WO2017183624A1 - Metal nanoparticle aqueous dispersion - Google Patents

Metal nanoparticle aqueous dispersion Download PDF

Info

Publication number
WO2017183624A1
WO2017183624A1 PCT/JP2017/015532 JP2017015532W WO2017183624A1 WO 2017183624 A1 WO2017183624 A1 WO 2017183624A1 JP 2017015532 W JP2017015532 W JP 2017015532W WO 2017183624 A1 WO2017183624 A1 WO 2017183624A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
metal
aqueous dispersion
group
metal nanoparticle
Prior art date
Application number
PCT/JP2017/015532
Other languages
French (fr)
Japanese (ja)
Inventor
昭太 新林
深澤 憲正
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201780024329.3A priority Critical patent/CN109070208B/en
Priority to JP2017544976A priority patent/JP6255635B1/en
Priority to KR1020187029480A priority patent/KR102169421B1/en
Publication of WO2017183624A1 publication Critical patent/WO2017183624A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to an aqueous dispersion of metal nanoparticles that can be used as a metal film or as various catalysts, has excellent stability, and has corrosion resistance.
  • Metals are attracting attention as materials with high specific activity and large specific surface area by making them nano-sized particles, and they are used for wiring, conductive layer formation, antibacterial materials, and various catalyst applications utilizing fusion phenomena at low temperatures. Application of is being studied. In particular, industrially, by providing metal nanoparticles dispersed in a liquid, a metal film or a catalytic metal can be imparted on various target substrates by methods such as printing, coating, and adsorption. This is a great merit.
  • both an organic solvent and an aqueous solvent have been studied and can be selected depending on the process of applying the metal onto the substrate, but from the viewpoint of reducing environmental burden, It is preferable to use a solvent.
  • Metal nanoparticles used to form metal films on various substrates or to apply catalytic metals by printing, coating, adsorption, etc. are dispersed uniformly and stably in an aqueous dispersion medium for a long period of time. It is required to maintain the state, and that the surface of the metal nanoparticle is active even after being applied on the substrate, is required for any of wiring, conductive layer formation, antibacterial, and catalyst applications.
  • a dispersant to be adsorbed on the surface of the metal nanoparticles a polymer dispersant that is difficult to desorb and can impart high dispersion stability is used, and by reducing the amount used as much as possible, the dispersion stability in the liquid And surface activity are compatible (for example, refer to Patent Document 1).
  • the metal nanoparticle using this polymer dispersing agent can be used also as a catalyst of electroless plating (for example, refer patent document 2).
  • aqueous dispersions of metal nanoparticles that ensure dispersion stability and high surface activity in this way are also destabilized due to changes in the storage environment over time and small amounts of impurities during use, irreversible suspension and aggregation There was a problem that precipitation occurred.
  • a metal nanoparticle is applied on a base material, if a metal having a higher ionization tendency than the metal constituting the metal nanoparticle exists on the base material, corrosion due to contact with a different metal occurs at the contact portion. There was a concern that the performance deteriorated due to corrosion and the appearance of the base material was poor.
  • the problem to be solved by the present invention is to suppress suspension, aggregation, and precipitation due to deterioration with time and mixing of a small amount of impurities, and the surface of the base material to which the metal nanoparticles are applied is more than the metal constituting the metal nanoparticles.
  • the present inventors have used the above-described aqueous dispersion of metal nanoparticles to which an aqueous dispersion of metal nanoparticles is added a specific carboxylic acid or an alkali metal salt thereof. As a result, the present invention has been completed.
  • the present invention relates to a composite of metal nanoparticles (X) and an organic compound (Y), lactic acid, glycolic acid, malonic acid, succinic acid, fumaric acid, maleic acid, malic acid, tartaric acid, oxalic acid, citric acid. And one or more kinds of compounds (Z) selected from the group consisting of alkali metal salts of these carboxylic acids.
  • the metal nanoparticle aqueous dispersion of the present invention suppresses suspension, aggregation, and precipitation due to changes in the storage environment over time and the incorporation of a small amount of impurities, and the metal nanoparticles are formed on the surface of the base material to which the metal nanoparticles are applied. Even when a metal having a higher ionization tendency than a metal to be present does not cause deterioration in characteristics due to corrosion or appearance defects due to coloring, it can be used as a wiring, a conductive material, an antibacterial material, and various catalysts.
  • the aqueous dispersion of metal nanoparticles of the present invention comprises a composite of metal nanoparticles (X) and an organic compound (Y), lactic acid, glycolic acid, malonic acid, succinic acid, fumaric acid, maleic acid, malic acid, tartaric acid, It contains at least one compound (Z) selected from the group consisting of oxalic acid, citric acid and alkali metal salts of these carboxylic acids.
  • Examples of the metal constituting the metal nanoparticles (X) include silver, copper, palladium alone, and alloys thereof.
  • Examples of the metal nanoparticles (X) include silver core copper shell particles, copper shell silver core particles, particles in which silver is partially substituted with palladium, and particles in which copper is partially substituted with palladium. These metals or alloys can be used alone or in combination of two or more. These metals or alloys may be appropriately selected according to the purpose. However, when used for the purpose of forming a wiring or a conductive layer, silver and copper are preferable. From the viewpoint of the catalytic function, silver, copper Palladium is preferred. From the viewpoint of cost, silver, copper, alloys thereof, partially substituted products, or mixtures thereof are preferable.
  • the shape of the metal nanoparticles (X) is not particularly limited as long as the dispersion stability in an aqueous medium is not impaired, and various shapes of nanoparticles can be appropriately selected according to the purpose. Specific examples include spherical, polyhedral, plate-like, rod-like, and combinations of these particles. As said metal nanoparticle (X), the thing of a single shape or a thing of a some shape can be mixed and used. Among these shapes, spherical or polyhedral particles are preferable from the viewpoint of dispersion stability.
  • the metal constituting the metal nanoparticle (X) is an organic compound (Y) as a dispersant on the surface of the metal nanoparticle (X) in order to maintain a uniform dispersed state for a long period of time in an aqueous dispersion medium.
  • Y organic compound
  • the organic compound (Y) may be appropriately selected and used according to the purpose, but from the viewpoint of storage stability, the compound (Y1) having an anionic functional group is preferable.
  • the compound having an anionic functional group (Y1) is a compound having at least one anionic functional group in the molecule. Further, a compound having a cationic functional group in addition to an anionic functional group in the molecule may be used as long as the dispersion stability is not inhibited.
  • the compound (Y1) having an anionic functional group can be used alone or in combination of two or more.
  • the compound (Y1) having an anionic functional group is a carboxy group from the viewpoint of achieving both long-term stability in an aqueous dispersion medium and maintaining the activity of the surface of the metal nanoparticles after being applied on the substrate.
  • the polymer (Y2) of the monomer mixture (I) is particularly preferable.
  • the polymer (Y2) may be a homopolymer or a copolymer. Moreover, when it is a copolymer, it may be random polymerization or block polymerization.
  • the polymer (Y2) has one or more anionic functional groups selected from the group consisting of carboxy group, phosphoric acid group, phosphorous acid group, sulfonic acid group, sulfinic acid group and sulfenic acid group, Since it has a function of adsorbing to the metal nanoparticle (X) through the lone pair of atoms, and at the same time, a negative charge is imparted to the surface of the metal nanoparticle (X), the repulsion of the colloidal particles Aggregation can be prevented, and the composite of polymer (Y2) and metal nanoparticles (X) can be stably dispersed in water.
  • the polymer (Y2) preferably has three or more anionic functional groups in one molecule because the adsorption to the metal nanoparticles (X) and the dispersion stability in the aqueous dispersion can be further improved.
  • the weight average molecular weight of the polymer (Y2) is preferably in the range of 3,000 to 20,000 because the adsorption to the metal nanoparticles (X) and the dispersion stability in the aqueous dispersion can be further improved.
  • a range of 4,000 to 8,000 is more preferable.
  • the monomer mixture (I) is copolymerized with a (meth) acrylic acid monomer having a polyethylene glycol chain and a (meth) acrylic acid monomer having an anionic group.
  • the polymer (Y2) having a polyethylene glycol chain can be easily obtained.
  • the polymer (Y2) polymerized using a (meth) acrylic acid monomer having a polyethylene glycol chain with an average unit number of ethylene glycol of 20 or more stabilizes nanoparticles of noble metals, particularly silver and copper.
  • a (meth) acrylic acid monomer having a polyethylene glycol chain with an average unit number of ethylene glycol of 20 or more stabilizes nanoparticles of noble metals, particularly silver and copper.
  • This is preferable because it is a suitable protective agent.
  • Synthesis of such a polymer having an anionic functional group and a polyethylene glycol chain can be easily carried out by the methods described in, for example, Japanese Patent No. 4697356, Japanese Patent Application Laid-Open No. 2010-209421, and the like.
  • the weight average molecular weight of the (meth) acrylic acid monomer having a polyethylene glycol chain having an average unit number of ethylene glycol of 20 or more is preferably in the range of 1,000 to 2,000. When the weight average molecular weight is within this range, the water dispersibility of the composite with the metal nanoparticles (X) becomes better.
  • polymer (Y2) having a phosphate group and a polyethylene glycol chain for example, commercially available 2-methacryloyloxyphosphate (for example, “Light Ester P-1M” manufactured by Kyoeisha Chemical Co., Ltd.). )) And a commercially available methacrylic acid ester monomer having a polyethylene glycol chain (for example, “Blenmer PME-1000” manufactured by NOF Corporation) as a polymerization initiator (for example, oil-soluble azo polymerization initiator “V-59”). And a method of copolymerization using these.
  • 2-methacryloyloxyphosphate for example, “Light Ester P-1M” manufactured by Kyoeisha Chemical Co., Ltd.
  • methacrylic acid ester monomer having a polyethylene glycol chain for example, “Blenmer PME-1000” manufactured by NOF Corporation
  • a polymerization initiator for example, oil-soluble azo polymerization initiator “V-59”.
  • the ratio of the (meth) acrylic acid ester monomer having a phosphate group is less than 30% by mass in the monomer mixture (I)
  • the monomer mixture (I) contains a third polymerizable monomer other than the (meth) acrylic acid monomer having an anionic group and the (meth) acrylic acid monomer having a polyethylene glycol chain. May be.
  • the third polymerizable monomer is a hydrophobic monomer
  • the amount used thereof can maintain good water dispersibility, so that the amount of the (meth) acrylic acid monomer having a polyethylene glycol chain is 100 parts by mass.
  • the amount is preferably 20 parts by mass or less, and more preferably 10 parts by mass or less.
  • the 3rd polymeric monomer is not a hydrophobic monomer, it is not limited to this range.
  • the weight average molecular weight of the polymer (Y2) is preferably in the range of 3,000 to 20,000, but when a (meth) acrylic acid monomer having a polyethylene glycol chain is used in combination,
  • the polymer (Y2) obtained by the polymerization reaction has a molecular weight distribution.
  • the weight average molecular weight of the polymer (Y2) is more preferably 4,000 or more.
  • the weight average molecular weight of the complex with the metal nanoparticle (X) is likely to be coarsened, and the weight average molecular weight of the polymer (Y2) is 8, from the viewpoint of easily causing precipitation in the catalyst solution. More preferably, it is 000 or less.
  • a chain transfer agent described in known literature for example, JP 2010-209421 A may be used. You may control by polymerization conditions, without using.
  • a composite used for the aqueous dispersion of metal nanoparticles of the present invention a composite with metal nanoparticles (X) such as silver, copper, palladium, etc., produced using the polymer (Y2) as a colloid protective agent is used. be able to.
  • the polymer (Y2) is dissolved or dispersed in an aqueous medium, and then silver nitrate, copper acetate, palladium nitrate is added thereto.
  • a metal compound such as a complexing agent as necessary to obtain a uniform dispersion
  • the metal compound is reduced by mixing a reducing agent, and the reduced metal is nanosized particles ( And a method of obtaining an aqueous dispersion of metal nanoparticles (X) combined with the polymer (Y2) at the same time.
  • a complexing agent you may mix simultaneously with a reducing agent.
  • the average particle diameter of the metal nanoparticles (X) is 0.5, which is advantageous for the formation of wiring and conductive layers, from the viewpoint of low-temperature fusion properties and catalytic activity. It is preferable that a composite of metal nanoparticles (X) in the range of ⁇ 100 nm and the organic compound (Y) is dispersed in an aqueous dispersion medium.
  • the average particle diameter of the metal nanoparticles (X) can be estimated by a transmission electron micrograph, and the average value of 100 particles in the range of 0.5 to 100 nm is, for example, the above-mentioned patent It can be easily obtained by the methods described in Japanese Patent No. 4697356, Japanese Patent Application Laid-Open No. 2010-209421, and the like.
  • the metal nanoparticles (X) thus obtained are protected by the polymer (Y2) and exist individually one by one, and can be stably dispersed in an aqueous dispersion medium.
  • the average particle diameter of the metal nanoparticles (X) is the type of metal compound, the molecular weight of the organic compound (Y) to be a colloid protective agent, the chemical structure and the amount used, the type and amount of complexing agent and reducing agent,
  • the temperature can be easily controlled by the temperature at the time of the reduction reaction.
  • the content ratio of the organic compound (Y) in the complex of the organic compound (Y) and the metal nanoparticles (X) is preferably in the range of 1 to 30% by mass, and in the range of 2 to 20% by mass. Is more preferable. That is, in the composite, one in which the metal nanoparticles (X) occupy most of the mass is suitable for use in wiring, conducting wire layer formation, and various catalyst applications.
  • the composite in which the metal nanoparticles (X) are protected by the polymer (X-2) is 0.01% in an aqueous medium, that is, a mixed solvent of water or an organic solvent compatible with water. It can be dispersed in a range of about 70% by mass, and can be stably stored at room temperature ( ⁇ 25 ° C.) without agglomeration at room temperature ( ⁇ 25 ° C.) for a few months under conditions where no impurities are mixed.
  • an aqueous medium that is, a mixed solvent of water or an organic solvent compatible with water. It can be dispersed in a range of about 70% by mass, and can be stably stored at room temperature ( ⁇ 25 ° C.) without agglomeration at room temperature ( ⁇ 25 ° C.) for a few months under conditions where no impurities are mixed.
  • the aqueous dispersion of metal nanoparticles of the present invention includes lactic acid, glycolic acid, malonic acid, succinic acid, fumaric acid, maleic acid, apple
  • One or more compounds (Z) selected from the group consisting of acid, tartaric acid, oxalic acid, citric acid and alkali metal salts of these carboxylic acids are used as essential components.
  • the compound (Z) By adding the compound (Z) to the aqueous dispersion of metal nanoparticles of the present invention, irreversible suspension, aggregation, and precipitation due to changes in storage environment over time and small amounts of impurities are suppressed, and the metal nanoparticle is suppressed. Even when a metal having a higher ionization tendency than the metal constituting the metal nanoparticles is present on the surface of the base material to which the particles (X) are adhered, it exhibits the effect of preventing deterioration in properties due to corrosion and appearance defects due to coloring. To do.
  • the amount of the compound (Z) used is preferably in the range of 1 to 100 parts by mass and more preferably in the range of 5 to 30 parts by mass with respect to 1 part by mass of the complex.
  • the compound (Z) may be added in advance to the aqueous dispersion of the complex of the metal nanoparticles (X) and the organic compound (Y), and the aqueous dispersion of the complex is used. May be added before
  • the metal nanoparticle aqueous dispersion of the present invention can be used as it is as a wiring, conductive layer forming ink or coating solution, or as a catalyst solution for electroless plating, but an excess complexing agent, reducing agent, or raw material.
  • an excess complexing agent, reducing agent, or raw material As a counter ion contained in the metal compound used as the ultrafiltration method, precipitation method, centrifugal separation, vacuum distillation, vacuum purification, etc. various purification methods such as single or in combination of two or more, Furthermore, after refining process, the concentration (non-volatile content) and aqueous medium may be changed and newly prepared as a dispersion may be used.
  • purification process is performed after preparing the aqueous dispersion of the said composite, and adds the said compound (Z) after that.
  • the concentration (nonvolatile content) of the composite in the aqueous dispersion is 0.5 to A range of 40% by mass is preferable, and a range of 1 to 30% by mass is more preferable.
  • a method of applying a composite of the metal nanoparticles (X) and the organic compound (Y) on a substrate when wiring and conductive layer formation are performed using the metal nanoparticle aqueous dispersion of the present invention as an ink and a coating liquid.
  • the metal nanoparticle aqueous dispersion of the present invention as an ink and a coating liquid.
  • various known and commonly used printing / coating techniques may be appropriately selected depending on the shape, size, degree of flexibility, and the like of the substrate to be used.
  • gravure method Specifically, gravure method, offset method, gravure offset method, relief printing method, relief printing inversion method, flexo method, pad method, screen method, microcontact method, reverse method, air doctor coater method, blade coater method, air knife coater method Squeeze coater method, impregnation coater method, transfer roll coater method, kiss coater method, cast coater method, spray coater method, ink jet method, die method, spin coater method, bar coater method and the like.
  • the composite is printed or coated on a substrate and the composite is applied on the substrate to form a wiring or conductive layer, the printed or coated substrate is dried and fired.
  • the wiring and the conductive layer may be directly formed, or electroless or electrolytic plating may be performed.
  • the metal nanoparticle aqueous dispersion of the present invention can also be used as a catalyst solution for electroless plating used in a normal plating treatment step by immersion treatment.
  • the metal nanoparticle aqueous dispersion of the present invention is used as a catalyst for electroless plating, the amount of adsorption to the object to be plated can be secured, and the adhesion of the plating film to the object to be plated can be improved.
  • the concentration of the complex (nonvolatile content concentration) in the metal nanoparticle aqueous dispersion is preferably in the range of 0.05 to 5 g / L, and more preferably in the range of 0.1 to 2 g / L in consideration of economy. .
  • the object to be plated with the composite in the metal nanoparticle aqueous dispersion of the present invention attached to the surface thereof is subjected to a known electroless plating treatment to form a metal film on the surface. be able to.
  • Examples of the aqueous medium used in the metal nanoparticle aqueous dispersion of the present invention include water alone and a mixed solvent of water and an organic solvent compatible with water.
  • the organic solvent can be selected without particular limitation as long as it does not impair the dispersion stability of the composite and does not damage the object to be plated.
  • Specific examples of the organic solvent include methanol, ethanol, isopropanol, acetone and the like. These organic solvents can be used alone or in combination of two or more.
  • the mixing ratio of the organic solvent is preferably 50% by mass or less from the viewpoint of dispersion stability of the composite, and more preferably 30% by mass or less from the viewpoint of convenience in the plating step.
  • the base material to which the composite of the metal nanoparticles (X) and the organic compound (Y) is applied using the metal nanoparticle aqueous dispersion of the present invention is not particularly limited. Fiber reinforced epoxy, epoxy insulation, polyimide, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate, liquid crystal polymer (LCP), cycloolefin polymer (COP), polyetheretherketone (PEEK), polyphenylene sulfide ( PPS) and other plastics, glass, ceramics, metal oxides, metals, paper, synthetic or natural fibers, etc. Any of cloth shape, fiber shape, tube shape, etc. may be sufficient.
  • the metal nanoparticle aqueous dispersion of the present invention provides a composite of metal nanoparticles and an organic compound on a substrate by a simple method such as printing, coating, or dipping. It can be formed and can be suitably used as a catalyst solution for electroless plating.
  • the metal nanoparticle aqueous dispersion of the present invention imparts the composite of the metal nanoparticles (X) and the organic compound (Y) to the base material, the performance deteriorates due to corrosion of the metal base surface, and the appearance is poor. Can be suppressed. Therefore, a particularly excellent effect is exhibited when using a metal substrate or a substrate having a metal such as a wiring or a conductive layer on the substrate.
  • Sample analysis was performed using the following apparatus. Observation with a transmission electron microscope (TEM) was performed with “JEM-1400” manufactured by JEOL Ltd. (Preparation Example 1). Scanning electron microscope (SEM) observations were made with “JSM-7800F” manufactured by JEOL Ltd. (FIG. 2 of Example 1 and FIG. 4 of Comparative Example 2) and “VE9800” manufactured by Keyence Corporation (FIG. 6 of Example 4). And in FIG. 8) of Comparative Example 4. The average particle size was measured by the dynamic light scattering method using “FPAR-1000” manufactured by Otsuka Electronics Co., Ltd. (Preparation Example 1).
  • a polymerization initiator (“Perbutyl O” manufactured by NOF Corporation) was added twice every 4 hours, and the mixture was stirred at 80 ° C. for 12 hours.
  • This polymer (Y2-1) has a methoxycarbonylethylthio group, a phosphoric acid group and a polyethylene glycol chain, and its weight average molecular weight (polystyrene conversion value measured by gel permeation chromatography) is 4. 300, and the acid value was 97.5 mgKOH / g.
  • ion-exchanged water is added to the aqueous dispersion of the silver nanoparticle-containing composite having a nonvolatile content of 36.7% by mass obtained above, and the content of the silver nanoparticle-containing composite in the aqueous dispersion is 0.5 g. / L to obtain a silver nanoparticle aqueous dispersion.
  • the copper clad epoxy plate was taken out by being immersed in an aqueous solution of sodium peroxodisulfate (concentration 100 g / L) for 2 minutes and washed with running water for 2 minutes.
  • the copper substrate surface was pretreated by immersing it in a sulfuric acid aqueous solution (concentrated sulfuric acid 100 mL / L) for 2 minutes and washing it with running water for 2 minutes.
  • Example 1 The silver nanoparticle aqueous dispersion (0.5 g / L) obtained in Preparation Example 1 is mixed with trisodium citrate (10 g / L) to prepare an aqueous dispersion of silver nanoparticles, and pseudo impurities As a result, copper sulfate pentahydrate was further added (0.01 g / L).
  • the copper base material subjected to the above pretreatment was taken out of this aqueous dispersion by being immersed at room temperature (25 ° C.) for 10 minutes, washed with running water for 2 minutes, and then dried.
  • the treated copper-clad epoxy substrate surface was visually observed, no black spots due to corrosion were observed on the copper foil surface of the substrate (see FIG. 1).
  • FIG. 2 scanning electron microscope
  • Example 2 A silver nanoparticle aqueous dispersion (5 g / L) obtained in Preparation Example 1 is mixed with sodium potassium tartrate (5 g / L) to prepare an aqueous dispersion of silver nanoparticles, and a pseudo storage environment As a change, this aqueous dispersion was heated at 50 ° C. for 3 days and then allowed to cool to room temperature (25 ° C.). Next, the copper base material obtained by the above pretreatment was immersed in a heated aqueous dispersion for 10 minutes at room temperature (25 ° C.), washed with running water for 2 minutes, and then dried. When the immersion-treated substrate surface was visually observed, no black spots due to corrosion were observed on the substrate copper foil surface.
  • Example 3 The silver nanoparticle aqueous dispersion (0.5 g / L) obtained in Preparation Example 1 was heated at 50 ° C. for 3 days as a pseudo storage environment change, and then disodium succinate (10 g / L) was added. In addition, an aqueous dispersion of silver nanoparticles was obtained. Next, the copper base material that had been subjected to the above pretreatment was taken out of this dispersion by being immersed for 10 minutes at room temperature (25 ° C.), washed with running water for 2 minutes, and then dried. When the immersion-treated substrate surface was visually observed, no black spots due to corrosion were observed on the copper surface of the substrate.
  • Example 4 A silver nanoparticle aqueous dispersion (5 g / L) obtained in Preparation Example 1 is mixed with sodium potassium tartrate (5 g / L) to prepare an aqueous dispersion of silver nanoparticles, and a pseudo storage environment As a change, the mixture was heated at 50 ° C. for 3 days and then allowed to cool to room temperature (25 ° C.). Next, the steel substrate that had been subjected to the above pretreatment was immersed in a heated dispersion for 10 minutes at room temperature (25 ° C.), taken out, washed with running water for 1 minute, and then dried. When the immersion-treated steel surface was visually observed, no change was visually confirmed on the steel surface of the base material (see FIG. 5).
  • the pretreated copper base material is taken out by being immersed in a heated silver nanoparticle aqueous dispersion (0.5 g / L) at room temperature (25 ° C.) for 10 minutes and washed with running water for 2 minutes. And then dried.
  • a heated silver nanoparticle aqueous dispersion 0.5 g / L
  • running water 20 minutes
  • the surface of the base material subjected to the immersion treatment was visually observed, many black spots due to corrosion were confirmed on the copper surface of the substrate.
  • the metal nanoparticle aqueous dispersions of the present invention in Examples 2, 3 and 4 were obtained even though the silver nanoparticle aqueous dispersion was heat-treated in order to simulate the temporal change of the storage environment. In addition, no black spots were formed on the surface of the metal substrate immersed in the dispersion, and appearance defects due to corrosion or coloring did not occur.
  • Comparative Examples 3 and 4 are examples in which the compound (Z) used in the present invention was not used. However, spotted coloring due to corrosion occurred on the surface of the metal substrate immersed in the dispersion, resulting in poor appearance. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)

Abstract

The present invention provides a metal nanoparticle aqueous dispersion which is characterized by containing: a composite body of a metal nanoparticle (X) and an organic compound (Y); and one or more compounds (Z) selected from the group consisting of lactic acid, glycolic acid, malonic acid, succinic acid, fumaric acid, maleic acid, malic acid, tartaric acid, oxalic acid, citric acid and alkali metal salts of these carboxylic acids. This metal nanoparticle aqueous dispersion is able to be suppressed in deterioration over time and in suspension, aggregation and precipitation due to inclusion of a small amount of impurities. In addition, this metal nanoparticle aqueous dispersion is free from the occurrence of characteristics deterioration due to corrosion and appearance defects of a base due to coloring even if a metal having a higher ionization tendency than the metal that constitutes the metal nanoparticles is present on the base surface to which the metal nanoparticles are applied, and is thus able to be stabilized.

Description

金属ナノ粒子水分散液Metal nanoparticle aqueous dispersion
 本発明は、金属皮膜形成や各種触媒として利用でき、安定性に優れ、耐腐食性を有する金属ナノ粒子水分散液に関する。 The present invention relates to an aqueous dispersion of metal nanoparticles that can be used as a metal film or as various catalysts, has excellent stability, and has corrosion resistance.
 金属は、ナノスケールサイズの粒子とすることで、高活性で大きな比表面積を有する材料として注目されており、低温での融着現象を利用した配線、導電層形成、抗菌材料、各種触媒用途への応用が検討されている。特に工業的には、金属ナノ粒子を液中に分散させた状態で提供することにより、印刷、塗布、吸着等の方法で、目的とする各種基材上に金属皮膜や触媒金属を付与できることが大きなメリットである。 Metals are attracting attention as materials with high specific activity and large specific surface area by making them nano-sized particles, and they are used for wiring, conductive layer formation, antibacterial materials, and various catalyst applications utilizing fusion phenomena at low temperatures. Application of is being studied. In particular, industrially, by providing metal nanoparticles dispersed in a liquid, a metal film or a catalytic metal can be imparted on various target substrates by methods such as printing, coating, and adsorption. This is a great merit.
 金属ナノ粒子を分散させる溶媒としては、有機溶媒、水性溶媒の両方が検討されており、金属を基材上に付与するプロセスによって選択が可能であるが、環境への負荷低減の観点から、水性溶媒を用いることが好ましい。 As the solvent for dispersing the metal nanoparticles, both an organic solvent and an aqueous solvent have been studied and can be selected depending on the process of applying the metal onto the substrate, but from the viewpoint of reducing environmental burden, It is preferable to use a solvent.
 印刷、塗布、吸着等の方法で、各種基材上に金属皮膜を形成する、あるいは、触媒金属を付与するために用いる金属ナノ粒子は、水性の分散媒中で、長期間安定に均一な分散状態を保つことが要求され、かつ、基材上に付与された後にも金属ナノ粒子表面が活性であることが、配線、導電層形成、抗菌、触媒のいずれの用途にも要求される。このため、金属ナノ粒子の表面に吸着させる分散剤として、脱離しにくく高い分散安定性を付与できる高分子分散剤を使用し、かつその使用量をできるだけ低減することにより、液中の分散安定性と表面活性の両立が図られている(例えば、特許文献1参照。)。また、この高分子分散剤を使用した金属ナノ粒子は、無電解めっきの触媒としても使用することができる(例えば、特許文献2参照。)。 Metal nanoparticles used to form metal films on various substrates or to apply catalytic metals by printing, coating, adsorption, etc. are dispersed uniformly and stably in an aqueous dispersion medium for a long period of time. It is required to maintain the state, and that the surface of the metal nanoparticle is active even after being applied on the substrate, is required for any of wiring, conductive layer formation, antibacterial, and catalyst applications. For this reason, as a dispersant to be adsorbed on the surface of the metal nanoparticles, a polymer dispersant that is difficult to desorb and can impart high dispersion stability is used, and by reducing the amount used as much as possible, the dispersion stability in the liquid And surface activity are compatible (for example, refer to Patent Document 1). Moreover, the metal nanoparticle using this polymer dispersing agent can be used also as a catalyst of electroless plating (for example, refer patent document 2).
 しかしながら、このように分散安定性と高表面活性を確保した金属ナノ粒子の水性分散液も、経時的な保存環境変化や、使用時の少量の不純物混入によって不安定化し、不可逆な懸濁、凝集、沈殿が発生してしまうという問題の起こることがあった。また、金属ナノ粒子を基材上に付与する際、該基材に、金属ナノ粒子を構成する金属よりもイオン化傾向の高い金属が存在した場合、その接触部分において、異種金属接触による腐食が起こり、腐食による性能低下や基材の外観不良を生じるという懸念があった。 However, aqueous dispersions of metal nanoparticles that ensure dispersion stability and high surface activity in this way are also destabilized due to changes in the storage environment over time and small amounts of impurities during use, irreversible suspension and aggregation There was a problem that precipitation occurred. In addition, when a metal nanoparticle is applied on a base material, if a metal having a higher ionization tendency than the metal constituting the metal nanoparticle exists on the base material, corrosion due to contact with a different metal occurs at the contact portion. There was a concern that the performance deteriorated due to corrosion and the appearance of the base material was poor.
特許第4697356号公報Japanese Patent No. 4697356 特許第5648232号公報Japanese Patent No. 5648232
 本発明が解決しようとする課題は、経時劣化や少量の不純物の混入による懸濁、凝集、沈殿を抑制し、金属ナノ粒子を付与する基材表面に、該金属ナノ粒子を構成する金属よりもイオン化傾向の高い金属が存在した場合でも、腐食による特性低下や着色による基材の外観不良を生じない、安定化された金属ナノ粒子水分散液を提供することである。 The problem to be solved by the present invention is to suppress suspension, aggregation, and precipitation due to deterioration with time and mixing of a small amount of impurities, and the surface of the base material to which the metal nanoparticles are applied is more than the metal constituting the metal nanoparticles. To provide a stabilized aqueous dispersion of metal nanoparticles that does not cause deterioration in properties due to corrosion or poor appearance of a substrate due to coloring even in the presence of a metal having a high ionization tendency.
 本発明者等は、上記の課題を解決すべく鋭意研究した結果、金属ナノ粒子の水性分散液に、特定のカルボン酸又はそのアルカリ金属塩を添加した金属ナノ粒子水分散液を用いることで上記の課題を解決できることを見出し、本発明を完成させた。 As a result of diligent research to solve the above-mentioned problems, the present inventors have used the above-described aqueous dispersion of metal nanoparticles to which an aqueous dispersion of metal nanoparticles is added a specific carboxylic acid or an alkali metal salt thereof. As a result, the present invention has been completed.
 すなわち、本発明は、金属ナノ粒子(X)及び有機化合物(Y)の複合体と、乳酸、グリコール酸、マロン酸、コハク酸、フマル酸、マレイン酸、リンゴ酸、酒石酸、シュウ酸、クエン酸及びこれらのカルボン酸のアルカリ金属塩からなる群から選ばれる1種以上の化合物(Z)とを含有することを特徴とする金属ナノ粒子水分散液を提供するものである。 That is, the present invention relates to a composite of metal nanoparticles (X) and an organic compound (Y), lactic acid, glycolic acid, malonic acid, succinic acid, fumaric acid, maleic acid, malic acid, tartaric acid, oxalic acid, citric acid. And one or more kinds of compounds (Z) selected from the group consisting of alkali metal salts of these carboxylic acids.
 本発明の金属ナノ粒子水分散液は、経時的な保存環境変化や少量不純物の混入による懸濁、凝集、沈殿を抑制し、金属ナノ粒子を付与する基材表面に、該金属ナノ粒子を構成する金属よりもイオン化傾向の高い金属が存在した場合でも、腐食による特性低下や、着色による外観不良を生じないため、配線、導電材料、抗菌材料、各種触媒として使用できる。 The metal nanoparticle aqueous dispersion of the present invention suppresses suspension, aggregation, and precipitation due to changes in the storage environment over time and the incorporation of a small amount of impurities, and the metal nanoparticles are formed on the surface of the base material to which the metal nanoparticles are applied. Even when a metal having a higher ionization tendency than a metal to be present does not cause deterioration in characteristics due to corrosion or appearance defects due to coloring, it can be used as a wiring, a conductive material, an antibacterial material, and various catalysts.
実施例1の斑点状腐食が生じていないことを示す目視観察時の写真である。It is the photograph at the time of visual observation which shows that the spotted corrosion of Example 1 has not arisen. 実施例1の平坦な銅表面に銀粒子が離散的に付着していることを示す走査型電子顕微鏡(SEM)での観察写真である。It is an observation photograph with a scanning electron microscope (SEM) which shows that the silver particle has discretely adhered to the flat copper surface of Example 1. FIG. 比較例2の多数の斑点状着色部が生じていることを示す目視観察時の写真である。It is the photograph at the time of visual observation which shows that many spotted colored parts of the comparative example 2 have arisen. 比較例2の斑点状着色部の、実施例1と異なり銅表面が侵食されて微細な凹凸が形成されていることを示す走査型電子顕微鏡(SEM)での観察写真である。It is an observation photograph with a scanning electron microscope (SEM) which shows that the copper surface was eroded and fine unevenness was formed unlike the example 1 of the spotted colored part of comparative example 2. 実施例4の斑点状腐食が生じていないことを示す目視観察時の写真である。It is the photograph at the time of visual observation which shows that the spotted corrosion of Example 4 has not arisen. 実施例4の鋼板表面にはその製造過程で生じた物理的な凹凸以外は無いことを示す走査型電子顕微鏡(SEM)での観察写真である。It is an observation photograph with a scanning electron microscope (SEM) which shows that there is no other than the physical unevenness which arose in the manufacture process in the steel plate surface of Example 4. FIG. 比較例4の多数の斑点状着色部が生じていることを示す目視観察時の写真である。It is the photograph at the time of visual observation which shows that many spotted colored parts of the comparative example 4 have arisen. 比較例4の斑点状着色部の、実施例4と異なり鋼板表面が侵食されて微細な凹凸が形成されていることを示す走査型電子顕微鏡(SEM)での観察写真である。It is the observation photograph in a scanning electron microscope (SEM) which shows that the uneven | corrugated colored part of the comparative example 4 eroded the steel plate surface unlike Example 4, and the fine unevenness | corrugation was formed.
 本発明の金属ナノ粒子水分散液は、金属ナノ粒子(X)及び有機化合物(Y)の複合体と、乳酸、グリコール酸、マロン酸、コハク酸、フマル酸、マレイン酸、リンゴ酸、酒石酸、シュウ酸、クエン酸及びこれらのカルボン酸のアルカリ金属塩からなる群から選ばれる1種以上の化合物(Z)とを含有するものである。 The aqueous dispersion of metal nanoparticles of the present invention comprises a composite of metal nanoparticles (X) and an organic compound (Y), lactic acid, glycolic acid, malonic acid, succinic acid, fumaric acid, maleic acid, malic acid, tartaric acid, It contains at least one compound (Z) selected from the group consisting of oxalic acid, citric acid and alkali metal salts of these carboxylic acids.
 前記金属ナノ粒子(X)を構成する金属としては、例えば、銀、銅、パラジウムの単体、もしくはこれらの合金等が挙げられる。また、前記金属ナノ粒子(X)としては、銀コア銅シェル粒子、銅シェル銀コア粒子、銀を一部パラジウムで置換した粒子、銅を一部パラジウムで置換した粒子等も挙げられる。これらの金属又は合金は、1種で用いることも2種以上併用することもできる。これらの金属又は合金は、目的に応じて、適宜選択すればよいが、配線、導電性層を形成する目的で用いる場合には、銀、銅が好ましく、触媒機能の観点からは、銀、銅、パラジウムが好ましい。また、コストの観点からは、銀、銅、これらの合金、一部置換体、又はこれらの混合物が好ましい。 Examples of the metal constituting the metal nanoparticles (X) include silver, copper, palladium alone, and alloys thereof. Examples of the metal nanoparticles (X) include silver core copper shell particles, copper shell silver core particles, particles in which silver is partially substituted with palladium, and particles in which copper is partially substituted with palladium. These metals or alloys can be used alone or in combination of two or more. These metals or alloys may be appropriately selected according to the purpose. However, when used for the purpose of forming a wiring or a conductive layer, silver and copper are preferable. From the viewpoint of the catalytic function, silver, copper Palladium is preferred. From the viewpoint of cost, silver, copper, alloys thereof, partially substituted products, or mixtures thereof are preferable.
 前記金属ナノ粒子(X)の形状は、水性媒体中での分散安定性を阻害しない限り、特に限定はなく、種々の形状のナノ粒子を目的に応じて、適宜選択できる。具体的には、球状、多面体状、板状、棒状、及び、これらの組み合わせた形状の粒子が挙げられる。前記金属ナノ粒子(X)としては、単一の形状のもの、もしくは複数の形状のものを混合して用いることができる。また、これらの形状の中でも、分散安定性の観点から、球状又は多面体状の粒子が好ましい。 The shape of the metal nanoparticles (X) is not particularly limited as long as the dispersion stability in an aqueous medium is not impaired, and various shapes of nanoparticles can be appropriately selected according to the purpose. Specific examples include spherical, polyhedral, plate-like, rod-like, and combinations of these particles. As said metal nanoparticle (X), the thing of a single shape or a thing of a some shape can be mixed and used. Among these shapes, spherical or polyhedral particles are preferable from the viewpoint of dispersion stability.
 前記金属ナノ粒子(X)を構成する金属は、水性の分散媒中で、長期間安定に均一な分散状態を保つために、金属ナノ粒子(X)の表面に、分散剤として有機化合物(Y)が吸着した金属ナノ粒子(X)及び有機化合物(Y)の複合体として用いる。前記有機化合物(Y)は、目的に応じて、適宜選択して用いればよいが、保存安定性の観点から、アニオン性官能基を有する化合物(Y1)が好ましい。 The metal constituting the metal nanoparticle (X) is an organic compound (Y) as a dispersant on the surface of the metal nanoparticle (X) in order to maintain a uniform dispersed state for a long period of time in an aqueous dispersion medium. ) Are adsorbed and used as a composite of the metal nanoparticles (X) and the organic compound (Y). The organic compound (Y) may be appropriately selected and used according to the purpose, but from the viewpoint of storage stability, the compound (Y1) having an anionic functional group is preferable.
 前記アニオン性官能基を有する化合物(Y1)は、分子中にアニオン性官能基を1種以上有する化合物である。また、分散安定性を阻害しない限り、分子中にアニオン性官能基の他にカチオン性官能基を有する化合物を用いてもよい。前記アニオン性官能基を有する化合物(Y1)は、1種で用いることも2種以上併用することもできる。 The compound having an anionic functional group (Y1) is a compound having at least one anionic functional group in the molecule. Further, a compound having a cationic functional group in addition to an anionic functional group in the molecule may be used as long as the dispersion stability is not inhibited. The compound (Y1) having an anionic functional group can be used alone or in combination of two or more.
 前記、アニオン性官能基を有する化合物(Y1)としては、水性分散媒中での長期安定性と、基材上に付与された後の金属ナノ粒子表面の活性保持を両立する観点から、カルボキシ基、リン酸基、亜リン酸基、スルホン酸基、スルフィン酸基及びスルフェン酸基からなる群から選ばれる1種以上のアニオン性官能基を有する(メタ)アクリル酸系単量体を含有する単量体混合物(I)の重合物(Y2)が、特に好ましい。 The compound (Y1) having an anionic functional group is a carboxy group from the viewpoint of achieving both long-term stability in an aqueous dispersion medium and maintaining the activity of the surface of the metal nanoparticles after being applied on the substrate. A monomer containing a (meth) acrylic acid monomer having one or more anionic functional groups selected from the group consisting of phosphoric acid group, phosphorous acid group, sulfonic acid group, sulfinic acid group and sulfenic acid group The polymer (Y2) of the monomer mixture (I) is particularly preferable.
 前記重合物(Y2)は、単独重合物であっても、共重合物であってもよい。また、共重合物である場合、ランダム重合であっても、ブロック重合であってもよい。 The polymer (Y2) may be a homopolymer or a copolymer. Moreover, when it is a copolymer, it may be random polymerization or block polymerization.
 前記重合物(Y2)は、カルボキシ基、リン酸基、亜リン酸基、スルホン酸基、スルフィン酸基、スルフェン酸基からなる群から選ばれる1種以上のアニオン性官能基を有するため、ヘテロ原子が有する非共有電子対を介して金属ナノ粒子(X)に吸着する機能を有すると同時に、金属ナノ粒子(X)表面に負の電荷を付与するので、粒子間の電荷反発によりコロイド粒子の凝集を防ぐことができ、水中で重合物(Y2)及び金属ナノ粒子(X)の複合体を安定的に分散できる。 Since the polymer (Y2) has one or more anionic functional groups selected from the group consisting of carboxy group, phosphoric acid group, phosphorous acid group, sulfonic acid group, sulfinic acid group and sulfenic acid group, Since it has a function of adsorbing to the metal nanoparticle (X) through the lone pair of atoms, and at the same time, a negative charge is imparted to the surface of the metal nanoparticle (X), the repulsion of the colloidal particles Aggregation can be prevented, and the composite of polymer (Y2) and metal nanoparticles (X) can be stably dispersed in water.
 前記重合物(Y2)は、金属ナノ粒子(X)への吸着と水分散液での分散安定性がより向上できることから、1分子中にアニオン性官能基を3つ以上有するものが好ましい。 The polymer (Y2) preferably has three or more anionic functional groups in one molecule because the adsorption to the metal nanoparticles (X) and the dispersion stability in the aqueous dispersion can be further improved.
 また、前記重合物(Y2)の重量平均分子量は、金属ナノ粒子(X)への吸着と水分散液での分散安定性がより向上できることから、3,000~20,000の範囲が好ましく、4,000~8,000の範囲がより好ましい。 In addition, the weight average molecular weight of the polymer (Y2) is preferably in the range of 3,000 to 20,000 because the adsorption to the metal nanoparticles (X) and the dispersion stability in the aqueous dispersion can be further improved. A range of 4,000 to 8,000 is more preferable.
 また、前記重合物(Y2)中に、ポリエチレングリコール鎖等のポリオキシアルキレン鎖を導入すると、電荷による斥力発現と同時に、立体反発効果によるコロイド保護作用を利用することができ、より分散安定性が向上するため好ましい。 In addition, when a polyoxyalkylene chain such as a polyethylene glycol chain is introduced into the polymer (Y2), it is possible to utilize a colloid protective effect due to a steric repulsion effect simultaneously with the expression of repulsive force due to electric charge, and more dispersion stability. It is preferable because it improves.
 例えば、前記単量体混合物(I)にポリエチレングリコール鎖を有する(メタ)アクリル酸系単量体と、前記アニオン性基を有する(メタ)アクリル酸系単量体等とを共重合させることで、ポリエチレングリコール鎖を有する前記重合物(Y2)を容易に得ることができる。 For example, the monomer mixture (I) is copolymerized with a (meth) acrylic acid monomer having a polyethylene glycol chain and a (meth) acrylic acid monomer having an anionic group. The polymer (Y2) having a polyethylene glycol chain can be easily obtained.
 特にエチレングリコールの平均ユニット数が20以上のポリエチレングリコール鎖を有する(メタ)アクリル酸系単量体を用いて重合した前記重合物(Y2)は、貴金属、特に銀、銅のナノ粒子を安定化する能力が高く、好適な保護剤となり好ましい。このようなアニオン性官能基とポリエチレングリコール鎖とを有する重合物の合成は、例えば、特許第4697356号公報、特開2010-209421号公報等に記載の方法により、容易に行うことができる。 In particular, the polymer (Y2) polymerized using a (meth) acrylic acid monomer having a polyethylene glycol chain with an average unit number of ethylene glycol of 20 or more stabilizes nanoparticles of noble metals, particularly silver and copper. This is preferable because it is a suitable protective agent. Synthesis of such a polymer having an anionic functional group and a polyethylene glycol chain can be easily carried out by the methods described in, for example, Japanese Patent No. 4697356, Japanese Patent Application Laid-Open No. 2010-209421, and the like.
 前記のエチレングリコールの平均ユニット数が20以上のポリエチレングリコール鎖を有する(メタ)アクリル酸系単量体の重量平均分子量としては、1,000~2,000の範囲が好ましい。重量平均分子量がこの範囲であると、金属ナノ粒子(X)との複合体の水分散性がより良好となる。 The weight average molecular weight of the (meth) acrylic acid monomer having a polyethylene glycol chain having an average unit number of ethylene glycol of 20 or more is preferably in the range of 1,000 to 2,000. When the weight average molecular weight is within this range, the water dispersibility of the composite with the metal nanoparticles (X) becomes better.
 リン酸基とポリエチレングリコール鎖とを有する重合物(Y2)のより具体的な合成方法としては、例えば、市販されている2-メタクリロイルオキシホスフェート(例えば、共栄社化学株式会社製「ライトエステルP-1M」)と、市販のポリエチレングリコール鎖を有するメタクリル酸エステルモノマー(例えば、日油株式会社製「ブレンマーPME-1000」)を重合開始剤(例えば、油溶性アゾ重合開始剤「V-59」)を用いて共重合する方法が挙げられる。 As a more specific method for synthesizing the polymer (Y2) having a phosphate group and a polyethylene glycol chain, for example, commercially available 2-methacryloyloxyphosphate (for example, “Light Ester P-1M” manufactured by Kyoeisha Chemical Co., Ltd.). )) And a commercially available methacrylic acid ester monomer having a polyethylene glycol chain (for example, “Blenmer PME-1000” manufactured by NOF Corporation) as a polymerization initiator (for example, oil-soluble azo polymerization initiator “V-59”). And a method of copolymerization using these.
 この際、リン酸基を有する(メタ)アクリル酸エステルモノマーの比率を、単量体混合物(I)中の30質量%未満とすると、金属ナノ粒子(X)の保護に関与しないポリエチレングリコール鎖を有する(メタ)アクリル酸系単量体の単独重合体等の副生成物の発生を抑制し、得られる重合物(Y2)による分散安定性が向上する。 At this time, if the ratio of the (meth) acrylic acid ester monomer having a phosphate group is less than 30% by mass in the monomer mixture (I), a polyethylene glycol chain that does not participate in the protection of the metal nanoparticles (X) Generation | occurrence | production of by-products, such as a homopolymer of the (meth) acrylic acid-type monomer which has, is suppressed, and the dispersion stability by the polymer (Y2) obtained improves.
 前記単量体混合物(I)は、アニオン性基を有する(メタ)アクリル酸系単量体、ポリエチレングリコール鎖を有する(メタ)アクリル酸系単量体以外の第3の重合性モノマーを含んでいてもよい。この際、第3の重合性モノマーが疎水性モノマーである場合、その使用量は、良好な水分散性を維持できることから、ポリエチレングリコール鎖を有する(メタ)アクリル酸系単量体100質量部に対して20質量部以下が好ましく、10質量部以下がより好ましい。なお、第3の重合性モノマーが疎水性モノマーでない場合はこの範囲に限定されない。 The monomer mixture (I) contains a third polymerizable monomer other than the (meth) acrylic acid monomer having an anionic group and the (meth) acrylic acid monomer having a polyethylene glycol chain. May be. At this time, when the third polymerizable monomer is a hydrophobic monomer, the amount used thereof can maintain good water dispersibility, so that the amount of the (meth) acrylic acid monomer having a polyethylene glycol chain is 100 parts by mass. The amount is preferably 20 parts by mass or less, and more preferably 10 parts by mass or less. In addition, when the 3rd polymeric monomer is not a hydrophobic monomer, it is not limited to this range.
 前述のように、重合物(Y2)の重量平均分子量は3,000~20,000の範囲であることが好ましいが、ポリエチレングリコール鎖を有する(メタ)アクリル酸系単量体を併用した場合、重合反応により得られる重合物(Y2)は、分子量分布を有することになる。重量平均分子量の小さいもの程、ポリエチレングリコール鎖を有する(メタ)アクリル酸系単量体由来構造を含まないものであることから、金属ナノ粒子(X)との複合体を水性媒体に分散する場合の分散安定性には寄与しないことになるので、この観点からは、重合物(Y2)の重量平均分子量は4,000以上であることがより好ましくなる。逆に重量平均分子量が大きくなると、金属ナノ粒子(X)との複合体の粗大化が起こりやすく、触媒液中に沈殿を生じやすくなる観点から、重合物(Y2)の重量平均分子量は8,000以下であることがより好ましい。 As described above, the weight average molecular weight of the polymer (Y2) is preferably in the range of 3,000 to 20,000, but when a (meth) acrylic acid monomer having a polyethylene glycol chain is used in combination, The polymer (Y2) obtained by the polymerization reaction has a molecular weight distribution. When the composite with the metal nanoparticles (X) is dispersed in an aqueous medium, the smaller the weight average molecular weight, the less the structure derived from a (meth) acrylic acid monomer having a polyethylene glycol chain. From this point of view, the weight average molecular weight of the polymer (Y2) is more preferably 4,000 or more. Conversely, when the weight average molecular weight is increased, the complex with the metal nanoparticle (X) is likely to be coarsened, and the weight average molecular weight of the polymer (Y2) is 8, from the viewpoint of easily causing precipitation in the catalyst solution. More preferably, it is 000 or less.
 前記重合物(Y2)の重量平均分子量を上記の範囲内に調整するためには、公知文献、例えば、特開2010-209421号公報等に記載の連鎖移動剤を用いてもよく、連鎖移動剤を使用せずに重合条件によって制御してもよい。 In order to adjust the weight average molecular weight of the polymer (Y2) within the above range, a chain transfer agent described in known literature, for example, JP 2010-209421 A may be used. You may control by polymerization conditions, without using.
 本発明の金属ナノ粒子水分散液に用いる複合体としては、前記の重合物(Y2)をコロイド保護剤として製造した、銀、銅、パラジウム等の金属ナノ粒子(X)との複合体を用いることができる。 As a composite used for the aqueous dispersion of metal nanoparticles of the present invention, a composite with metal nanoparticles (X) such as silver, copper, palladium, etc., produced using the polymer (Y2) as a colloid protective agent is used. be able to.
 また、本発明の金属ナノ粒子水分散液に用いる複合体の調製方法としては、例えば、前記重合物(Y2)を水性媒体に溶解又は分散させた後、ここに、硝酸銀、酢酸銅、硝酸パラジウム等の金属化合物を添加し、必要に応じて錯化剤を添加し均一な分散体とした後、還元剤を混合することによって、前記金属化合物を還元し、還元された金属がナノサイズ粒子(ナノメートルオーダーの大きさを有する微粒子)となると同時に前記重合物(Y2)と複合した金属ナノ粒子(X)の水性分散体として得る方法が挙げられる。なお、錯化剤を用いる場合、還元剤と同時に混合してもよい。 Moreover, as a preparation method of the composite used for the metal nanoparticle aqueous dispersion of the present invention, for example, the polymer (Y2) is dissolved or dispersed in an aqueous medium, and then silver nitrate, copper acetate, palladium nitrate is added thereto. After adding a metal compound such as a complexing agent as necessary to obtain a uniform dispersion, the metal compound is reduced by mixing a reducing agent, and the reduced metal is nanosized particles ( And a method of obtaining an aqueous dispersion of metal nanoparticles (X) combined with the polymer (Y2) at the same time. In addition, when using a complexing agent, you may mix simultaneously with a reducing agent.
 本発明の金属ナノ粒子水分散液は、配線、導電層形成に有利な、低温での融着性、及び、触媒活性の観点から、前記金属ナノ粒子(X)の平均粒子径が0.5~100nmの範囲にある金属ナノ粒子(X)及び前記有機化合物(Y)の複合体が水性分散媒に分散されたものが好ましい。 In the aqueous dispersion of metal nanoparticles of the present invention, the average particle diameter of the metal nanoparticles (X) is 0.5, which is advantageous for the formation of wiring and conductive layers, from the viewpoint of low-temperature fusion properties and catalytic activity. It is preferable that a composite of metal nanoparticles (X) in the range of ˜100 nm and the organic compound (Y) is dispersed in an aqueous dispersion medium.
 なお、金属ナノ粒子(X)の平均粒子径は、透過型電子顕微鏡写真によって見積もることが可能で、その100個の平均値が0.5~100nmの範囲であるものは、例えば、前述の特許第4697356号公報、特開2010-209421号公報等に記載の方法によって容易に得ることができる。このようにして得られる金属ナノ粒子(X)は、前記重合物(Y2)で保護されて1個ずつが独立して存在し、水性分散媒中で安定に分散させることができる。 The average particle diameter of the metal nanoparticles (X) can be estimated by a transmission electron micrograph, and the average value of 100 particles in the range of 0.5 to 100 nm is, for example, the above-mentioned patent It can be easily obtained by the methods described in Japanese Patent No. 4697356, Japanese Patent Application Laid-Open No. 2010-209421, and the like. The metal nanoparticles (X) thus obtained are protected by the polymer (Y2) and exist individually one by one, and can be stably dispersed in an aqueous dispersion medium.
 前記金属ナノ粒子(X)の平均粒子径は、金属化合物の種類、コロイド保護剤となる前記有機化合物(Y)の分子量、化学構造及び使用量、錯化剤や還元剤の種類及び使用量、還元反応時における温度等によって容易に制御可能であり、これらについては、上記の特許文献等に記載の実施例を参照すればよい。 The average particle diameter of the metal nanoparticles (X) is the type of metal compound, the molecular weight of the organic compound (Y) to be a colloid protective agent, the chemical structure and the amount used, the type and amount of complexing agent and reducing agent, The temperature can be easily controlled by the temperature at the time of the reduction reaction. For these, the examples described in the above-mentioned patent documents and the like may be referred to.
 また、前記有機化合物(Y)と金属ナノ粒子(X)との複合体中の前記有機化合物(Y)の含有比率としては、1~30質量%の範囲が好ましく、2~20質量%の範囲がより好ましい。すなわち、前記複合体は、その質量の大部分を金属ナノ粒子(X)が占めるものが、配線、導線層形成、各種触媒用途で使用する上で適している。 The content ratio of the organic compound (Y) in the complex of the organic compound (Y) and the metal nanoparticles (X) is preferably in the range of 1 to 30% by mass, and in the range of 2 to 20% by mass. Is more preferable. That is, in the composite, one in which the metal nanoparticles (X) occupy most of the mass is suitable for use in wiring, conducting wire layer formation, and various catalyst applications.
 特に、前記金属ナノ粒子(X)が前記重合体(X-2)で保護された複合体は、水性媒体、即ち水や水と相溶可能な有機溶剤との混合溶剤中において、0.01~70質量%程度の範囲で分散することが可能であり、不純物の混入が無い条件下で、室温(~25℃)において、数ヶ月程度は凝集することが無く、安定に保存できる。 Particularly, the composite in which the metal nanoparticles (X) are protected by the polymer (X-2) is 0.01% in an aqueous medium, that is, a mixed solvent of water or an organic solvent compatible with water. It can be dispersed in a range of about 70% by mass, and can be stably stored at room temperature (˜25 ° C.) without agglomeration at room temperature (˜25 ° C.) for a few months under conditions where no impurities are mixed.
 本発明の金属ナノ粒子水分散液は、前記金属ナノ粒子(X)及び前記有機化合物(Y)の複合体の他に、乳酸、グリコール酸、マロン酸、コハク酸、フマル酸、マレイン酸、リンゴ酸、酒石酸、シュウ酸、クエン酸及びこれらのカルボン酸のアルカリ金属塩からなる群から選ばれる1種以上の化合物(Z)を必須成分とする。 In addition to the composite of the metal nanoparticles (X) and the organic compound (Y), the aqueous dispersion of metal nanoparticles of the present invention includes lactic acid, glycolic acid, malonic acid, succinic acid, fumaric acid, maleic acid, apple One or more compounds (Z) selected from the group consisting of acid, tartaric acid, oxalic acid, citric acid and alkali metal salts of these carboxylic acids are used as essential components.
 前記化合物(Z)を、本発明の金属ナノ粒子水分散液に添加することにより、経時的な保存環境変化や少量の不純物の混入による不可逆な懸濁、凝集、沈殿を抑制し、前記金属ナノ粒子(X)を付着させた基材表面に、前記金属ナノ粒子を構成する金属よりもイオン化傾向の高い金属が存在した場合でも、腐食による特性低下や着色による外観不良を生じないという効果を発揮する。 By adding the compound (Z) to the aqueous dispersion of metal nanoparticles of the present invention, irreversible suspension, aggregation, and precipitation due to changes in storage environment over time and small amounts of impurities are suppressed, and the metal nanoparticle is suppressed. Even when a metal having a higher ionization tendency than the metal constituting the metal nanoparticles is present on the surface of the base material to which the particles (X) are adhered, it exhibits the effect of preventing deterioration in properties due to corrosion and appearance defects due to coloring. To do.
 前記化合物(Z)の使用量としては、前記複合体1質量部に対して、1~100質量部の範囲が好ましく、5~30質量部の範囲がより好ましい。なお、前記化合物(Z)は、前記金属ナノ粒子(X)及び前記有機化合物(Y)との複合体の水分散液に、予め加えておいてもよく、前記複合体の水分散液を使用する前に加えてもよい。 The amount of the compound (Z) used is preferably in the range of 1 to 100 parts by mass and more preferably in the range of 5 to 30 parts by mass with respect to 1 part by mass of the complex. The compound (Z) may be added in advance to the aqueous dispersion of the complex of the metal nanoparticles (X) and the organic compound (Y), and the aqueous dispersion of the complex is used. May be added before
 本発明の金属ナノ粒子水分散液は、そのまま、配線、導電層形成用のインク又は塗工液として、また無電解めっきの触媒液として使用できるが、余剰の錯化剤、還元剤、又は原料として用いた金属化合物に含まれた対イオン等を限外ろ過法、沈殿法、遠心分離、減圧蒸留、減圧乾燥等の各種精製法を単独又は2種以上を組み合わせた精製工程を経たものや、さらに精製工程後に濃度(不揮発分)や水性媒体を変更して新たに分散体として調製し直したものを使用してもよい。電子回路形成など、実装用途の目的で用いる場合には、前記の精製工程を経た水性媒体を用いることが好ましい。なお、前記精製工程は、前記複合体の水分散液を調製した後に行い、その後に前記化合物(Z)を添加することが好ましい。 The metal nanoparticle aqueous dispersion of the present invention can be used as it is as a wiring, conductive layer forming ink or coating solution, or as a catalyst solution for electroless plating, but an excess complexing agent, reducing agent, or raw material. As a counter ion contained in the metal compound used as the ultrafiltration method, precipitation method, centrifugal separation, vacuum distillation, vacuum purification, etc. various purification methods such as single or in combination of two or more, Furthermore, after refining process, the concentration (non-volatile content) and aqueous medium may be changed and newly prepared as a dispersion may be used. When using for the purpose of mounting applications such as electronic circuit formation, it is preferable to use an aqueous medium that has undergone the purification step. In addition, it is preferable that the said refinement | purification process is performed after preparing the aqueous dispersion of the said composite, and adds the said compound (Z) after that.
 本発明の金属ナノ粒子水分散液をインク、塗工液として、配線、導電層形成用に用いる場合には、水性分散体中の前記複合体の濃度(不揮発分濃度)は、0.5~40質量%の範囲が好ましく、1~30質量%の範囲がより好ましい。 When the metal nanoparticle aqueous dispersion of the present invention is used as an ink or a coating liquid for forming a wiring or a conductive layer, the concentration (nonvolatile content) of the composite in the aqueous dispersion is 0.5 to A range of 40% by mass is preferable, and a range of 1 to 30% by mass is more preferable.
 本発明の金属ナノ粒子水分散液をインク、塗工液として、配線、導電層形成を行う場合、前記金属ナノ粒子(X)及び有機化合物(Y)の複合体を基材上に付与する方法としては、特に制限は無く、公知慣用の種々の印刷・塗工手法を、使用する基材の形状、サイズ、剛柔の度合いなどによって適宜選択すればよい。具体的には、グラビア法、オフセット法、グラビアオフセット法、凸版法、凸版反転法、フレキソ法、パッド法、スクリーン法、マイクロコンタクト法、リバース法、エアドクターコーター法、ブレードコーター法、エアナイフコーター法、スクイズコーター法、含浸コーター法、トランスファーロールコーター法、キスコーター法、キャストコーター法、スプレイコーター法、インクジェット法、ダイ法、スピンコーター法、バーコーター法等が挙げられる。 A method of applying a composite of the metal nanoparticles (X) and the organic compound (Y) on a substrate when wiring and conductive layer formation are performed using the metal nanoparticle aqueous dispersion of the present invention as an ink and a coating liquid. There is no particular limitation, and various known and commonly used printing / coating techniques may be appropriately selected depending on the shape, size, degree of flexibility, and the like of the substrate to be used. Specifically, gravure method, offset method, gravure offset method, relief printing method, relief printing inversion method, flexo method, pad method, screen method, microcontact method, reverse method, air doctor coater method, blade coater method, air knife coater method Squeeze coater method, impregnation coater method, transfer roll coater method, kiss coater method, cast coater method, spray coater method, ink jet method, die method, spin coater method, bar coater method and the like.
 前記複合体を基材上に印刷、もしくは塗工して、基材上に前記複合体を付与して配線、導電層形成を行う場合、印刷、もしくは塗工した基材を乾燥、焼成することによって、直接、配線、導電層形成を行ってもよいし、さらに無電解、もしくは電解めっき処理を行ってもよい。 When the composite is printed or coated on a substrate and the composite is applied on the substrate to form a wiring or conductive layer, the printed or coated substrate is dried and fired. In this case, the wiring and the conductive layer may be directly formed, or electroless or electrolytic plating may be performed.
 また、本発明の金属ナノ粒子水分散液は、浸漬処理による通常のめっき処理工程で用いる無電解めっき用触媒液としても使用可能である。本発明の金属ナノ粒子水分散液を無電解めっき用触媒として用いる場合には、被めっき物への吸着量を確保し、かつ、めっき皮膜の被めっき物との密着性を良好にできることから、金属ナノ粒子水分散液中の前記複合体の濃度(不揮発分濃度)は、0.05~5g/Lの範囲が好ましく、経済性を考慮すると、0.1~2g/Lの範囲がより好ましい。 The metal nanoparticle aqueous dispersion of the present invention can also be used as a catalyst solution for electroless plating used in a normal plating treatment step by immersion treatment. When the metal nanoparticle aqueous dispersion of the present invention is used as a catalyst for electroless plating, the amount of adsorption to the object to be plated can be secured, and the adhesion of the plating film to the object to be plated can be improved. The concentration of the complex (nonvolatile content concentration) in the metal nanoparticle aqueous dispersion is preferably in the range of 0.05 to 5 g / L, and more preferably in the range of 0.1 to 2 g / L in consideration of economy. .
 上記の方法により、その表面に本発明の金属ナノ粒子水分散液中の前記複合体を付着させた被めっき物は、公知の無電解めっき処理を施すことにより、その表面に金属皮膜を形成することができる。 By the above method, the object to be plated with the composite in the metal nanoparticle aqueous dispersion of the present invention attached to the surface thereof is subjected to a known electroless plating treatment to form a metal film on the surface. be able to.
 本発明の金属ナノ粒子水分散液に用いられる水性媒体としては、水単独、水と相溶可能な有機溶剤との混合溶媒が挙げられる。前記有機溶媒としては、複合体の分散安定性を損なわず、被めっき物が不要な損傷を受けないものであれば、特に制限無く選択することができる。前記有機溶媒の具体例としては、メタノール、エタノール、イソプロパノール、アセトン等が挙げられる。これらの有機溶媒は、1種で用いることも2種以上併用することもできる。 Examples of the aqueous medium used in the metal nanoparticle aqueous dispersion of the present invention include water alone and a mixed solvent of water and an organic solvent compatible with water. The organic solvent can be selected without particular limitation as long as it does not impair the dispersion stability of the composite and does not damage the object to be plated. Specific examples of the organic solvent include methanol, ethanol, isopropanol, acetone and the like. These organic solvents can be used alone or in combination of two or more.
 前記水性媒体において、前記有機溶媒の混合割合は、前記複合体の分散安定性の観点から、50質量%以下が好ましく、めっき工程での利便性の観点から、30質量%以下がより好ましい。 In the aqueous medium, the mixing ratio of the organic solvent is preferably 50% by mass or less from the viewpoint of dispersion stability of the composite, and more preferably 30% by mass or less from the viewpoint of convenience in the plating step.
 本発明の金属ナノ粒子水分散液を用いて、前記金属ナノ粒子(X)及び前記有機化合物(Y)の複合体を付与する基材としては、特に限定されず、例えば、素材としては、ガラス繊維強化エポキシ、エポキシ系絶縁材、ポリイミド、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート、液晶ポリマー(LCP)、シクロオレフィンポリマー(COP)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルフィド(PPS)等のプラスチック、ガラス、セラミック、金属酸化物、金属、紙、合成又は天然繊維などの材質を1種又は複数種を組み合わせてなるものであり、その形状としては、板状、フィルム状、布状、繊維状、チューブ状等のいずれであってもよい。 The base material to which the composite of the metal nanoparticles (X) and the organic compound (Y) is applied using the metal nanoparticle aqueous dispersion of the present invention is not particularly limited. Fiber reinforced epoxy, epoxy insulation, polyimide, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate, liquid crystal polymer (LCP), cycloolefin polymer (COP), polyetheretherketone (PEEK), polyphenylene sulfide ( PPS) and other plastics, glass, ceramics, metal oxides, metals, paper, synthetic or natural fibers, etc. Any of cloth shape, fiber shape, tube shape, etc. may be sufficient.
 本発明の金属ナノ粒子水分散液は、印刷、塗工、浸漬等の簡便な方法で、基材上に、金属ナノ粒子と有機化合物の複合体を付与することで、配線、導電層等を形成でき、また、無電解めっき用の触媒液として、好適に使用可能である。 The metal nanoparticle aqueous dispersion of the present invention provides a composite of metal nanoparticles and an organic compound on a substrate by a simple method such as printing, coating, or dipping. It can be formed and can be suitably used as a catalyst solution for electroless plating.
 また、本発明の金属ナノ粒子水分散液は、前記金属ナノ粒子(X)及び前記有機化合物(Y)の複合体を基材に付与する際、金属基材表面の腐食による性能低下、外見不良を抑制できる。したがって、金属基板、もしくは、基材上に配線、導電層等の金属を有する基材を用いる場合に、特に優れた効果を発揮する。 In addition, when the metal nanoparticle aqueous dispersion of the present invention imparts the composite of the metal nanoparticles (X) and the organic compound (Y) to the base material, the performance deteriorates due to corrosion of the metal base surface, and the appearance is poor. Can be suppressed. Therefore, a particularly excellent effect is exhibited when using a metal substrate or a substrate having a metal such as a wiring or a conductive layer on the substrate.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
[試料の分析]
 試料の分析は以下の装置を用いて実施した。透過型電子顕微鏡(TEM)観察は、日本電子株式会社製「JEM-1400」で行った(調製例1)。走査型電子顕微鏡(SEM)観察は、日本電子株式会社製「JSM-7800F」(実施例1の図2及び比較例2の図4)及び株式会社キーエンス製「VE9800」(実施例4の図6及び比較例4の図8)で行った。動的光散乱法による平均粒子径測定は、大塚電子株式会社製「FPAR-1000」で行った(調製例1)。
[Sample analysis]
Sample analysis was performed using the following apparatus. Observation with a transmission electron microscope (TEM) was performed with “JEM-1400” manufactured by JEOL Ltd. (Preparation Example 1). Scanning electron microscope (SEM) observations were made with “JSM-7800F” manufactured by JEOL Ltd. (FIG. 2 of Example 1 and FIG. 4 of Comparative Example 2) and “VE9800” manufactured by Keyence Corporation (FIG. 6 of Example 4). And in FIG. 8) of Comparative Example 4. The average particle size was measured by the dynamic light scattering method using “FPAR-1000” manufactured by Otsuka Electronics Co., Ltd. (Preparation Example 1).
(合成例1:アニオン性官能基を有する重合物(Y2-1)の合成)
 温度計、攪拌機及び還流冷却器を備えた四つ口フラスコに、メチルエチルケトン(以下、「MEK」と略記する。)32質量部及びエタノール32質量部を仕込んで、窒素気流下で攪拌しながら80℃に昇温した。次に、ホスホオキシエチルメタクリレート(共栄社化学株式会社製「ライトエステル P-1M」)20質量部、メトキシポリエチレングリコールメタクリレート(日油株式会社製「ブレンマー PME-1000」、分子量1,000)80質量部、3-メルカプトプロピオン酸メチル4.1質量部及びMEK80質量部の混合物と、重合開始剤(和光純薬株式会社「V-65」、2,2’-アゾビス(2,4-ジメチルバレロニトリル))0.5質量部及びMEK5質量部の混合物とをそれぞれ2時間かけて滴下した。滴下終了後、4時間ごとに重合開始剤(日油株式会社製「パーブチルO」)0.3質量部を2回添加し、80℃で12時間攪拌した。得られた樹脂溶液に水を加え転相乳化し、減圧脱溶剤した後、水を加えて濃度を調整することで、不揮発分76.8質量%の重合物(Y2-1)の水溶液が得られた。この重合物(Y2-1)は、メトキシカルボニルエチルチオ基、リン酸基及びポリエチレングリコール鎖を有するものであり、その重量平均分子量(ゲルパーミエーション・クロマトグラフィーにより測定されたポリスチレン換算値)は4,300、酸価は97.5mgKOH/gであった。
(Synthesis Example 1: Synthesis of Polymer (Y2-1) Having Anionic Functional Group)
A four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser was charged with 32 parts by mass of methyl ethyl ketone (hereinafter abbreviated as “MEK”) and 32 parts by mass of ethanol, and stirred at 80 ° C. under a nitrogen stream. The temperature was raised to. Next, 20 parts by mass of phosphooxyethyl methacrylate (Kyoeisha Chemical Co., Ltd. “Light Ester P-1M”), methoxypolyethylene glycol methacrylate (Nippon Co., Ltd. “Blenmer PME-1000”, molecular weight 1,000) 80 parts by mass , A mixture of 4.1 parts by weight of methyl 3-mercaptopropionate and 80 parts by weight of MEK and a polymerization initiator (Wako Pure Chemical Industries, Ltd. “V-65”, 2,2′-azobis (2,4-dimethylvaleronitrile) ) A mixture of 0.5 parts by mass and 5 parts by mass of MEK was added dropwise over 2 hours. After the completion of dropping, 0.3 parts by mass of a polymerization initiator (“Perbutyl O” manufactured by NOF Corporation) was added twice every 4 hours, and the mixture was stirred at 80 ° C. for 12 hours. Water was added to the obtained resin solution for phase inversion emulsification, and after desolvation under reduced pressure, water was added to adjust the concentration to obtain an aqueous solution of a polymer (Y2-1) having a nonvolatile content of 76.8% by mass. It was. This polymer (Y2-1) has a methoxycarbonylethylthio group, a phosphoric acid group and a polyethylene glycol chain, and its weight average molecular weight (polystyrene conversion value measured by gel permeation chromatography) is 4. 300, and the acid value was 97.5 mgKOH / g.
(調製例1:銀ナノ粒子水分散液の調製)
 N,N-ジエチルヒドロキシルアミンの85質量%水溶液463g(4.41mol)、合成例1で得られた重合物(Y2-1)の水溶液30g((Y2-1)として23g)及び水1,250gを混合し還元剤溶液を調製した。
(Preparation Example 1: Preparation of silver nanoparticle aqueous dispersion)
463 g (4.41 mol) of an 85% by mass aqueous solution of N, N-diethylhydroxylamine, 30 g of the aqueous solution of the polymer (Y2-1) obtained in Synthesis Example 1 (23 g as (Y2-1)), and 1,250 g of water Were mixed to prepare a reducing agent solution.
 また、合成例1で得られた重合物(Y2-1)の水溶液15g(重合物(Y2-1)として11.5g)を水333gに溶解し、これに硝酸銀500g(2.94mol)を水833gに溶解した溶液を加えて、よく攪拌した。この混合物に上記で得られた還元剤溶液を室温(25℃)で2時間かけて滴下した。得られた反応混合物をメンブレンフィルター(細孔径0.45マイクロメートル)で濾過し、濾液を中空糸型限外濾過モジュール(ダイセンメンブレンシステムズ社製「MOLSEPモジュールFB-02型」、分画分子量15万)中を循環させ、流出する濾液の量に対応する量の水を随時添加して精製した。濾液の電導度が100μS/cm以下になったことを確認した後、注水を中止して濃縮した。濃縮物を回収することで、不揮発分36.7質量%の銀ナノ粒子含有複合体の水分散液が得られた。動的光散乱法による複合体の平均粒子径は39nmであり、透過型電子顕微鏡(TEM)像からは10~40nmと見積もられた。 Further, 15 g of an aqueous solution of polymer (Y2-1) obtained in Synthesis Example 1 (11.5 g as polymer (Y2-1)) was dissolved in 333 g of water, and 500 g (2.94 mol) of silver nitrate was dissolved in water. A solution dissolved in 833 g was added and stirred well. To this mixture, the reducing agent solution obtained above was added dropwise at room temperature (25 ° C.) over 2 hours. The obtained reaction mixture was filtered through a membrane filter (pore size: 0.45 micrometer), and the filtrate was subjected to a hollow fiber type ultrafiltration module (“MOLSEP module FB-02” manufactured by Daisen Membrane Systems Co., Ltd., molecular weight cut off 150,000). ) It was circulated through and purified by adding water in an amount corresponding to the amount of filtrate flowing out as needed. After confirming that the electric conductivity of the filtrate was 100 μS / cm or less, water injection was stopped and the filtrate was concentrated. By collecting the concentrate, an aqueous dispersion of a silver nanoparticle-containing composite having a nonvolatile content of 36.7% by mass was obtained. The average particle size of the composite by the dynamic light scattering method was 39 nm, and was estimated to be 10 to 40 nm from a transmission electron microscope (TEM) image.
 次いで、上記で得られた不揮発分36.7質量%の銀ナノ粒子含有複合体の水分散液にイオン交換水を加え、水分散液中の銀ナノ粒子含有複合体の含有量が0.5g/Lになるように調整し、銀ナノ粒子水分散液を得た。 Next, ion-exchanged water is added to the aqueous dispersion of the silver nanoparticle-containing composite having a nonvolatile content of 36.7% by mass obtained above, and the content of the silver nanoparticle-containing composite in the aqueous dispersion is 0.5 g. / L to obtain a silver nanoparticle aqueous dispersion.
[銅基材の前処理]
 銅張エポキシ板をペルオキソ2硫酸ナトリウム水溶液(濃度100g/L)に2分間浸漬して取り出し、流水で2分間洗浄した。次いで、硫酸水溶液(濃硫酸100mL/L)に2分間浸漬して取り出し、流水で2分間洗浄することで、銅基材表面の前処理を行った。
[Pretreatment of copper substrate]
The copper clad epoxy plate was taken out by being immersed in an aqueous solution of sodium peroxodisulfate (concentration 100 g / L) for 2 minutes and washed with running water for 2 minutes. Next, the copper substrate surface was pretreated by immersing it in a sulfuric acid aqueous solution (concentrated sulfuric acid 100 mL / L) for 2 minutes and washing it with running water for 2 minutes.
[鋼基材の前処理]
 冷間圧延鋼板(SPCC-SD)の表面を2-プロパノールで清拭し、表面のオイルを十分に除去した。次いで、硫酸水溶液(濃硫酸100mL/L)に10秒間浸漬して取り出し、流水で1分間洗浄することで、鋼基材表面の前処理を行った。
[Pretreatment of steel substrate]
The surface of the cold rolled steel sheet (SPCC-SD) was wiped with 2-propanol to sufficiently remove the oil on the surface. Next, the steel substrate surface was pretreated by immersing it in a sulfuric acid aqueous solution (concentrated sulfuric acid 100 mL / L) for 10 seconds and washing it with running water for 1 minute.
(実施例1)
 調製例1で得られた銀ナノ粒子水分散液(0.5g/L)に、クエン酸3ナトリウム(10g/L)を混合して銀ナノ粒子の水分散液を調製し、擬似的な不純物として、硫酸銅5水和物を、さらに加えた(0.01g/L)。この水分散体中に、上記の前処理を行った銅基材を、室温(25℃)で10分間浸漬して取り出し、流水で2分間洗浄した後、乾燥した。処理した銅張エポキシ基材表面を目視で観察したところ、基材の銅箔表面に、腐食による黒斑は認められなかった(図1参照)。また、銅箔表面を走査型電子顕微鏡(SEM)で観察したところ、基材の銅表面に銀ナノ粒子が付着している様子が観察された(図2参照、スケールバーは100nm)。
Example 1
The silver nanoparticle aqueous dispersion (0.5 g / L) obtained in Preparation Example 1 is mixed with trisodium citrate (10 g / L) to prepare an aqueous dispersion of silver nanoparticles, and pseudo impurities As a result, copper sulfate pentahydrate was further added (0.01 g / L). The copper base material subjected to the above pretreatment was taken out of this aqueous dispersion by being immersed at room temperature (25 ° C.) for 10 minutes, washed with running water for 2 minutes, and then dried. When the treated copper-clad epoxy substrate surface was visually observed, no black spots due to corrosion were observed on the copper foil surface of the substrate (see FIG. 1). Moreover, when the copper foil surface was observed with the scanning electron microscope (SEM), a mode that the silver nanoparticle adhered to the copper surface of a base material was observed (refer FIG. 2, a scale bar is 100 nm).
(実施例2)
 調製例1で得られた銀ナノ粒子水分散液(0.5g/L)に、酒石酸ナトリウムカリウム(5g/L)を混合して銀ナノ粒子の水分散液を調製し、擬似的な保存環境変化として、この水分散液を50℃で3日間加温した後、室温(25℃)まで放冷した。次いで、加温処理した水分散液中に、上記の前処理で得られた銅基材を、室温(25℃)で10分間浸漬して取り出し、流水で2分間洗浄した後、乾燥した。浸漬処理した基材表面を目視で観察したところ、基材銅箔表面に、腐食による黒斑は認められなかった。
(Example 2)
A silver nanoparticle aqueous dispersion (5 g / L) obtained in Preparation Example 1 is mixed with sodium potassium tartrate (5 g / L) to prepare an aqueous dispersion of silver nanoparticles, and a pseudo storage environment As a change, this aqueous dispersion was heated at 50 ° C. for 3 days and then allowed to cool to room temperature (25 ° C.). Next, the copper base material obtained by the above pretreatment was immersed in a heated aqueous dispersion for 10 minutes at room temperature (25 ° C.), washed with running water for 2 minutes, and then dried. When the immersion-treated substrate surface was visually observed, no black spots due to corrosion were observed on the substrate copper foil surface.
(実施例3)
 調製例1で得られた銀ナノ粒子水分散液(0.5g/L)を、擬似的な保存環境変化として、50℃で3日間加温した後、コハク酸2ナトリウム(10g/L)を加えて銀ナノ粒子の水分散液を得た。次いで、この分散液中に、上記の前処理を行った銅基材を、室温(25℃)で10分間浸漬して取り出し、流水で2分間洗浄した後、乾燥した。浸漬処理した基材表面を目視で観察したところ、基材の銅表面には、腐食による黒斑は認められなかった。
(Example 3)
The silver nanoparticle aqueous dispersion (0.5 g / L) obtained in Preparation Example 1 was heated at 50 ° C. for 3 days as a pseudo storage environment change, and then disodium succinate (10 g / L) was added. In addition, an aqueous dispersion of silver nanoparticles was obtained. Next, the copper base material that had been subjected to the above pretreatment was taken out of this dispersion by being immersed for 10 minutes at room temperature (25 ° C.), washed with running water for 2 minutes, and then dried. When the immersion-treated substrate surface was visually observed, no black spots due to corrosion were observed on the copper surface of the substrate.
(実施例4)
 調製例1で得られた銀ナノ粒子水分散液(0.5g/L)に、酒石酸ナトリウムカリウム(5g/L)を混合して銀ナノ粒子の水分散液を調製し、擬似的な保存環境変化として、50℃で3日間加温した後、室温(25℃)まで放冷した。次いで、加温処理した分散液中に、上記の前処理を行った鋼基材を、室温(25℃)で10分間浸漬して、取り出し、流水で1分間洗浄した後、乾燥した。浸漬処理した鋼材表面を目視で観察したところ、基材の鋼表面に目視で変化は確認されなかった(図5参照)。また、鋼材表面を走査型電子顕微鏡(SEM)で観察したところ、鋼板製造時に発生したと考えられる物理的なキズ・ヒビ以外の凹凸は認められなかった(図6参照、スケールバーは500nm)。
Example 4
A silver nanoparticle aqueous dispersion (5 g / L) obtained in Preparation Example 1 is mixed with sodium potassium tartrate (5 g / L) to prepare an aqueous dispersion of silver nanoparticles, and a pseudo storage environment As a change, the mixture was heated at 50 ° C. for 3 days and then allowed to cool to room temperature (25 ° C.). Next, the steel substrate that had been subjected to the above pretreatment was immersed in a heated dispersion for 10 minutes at room temperature (25 ° C.), taken out, washed with running water for 1 minute, and then dried. When the immersion-treated steel surface was visually observed, no change was visually confirmed on the steel surface of the base material (see FIG. 5). Moreover, when the steel material surface was observed with the scanning electron microscope (SEM), unevenness | corrugations other than the physical crack and crack considered to have generate | occur | produced at the time of steel plate manufacture were not recognized (refer FIG. 6, a scale bar is 500 nm).
(比較例1)
 上記の前処理を行った銅基材を、調製例1で得られた銀ナノ粒子水分散液(0.5g/L)に10分間浸漬して取り出し、流水で2分間洗浄した後、乾燥した。浸漬処理した基材表面を目視で観察したところ、基材の銅表面に腐食による黒斑は認められなかった。
(Comparative Example 1)
The copper substrate subjected to the above pretreatment was taken out by immersing it in the silver nanoparticle aqueous dispersion (0.5 g / L) obtained in Preparation Example 10 for 10 minutes, washed with running water for 2 minutes, and then dried. . When the immersion-treated substrate surface was visually observed, no black spots due to corrosion were observed on the copper surface of the substrate.
(比較例2)
 上記の前処理を行った銅基材を、調製例1で得られた銀ナノ粒子水分散液(0.5g/L)に硫酸銅5水和物(0.01g/L)を添加した浴に室温(25℃)で10分間浸漬して取り出し、流水で2分間洗浄した後、乾燥した。浸漬処理した基材表面を目視で観察したところ、基板の銅表面には、多数の黒斑が確認された(図2参照)。黒斑部分をSEM観察すると、基材の銅にナノスケールの溝や孔が発生している様子が観察された(図4参照、スケールバーは100nm)。擬似的な不純物である硫酸銅を添加することで、銅表面に、腐食による黒斑が生じることが確認された。
(Comparative Example 2)
A bath obtained by adding copper sulfate pentahydrate (0.01 g / L) to the silver nanoparticle aqueous dispersion (0.5 g / L) obtained in Preparation Example 1 for the copper base material subjected to the above pretreatment. The sample was immersed for 10 minutes at room temperature (25 ° C.), taken out, washed with running water for 2 minutes, and then dried. When the surface of the base material subjected to the immersion treatment was visually observed, many black spots were confirmed on the copper surface of the substrate (see FIG. 2). When the black spot portion was observed with an SEM, it was observed that nanoscale grooves and holes were generated in the copper of the base material (see FIG. 4, scale bar is 100 nm). It was confirmed that black spots due to corrosion occur on the copper surface by adding copper sulfate, which is a pseudo impurity.
(比較例3)
 調製例1で得られた銀ナノ粒子水分散液(0.5g/L)を50℃で3日間加温してから室温(25℃)に冷却した。
(Comparative Example 3)
The silver nanoparticle aqueous dispersion (0.5 g / L) obtained in Preparation Example 1 was heated at 50 ° C. for 3 days and then cooled to room temperature (25 ° C.).
 次いで、上記の前処理を行った銅基材を、加温処理した銀ナノ粒子水分散液(0.5g/L)に室温(25℃)で10分間浸漬して取り出し、流水で2分間洗浄した後、乾燥した。浸漬処理した基材表面を目視で観察したところ、基板の銅表面には、腐食による多数の黒斑が確認された。 Next, the pretreated copper base material is taken out by being immersed in a heated silver nanoparticle aqueous dispersion (0.5 g / L) at room temperature (25 ° C.) for 10 minutes and washed with running water for 2 minutes. And then dried. When the surface of the base material subjected to the immersion treatment was visually observed, many black spots due to corrosion were confirmed on the copper surface of the substrate.
(比較例4)
 予め、調製例1で得られた銀ナノ粒子水分散液(0.5g/L)を50℃で3日間加温してから室温(25℃)に冷却した。次いで、上記の前処理を行った鋼基材を、加温処理した液の浴に室温(25℃)で10分間浸漬して取り出し、流水で1分間洗浄した後、乾燥した。浸漬処理した基材表面を目視で観察したところ、基材の鋼表面には、腐食による多数の茶斑が確認された(図7参照)。茶斑部分を走査型電子顕微鏡(SEM)観察すると、基材の鋼にナノスケールの微細な凹凸が発生している様子が観察された(図8参照、スケールバーは500nm)。
(Comparative Example 4)
The silver nanoparticle aqueous dispersion (0.5 g / L) obtained in Preparation Example 1 was previously heated at 50 ° C. for 3 days and then cooled to room temperature (25 ° C.). Next, the steel substrate subjected to the above pretreatment was taken out by being immersed in a bath of a heated solution at room temperature (25 ° C.) for 10 minutes, washed with running water for 1 minute, and then dried. When the surface of the base material subjected to the immersion treatment was visually observed, many brown spots due to corrosion were confirmed on the steel surface of the base material (see FIG. 7). When the brown spot portion was observed with a scanning electron microscope (SEM), it was observed that fine irregularities of nanoscale were generated on the steel of the base material (see FIG. 8, scale bar is 500 nm).
 上記の実施例1~4及び比較例1~4の結果を表1にまとめた。また、この結果から、次のことが確認できた。 The results of Examples 1 to 4 and Comparative Examples 1 to 4 are summarized in Table 1. From this result, the following could be confirmed.
[規則26に基づく補充 12.05.2017] 
Figure WO-DOC-TABLE-1
[Supplement under rule 26 12.05.2017]
Figure WO-DOC-TABLE-1
 擬似的な不純物である硫酸銅は、腐食による黒斑の生成を促進するものであるが(比較例1と比較例2との対比)、クエン酸3ナトリウムを加えた本発明の金属ナノ粒子水分散液(実施例1)は、硫酸銅を加えたにもかかわらず、分散液中に浸漬した金属基板表面に黒斑の生成がなく、腐食や着色による外観不良を生じなかった。 Although copper sulfate, which is a pseudo impurity, promotes the formation of black spots due to corrosion (contrast with Comparative Example 1 and Comparative Example 2), the metal nanoparticle water of the present invention to which trisodium citrate is added In spite of the addition of copper sulfate, the dispersion (Example 1) did not produce black spots on the surface of the metal substrate immersed in the dispersion, and did not cause poor appearance due to corrosion or coloring.
 また、実施例2、3及び4の本発明の金属ナノ粒子水分散液は、保存環境の経時的な変化を擬似的に再現するために、銀ナノ粒子水分散液を加熱処理したにもかかわらず、分散液中に浸漬した金属基板表面に黒斑の生成がなく、腐食や着色による外観不良を生じなかった。 In addition, the metal nanoparticle aqueous dispersions of the present invention in Examples 2, 3 and 4 were obtained even though the silver nanoparticle aqueous dispersion was heat-treated in order to simulate the temporal change of the storage environment. In addition, no black spots were formed on the surface of the metal substrate immersed in the dispersion, and appearance defects due to corrosion or coloring did not occur.
 一方、比較例3及び4は、本発明で用いる化合物(Z)を用いなかった例であるが、分散液中に浸漬した金属基板表面に、腐食による斑点状着色が発生して外観不良を生じた。 On the other hand, Comparative Examples 3 and 4 are examples in which the compound (Z) used in the present invention was not used. However, spotted coloring due to corrosion occurred on the surface of the metal substrate immersed in the dispersion, resulting in poor appearance. It was.

Claims (7)

  1.  金属ナノ粒子(X)及び有機化合物(Y)の複合体と、乳酸、グリコール酸、マロン酸、コハク酸、フマル酸、マレイン酸、リンゴ酸、酒石酸、シュウ酸、クエン酸及びこれらのカルボン酸のアルカリ金属塩からなる群から選ばれる1種以上の化合物(Z)とを含有することを特徴とする金属ナノ粒子水分散液。 A complex of metal nanoparticles (X) and an organic compound (Y), lactic acid, glycolic acid, malonic acid, succinic acid, fumaric acid, maleic acid, malic acid, tartaric acid, oxalic acid, citric acid and carboxylic acids thereof An aqueous metal nanoparticle dispersion comprising one or more compounds (Z) selected from the group consisting of alkali metal salts.
  2.  前記有機化合物(Y)が、アニオン性官能基を有する有機化合物(Y1)である請求項1記載の金属ナノ粒子水分散液。 The metal nanoparticle aqueous dispersion according to claim 1, wherein the organic compound (Y) is an organic compound (Y1) having an anionic functional group.
  3.  前記アニオン性官能基を有する有機化合物(Y1)が、カルボキシ基、リン酸基、亜リン酸基、スルホン酸基、スルフィン酸基及びスルフェン酸基からなる群から選ばれる1種以上のアニオン性官能基を有する(メタ)アクリル酸系単量体を含有する単量体混合物(I)の重合物(Y2)である請求項2記載の金属ナノ粒子水分散液。 The organic compound (Y1) having an anionic functional group is one or more anionic functional groups selected from the group consisting of a carboxy group, a phosphoric acid group, a phosphorous acid group, a sulfonic acid group, a sulfinic acid group, and a sulfenic acid group. The metal nanoparticle aqueous dispersion according to claim 2, which is a polymer (Y2) of a monomer mixture (I) containing a (meth) acrylic acid-based monomer having a group.
  4.  前記単量体混合物(I)中に、エチレングリコールの平均ユニット数が20以上のポリエチレングリコール鎖を有する(メタ)アクリル酸系単量体を含有する請求項3記載の金属ナノ粒子水分散液。 The metal nanoparticle aqueous dispersion according to claim 3, wherein the monomer mixture (I) contains a (meth) acrylic acid monomer having a polyethylene glycol chain having an average unit number of ethylene glycol of 20 or more.
  5.  前記重合物(Y2)の重量平均分子量が、3,000~20,000の範囲である請求項3又は4記載の金属ナノ粒子水分散液。 The metal nanoparticle aqueous dispersion according to claim 3 or 4, wherein the polymer (Y2) has a weight average molecular weight in the range of 3,000 to 20,000.
  6.  前記金属ナノ粒子(X)の金属種が、銀、銅又はパラジウムである請求項1~5のいずれか1項記載の金属ナノ粒子水分散液。 The metal nanoparticle aqueous dispersion according to any one of claims 1 to 5, wherein the metal species of the metal nanoparticles (X) is silver, copper, or palladium.
  7.  前記金属ナノ粒子(X)の透過型電子顕微鏡写真から求められる平均粒子径が0.5~100nmの範囲である請求項1~6のいずれか1項記載の金属ナノ粒子水分散液。 The metal nanoparticle aqueous dispersion according to any one of claims 1 to 6, wherein an average particle diameter determined from a transmission electron micrograph of the metal nanoparticles (X) is in the range of 0.5 to 100 nm.
PCT/JP2017/015532 2016-04-22 2017-04-18 Metal nanoparticle aqueous dispersion WO2017183624A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780024329.3A CN109070208B (en) 2016-04-22 2017-04-18 Aqueous dispersion of metal nanoparticles
JP2017544976A JP6255635B1 (en) 2016-04-22 2017-04-18 Metal nanoparticle aqueous dispersion
KR1020187029480A KR102169421B1 (en) 2016-04-22 2017-04-18 Aqueous dispersion of metal nanoparticles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016086207 2016-04-22
JP2016-086207 2016-04-22

Publications (1)

Publication Number Publication Date
WO2017183624A1 true WO2017183624A1 (en) 2017-10-26

Family

ID=60115995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015532 WO2017183624A1 (en) 2016-04-22 2017-04-18 Metal nanoparticle aqueous dispersion

Country Status (5)

Country Link
JP (1) JP6255635B1 (en)
KR (1) KR102169421B1 (en)
CN (1) CN109070208B (en)
TW (1) TWI653360B (en)
WO (1) WO2017183624A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113289413A (en) * 2021-05-25 2021-08-24 九江市磐泰复合材料有限公司 Preparation method of high-capacity fluorine glass fiber filtering material
WO2023042771A1 (en) * 2021-09-14 2023-03-23 Dowaエレクトロニクス株式会社 Method for producing silver powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113649587A (en) * 2021-07-14 2021-11-16 上海涂固安高科技有限公司 Inorganic/polymer composite nanoparticle containing metal nanoparticle and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013393A1 (en) * 2005-07-25 2007-02-01 Sumitomo Metal Mining Co., Ltd. Copper fine particle dispersion liquid and method for producing same
JP2009197325A (en) * 2008-01-22 2009-09-03 Mitsubishi Materials Corp Dispersion solution of metal nanoparticle, and method for production thereof
JP2010209421A (en) * 2009-03-11 2010-09-24 Dic Corp Protective agent for metal nanoparticle, dispersion of metal nanoparticle, and method for producing dispersion of metal nanoparticle
WO2011048876A1 (en) * 2009-10-20 2011-04-28 Dic株式会社 Metal nanoparticle containing complex, fluid dispersion thereof and production methods for metal nanoparticle containing complex and fluid dispersion thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373863A (en) 1976-12-13 1978-06-30 Kubota Ltd Method of treating digestion separation liquid
US7410631B2 (en) * 2005-03-02 2008-08-12 Aps Laboratory Metal phosphate sols, metal nanoparticles, metal-chalcogenide nanoparticles, and nanocomposites made therefrom
US8795585B2 (en) * 2006-12-05 2014-08-05 The Boeing Company Nanophase cryogenic-milled copper alloys and process
CN101622090B (en) * 2007-02-27 2013-03-13 三菱麻铁里亚尔株式会社 Dispersion solution of metal nanoparticle, method for production thereof, and method for synthesis of metal nanoparticle
EP2048116A1 (en) * 2007-10-09 2009-04-15 ChemIP B.V. Dispersion of nanoparticles in organic solvents
DE102009015470A1 (en) * 2008-12-12 2010-06-17 Byk-Chemie Gmbh Process for the preparation of metal nanoparticles and metal nanoparticles obtained in this way and their use
CN101880493B (en) * 2010-07-01 2013-03-20 中国科学院宁波材料技术与工程研究所 Method for preparing nano copper conductive ink
JP5623861B2 (en) * 2010-10-14 2014-11-12 株式会社東芝 Metal nanoparticle dispersion composition
CN104321153B (en) * 2012-07-24 2016-06-15 Dic株式会社 Metal nanoparticle complex, colloidal metal solution and their manufacture method
JP5648232B1 (en) * 2013-06-21 2015-01-07 Dic株式会社 Electroless plating catalyst, metal film using the same, and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013393A1 (en) * 2005-07-25 2007-02-01 Sumitomo Metal Mining Co., Ltd. Copper fine particle dispersion liquid and method for producing same
JP2009197325A (en) * 2008-01-22 2009-09-03 Mitsubishi Materials Corp Dispersion solution of metal nanoparticle, and method for production thereof
JP2010209421A (en) * 2009-03-11 2010-09-24 Dic Corp Protective agent for metal nanoparticle, dispersion of metal nanoparticle, and method for producing dispersion of metal nanoparticle
WO2011048876A1 (en) * 2009-10-20 2011-04-28 Dic株式会社 Metal nanoparticle containing complex, fluid dispersion thereof and production methods for metal nanoparticle containing complex and fluid dispersion thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113289413A (en) * 2021-05-25 2021-08-24 九江市磐泰复合材料有限公司 Preparation method of high-capacity fluorine glass fiber filtering material
CN113289413B (en) * 2021-05-25 2022-08-05 九江市磐泰复合材料有限公司 Preparation method of high-capacity fluorine glass fiber filtering material
WO2023042771A1 (en) * 2021-09-14 2023-03-23 Dowaエレクトロニクス株式会社 Method for producing silver powder

Also Published As

Publication number Publication date
KR20180122419A (en) 2018-11-12
CN109070208A (en) 2018-12-21
JP6255635B1 (en) 2018-01-10
CN109070208B (en) 2020-09-25
TW201816182A (en) 2018-05-01
KR102169421B1 (en) 2020-10-23
JPWO2017183624A1 (en) 2018-04-26
TWI653360B (en) 2019-03-11

Similar Documents

Publication Publication Date Title
JP5648232B1 (en) Electroless plating catalyst, metal film using the same, and method for producing the same
JP5332186B2 (en) Method for producing transparent conductive film using metal nanowire and transparent conductive film produced using the same
JP6255635B1 (en) Metal nanoparticle aqueous dispersion
TWI783947B (en) Conductive film composite and production method thereof
JP6659665B2 (en) Conductive coating composite and method for producing the same
JPWO2014045972A1 (en) Conductive material and manufacturing method thereof
TW200837217A (en) Metal plated article and method for producing it
JP2008163371A (en) Continuous electroless plating method
CN109478442B (en) Aqueous dispersion of metal nanoparticles
JP6943050B2 (en) Metal nanoparticle water dispersion
JP2012255182A (en) Method for manufacturing electroless plating metal coating, and substrate coated with plating
WO2019013040A1 (en) Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article
JP5453789B2 (en) Metal fine particle dispersion, method for producing metal thin film, and metal thin film
JP6431988B2 (en) Metal nanoparticle aqueous dispersion
WO2017199833A1 (en) Electroless nickel plating method
JP2013170293A (en) Metal plating method and metal-plated article made by using the same
JP6269909B1 (en) Metal nanoparticle aqueous dispersion
TWI707923B (en) Metal Nanoparticle Water Dispersion
JP2009235501A (en) Primary paint for plating to be applied to styrene resin substrate, and plated article of styrene resin substrate produced by using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017544976

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187029480

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785962

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785962

Country of ref document: EP

Kind code of ref document: A1