ⁇ -glutamic acid, and further added with saccharides The thing of the structure provided with a sheet
  • the sheet-like hemostatic material having each configuration will be specifically described.
  • the sheet-like hemostatic material according to the present disclosure may be provided with an adhesive layer that is provided on the attachment surface to the bleeding site and includes at least poly- ⁇ -glutamic acid, but preferably, in addition to the adhesive layer, A coating layer formed on at least one of the biodegradable materials excluding the poly- ⁇ -glutamic acid, and at least one of the adhesive layer and the coating layer is a single layer. Any configuration that is a single sheet may be used.
  • a typical embodiment of the present disclosure will be specifically described.
  • FIG. 1A or FIG. 1B schematically shows a cross-sectional structure of a sheet-like hemostatic material 10A or 10B as a representative example of the sheet-like hemostatic material according to the present disclosure.
  • 2A to 2C schematically show cross-sectional structures of sheet-like hemostatic materials 10C to 10E as other examples of the sheet-like hemostatic material according to the present disclosure.
  • These sheet-like hemostatic materials 10A to 10E are provided with an adhesive layer 11 and a coating layer 12.
  • the adhesive layer 11 may be a sheet containing poly- ⁇ -glutamic acid ( ⁇ -PGA) as a main component.
  • ⁇ -PGA poly- ⁇ -glutamic acid
  • the adhesive layer 11 is a sponge-like (porous) sheet, or as shown in FIG. Any non-sponge-like non-porous shape may be used as long as it is a partial layer described later.
  • the coating layer 12 may be a sheet mainly composed of a biodegradable material other than ⁇ -PGA. In the present embodiment, as will be described later, the coating layer 12 is a sponge sheet mainly composed of crosslinked collagen. . In the following description, biodegradable materials other than ⁇ -PGA are referred to as “coating materials” for convenience.
  • the adhesive layer 11 constitutes an affixing surface (back surface) for adhering the sheet-like hemostatic materials 10A to 10E to bleeding sites such as living tissue, and has good adhesion to living tissue.
  • the adhesive layer 11 may be provided as a single layer covering the entire surface of the pasting surface, or as shown in FIG. 2B or FIG. It may be provided as a partial layer to be formed.
  • the covering layer 12 is provided on at least a part of the opposite surface (surface) that is the opposite side of the application surface when the sheet-like hemostatic material 10A is applied to the bleeding site.
  • the covering layer 12 may be provided as a single layer covering the entire opposite surface as shown in FIG. 1A or 1B, or as a partial layer partially covering the opposite surface as shown in FIG. 2A. May be.
  • the cover layer 12 is a single layer or a partially covered structure, unlike the adhesive layer 11, it does not have adhesiveness to a living tissue or the like, or has a sufficiently lower adhesiveness than the adhesive layer 11. It has become.
  • the coating layer 12 only needs to be configured so that the opposite surface of the adhesive layer 11 can be a “non-adhesive surface”.
  • the covering layer 12 has a function of covering the other surface and suppressing the adhesiveness so that only one surface of the sheet hemostatic materials 10A to 10E becomes the pasting surface.
  • the adhesive layer 11 is a sponge-like sheet composed of ⁇ -PGA in the case of the sheet-like hemostatic materials 10A to 10D shown in FIG. 1A, FIG. 1B, FIG. 2A or FIG. Any sheet may be used as long as it is made of a coating material, and at least it can exhibit flexibility when the sheet-like hemostatic materials 10A to 10E are formed.
  • the covering layer 12 is also preferably a sponge-like sheet made of a covering material. If the coating layer 12 is a sponge-like sheet, it is possible to impart good flexibility to the coating layer 12 regardless of the specific type of coating material.
  • the sponge sheet may be a flexible porous sheet, and its specific configuration is not particularly limited.
  • the specific structure of the sponge is a porous material in which compartments having a large number of gaps (such as pores or vacuoles) of uniform or non-uniform size are dispersed continuously or discontinuously as determined visually or under a microscope. Can be mentioned (porous body).
  • the non-sponge-like non-porous layer or sheet is integrally formed into a sheet shape or a layer shape by ⁇ -PGA or a composition containing the same as a main component, and the plurality of gaps (pores or vacuoles). Etc.) can be mentioned in a state where there is substantially no compartment (even if it is slightly present, it can be substantially ignored).
  • the method of processing at least ⁇ -PGA or ⁇ -PGA and a coating material into a sponge sheet is not particularly limited, and a known method can be suitably used. Specifically, for example, a solution of ⁇ -PGA or a coating material (or a composition thereof) is poured into a mold having a predetermined shape, and a sponge-like porous body is obtained by a drying method such as natural drying, vacuum drying, or vacuum freeze drying. And forming a sponge-like sheet by applying pressure to the sponge-like porous body.
  • a vacuum freeze-drying method can be exemplified, but the method is not limited thereto.
  • a solution of about 0.05 to 30% by weight of ⁇ -PGA or a coating material is about 10.6 Pa (about 0.08 Torr) after preliminary freezing.
  • the method of drying below is mentioned, it is not limited to this.
  • a sponge-like porous body that is a molded product can be obtained by removing it from the mold.
  • the method of forming the sponge-like porous body into a sheet is not particularly limited, and examples thereof include a method of compressing with a press.
  • the sheet-like hemostatic material 10A illustrated in FIG. 1A has a two-layer structure including only the adhesive layer 11 and the coating layer 12, the present disclosure is not limited to this, and the sheet-like hemostatic material 10B illustrated in FIG.
  • a multilayer structure of three or more layers may be used. That is, in the sheet-like hemostatic material according to the present disclosure, one surface (back surface) is a pasting surface composed of ⁇ -PGA, and the other surface (front surface) is a coating material (biodegradation other than ⁇ -PGA).
  • the laminated structure is not particularly limited as long as it is a non-sticking surface (surface) covered with the adhesive material.
  • the sheet-like hemostatic material 10B shown in FIG. 1B includes the intermediate layer 13 between the adhesive layer 11 and the coating layer 12, it has a three-layer structure.
  • the intermediate layer 13 may be a layer interposed between the adhesive layer 11 and the covering layer 12, and may be only one layer as in the sheet-like hemostatic material 10B, or may be two or more layers.
  • the specific configuration of the intermediate layer 13 is not particularly limited as long as it can provide various functions and the like required for use in the sheet-like hemostatic material 10B.
  • the sheet-like hemostatic materials 10A to 10E are sewn near the bleeding site.
  • the coating layer 12 is a sponge sheet composed of crosslinked collagen
  • the adhesive layer 11 is a sponge sheet composed of ⁇ -PGA. It is not easy to sew to etc. Therefore, if a mesh composed of a thread material of biodegradable material is used as the intermediate layer 13 in the sheet-like hemostatic material 10B, it is easy to sew to a living tissue or the like.
  • the other intermediate layer 13 include a fixing layer that improves the fixing state between the adhesive layer 11 and the covering layer 12, or a reinforcing layer that improves the strength of the sheet-like hemostatic material 10B. it can.
  • the adhesive layer 11 and the covering layer 12 are both configured as a single sheet as in the sheet-like hemostatic material 10A illustrated in FIG. 1A, but the present disclosure is not limited thereto.
  • at least one of the adhesive layer 11 and the covering layer 12 may be a single sheet (both may be a single sheet), and the other may not be a single sheet.
  • single sheet means a single unitary planar member having a two-dimensional extension, and a plurality of planar members are configured as a partial layer described later. It does not mean a member assembly.
  • the adhesive layer 11 or the covering layer 12 constituted as a “single sheet” is obtained when the sheet-like hemostatic materials 10A to 10E are attached to the hemostatic site.
  • it means a layer of a planar member that can substantially cover the entire pasting surface or the opposite surface so that the hemostatic site can be appropriately stopped.
  • the coating layer 12 may be provided on the opposite surface as a plurality of partial coating layers (partial layers) 121 that partially cover the opposite surface.
  • the adhesive layer 11 may be provided in the said adhesive surface as the some adhesive layer (partial layer) 111 which partially covers an adhesive surface like the sheet-like hemostatic material 10D shown to FIG. 2B.
  • the partial adhesive layer 111 is a sponge sheet.
  • the adhesive layer 11 may be provided on the adhesive surface as a plurality of partial adhesive layers 141 that are non-porous layers.
  • the sheet-like hemostatic materials 10A to 10E require a single sheet (base material layer) to be a base material in order to maintain the sheet shape. In the sheet-like hemostatic material 10A or 10B, all layers are composed of a single sheet. However, since one layer is a partial layer in the sheet-like hemostatic material 10C, 10D, or 10E, the other layer is based on the other layer. In order to become a material layer, it is necessary to be configured as a single sheet.
  • the adhesive layer 11 can exhibit flexibility as described later by being configured in a sponge shape. Therefore, even if the adhesive layer 11 is a single sheet as shown in FIG. 1A or FIG. 1B, even if the adhesive layer 11 is composed of a partial adhesive layer 111 as shown in FIG. Can be demonstrated.
  • the present disclosure is not limited to this, and for example, as illustrated in FIG. 2C, if the adhesive layer 11 is configured as a partial layer, the adhesive layer 11 may not be a sponge.
  • a simple sheet composed of ⁇ -PGA as a main component (that is, a non-sponge-like non-porous sheet) lacks flexibility as exemplified in Comparative Example 3 described later.
  • the adhesive layer 11 is a non-porous material mainly composed of ⁇ -PGA, if the adhesive layer 11 is formed as the partial adhesive layer 141, the partial adhesive layer 141 is supported by the coating layer 12.
  • the adhesive layer 141 can exhibit flexibility. Therefore, the sheet-like hemostatic material 10E has sufficient flexibility.
  • the present disclosure includes (1) a sponge-like sheet (single sheet) composed of at least ⁇ -PGA, excluding the adhesive layer 11 constituting the attachment surface to the bleeding site and ⁇ -PGA.
  • a sheet-like hemostatic material 10A or 10B which is a sheet (single sheet) composed of at least one biodegradable material, and includes a coating layer 12 constituting the opposite surface of the application surface;
  • the adhesive layer 11 that is a sponge sheet is provided as a single layer (single sheet) that covers the entire surface of the adhesive surface (constitutes the adhesive surface), and the covering layer 12 is partially provided on the opposite surface
  • the sheet-like hemostatic material 10C configured as the layer 121
  • the coating layer 12 is provided as a single layer (single sheet) covering the entire opposite surface of the adhesive layer 11 (constitutes the opposite surface)
  • Adhesive layer 11 is partially on the application surface
  • a sheet-like hemostatic material 10D configured as a sponge-like partial adhesive layer 111 provided on the surface,
  • the adhesive layer 11 is a sponge sheet composed of ⁇ -PGA, good flexibility can be achieved even if the adhesive layer 11 is a single sheet, such as the sheet-like hemostatic material 10A or 10B. It can be demonstrated. Furthermore, like the sheet-like hemostatic material 10C or 10D, one of the adhesive layer 11 or the coating layer 12 is configured as a base material layer made of a single sheet, and the other is configured as a partial layer. The flexibility can be made better. Moreover, even if the adhesive layer 11 is a non-sponge-like non-porous shape like the sheet-like hemostatic material 10E, sufficient flexibility can be exhibited if it is a partial layer.
  • the specific shape of the partial covering layer 121, the partial adhesive layer 111, or the partial adhesive layer 141 is not particularly limited, and may be configured as a partial layer (partial sheet) that is not a single sheet.
  • the partial covering layer 121 will be described as an example.
  • the partial covering layer 121a may be a dot-like partial covering layer 121a, or as shown in FIG. 3B, a linear partial covering layer 121b may be used.
  • FIG. 3C it may be a shaded partial covering layer 121c or a shape other than these.
  • the partial layer or the partial sheet may be a member assembly (see FIG. 3A or FIG. 3B) in which a plurality of planar members are formed like dots or lines, or may be shaded. It may be a single planar member (see FIG. 3C) configured by forming a plurality of openings (or a plurality of through holes) like a shape, or a configuration in which these are combined (a plurality of openings A configuration in which a plurality of single planar members each having a shape are combined into a member assembly may be employed.
  • the partial coating layer 121 may be provided on the opposite surface so that the opposite surface of the adhesive layer 11 can be the above-mentioned “non-adhesive surface”, but the partial coating layer shown in FIGS. 3A to 3C As in the case of 121a to 121c, it is preferable that the partial covering layers 121 are dispersed and arranged so as to cover the entire opposite surface of the adhesive layer 11.
  • the dispersive arrangement of the partial covering layer 121 may be irregular (random), but is more preferably regular as shown in FIGS. 3A to 3C.
  • the partial covering layer 121 shown in FIG. 2A constitutes one layer having a two-layer structure as in FIG. 1A, but the partial covering layer 121 has a multilayer structure of three or more layers as illustrated in FIG. 1B. It may be provided as one layer.
  • partial adhesive layer 111 or the partial adhesive layer 141 may also be dot-like, linear, and shaded like the partial covering layer 121 described above.
  • the partial adhesive layer 111 or the partial adhesive layer 141 may be provided on the adhesive surface so as to be a “sticking surface” to be attached to a bleeding site such as a living tissue.
  • the partial adhesive layer 111 or the partial adhesive layer 141 is preferably dispersed and arranged so as to cover the entire adhesive layer. The dispersed arrangement may be irregular, but is preferably regular.
  • the adhesive layer 11 and the covering layer 12 may be integrally fixed to constitute one sheet.
  • the adhesive layer 11, the one or more intermediate layers 13 and the covering layer 12 may be integrally fixed to constitute one sheet.
  • the coating layer 12 is constituted by a partial coating layer 121.
  • the partial coating layer 121 is formed by punching or cutting out a sheet to be the coating layer 12 into a predetermined shape, and then the adhesive layer 11. What is necessary is just to adhere and form.
  • the partial adhesive layer 111 may be formed by sticking to the covering layer 12 after punching out or cutting out a sheet to be the adhesive layer 11 into a predetermined shape.
  • a non-porous partial sheet made of ⁇ -PGA formed in a predetermined shape is used as the adhesive layer 12. It may be formed by laminating and adhering.
  • the specific method for fixing these layers is not particularly limited, and a known method can be suitably used.
  • the coating layer 12 is a sponge-like sheet composed of cross-linked collagen, a method of pressing and bonding the adhesive layer 11 and the coating layer 12 (one or more intermediate layers 13 as necessary) as will be described later. It can be used suitably.
  • the adhesive layer 11 and the covering layer 12 included in the sheet-like hemostatic materials 10A to 10E may have the same color, but preferably have different colors. Thereby, when using the sheet-like hemostatic materials 10A to 10E, it can be easily confirmed visually which surface is the affixing surface (adhesive layer 11).
  • a method for imparting color to the adhesive layer 11 and the coating layer 12 is not particularly limited, and a known method can be suitably used. Generally, a known dye, dye or pigment is used for the adhesive layer 11 or the coating layer 12. And a method of coloring these layers by adding. Specific dyes include legal dyes known in the field of pharmaceuticals, for example, green 202, purple 201, blue 2 and the like, and specific pigments include, for example, iron sesquioxide. It is done.
  • the color may be applied to either the adhesive layer 11 or the coating layer 12, or may be performed only to one of the adhesive layer 11 or the coating layer 12.
  • both the adhesive layer 11 and the coating layer 12 may be colored by adding different pigments, or only one layer is added by adding a pigment or the like only to the adhesive layer 11 or only the coating layer 12. It may be colored.
  • the method of adding a dye or the like is not particularly limited, and the dye or the like is added to the ⁇ -PGA or the coating material in the process of forming the adhesive layer 11 or the coating layer 12 (manufacturing a sheet or a sponge-like porous body serving as these layers).
  • either one of the adhesive layer 11 and the coating layer 12 may be colored with a dye or the like after the sheet-like hemostatic materials 10A to 10E are manufactured.
  • the part to which the color is imparted is not particularly limited as long as the color is imparted to at least a part of the adhesive layer 11 or the covering layer 12. Of course, all of the adhesive layer 11 or the covering layer 12 (entire layer) may be colored.
  • the weight ratio of the adhesive layer 11 and the coating layer 12 is not particularly limited, but typically, the weight ratio of the adhesive layer 11 is the total weight of the sheet-like hemostatic materials 10A to 10E. It is preferably in the range of 10 to 90% by weight. If the adhesive layer 11 is less than 10% by weight, the adhesiveness due to the adhesive layer 11 may not be sufficiently exhibited, depending on the configuration of the sheet-like hemostatic materials 10A to 10E. Further, if the adhesive layer 11 exceeds 90% by weight, the coating layer 12 may not sufficiently exert the effect of suppressing the adhesiveness of the adhesive layer 11 depending on the configuration of the sheet hemostatic materials 10A to 10E. .
  • the size and thickness of the sheet-like hemostatic materials 10A to 10E are not particularly limited, and can be appropriately set according to the use conditions of the sheet-like hemostatic materials 10A to 10E.
  • the sheet-like hemostatic materials 10A to 10E can be suitably used for laparoscopic surgery.
  • the sheet-like hemostatic materials 10A to 10E may have a size of about several centimeters and widths in consideration of trocar passage.
  • a size larger than the above-mentioned length and width of about several centimeters can be used.
  • the sheet hemostats 10A to 10E can be stored at room temperature depending on the type of the covering layer 12 or the intermediate layer 13.
  • the room temperature referred to here is in the range of 1 to 30 ° C. as defined by the Japanese Pharmacopoeia.
  • the adhesive layer 11 showing hemostatic performance in the sheet-like hemostatic materials 10A to 10E is composed of ⁇ -PGA as described above.
  • ⁇ -PGA can be stably stored even within a room temperature range.
  • cross-linked collagen is used as the coating layer 12, the cross-linked collagen can also be stably stored within a room temperature range.
  • the sheet-like hemostatic material 10 ⁇ / b> A is composed of the adhesive layer 11 and the cross-linked collagen coating layer 12, it can be stably stored at room temperature.
  • the intermediate layer 13 is made of a material that can be stored at room temperature
  • the sheet-like hemostatic material 10B can also be stored stably at room temperature. Of course, it can be stably stored at a low temperature as required.
  • a fibrinogen-based sheet hemostatic material such as Taco Seal (registered trademark) needs to be stored at a low temperature of 10 ° C. or lower.
  • an oxidized cellulose-based sheet hemostatic material for example, Surge Cell (registered trademark) New Knit, needs to be stored at 25 ° C. or lower.
  • the normal temperature is in the range of 15 to 25 ° C., but in summer, the temperature usually exceeds 25 ° C. Therefore, storage at 25 ° C. or lower means that storage at room temperature is substantially difficult.
  • the adhesive layer 11 is a sponge-like sheet or a non-porous partial sheet composed of at least poly- ⁇ -glutamic acid ( ⁇ -PGA). Therefore, the adhesive layer 11 may be composed only of ⁇ -PGA, or may be composed of a ⁇ -PGA composition containing ⁇ -PGA as a main component and other components.
  • the ⁇ -PGA used as the adhesive layer 11 includes a polymer in which glutamic acid is linked by a peptide bond between a carboxyl group at the ⁇ position and an amino group at the ⁇ position, and a salt thereof.
  • An example of a salt of ⁇ -PGA is sodium poly- ⁇ -glutamate.
  • the term “poly- ⁇ -glutamic acid ( ⁇ -PGA)” used in the present embodiment basically includes “poly- ⁇ -glutamic acid and / or a salt thereof”.
  • the ⁇ -PGA used as the adhesive layer 11 is not specifically limited, but, for example, one having a molecular weight within a specific range can be suitably used.
  • a preferred molecular weight range of ⁇ -PGA is a weight average molecular weight Mw in the range of 200,000 to 13 million, more preferably in the range of 300,000 to 10 million. If the weight average molecular weight Mw of the ⁇ -PGA is below the lower limit of 200,000 (less than 200,000), good adhesiveness on the application surface will depend on the configuration of the adhesive layer 11 or the sheet-like hemostatic materials 10A to 10E. May not be possible.
  • the upper limit of the weight average molecular weight Mw of ⁇ -PGA is not particularly limited, but is usually 13 million or less. This is because it is considered that it is difficult to produce a product having a weight average molecular weight Mw exceeding 13 million by a conventionally known production method.
  • the ⁇ -PGA used as the adhesive layer 11 one having a kinematic viscosity ⁇ within a specific range can be suitably used.
  • a preferable kinematic viscosity ⁇ of ⁇ -PGA the kinematic viscosity ⁇ at 37 ° C. when dissolved in distilled water at a concentration of 0.05% by mass can be, for example, in the range of 2 cSt to 15 cSt.
  • a preferable range is 2.5 cSt to 8 cSt.
  • the upper limit of the kinematic viscosity ⁇ of ⁇ -PGA is not particularly limited, but is usually 15 cSt or less. This is because it is considered that it is difficult to produce a product having a kinematic viscosity ⁇ exceeding 15 cSt by a conventionally known production method.
  • the ⁇ -PGA used for the adhesive layer 11 has a weight average molecular weight Mw within the above-mentioned range, or a kinematic viscosity ⁇ within the above-mentioned kinematic viscosity range.
  • both the weight average molecular weight Mw and the kinematic viscosity ⁇ may be within the above-described ranges.
  • at least one of the weight average molecular weight Mw and the kinematic viscosity ⁇ of ⁇ -PGA may be out of the above-mentioned range depending on the configuration or use conditions of the adhesive layer 11 or the sheet-like hemostatic materials 10A to 10E. Yes.
  • ⁇ -PGA satisfying at least one of the aforementioned weight average molecular weight Mw and kinematic viscosity ⁇ is commercially available as a food additive and the like, and sufficiently safe for living bodies (including human bodies).
  • ⁇ -PGA can be easily produced by a known method using a microorganism derived from the genus Bacillus such as Bacillus subtilis.
  • the adhesive layer 11 may be substantially composed only of ⁇ -PGA except when it contains impurities that are unavoidable due to common technical knowledge, but is composed of a ⁇ -PGA composition containing components other than ⁇ -PGA. May be.
  • Components other than ⁇ -PGA may be those that have biocompatibility and biodegradability and do not hinder the adhesion of the adhesive layer 11 when blended with ⁇ -PGA.
  • other components include saccharides such as monosaccharides such as glucose, saccharides such as oligosaccharides and polysaccharides; collagen; glycerin; polyethylene glycol; and known additives (the above-mentioned pigments and the like). Yes, but not particularly limited. These other components may be used alone or in combination of two or more.
  • the amount of other components added to the ⁇ -PGA composition is not particularly limited as long as the adhesiveness of the adhesive layer 11 is not hindered.
  • the blending amount may be such that ⁇ -PGA does not become less than 50% by weight of the total amount of the ⁇ -PGA composition. If the ⁇ -PGA composition is composed only of ⁇ -PGA and other components, the other components may be less than 50% by weight.
  • the adhesive layer 11 can be given further flexibility, and further improvement in adhesiveness can be expected.
  • the coating layer 12 is a sheet (preferably a sponge sheet) made of at least one biodegradable material (coating material) excluding ⁇ -PGA. Therefore, the coating layer 12 may be composed of one type of coating material, or may be composed of two or more types of coating materials. Moreover, you may contain the other component which can be mix
  • the coating material may be any material that exhibits good biocompatibility when introduced into a living body together with ⁇ -PGA and is decomposed and absorbed after a certain period of time.
  • a polymer having biocompatibility and biodegradability can be mentioned.
  • examples of such a polymer include collagen, polylactic acid, and polyglycolic acid.
  • collagen (Col) is particularly preferable. Collagen has almost no possibility of adversely affecting the living body after introduction into the living body, is excellent in degradability in the living body, and does not substantially exhibit adhesiveness compared to ⁇ -PGA.
  • the specific structure of the collagen is not particularly limited, but preferred examples include collagen that has been treated so that it can be dissolved in a known solvent.
  • Specific examples include solubilized collagen such as enzyme-solubilized collagen, acid-solubilized collagen, alkali-solubilized collagen, and neutral-solubilized collagen.
  • preferred collagens include acid solubilized collagen from the viewpoint of handleability.
  • atelocollagen that has been subjected to the removal treatment of the telopeptide that is an antigenic determinant can be preferably used from the viewpoint of further reducing the possibility of adverse effects on the living body.
  • the origin of collagen is not particularly limited, and examples include cattle, pigs, birds, fish, rabbits, sheep, mice, and humans.
  • the part of the animal species from which collagen is extracted is not particularly limited, and examples thereof include skin, tendon, bone, cartilage, and organ. Of these, those derived from pig skin can be preferably used from the viewpoint of availability.
  • the type of collagen is not particularly limited, and examples thereof include type I, type II, and type III. Among these, type I and type III can be preferably used from the viewpoint of handleability.
  • a coating material such as collagen may be used for the coating layer 12 as it is, but is preferably subjected to a crosslinking treatment. That is, the covering layer 12 is preferably composed of cross-linked collagen (C-Col). Thereby, the strength of the covering layer 12 can be improved or stabilized, and the degradation time in the living body can be controlled by adjusting the degree of crosslinking.
  • the crosslinking method of the coating material is not particularly limited, and examples thereof include a chemical crosslinking method, ⁇ -ray irradiation, ultraviolet irradiation, electron beam irradiation, plasma irradiation, and thermal dehydration crosslinking treatment. In the case where the coating material contains at least collagen, among these crosslinking methods, a thermal dehydration crosslinking treatment can be exemplified.
  • the thermal dehydration cross-linking treatment first, collagen is formed into a sheet shape and air-dried. Thereafter, the sheet is placed in a vacuum dry oven and held at a predetermined temperature for a predetermined time under reduced pressure. This makes it possible to crosslink the collagen.
  • the degree of crosslinking can be adjusted favorably by adjusting at least one of the crosslinking temperature and the crosslinking time.
  • the coating layer 12 contains not only one or more types of biodegradable materials (coating materials) but also other components that can be blended in the biodegradable materials, that is, the coating layer 12 is composed of a coating material composition.
  • other components can be blended within the range that does not interfere with the physical properties of the coating layer 12 in the same manner as the ⁇ -PGA composition described above.
  • the blending amount may be such that the coating material does not become less than 50% by weight in the total amount of the coating material composition. If the coating material composition is composed of only one or more types of coating materials and other components, the other components may be less than 50% by weight.
  • examples of other components include known additives (such as the dyes described above), but are not particularly limited.
  • the method for producing the sheet-like hemostatic material according to the present disclosure is not particularly limited as long as it can form an adhesive layer composed of at least ⁇ -PGA and produce a sheet-like hemostatic material having sufficient flexibility.
  • the sheet-like hemostatic materials 10A to 10E according to the present disclosure include the adhesive layer 11 and the coating layer 12, and may include the intermediate layer 13. Therefore, as a typical production method, an adhesive layer 11 which is a sponge-like sheet made of ⁇ -PGA or a non-porous partial sheet, a coating layer 12 which is a sheet made of a coating material, and, if necessary, Any method may be used as long as the intermediate layer 13 interposed therebetween is laminated and integrally fixed as one sheet. Therefore, the adhesive layer 11, the covering layer 12, and the intermediate layer 13 may be formed simultaneously with the sheets serving as these layers, or an arbitrary sheet may be formed first, followed by another sheet. Good.
  • a first sponge-like porous body composed of at least ⁇ -PGA, or A sponge-like first sheet obtained by applying pressure to this and a second sponge-like porous body made of a coating material, or a sponge-like second sheet obtained by applying pressure thereto are laminated and laminated.
  • the method for producing a sheet-like hemostatic material may include a step of forming a sponge-like porous body or sheet used in the lamination step. That is, in the present disclosure, in the laminating step, a sponge-like first sheet or sponge-like second sheet manufactured in advance (or commercially available) may be used, or the first sponge-like porous body or second sponge. A previously produced porous body may be used, or a sponge-like porous body or a sponge-like sheet may be produced from a raw material ( ⁇ -PGA or a coating material).
  • the method for producing a sheet-like hemostatic material includes a step of lyophilizing at least ⁇ -PGA to form a first sponge-like porous body (first sponge-like porous body forming step), Forming a sponge-like first sheet by applying pressure to one sponge-like porous body (sponge-like first sheet forming process), and forming a second sponge-like porous body by freeze-drying the coating material (second sponge) At least one of a step of forming a sponge-like second sheet by applying pressure to the second sponge-like porous member (sponge-like second sheet forming step).
  • ⁇ -PGA or a coating material may be formed into a sponge-like porous body using the various drying methods described above.
  • the second sponge-like porous body may be formed by a vacuum freeze-drying method. If the collagen of the coating layer 12 is cross-linked collagen, the sponge-like porous body before the sponge is formed is formed. What is necessary is just to give the bridge
  • a known lamination method, adhesion method, and pressure bonding method may be used.
  • a known press apparatus may be used as the crimping method.
  • a stacking method not only a method of manually stacking by an operator but also a method of automatically stacking by a known robot or the like can be suitably used.
  • the integration step can be performed only after the lamination step, but each step that can be performed before the lamination step, that is, the first sponge-like porous material
  • the order of the body forming step, the second sponge-like porous body forming step, the sponge-like first sheet forming step, the sponge-like second sheet forming step, and the laminating step is not particularly limited.
  • the sheet-like hemostatic material manufacturing method only needs to include at least a lamination step and an integration step, and if necessary, a first sponge-like porous body forming step, a second sponge-like porous body forming A process, a sponge-like first sheet forming process, a sponge-like second sheet forming process, and the like are included, but processes other than these processes may be included.
  • a sterilization process may be included after the integration process.
  • any of a plurality of steps may be performed in parallel.
  • the method for producing a sheet-like hemostatic material for example, first, pressure is applied to the second sponge-like porous body to form a sponge-like second sheet, and then the first sponge-like porous body is laminated and pressure-bonded.
  • the manufacturing method which forms the said laminated body can be mentioned.
  • a laminating step is executed, and thereafter, the sponge-like first sheet forming step is executed.
  • the adhesive layer 11 or the covering layer 12 is a partial layer as in the sheet-like hemostatic material 10C, 10D, or 10E, as a method for producing the sheet-like hemostatic material, before the lamination step, the adhesive layer 11 is used.
  • a step (partial layer forming step) of punching out or cutting out the sheet to be the coating layer 12 into a predetermined shape may be executed. That is, the method for manufacturing a sheet hemostatic material according to the present disclosure may include a partial layer forming step in addition to the stacking step and the integration step. Alternatively, these partial layers may be formed as partial sheets from the beginning, instead of being formed as partial sheets by processing a single sheet.
  • the first sponge-like porous body composed of at least ⁇ -PGA, or the first A sponge-like first sheet obtained by applying pressure to a sponge-like porous body can be used, and a first partial sheet made of at least ⁇ -PGA and not a single sheet can be used.
  • the layered member made of ⁇ -PGA prepared for forming the adhesive layer 11 is referred to as a first layered body.
  • the first partial sheet that is the first layered body may be in the form of a sponge or a non-porous form that is not in the form of a sponge.
  • the above-described second sponge-like porous body made of a biodegradable material or a sponge-like first body obtained by applying pressure to the second sponge-like porous body is used. Not only can two sheets be used, but a second partial sheet composed of a biodegradable material and not a single sheet can be used.
  • the layered member made of a biodegradable material prepared for forming the coating layer 12 is referred to as a second layered body.
  • a first layered body composed of at least ⁇ -PGA and at least one biodegradable material excluding ⁇ -PGA
  • a step of forming a laminated body by laminating a second layered body comprising: a bonding layer comprising at least ⁇ -PGA, and a biodegradable material by bonding or pressure-bonding the laminated body And a coating layer, and a step of forming a sheet-like hemostatic material.
  • the sticking surface of the sheet-like hemostatic material is an adhesive layer composed of poly- ⁇ -glutamic acid ( ⁇ -PGA), and the non-sticking surface is biodegradable other than ⁇ -PGA. It is the coating layer comprised with material (coating material). Therefore, ⁇ -PGA of the adhesive layer can realize good adhesion to living tissue and good hemostatic performance without using animal materials such as fibrinogen, and the coating material of the coating layer It is possible to effectively suppress the sheet-like hemostatic material from inadvertently adhering to a tissue or a surgical instrument other than the pasted portion.
  • ⁇ -PGA of the adhesive layer can realize good adhesion to living tissue and good hemostatic performance without using animal materials such as fibrinogen, and the coating material of the coating layer It is possible to effectively suppress the sheet-like hemostatic material from inadvertently adhering to a tissue or a surgical instrument other than the pasted portion.
  • the adhesive layer is a sponge sheet or a non-porous partial layer, it has good flexibility and the coating layer also has flexibility. Thereby, favorable softness
  • ⁇ -PGA has good adhesiveness without causing a biochemical reaction, it can be reattached to a living tissue as compared with a conventional sheet-like hemostatic material.
  • the adhesive layer is ⁇ -PGA, it is possible to store at room temperature for a long period of time as compared with a conventional sheet-like hemostatic material by appropriately selecting a coating material to be a coating layer.
  • FIG. 2 Another sheet-like hemostatic material according to the present disclosure is configured to include at least a sheet made of poly- ⁇ -glutamic acid and further added with a saccharide as an adhesive layer.
  • a typical embodiment of the present disclosure will be specifically described.
  • the sheet-like hemostatic material according to the present disclosure has, as an adhesive layer, a ⁇ -PGA sheet (saccharide-added ⁇ -PGA sheet) containing poly- ⁇ -glutamic acid ( ⁇ -PGA) as a main component and saccharide added thereto. It only has to have.
  • ⁇ -PGA poly- ⁇ -glutamic acid
  • the sheet-like hemostatic material may be a single-layer sheet composed only of a saccharide-added ⁇ -PGA sheet, but may be a multilayer structure sheet of two or more layers in which other layers are laminated as necessary.
  • Other layers include, for example, a reinforcing layer that improves the strength of the sheet-like hemostatic material, and a coating on one surface of the saccharide-added ⁇ -PGA sheet so that only the other surface is an adhesive surface (sticking surface).
  • a layer etc. are mentioned, it is not specifically limited.
  • Other layers may have biocompatibility and biodegradability like ⁇ -PGA, and the specific material is not particularly limited.
  • a cross-linked collagen (C-Col) can be used for the coating layer.
  • the method of laminating other layers is not particularly limited, and a known method can be suitably used.
  • the size and thickness of the sheet-like hemostatic material according to the present disclosure are not particularly limited, and can be appropriately set according to the use conditions of the sheet-like hemostatic material.
  • the sheet-like hemostatic material according to the present disclosure can be suitably used for laparoscopic surgery, but in this case, the sheet-like hemostatic material may have a size of about several centimeters in length and breadth in consideration of trocar passage.
  • a size larger than the above-mentioned length and width of about several centimeters can be used.
  • the sheet hemostatic material according to the present disclosure can be stored at room temperature because the adhesive layer is composed of a saccharide-added ⁇ -PGA sheet.
  • the room temperature here is within the range of 1 to 30 ° C. as appropriate in the Japanese Pharmacopoeia.
  • the adhesive layer (saccharide-added ⁇ -PGA sheet) showing hemostasis performance in a sheet-like hemostatic material contains ⁇ -PGA as a main component and saccharide as a minor component, but both ⁇ -PGA and saccharide are stable within a room temperature range. Can be saved. Of course, it can be stably stored at a low temperature as required.
  • a fibrinogen-based sheet hemostatic material such as Taco Seal (registered trademark) needs to be stored at a low temperature of 10 ° C. or lower.
  • an oxidized cellulose-based sheet hemostatic material for example, Surge Cell (registered trademark) New Knit, needs to be stored at 25 ° C. or lower.
  • the normal temperature is in the range of 15 to 25 ° C., but in summer, the temperature usually exceeds 25 ° C. Therefore, storage at 25 ° C. or lower means that storage at room temperature is substantially difficult.
  • the method for producing the sheet-like hemostatic material according to the present disclosure is not particularly limited, and an adhesive layer is formed by adding at least a saccharide to ⁇ -PGA and forming it into a sheet shape (forming a saccharide-added ⁇ -PGA sheet). Any manufacturing method including the step of performing the process may be used.
  • a saccharide-added ⁇ -PGA sheet serving as the adhesive layer and a sheet serving as the other layer may be laminated and fixed by a known method such as pressure bonding.
  • the method for adding saccharides to ⁇ -PGA and the method for forming ⁇ -PGA added with saccharides into a sheet are not particularly limited, and known methods can be suitably used.
  • the sheet-like hemostatic material according to the present disclosure only needs to include at least an adhesive layer, and the adhesive layer is a ⁇ -PGA composition in which the saccharide-added ⁇ -PGA sheet is composed of at least ⁇ -PGA and saccharides. It is a sheet
  • the sheet-like hemostatic material can be easily produced by forming the ⁇ -PGA composition into a sheet, and thus does not go through a complicated production process. For example, if the ⁇ -PGA composition is formed into a sheet by a casting method, the thickness of the saccharide-added ⁇ -PGA sheet can be controlled only by adjusting the amount of the liquid ⁇ -PGA composition. It becomes possible.
  • the saccharide-added ⁇ -PGA sheet serving as the adhesive layer may be any sheet having ⁇ -PGA as a main component and saccharide as a subcomponent.
  • the ⁇ -PGA used for the adhesive layer includes a polymer in which glutamic acid is linked by a peptide bond at a ⁇ -position carboxyl group and an ⁇ -position amino group, and a salt thereof in a straight chain.
  • An example of a salt of ⁇ -PGA is sodium poly- ⁇ -glutamate.
  • poly- ⁇ -glutamic acid ( ⁇ -PGA)” used in the present embodiment basically includes “poly- ⁇ -glutamic acid and / or a salt thereof”.
  • the ⁇ -PGA used as the adhesive layer is not particularly limited, but for example, those having a molecular weight within a specific range can be suitably used.
  • a preferred molecular weight range of ⁇ -PGA is a weight average molecular weight Mw in the range of 200,000 to 13 million, more preferably in the range of 300,000 to 10 million. If the weight average molecular weight Mw of ⁇ -PGA is below the lower limit of 200,000 (less than 200,000), it may not be possible to achieve good adhesion on the application surface, depending on the configuration of the adhesive layer or sheet-like hemostatic material There is sex.
  • the upper limit of the weight average molecular weight Mw of ⁇ -PGA is not particularly limited, but is usually 13 million or less. This is because it is considered that it is difficult to produce a product having a weight average molecular weight Mw exceeding 13 million by a conventionally known production method.
  • the ⁇ -PGA used as the adhesive layer those having a kinematic viscosity ⁇ within a specific range can be suitably used.
  • a preferable kinematic viscosity ⁇ of ⁇ -PGA the kinematic viscosity ⁇ at 37 ° C. when dissolved in distilled water at a concentration of 0.05% by mass can be, for example, in the range of 2 cSt to 15 cSt.
  • a preferable range is 2.5 cSt to 8 cSt.
  • the upper limit of the kinematic viscosity ⁇ of ⁇ -PGA is not particularly limited, but is usually 15 cSt or less. This is because it is considered that it is difficult to produce a product having a kinematic viscosity ⁇ exceeding 15 cSt by a conventionally known production method.
  • the ⁇ -PGA used for the adhesive layer in the present disclosure has a weight average molecular weight Mw within the above-mentioned range, or a kinematic viscosity ⁇ within the above-mentioned kinematic viscosity range, or In addition, both the weight average molecular weight Mw and the kinematic viscosity ⁇ may be within the above-described ranges.
  • at least one of the weight average molecular weight Mw and the kinematic viscosity ⁇ of ⁇ -PGA may be out of the above-mentioned range depending on the constitution or use conditions of the adhesive layer or the sheet-like hemostatic material.
  • ⁇ -PGA satisfying at least one of the aforementioned weight average molecular weight Mw and kinematic viscosity ⁇ is commercially available as a food additive and the like, and sufficiently safe for living bodies (including human bodies).
  • ⁇ -PGA can be easily produced by a known method using a microorganism derived from the genus Bacillus such as Bacillus subtilis.
  • the saccharide contained in the saccharide-added ⁇ -PGA sheet may be a polyhydric alcohol (monosaccharide) having a carbonyl group or a polymer thereof (oligosaccharide or polysaccharide).
  • monosaccharides, oligosaccharides and polysaccharides are not particularly limited, and known compounds can be suitably used.
  • the sheet-like hemostatic material is used by being introduced into a living body and attached to a living tissue or the like. Therefore, saccharides are also added to ⁇ -PGA unless they have incompatible properties with living bodies. be able to.
  • hexoses such as glucose, galactose, fructose, mannose
  • pentoses pentoses
  • arabiose xylose
  • ribose glucosamine
  • galactosamine N-acetylglucosamine
  • Amino sugars such as N-acetylgalactosamine and sialic acid or derivatives thereof
  • sugar alcohols such as sorbitol and xylitol
  • oligosaccharide examples include disaccharides such as trehalose, maltose, sucrose, lactose, and melibiose; trisaccharides such as raffinose; tetrasaccharides such as stachyose;
  • polysaccharides include, for example, glucans such as amylose, amylopectin, dextran, dextrin, and icodextrin; examples of glycosaminoglycans include hyaluronic acid, alginic acid, heparan sulfate, chondroitin sulfate, chondroitin, dermatan sulfate, keratosulfate, and heparin.
  • Non-glucan polysaccharides of dietary fiber such as alginic acid and salts thereof, inulin, carboxymethylcellulose, pectin, chitin, chitosan, carrageenan, fucoidan, and the like.
  • Only one of these monosaccharides, oligosaccharides, and polysaccharides may be added to the saccharide-added ⁇ -PGA sheet, or a plurality of types may be appropriately combined and added to the saccharide-added ⁇ -PGA sheet.
  • the plurality of types herein may be a combination of monosaccharides, oligosaccharides, or polysaccharides, or a combination of monosaccharides and oligosaccharides, monosaccharides and polysaccharides, oligosaccharides and polysaccharides.
  • the amount of these saccharides to be added is not particularly limited, but in general, it may be in the range of 10 to 90% by weight with respect to the total weight of the saccharide-added ⁇ -PGA sheet. If the added amount of saccharide is less than 10% by weight, the flexibility of the saccharide-added ⁇ -PGA sheet cannot be obtained sufficiently, but warps or breaks, although it depends on the type of saccharide or the condition of ⁇ -PGA (molecular weight, etc.). There is a risk of If the amount of saccharide added exceeds 90% by weight, the adhesion (function as an adhesive layer) of the saccharide-added ⁇ -PGA sheet is sufficient, depending on the type of saccharide or the ⁇ -PGA conditions (molecular weight, etc.). May not be obtained.
  • the saccharide-added ⁇ -PGA sheet may contain other components in addition to ⁇ -PGA and saccharide.
  • Ingredients other than ⁇ -PGA (other ingredients) have biocompatibility and biodegradability, do not interfere with the adhesion of the saccharide-added ⁇ -PGA sheet when blended with ⁇ -PGA, Any sugar-added ⁇ -PGA sheet may be used as long as it does not hinder the flexibility.
  • collagen, glycerin, polyethylene glycol, known additives (pigments, etc.) and the like can be mentioned, but are not particularly limited. These other components may be used alone or in combination of two or more. Further, the amount of other components added is not particularly limited as long as it does not hinder the adhesiveness and flexibility of the saccharide-added ⁇ -PGA sheet.
  • collagen is particularly preferable among the other components described above.
  • breakage can be effectively suppressed even if the saccharide-added ⁇ -PGA sheet (adhesive layer) is deformed by rounding or bending.
  • the saccharide-added ⁇ -PGA sheet (adhesive layer) to which collagen is added is easily restored to its original shape even when deformed.
  • the sheet-like hemostatic material according to the present disclosure includes a saccharide-added ⁇ -PGA sheet added with collagen as an adhesive layer, for example, a planar sheet-like hemostatic material is used when performing laparoscopic surgery. Even if the sheet is rolled and inserted into the trocar, the sheet-like hemostatic material is easily restored to the original planar shape after passing through the trocar. Therefore, since the work of applying a physical force to the sheet-shaped hemostatic material and then returning it to its original shape can be minimized, the handling property of the sheet-shaped hemostatic material can be greatly improved. it can.
  • the sheet-like hemostatic material according to the present disclosure is a ⁇ -PGA sheet (collagen-added ⁇ -PGA sheet) to which only collagen is added and no saccharide is added as an adhesive layer when attention is focused on improving the handleability.
  • the structure provided may be sufficient.
  • the present disclosure also includes a sheet-like hemostatic material configured to include at least a sheet made of poly- ⁇ -glutamic acid and further added with collagen as an adhesive layer.
  • the method for producing a collagen-added ⁇ -PGA sheet and the method for producing a sheet-like hemostatic material comprising a collagen-added ⁇ -PGA sheet as an adhesive layer are the same as the method for producing a saccharide-added ⁇ -PGA sheet.
  • the specific description is omitted.
  • the amount of collagen added is not particularly limited, it may be within the range of 10 to 90% by weight with respect to the total weight of the collagen-added ⁇ -PGA sheet, similarly to the amount of saccharide added to the saccharide-added ⁇ -PGA sheet. Good.
  • the adhesive layer is constituted by a saccharide-added ⁇ -PGA sheet in which saccharide is added with ⁇ -PGA as a main component.
  • a ⁇ -PGA sheet substantially composed only of ⁇ -PGA is not flexible and will be damaged when it is deformed.
  • a ⁇ -PGA sheet containing saccharides exhibits good flexibility. Can do.
  • ⁇ -PGA of the adhesive layer can realize good adhesion to living tissue and good hemostatic performance without using animal material such as fibrinogen, and can also roll sheet-like hemostatic material. Even if it bends, damage to the adhesive layer can be effectively suppressed. Furthermore, since ⁇ -PGA has good adhesiveness without causing a biochemical reaction, it can be reattached to a living tissue as compared with a conventional sheet-like hemostatic material. In addition, since the adhesive layer is ⁇ -PGA, it can be stored for a long time at room temperature as compared with a conventional sheet-like hemostatic material.
  • the adhesive layer may be constituted by a collagen-added ⁇ -PGA sheet to which collagen is added with ⁇ -PGA as a main component.
  • the adhesive layer may be a ⁇ -PGA sheet containing ⁇ -PGA as a main component and added with both saccharide and collagen.
  • the sheet-like hemostatic material having the configuration described in Embodiment 1 will be specifically described based on Examples 1 to 3 and Comparative Examples 1 to 3.
  • the sheet-like hemostatic material was evaluated as follows.
  • Example 1 A 1 wt% collagen aqueous solution was prepared, filled into a rectangular metal container, and frozen at ⁇ 20 ° C. for about 12 hours. The obtained frozen product was freeze-dried under reduced pressure (about 13 Pa (1 Torr) or less) for about 24 hours in a freeze dryer (product name: FDU-2100, manufactured by Tokyo Rika Kikai Co., Ltd.) It was compressed at a pressure of 980 N / cm 2 (100 kgf / cm 2 ) by a company Masada Seisakusho, 15t press).
  • the obtained freeze-dried product was subjected to thermal dehydration crosslinking under reduced pressure (about 13 Pa (1 Torr) or less) for about 24 hours in a vacuum dry oven (product name: VOS-300VD manufactured by Tokyo Rika Kikai Co., Ltd.).
  • a crosslinked collagen (C-Col) sponge-like sheet was obtained.
  • a 1% by weight ⁇ -PGA aqueous solution was prepared, filled in a predetermined amount in a rectangular metal container, and frozen at ⁇ 20 ° C. for about 12 hours to obtain a sponge-like porous body. Thereafter, this sponge-like porous body was freeze-dried under reduced pressure for about 24 hours, and then a crosslinked collagen sponge-like sheet was laminated and pressure-bonded. As a result, a sheet-like hemostatic material according to Example 1 was obtained in which the ⁇ -PGA sponge sheet as the adhesive layer and the crosslinked collagen sponge sheet as the coating layer were pressure-bonded.
  • This sheet-like hemostatic material was 90 mg at 2.5 cm ⁇ 2.5 cm, and the weight ratio of the crosslinked collagen sponge sheet to the ⁇ -PGA sponge sheet was 30:70. Using this sheet-like hemostatic material, the hemostatic performance and the reattachment performance were evaluated as described above. The results are shown in Table 1.
  • Example 2 The filling amount of the 1 wt% collagen aqueous solution and the 1 wt% ⁇ -PGA aqueous solution into the metal container was changed so that the weight ratio of the crosslinked collagen sponge sheet to the ⁇ -PGA sponge sheet was 25:75. Except for the above, a sheet-like hemostatic material according to Example 2 was obtained in the same manner as in Example 1. This sheet-like hemostatic material was 80 cm at 2.5 cm ⁇ 2.5 cm, and as described above, the weight ratio of the crosslinked collagen sponge sheet to the ⁇ -PGA sponge sheet was 25:75. Using this sheet-like hemostatic material, the hemostatic performance and reattachment were evaluated as described above. The results are shown in Table 1.
  • Comparative Example 1 As a sheet-like hemostatic material according to Comparative Example 1, using a Surge Cell New Knit (registered trademark, Johnson & Johnson Co., Ltd.) having a size of 2.5 cm ⁇ 2.5 cm, the hemostatic performance and reattachment as described above. Evaluated. The results are shown in Table 1.
  • Example 3 A sheet-like hemostatic material according to Example 3 was prepared in the same manner as in Example 1 with a size of 3.0 cm ⁇ 2.5 cm. Using this sheet-like hemostatic material, trocar passage was evaluated as described above. The results are shown in Table 2.
  • Comparative Example 2 As the sheet-like hemostatic material according to Comparative Example 2, 3.0 cm ⁇ 2.5 cm octopus seal (registered trademark, CSL Bering Co., Ltd.) was used to evaluate trocar passage as described above. The results are shown in Table 2.
  • Example 3 if it is the sheet-like hemostatic material which concerns on Example 3, it can pass a trocar easily by making it roll shape, However, in an octopus seal (comparative example 2), it can barely pass a trocar by making it a crushed roll shape. Things have been damaged. Furthermore, since the ⁇ -PGA sheet (Comparative Example 3) was a ⁇ -PGA single layer and was not sponge-like, it was not flexible and cracked when bent and could not be made into a roll.
  • the sheet-like hemostatic material according to the present disclosure is superior in hemostasis performance without using fibrinogen as compared with the conventional one, and can realize good flexibility and handleability.
  • the sheet-like hemostatic material having the configuration described in Embodiment 2 will be specifically described based on Examples 4 to 8 and Comparative Examples 4 to.
  • the sheet-like hemostatic material was evaluated as follows.
  • a sheet-like hemostatic material (saccharide-added ⁇ -PGA sheet or ⁇ -PGA sheet) having a size of 3.0 cm ⁇ 2.5 cm was prepared in Examples 4 to 8 or Comparative Examples 4 to 5, and this was rolled into a roll, and the diameter was 5 mm. It was evaluated whether or not it could pass through a trocar (product name Step System Berserstep 5MM, manufactured by Covidien Japan Co., Ltd.).
  • Example 4 Preparation of 1 wt% ⁇ -PGA and 1 wt% glucose ⁇ -PGA-sugar solution (1% ⁇ -PGA 1% Glu solution) by adding glucose (Glu) to 1 wt% ⁇ -PGA solution did.
  • This ⁇ -PGA-sugar solution is spread on a stainless steel plate as a base material and dried (cast method), whereby a saccharide-added ⁇ -PGA sheet ( ⁇ -) as a sheet-like hemostatic material according to Example 4 is used.
  • PGA 50% by weight, Glu 50% by weight).
  • the saccharide-added ⁇ -PGA sheet was evaluated for sheet state and trocar passage by the methods described above.
  • Table 1 shows the results of the sheet state
  • Table 2 shows the results of the trocar passage.
  • Example 5 By adding glucose so as to be 2% by weight with respect to the 1% by weight ⁇ -PGA solution, 1% by weight ⁇ -PGA and 2% by weight glucose in ⁇ -PGA-sugar solution (1% ⁇ -PGA 2% Glu
  • the saccharide-added ⁇ -PGA sheet ( ⁇ -PGA 33.3% by weight, Glu 66.7% by weight) which is a sheet-like hemostatic material according to Example 5 was prepared in the same manner as in Example 4 except that the solution was prepared. Produced.
  • the saccharide-added ⁇ -PGA sheet was evaluated for sheet state and trocar passage by the methods described above.
  • Table 1 shows the results of the sheet state
  • Table 2 shows the results of the trocar passage.
  • Example 6 By adding sucrose (Suc) to 1 wt% with respect to the 1 wt% ⁇ -PGA solution, a 1 wt% ⁇ -PGA and a 1 wt% sucrose ⁇ -PGA-sugar solution (1% ⁇ - A saccharide-added ⁇ -PGA sheet ( ⁇ -PGA 50 wt%, Suc 50 wt%) as a sheet-like hemostatic material according to Example 6 was prepared in the same manner as in Example 4 except that a PGA 1% Suc solution was prepared. Produced.
  • the saccharide-added ⁇ -PGA sheet was evaluated for sheet state and trocar passage by the methods described above.
  • Table 1 shows the results of the sheet state
  • Table 2 shows the results of the trocar passage.
  • Example 7 By adding 1% by weight hyaluronic acid (HA) to 1% by weight ⁇ -PGA solution, 1% by weight ⁇ -PGA and 1% by weight hyaluronic acid ⁇ -PGA-sugar solution (1% ⁇ -PGA1 A saccharide-added ⁇ -PGA sheet ( ⁇ -PGA 50% by weight, HA 50% by weight), which is a sheet-like hemostatic material according to Example 7, was prepared in the same manner as in Example 4 except that the% HA solution was prepared. .
  • HA hyaluronic acid
  • the saccharide-added ⁇ -PGA sheet was evaluated for sheet state and trocar passage by the methods described above.
  • Table 1 shows the results of the sheet state
  • Table 2 shows the results of the trocar passage.
  • ⁇ -PGA sheet ( ⁇ -PGA 100 wt.), which is a sheet-like hemostatic material according to Comparative Example 4, except that a 1 wt% ⁇ -PGA solution was used instead of the ⁇ -PGA-sugar solution. %).
  • ⁇ -PGA sheet the sheet state and trocar passage were evaluated by the methods described above. Table 1 shows the results of the sheet state, and Table 2 shows the results of the trocar passage.
  • Comparative Example 5 As a sheet-like hemostatic material according to Comparative Example 5, a octopus seal (registered trademark, CSL Bering Co., Ltd.) of 3.0 cm ⁇ 2.5 cm was used to evaluate trocar passage as described above. The results are shown in Table 2.
  • Example 8 A ⁇ -PGA-HA aqueous solution was prepared so as to be 60% by weight of ⁇ -PGA and 40% by weight of HA, filled in a predetermined amount in a rectangular metal container, and frozen at ⁇ 20 ° C. for about 12 hours.
  • the obtained frozen product was freeze-dried under reduced pressure (about 13 Pa (1 Torr) or less) for about 24 hours in a freeze dryer (product name: FDU-2100, manufactured by Tokyo Rika Kikai Co., Ltd.).
  • a cross-linked collagen (C-Col) sheet as a coating layer was laminated on one surface of this saccharide-added ⁇ -PGA sheet and pressure-bonded.
  • the weight ratio between the saccharide-added ⁇ -PGA sheet and the crosslinked collagen sheet was 70:30. Thereby, a sheet-like hemostatic material having a two-layer structure according to Example 8 was produced.
  • the adhesion and hemostasis performance were confirmed by animal experiments using this sheet-like hemostat.
  • a pig was used as an experimental animal, and the chest of the pig was opened under continuous anesthesia to expose the heart. Then, the myocardial portion was partially incised and bled, and the sheet-like hemostatic material according to Example 8 was attached, and the subsequent bleeding situation was confirmed.
  • the sheet-like hemostatic material according to the present disclosure is superior in hemostasis performance and adhesion performance without using fibrinogen as compared with the conventional one, and can realize good flexibility and handleability.
  • the present invention can be widely and suitably used in the field of sheet-like hemostatic materials and production methods thereof.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A sheet-like hemostatic material (10A to 10E) is provided with: an adhesive layer (11) which is a sheet formed from at least poly-γ-glutamic acid (γ-PGA) and which serves as a surface for affixing to a bleeding site; and a covering layer (12) which is a sheet formed from at least one biodegradable material (covering material) other than γ-PGA, and which serves as the opposite surface to the affixing surface. At least one of the adhesive layer (11) and the covering layer (12) is a single sheet. If the adhesive layer (11) is a single sheet, the adhesive layer (11) should be a sponge-like sheet, and if the adhesive layer (11) is a partial layer, the adhesive layer (11) should be a sponge-like sheet or a nonporous layer. Alternatively, in another sheet-like hemostatic material, a sheet which is formed from at least poly-γ-glutamic acid (γ-PGA) and to which at least one of a saccharide and collagen has been added is provided as the adhesive layer.

Description

ポリ-γ-グルタミン酸を用いたシート状止血材およびその製造方法Sheet-like hemostatic material using poly-γ-glutamic acid and method for producing the same
 本発明は、局所止血に好適に用いることが可能な、ポリ-γ-グルタミン酸を用いたシート状止血材と、このシート状止血材の製造方法とに関する。 The present invention relates to a sheet-like hemostatic material using poly-γ-glutamic acid that can be suitably used for local hemostasis, and a method for producing the sheet-like hemostatic material.
 例えば外科手術等で局所的な出血が生じたときには、止血処置の方法の一つとしてシート状止血材の使用が知られている。シート状止血材は、生体内で分解可能な医療用材料をシート状に成形することにより構成される。シート状止血材に用いられる材料としては、代表的には、動物性タンパク質由来の材料(動物性材料)、多糖類由来の材料(多糖類材料)、合成高分子由来の材料(高分子材料)等が挙げられる。動物性材料としては、代表的にはフィブリン、コラーゲン等が挙げられ、多糖類材料としては、代表的にはセルロース系、デンプン系等が挙げられ、高分子材料としては、ポリアクリル酸系等が知られている。 For example, when local bleeding occurs during surgery or the like, the use of a sheet-like hemostatic material is known as one of the methods for hemostasis treatment. The sheet-like hemostatic material is configured by molding a medical material that can be decomposed in a living body into a sheet shape. The materials used for the sheet-like hemostatic material are typically animal protein-derived materials (animal materials), polysaccharide-derived materials (polysaccharide materials), and synthetic polymer-derived materials (polymer materials). Etc. Animal materials typically include fibrin, collagen, etc., polysaccharide materials typically include cellulose-based and starch-based materials, and polymer materials include polyacrylic acid-based materials. Are known.
 市販されている代表的なシート状止血材としては、動物性材料を用いた「タコシール」(登録商標、CSLベーリング株式会社)、並びに、多糖類材料を用いた「サージセル」(登録商標、ジョンソン・エンド・ジョンソン株式会社)が知られている。タコシールは、ヒト由来のフィブリノゲンおよびトロンビンを含む、やや固めのスポンジ状シートであり、接着力が高く、止血性能に優れる。サージセルは、木材パルプに由来する再生酸化セルロース製であり、ガーゼタイプ、綿タイプ、ニットタイプ(ニューニット)がある。特にニットタイプは、シート状止血材として好適に用いられている。 As a typical sheet-like hemostatic material that is commercially available, “Taco Seal” (registered trademark, CSL Behring Co., Ltd.) using animal materials, and “Surge Cell” (registered trademark, Johnson End Johnson, Inc.) is known. Taco seal is a slightly hard sponge-like sheet containing human-derived fibrinogen and thrombin, and has high adhesive strength and excellent hemostatic performance. Surge cells are made of regenerated oxidized cellulose derived from wood pulp, and include gauze type, cotton type, and knit type (new knit). In particular, the knit type is suitably used as a sheet-like hemostatic material.
 さらに、最近では、特許文献1または2に開示されるように、シート状止血材の柔軟性を向上させることも提案されている。これら特許文献に記載されるシート状止血材は、ポリ乳酸等の生分解性ポリマー繊維からなる繊維成形体に、フィブリノゲンが固定化されたシートと、同じく生分解性ポリマー繊維からなる繊維成形に、トロンビンが固定化されたシートからなっている。フィブリノゲンおよびトロンビンをそれぞれ別の繊維成形体に担持することで、止血性の向上が図られている。また、繊維成形体の嵩密度の疎密を変化させたり(特許文献1)、嵩密度の異なる繊維構造体層を複合化して繊維成形体を形成したり(特許文献2)することで、基材である繊維成形体の柔軟性を向上している。 Furthermore, recently, as disclosed in Patent Document 1 or 2, it has also been proposed to improve the flexibility of the sheet-like hemostatic material. The sheet-like hemostatic material described in these patent documents is a fiber molded body composed of biodegradable polymer fibers such as polylactic acid, a sheet on which fibrinogen is immobilized, and fiber molding composed of biodegradable polymer fibers, It consists of a sheet on which thrombin is fixed. By holding fibrinogen and thrombin on separate fiber molded bodies, hemostasis is improved. Further, by changing the density of the bulk density of the fiber molded body (Patent Document 1), or by forming a fiber molded body by combining fiber structure layers having different bulk densities (Patent Document 2), The flexibility of the fiber molded body is improved.
特開2014-004066号公報JP 2014-004066 A 特開2014-005219号公報JP 2014-005219 A
 ところで最近では、腹腔鏡下手術に際しての止血処置に、シート状止血材の使用が検討されている。しかしながら、従来のシート状止血材は、腹腔鏡下手術に用いるには、その柔軟性または取扱性(もしくはその両方)が十分ではなかった。 By the way, recently, the use of a sheet-like hemostatic material has been studied for hemostasis treatment in laparoscopic surgery. However, the conventional sheet-like hemostatic material has not been sufficiently flexible or handleable (or both) for use in laparoscopic surgery.
 腹腔鏡下手術では、まず、トロッカーと呼ばれる筒状部を有する器具を先に腹部に挿入し、このトロッカーに腹腔鏡および手術器具を挿入する。腹腔鏡で撮影された術野(手術する箇所)はモニターに拡大して表示されるので、術者はモニターを観察しながら手術器具を駆使して手術を行う。トロッカーの内径は、通常、5~12mm程度であるため、シート状止血材は、このような小さな穴に挿入できるように、折り畳んだり丸めたりできる程度の柔軟性が要求される。また、腹腔鏡下手術に用いられる手術器具は、トロッカーを介して腹腔内の小さな空間で操作されることになる。そのため、シート状止血材には、良好な取扱性も要求される。 In laparoscopic surgery, an instrument having a cylindrical portion called a trocar is first inserted into the abdomen, and a laparoscope and a surgical instrument are inserted into the trocar. Since the operative field (the site to be operated on) taken with the laparoscope is enlarged and displayed on the monitor, the surgeon performs the operation using the surgical instrument while observing the monitor. Since the inner diameter of the trocar is usually about 5 to 12 mm, the sheet-like hemostatic material is required to be flexible enough to be folded or rolled so that it can be inserted into such a small hole. In addition, a surgical instrument used for laparoscopic surgery is operated in a small space in the abdominal cavity via a trocar. Therefore, the sheet-like hemostatic material is also required to have good handleability.
 前述したタコシールは、良好な止血性能を有しているものの、前記の通りやや固いスポンジ状であるため、トロッカー内に挿入できるような柔軟性がない。また、タコシールとともに特許文献1および2に開示されるシート状止血材は、いずれもフィブリノゲンを含んでいる。フィブリノゲンは、トロンビンの作用によりフィブリンとなり、このフィブリンが生化学的に反応して止血が実現される。そのため、フィブリノゲンを含むシート状止血材は、腹腔内で一度貼り付ければ強固に固定されてしまい、剥離して貼り直すことが困難となる。腹腔鏡下手術においては、トロッカーを介して手術器具を駆使することで手術を行う必要があるため、術者自身の手で行う通常の手術とは異なり、適切な位置に止血材を貼り付けられない場合も多い。したがって、フィブリノゲン系のシート状止血材は、腹腔鏡下手術に用いる際に、十分な取扱性を有しているとは言い難い。 Although the above-mentioned octopus seal has good hemostatic performance, it has a slightly hard sponge shape as described above, and is not flexible enough to be inserted into a trocar. In addition, the sheet-like hemostatic material disclosed in Patent Documents 1 and 2 together with the octopus seal contains fibrinogen. Fibrinogen becomes fibrin by the action of thrombin, and this fibrin reacts biochemically to realize hemostasis. Therefore, the sheet-like hemostatic material containing fibrinogen is firmly fixed once applied within the abdominal cavity, and it becomes difficult to peel off and reattach. In laparoscopic surgery, since it is necessary to perform surgery by making full use of surgical instruments through a trocar, it is possible to apply a hemostatic material at an appropriate position, unlike normal surgery performed by the operator's own hands. Often not. Therefore, it is difficult to say that the fibrinogen-based sheet hemostatic material has sufficient handleability when used in laparoscopic surgery.
 ここで、前述したサージセルニューニットは、酸化セルロース系のシート状止血材であり、タコシールに比べて柔軟性があり、また、フィブリノゲンを用いていないので強固に貼り付けられることがない。しかしながら、サージセルは、血液と接触してゼラチン状の凝血塊を形成することにより、止血を実現している。そのため、止血部位に貼り付けた後には凝血塊が形成されるまで数分間押えている必要がある。それゆえ、サージセルニューニットも、腹腔鏡下手術に用いるために十分な取扱性を有しているとは言い難い。 Here, the surge cell new knit described above is an oxidized cellulose-based hemostatic material, is more flexible than octopus seal, and does not use fibrinogen, so it is not firmly attached. However, the surge cell achieves hemostasis by contacting with blood to form a gelatinous clot. Therefore, after pasting on the hemostatic site, it is necessary to hold down for several minutes until a clot is formed. Therefore, it can hardly be said that the surge cell new knit has sufficient handleability for use in laparoscopic surgery.
 また、フィブリノゲン系のシート状止血材は、ヒト由来成分を用いた製剤(血液製剤)であるため、感染症等のリスクが生じる。そのため、使用に際しては、被使用者(患者)との間でヒト由来製剤(血液製剤)であることのリスク説明および同意書を取り交わす必要がある。さらに、フィブリノゲンは反応性のタンパク質であり、トロンビンは酵素であるため、タコシールの場合では、10℃以下の低温保存が必要となる。サージセルは、主成分が酸化セルロースであるが、25℃以下での保存が必要となっている。それゆえ、従来の市販されているシート状止血材は、いずれも輸送および保存に制約が生じるという点で、十分な取扱性を有しているとは言い難い。 Also, since the fibrinogen-based sheet hemostatic material is a preparation (blood preparation) using human-derived components, there is a risk of infectious diseases and the like. Therefore, in use, it is necessary to exchange risk explanations and consent forms with humans (patients) for being human-derived products (blood products). Furthermore, since fibrinogen is a reactive protein and thrombin is an enzyme, it needs to be stored at a low temperature of 10 ° C. or less in the case of tachoseal. Although the main component of the surge cell is oxidized cellulose, it must be stored at 25 ° C. or lower. Therefore, it is difficult to say that any of the commercially available sheet-like hemostatic materials that are commercially available have sufficient handling properties in terms of restrictions on transportation and storage.
 本発明はこのような課題を解決するためになされたものであって、シート状止血材において、フィブリノゲンを用いる必要なしに良好な止血性能を実現し、さらに、良好な柔軟性および取扱性を実現することを目的とする。 The present invention has been made to solve such problems, and in a sheet-like hemostatic material, realizes a good hemostatic performance without the need to use fibrinogen, and also realizes a good flexibility and handleability. The purpose is to do.
 本発明に係るシート状止血材は、前記の課題を解決するために、出血箇所への貼付面に設けられ、少なくともポリ-γ-グルタミン酸で構成される接着層を備える構成である。 In order to solve the above-mentioned problems, the sheet-like hemostatic material according to the present invention is configured to include an adhesive layer that is provided on the attachment surface to the bleeding site and is composed of at least poly-γ-glutamic acid.
 前記構成によれば、シート状止血材の貼付面を、ポリ-γ-グルタミン酸(γ-PGA)で構成される接着層とするため、接着層のγ-PGAにより、フィブリノゲン等の動物性材料を用いることなく、生体組織に対する良好な接着性と良好な止血性能とを実現することができる。また、γ-PGAは、生化学的な反応を伴うことなしに良好な接着性を有しているので、例えば適切な位置に止血材を貼り付けられなかったような場合でも、従来のシート状止血材とは異なり生体組織への貼り直しが可能になる。 According to the above configuration, since the adhesive surface of the sheet-like hemostatic material is an adhesive layer composed of poly-γ-glutamic acid (γ-PGA), animal material such as fibrinogen is added by γ-PGA of the adhesive layer. Without using it, it is possible to achieve good adhesion to living tissue and good hemostatic performance. In addition, since γ-PGA has good adhesiveness without causing a biochemical reaction, for example, even when a hemostatic material cannot be applied at an appropriate position, Unlike a hemostatic material, it can be re-applied to a living tissue.
 前記構成のシート状止血材においては、さらに、前記貼付面の反対面に設けられ、前記ポリ-γ-グルタミン酸を除く少なくとも1種の生体分解性材料で構成される被覆層を備え、前記接着層および前記被覆層の少なくとも一方が単一のシートである構成であってもよい。 The sheet-like hemostatic material having the above structure further includes a coating layer provided on the opposite surface of the sticking surface and made of at least one biodegradable material excluding the poly-γ-glutamic acid. And the structure that at least one of the said coating layers is a single sheet | seat may be sufficient.
 前記構成によれば、貼付面には、ポリ-γ-グルタミン酸(γ-PGA)で構成される接着層が設けられるとともに、非貼付面である反対面には、γ-PGA以外の生体分解性材料(被覆材料)で構成される被覆層が設けられている。それゆえ、接着層のγ-PGAにより、フィブリノゲン等の動物性材料を用いることなく、生体組織に対する良好な接着性と良好な止血性能とを実現することができるとともに、被覆層の被覆材料により、シート状止血材が貼り付け箇所以外の組織または手術器具等に不用意に付着することを有効に抑制することができる。 According to the above configuration, an adhesive layer made of poly-γ-glutamic acid (γ-PGA) is provided on the affixing surface, and a biodegradability other than γ-PGA is provided on the non-affixing surface. A coating layer made of a material (coating material) is provided. Therefore, γ-PGA of the adhesive layer can realize good adhesion to living tissue and good hemostatic performance without using animal materials such as fibrinogen, and the coating material of the coating layer It is possible to effectively suppress the sheet-like hemostatic material from inadvertently adhering to a tissue or a surgical instrument other than the pasted portion.
 また、前記構成によれば、接着層および被覆層の少なくとも一方が単一のシートであるため、接着層または被覆層、もしくは、その双方がシート状止血材の基材として機能することができる。さらに、接着層がγ-PGAであるため、被覆層となる被覆材料を適宜選択することにより、従来のシート状止血材に比べて室温で長期間の保存が可能となる。 Further, according to the above configuration, since at least one of the adhesive layer and the coating layer is a single sheet, the adhesive layer and / or the coating layer can function as a base material for the sheet-like hemostatic material. Furthermore, since the adhesive layer is γ-PGA, it is possible to store at room temperature for a long period of time as compared with a conventional sheet-like hemostatic material by appropriately selecting a coating material to be a coating layer.
 また、前記構成のシート状止血材においては、前記接着層が前記単一のシートであるときには、当該接着層はスポンジ状シートである構成であってもよい。あるいは、前記構成のシート状止血材においては、前記接着層が前記単一のシートでない部分層であるときには、当該接着層は、少なくともポリ-γ-グルタミン酸で構成されるスポンジ状シート、もしくは、非多孔質層であってもよい。 Further, in the sheet-like hemostatic material having the above-described configuration, when the adhesive layer is the single sheet, the adhesive layer may be a sponge-like sheet. Alternatively, in the sheet-like hemostatic material having the above-described configuration, when the adhesive layer is a partial layer that is not the single sheet, the adhesive layer is a sponge-like sheet composed of at least poly-γ-glutamic acid, or non- It may be a porous layer.
 前記構成によれば、接着層がスポンジ状であるか、または、接着層が非多孔質の部分層であれば、当該接着層は適度な柔軟性または良好な柔軟性を実現することが可能であるとともに、被覆層も柔軟性を実現することが可能であるため、当該シート状止血材として良好な柔軟性を実現することが可能となる。それゆえ、シート状止血材を丸めたり折り曲げたりしても、止血材の破損を有効に抑制することができる。また、前記構成によれば、良好な柔軟性、貼り直し、および室温保存という特性を有しているので、良好な取扱性を実現することができる。 According to the above configuration, if the adhesive layer is sponge-like or the adhesive layer is a non-porous partial layer, the adhesive layer can achieve moderate flexibility or good flexibility. In addition, since the covering layer can also realize flexibility, it is possible to realize good flexibility as the sheet-like hemostatic material. Therefore, even if the sheet-like hemostatic material is rolled or bent, the hemostatic material can be effectively prevented from being damaged. Moreover, according to the said structure, since it has the characteristic of favorable softness | flexibility, re-sticking, and storage at room temperature, favorable handleability can be implement | achieved.
 前記構成のシート状止血材においては、前記被覆層は、少なくとも架橋コラーゲンで構成されるスポンジ状シートである構成であってもよい。 In the sheet-like hemostatic material having the above-described configuration, the coating layer may be a sponge-like sheet composed of at least crosslinked collagen.
 また、前記構成のシート状止血材においては、前記接着層および前記被覆層の双方が単一のシートであるか、もしくは、前記被覆層が、前記反対面に部分的に設けられる部分層である構成であってもよい。 In the sheet-like hemostatic material having the above structure, both the adhesive layer and the coating layer are a single sheet, or the coating layer is a partial layer partially provided on the opposite surface. It may be a configuration.
 また、前記構成のシート状止血材においては、前記接着層および前記被覆層は、少なくとも一部分が互いに異なる色彩を有している構成であってもよい。 Further, in the sheet-like hemostatic material having the above-described configuration, the adhesive layer and the coating layer may be configured such that at least a part thereof has a different color.
 また、前記構成のシート状止血材においては、前記接着層の重量比が、前記シート状止血材の全重量の10~90重量%の範囲内にある構成であってもよい。 Further, the sheet-like hemostatic material having the above-described configuration may be configured such that the weight ratio of the adhesive layer is within a range of 10 to 90% by weight of the total weight of the sheet-like hemostatic material.
 また、前記構成のシート状止血材においては、さらに、前記接着層および前記被覆層の間に介在する、少なくとも1層の中間層を備え、これら各層が一体的に固着されている構成であってもよい。 Further, the sheet-like hemostatic material having the above-described structure further includes at least one intermediate layer interposed between the adhesive layer and the coating layer, and these layers are integrally fixed. Also good.
 また、本発明に係るシート状止血材の製造方法は、前記の課題を解決するために、少なくともポリ-γ-グルタミン酸で構成される第一層状体と、前記ポリ-γ-グルタミン酸を除く少なくとも1種の生体分解性材料で構成される第二層状体とを積層して積層体を形成する工程と、前記積層体を接着もしくは圧着することにより、少なくともポリ-γ-グルタミン酸で構成される接着層と、前記生体分解性材料で構成される被覆層と、を備える、シート状止血材を形成する工程と、を含む構成である。 Further, in order to solve the above problems, the method for producing a sheet hemostatic material according to the present invention includes a first layered body composed of at least poly-γ-glutamic acid, and at least excluding the poly-γ-glutamic acid. A step of laminating a second layered body composed of one kind of biodegradable material to form a layered body, and an adhesion composed of at least poly-γ-glutamic acid by bonding or pressure-bonding the layered body And a step of forming a sheet-like hemostatic material comprising a layer and a coating layer composed of the biodegradable material.
 前記構成のシート状止血材の製造方法においては、前記第一層状体は、少なくともポリ-γ-グルタミン酸で構成される第一スポンジ状多孔体、当該第一スポンジ状多孔体に圧力を加えて得られるスポンジ状第一シート、または、少なくともポリ-γ-グルタミン酸で構成され、かつ、単一のシートではない第一部分シートであり、前記第一部分シートは、スポンジ状またはスポンジ状ではない非多孔質状であるとともに、前記第二層状体は、前記生体分解性材料で構成される第二スポンジ状多孔体、当該第二スポンジ状多孔体に圧力を加えて得られるスポンジ状第二シート、または、前記生分解性材料で構成され、かつ、単一のシートではない第二部分シートである構成であってもよい。 In the method for producing a sheet-like hemostatic material having the above-described configuration, the first layered body is a first sponge-like porous body composed of at least poly-γ-glutamic acid, and pressure is applied to the first sponge-like porous body. The resulting sponge-like first sheet, or a first partial sheet that is composed of at least poly-γ-glutamic acid and is not a single sheet, the first partial sheet being non-porous or not sponge-like or sponge-like And the second layered body is a second sponge-like porous body composed of the biodegradable material, a sponge-like second sheet obtained by applying pressure to the second sponge-like porous body, or The structure which is comprised with the said biodegradable material and is a 2nd partial sheet | seat which is not a single sheet | seat may be sufficient.
 また、前記構成のシート状止血材の製造方法においては、先に、前記第二スポンジ状多孔体に圧力を加えて前記スポンジ状第二シートとしてから、前記第一スポンジ状多孔体に積層して圧着することにより、前記積層体を形成する構成であってもよい。 In the method for producing a sheet-like hemostatic material having the above-described configuration, first, the second sponge-like porous body is pressurized to form the sponge-like second sheet, and then laminated on the first sponge-like porous body. The structure which forms the said laminated body by crimping | bonding may be sufficient.
 また、本発明に係る他のシート状止血材は、前記の課題を解決するために、少なくともポリ-γ-グルタミン酸で構成され、さらに糖類が添加されたシートを接着層として備える構成である。 Further, another sheet-like hemostatic material according to the present invention is configured to include, as an adhesive layer, a sheet made of at least poly-γ-glutamic acid and further added with saccharides in order to solve the above-described problems.
 前記構成によれば、接着層が、ポリ-γ-グルタミン酸(γ-PGA)を主成分として糖類が添加されたシートにより構成されている。実質的にγ-PGAのみで構成されるγ-PGAシートは柔軟性を有さず、変形させようとすると破損してしまうが、糖類を含むγ-PGAシートは良好な柔軟性を発揮することができる。それゆえ、接着層のγ-PGAにより、フィブリノゲン等の動物性材料を用いることなく、生体組織に対する良好な接着性と良好な止血性能とを実現することができるとともに、シート状止血材を丸めたり折り曲げたりしても、接着層の破損を有効に抑制することができる。 According to the above configuration, the adhesive layer is composed of a sheet containing poly-γ-glutamic acid (γ-PGA) as a main component and added with saccharides. A γ-PGA sheet substantially composed only of γ-PGA is not flexible and will be damaged when it is deformed. However, a γ-PGA sheet containing saccharides exhibits good flexibility. Can do. Therefore, γ-PGA of the adhesive layer can realize good adhesion to living tissue and good hemostatic performance without using animal material such as fibrinogen, and can also roll sheet-like hemostatic material. Even if it bends, damage to the adhesive layer can be effectively suppressed.
 さらに、γ-PGAは、生化学的な反応を伴うことなしに良好な接着性を有しているので、従来のシート状止血材に比べて生体組織への貼り直しが可能になる。また、接着層がγ-PGAであるため、従来のシート状止血材に比べて室温で長期間の保存が可能となる。つまり、前記構成によれば、良好な柔軟性、貼り直し、および室温保存という特性を有しているので、良好な取扱性を実現することができる。 Furthermore, since γ-PGA has good adhesiveness without causing a biochemical reaction, it can be reattached to a living tissue as compared with a conventional sheet-like hemostatic material. In addition, since the adhesive layer is γ-PGA, it can be stored for a long time at room temperature as compared with a conventional sheet-like hemostatic material. That is, according to the said structure, since it has the characteristic of favorable softness | flexibility, re-sticking, and room temperature preservation | save, favorable handleability can be implement | achieved.
 前記構成のシート状止血材においては、前記糖類は、単糖、オリゴ糖、および多糖の少なくともいずれかである構成であってもよい。 In the sheet-like hemostatic material having the above-described configuration, the saccharide may be a monosaccharide, an oligosaccharide, or a polysaccharide.
 また、前記構成のシート状止血材においては、前記糖類は、前記シートの全重量に対して10~90重量%の範囲内となるように添加されている構成であってもよい。 In the sheet-like hemostatic material having the above-described structure, the saccharide may be added so as to be in the range of 10 to 90% by weight with respect to the total weight of the sheet.
 また、前記構成のシート状止血材においては、さらに、前記シートにコラーゲンが添加されている構成であってもよい。 Further, the sheet-like hemostatic material having the above-described structure may further have a structure in which collagen is added to the sheet.
 さらに、本発明には、少なくともポリ-γ-グルタミン酸で構成され、さらにコラーゲンが添加されたシートを接着層として備える構成のシート状止血材も含まれる。 Furthermore, the present invention also includes a sheet-like hemostatic material comprising at least a sheet made of poly-γ-glutamic acid and further having collagen added thereto as an adhesive layer.
 また、本発明に係るシート状止血材の製造方法は、前記の課題を解決するために、ポリ-γ-グルタミン酸に糖類およびコラーゲンの少なくとも一方を添加してシート状に成形することにより、接着層を形成する工程を含む構成である。 In addition, in order to solve the above-mentioned problem, the method for producing a sheet hemostatic material according to the present invention includes adding at least one of saccharides and collagen to poly-γ-glutamic acid and forming the sheet into a sheet shape. It is the structure including the process of forming.
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。 The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
 本発明では、以上の構成により、シート状止血材において、フィブリノゲンを用いる必要なしに良好な止血性能を実現することができ、さらに、良好な柔軟性および取扱性を実現することができる、という効果を奏する。 In the present invention, with the above configuration, in the sheet-like hemostatic material, it is possible to realize good hemostatic performance without the need to use fibrinogen, and further, it is possible to realize good flexibility and handleability. Play.
図1Aおよび図1Bは、本開示の実施の形態1に係るシート状止血材の概略構造を示す模式的断面図である。1A and 1B are schematic cross-sectional views illustrating a schematic structure of a sheet-like hemostatic material according to Embodiment 1 of the present disclosure. 図2A,図2Bおよび図2Cは、実施の形態1に係るシート状止血材の変形例を示す模式的断面図である。2A, 2B, and 2C are schematic cross-sectional views showing modifications of the sheet-like hemostatic material according to Embodiment 1. FIG. 図3A,図3Bおよび図3Cは、図2Aに示すシート状止血材における貼付面の反対面の一例を示す模式的平面図である。3A, FIG. 3B, and FIG. 3C are schematic plan views showing an example of the surface opposite to the application surface of the sheet-like hemostatic material shown in FIG. 2A.
 本開示に係るシート状止血材は、少なくともポリ-γ-グルタミン酸を用いて構成されるものである。具体的には、出血箇所への貼付面に設けられ、少なくともポリ-γ-グルタミン酸で構成される接着層を備える構成のものと、少なくともポリ-γ-グルタミン酸で構成され、さらに糖類が添加されたシートを接着層として備える構成のものとが挙げられる。これら各構成のシート状止血材について具体的に説明する。 The sheet hemostatic material according to the present disclosure is configured using at least poly-γ-glutamic acid. Specifically, it is provided on the surface to be attached to the bleeding site and has an adhesive layer composed of at least poly-γ-glutamic acid, at least composed of poly-γ-glutamic acid, and further added with saccharides The thing of the structure provided with a sheet | seat as an adhesive layer is mentioned. The sheet-like hemostatic material having each configuration will be specifically described.
 (実施の形態1)
 本開示に係るシート状止血材は、出血箇所への貼付面に設けられ、少なくともポリ-γ-グルタミン酸で構成される接着層を備える構成であればよいが、好ましくは、この接着層に加えて、前記貼付面の反対面に設けられ、前記ポリ-γ-グルタミン酸を除く少なくとも1種の生体分解性材料で構成される被覆層と、を備え、前記接着層および前記被覆層の少なくとも一方が単一のシートである構成であればよい。以下、本開示の代表的な実施の形態を具体的に説明する。
(Embodiment 1)
The sheet-like hemostatic material according to the present disclosure may be provided with an adhesive layer that is provided on the attachment surface to the bleeding site and includes at least poly-γ-glutamic acid, but preferably, in addition to the adhesive layer, A coating layer formed on at least one of the biodegradable materials excluding the poly-γ-glutamic acid, and at least one of the adhesive layer and the coating layer is a single layer. Any configuration that is a single sheet may be used. Hereinafter, a typical embodiment of the present disclosure will be specifically described.
 [シート状止血材]
 図1Aまたは図1Bには、本開示に係るシート状止血材の代表例として、シート状止血材10Aまたは10Bの断面構造をそれぞれ模式的に図示している。また、図2A~図2Cには、本開示に係るシート状止血材の他の例として、シート状止血材10C~10Eの断面構造を模式的に図示している。これらシート状止血材10A~10Eは、接着層11および被覆層12を備えている。接着層11は、前記の通り、ポリ-γ-グルタミン酸(γ-PGA)を主成分とするシートであればよい。本実施の形態では、図1A、図1B、図2Aまたは図2Bに示すように、接着層11がスポンジ状(多孔質状)シートとなっているか、図2Cに示すように、接着層11がスポンジ状でない非多孔質状であれば後述する部分層であればよい。被覆層12は、γ-PGA以外の生体分解性材料を主成分とするシートであればよく、本実施の形態では、後述するように、架橋コラーゲンを主成分とするスポンジ状シートとなっている。なお、以下の説明では、γ-PGA以外の生体分解性材料を、便宜上「被覆材料」と称する。
[Sheet hemostat]
FIG. 1A or FIG. 1B schematically shows a cross-sectional structure of a sheet-like hemostatic material 10A or 10B as a representative example of the sheet-like hemostatic material according to the present disclosure. 2A to 2C schematically show cross-sectional structures of sheet-like hemostatic materials 10C to 10E as other examples of the sheet-like hemostatic material according to the present disclosure. These sheet-like hemostatic materials 10A to 10E are provided with an adhesive layer 11 and a coating layer 12. As described above, the adhesive layer 11 may be a sheet containing poly-γ-glutamic acid (γ-PGA) as a main component. In this embodiment, as shown in FIG. 1A, FIG. 1B, FIG. 2A or FIG. 2B, the adhesive layer 11 is a sponge-like (porous) sheet, or as shown in FIG. Any non-sponge-like non-porous shape may be used as long as it is a partial layer described later. The coating layer 12 may be a sheet mainly composed of a biodegradable material other than γ-PGA. In the present embodiment, as will be described later, the coating layer 12 is a sponge sheet mainly composed of crosslinked collagen. . In the following description, biodegradable materials other than γ-PGA are referred to as “coating materials” for convenience.
 接着層11は、シート状止血材10A~10Eを生体組織等の出血箇所に貼り付けるため貼付面(裏面)を構成し、生体組織等に対して良好な接着性を有する。接着層11は、図1A、図1Bまたは図2Aに示すように、貼付面の全面に及ぶ覆う単一層として設けられてもよいし、図2Bまたは図2Cに示すように、貼付面を部分的に形成する部分層として設けられてもよい。同様に、被覆層12は、シート状止血材10Aを出血箇所に貼り付けたときに、貼付面の反対側となる反対面(表面)の少なくとも一部に設けられている。被覆層12は、図1Aまたは図1Bに示すように、反対面の全面を覆う単一層として設けられてもよいし、図2Aに示すように、反対面を部分的に覆う部分層として設けられてもよい。 The adhesive layer 11 constitutes an affixing surface (back surface) for adhering the sheet-like hemostatic materials 10A to 10E to bleeding sites such as living tissue, and has good adhesion to living tissue. As shown in FIG. 1A, FIG. 1B or FIG. 2A, the adhesive layer 11 may be provided as a single layer covering the entire surface of the pasting surface, or as shown in FIG. 2B or FIG. It may be provided as a partial layer to be formed. Similarly, the covering layer 12 is provided on at least a part of the opposite surface (surface) that is the opposite side of the application surface when the sheet-like hemostatic material 10A is applied to the bleeding site. The covering layer 12 may be provided as a single layer covering the entire opposite surface as shown in FIG. 1A or 1B, or as a partial layer partially covering the opposite surface as shown in FIG. 2A. May be.
 被覆層12は、単一層または部分的に覆う構成のいずれであっても、接着層11とは異なり生体組織等に対する接着性を有しないか、接着層11よりも接着性が十分に小さいものとなっている。言い換えれば、被覆層12は、接着層11の反対面を「非接着面」にすることができる構成となっていればよい。これにより、シート状止血材10A~10Eを出血箇所に貼り付けようとする際に、出血箇所以外の部位または手術器具等に不用意に貼り付くおそれを有効に抑制することができる。つまり、被覆層12は、シート状止血材10A~10Eの一方の面のみが貼付面となるように、他方の面を被覆してその接着性を抑制する機能を有する。 Whether the cover layer 12 is a single layer or a partially covered structure, unlike the adhesive layer 11, it does not have adhesiveness to a living tissue or the like, or has a sufficiently lower adhesiveness than the adhesive layer 11. It has become. In other words, the coating layer 12 only needs to be configured so that the opposite surface of the adhesive layer 11 can be a “non-adhesive surface”. Thereby, when the sheet-like hemostatic materials 10A to 10E are to be attached to the bleeding site, it is possible to effectively suppress the possibility that the sheet-like hemostatic materials 10A to 10E are inadvertently attached to a site other than the bleeding site or a surgical instrument. That is, the covering layer 12 has a function of covering the other surface and suppressing the adhesiveness so that only one surface of the sheet hemostatic materials 10A to 10E becomes the pasting surface.
 接着層11は、前記の通り、図1A、図1B、図2Aまたは図2Bに示すシート状止血材10A~10Dであれば、γ-PGAにより構成されるスポンジ状シートであるが、被覆層12は、被覆材料により構成されるシートであればよく、少なくともシート状止血材10A~10Eを構成したときに柔軟性を発揮できるものであればよい。ただし、被覆層12も、被覆材料により構成されるスポンジ状シートであると好ましい。被覆層12がスポンジ状シートであれば、具体的な被覆材料の種類によらずに、被覆層12に良好な柔軟性を付与することが可能である。 As described above, the adhesive layer 11 is a sponge-like sheet composed of γ-PGA in the case of the sheet-like hemostatic materials 10A to 10D shown in FIG. 1A, FIG. 1B, FIG. 2A or FIG. Any sheet may be used as long as it is made of a coating material, and at least it can exhibit flexibility when the sheet-like hemostatic materials 10A to 10E are formed. However, the covering layer 12 is also preferably a sponge-like sheet made of a covering material. If the coating layer 12 is a sponge-like sheet, it is possible to impart good flexibility to the coating layer 12 regardless of the specific type of coating material.
 ここでいうスポンジ状シートは、柔軟な多孔質シートであればよく、その具体的な構成は特に限定されない。スポンジの具体的な構成としては、目視判定または顕微鏡下で観察して、均一または不均一な大きさの多数の間隙(孔または空胞等)を有する区画が連続または不連続に分散した多孔質を構成したもの(多孔質体)を挙げることができる。なお、スポンジ状でない非多孔質状の層またはシートとは、γ-PGAまたはこれを主成分とする組成物により一体的にシート状または層状に構成され、前記の多数の間隙(孔または空胞等)を有する区画が実質的に存在しない(わずかに存在しても実質的に無視できる)状態を挙げることができる。 Here, the sponge sheet may be a flexible porous sheet, and its specific configuration is not particularly limited. The specific structure of the sponge is a porous material in which compartments having a large number of gaps (such as pores or vacuoles) of uniform or non-uniform size are dispersed continuously or discontinuously as determined visually or under a microscope. Can be mentioned (porous body). The non-sponge-like non-porous layer or sheet is integrally formed into a sheet shape or a layer shape by γ-PGA or a composition containing the same as a main component, and the plurality of gaps (pores or vacuoles). Etc.) can be mentioned in a state where there is substantially no compartment (even if it is slightly present, it can be substantially ignored).
 また、少なくともγ-PGA、もしくは、γ-PGAおよび被覆材料をスポンジ状シートに加工する方法は特に限定されず、公知の方法を好適に用いることができる。具体的には、例えば、所定形状の成形型に、γ-PGAまたは被覆材料(もしくはその組成物)の溶液を流し込み、自然乾燥、真空乾燥、真空凍結乾燥等の乾燥方法により、スポンジ状多孔体を成形し、このスポンジ状多孔体に圧力を加えることにより、スポンジ状シートを形成する方法が挙げられる。これらの中でも、多孔質をより均一に形成させる観点では、真空凍結乾燥法を挙げることができるが、これに限定されるものではない。 Further, the method of processing at least γ-PGA or γ-PGA and a coating material into a sponge sheet is not particularly limited, and a known method can be suitably used. Specifically, for example, a solution of γ-PGA or a coating material (or a composition thereof) is poured into a mold having a predetermined shape, and a sponge-like porous body is obtained by a drying method such as natural drying, vacuum drying, or vacuum freeze drying. And forming a sponge-like sheet by applying pressure to the sponge-like porous body. Among these, from the viewpoint of more uniformly forming the porous material, a vacuum freeze-drying method can be exemplified, but the method is not limited thereto.
 真空凍結乾燥法としては、製造の容易性の観点から、例えば、γ-PGAまたは被覆材料の約0.05~30重量%の溶液を、予備凍結後、約10.6Pa(約0.08Torr)以下で乾燥する方法が挙げられるが、これに限定されるものではない。凍結乾燥後、成形型から取り出すことにより、成形品であるスポンジ状多孔体を得ることができる。また、このスポンジ状多孔体をシート状に成形する方法も特に限定されず、例えば、プレスなどで圧縮する方法等を挙げることができる。 As the vacuum freeze-drying method, from the viewpoint of ease of production, for example, a solution of about 0.05 to 30% by weight of γ-PGA or a coating material is about 10.6 Pa (about 0.08 Torr) after preliminary freezing. Although the method of drying below is mentioned, it is not limited to this. After freeze-drying, a sponge-like porous body that is a molded product can be obtained by removing it from the mold. Moreover, the method of forming the sponge-like porous body into a sheet is not particularly limited, and examples thereof include a method of compressing with a press.
 図1Aに示すシート状止血材10Aは、接着層11および被覆層12のみで構成される2層構造であるが、本開示はこれに限定されず、図1Bに示すシート状止血材10Bのように、3層以上の多層構造であってもよい。つまり、本開示に係るシート状止血材は、一方の面(裏面)がγ-PGAにより構成される貼付面となっており、他方の面(表面)が被覆材料(γ-PGA以外の生体分解性材料)により被覆される非貼付面(表面)となっていれば、その積層構造は特に限定されない。 Although the sheet-like hemostatic material 10A illustrated in FIG. 1A has a two-layer structure including only the adhesive layer 11 and the coating layer 12, the present disclosure is not limited to this, and the sheet-like hemostatic material 10B illustrated in FIG. In addition, a multilayer structure of three or more layers may be used. That is, in the sheet-like hemostatic material according to the present disclosure, one surface (back surface) is a pasting surface composed of γ-PGA, and the other surface (front surface) is a coating material (biodegradation other than γ-PGA). The laminated structure is not particularly limited as long as it is a non-sticking surface (surface) covered with the adhesive material.
 図1Bに示すシート状止血材10Bは、接着層11および被覆層12の間に中間層13を備えているため、3層構造を有している。中間層13は、接着層11および被覆層12の間に介在する層であればよく、シート状止血材10Bのように1層のみであってもよいし、2層以上であってもよい。中間層13の具体的な構成は特に限定されず、シート状止血材10Bにおいて、使用上で要求される種々の機能等を付与できるものであればよい。 Since the sheet-like hemostatic material 10B shown in FIG. 1B includes the intermediate layer 13 between the adhesive layer 11 and the coating layer 12, it has a three-layer structure. The intermediate layer 13 may be a layer interposed between the adhesive layer 11 and the covering layer 12, and may be only one layer as in the sheet-like hemostatic material 10B, or may be two or more layers. The specific configuration of the intermediate layer 13 is not particularly limited as long as it can provide various functions and the like required for use in the sheet-like hemostatic material 10B.
 例えば、シート状止血材10A~10Eを出血箇所近傍に縫い付ける場合を想定する。被覆層12が架橋コラーゲンで構成されるスポンジ状シートである場合、接着層11はγ-PGAで構成されるスポンジ状シートであるため、中間層13を有さないシート状止血材10Aを生体組織等に縫い付けることは容易ではない。そこで、シート状止血材10Bにおいて、中間層13として生体分解性材料の糸材で構成されるメッシュを採用すれば、生体組織等への縫い付けが容易となる。また、他の中間層13の例としては、接着層11および被覆層12の間での固着状態を向上する固着層、あるいは、シート状止血材10Bの強度を向上させる強化層等を挙げることができる。 For example, it is assumed that the sheet-like hemostatic materials 10A to 10E are sewn near the bleeding site. When the coating layer 12 is a sponge sheet composed of crosslinked collagen, the adhesive layer 11 is a sponge sheet composed of γ-PGA. It is not easy to sew to etc. Therefore, if a mesh composed of a thread material of biodegradable material is used as the intermediate layer 13 in the sheet-like hemostatic material 10B, it is easy to sew to a living tissue or the like. Examples of the other intermediate layer 13 include a fixing layer that improves the fixing state between the adhesive layer 11 and the covering layer 12, or a reinforcing layer that improves the strength of the sheet-like hemostatic material 10B. it can.
 さらに、本開示では、図1Aに示すシート状止血材10Aのように、接着層11および被覆層12は、いずれも単一のシートとして構成されているが、本開示はこれに限定されない。本開示では、接着層11および被覆層12の少なくとも一方が単一のシートであればよく(双方が単一のシートであればよく)、他方は単一のシートでなくてもよい。 Furthermore, in the present disclosure, the adhesive layer 11 and the covering layer 12 are both configured as a single sheet as in the sheet-like hemostatic material 10A illustrated in FIG. 1A, but the present disclosure is not limited thereto. In the present disclosure, at least one of the adhesive layer 11 and the covering layer 12 may be a single sheet (both may be a single sheet), and the other may not be a single sheet.
 ここでいう「単一のシート」とは、二次元的な広がりを有する一体的な単一の平面状部材を意味し、後述する部分層のように、複数の平面状部材がまとまって構成される部材集合体を意味するわけではない。シート状止血材10A~10Eを構成する層として説明すれば、「単一のシート」として構成される接着層11または被覆層12は、シート状止血材10A~10Eを止血箇所へ貼り付けた際に、当該止血箇所を適切に止血できるように、実質的に貼付面またはその反対面の全面を覆うことができる平面状部材の層を意味する。 The term “single sheet” as used herein means a single unitary planar member having a two-dimensional extension, and a plurality of planar members are configured as a partial layer described later. It does not mean a member assembly. Explaining as a layer constituting the sheet-like hemostatic materials 10A to 10E, the adhesive layer 11 or the covering layer 12 constituted as a “single sheet” is obtained when the sheet-like hemostatic materials 10A to 10E are attached to the hemostatic site. In addition, it means a layer of a planar member that can substantially cover the entire pasting surface or the opposite surface so that the hemostatic site can be appropriately stopped.
 接着層11および被覆層12の一方が単一のシートでない構成、すなわち部分層である構成について具体的に説明する。例えば、図2Aに示すシート状止血材10Cのように、被覆層12が、反対面を部分的に覆う複数の部分被覆層(部分層)121として当該反対面に設けられてもよい。あるいは、図2Bに示すシート状止血材10Dのように、接着層11が、接着面を部分的に覆う複数の部分接着層(部分層)111として当該接着面に設けられてもよい。なお、この部分接着層111はスポンジ状シートである。あるいは、図2Cに示すシート状止血材10Eのように、接着層11が非多孔質層である複数の部分接着層141として当該接着面に設けられてもよい。シート状止血材10A~10Eは、シート形状を維持するために基材となる単一のシート(基材層)が必要である。シート状止血材10Aまたは10Bでは、全ての層が単一のシートで構成されているが、シート状止血材10C、10Dまたは10Eは、一方の層が部分層であるため、他方の層が基材層となるために、単一のシートとして構成される必要がある。 A configuration in which one of the adhesive layer 11 and the coating layer 12 is not a single sheet, that is, a configuration in which it is a partial layer will be specifically described. For example, like the sheet-like hemostatic material 10C shown in FIG. 2A, the coating layer 12 may be provided on the opposite surface as a plurality of partial coating layers (partial layers) 121 that partially cover the opposite surface. Or the adhesive layer 11 may be provided in the said adhesive surface as the some adhesive layer (partial layer) 111 which partially covers an adhesive surface like the sheet-like hemostatic material 10D shown to FIG. 2B. The partial adhesive layer 111 is a sponge sheet. Alternatively, like the sheet-like hemostatic material 10E shown in FIG. 2C, the adhesive layer 11 may be provided on the adhesive surface as a plurality of partial adhesive layers 141 that are non-porous layers. The sheet-like hemostatic materials 10A to 10E require a single sheet (base material layer) to be a base material in order to maintain the sheet shape. In the sheet-like hemostatic material 10A or 10B, all layers are composed of a single sheet. However, since one layer is a partial layer in the sheet-like hemostatic material 10C, 10D, or 10E, the other layer is based on the other layer. In order to become a material layer, it is necessary to be configured as a single sheet.
 なお、接着層11はスポンジ状に構成されることで、後述するように柔軟性を発揮できる。そのため、図1Aまたは図1Bに示すように、接着層11が単一のシートであっても、図2Aに示すように、接着層11が部分接着層111で構成されても、良好な柔軟性を発揮できる。しかしながら、本開示はこれに限定されず、例えば、図2Cに示すように、接着層11が部分層として構成されていれば、当該接着層11はスポンジ状でなくてもよい。 In addition, the adhesive layer 11 can exhibit flexibility as described later by being configured in a sponge shape. Therefore, even if the adhesive layer 11 is a single sheet as shown in FIG. 1A or FIG. 1B, even if the adhesive layer 11 is composed of a partial adhesive layer 111 as shown in FIG. Can be demonstrated. However, the present disclosure is not limited to this, and for example, as illustrated in FIG. 2C, if the adhesive layer 11 is configured as a partial layer, the adhesive layer 11 may not be a sponge.
 γ-PGAを主成分として構成される単純なシート(すなわちスポンジ状でない非多孔質状のシート)は、後述する比較例3に例示するように柔軟性に欠ける。しかしながら、接着層11が、γ-PGAを主成分とする非多孔質状であっても部分接着層141として形成されていれば、当該部分接着層141が被覆層12により支持されるため、部分接着層141は柔軟性を発揮することができる。それゆえ、シート状止血材10Eは十分な柔軟性を有するものとなる。 A simple sheet composed of γ-PGA as a main component (that is, a non-sponge-like non-porous sheet) lacks flexibility as exemplified in Comparative Example 3 described later. However, even if the adhesive layer 11 is a non-porous material mainly composed of γ-PGA, if the adhesive layer 11 is formed as the partial adhesive layer 141, the partial adhesive layer 141 is supported by the coating layer 12. The adhesive layer 141 can exhibit flexibility. Therefore, the sheet-like hemostatic material 10E has sufficient flexibility.
 言い換えれば、本開示には、(1)少なくともγ-PGAで構成されるスポンジ状シート(単一のシート)であり、出血箇所への貼付面を構成する接着層11と、γ-PGAを除く少なくとも1種の生体分解性材料で構成されるシート(単一のシート)であり、貼付面の反対面を構成する被覆層12と、を備えているシート状止血材10Aまたは10B、(2)スポンジ状シートである接着層11が、接着面の全面を覆う単一層(単一のシート)として設けられ(接着面を構成し)、被覆層12が、反対面に部分的に設けられる部分被覆層121として構成されているシート状止血材10C、(3)被覆層12が、接着層11の反対面の全面を覆う単一層(単一のシート)として設けられ(反対面を構成し)、接着層11が、貼付面に部分的に設けられるスポンジ状の部分接着層111として構成されているシート状止血材10D、並びに、(4)被覆層12が、接着層11の反対面の全面を覆う単一層(単一のシート)として設けられ(反対面を構成し)、接着層11が、貼付面に部分的に設けられる非多孔質状の部分接着層141として構成されているシート状止血材10Eが含まれる。 In other words, the present disclosure includes (1) a sponge-like sheet (single sheet) composed of at least γ-PGA, excluding the adhesive layer 11 constituting the attachment surface to the bleeding site and γ-PGA. A sheet-like hemostatic material 10A or 10B, which is a sheet (single sheet) composed of at least one biodegradable material, and includes a coating layer 12 constituting the opposite surface of the application surface; (2) The adhesive layer 11 that is a sponge sheet is provided as a single layer (single sheet) that covers the entire surface of the adhesive surface (constitutes the adhesive surface), and the covering layer 12 is partially provided on the opposite surface The sheet-like hemostatic material 10C configured as the layer 121, (3) the coating layer 12 is provided as a single layer (single sheet) covering the entire opposite surface of the adhesive layer 11 (constitutes the opposite surface), Adhesive layer 11 is partially on the application surface A sheet-like hemostatic material 10D configured as a sponge-like partial adhesive layer 111 provided on the surface, and (4) a coating layer 12 as a single layer (single sheet) covering the entire opposite surface of the adhesive layer 11 A sheet-like hemostatic material 10E is provided (which constitutes the opposite surface) and the adhesive layer 11 is configured as a non-porous partial adhesive layer 141 partially provided on the pasting surface.
 本開示では、接着層11がγ-PGAにより構成されるスポンジ状シートであれば、シート状止血材10Aまたは10Bのように、接着層11が単一のシートであっても良好な柔軟性を発揮することができる。さらに、シート状止血材10Cまたは10Dのように、接着層11または被覆層12の一方を単一のシートからなる基材層として構成し、他方を部分層として構成することで、シート状止血材の柔軟性をより良好なものとすることができる。また、シート状止血材10Eのように、接着層11がスポンジ状でない非多孔質状であっても部分層であれば、十分な柔軟性を発揮することができる。 In the present disclosure, if the adhesive layer 11 is a sponge sheet composed of γ-PGA, good flexibility can be achieved even if the adhesive layer 11 is a single sheet, such as the sheet-like hemostatic material 10A or 10B. It can be demonstrated. Furthermore, like the sheet-like hemostatic material 10C or 10D, one of the adhesive layer 11 or the coating layer 12 is configured as a base material layer made of a single sheet, and the other is configured as a partial layer. The flexibility can be made better. Moreover, even if the adhesive layer 11 is a non-sponge-like non-porous shape like the sheet-like hemostatic material 10E, sufficient flexibility can be exhibited if it is a partial layer.
 部分被覆層121、部分接着層111、または部分接着層141の具体的な形状は特に限定されず、単一のシートでない部分的な層(部分シート)として構成されていればよい。例えば、部分被覆層121を例に挙げて説明すると、図3Aに示すように、ドット状の部分被覆層121aであってもよいし、図3Bに示すように、線状の部分被覆層121bであってもよいし、図3Cに示すように、網掛け状の部分被覆層121cであってもよいし、これら以外の形状であってもよい。 The specific shape of the partial covering layer 121, the partial adhesive layer 111, or the partial adhesive layer 141 is not particularly limited, and may be configured as a partial layer (partial sheet) that is not a single sheet. For example, the partial covering layer 121 will be described as an example. As shown in FIG. 3A, the partial covering layer 121a may be a dot-like partial covering layer 121a, or as shown in FIG. 3B, a linear partial covering layer 121b may be used. As shown in FIG. 3C, it may be a shaded partial covering layer 121c or a shape other than these.
 このように、部分層または部分シートは、ドット状または線状のように複数の平面状部材がまとまって構成される部材集合体(図3Aまたは図3B参照)であってもよいし、網掛け状のように複数の開口(あるいは複数の貫通孔)が形成されて構成される単一の平面状部材(図3C参照)であってもよいし、これらを組み合わせたような構成(複数の開口を有する単一の平面状部材が複数まとまって部材集合体となるような構成)であってもよい。 As described above, the partial layer or the partial sheet may be a member assembly (see FIG. 3A or FIG. 3B) in which a plurality of planar members are formed like dots or lines, or may be shaded. It may be a single planar member (see FIG. 3C) configured by forming a plurality of openings (or a plurality of through holes) like a shape, or a configuration in which these are combined (a plurality of openings A configuration in which a plurality of single planar members each having a shape are combined into a member assembly may be employed.
 部分被覆層121は、接着層11の反対面を前述した「非接着面」にすることができるように、当該反対面に設けられていればよいが、図3A~図3Cに示す部分被覆層121a~121cのように、接着層11の反対面の全体に及ぶように、部分被覆層121が分散して配置されていると好ましい。部分被覆層121の分散配置は、不規則(ランダム)であってもよいが、図3A~図3Cに示すように規則的であるとより好ましい。なお、図2Aに示す部分被覆層121は、図1Aと同様に二層構造の1層を構成しているが、図1Bに例示するように、部分被覆層121は、3層以上の多層構造の1層として設けられてもよい。 The partial coating layer 121 may be provided on the opposite surface so that the opposite surface of the adhesive layer 11 can be the above-mentioned “non-adhesive surface”, but the partial coating layer shown in FIGS. 3A to 3C As in the case of 121a to 121c, it is preferable that the partial covering layers 121 are dispersed and arranged so as to cover the entire opposite surface of the adhesive layer 11. The dispersive arrangement of the partial covering layer 121 may be irregular (random), but is more preferably regular as shown in FIGS. 3A to 3C. The partial covering layer 121 shown in FIG. 2A constitutes one layer having a two-layer structure as in FIG. 1A, but the partial covering layer 121 has a multilayer structure of three or more layers as illustrated in FIG. 1B. It may be provided as one layer.
 同様に、部分接着層111または部分接着層141の具体例も、前述した部分被覆層121と同様に、ドット状、線状、網掛け状等を挙げることができる。部分接着層111または部分接着層141は、生体組織等の出血箇所に貼り付ける「貼付面」にすることができるように、接着面に設けられていればよいが、部分被覆層121と同様に、接着層全体に及ぶように、部分接着層111または部分接着層141が分散して配置されていると好ましい。分散配置は不規則であってもよいが、規則的であると好ましい。 Similarly, specific examples of the partial adhesive layer 111 or the partial adhesive layer 141 may also be dot-like, linear, and shaded like the partial covering layer 121 described above. The partial adhesive layer 111 or the partial adhesive layer 141 may be provided on the adhesive surface so as to be a “sticking surface” to be attached to a bleeding site such as a living tissue. The partial adhesive layer 111 or the partial adhesive layer 141 is preferably dispersed and arranged so as to cover the entire adhesive layer. The dispersed arrangement may be irregular, but is preferably regular.
 2層構造を有するシート状止血材10Aにおいては、接着層11および被覆層12は一体的に固着されて1枚のシートを構成すればよい。同様に、3層以上の構造を有するシート状止血材10Bにおいては、接着層11、1層以上の中間層13、および被覆層12が一体的に固着されて1枚のシートを構成すればよい。 In the sheet-like hemostatic material 10A having a two-layer structure, the adhesive layer 11 and the covering layer 12 may be integrally fixed to constitute one sheet. Similarly, in the sheet-like hemostatic material 10B having a structure of three or more layers, the adhesive layer 11, the one or more intermediate layers 13 and the covering layer 12 may be integrally fixed to constitute one sheet. .
 シート状止血材10Cにおいては、被覆層12が部分被覆層121で構成されるが、この部分被覆層121は、被覆層12となるシートを所定形状に打ち抜いたり切り抜いたりした上で、接着層11に固着して形成すればよい。同様に、シート状止血材10Dにおいては、部分接着層111は、接着層11となるシートを所定形状に打ち抜いたり切り抜いたりした上で、被覆層12に固着して形成すればよい。また、シート状止血材10Eにおいては、部分接着層141はスポンジ状に加工する必要がないので、所定の形状に形成されたγ-PGAより構成される非多孔質の部分シートを、接着層12に積層して固着して形成すればよい。 In the sheet-like hemostatic material 10C, the coating layer 12 is constituted by a partial coating layer 121. The partial coating layer 121 is formed by punching or cutting out a sheet to be the coating layer 12 into a predetermined shape, and then the adhesive layer 11. What is necessary is just to adhere and form. Similarly, in the sheet-like hemostatic material 10D, the partial adhesive layer 111 may be formed by sticking to the covering layer 12 after punching out or cutting out a sheet to be the adhesive layer 11 into a predetermined shape. In the sheet-like hemostatic material 10E, since the partial adhesive layer 141 does not need to be processed into a sponge shape, a non-porous partial sheet made of γ-PGA formed in a predetermined shape is used as the adhesive layer 12. It may be formed by laminating and adhering.
 これら各層を固着させる具体的な方法は特に限定されず、公知の方法を好適に用いることができる。被覆層12が架橋コラーゲンで構成されるスポンジ状シートであれば、後述するように、接着層11および被覆層12(必要に応じて1枚以上の中間層13)をプレスして圧着する方法を好適に用いることができる。 The specific method for fixing these layers is not particularly limited, and a known method can be suitably used. If the coating layer 12 is a sponge-like sheet composed of cross-linked collagen, a method of pressing and bonding the adhesive layer 11 and the coating layer 12 (one or more intermediate layers 13 as necessary) as will be described later. It can be used suitably.
 シート状止血材10A~10Eが備える接着層11および被覆層12は、それぞれ同じ色彩を有してもよいが、互いに異なる色彩を有することが好ましい。これにより、シート状止血材10A~10Eを使用する際に、いずれの面が貼付面(接着層11)であるかを目視により容易に確認することができる。接着層11および被覆層12に色彩を付与する方法は特に限定されず公知の方法を好適に用いることができるが、一般的には、接着層11または被覆層12に公知の色素、染料または顔料を添加してこれらの層を着色する方法を挙げることができる。具体的な色素としては、医薬品等の分野で公知の法定色素、例えば、緑色202号、紫色201号、青色2号等が挙げられ、具体的な顔料としては、例えば、三二酸化鉄等が挙げられる。 The adhesive layer 11 and the covering layer 12 included in the sheet-like hemostatic materials 10A to 10E may have the same color, but preferably have different colors. Thereby, when using the sheet-like hemostatic materials 10A to 10E, it can be easily confirmed visually which surface is the affixing surface (adhesive layer 11). A method for imparting color to the adhesive layer 11 and the coating layer 12 is not particularly limited, and a known method can be suitably used. Generally, a known dye, dye or pigment is used for the adhesive layer 11 or the coating layer 12. And a method of coloring these layers by adding. Specific dyes include legal dyes known in the field of pharmaceuticals, for example, green 202, purple 201, blue 2 and the like, and specific pigments include, for example, iron sesquioxide. It is done.
 なお、色彩の付与は、接着層11および被覆層12のいずれに対して行われてもよいし、接着層11または被覆層12の一方のみに行われてもよい。つまり、接着層11および被覆層12の両方に、それぞれ異なる色素を加えて着色してもよいし、接着層11のみ、もしくは、被覆層12のみに色素等を加えることにより、一方の層のみを着色してもよい。また、色素等の添加方法も特に限定されず、接着層11または被覆層12を形成する(これら層となるシートまたはスポンジ状多孔体を製造する)過程で、γ-PGAまたは被覆材料に色素等を加えてもよいし、シート状止血材10A~10Eが製造されてから、接着層11および被覆層12のいずれか一方を色素等により着色してもよい。さらに、色彩を付与する部位についても特に限定されず、接着層11または被覆層12の少なくとも一部に色彩が付与されていればよい。もちろん、接着層11または被覆層12の全部(層全体)が着色されてもよい。 The color may be applied to either the adhesive layer 11 or the coating layer 12, or may be performed only to one of the adhesive layer 11 or the coating layer 12. In other words, both the adhesive layer 11 and the coating layer 12 may be colored by adding different pigments, or only one layer is added by adding a pigment or the like only to the adhesive layer 11 or only the coating layer 12. It may be colored. Also, the method of adding a dye or the like is not particularly limited, and the dye or the like is added to the γ-PGA or the coating material in the process of forming the adhesive layer 11 or the coating layer 12 (manufacturing a sheet or a sponge-like porous body serving as these layers). Alternatively, either one of the adhesive layer 11 and the coating layer 12 may be colored with a dye or the like after the sheet-like hemostatic materials 10A to 10E are manufactured. Furthermore, the part to which the color is imparted is not particularly limited as long as the color is imparted to at least a part of the adhesive layer 11 or the covering layer 12. Of course, all of the adhesive layer 11 or the covering layer 12 (entire layer) may be colored.
 シート状止血材10A~10Eにおいては、接着層11および被覆層12の重量比は特に限定されないが、代表的には、接着層11の重量比が、シート状止血材10A~10Eの全重量の10~90重量%の範囲内にあることが好ましい。接着層11が10重量%未満であれば、シート状止血材10A~10Eの構成にもよるが、接着層11による接着性を十分に発揮できない可能性がある。また、接着層11が90重量%を超えれば、シート状止血材10A~10Eの構成にもよるが、被覆層12による、接着層11の接着性の抑制効果が十分に発揮できない可能性がある。 In the sheet-like hemostatic materials 10A to 10E, the weight ratio of the adhesive layer 11 and the coating layer 12 is not particularly limited, but typically, the weight ratio of the adhesive layer 11 is the total weight of the sheet-like hemostatic materials 10A to 10E. It is preferably in the range of 10 to 90% by weight. If the adhesive layer 11 is less than 10% by weight, the adhesiveness due to the adhesive layer 11 may not be sufficiently exhibited, depending on the configuration of the sheet-like hemostatic materials 10A to 10E. Further, if the adhesive layer 11 exceeds 90% by weight, the coating layer 12 may not sufficiently exert the effect of suppressing the adhesiveness of the adhesive layer 11 depending on the configuration of the sheet hemostatic materials 10A to 10E. .
 シート状止血材10A~10Eの大きさおよび厚さについても特に限定されず、シート状止血材10A~10Eの使用条件等に応じて適宜設定することができる。シート状止血材10A~10Eは、腹腔鏡下手術に好適に用いることができるが、この場合には、トロッカー通過性も考慮して縦横数cm程度の大きさを有していればよい。また、腹腔鏡下手術以外の手術に用いる場合、もしくは、外傷の応急的な止血時等には、前述した縦横数cm程度よりも大きいものを用いることができる。 The size and thickness of the sheet-like hemostatic materials 10A to 10E are not particularly limited, and can be appropriately set according to the use conditions of the sheet-like hemostatic materials 10A to 10E. The sheet-like hemostatic materials 10A to 10E can be suitably used for laparoscopic surgery. In this case, the sheet-like hemostatic materials 10A to 10E may have a size of about several centimeters and widths in consideration of trocar passage. In addition, when used for surgery other than laparoscopic surgery, or for emergency hemostasis of trauma, a size larger than the above-mentioned length and width of about several centimeters can be used.
 シート状止血材10A~10Eは、被覆層12または中間層13の種類にもよるが、室温で保存することが可能である。ここでいう室温は、日本薬局方で定義される1~30℃の範囲内を差す。シート状止血材10A~10Eにおいて止血性能を示す接着層11は、前記の通りγ-PGAにより構成されているが、γ-PGAは室温の範囲内でも安定して保存することができる。また、例えば、被覆層12として架橋コラーゲンが用いられれば、架橋コラーゲンも室温の範囲内で安定して保存することができる。それゆえ、シート状止血材10Aが接着層11および架橋コラーゲン製の被覆層12で構成されていれば、室温で安定して保存することができる。同様に、中間層13が室温保存可能な材質で構成されていれば、シート状止血材10Bも室温で安定して保存することができる。当然のことながら、必要に応じて低温で安定に保存することも可能である。 The sheet hemostats 10A to 10E can be stored at room temperature depending on the type of the covering layer 12 or the intermediate layer 13. The room temperature referred to here is in the range of 1 to 30 ° C. as defined by the Japanese Pharmacopoeia. The adhesive layer 11 showing hemostatic performance in the sheet-like hemostatic materials 10A to 10E is composed of γ-PGA as described above. However, γ-PGA can be stably stored even within a room temperature range. Further, for example, if cross-linked collagen is used as the coating layer 12, the cross-linked collagen can also be stably stored within a room temperature range. Therefore, if the sheet-like hemostatic material 10 </ b> A is composed of the adhesive layer 11 and the cross-linked collagen coating layer 12, it can be stably stored at room temperature. Similarly, if the intermediate layer 13 is made of a material that can be stored at room temperature, the sheet-like hemostatic material 10B can also be stored stably at room temperature. Of course, it can be stably stored at a low temperature as required.
 なお、フィブリノゲン系のシート状止血材、例えば、タコシール(登録商標)は10℃以下の低温保存が必要となる。また、酸化セルロース系のシート状止血材、例えば、サージセル(登録商標)ニューニットは25℃以下での保存が必要となっている。常温は15~25℃の範囲内であるが、夏季には、通常、気温が25℃を超えることが多い。それゆえ、25℃以下で保存が必要であるということは、室温での保存は、実質的に困難であることを意味する。 In addition, a fibrinogen-based sheet hemostatic material such as Taco Seal (registered trademark) needs to be stored at a low temperature of 10 ° C. or lower. Further, an oxidized cellulose-based sheet hemostatic material, for example, Surge Cell (registered trademark) New Knit, needs to be stored at 25 ° C. or lower. The normal temperature is in the range of 15 to 25 ° C., but in summer, the temperature usually exceeds 25 ° C. Therefore, storage at 25 ° C. or lower means that storage at room temperature is substantially difficult.
 [ポリ-γ-グルタミン酸]
 接着層11は、前記の通り、少なくともポリ-γ-グルタミン酸(γ-PGA)で構成されるスポンジ状シートまたは非多孔質状の部分シートである。したがって、接着層11は、γ-PGAのみで構成されてもよいし、γ-PGAを主成分として他の成分を含むγ-PGA組成物で構成されてもよい。
[Poly-γ-glutamic acid]
As described above, the adhesive layer 11 is a sponge-like sheet or a non-porous partial sheet composed of at least poly-γ-glutamic acid (γ-PGA). Therefore, the adhesive layer 11 may be composed only of γ-PGA, or may be composed of a γ-PGA composition containing γ-PGA as a main component and other components.
 接着層11として用いられるγ-PGAは、グルタミン酸がγ位のカルボキシル基とα位のアミノ基とでペプチド結合し、直鎖状に連なったポリマーおよびその塩が含まれる。γ-PGAの塩の例としては、ポリ-γ-グルタミン酸ナトリウムが挙げられる。本実施の形態において用いる「ポリ-γ-グルタミン酸(γ-PGA)」という用語には、基本的に「ポリ-γ-グルタミン酸および/またはその塩」を含むものとする。 The γ-PGA used as the adhesive layer 11 includes a polymer in which glutamic acid is linked by a peptide bond between a carboxyl group at the γ position and an amino group at the α position, and a salt thereof. An example of a salt of γ-PGA is sodium poly-γ-glutamate. The term “poly-γ-glutamic acid (γ-PGA)” used in the present embodiment basically includes “poly-γ-glutamic acid and / or a salt thereof”.
 接着層11として用いられるγ-PGAとしては、具体的には特に限定されないが、例えば、特定の範囲内の分子量を有するものを好適に用いることができる。γ-PGAの好ましい分子量の範囲としては、重量平均分子量Mwが20万~1300万の範囲内を挙げることができ、より好ましくは30万~1000万の範囲内を挙げることができる。γ-PGAの重量平均分子量Mwが下限の20万を下回れば(20万未満であれば)、接着層11もしくはシート状止血材10A~10Eの構成にもよるが、貼付面における良好な接着性を実現できない可能性がある。なお、γ-PGAの重量平均分子量Mwの上限は特に限定されないものの、通常、1300万以下となる。これは、従来公知の製造方法では、重量平均分子量Mwが1300万を超えるものを製造することが困難であると考えられているためである。 The γ-PGA used as the adhesive layer 11 is not specifically limited, but, for example, one having a molecular weight within a specific range can be suitably used. A preferred molecular weight range of γ-PGA is a weight average molecular weight Mw in the range of 200,000 to 13 million, more preferably in the range of 300,000 to 10 million. If the weight average molecular weight Mw of the γ-PGA is below the lower limit of 200,000 (less than 200,000), good adhesiveness on the application surface will depend on the configuration of the adhesive layer 11 or the sheet-like hemostatic materials 10A to 10E. May not be possible. The upper limit of the weight average molecular weight Mw of γ-PGA is not particularly limited, but is usually 13 million or less. This is because it is considered that it is difficult to produce a product having a weight average molecular weight Mw exceeding 13 million by a conventionally known production method.
 また、接着層11として用いられるγ-PGAとしては、その動粘度νが特定の範囲内にあるものを好適に用いることができる。γ-PGAの好ましい動粘度νとしては、0.05質量%の濃度で蒸留水に溶解させた際の37℃での動粘度νが、例えば2cSt~15cStの範囲内を挙げることができ、より好ましくは2.5cSt~8cStの範囲内を挙げることができる。 As the γ-PGA used as the adhesive layer 11, one having a kinematic viscosity ν within a specific range can be suitably used. As a preferable kinematic viscosity ν of γ-PGA, the kinematic viscosity ν at 37 ° C. when dissolved in distilled water at a concentration of 0.05% by mass can be, for example, in the range of 2 cSt to 15 cSt. A preferable range is 2.5 cSt to 8 cSt.
 γ-PGAの動粘度νが下限の2cStを下回れば(2cSt未満であれば)、接着層11もしくはシート状止血材10A~10Eの構成にもよるが、貼付面における良好な接着性を実現できない可能性がある。なお、γ-PGAの動粘度νの上限は特に限定されないものの、通常、15cSt以下となる。これは、従来公知の製造方法では、動粘度νが15cStを超えるものを製造することが困難であると考えられているためである。 If the kinematic viscosity ν of γ-PGA is below the lower limit of 2 cSt (less than 2 cSt), good adhesiveness on the application surface cannot be realized depending on the configuration of the adhesive layer 11 or the sheet-like hemostatic materials 10A to 10E. there is a possibility. The upper limit of the kinematic viscosity ν of γ-PGA is not particularly limited, but is usually 15 cSt or less. This is because it is considered that it is difficult to produce a product having a kinematic viscosity ν exceeding 15 cSt by a conventionally known production method.
 本開示で接着層11に用いられるγ-PGAは、その重量平均分子量Mwが前述した範囲内にあるか、または、その動粘度νが、前述した所定条件における動粘度の範囲内にあるか、もしくは、重量平均分子量Mwおよび動粘度νの双方が前述した範囲内にあればよい。もちろん、接着層11もしくはシート状止血材10A~10Eの構成または使用条件等によっては、γ-PGAの重量平均分子量Mwおよび動粘度νの少なくとも一方が前述した範囲内から外れてもよいことは言うまでもない。 In the present disclosure, the γ-PGA used for the adhesive layer 11 has a weight average molecular weight Mw within the above-mentioned range, or a kinematic viscosity ν within the above-mentioned kinematic viscosity range. Alternatively, both the weight average molecular weight Mw and the kinematic viscosity ν may be within the above-described ranges. Of course, it goes without saying that at least one of the weight average molecular weight Mw and the kinematic viscosity ν of γ-PGA may be out of the above-mentioned range depending on the configuration or use conditions of the adhesive layer 11 or the sheet-like hemostatic materials 10A to 10E. Yes.
 このようなγ-PGAの入手方法は特に限定されない。例えば、前述した重量平均分子量Mwおよび動粘度νの少なくとも一方を満たすγ-PGAは、食品添加物等として市販されており、生体(人体を含む)に対する安全性は十分に確保されている。また、例えば、バチルス・スブチリス等のバチルス属由来の微生物を用いた公知の方法によりγ-PGAを容易に生産することができる。 The method for obtaining such γ-PGA is not particularly limited. For example, γ-PGA satisfying at least one of the aforementioned weight average molecular weight Mw and kinematic viscosity ν is commercially available as a food additive and the like, and sufficiently safe for living bodies (including human bodies). Further, for example, γ-PGA can be easily produced by a known method using a microorganism derived from the genus Bacillus such as Bacillus subtilis.
 技術常識的に不可避な不純物を含有する場合を除いて、接着層11は、実質的にγ-PGAのみで構成されてよいが、γ-PGA以外の成分を含むγ-PGA組成物で構成されてもよい。γ-PGA以外の成分(他の成分)としては、生体適合性および生体分解性を有し、γ-PGAに配合したときに接着層11の接着性を妨げないものであればよい。具体的には、例えば、他の成分としては、グルコース等の単糖類、オリゴ糖類、多糖類等の糖類;コラーゲン;グリセリン;ポリエチレングリコール;公知の添加剤(前述した色素等)等を挙げることができるが、特に限定されない。これら他の成分は1種類のみであってもよいし、2種類以上を適宜組み合わせて用いてもよい。 The adhesive layer 11 may be substantially composed only of γ-PGA except when it contains impurities that are unavoidable due to common technical knowledge, but is composed of a γ-PGA composition containing components other than γ-PGA. May be. Components other than γ-PGA (other components) may be those that have biocompatibility and biodegradability and do not hinder the adhesion of the adhesive layer 11 when blended with γ-PGA. Specifically, for example, other components include saccharides such as monosaccharides such as glucose, saccharides such as oligosaccharides and polysaccharides; collagen; glycerin; polyethylene glycol; and known additives (the above-mentioned pigments and the like). Yes, but not particularly limited. These other components may be used alone or in combination of two or more.
 γ-PGA組成物に対する他の成分の配合量は、接着層11の接着性を妨げない限り特に限定されない。通常は、γ-PGA組成物全量のうちγ-PGAが50重量%未満とならないような配合量であればよい。γ-PGA組成物がγ-PGAおよび他の成分のみで構成されていれば、他の成分は50重量%未満であればよい。なお、γ-PGA組成物が糖類を含む場合、接着層11にさらなる柔軟性を付与できるとともに、接着性のさらなる向上も期待できる。 The amount of other components added to the γ-PGA composition is not particularly limited as long as the adhesiveness of the adhesive layer 11 is not hindered. Usually, the blending amount may be such that γ-PGA does not become less than 50% by weight of the total amount of the γ-PGA composition. If the γ-PGA composition is composed only of γ-PGA and other components, the other components may be less than 50% by weight. In addition, when the γ-PGA composition contains saccharides, the adhesive layer 11 can be given further flexibility, and further improvement in adhesiveness can be expected.
 [被覆材料]
 被覆層12は、前記の通り、γ-PGAを除く少なくとも1種の生体分解性材料(被覆材料)で構成されるシート(好ましくはスポンジ状シート)である。したがって、被覆層12は、1種類の被覆材料により構成されてもよいし、2種類以上の被覆材料により構成されてもよい。また、被覆材料に加えて配合可能な他の成分を含有してもよい。
[Coating material]
As described above, the coating layer 12 is a sheet (preferably a sponge sheet) made of at least one biodegradable material (coating material) excluding γ-PGA. Therefore, the coating layer 12 may be composed of one type of coating material, or may be composed of two or more types of coating materials. Moreover, you may contain the other component which can be mix | blended in addition to a coating material.
 被覆材料は、γ-PGAとともに生体内に導入したときに、良好な生体適合性を発揮するとともに、一定期間後に分解および吸収されるものであればよい。通常は、生体適合性および生体分解性を有する高分子を挙げることができる。このような高分子としては、例えば、コラーゲン、ポリ乳酸およびポリグリコール酸等を挙げることができる。これらの中でも、コラーゲン(Col)が特に好ましい。コラーゲンは、生体内に導入した後に、生体に好ましくない影響を与える可能性がほとんどなく、生体内での分解性にも優れるとともに、γ-PGAに比較して接着性を実質的に示さない。 The coating material may be any material that exhibits good biocompatibility when introduced into a living body together with γ-PGA and is decomposed and absorbed after a certain period of time. Usually, a polymer having biocompatibility and biodegradability can be mentioned. Examples of such a polymer include collagen, polylactic acid, and polyglycolic acid. Among these, collagen (Col) is particularly preferable. Collagen has almost no possibility of adversely affecting the living body after introduction into the living body, is excellent in degradability in the living body, and does not substantially exhibit adhesiveness compared to γ-PGA.
 コラーゲンの具体的な構成は特に限定されないが、好ましくは、公知の溶媒に溶解できるよう処理が施されたコラーゲンを挙げることができる。具体的には、例えば、酵素可溶化コラーゲン、酸可溶化コラーゲン、アルカリ可溶化コラーゲンおよび中性可溶化コラーゲンなどの可溶化コラーゲンを挙げることができる。これらのうち、好ましいコラーゲンとしては、取扱性の観点から酸可溶化コラーゲンを挙げることができる。また、生体に好ましくない影響を与えるおそれをより一層低減する観点から、抗原決定基であるテロペプチドの除去処理が施されているアテロコラーゲンを好ましく用いることができる。 The specific structure of the collagen is not particularly limited, but preferred examples include collagen that has been treated so that it can be dissolved in a known solvent. Specific examples include solubilized collagen such as enzyme-solubilized collagen, acid-solubilized collagen, alkali-solubilized collagen, and neutral-solubilized collagen. Among these, preferred collagens include acid solubilized collagen from the viewpoint of handleability. In addition, atelocollagen that has been subjected to the removal treatment of the telopeptide that is an antigenic determinant can be preferably used from the viewpoint of further reducing the possibility of adverse effects on the living body.
 コラーゲンの由来は特に限定されず、ウシ、ブタ、鳥類、魚類、ウサギ、ヒツジ、ネズミおよびヒト等を挙げることができる。コラーゲンの抽出対象となる動物種の部位も特に限定されず、皮膚、腱、骨、軟骨および臓器等を挙げることができる。入手容易性の観点では、これらの中でも、ブタ皮膚由来のものを好ましく用いることができる。さらに、コラーゲンのタイプも特に限定されないが、I型、II型およびIII型等が挙げられ、これらの中でも取扱性の観点からI型およびIII型を好ましく用いることができる。 The origin of collagen is not particularly limited, and examples include cattle, pigs, birds, fish, rabbits, sheep, mice, and humans. The part of the animal species from which collagen is extracted is not particularly limited, and examples thereof include skin, tendon, bone, cartilage, and organ. Of these, those derived from pig skin can be preferably used from the viewpoint of availability. Furthermore, the type of collagen is not particularly limited, and examples thereof include type I, type II, and type III. Among these, type I and type III can be preferably used from the viewpoint of handleability.
 コラーゲン等の被覆材料は、そのまま被覆層12に用いられてもよいが、架橋処理が施されることが好ましい。つまり、被覆層12は、架橋コラーゲン(C-Col)により構成されることが好ましい。これにより被覆層12の強度を向上または安定化できるとともに、架橋の程度を調整することにより、生体内での分解時間を制御することが可能となる。被覆材料の架橋方法は特に限定されないが、例えば、化学的架橋法、γ線照射、紫外線照射、電子線照射、プラズマ照射および熱脱水架橋処理等を挙げることができる。被覆材料が少なくともコラーゲンを含む場合には、これらの架橋方法の中でも熱脱水架橋処理を挙げることができる。 A coating material such as collagen may be used for the coating layer 12 as it is, but is preferably subjected to a crosslinking treatment. That is, the covering layer 12 is preferably composed of cross-linked collagen (C-Col). Thereby, the strength of the covering layer 12 can be improved or stabilized, and the degradation time in the living body can be controlled by adjusting the degree of crosslinking. The crosslinking method of the coating material is not particularly limited, and examples thereof include a chemical crosslinking method, γ-ray irradiation, ultraviolet irradiation, electron beam irradiation, plasma irradiation, and thermal dehydration crosslinking treatment. In the case where the coating material contains at least collagen, among these crosslinking methods, a thermal dehydration crosslinking treatment can be exemplified.
 熱脱水架橋処理では、まず、コラーゲンをシート状に成形して風乾させる。その後、バキュームドライオーブン中にシートを入れて、減圧下で所定の温度で所定時間保持する。これにより、コラーゲンを架橋することが可能となる。なお、熱脱水架橋処理では、架橋温度および架橋時間の少なくとも一方を調整することにより、架橋の程度を良好に調整することができる。 In the thermal dehydration cross-linking treatment, first, collagen is formed into a sheet shape and air-dried. Thereafter, the sheet is placed in a vacuum dry oven and held at a predetermined temperature for a predetermined time under reduced pressure. This makes it possible to crosslink the collagen. In the thermal dehydration crosslinking treatment, the degree of crosslinking can be adjusted favorably by adjusting at least one of the crosslinking temperature and the crosslinking time.
 なお、被覆層12が、1種類以上の生体分解性材料(被覆材料)だけでなく、生体分解性材料に配合可能な他の成分を含む場合、すなわち被覆層12が被覆材料組成物で構成されている場合には、前述したγ-PGA組成物と同様に、被覆層12の物性を妨げない範囲内で他の成分を配合することができる。通常は、被覆材料組成物の全量のうち被覆材料が50重量%未満とならないような配合量であればよい。被覆材料組成物が1種類以上の被覆材料および他の成分のみで構成されていれば、他の成分は50重量%未満であればよい。また、他の成分としては、公知の添加剤(前述した色素等)等を挙げることができるが、特に限定されない。 In addition, when the coating layer 12 contains not only one or more types of biodegradable materials (coating materials) but also other components that can be blended in the biodegradable materials, that is, the coating layer 12 is composed of a coating material composition. In this case, other components can be blended within the range that does not interfere with the physical properties of the coating layer 12 in the same manner as the γ-PGA composition described above. Usually, the blending amount may be such that the coating material does not become less than 50% by weight in the total amount of the coating material composition. If the coating material composition is composed of only one or more types of coating materials and other components, the other components may be less than 50% by weight. In addition, examples of other components include known additives (such as the dyes described above), but are not particularly limited.
 [シート状止血材の製造方法]
 本開示に係るシート状止血材の製造方法は特に限定されず、少なくともγ-PGAで構成される接着層を形成し、十分な柔軟性を有するシート状止血材を製造できる方法であればよい。本開示に係るシート状止血材10A~10Eは、前記の通り、接着層11および被覆層12を備えており、中間層13を備えていてもよい。それゆえ、代表的な製造方法としては、γ-PGA製のスポンジ状シートまたは非多孔質状の部分シートである接着層11と、被覆材料製のシートである被覆層12と、必要に応じてこれらの間に介在する中間層13とを、それぞれ積層して一つのシートとして一体的に固着させる方法であればよい。したがって、接着層11、被覆層12、および中間層13は、これらの層となるシートが同時に形成されてもよいし、先に任意のシートが形成され、その後に他のシートが形成されてもよい。
[Method for producing sheet hemostatic material]
The method for producing the sheet-like hemostatic material according to the present disclosure is not particularly limited as long as it can form an adhesive layer composed of at least γ-PGA and produce a sheet-like hemostatic material having sufficient flexibility. As described above, the sheet-like hemostatic materials 10A to 10E according to the present disclosure include the adhesive layer 11 and the coating layer 12, and may include the intermediate layer 13. Therefore, as a typical production method, an adhesive layer 11 which is a sponge-like sheet made of γ-PGA or a non-porous partial sheet, a coating layer 12 which is a sheet made of a coating material, and, if necessary, Any method may be used as long as the intermediate layer 13 interposed therebetween is laminated and integrally fixed as one sheet. Therefore, the adhesive layer 11, the covering layer 12, and the intermediate layer 13 may be formed simultaneously with the sheets serving as these layers, or an arbitrary sheet may be formed first, followed by another sheet. Good.
 代表的なシート状止血材の製造方法としては、例えば、接着層11および被覆層12のいずれもスポンジ状シートである場合には、少なくともγ-PGAで構成される第一スポンジ状多孔体、または、これに圧力を加えて得られるスポンジ状第一シートと、被覆材料で構成される第二スポンジ状多孔体、または、これに圧力を加えて得られるスポンジ状第二シートとを積層して積層体を形成する工程(積層工程)と、第一スポンジ状多孔体またはスポンジ状第一シートと、第二スポンジ状多孔体またはスポンジ状第二シートとを積層して積層体を形成する工程(積層工程)と、積層体を接着もしくは圧着することにより、接着層11および被覆層12を備えるシート状止血材10A(またはシート状止血材10B)を形成する工程(一体化工程)と、を含む製造方法を挙げることができる。 As a representative method for producing a sheet-like hemostatic material, for example, when both the adhesive layer 11 and the coating layer 12 are sponge-like sheets, a first sponge-like porous body composed of at least γ-PGA, or A sponge-like first sheet obtained by applying pressure to this and a second sponge-like porous body made of a coating material, or a sponge-like second sheet obtained by applying pressure thereto are laminated and laminated. Forming the body (lamination process), and laminating the first sponge-like porous body or sponge-like first sheet and the second sponge-like porous body or sponge-like second sheet (lamination) Step) and a step of forming the sheet-like hemostatic material 10A (or the sheet-like hemostatic material 10B) including the adhesive layer 11 and the covering layer 12 by bonding or press-bonding the laminate (integration) A degree), it can be mentioned a production method comprising a.
 また、シート状止血材の製造方法には、積層工程に用いられるスポンジ状多孔体またはシートを形成する工程が含まれてもよい。つまり、本開示では、積層工程において、スポンジ状第一シートまたはスポンジ状第二シートとして予め製造されたもの(あるいは市販のもの)を用いてもよいし、第一スポンジ状多孔体または第二スポンジ状多孔体として予め製造されたものを用いてもよいし、スポンジ状多孔体またはスポンジ状シートを原材料(γ-PGAまたは被覆材料)から製造してもよい。 Also, the method for producing a sheet-like hemostatic material may include a step of forming a sponge-like porous body or sheet used in the lamination step. That is, in the present disclosure, in the laminating step, a sponge-like first sheet or sponge-like second sheet manufactured in advance (or commercially available) may be used, or the first sponge-like porous body or second sponge. A previously produced porous body may be used, or a sponge-like porous body or a sponge-like sheet may be produced from a raw material (γ-PGA or a coating material).
 具体的には、本開示に係るシート状止血材の製造方法には、少なくともγ-PGAを凍結乾燥して第一スポンジ状多孔体を形成する工程(第一スポンジ状多孔体形成工程)、第一スポンジ状多孔体に圧力を加えてスポンジ状第一シートを形成する工程(スポンジ状第一シート形成工程)、被覆材料を凍結乾燥して第二スポンジ状多孔体を形成する工程(第二スポンジ状多孔体形成工程)、第二スポンジ状多孔体に圧力を加えてスポンジ状第二シートを形成する工程(スポンジ状第二シート形成工程)の少なくともいずれかが含まれてもよい。 Specifically, the method for producing a sheet-like hemostatic material according to the present disclosure includes a step of lyophilizing at least γ-PGA to form a first sponge-like porous body (first sponge-like porous body forming step), Forming a sponge-like first sheet by applying pressure to one sponge-like porous body (sponge-like first sheet forming process), and forming a second sponge-like porous body by freeze-drying the coating material (second sponge) At least one of a step of forming a sponge-like second sheet by applying pressure to the second sponge-like porous member (sponge-like second sheet forming step).
 第一スポンジ状多孔体形成工程または第二スポンジ状多孔体形成工程では、前述した各種の乾燥方法を用いて、γ-PGAまたは被覆材料をスポンジ状多孔体に成形すればよい。被覆層12がコラーゲンを含む場合には、真空凍結乾燥法により第二スポンジ状多孔体を形成すればよく、被覆層12のコラーゲンが架橋コラーゲンであれば、スポンジ状多孔体をスポンジ化する前の状態、もしくは、スポンジ化した後のスポンジ状多孔体に対して、前述した架橋処理を施せばよい。あるいは、スポンジ状多孔体を圧縮してスポンジ状シートを形成し、このスポンジ状シートに対して、前述した架橋処理を施してもよい。また、第一スポンジ状多孔体または第二スポンジ状多孔体は、前述したように、プレス等を用いて加圧することによりシート状に成形すればよい。 In the first sponge-like porous body forming step or the second sponge-like porous body forming step, γ-PGA or a coating material may be formed into a sponge-like porous body using the various drying methods described above. When the coating layer 12 contains collagen, the second sponge-like porous body may be formed by a vacuum freeze-drying method. If the collagen of the coating layer 12 is cross-linked collagen, the sponge-like porous body before the sponge is formed is formed. What is necessary is just to give the bridge | crosslinking process mentioned above with respect to the state or sponge-like porous body after sponge-izing. Alternatively, the sponge-like porous body may be compressed to form a sponge-like sheet, and the above-described crosslinking treatment may be performed on the sponge-like sheet. Moreover, what is necessary is just to shape | mold a 1st sponge-like porous body or a 2nd sponge-like porous body in a sheet form by pressurizing using a press etc. as mentioned above.
 積層工程および一体化工程では、公知の積層方法、接着方法、圧着方法を用いればよい。例えば、圧着方法としては、公知のプレス装置を用いればよい。積層方法としては、作業者による手作業で積層する方法だけでなく、公知のロボット等により自動的に積層する方法も好適に用いることができる。 In the lamination step and the integration step, a known lamination method, adhesion method, and pressure bonding method may be used. For example, a known press apparatus may be used as the crimping method. As a stacking method, not only a method of manually stacking by an operator but also a method of automatically stacking by a known robot or the like can be suitably used.
 本開示に係るシート状止血材の製造方法では、一体化工程は、積層工程を経た後でないと実行できないが、積層工程の前に実施することが可能な各工程、すなわち、第一スポンジ状多孔体形成工程、第二スポンジ状多孔体形成工程、スポンジ状第一シート形成工程、スポンジ状第二シート形成工程、および積層工程の順序は特に限定されない。また、本開示に係るシート状止血材の製造方法は、少なくとも積層工程および一体化工程を含んでいればよく、必要に応じて、第一スポンジ状多孔体形成工程、第二スポンジ状多孔体形成工程、スポンジ状第一シート形成工程、およびスポンジ状第二シート形成工程等を含んでいるが、これら各工程以外の工程が含まれてもよい。例えば、一体化工程の後に滅菌処理する工程がふくまれてもよい。さらに、本開示に係るシート状止血材の製造方法では、これら工程のうち任意の複数の工程が同時並行的に行われてもよい。 In the method for producing a sheet-like hemostatic material according to the present disclosure, the integration step can be performed only after the lamination step, but each step that can be performed before the lamination step, that is, the first sponge-like porous material The order of the body forming step, the second sponge-like porous body forming step, the sponge-like first sheet forming step, the sponge-like second sheet forming step, and the laminating step is not particularly limited. In addition, the sheet-like hemostatic material manufacturing method according to the present disclosure only needs to include at least a lamination step and an integration step, and if necessary, a first sponge-like porous body forming step, a second sponge-like porous body forming A process, a sponge-like first sheet forming process, a sponge-like second sheet forming process, and the like are included, but processes other than these processes may be included. For example, a sterilization process may be included after the integration process. Furthermore, in the manufacturing method of the sheet-like hemostatic material according to the present disclosure, any of a plurality of steps may be performed in parallel.
 シート状止血材の製造方法の好ましい一例としては、例えば、先に、第二スポンジ状多孔体に圧力を加えてスポンジ状第二シートとしてから、第一スポンジ状多孔体に積層して圧着することにより、前記積層体を形成する製造方法を挙げることができる。この製造方法では、スポンジ状第二シート形成工程の後に、積層工程が実行され、その後にスポンジ状第一シート形成工程が実行されることになる。この方法により、図1Aに示す2層構造のシート状止血材10Aを効率的に製造することができる。 As a preferable example of the method for producing a sheet-like hemostatic material, for example, first, pressure is applied to the second sponge-like porous body to form a sponge-like second sheet, and then the first sponge-like porous body is laminated and pressure-bonded. The manufacturing method which forms the said laminated body can be mentioned. In this manufacturing method, after the sponge-like second sheet forming step, a laminating step is executed, and thereafter, the sponge-like first sheet forming step is executed. By this method, the sheet-like hemostatic material 10A having a two-layer structure shown in FIG. 1A can be efficiently produced.
 なお、シート状止血材10C、10Dまたは10Eのように、接着層11または被覆層12が部分層である場合には、シート状止血材の製造方法としては、積層工程の前に、接着層11または被覆層12となるシートを所定形状に打ち抜いたり切り抜いたりする工程(部分層形成工程)を実行すればよい。つまり、本開示に係るシート状止血材の製造方法には、積層工程および一体化工程に加えて、部分層形成工程が含まれてもよい。あるいは、これら部分層は、単一のシートを加工することにより部分シートとして形成されるのではなく、最初から部分シートとして形成されてもよい。 In the case where the adhesive layer 11 or the covering layer 12 is a partial layer as in the sheet-like hemostatic material 10C, 10D, or 10E, as a method for producing the sheet-like hemostatic material, before the lamination step, the adhesive layer 11 is used. Alternatively, a step (partial layer forming step) of punching out or cutting out the sheet to be the coating layer 12 into a predetermined shape may be executed. That is, the method for manufacturing a sheet hemostatic material according to the present disclosure may include a partial layer forming step in addition to the stacking step and the integration step. Alternatively, these partial layers may be formed as partial sheets from the beginning, instead of being formed as partial sheets by processing a single sheet.
 このように、本開示に係るシート状止血材の製造方法では、接着層11を形成するためには、前述した、少なくともγ-PGAで構成される第一スポンジ状多孔体、または、当該第一スポンジ状多孔体に圧力を加えて得られるスポンジ状第一シートを用いることができるだけでなく、少なくともγ-PGAで構成され、かつ、単一のシートではない第一部分シートを用いることができる。このように、接着層11を形成するために準備されるγ-PGA製の層状の部材を、便宜上、第一層状体と称する。なお、第一層状体である第一部分シートは、スポンジ状であってもよいし、スポンジ状ではない非多孔質状であってもよい。 Thus, in the method for producing a sheet-like hemostatic material according to the present disclosure, in order to form the adhesive layer 11, the first sponge-like porous body composed of at least γ-PGA, or the first A sponge-like first sheet obtained by applying pressure to a sponge-like porous body can be used, and a first partial sheet made of at least γ-PGA and not a single sheet can be used. Thus, for convenience, the layered member made of γ-PGA prepared for forming the adhesive layer 11 is referred to as a first layered body. The first partial sheet that is the first layered body may be in the form of a sponge or a non-porous form that is not in the form of a sponge.
 同様に、被覆層12を形成するためには、前述した、生体分解性材料で構成される第二スポンジ状多孔体、または、当該第二スポンジ状多孔体に圧力を加えて得られるスポンジ状第二シートを用いることができるだけでなく、生分解性材料で構成され、かつ、単一のシートではない第二部分シートを用いることができる。このように、被覆層12を形成するために準備される生体分解性材料製の層状の部材を、便宜上、第二層状体と称する。 Similarly, in order to form the coating layer 12, the above-described second sponge-like porous body made of a biodegradable material or a sponge-like first body obtained by applying pressure to the second sponge-like porous body is used. Not only can two sheets be used, but a second partial sheet composed of a biodegradable material and not a single sheet can be used. Thus, for convenience, the layered member made of a biodegradable material prepared for forming the coating layer 12 is referred to as a second layered body.
 それゆえ、本開示に係るシート状止血材の製造方法の代表的な例としては、少なくともγ-PGAで構成される第一層状体と、γ-PGAを除く少なくとも1種の生体分解性材料で構成される第二層状体とを積層して積層体を形成する工程と、この積層体を接着もしくは圧着することにより、少なくともγ-PGAで構成される接着層と、生体分解性材料で構成される被覆層と、を備える、シート状止血材を形成する工程と、を含む構成を挙げることができる。 Therefore, as a representative example of a method for producing a sheet hemostatic material according to the present disclosure, a first layered body composed of at least γ-PGA and at least one biodegradable material excluding γ-PGA A step of forming a laminated body by laminating a second layered body comprising: a bonding layer comprising at least γ-PGA, and a biodegradable material by bonding or pressure-bonding the laminated body And a coating layer, and a step of forming a sheet-like hemostatic material.
 このように本開示によれば、シート状止血材の貼付面は、ポリ-γ-グルタミン酸(γ-PGA)で構成される接着層であり、非貼付面は、γ-PGA以外の生体分解性材料(被覆材料)で構成される被覆層である。それゆえ、接着層のγ-PGAにより、フィブリノゲン等の動物性材料を用いることなく、生体組織に対する良好な接着性と良好な止血性能とを実現することができるとともに、被覆層の被覆材料により、シート状止血材が貼り付け箇所以外の組織または手術器具等に不用意に付着することを有効に抑制することができる。 Thus, according to the present disclosure, the sticking surface of the sheet-like hemostatic material is an adhesive layer composed of poly-γ-glutamic acid (γ-PGA), and the non-sticking surface is biodegradable other than γ-PGA. It is the coating layer comprised with material (coating material). Therefore, γ-PGA of the adhesive layer can realize good adhesion to living tissue and good hemostatic performance without using animal materials such as fibrinogen, and the coating material of the coating layer It is possible to effectively suppress the sheet-like hemostatic material from inadvertently adhering to a tissue or a surgical instrument other than the pasted portion.
 また、接着層がスポンジ状シートであるか、または、非多孔質状の部分層であるため、良好な柔軟性を有するとともに、被覆層も柔軟性を有する。これにより、当該シート状止血材として良好な柔軟性を発揮することができる。それゆえ、シート状止血材を丸めたり折り曲げたりしても、接着層の破損を有効に抑制することができる。また、接着層または被覆層の一方を単一のシートからなる基材層として構成し、他方を部分層として構成することで、シート状止血材の柔軟性をより良好なものとすることができる。 Further, since the adhesive layer is a sponge sheet or a non-porous partial layer, it has good flexibility and the coating layer also has flexibility. Thereby, favorable softness | flexibility can be exhibited as the said sheet-like hemostatic material. Therefore, even if the sheet-like hemostatic material is rolled or bent, damage to the adhesive layer can be effectively suppressed. Further, by configuring one of the adhesive layer or the coating layer as a base material layer made of a single sheet and configuring the other as a partial layer, the flexibility of the sheet-like hemostatic material can be further improved. .
 さらに、γ-PGAは、生化学的な反応を伴うことなしに良好な接着性を有しているので、従来のシート状止血材に比べて生体組織への貼り直しが可能になる。また、接着層がγ-PGAであるため、被覆層となる被覆材料を適宜選択することにより、従来のシート状止血材に比べて室温で長期間の保存が可能となる。 Furthermore, since γ-PGA has good adhesiveness without causing a biochemical reaction, it can be reattached to a living tissue as compared with a conventional sheet-like hemostatic material. In addition, since the adhesive layer is γ-PGA, it is possible to store at room temperature for a long period of time as compared with a conventional sheet-like hemostatic material by appropriately selecting a coating material to be a coating layer.
 (実施の形態2)
 本開示に係る他のシート状止血材は、少なくともポリ-γ-グルタミン酸で構成され、さらに糖類が添加されたシートを接着層として備える構成である。以下、本開示の代表的な実施の形態を具体的に説明する。
(Embodiment 2)
Another sheet-like hemostatic material according to the present disclosure is configured to include at least a sheet made of poly-γ-glutamic acid and further added with a saccharide as an adhesive layer. Hereinafter, a typical embodiment of the present disclosure will be specifically described.
 [シート状止血材]
 本開示に係るシート状止血材は、前記の通り、ポリ-γ-グルタミン酸(γ-PGA)を主成分とし、糖類が添加されたγ-PGAシート(糖類添加γ-PGAシート)を接着層として備えていればよい。糖類をγ-PGAに添加してシート化することにより、生体組織への接着性を損なうことなく、γ-PGAシートに柔軟性を付与することができる(後述する実施例参照)。
[Sheet hemostat]
As described above, the sheet-like hemostatic material according to the present disclosure has, as an adhesive layer, a γ-PGA sheet (saccharide-added γ-PGA sheet) containing poly-γ-glutamic acid (γ-PGA) as a main component and saccharide added thereto. It only has to have. By adding a saccharide to γ-PGA to form a sheet, flexibility can be imparted to the γ-PGA sheet without impairing adhesion to living tissue (see Examples described later).
 シート状止血材は、糖類添加γ-PGAシートのみで構成される単層シートであればよいが、必要に応じて、他の層が積層された2層以上の多層構造シートであってもよい。他の層としては、例えば、シート状止血材の強度を向上させる強化層、糖類添加γ-PGAシートの一方の面を被覆することにより、他方の面のみを接着面(貼付面)とする被覆層等が挙げられるが特に限定されない。 The sheet-like hemostatic material may be a single-layer sheet composed only of a saccharide-added γ-PGA sheet, but may be a multilayer structure sheet of two or more layers in which other layers are laminated as necessary. . Other layers include, for example, a reinforcing layer that improves the strength of the sheet-like hemostatic material, and a coating on one surface of the saccharide-added γ-PGA sheet so that only the other surface is an adhesive surface (sticking surface). Although a layer etc. are mentioned, it is not specifically limited.
 他の層は、γ-PGAと同様に、生体適合性および生体分解性を有していればよく、その具体的な材質は特に限定されない。代表的な他の層としては、例えば被覆層であれば架橋コラーゲン(C-Col)を挙げることができる。また、他の層を積層する方法も特に限定されず、公知の方法を好適に用いることができる。 Other layers may have biocompatibility and biodegradability like γ-PGA, and the specific material is not particularly limited. As another typical layer, for example, a cross-linked collagen (C-Col) can be used for the coating layer. Moreover, the method of laminating other layers is not particularly limited, and a known method can be suitably used.
 本開示に係るシート状止血材の大きさおよび厚さについても特に限定されず、シート状止血材の使用条件等に応じて適宜設定することができる。本開示に係るシート状止血材は、腹腔鏡下手術に好適に用いることができるが、この場合には、トロッカー通過性も考慮して縦横数cm程度の大きさを有していればよい。また、腹腔鏡下手術以外の手術に用いる場合、もしくは、外傷の応急的な止血時等には、前述した縦横数cm程度よりも大きいものを用いることができる。 The size and thickness of the sheet-like hemostatic material according to the present disclosure are not particularly limited, and can be appropriately set according to the use conditions of the sheet-like hemostatic material. The sheet-like hemostatic material according to the present disclosure can be suitably used for laparoscopic surgery, but in this case, the sheet-like hemostatic material may have a size of about several centimeters in length and breadth in consideration of trocar passage. In addition, when used for surgery other than laparoscopic surgery, or for emergency hemostasis of trauma, a size larger than the above-mentioned length and width of about several centimeters can be used.
 本開示に係るシート状止血材は、接着層が糖類添加γ-PGAシートにより構成されているため、室温で保存することが可能である。ここでいう室温は、日本薬局方で適宜される1~30℃の範囲内を差す。シート状止血材において止血性能を示す接着層(糖類添加γ-PGAシート)は、γ-PGAを主成分とし糖類を副成分とするが、γ-PGAも糖類も室温の範囲内でも安定して保存することができる。当然のことながら、必要に応じて低温で安定に保存することも可能である。 The sheet hemostatic material according to the present disclosure can be stored at room temperature because the adhesive layer is composed of a saccharide-added γ-PGA sheet. The room temperature here is within the range of 1 to 30 ° C. as appropriate in the Japanese Pharmacopoeia. The adhesive layer (saccharide-added γ-PGA sheet) showing hemostasis performance in a sheet-like hemostatic material contains γ-PGA as a main component and saccharide as a minor component, but both γ-PGA and saccharide are stable within a room temperature range. Can be saved. Of course, it can be stably stored at a low temperature as required.
 なお、フィブリノゲン系のシート状止血材、例えば、タコシール(登録商標)は10℃以下の低温保存が必要となる。また、酸化セルロース系のシート状止血材、例えば、サージセル(登録商標)ニューニットは25℃以下での保存が必要となっている。常温は15~25℃の範囲内であるが、夏季には、通常、気温が25℃を超えることが多い。それゆえ、25℃以下で保存が必要であるということは、室温での保存は、実質的に困難であることを意味する。 In addition, a fibrinogen-based sheet hemostatic material such as Taco Seal (registered trademark) needs to be stored at a low temperature of 10 ° C. or lower. Further, an oxidized cellulose-based sheet hemostatic material, for example, Surge Cell (registered trademark) New Knit, needs to be stored at 25 ° C. or lower. The normal temperature is in the range of 15 to 25 ° C., but in summer, the temperature usually exceeds 25 ° C. Therefore, storage at 25 ° C. or lower means that storage at room temperature is substantially difficult.
 本開示に係るシート状止血材の製造方法は特に限定されず、γ-PGAに少なくとも糖類を添加してシート状に成形する(糖類添加γ-PGAシートを成形する)ことにより、接着層を形成する工程を含む製造方法であればよい。接着層以外に他の層を備える場合には、接着層となる糖類添加γ-PGAシートと他の層となるシートとを積層して、圧着等の公知の手法により固着すればよい。γ-PGAに糖類を添加する方法、並びに、糖類を添加したγ-PGAをシート状に成形する方法も特に限定されず、公知の方法を好適に用いることができる。 The method for producing the sheet-like hemostatic material according to the present disclosure is not particularly limited, and an adhesive layer is formed by adding at least a saccharide to γ-PGA and forming it into a sheet shape (forming a saccharide-added γ-PGA sheet). Any manufacturing method including the step of performing the process may be used. When other layers are provided in addition to the adhesive layer, a saccharide-added γ-PGA sheet serving as the adhesive layer and a sheet serving as the other layer may be laminated and fixed by a known method such as pressure bonding. The method for adding saccharides to γ-PGA and the method for forming γ-PGA added with saccharides into a sheet are not particularly limited, and known methods can be suitably used.
 また、本開示に係るシート状止血材は、少なくとも接着層を備えていればよく、この接着層は、糖類添加γ-PGAシートは、少なくともγ-PGAおよび糖類で構成されるγ-PGA組成物を成形することにより得られるシートである。それゆえ、本開示に係るシート状止血材の製造方法は、γ-PGA組成物を調製してシート状に成形する方法であるということもできる。つまり、本開示では、γ-PGA組成物をシート状に成形することで、シート状止血材を容易に製造することができるので、複雑な製造過程を経ることがない。また、例えばキャスト法でγ-PGA組成物をシート状に成形するのであれば、液状のγ-PGA組成物の液量を調整するだけで糖類添加γ-PGAシートの厚さを制御することが可能となる。 In addition, the sheet-like hemostatic material according to the present disclosure only needs to include at least an adhesive layer, and the adhesive layer is a γ-PGA composition in which the saccharide-added γ-PGA sheet is composed of at least γ-PGA and saccharides. It is a sheet | seat obtained by shape | molding. Therefore, it can also be said that the method for producing a sheet hemostatic material according to the present disclosure is a method of preparing a γ-PGA composition and forming it into a sheet. In other words, in the present disclosure, the sheet-like hemostatic material can be easily produced by forming the γ-PGA composition into a sheet, and thus does not go through a complicated production process. For example, if the γ-PGA composition is formed into a sheet by a casting method, the thickness of the saccharide-added γ-PGA sheet can be controlled only by adjusting the amount of the liquid γ-PGA composition. It becomes possible.
 [ポリ-γ-グルタミン酸]
 接着層である糖類添加γ-PGAシートは、γ-PGAを主成分とし糖類を副成分とするものであればよい。接着層に用いられるγ-PGAは、グルタミン酸がγ位のカルボキシル基とα位のアミノ基とでペプチド結合し、直鎖状に連なったポリマーおよびその塩が含まれる。γ-PGAの塩の例としては、ポリ-γ-グルタミン酸ナトリウムが挙げられる。本実施の形態において用いる「ポリ-γ-グルタミン酸(γ-PGA)」という用語には、基本的に「ポリ-γ-グルタミン酸および/またはその塩」を含むものとする。
[Poly-γ-glutamic acid]
The saccharide-added γ-PGA sheet serving as the adhesive layer may be any sheet having γ-PGA as a main component and saccharide as a subcomponent. The γ-PGA used for the adhesive layer includes a polymer in which glutamic acid is linked by a peptide bond at a γ-position carboxyl group and an α-position amino group, and a salt thereof in a straight chain. An example of a salt of γ-PGA is sodium poly-γ-glutamate. The term “poly-γ-glutamic acid (γ-PGA)” used in the present embodiment basically includes “poly-γ-glutamic acid and / or a salt thereof”.
 接着層として用いられるγ-PGAとしては、具体的には特に限定されないが、例えば、特定の範囲内の分子量を有するものを好適に用いることができる。γ-PGAの好ましい分子量の範囲としては、重量平均分子量Mwが20万~1300万の範囲内を挙げることができ、より好ましくは30万~1000万の範囲内を挙げることができる。γ-PGAの重量平均分子量Mwが下限の20万を下回れば(20万未満であれば)、接着層もしくはシート状止血材の構成にもよるが、貼付面における良好な接着性を実現できない可能性がある。なお、γ-PGAの重量平均分子量Mwの上限は特に限定されないものの、通常、1300万以下となる。これは、従来公知の製造方法では、重量平均分子量Mwが1300万を超えるものを製造することが困難であると考えられているためである。 The γ-PGA used as the adhesive layer is not particularly limited, but for example, those having a molecular weight within a specific range can be suitably used. A preferred molecular weight range of γ-PGA is a weight average molecular weight Mw in the range of 200,000 to 13 million, more preferably in the range of 300,000 to 10 million. If the weight average molecular weight Mw of γ-PGA is below the lower limit of 200,000 (less than 200,000), it may not be possible to achieve good adhesion on the application surface, depending on the configuration of the adhesive layer or sheet-like hemostatic material There is sex. The upper limit of the weight average molecular weight Mw of γ-PGA is not particularly limited, but is usually 13 million or less. This is because it is considered that it is difficult to produce a product having a weight average molecular weight Mw exceeding 13 million by a conventionally known production method.
 また、接着層として用いられるγ-PGAとしては、その動粘度νが特定の範囲内にあるものを好適に用いることができる。γ-PGAの好ましい動粘度νとしては、0.05質量%の濃度で蒸留水に溶解させた際の37℃での動粘度νが、例えば2cSt~15cStの範囲内を挙げることができ、より好ましくは2.5cSt~8cStの範囲内を挙げることができる。γ-PGAの動粘度νが下限の2cStを下回れば(2cSt未満であれば)、接着層もしくはシート状止血材の構成にもよるが、貼付面における良好な接着性を実現できない可能性がある。なお、γ-PGAの動粘度νの上限は特に限定されないものの、通常、15cSt以下となる。これは、従来公知の製造方法では、動粘度νが15cStを超えるものを製造することが困難であると考えられているためである。 As the γ-PGA used as the adhesive layer, those having a kinematic viscosity ν within a specific range can be suitably used. As a preferable kinematic viscosity ν of γ-PGA, the kinematic viscosity ν at 37 ° C. when dissolved in distilled water at a concentration of 0.05% by mass can be, for example, in the range of 2 cSt to 15 cSt. A preferable range is 2.5 cSt to 8 cSt. If the kinematic viscosity ν of γ-PGA is below the lower limit of 2 cSt (less than 2 cSt), it may not be possible to achieve good adhesion on the application surface, depending on the configuration of the adhesive layer or sheet-like hemostatic material. . The upper limit of the kinematic viscosity ν of γ-PGA is not particularly limited, but is usually 15 cSt or less. This is because it is considered that it is difficult to produce a product having a kinematic viscosity ν exceeding 15 cSt by a conventionally known production method.
 本開示で接着層に用いられるγ-PGAは、その重量平均分子量Mwが前述した範囲内にあるか、または、その動粘度νが、前述した所定条件における動粘度の範囲内にあるか、もしくは、重量平均分子量Mwおよび動粘度νの双方が前述した範囲内にあればよい。もちろん、接着層もしくはシート状止血材の構成または使用条件等によっては、γ-PGAの重量平均分子量Mwおよび動粘度νの少なくとも一方が前述した範囲内から外れてもよいことは言うまでもない。 The γ-PGA used for the adhesive layer in the present disclosure has a weight average molecular weight Mw within the above-mentioned range, or a kinematic viscosity ν within the above-mentioned kinematic viscosity range, or In addition, both the weight average molecular weight Mw and the kinematic viscosity ν may be within the above-described ranges. Of course, it goes without saying that at least one of the weight average molecular weight Mw and the kinematic viscosity ν of γ-PGA may be out of the above-mentioned range depending on the constitution or use conditions of the adhesive layer or the sheet-like hemostatic material.
 このようなγ-PGAの入手方法は特に限定されない。例えば、前述した重量平均分子量Mwおよび動粘度νの少なくとも一方を満たすγ-PGAは、食品添加物等として市販されており、生体(人体を含む)に対する安全性は十分に確保されている。また、例えば、バチルス・スブチリス等のバチルス属由来の微生物を用いた公知の方法によりγ-PGAを容易に生産することができる。 The method for obtaining such γ-PGA is not particularly limited. For example, γ-PGA satisfying at least one of the aforementioned weight average molecular weight Mw and kinematic viscosity ν is commercially available as a food additive and the like, and sufficiently safe for living bodies (including human bodies). Further, for example, γ-PGA can be easily produced by a known method using a microorganism derived from the genus Bacillus such as Bacillus subtilis.
 [糖類およびその他の成分]
 糖類添加γ-PGAシートに含まれる糖類は、カルボニル基を有する多価アルコール(単糖)、もしくは、その重合体(オリゴ糖または多糖)であればよい。単糖、オリゴ糖、多糖の具体的な種類は特に限定されず、公知の化合物を好適に用いることができる。特に、本開示では、シート状止血材は、生体内に導入して生体組織等に貼り付けて用いられるので、糖類についても、生体に不適合な性質を有するものでない限り、γ-PGAに添加することができる。
[Sugar and other ingredients]
The saccharide contained in the saccharide-added γ-PGA sheet may be a polyhydric alcohol (monosaccharide) having a carbonyl group or a polymer thereof (oligosaccharide or polysaccharide). Specific types of monosaccharides, oligosaccharides and polysaccharides are not particularly limited, and known compounds can be suitably used. In particular, in the present disclosure, the sheet-like hemostatic material is used by being introduced into a living body and attached to a living tissue or the like. Therefore, saccharides are also added to γ-PGA unless they have incompatible properties with living bodies. be able to.
 具体的には、単糖としては、例えば、グルコース、ガラクトース、フルクトース、マンノース等のヘキソース(六炭糖);アラビオース、キシロース、リボース等のペントース(五炭糖);グルコサミン、ガラクトサミン、N-アセチルグルコサミン、N-アセチルガラクトサミン、シアル酸等のアミノ糖もしくはその誘導体;ソルビトール、キシリトール等の糖アルコール;等を挙げることができる。 Specifically, as monosaccharides, for example, hexoses (hexoses) such as glucose, galactose, fructose, mannose; pentoses (pentoses) such as arabiose, xylose, ribose; glucosamine, galactosamine, N-acetylglucosamine Amino sugars such as N-acetylgalactosamine and sialic acid or derivatives thereof; sugar alcohols such as sorbitol and xylitol;
 また、オリゴ糖としては、例えば、トレハロース、マルトース、スクロース、ラクトース、メリビオース等の二糖;ラフィノース等の三糖;スタキオース等の四糖;等が挙げられる。 Examples of the oligosaccharide include disaccharides such as trehalose, maltose, sucrose, lactose, and melibiose; trisaccharides such as raffinose; tetrasaccharides such as stachyose;
 また、多糖としては、例えば、アミロース、アミロペクチン、デキストラン、デキストリン、イコデキストリン等のグルカン;グリコサミノグリカン類として、ヒアルロン酸、アルギン酸、ヘパラン硫酸、コンドロイチン硫酸、コンドロイチン、デルマタン硫酸、ケラト硫酸、ヘパリン等のグリコサミノグリカン;アルギン酸およびその塩、イヌリン、カルボキシメチルセルロース、ペクチン、キチン、キトサン、カラギーナン、フコイダン等の食物繊維系の非グルカン系多糖類;等が挙げられる。 Examples of polysaccharides include, for example, glucans such as amylose, amylopectin, dextran, dextrin, and icodextrin; examples of glycosaminoglycans include hyaluronic acid, alginic acid, heparan sulfate, chondroitin sulfate, chondroitin, dermatan sulfate, keratosulfate, and heparin. Non-glucan polysaccharides of dietary fiber such as alginic acid and salts thereof, inulin, carboxymethylcellulose, pectin, chitin, chitosan, carrageenan, fucoidan, and the like.
 これら単糖、オリゴ糖、多糖は、いずれも1種類のみが糖類添加γ-PGAシートに添加されてもよいし、複数種類が適宜組み合わせられて糖類添加γ-PGAシートに添加されてもよい。ここでいう複数種類は、単糖同士、オリゴ糖同士、多糖同士の組合せであってもよいし、単糖およびオリゴ糖、単糖および多糖、オリゴ糖および多糖の組合せであってもよい。 Only one of these monosaccharides, oligosaccharides, and polysaccharides may be added to the saccharide-added γ-PGA sheet, or a plurality of types may be appropriately combined and added to the saccharide-added γ-PGA sheet. The plurality of types herein may be a combination of monosaccharides, oligosaccharides, or polysaccharides, or a combination of monosaccharides and oligosaccharides, monosaccharides and polysaccharides, oligosaccharides and polysaccharides.
 これら糖類の添加量は特に限定されないが、一般的には、糖類添加γ-PGAシートの全重量に対して10~90重量%の範囲内であればよい。糖類の添加量が10重量%未満であれば、糖類の種類もしくはγ-PGAの条件(分子量等)にもよるが、糖類添加γ-PGAシートの柔軟性が十分得られず、反ったり破損したりするおそれがある。また、糖類の添加量が90重量%を超えれば、糖類の種類もしくはγ-PGAの条件(分子量等)にもよるが、糖類添加γ-PGAシートの接着性(接着層としての機能)が十分に得られないおそれがある。 The amount of these saccharides to be added is not particularly limited, but in general, it may be in the range of 10 to 90% by weight with respect to the total weight of the saccharide-added γ-PGA sheet. If the added amount of saccharide is less than 10% by weight, the flexibility of the saccharide-added γ-PGA sheet cannot be obtained sufficiently, but warps or breaks, although it depends on the type of saccharide or the condition of γ-PGA (molecular weight, etc.). There is a risk of If the amount of saccharide added exceeds 90% by weight, the adhesion (function as an adhesive layer) of the saccharide-added γ-PGA sheet is sufficient, depending on the type of saccharide or the γ-PGA conditions (molecular weight, etc.). May not be obtained.
 さらに、糖類添加γ-PGAシートには、γ-PGAおよび糖類以外に他の成分が含まれてもよい。γ-PGA以外の成分(他の成分)としては、生体適合性および生体分解性を有し、γ-PGAに配合したときに糖類添加γ-PGAシートの接着性を妨げず、かつ、糖類の添加による糖類添加γ-PGAシートの柔軟性を妨げないものであればよい。具体的には、例えば、他の成分としては、コラーゲン、グリセリン、ポリエチレングリコール、公知の添加剤(色素等)等を挙げることができるが、特に限定されない。これら他の成分は1種類のみであってもよいし、2種類以上を適宜組み合わせて用いてもよい。また、他の成分の添加量も特に限定されず、糖類添加γ-PGAシートの接着性および柔軟性を妨げない範囲内であればよい。 Furthermore, the saccharide-added γ-PGA sheet may contain other components in addition to γ-PGA and saccharide. Ingredients other than γ-PGA (other ingredients) have biocompatibility and biodegradability, do not interfere with the adhesion of the saccharide-added γ-PGA sheet when blended with γ-PGA, Any sugar-added γ-PGA sheet may be used as long as it does not hinder the flexibility. Specifically, for example, as other components, collagen, glycerin, polyethylene glycol, known additives (pigments, etc.) and the like can be mentioned, but are not particularly limited. These other components may be used alone or in combination of two or more. Further, the amount of other components added is not particularly limited as long as it does not hinder the adhesiveness and flexibility of the saccharide-added γ-PGA sheet.
 本開示に係るシート状止血材の取扱性を向上させる観点では、前述した他の成分の中でも特にコラーゲンが好ましい。糖類添加γ-PGAシートにコラーゲンを添加することにより、当該糖類添加γ-PGAシート(接着層)を丸めたり折り曲げたりして変形させても破損を有効に抑制することができる。しかも、コラーゲンを添加した糖類添加γ-PGAシート(接着層)は、変形させても元の形状に復元されやすくなる。 From the viewpoint of improving the handleability of the sheet-like hemostatic material according to the present disclosure, collagen is particularly preferable among the other components described above. By adding collagen to the saccharide-added γ-PGA sheet, breakage can be effectively suppressed even if the saccharide-added γ-PGA sheet (adhesive layer) is deformed by rounding or bending. Moreover, the saccharide-added γ-PGA sheet (adhesive layer) to which collagen is added is easily restored to its original shape even when deformed.
 それゆえ、本開示に係るシート状止血材が、コラーゲンを添加した糖類添加γ-PGAシートを接着層として備えていれば、例えば、腹腔鏡下手術を行う際に平面状のシート状止血材を丸めてトロッカーに挿入しても、トロッカーを通過した後には、シート状止血材は元の平面形状に容易に復元される。したがって、シート状止血材を所望の形状に変形させた後に物理的な力を加えて元の形状に戻す作業が最小限に抑えられるので、シート状止血材の取扱性を格段に向上することができる。 Therefore, if the sheet-like hemostatic material according to the present disclosure includes a saccharide-added γ-PGA sheet added with collagen as an adhesive layer, for example, a planar sheet-like hemostatic material is used when performing laparoscopic surgery. Even if the sheet is rolled and inserted into the trocar, the sheet-like hemostatic material is easily restored to the original planar shape after passing through the trocar. Therefore, since the work of applying a physical force to the sheet-shaped hemostatic material and then returning it to its original shape can be minimized, the handling property of the sheet-shaped hemostatic material can be greatly improved. it can.
 なお、本開示に係るシート状止血材は、その取扱性の向上に着目した場合には、接着層として、コラーゲンのみを添加し糖類を添加しないγ-PGAシート(コラーゲン添加γ-PGAシート)を備える構成であってもよい。つまり、本開示には、少なくともポリ-γ-グルタミン酸で構成され、さらにコラーゲンが添加されたシートを接着層として備える構成のシート状止血材も含まれる。 Note that the sheet-like hemostatic material according to the present disclosure is a γ-PGA sheet (collagen-added γ-PGA sheet) to which only collagen is added and no saccharide is added as an adhesive layer when attention is focused on improving the handleability. The structure provided may be sufficient. That is, the present disclosure also includes a sheet-like hemostatic material configured to include at least a sheet made of poly-γ-glutamic acid and further added with collagen as an adhesive layer.
 ここで、コラーゲン添加γ-PGAシートの製造方法、並びに、コラーゲン添加γ-PGAシートを接着層として備えるシート状止血材の製造方法は、糖類添加γ-PGAシートの製造方法と同様であるため、その具体的な説明は省略する。例えば、コラーゲンの添加量は特に限定されないものの、糖類添加γ-PGAシートに対する糖類の添加量と同様に、コラーゲン添加γ-PGAシートの全重量に対して10~90重量%の範囲内であればよい。 Here, the method for producing a collagen-added γ-PGA sheet and the method for producing a sheet-like hemostatic material comprising a collagen-added γ-PGA sheet as an adhesive layer are the same as the method for producing a saccharide-added γ-PGA sheet. The specific description is omitted. For example, although the amount of collagen added is not particularly limited, it may be within the range of 10 to 90% by weight with respect to the total weight of the collagen-added γ-PGA sheet, similarly to the amount of saccharide added to the saccharide-added γ-PGA sheet. Good.
 このように、本開示に係るシート状止血材は、その接着層が、γ-PGAを主成分として糖類が添加された糖類添加γ-PGAシートにより構成されている。実質的にγ-PGAのみで構成されるγ-PGAシートは柔軟性を有さず、変形させようとすると破損してしまうが、糖類を含むγ-PGAシートは良好な柔軟性を発揮することができる。 As described above, in the sheet-like hemostatic material according to the present disclosure, the adhesive layer is constituted by a saccharide-added γ-PGA sheet in which saccharide is added with γ-PGA as a main component. A γ-PGA sheet substantially composed only of γ-PGA is not flexible and will be damaged when it is deformed. However, a γ-PGA sheet containing saccharides exhibits good flexibility. Can do.
 それゆえ、接着層のγ-PGAにより、フィブリノゲン等の動物性材料を用いることなく、生体組織に対する良好な接着性と良好な止血性能とを実現することができるとともに、シート状止血材を丸めたり折り曲げたりしても、接着層の破損を有効に抑制することができる。さらに、γ-PGAは、生化学的な反応を伴うことなしに良好な接着性を有しているので、従来のシート状止血材に比べて生体組織への貼り直しが可能になる。また、接着層がγ-PGAであるため、従来のシート状止血材に比べて室温で長期間の保存が可能となる。 Therefore, γ-PGA of the adhesive layer can realize good adhesion to living tissue and good hemostatic performance without using animal material such as fibrinogen, and can also roll sheet-like hemostatic material. Even if it bends, damage to the adhesive layer can be effectively suppressed. Furthermore, since γ-PGA has good adhesiveness without causing a biochemical reaction, it can be reattached to a living tissue as compared with a conventional sheet-like hemostatic material. In addition, since the adhesive layer is γ-PGA, it can be stored for a long time at room temperature as compared with a conventional sheet-like hemostatic material.
 また、本開示に係る他のシート状止血材は、その接着層が、γ-PGAを主成分としてコラーゲンが添加されたコラーゲン添加γ-PGAシートにより構成されてもよい。これにより、シート状止血材の取扱性を向上することができる。もちろん、本開示に係るシート状止血材は、その接着層が、γ-PGAを主成分として、糖類およびコラーゲンの双方が添加されたγ-PGAシートであってもよいことは言うまでもない。 Further, in another sheet-like hemostatic material according to the present disclosure, the adhesive layer may be constituted by a collagen-added γ-PGA sheet to which collagen is added with γ-PGA as a main component. Thereby, the handleability of a sheet-like hemostatic material can be improved. Of course, in the sheet-like hemostatic material according to the present disclosure, it is needless to say that the adhesive layer may be a γ-PGA sheet containing γ-PGA as a main component and added with both saccharide and collagen.
 本開示について、実施例および比較例に基づいてより具体的に説明するが、本開示はこれに限定されるものではない。当業者は本開示の範囲を逸脱することなく、種々の変更、修正、および改変を行うことができる。 The present disclosure will be described more specifically based on examples and comparative examples, but the present disclosure is not limited thereto. Those skilled in the art can make various changes, modifications, and alterations without departing from the scope of the present disclosure.
 まず、実施の形態1で説明した構成のシート状止血材に関して、実施例1~3および比較例1~3に基づいて具体的に説明する。なお、以下の実施例1~3および比較例1~3におけるシート状止血材の評価は次に示すようにして行った。 First, the sheet-like hemostatic material having the configuration described in Embodiment 1 will be specifically described based on Examples 1 to 3 and Comparative Examples 1 to 3. In the following Examples 1 to 3 and Comparative Examples 1 to 3, the sheet-like hemostatic material was evaluated as follows.
 (止血性能および貼り直しの評価)
 40週齢の雄のウサギ(体重3.0kg)の腹部を持続麻酔下で切開し、肝臓を露出させ、肝臓の表面を切開して出血させ、実施例1~3または比較例1~3のシート状止血材を貼り付けた。貼り付け後の出血の状況を確認して、止血性能を評価した。また、実施例1~3または比較例1~3のシート状止血材を肝臓の出血箇所に貼り付けた後に、貼り直しが可能であるか否かについても評価した。
(Evaluation of hemostatic performance and reattachment)
The abdomen of a 40-week-old male rabbit (with a body weight of 3.0 kg) was incised under continuous anesthesia, the liver was exposed, the surface of the liver was incised and bled, and Examples 1 to 3 or Comparative Examples 1 to 3 were used. A sheet-like hemostatic material was pasted. The hemorrhage performance was evaluated by confirming the state of bleeding after pasting. In addition, it was also evaluated whether or not the sheet-like hemostatic material of Examples 1 to 3 or Comparative Examples 1 to 3 could be attached again after being attached to the bleeding site of the liver.
 (トロッカー通過性の評価)
 実施例1~3または比較例1~3のシート状止血材をロール状に丸め、直径5mmのトロッカー(コヴィディエンジャパン株式会社製、製品名ステップシステム バーサステップ 5MM)に通過できるか否かを評価した。
(Evaluation of trocar passability)
The sheet-like hemostatic material of Examples 1 to 3 or Comparative Examples 1 to 3 was rolled into a roll and evaluated whether or not it could pass through a trocar having a diameter of 5 mm (product name Step System Versa Step 5MM, manufactured by Covidien Japan Co., Ltd.). .
 (実施例1)
 1重量%コラーゲン水溶液を調製し、矩形状の金属製容器中に所定量充填し、-20℃で約12時間凍結した。得られた凍結物を凍結乾燥機(東京理化器械株式会社製、製品名FDU-2100)中において、約24時間、減圧下(約13Pa(1Torr)以下)で凍結乾燥した後、圧縮機(株式会社マサダ製作所製、15tプレス機)により980N/cm2 (100kgf/cm2 )の圧力で圧縮した。得られた凍結乾燥物を、バキュームドライオーブン(東京理化器械株式会社製、製品名VOS-300VD)中において、約24時間、減圧下(約13Pa(1Torr)以下)で熱脱水架橋を施した。これにより、架橋コラーゲン(C-Col)スポンジ状シートを得た。
Example 1
A 1 wt% collagen aqueous solution was prepared, filled into a rectangular metal container, and frozen at −20 ° C. for about 12 hours. The obtained frozen product was freeze-dried under reduced pressure (about 13 Pa (1 Torr) or less) for about 24 hours in a freeze dryer (product name: FDU-2100, manufactured by Tokyo Rika Kikai Co., Ltd.) It was compressed at a pressure of 980 N / cm 2 (100 kgf / cm 2 ) by a company Masada Seisakusho, 15t press). The obtained freeze-dried product was subjected to thermal dehydration crosslinking under reduced pressure (about 13 Pa (1 Torr) or less) for about 24 hours in a vacuum dry oven (product name: VOS-300VD manufactured by Tokyo Rika Kikai Co., Ltd.). As a result, a crosslinked collagen (C-Col) sponge-like sheet was obtained.
 次に、1重量%γ-PGA水溶液を調製し、矩形状の金属製容器中に所定量充填し、-20℃で約12時間凍結し、スポンジ状多孔体を得た。その後、このスポンジ状多孔体を、減圧下で約24時間凍結乾燥した後に、架橋コラーゲンスポンジ状シートを積層して圧着した。これにより、接着層としてのγ-PGAスポンジ状シートと被覆層としての架橋コラーゲンスポンジ状シートとが圧着された、本実施例1に係るシート状止血材を得た。 Next, a 1% by weight γ-PGA aqueous solution was prepared, filled in a predetermined amount in a rectangular metal container, and frozen at −20 ° C. for about 12 hours to obtain a sponge-like porous body. Thereafter, this sponge-like porous body was freeze-dried under reduced pressure for about 24 hours, and then a crosslinked collagen sponge-like sheet was laminated and pressure-bonded. As a result, a sheet-like hemostatic material according to Example 1 was obtained in which the γ-PGA sponge sheet as the adhesive layer and the crosslinked collagen sponge sheet as the coating layer were pressure-bonded.
 このシート状止血材は、2.5cm×2.5cmで90mgであり、架橋コラーゲンスポンジ状シートとγ-PGAスポンジ状シートとの重量比が30:70であった。このシート状止血材を用いて、前述したように止血性能および貼り直し性能を評価した。その結果を表1に示す。 This sheet-like hemostatic material was 90 mg at 2.5 cm × 2.5 cm, and the weight ratio of the crosslinked collagen sponge sheet to the γ-PGA sponge sheet was 30:70. Using this sheet-like hemostatic material, the hemostatic performance and the reattachment performance were evaluated as described above. The results are shown in Table 1.
 (実施例2)
 架橋コラーゲンスポンジ状シートとγ-PGAスポンジ状シートとの重量比が25:75となるように、1重量%コラーゲン水溶液および1重量%γ-PGA水溶液の金属製容器中への充填量を変更した以外は、前記実施例1と同様にして、実施例2に係るシート状止血材を得た。このシート状止血材は、2.5cm×2.5cmで80mgであり、前記の通り、架橋コラーゲンスポンジ状シートとγ-PGAスポンジ状シートとの重量比が25:75であった。このシート状止血材を用いて、前述したように、止血性能および貼り直しを評価した。その結果を表1に示す。
(Example 2)
The filling amount of the 1 wt% collagen aqueous solution and the 1 wt% γ-PGA aqueous solution into the metal container was changed so that the weight ratio of the crosslinked collagen sponge sheet to the γ-PGA sponge sheet was 25:75. Except for the above, a sheet-like hemostatic material according to Example 2 was obtained in the same manner as in Example 1. This sheet-like hemostatic material was 80 cm at 2.5 cm × 2.5 cm, and as described above, the weight ratio of the crosslinked collagen sponge sheet to the γ-PGA sponge sheet was 25:75. Using this sheet-like hemostatic material, the hemostatic performance and reattachment were evaluated as described above. The results are shown in Table 1.
 (比較例1)
 比較例1に係るシート状止血材として、2.5cm×2.5cmで123mgのサージセルニューニット(登録商標、ジョンソン・エンド・ジョンソン株式会社)を用いて、前述したように止血性能および貼り直しを評価した。その結果を表1に示す。
(Comparative Example 1)
As a sheet-like hemostatic material according to Comparative Example 1, using a Surge Cell New Knit (registered trademark, Johnson & Johnson Co., Ltd.) having a size of 2.5 cm × 2.5 cm, the hemostatic performance and reattachment as described above. Evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
 (実施例3)
 実施例3に係るシート状止血材として、前記実施例1と同様にして、3.0cm×2.5cmのものを作製した。このシート状止血材を用いて、前述したようにトロッカー通過性を評価した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001

(Example 3)
A sheet-like hemostatic material according to Example 3 was prepared in the same manner as in Example 1 with a size of 3.0 cm × 2.5 cm. Using this sheet-like hemostatic material, trocar passage was evaluated as described above. The results are shown in Table 2.
 (比較例2)
 比較例2に係るシート状止血材として、3.0cm×2.5cmのタコシール(登録商標、CSLベーリング株式会社)を用いて、前述したようにトロッカー通過性を評価した。その結果を表2に示す。
(Comparative Example 2)
As the sheet-like hemostatic material according to Comparative Example 2, 3.0 cm × 2.5 cm octopus seal (registered trademark, CSL Bering Co., Ltd.) was used to evaluate trocar passage as described above. The results are shown in Table 2.
 (比較例3)
 1重量%γ-PGA水溶液を調製し、キャスト法により3.0cm×2.5cmのγ-PGAシートを作製し、比較例3に係るシート状止血材とした。このγ-PGAシートを用いて、前述したようにトロッカー通過性を評価した。その結果を表2に示す。
(Comparative Example 3)
A 1 wt% γ-PGA aqueous solution was prepared, and a 3.0 cm × 2.5 cm γ-PGA sheet was prepared by a casting method, and used as a sheet-like hemostatic material according to Comparative Example 3. Using this γ-PGA sheet, the trocar passage was evaluated as described above. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
 (実施例1~3および比較例1~3の比較)
 実施例1および2に係るシート状止血材であれば、生体組織に貼り付けて軽く押えるだけで、良好な接着性および止血性能を発揮することができた。また、一度生体組織に貼り付けてから剥がして貼り直すことが可能であった。一方、比較例1に係るサージセルニューニットでは、生体組織に貼り付けてから3分間押えることで止血性能を発揮できたが、本開示に係るシート状止血材とは異なり、貼り直しはできなかった。
Figure JPOXMLDOC01-appb-T000002

(Comparison between Examples 1 to 3 and Comparative Examples 1 to 3)
With the sheet-like hemostatic material according to Examples 1 and 2, it was possible to exhibit good adhesiveness and hemostatic performance simply by being attached to a living tissue and lightly pressed. Moreover, it was possible to stick on a living tissue, and then peel off and put it on again. On the other hand, the surge cell new knit according to Comparative Example 1 was able to demonstrate hemostatic performance by pressing for 3 minutes after being applied to a living tissue, but unlike the sheet-like hemostatic material according to the present disclosure, it cannot be re-applied. It was.
 また、実施例3に係るシート状止血材であれば、ロール状にすることでトロッカーを容易に通過できるが、タコシール(比較例2)では、潰したロール状とすることでかろうじてトロッカーを通過できるものの破損してしまった。さらに、γ-PGAシート(比較例3)は、γ-PGA単層でスポンジ状でないため、柔軟性がなく折り曲げると割れてしまい、ロール状にできなかった。 Moreover, if it is the sheet-like hemostatic material which concerns on Example 3, it can pass a trocar easily by making it roll shape, However, in an octopus seal (comparative example 2), it can barely pass a trocar by making it a crushed roll shape. Things have been damaged. Furthermore, since the γ-PGA sheet (Comparative Example 3) was a γ-PGA single layer and was not sponge-like, it was not flexible and cracked when bent and could not be made into a roll.
 このように、本開示に係るシート状止血材は、従来のものに比べて、フィブリノゲンを用いることなく止血性能に優れるとともに、良好な柔軟性および取扱性を実現することができる。 As described above, the sheet-like hemostatic material according to the present disclosure is superior in hemostasis performance without using fibrinogen as compared with the conventional one, and can realize good flexibility and handleability.
 次に、実施の形態2で説明した構成のシート状止血材に関して、実施例4~8および比較例4~に基づいて具体的に説明する。なお、以下の実施例4~8および比較例4~5におけるシート状止血材の評価は次に示すようにして行った。 Next, the sheet-like hemostatic material having the configuration described in Embodiment 2 will be specifically described based on Examples 4 to 8 and Comparative Examples 4 to. In the following Examples 4 to 8 and Comparative Examples 4 to 5, the sheet-like hemostatic material was evaluated as follows.
 (シート状態の評価)
 実施例4~8または比較例4~5で作製されたシート状止血材(糖類添加γ-PGAシートまたはγ-PGAシート)について、目視により反り等を確認するとともに折り曲げを試みた。
(Evaluation of sheet condition)
The sheet-like hemostatic material (saccharide-added γ-PGA sheet or γ-PGA sheet) produced in Examples 4 to 8 or Comparative Examples 4 to 5 was visually checked for warpage and the like and then bent.
 (トロッカー通過性の評価)
 実施例4~8または比較例4~5で3.0cm×2.5cmのシート状止血材(糖類添加γ-PGAシートまたはγ-PGAシート)を作製し、これをロール状に丸め、直径5mmのトロッカー(コヴィディエンジャパン株式会社製、製品名ステップシステム バーサステップ 5MM)に通過できるか否かを評価した。
(Evaluation of trocar passability)
A sheet-like hemostatic material (saccharide-added γ-PGA sheet or γ-PGA sheet) having a size of 3.0 cm × 2.5 cm was prepared in Examples 4 to 8 or Comparative Examples 4 to 5, and this was rolled into a roll, and the diameter was 5 mm. It was evaluated whether or not it could pass through a trocar (product name Step System Berserstep 5MM, manufactured by Covidien Japan Co., Ltd.).
 (実施例4)
 1重量%γ-PGA溶液に対してグルコース(Glu )を添加することにより、1重量%γ-PGAおよび1重量%グルコースのγ-PGA-糖溶液(1%γ-PGA1% Glu溶液)を調製した。このγ-PGA-糖溶液を、基材であるステンレス板上に展開して乾燥すること(キャスト法)により、本実施例4に係るシート状止血材である糖類添加γ-PGAシート(γ-PGA50重量%、 Glu50重量%)を得た。
Example 4
Preparation of 1 wt% γ-PGA and 1 wt% glucose γ-PGA-sugar solution (1% γ-PGA 1% Glu solution) by adding glucose (Glu) to 1 wt% γ-PGA solution did. This γ-PGA-sugar solution is spread on a stainless steel plate as a base material and dried (cast method), whereby a saccharide-added γ-PGA sheet (γ-) as a sheet-like hemostatic material according to Example 4 is used. PGA 50% by weight, Glu 50% by weight).
 この糖類添加γ-PGAシートについて、前述した方法によりシート状態およびトロッカー通過性をそれぞれ評価した。シート状態の結果を表1に、トロッカー通過性の結果を表2に示す。 The saccharide-added γ-PGA sheet was evaluated for sheet state and trocar passage by the methods described above. Table 1 shows the results of the sheet state, and Table 2 shows the results of the trocar passage.
 (実施例5)
 1重量%γ-PGA溶液に対して2重量%となるようにグルコースを添加することにより、1重量%γ-PGAおよび2重量%グルコースのγ-PGA-糖溶液(1%γ-PGA2% Glu溶液)を調製した以外は、前記実施例4と同様にして本実施例5に係るシート状止血材である糖類添加γ-PGAシート(γ-PGA33.3重量%、 Glu66.7重量%)を作製した。
(Example 5)
By adding glucose so as to be 2% by weight with respect to the 1% by weight γ-PGA solution, 1% by weight γ-PGA and 2% by weight glucose in γ-PGA-sugar solution (1% γ-PGA 2% Glu The saccharide-added γ-PGA sheet (γ-PGA 33.3% by weight, Glu 66.7% by weight) which is a sheet-like hemostatic material according to Example 5 was prepared in the same manner as in Example 4 except that the solution was prepared. Produced.
 この糖類添加γ-PGAシートについて、前述した方法によりシート状態およびトロッカー通過性をそれぞれ評価した。シート状態の結果を表1に、トロッカー通過性の結果を表2に示す。 The saccharide-added γ-PGA sheet was evaluated for sheet state and trocar passage by the methods described above. Table 1 shows the results of the sheet state, and Table 2 shows the results of the trocar passage.
 (実施例6)
 1重量%γ-PGA溶液に対して1重量%となるようにスクロース(Suc )を添加することにより、1重量%γ-PGAおよび1重量%スクロースのγ-PGA-糖溶液(1%γ-PGA1% Suc溶液)を調製した以外は、前記実施例4と同様にして本実施例6に係るシート状止血材である糖類添加γ-PGAシート(γ-PGA50重量%、Suc 50重量%)を作製した。
(Example 6)
By adding sucrose (Suc) to 1 wt% with respect to the 1 wt% γ-PGA solution, a 1 wt% γ-PGA and a 1 wt% sucrose γ-PGA-sugar solution (1% γ- A saccharide-added γ-PGA sheet (γ-PGA 50 wt%, Suc 50 wt%) as a sheet-like hemostatic material according to Example 6 was prepared in the same manner as in Example 4 except that a PGA 1% Suc solution was prepared. Produced.
 この糖類添加γ-PGAシートについて、前述した方法によりシート状態およびトロッカー通過性をそれぞれ評価した。シート状態の結果を表1に、トロッカー通過性の結果を表2に示す。 The saccharide-added γ-PGA sheet was evaluated for sheet state and trocar passage by the methods described above. Table 1 shows the results of the sheet state, and Table 2 shows the results of the trocar passage.
 (実施例7)
 1重量%γ-PGA溶液に対して1重量%のヒアルロン酸(HA)を添加することにより、1重量%γ-PGAおよび1重量%ヒアルロン酸のγ-PGA-糖溶液(1%γ-PGA1%HA溶液)を調製した以外は、前記実施例4と同様にして本実施例7に係るシート状止血材である糖類添加γ-PGAシート(γ-PGA50重量%、HA50重量%)を作製した。
(Example 7)
By adding 1% by weight hyaluronic acid (HA) to 1% by weight γ-PGA solution, 1% by weight γ-PGA and 1% by weight hyaluronic acid γ-PGA-sugar solution (1% γ-PGA1 A saccharide-added γ-PGA sheet (γ-PGA 50% by weight, HA 50% by weight), which is a sheet-like hemostatic material according to Example 7, was prepared in the same manner as in Example 4 except that the% HA solution was prepared. .
 この糖類添加γ-PGAシートについて、前述した方法によりシート状態およびトロッカー通過性をそれぞれ評価した。シート状態の結果を表1に、トロッカー通過性の結果を表2に示す。 The saccharide-added γ-PGA sheet was evaluated for sheet state and trocar passage by the methods described above. Table 1 shows the results of the sheet state, and Table 2 shows the results of the trocar passage.
 (比較例4)
 γ-PGA-糖溶液ではなく1重量%γ-PGA溶液を用いた以外は、前記実施例4と同様にして本比較例4に係るシート状止血材であるγ-PGAシート(γ-PGA100重量%)を作製した。このγ-PGAシートについて、前述した方法によりシート状態およびトロッカー通過性をそれぞれ評価した。シート状態の結果を表1に、トロッカー通過性の結果を表2に示す。
(Comparative Example 4)
A γ-PGA sheet (γ-PGA 100 wt.), which is a sheet-like hemostatic material according to Comparative Example 4, except that a 1 wt% γ-PGA solution was used instead of the γ-PGA-sugar solution. %). With respect to this γ-PGA sheet, the sheet state and trocar passage were evaluated by the methods described above. Table 1 shows the results of the sheet state, and Table 2 shows the results of the trocar passage.
 (比較例5)
 比較例5に係るシート状止血材として、3.0cm×2.5cmのタコシール(登録商標、CSLベーリング株式会社)を用いて、前述したようにトロッカー通過性を評価した。その結果を表2に示す。
(Comparative Example 5)
As a sheet-like hemostatic material according to Comparative Example 5, a octopus seal (registered trademark, CSL Bering Co., Ltd.) of 3.0 cm × 2.5 cm was used to evaluate trocar passage as described above. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 (実施例8)
 γ-PGA60重量%、HA40重量%となるようにγ-PGA-HA水溶液を調製し、矩形状の金属製容器中に所定量充填し、-20℃で約12時間凍結した。得られた凍結物を凍結乾燥機(東京理化器械株式会社製、製品名FDU-2100)中において、約24時間、減圧下(約13Pa(1Torr)以下)で凍結乾燥した。これにより、スポンジ状シートとして構成される糖類添加γ-PGAシートを作製した。この糖類添加γ-PGAシートの一面に被覆層として架橋コラーゲン(C-Col)シートを積層して圧着した。なお、糖類添加γ-PGAシートと架橋コラーゲンシートとの重量比は70:30とした。これにより、本実施例8に係る二層構造のシート状止血材を作製した。
Figure JPOXMLDOC01-appb-T000004

(Example 8)
A γ-PGA-HA aqueous solution was prepared so as to be 60% by weight of γ-PGA and 40% by weight of HA, filled in a predetermined amount in a rectangular metal container, and frozen at −20 ° C. for about 12 hours. The obtained frozen product was freeze-dried under reduced pressure (about 13 Pa (1 Torr) or less) for about 24 hours in a freeze dryer (product name: FDU-2100, manufactured by Tokyo Rika Kikai Co., Ltd.). This produced a saccharide-added γ-PGA sheet configured as a sponge-like sheet. A cross-linked collagen (C-Col) sheet as a coating layer was laminated on one surface of this saccharide-added γ-PGA sheet and pressure-bonded. The weight ratio between the saccharide-added γ-PGA sheet and the crosslinked collagen sheet was 70:30. Thereby, a sheet-like hemostatic material having a two-layer structure according to Example 8 was produced.
 このシート状止血材を用いて動物実験により接着性および止血性能を確認した。実験動物としてブタを用い、このブタの胸部を持続麻酔下で切開し、心臓を露出させた。そして、心筋部分を一部切開して出血させ、本実施例8に係るシート状止血材を貼り付けるとともに、その後の出血の状況を確認した。 The adhesion and hemostasis performance were confirmed by animal experiments using this sheet-like hemostat. A pig was used as an experimental animal, and the chest of the pig was opened under continuous anesthesia to expose the heart. Then, the myocardial portion was partially incised and bled, and the sheet-like hemostatic material according to Example 8 was attached, and the subsequent bleeding situation was confirmed.
 (実施例4~8および比較例4~5の比較)
 表1から明らかなように、実施例4~7に係るシート状止血材であれば、反りおよび折曲時の割れが無く、良好な柔軟性を有していた。これに対して、比較例4に係るシート状止血材では、反りも割れも生じた。したがって、単糖(グルコース)、オリゴ糖(スクロース)、および多糖(ヒアルロン酸)のいずれの糖類であっても、γ-PGAに添加してシート(シート)を形成することにより、当該シートに柔軟性を付与することができる。また、実施例8の結果、本開示に係る糖類添加γ-PGAシートであれば、生体組織に貼り付けて軽く押えるだけで、良好な接着性および止血性能が実現できることが確認された。
(Comparison of Examples 4 to 8 and Comparative Examples 4 to 5)
As is clear from Table 1, the sheet-like hemostatic materials according to Examples 4 to 7 were free from warping and cracking during bending, and had good flexibility. On the other hand, the sheet-like hemostatic material according to Comparative Example 4 was warped and cracked. Therefore, any saccharide such as monosaccharide (glucose), oligosaccharide (sucrose), and polysaccharide (hyaluronic acid) can be added to γ-PGA to form a sheet (sheet), thereby making the sheet flexible. Sex can be imparted. In addition, as a result of Example 8, it was confirmed that the saccharide-added γ-PGA sheet according to the present disclosure can realize good adhesiveness and hemostasis performance simply by being attached to a living tissue and lightly pressed.
 さらに、表2から明らかなように、実施例4~7に係るシート状止血材であれば、例えばロール状にすることでトロッカーを容易に通過できることがわかる。一方、糖類を添加しないγ-PGAシート(比較例4)は、柔軟性がなく折り曲げると割れてしまい、ロール状にできなかった。また、タコシール(比較例5)では、潰したロール状とすることでかろうじてトロッカーを通過できるものの破損してしまった。 Furthermore, as is apparent from Table 2, it can be seen that the sheet-like hemostatic material according to Examples 4 to 7 can easily pass through the trocar by making it into a roll shape, for example. On the other hand, the γ-PGA sheet to which saccharides were not added (Comparative Example 4) was not flexible and cracked when bent and could not be rolled. Moreover, in the octopus seal (Comparative Example 5), although it could barely pass the trocar by making it into the crushed roll shape, it was damaged.
 このように、本開示に係るシート状止血材は、従来のものに比べて、フィブリノゲンを用いることなく止血性能および接着性能に優れるとともに、良好な柔軟性および取扱性を実現することができる。 As described above, the sheet-like hemostatic material according to the present disclosure is superior in hemostasis performance and adhesion performance without using fibrinogen as compared with the conventional one, and can realize good flexibility and handleability.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
 本発明は、シート状止血材およびその製造方法の分野に広く好適に用いることができる。 The present invention can be widely and suitably used in the field of sheet-like hemostatic materials and production methods thereof.
10A~10E  シート状止血材
11  接着層
12  被覆層
13  中間層
111  部分接着層(スポンジ状)
121  部分被覆層
121a~121c  部分被覆層
141  部分接着層(非多孔質層)
 
 
 
10A to 10E Sheet-like hemostatic material 11 Adhesive layer 12 Cover layer 13 Intermediate layer 111 Partial adhesive layer (sponge-like)
121 Partial coating layer 121a-121c Partial coating layer 141 Partial adhesion layer (non-porous layer)


Claims (18)

  1.  出血箇所への貼付面に設けられ、少なくともポリ-γ-グルタミン酸で構成される接着層を備えることを特徴とする、
    シート状止血材。
    Characterized in that it is provided on the surface to be attached to the bleeding site and comprises an adhesive layer composed of at least poly-γ-glutamic acid,
    Sheet-like hemostatic material.
  2.  さらに、前記貼付面の反対面に設けられ、前記ポリ-γ-グルタミン酸を除く少なくとも1種の生体分解性材料で構成される被覆層を備え、
     前記接着層および前記被覆層の少なくとも一方が単一のシートであることを特徴とする、
    請求項1に記載のシート状止血材。
    And a coating layer formed on at least one biodegradable material excluding the poly-γ-glutamic acid provided on the opposite surface of the application surface,
    At least one of the adhesive layer and the coating layer is a single sheet,
    The sheet-like hemostatic material according to claim 1.
  3.  前記接着層が前記単一のシートであるときには、当該接着層はスポンジ状シートであることを特徴とする、
    請求項2に記載のシート状止血材。
    When the adhesive layer is the single sheet, the adhesive layer is a sponge sheet,
    The sheet-like hemostatic material according to claim 2.
  4.  前記接着層が前記単一のシートでない部分層であるときには、当該接着層は、少なくともポリ-γ-グルタミン酸で構成されるスポンジ状シート、もしくは、非多孔質層であることを特徴とする、
    請求項2に記載のシート状止血材。
    When the adhesive layer is a partial layer that is not the single sheet, the adhesive layer is a sponge-like sheet composed of at least poly-γ-glutamic acid, or a non-porous layer,
    The sheet-like hemostatic material according to claim 2.
  5.  前記被覆層は、少なくとも架橋コラーゲンで構成されるスポンジ状シートであることを特徴とする、
    請求項2から4のいずれか1項に記載のシート状止血材。
    The coating layer is a sponge sheet composed of at least crosslinked collagen,
    The sheet-like hemostatic material according to any one of claims 2 to 4.
  6.  前記接着層および前記被覆層の双方が単一のシートであるか、もしくは、
     前記被覆層が、前記反対面に部分的に設けられる部分層であることを特徴とする、
    請求項2、3、または5に記載のシート状止血材。
    Both the adhesive layer and the covering layer are a single sheet, or
    The covering layer is a partial layer partially provided on the opposite surface,
    The sheet-like hemostatic material according to claim 2, 3 or 5.
  7.  前記接着層および前記被覆層は、少なくとも一部分が互いに異なる色彩を有していることを特徴とする、
    請求項2から6のいずれか1項に記載のシート状止血材。
    The adhesive layer and the covering layer are characterized in that at least a part thereof has a different color.
    The sheet-like hemostatic material according to any one of claims 2 to 6.
  8.  前記接着層の重量比が、前記シート状止血材の全重量の10~90重量%の範囲内にあることを特徴とする、
    請求項1から7のいずれか1項に記載のシート状止血材。
    The weight ratio of the adhesive layer is in the range of 10 to 90% by weight of the total weight of the sheet-like hemostatic material,
    The sheet-like hemostatic material according to any one of claims 1 to 7.
  9.  さらに、前記接着層および前記被覆層の間に介在する、少なくとも1層の中間層を備え、
     これら各層が一体的に固着されていることを特徴とする、
    請求項2から8のいずれか1項に記載のシート状止血材。
    Furthermore, comprising at least one intermediate layer interposed between the adhesive layer and the coating layer,
    Each of these layers is fixed integrally,
    The sheet-like hemostatic material according to any one of claims 2 to 8.
  10.  少なくともポリ-γ-グルタミン酸で構成される第一層状体と、前記ポリ-γ-グルタミン酸を除く少なくとも1種の生体分解性材料で構成される第二層状体とを積層して積層体を形成する工程と、
     前記積層体を接着もしくは圧着することにより、少なくともポリ-γ-グルタミン酸で構成される接着層と、前記生体分解性材料で構成される被覆層と、を備える、シート状止血材を形成する工程と、
    を含むことを特徴とする、
    シート状止血材の製造方法。
    A first layered body composed of at least poly-γ-glutamic acid and a second layered body composed of at least one biodegradable material excluding the poly-γ-glutamic acid are laminated to form a laminate. And a process of
    Forming a sheet-like hemostatic material comprising: an adhesive layer composed of at least poly-γ-glutamic acid; and a coating layer composed of the biodegradable material by bonding or pressure-bonding the laminate. ,
    Including,
    A method for producing a sheet-like hemostatic material.
  11.  前記第一層状体は、少なくともポリ-γ-グルタミン酸で構成される第一スポンジ状多孔体、当該第一スポンジ状多孔体に圧力を加えて得られるスポンジ状第一シート、または、少なくともポリ-γ-グルタミン酸で構成され、かつ、単一のシートではない第一部分シートであり、
     前記第一部分シートは、スポンジ状またはスポンジ状ではない非多孔質状であるとともに、
     前記第二層状体は、前記生体分解性材料で構成される第二スポンジ状多孔体、当該第二スポンジ状多孔体に圧力を加えて得られるスポンジ状第二シート、または、前記生分解性材料で構成され、かつ、単一のシートではない第二部分シートであることを特徴とする、
    請求項10に記載のシート状止血材の製造方法。
    The first layered body is a first sponge-like porous body composed of at least poly-γ-glutamic acid, a sponge-like first sheet obtained by applying pressure to the first sponge-like porous body, or at least a poly- a first partial sheet composed of γ-glutamic acid and not a single sheet,
    The first partial sheet has a non-porous shape that is not sponge-like or sponge-like,
    The second layered body is a second sponge-like porous body made of the biodegradable material, a sponge-like second sheet obtained by applying pressure to the second sponge-like porous body, or the biodegradable material And is a second partial sheet that is not a single sheet,
    The manufacturing method of the sheet-like hemostatic material according to claim 10.
  12.  先に、前記第二スポンジ状多孔体に圧力を加えて前記スポンジ状第二シートとしてから、前記第一スポンジ状多孔体に積層して圧着することにより、前記積層体を形成することを特徴とする、
    請求項11に記載のシート状止血材の製造方法。
    First, the pressure is applied to the second sponge-like porous body to form the sponge-like second sheet, and then the laminate is formed by laminating and pressing the first sponge-like porous body. To
    The manufacturing method of the sheet-like hemostatic material according to claim 11.
  13.  少なくともポリ-γ-グルタミン酸で構成され、さらに糖類が添加されたシートを接着層として備えることを特徴とする、
    シート状止血材。
    A sheet comprising at least poly-γ-glutamic acid and further containing a saccharide is provided as an adhesive layer.
    Sheet-like hemostatic material.
  14.  前記糖類は、単糖、オリゴ糖、および多糖の少なくともいずれかであることを特徴とする、
    請求項13に記載のシート状止血材。
    The saccharide is at least one of a monosaccharide, an oligosaccharide, and a polysaccharide,
    The sheet-like hemostatic material according to claim 13.
  15.  前記糖類は、前記シートの全重量に対して10~90重量%の範囲内となるように添加されていることを特徴とする、
    請求項13または14に記載のシート状止血材。
    The saccharide is added so as to be in the range of 10 to 90% by weight with respect to the total weight of the sheet,
    The sheet-like hemostatic material according to claim 13 or 14.
  16.  さらに、前記シートにコラーゲンが添加されていることを特徴とする、
    請求項13から15のいずれか1項に記載のシート状止血材。
    Furthermore, collagen is added to the sheet,
    The sheet-like hemostatic material according to any one of claims 13 to 15.
  17.  少なくともポリ-γ-グルタミン酸で構成され、さらにコラーゲンが添加されたシートを接着層として備えることを特徴とする、
    シート状止血材。
    A sheet comprising at least poly-γ-glutamic acid and further having collagen added thereto is provided as an adhesive layer,
    Sheet-like hemostatic material.
  18.  ポリ-γ-グルタミン酸に糖類およびコラーゲンの少なくとも一方を添加してシート状に成形することにより、接着層を形成する工程を含むことを特徴とする、
    シート状止血材の製造方法。
     
     
    Including a step of forming an adhesive layer by adding at least one of saccharide and collagen to poly-γ-glutamic acid and forming into a sheet shape,
    A method for producing a sheet-like hemostatic material.

PCT/JP2017/015604 2016-04-20 2017-04-18 SHEET-LIKE HEMOSTATIC MATERIAL EMPLOYING POLY-γ-GLUTAMIC ACID, AND METHOD OF MANUFACTURING SAME WO2017183640A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/095,317 US20190134260A1 (en) 2016-04-20 2017-04-18 Sheet-like hemostatic material employing poly-gamma-glutamic acid, and method of manufacturing same
EP17785978.2A EP3446719A4 (en) 2016-04-20 2017-04-18 Sheet-like hemostatic material employing poly- -glutamic acid, and method of manufacturing same
EP20182793.8A EP3733218A1 (en) 2016-04-20 2017-04-18 Sheet-like hemostatic material employing poly-y-glutamic acid, and method of manufacturing same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016084551 2016-04-20
JP2016084552A JP2017192560A (en) 2016-04-20 2016-04-20 SHEET-LIKE HEMOSTATIC MATERIAL COMPRISING POLY-γ-GLUTAMIC ACID AND METHOD FOR PRODUCING THE SAME
JP2016-084552 2016-04-20
JP2016-084551 2016-04-20
JP2017078019A JP2017196406A (en) 2016-04-20 2017-04-11 SHEET-LIKE HEMOSTATIC AGENT USING POLY-γ-GLUTAMIC ACID
JP2017-078019 2017-04-11

Publications (1)

Publication Number Publication Date
WO2017183640A1 true WO2017183640A1 (en) 2017-10-26

Family

ID=60116821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015604 WO2017183640A1 (en) 2016-04-20 2017-04-18 SHEET-LIKE HEMOSTATIC MATERIAL EMPLOYING POLY-γ-GLUTAMIC ACID, AND METHOD OF MANUFACTURING SAME

Country Status (1)

Country Link
WO (1) WO2017183640A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046228A (en) * 2003-07-30 2005-02-24 Chisso Corp Mat and medical supplies using the same
JP2009089837A (en) * 2007-10-05 2009-04-30 Idemitsu Technofine Co Ltd Wound covering material
JP2013013743A (en) * 2003-06-26 2013-01-24 Zuiko Corp Wound dressing and wound dressing kit
US20130296459A1 (en) * 2010-11-10 2013-11-07 Bioleaders Corporation Medical adhesive composition
JP2015139603A (en) * 2014-01-29 2015-08-03 泉工医科工業株式会社 Wound covering material and separation method of hemocyte component and plasma component in blood

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013743A (en) * 2003-06-26 2013-01-24 Zuiko Corp Wound dressing and wound dressing kit
JP2005046228A (en) * 2003-07-30 2005-02-24 Chisso Corp Mat and medical supplies using the same
JP2009089837A (en) * 2007-10-05 2009-04-30 Idemitsu Technofine Co Ltd Wound covering material
US20130296459A1 (en) * 2010-11-10 2013-11-07 Bioleaders Corporation Medical adhesive composition
JP2015139603A (en) * 2014-01-29 2015-08-03 泉工医科工業株式会社 Wound covering material and separation method of hemocyte component and plasma component in blood

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HSU, FU-YIN ET AL.: "Fabrication and evaluation of a biodegradable cohesive plug based on recostituted collagen/y-polyglutamic acid", J BIOMED MATER RES PT B APPL BIOMATER, vol. 95, no. 1, 2010, pages 29 - 35, XP055580877 *
HUANG,MEI-HUA ET AL.: "Swelling and biocompatibility of sodium alginate/poly(y- glutamic acid) hydrogels", POLYMERS FOR ADVANCED TECHNOLOGIES, vol. 21, no. 8, 2010, pages 561 - 567, XP055433265 *
See also references of EP3446719A4 *

Similar Documents

Publication Publication Date Title
US10441678B2 (en) Implant for tissue repair including chitosan
AU2009305114B2 (en) Matrix for tissue repair
JP4854084B2 (en) Wound dressing and method for controlling life-threatening severe bleeding
US8912168B2 (en) Modified starch material of biocompatible hemostasis
JP5883895B2 (en) Biocompatible hemostasis, adhesion prevention, fusion promotion, surgically sealable modified starch material
JP2007516050A (en) Wound dressing and method for controlling life-threatening serious bleeding
EP2233157A1 (en) A biocompatible denatured starch sponge material
JP2011509932A5 (en)
JP2009528437A5 (en)
WO2013096448A1 (en) Composition, preparation, and use of dense chitosan membrane materials
JP2017522162A (en) Polymer foam composition, method for producing polymer foam using the same, and polymer foam for packing
Sivakumar et al. Ferulic acid loaded microspheres reinforced in 3D hybrid scaffold for antimicrobial wound dressing
CN106975098B (en) Composite polysaccharide hemostatic composition and preparation method and application thereof
JP2017196406A (en) SHEET-LIKE HEMOSTATIC AGENT USING POLY-γ-GLUTAMIC ACID
CN106075552B (en) Medical hemostatic sponge and preparation method thereof
US20190134260A1 (en) Sheet-like hemostatic material employing poly-gamma-glutamic acid, and method of manufacturing same
WO2018165327A1 (en) Hydrogel medium for the storage and preservation of tissue
WO2017183640A1 (en) SHEET-LIKE HEMOSTATIC MATERIAL EMPLOYING POLY-γ-GLUTAMIC ACID, AND METHOD OF MANUFACTURING SAME
JP2017192560A (en) SHEET-LIKE HEMOSTATIC MATERIAL COMPRISING POLY-γ-GLUTAMIC ACID AND METHOD FOR PRODUCING THE SAME
JP2019076169A (en) SHEET-LIKE HEMOSTATIC AGENT USING POLY-γ-GLUTAMIC ACID AND METHOD FOR MANUFACTURING THE SAME
Ma et al. A review of polysaccharide hydrogels as materials for skin repair and wound dressing: Construction, functionalization and challenges
CN117414462A (en) Hemostatic granule for diffuse hemorrhage and preparation method and application thereof
WO2023225752A1 (en) Hemostatic bioadhesive

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017785978

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017785978

Country of ref document: EP

Effective date: 20181120

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785978

Country of ref document: EP

Kind code of ref document: A1