WO2017183559A1 - Transmucosal absorption promoter for drug - Google Patents

Transmucosal absorption promoter for drug Download PDF

Info

Publication number
WO2017183559A1
WO2017183559A1 PCT/JP2017/015181 JP2017015181W WO2017183559A1 WO 2017183559 A1 WO2017183559 A1 WO 2017183559A1 JP 2017015181 W JP2017015181 W JP 2017015181W WO 2017183559 A1 WO2017183559 A1 WO 2017183559A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmucosal absorption
component
drug
basic amino
solution
Prior art date
Application number
PCT/JP2017/015181
Other languages
French (fr)
Japanese (ja)
Inventor
真莉子 武田
敬泰 亀井
Original Assignee
学校法人神戸学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人神戸学院 filed Critical 学校法人神戸学院
Priority to JP2018513147A priority Critical patent/JPWO2017183559A1/en
Publication of WO2017183559A1 publication Critical patent/WO2017183559A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate

Definitions

  • the present invention relates to a transmucosal absorption promoter for drugs, a pharmaceutical composition containing the same, and the like.
  • Non-patent Document 3 cell-penetrating peptides
  • CPPs cell-penetrating peptides
  • TAT peptides TAT peptides
  • penetratin cell-penetrating peptides
  • many of these peptides promote the transmucosal absorption of a drug by being used by crosslinking with the drug.
  • a product obtained by crosslinking arginine hexapeptide, which is a cell membrane permeable peptide, to the C-terminal side of leuprolide, which is a prostate cancer therapeutic agent is known (Non-patent Document 4).
  • this technique has low versatility, and there is a possibility that the activity of the drug is reduced by crosslinking.
  • Non-patent Document 5 cell membrane permeation peptides such as arginine oligopeptide can promote transmucosal absorbability of a drug by simply mixing it with the drug. With this technique, since crosslinking is not required, there is a low possibility that the above problems will occur.
  • arginine oligopeptides peptides composed of 6 or more arginines such as decapeptides, octapeptides, hexapeptides have been reported so far.
  • Non-patent Document 5 octapeptide and decapeptide show high transmucosal absorption promoting action, but it is said that hexapeptide having a smaller number of arginine residues has lower transmucosal absorbability.
  • An object of the present invention is to provide an agent for promoting transmucosal absorption of a drug. It is another object of the present invention to provide a transmucosal absorption promoter that does not require crosslinking with a drug and has less adverse effects on the living body.
  • the present invention includes the following embodiments: Item 1. Transmucosal absorption of a drug comprising (a component) a basic amino acid, (b component) a peptide composed of 2 to 5 basic amino acids, and (c component) at least one selected from the group consisting of tryptophan Accelerator.
  • Item 2. Item 2. The transmucosal absorption promoter according to Item 1, wherein the basic amino acid is an L-amino acid.
  • Item 3. Item 3.
  • Item 5. The transmucosal absorption promoter according to any one of Items 1 to 4, wherein the basic amino acid is arginine.
  • Item 6. The transmucosal absorption promoter according to any one of Items 1 to 5, wherein the component b is a peptide composed of 2 to 4 basic amino acids.
  • Item 8. Item 8.
  • Item 9. Item 9. The transmucosal absorption promoter according to any one of Items 1 to 8, wherein the drug has an isoelectric point of 7 or less.
  • Item 10. Item 10. The transmucosal absorption enhancer according to any one of Items 1 to 9, wherein the drug is a peptide or protein.
  • Item 11. A pharmaceutical composition comprising the transmucosal absorption promoter according to any one of Items 1 to 10 and a drug.
  • Item 12. Item 12.
  • Item 13. Item 13.
  • transmucosal absorption promoter that does not require crosslinking with a drug and has less adverse effects on the living body.
  • the drug can be provided in a formulation form (for example, an oral preparation) in which the above problems are less likely to occur.
  • Test Example 1 The result of Test Example 1 is shown.
  • “Insulin” indicates Comparative Example 1
  • “LR” indicates Example 1
  • “L-R2” indicates Example 2
  • “L-R4” indicates Example 3
  • “L-R8” indicates Comparative Example 2 (Table 1). reference).
  • the result of Test Example 2 is shown.
  • the vertical axis indicates the human insulin concentration in plasma
  • the horizontal axis indicates the elapsed time after administration
  • PBS represents Solution 1
  • Insulin represents Solution 2
  • L-R represents Solution 3
  • Sodium taurodeoxycholate represents Solution 4.
  • the vertical axis shows the human insulin concentration in plasma
  • the horizontal axis shows the elapsed time after administration
  • “Insulin” indicates Comparative Example 1
  • “L-R1” indicates Example 5
  • “L-R1 + L-W1” indicates Example 8 (see Table 4).
  • the result of Test Example 7 is shown.
  • the vertical axis represents the human insulin concentration in plasma
  • the horizontal axis represents the elapsed time after administration
  • “Insulin” indicates Comparative Example 1
  • the result of Test Example 8 is shown.
  • “Insulin” represents Comparative Example 1
  • “16 ⁇ m” represents Example 11
  • “32 ⁇ m” represents Example 12 (see Table 6).
  • the result of Test Example 9 is shown.
  • the vertical axis represents the LDH (lactate dehydrogenase) concentration in the intestinal fluid
  • the present invention relates to a drug comprising (a component) a basic amino acid, (b component) a peptide composed of 2 to 5 basic amino acids, and (c component) at least one selected from the group consisting of tryptophan A transmucosal absorption enhancer (also referred to herein as “the transmucosal absorption enhancer of the present invention”), and a pharmaceutical composition (the present invention) containing the transmucosal absorption enhancer of the present invention and a drug. In the specification, it may be referred to as “the pharmaceutical composition of the present invention”). These will be described below.
  • the basic amino acid is not particularly limited as long as the amino acid has a basic functional group in the side chain and an isoelectric point in the alkaline region (preferably an ⁇ -amino acid).
  • Examples of the basic functional group include a guanidino group, an amino group, an imidazolyl group and the like, preferably a guanidino group and an amino group, and more preferably a guanidino group.
  • the isoelectric point of the basic amino acid is, for example, more than 7, preferably 7.5 or more, more preferably 9 or more, and further preferably 10 or more. Although the upper limit of an isoelectric point is not specifically limited, For example, it is 14.
  • basic amino acids include natural amino acids such as arginine, lysine, histidine, ornithine and citrulline.
  • natural amino acids such as arginine, lysine, histidine, ornithine and citrulline.
  • arginine, lysine and the like are preferable, and arginine is more preferable.
  • the configuration of the basic amino acid is not particularly limited, and may be either L-form or D-form. From the viewpoint that the transmucosal absorption promoting effect is higher and / or the transmucosal absorption promoting effect is further improved in a dose-dependent manner, the basic amino acid is preferably an L-amino acid.
  • a peptide composed of basic amino acids is a peptide formed by peptide bonding of a plurality of basic amino acids (preferably an amino group and a carboxyl group on the main chain of the basic amino acid), and is not particularly limited as long as this is the case. .
  • the number of basic amino acids constituting the peptide is 2-5, preferably 2-4.
  • the peptide may be composed of only one basic amino acid or may be composed of two or more basic amino acids.
  • tryptophan is not particularly limited, and may be either L-form or D-form. From the viewpoint that the transmucosal absorption promoting effect is higher and / or the transmucosal absorption promoting effect is further improved in a dose-dependent manner, tryptophan is preferably L-form.
  • the basic amino acid, the peptide composed of the basic amino acid, and tryptophan may be chemically modified as long as they have a transmucosal absorption promoting effect.
  • the presence or absence of the transmucosal absorption promoting effect can be determined according to or according to a known method. For example, it can be determined according to or according to the method described in Test Example 1 described later.
  • carboxyl group at the end of the main chain is either carboxylate (—COO ⁇ ), amide (—CONH 2 ) or ester (—COOR) Also good.
  • R in the ester for example, a C 1-6 alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl; for example, a C 3-8 cycloalkyl group such as cyclopentyl, cyclohexyl; C 6-12 aryl groups such as ⁇ -naphthyl; phenyl-C 1-2 alkyl groups such as benzyl and phenethyl; C 7- such as ⁇ -naphthyl-C 1-2 alkyl groups such as ⁇ -naphthylmethyl; 14 aralkyl group; pivaloyloxymethyl group and the like are used.
  • a C 1-6 alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl
  • a C 3-8 cycloalkyl group such as cyclopentyl, cyclohex
  • the main chain terminal amino group protecting group e.g., formyl groups, C such as C 1-6 alkanoyl such as acetyl group 1-6
  • an acyl group or the like, or a substituent on the side chain is an appropriate protecting group (for example, a C 1-6 alkanoyl group such as a formyl group or an acetyl group)
  • a C 1-6 alkanoyl group such as a formyl group or an acetyl group
  • the like protected with a C 1-6 acyl group such as and the like.
  • the basic amino acid, the peptide composed of the basic amino acid, and tryptophan may be in the form of a pharmaceutically acceptable salt with an acid or a base.
  • the salt is not particularly limited as long as it is a pharmaceutically acceptable salt, and either an acidic salt or a basic salt can be employed.
  • acid salts include inorganic acid salts such as hydrochloride, hydrobromide, sulfate, nitrate and phosphate; acetate, propionate, tartrate, fumarate, maleate, apple Organic acid salts such as acid salts, citrate salts, methanesulfonate salts, and paratoluenesulfonate salts; and amino acid salts such as aspartate salts and glutamate salts.
  • basic salts include alkali metal salts such as sodium salts and potassium salts; alkaline earth metal salts such as calcium salts and magnesium salts.
  • the basic amino acid, the peptide composed of the basic amino acid, and tryptophan may be in the form of a solvate.
  • the solvent is not particularly limited as long as it is pharmaceutically acceptable, and examples thereof include water, ethanol, glycerol, acetic acid and the like.
  • Basic amino acids (component a) can be used singly or in combination of any two or more.
  • a peptide composed of basic amino acids (component b) can be used alone or in combination of any two or more.
  • Tryptophan (component c) can be used singly or in combination of any two or more.
  • the transmucosal absorption promoter of the present invention is not particularly limited as long as it contains at least one selected from the group consisting of a component, b component, and c component as an active ingredient. From the viewpoint that the transmucosal absorption promotion effect is higher, and / or from the viewpoint that the living body is inoculated daily and the safety is higher, the transmucosal absorption promoter of the present invention has an a component and a c component as active ingredients. It is preferable to contain at least one selected from the group consisting of, more preferably only at least one selected from the group consisting of a component and c component as active ingredients, and only c component as active ingredients It is more preferable to contain.
  • a component, the b component, and the c component commercially available products can be used as they are, or they can be produced according to or according to a known synthesis method.
  • the mechanism of the present invention in the case of employing the a component and the b component is considered as follows.
  • Known cell membrane permeable peptides that contain many basic amino acids, such as arginine octapeptide improve the transmucosal absorbability of the drug by forming a complex with the drug due to its positive charge and permeating the cell membrane (Non-Patent Documents 6 and 7). Therefore, the a component and the b component, which are effective components of the present invention, also have a positive charge, and are considered to exhibit the effect based on the same mechanism.
  • the drug targeted by the transmucosal absorption enhancer of the present invention has biological activity, particularly when the a component and the b component are adopted, and is combined with the a component and / or the b component by electrical interaction.
  • the drug is not particularly limited as long as it is a drug capable of forming a body.
  • the isoelectric point (pI) is from a neutral region to an acidic region, preferably pI: 7 or less (or less than 7), more preferably pI: 7 to 0.01. More preferably, the drug has a pI of 6 to 0.1, and even more preferably a pI of 6 to 1.
  • the molecular weight of the drug is not particularly limited.
  • a drug having a molecular weight of 100 to 1000000, preferably 300 to 200000, more preferably 800 to 100000, still more preferably 1500 to 50000, and still more preferably 2000 to 10,000 can be mentioned.
  • drugs include peptides, proteins, sugars, polysaccharides, nucleic acids, low molecular compounds, and the like. More specifically, for example, insulin, gastrin, Exendin-4, GLP1, leuprolide, calcitocin, interferon ⁇ , PEGylated protein, dextran, nanoparticles and the like can be mentioned.
  • the mucosa that is the target of the transmucosal absorption enhancer of the present invention is not particularly limited.
  • examples of the mucosa include intestinal mucosa, gastric mucosa, nasal mucosa, oral mucosa, lung mucous membrane, and the like, preferably intestinal mucosa.
  • the pharmaceutical composition of the present invention is not particularly limited as long as it contains the above-described transmucosal absorption promoter of the present invention and a drug, and may contain other components as necessary.
  • the other components are not particularly limited as long as they are pharmaceutically acceptable components.
  • the dosage form of the pharmaceutical composition of the present invention is not particularly limited as long as it is a dosage form that can be absorbed from mucous membranes.
  • Oral preparations such as sustained release capsules, chewing tablets, drops, pills, liquids for internal use, confectionery tablets, sustained release agents, sustained release granules, etc .; nasal drops, inhalants, rectal suppositories, inserts, External preparations such as enemas and jelly agents can be mentioned.
  • the pharmaceutical composition of the present invention may be any of a solid agent, a semisolid agent and a liquid agent, preferably a solid agent and a semisolid agent, more preferably a solid agent.
  • the content of the drug in the pharmaceutical composition of the present invention depends on the type of drug, the subject to be administered, the administration route, the dosage form, the patient's condition, the judgment of the doctor, etc., and is not limited, for example, For example, it can be 0.0001 to 95% by weight, preferably 0.001 to 50% by weight.
  • the total content of component a and component b in the pharmaceutical composition of the present invention depends on the type of drug, administration subject, administration route, dosage form, patient condition, doctor's judgment, etc. For example, it may be 0.0001 to 95% by weight, preferably 0.001 to 50% by weight.
  • the pharmaceutical composition of the present invention has a total dose of component a and component b per 1 kg body weight of the subject to be administered, for example, 1 ⁇ g to 200 mg, preferably 10 ⁇ g to 150 mg, more preferably 100 ⁇ g. It is preferably used in an amount of ⁇ 100 mg, more preferably 500 ⁇ g ⁇ 50 mg.
  • Test Example 1 Evaluation of transmucosal absorption promoting action of arginine or arginine peptide ⁇
  • Test Example 1-1 Preparation of administration solution> Various amounts of recombinant human insulin (27.5 IU / mg) (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 50 ⁇ L of a 0.1N aqueous hydrochloric acid solution in a polypropylene tube, and this was then added to 1.4% containing methylcellulose at a concentration of 0.001%. The solution was diluted with mL of PBS solution (pH 6.0), and further standardized with 50 ⁇ L of 0.1N sodium hydroxide aqueous solution to obtain an insulin solution.
  • PBS solution pH 6.0
  • Test Example 1-2 Administration test> A male SD (Sprague Dawley) rat (body weight 180-220 g) (manufactured by SLC) was used for the administration test. A midline incision was made in the abdomen of the anesthetized rat fixed on the plate to expose the ileum. A cannula was inserted proximal to the ileocecum and ligated tightly to prevent fluid loss and then returned to its original position in the abdominal cavity. PBS (37 ° C.) was circulated through the cannula (5.0 mL / min, 4 minutes) using an infusion pump. The cannula tube was removed and the part closed. In order to reverse the increase in blood glucose level due to surgery, the rat was left for 30 minutes.
  • Test Example 1-1 0.5 mL of the administration solution obtained in Test Example 1-1 was directly administered into the ileal loop.
  • Table 1 shows the insulin dose and the type and concentration of the test substance in the administration solution.
  • the concentrations of the test substances in Examples 1 to 3 and Comparative Example 2 are adjusted so that the concentrations when converted to arginine monomers are the same (8 mM).
  • Test Example 1-3 Evaluation of transmucosal absorption promoting action>
  • blood was collected before administration and after 5, 10, 15, 30, 60, 120, and 180 minutes after administration.
  • the obtained blood was centrifuged (13,400 g, 1 minute) to obtain plasma.
  • the concentration of human insulin in plasma ie, insulin that was administered and then absorbed through the intestinal mucosa
  • the measurement results are shown in FIG.
  • insulin absorption was enhanced by administering arginine or arginine oligopeptide with insulin.
  • arginine (Example 1: LR)> arginine dipeptide (Example 2: L-R2)> arginine tetrapeptide (Example 3: L-R4)> arginine octapeptide ( Comparative Example 2: L-R8).
  • Test Example 2 Evaluation of dose-dependent transmucosal absorption promoting action of arginine Tests were conducted in the same manner as in Test Example 1 except that the types and concentrations of the test substances in the administration solution were as shown in Table 2. The results are shown in FIG. As shown in FIG. 2, arginine promoted insulin absorption in a dose-dependent manner.
  • Test Example 3 Evaluation of transmucosal absorption promoting action of basic amino acid Test was conducted in the same manner as in Test Example 1 except that the type and concentration of the test substance in the administration solution were as shown in Table 3. The results are shown in FIG. As shown in FIG. 3, even basic amino acids other than arginine promoted insulin absorption. Moreover, the order of the strength of the absorption promoting action was arginine (Example 1: LR)> lysine (Example 6: LK)> histidine (Example 7: LH).
  • Test Example 4 Evaluation of the effect of intestinal epithelial tissue on integrity 1 After Test Example 1, the ileum was treated with 20 mL of PBS (37 ° C.) and then air was passed through. 0.5 mL of the solution was administered directly into the ileal loop.
  • Solution 3 PBS containing L-arginine at a concentration of 40 mM
  • Solution 4 PBS containing sodium taurodeoxycholate at a concentration of 5% (w / v).
  • LDH lactate dehydrogenase
  • Test Example 5 Evaluation 1 of the effect of the epithelial tissue on the tight junction structure The influence of the test substance on the tight junction structure was evaluated based on the electrical resistance (TEER) of the cultured cell layer after the test substance such as arginine was allowed to act. Specifically, it was performed as follows.
  • Human colon cancer-derived cells (Caco-2 cells) are seeded in a 12-well transwell plate (1.0 ⁇ 10 5 cells / cm 2 ) and cultured in DMEM medium for 21 days (constant TEER (> 500 ⁇ cm 2 ) (single It was shown that tight junctions were formed in the layer.
  • 500 ⁇ L of transport buffer 1 (HBSS buffered with 10 mM MES) was added to the apical side of the transwell, and buffered with 1.5 mL of transport buffer 2 (10 mM HEPES (pH 7.4)) on the basal side HBSS) was added and a 30 minute preincubation was performed.
  • TEER was measured using a voltage resistance meter (Millicell ERS-2, manufactured by Millipore), and the obtained value was defined as TEER (T 0 ) at the start of the test.
  • 100 ⁇ L of the apical side transport buffer 1 was replaced with 100 ⁇ L of a test substance-containing test solution, and incubated for 2 hours.
  • Test solution 1 insulin 15 ⁇ M Test solution 2: insulin 15 ⁇ M, L-arginine 480 ⁇ M Test solution 3: insulin 15 ⁇ M, L-arginine 960 ⁇ M Test solution 4: insulin 15 ⁇ M, D-arginine 480 ⁇ M Test solution 5: insulin 15 ⁇ M, D-arginine 960 ⁇ M Test solution 6: insulin 15 ⁇ M, D-arginine octapeptide 60 ⁇ M.
  • FIG. 5 shows a value obtained by dividing TEER (T 120 ) after the test by TEER (T 0 ) at the start of the test and multiplying by 100. As shown in FIG. 5, there was almost no change in TEER even when arginine was allowed to act at a very high concentration. From this, it was shown that arginine is a highly safe component that has very little influence on the tight junction structure of the intestinal epithelial tissue.
  • Test Example 6 Evaluation of transmucosal absorption promoting effect by combined use of basic amino acid and tryptophan Test was conducted in the same manner as in Test Example 1 except that the type and concentration of the test substance in the administration solution were as shown in Table 4. The results are shown in FIG. As shown in FIG. 6, insulin absorption was further promoted by using tryptophan in combination with a basic amino acid.
  • Test Example 7 Evaluation of transmucosal absorption promoting action of L-tryptophan alone Tested in the same manner as in Test Example 1 except that the type and concentration of the test substance in the administration solution were as shown in Table 5. The results are shown in FIG. As shown in FIG. 7, L-tryptophan further promoted insulin absorption.
  • Test Example 8 Evaluation of transmucosal absorption promoting action of D-tryptophan alone Tested in the same manner as in Test Example 1 except that the type and concentration of the test substance in the administration solution were as shown in Table 6. The results are shown in FIG. As shown in FIG. 8, insulin absorption was further promoted by D-tryptophan.
  • Test Example 9 Evaluation of the effect of intestinal epithelial tissue on the integrity 2 The test was conducted in the same manner as in Test Example 4 except that the following seven solutions were used as the administration solutions:
  • Solution A PBS containing methylcellulose at a concentration of 0.001%
  • Solution B PBS containing insulin (insulin content: 50 IU / body weight (kg))
  • Solution C PBS containing L-arginine at a concentration of 40 mM
  • D PBS containing L-tryptophan at a concentration of 16 mM Solution
  • E PBS containing L-tryptophan at a concentration of 32 mM
  • F PBS containing L-arginine at a concentration of 40 mM and L-tryptophan at a concentration of 50 mM
  • G PBS containing sodium taurodeoxycholate at a concentration of 5% (w / v).
  • the measurement results are shown in FIG. As shown in FIG. 9, when sodium taurodeoxycholate, which is a positive control, was administered, the LDH concentration in the intestinal fluid was extremely higher than when PBS was administered. This indicates that the integrity of the intestinal epithelium was disrupted by sodium taurodeoxycholate, so that LDH originally present in the cell leaked through the intestinal epithelium. On the other hand, the LDH concentration in the intestinal fluid when tryptophan was administered had almost no change from that when PBS was administered, so tryptophan has very little effect on the integrity of the intestinal epithelial tissue and is safe. It was shown to be a high component.
  • Test Example 10 In vivo oral administration test In mice after a 24-hour fast, insulin (50 IU / kg), L-arginine (200 mM), or insulin and L-arginine (40 or 200 mM) (100 ⁇ L) mixed solution was orally administered using an oral sonde (i..d. 0.9 ⁇ length 50 mm) (Natsume Seisakusho Co., Ltd., Tokyo, Japan). Before administration, and 15, 30, 60, 120, 180, 240, 300, and 360 minutes after administration, blood was collected from the tail vein (one drop), and blood glucose level was measured over time with One Touch Ultra View (Johnson & Johnson KK, Tokyo, Japan).
  • the measurement results are shown in FIG. As shown in FIG. 10, the blood glucose level was not suppressed by oral administration of insulin or L-arginine alone, but the blood glucose level was suppressed by oral administration of insulin with L-arginine.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention addresses the problem of providing a transmucosal absorption promoter for a drug. This problem is solved by using at least one member selected from the group consisting of: (component a) a basic amino acid; (component b) a peptide consisting of 2-5 basic amino acids; and (component c) tryptophan.

Description

薬物の経粘膜吸収促進剤Drug transmucosal absorption enhancer
 本発明は、薬物の経粘膜吸収促進剤、それを含有する医薬組成物等に関する。 The present invention relates to a transmucosal absorption promoter for drugs, a pharmaceutical composition containing the same, and the like.
 21世紀に入り、バイオ市場の急速な発展に伴い、ペプチド・タンパク質・核酸医薬などの高分子を生体に効率よく吸収させるための革新的なDrug Delivery System(DDS)技術の製剤への導入がより一層求められている。特に、患者にとって最も利便性が高い経口製剤開発が望まれているものの、バイオ薬物のような経粘膜吸収性・安定性が極端に低い物質の経口製剤化は最も難しく、99%のバイオ薬物が注射投与に限られているのが現状である。このため、バイオ薬物等の経粘膜吸収性を促進させる手段の開発が強く求められている。 With the rapid development of the biomarket in the 21st century, the introduction of innovative Drug 革新 Delivery (DDS) technology for the efficient absorption of macromolecules such as peptides, proteins and nucleic acid drugs into the body There is more demand. In particular, although the development of oral preparations that are most convenient for patients is desired, it is the most difficult to make oral preparations of substances with extremely low transmucosal absorbability and stability, such as biopharmaceuticals. The current situation is limited to injection administration. For this reason, there is a strong demand for the development of means for promoting transmucosal absorbability of biopharmaceuticals and the like.
 従来、例えばある種の界面活性剤を用いて、膜構造の不安定化や細胞間タイトジャンクションの開放を引き起こすことにより、バイオ薬物等の経粘膜吸収性を促進できることが報告されてきた(非特許文献1~2)。しかしながら、これらの技術は、その原理に起因して、生体に対して悪影響を与える可能性がある。 Conventionally, it has been reported that transmucosal absorbability of biopharmaceuticals and the like can be promoted by causing destabilization of the membrane structure and release of intercellular tight junctions using, for example, certain surfactants (non-patented). References 1-2). However, these techniques may adversely affect the living body due to the principle.
 また、近年、TATペプチド、ペネトラチン等の種々の細胞膜透過ペプチド(cell-penetrating peptides (CPPs))を用いることにより、バイオ薬物の細胞内導入を促進できることが報告されている(非特許文献3)。ただ、これらのペプチドの多くは薬物と架橋して用いることにより、薬物の経粘膜吸収を促進するものである。例えば、前立腺がん治療薬であるロイプロリドのC末端側に、細胞膜透過ペプチドであるアルギニンヘキサペプチドを架橋したものが知られている(非特許文献4)。このため、この技術は汎用性が低く、また架橋により薬物の活性を低下させてしまう可能性もある。 In recent years, it has been reported that the introduction of bio-drugs into cells can be promoted by using various cell membrane-penetrating peptides (cell-penetrating peptides (CPPs)) such as TAT peptides and penetratin (Non-patent Document 3). However, many of these peptides promote the transmucosal absorption of a drug by being used by crosslinking with the drug. For example, a product obtained by crosslinking arginine hexapeptide, which is a cell membrane permeable peptide, to the C-terminal side of leuprolide, which is a prostate cancer therapeutic agent, is known (Non-patent Document 4). For this reason, this technique has low versatility, and there is a possibility that the activity of the drug is reduced by crosslinking.
 本発明者等は、アルギニンオリゴペプチド等の細胞膜透過ペプチドが、薬物と単に混合して用いることによって、薬物の経粘膜吸収性を促進できることを報告している(非特許文献5)。この技術であれば、架橋を必要としないので上述のような問題が生じる可能性は低い。アルギニンオリゴペプチドについては、これまでデカペプチド、オクタペプチド、ヘキサペプチド等の6以上のアルギニンから構成されるペプチドが報告されている。これらの内、オクタペプチド及びデカペプチドは高い経粘膜吸収促進作用を示すものの、アルギニン残基数のより少ないヘキサペプチドの経粘膜吸収性はより低いといわれている(非特許文献5)。 The present inventors have reported that cell membrane permeation peptides such as arginine oligopeptide can promote transmucosal absorbability of a drug by simply mixing it with the drug (Non-patent Document 5). With this technique, since crosslinking is not required, there is a low possibility that the above problems will occur. Regarding arginine oligopeptides, peptides composed of 6 or more arginines such as decapeptides, octapeptides, hexapeptides have been reported so far. Among these, octapeptide and decapeptide show high transmucosal absorption promoting action, but it is said that hexapeptide having a smaller number of arginine residues has lower transmucosal absorbability (Non-patent Document 5).
 本発明は、薬物の経粘膜吸収促進剤を提供することを課題とする。さらには、薬物との架橋を必要とせず、また生体に対する悪影響がより少ない、経粘膜吸収促進剤を提供することを課題とする。 An object of the present invention is to provide an agent for promoting transmucosal absorption of a drug. It is another object of the present invention to provide a transmucosal absorption promoter that does not require crosslinking with a drug and has less adverse effects on the living body.
 本発明者は上記課題に鑑みて鋭意研究した結果、アルギニン等の塩基性アミノ酸や、従来報告されていたよりも残基数の少ない(すなわち残基数が5以下の)塩基性アミノ酸オリゴペプチドが、薬物に対して、高い経粘膜吸収促進作用を発揮することを見出した。従来は、塩基性アミノ酸残基数がより少ないとその経粘膜吸収促進作用もより低くなるといわれていたところ(非特許文献5)、本発明のこの知見は驚くべきことであった。さらに、トリプトファンが、薬物に対して高い経粘膜吸収促進作用を発揮することをも見出した。これらの知見に基づいてさらに研究を進めた結果、本発明が完成した。 As a result of intensive studies in view of the above problems, the present inventors have found that basic amino acids such as arginine and basic amino acid oligopeptides having fewer residues than previously reported (ie, having 5 or less residues), It has been found that it exerts a high transmucosal absorption promoting action on drugs. Conventionally, it was said that when the number of basic amino acid residues is smaller, the transmucosal absorption promoting action is also lower (Non-Patent Document 5), and this finding of the present invention was surprising. Furthermore, it discovered that tryptophan exhibited the high transmucosal absorption promotion effect with respect to a drug. As a result of further research based on these findings, the present invention was completed.
 即ち、本発明は、下記の態様を包含する:
 項1. (a成分)塩基性アミノ酸、(b成分)2~5つの塩基性アミノ酸から構成されるペプチド、及び(c成分)トリプトファンからなる群より選択される少なくとも1種を含有する、薬物の経粘膜吸収促進剤.
 項2. 前記塩基性アミノ酸がL-アミノ酸である、項1に記載の経粘膜吸収促進剤. 項3. 前記a成分を含有する、項1又は2に記載の経粘膜吸収促進剤.
 項4. 前記塩基性アミノ酸がアルギニン、リシン、及びヒスチジンからなる群より選択される少なくとも1種である、項1~3のいずれかに記載の経粘膜吸収促進剤.
 項5. 前記塩基性アミノ酸がアルギニンである、項1~4のいずれかに記載の経粘膜吸収促進剤.
 項6. 前記b成分が2~4つの塩基性アミノ酸から構成されるペプチドである、項1~5のいずれかに記載の経粘膜吸収促進剤.
 項7. 前記c成分を含有する、項1~6のいずれかに記載の経粘膜吸収促進剤.
 項8. 前記粘膜が腸粘膜である、項1~7のいずれかに記載の経粘膜吸収促進剤.
 項9. 前記薬物の等電点が7以下である、項1~8のいずれかに記載の経粘膜吸収促進剤.
 項10. 前記薬物がペプチド又はタンパク質である、項1~9のいずれかに記載の経粘膜吸収促進剤.
 項11. 項1~10のいずれかに記載の経粘膜吸収促進剤及び薬物を含有する、医薬組成物.
 項12. 固形剤である、項11に記載の医薬組成物.
 項13. 経口投与製剤である、項11又は12に記載の医薬組成物.
That is, the present invention includes the following embodiments:
Item 1. Transmucosal absorption of a drug comprising (a component) a basic amino acid, (b component) a peptide composed of 2 to 5 basic amino acids, and (c component) at least one selected from the group consisting of tryptophan Accelerator.
Item 2. Item 2. The transmucosal absorption promoter according to Item 1, wherein the basic amino acid is an L-amino acid. Item 3. Item 3. The transmucosal absorption promoter according to Item 1 or 2, comprising the component a.
Item 4. Item 4. The transmucosal absorption enhancer according to any one of Items 1 to 3, wherein the basic amino acid is at least one selected from the group consisting of arginine, lysine, and histidine.
Item 5. Item 5. The transmucosal absorption promoter according to any one of Items 1 to 4, wherein the basic amino acid is arginine.
Item 6. Item 6. The transmucosal absorption promoter according to any one of Items 1 to 5, wherein the component b is a peptide composed of 2 to 4 basic amino acids.
Item 7. Item 7. The transmucosal absorption promoter according to any one of Items 1 to 6, comprising the component c.
Item 8. Item 8. The transmucosal absorption enhancer according to any one of Items 1 to 7, wherein the mucosa is intestinal mucosa.
Item 9. Item 9. The transmucosal absorption promoter according to any one of Items 1 to 8, wherein the drug has an isoelectric point of 7 or less.
Item 10. Item 10. The transmucosal absorption enhancer according to any one of Items 1 to 9, wherein the drug is a peptide or protein.
Item 11. Item 11. A pharmaceutical composition comprising the transmucosal absorption promoter according to any one of Items 1 to 10 and a drug.
Item 12. Item 12. The pharmaceutical composition according to Item 11, which is a solid agent.
Item 13. Item 13. The pharmaceutical composition according to Item 11 or 12, which is an oral administration preparation.
 本発明によれば、薬物との架橋を必要とせず、また生体に対する悪影響がより少ない、経粘膜吸収促進剤を提供することができる。 According to the present invention, it is possible to provide a transmucosal absorption promoter that does not require crosslinking with a drug and has less adverse effects on the living body.
 バイオ薬物等の多くの薬物は、経粘膜吸収性が低いことを理由として注射剤として提供されているが、注射剤は、針を刺すという行為を必要とするものであり、患者にとっての負担感は大きい。また、注射器の使用後の廃棄には経済的負担や環境負荷がかかり、さらに発展途上国等においては注射器の使い回しによる感染症の可能性がある。本発明によれば、薬物の経粘膜吸収性を向上させることにより、薬物を、上記問題がより生じ難い製剤形態(例えば経口剤等)で提供することができる。 Many drugs, such as bio-drugs, are provided as injections because of their low transmucosal absorbability, but injections require the act of sticking a needle, which can be a burden on patients. Is big. In addition, disposal after the use of a syringe places an economic burden and an environmental burden, and in developing countries, there is a possibility of infectious diseases caused by reusing the syringe. According to the present invention, by improving the transmucosal absorbability of a drug, the drug can be provided in a formulation form (for example, an oral preparation) in which the above problems are less likely to occur.
試験例1の結果を示す。縦軸は血漿中のヒトインスリン濃度を示し、横軸は投与後の経過時間を示し、各データは平均値±SEM(n=3-5)を示す。「Insulin」は比較例1、「L-R」は実施例1、「L-R2」は実施例2、「L-R4」は実施例3、「L-R8」は比較例2を示す(表1参照)。The result of Test Example 1 is shown. The vertical axis represents the human insulin concentration in plasma, the horizontal axis represents the elapsed time after administration, and each data represents mean ± SEM (n = 3-5). “Insulin” indicates Comparative Example 1, “LR” indicates Example 1, “L-R2” indicates Example 2, “L-R4” indicates Example 3, and “L-R8” indicates Comparative Example 2 (Table 1). reference). 試験例2の結果を示す。縦軸は血漿中のヒトインスリン濃度を示し、横軸は投与後の経過時間を示し、各データは平均値±SEM(n=4)を示す。「0 mM」は比較例1、「8 mM」は実施例1、「16 mM」は実施例4、「40 mM」は実施例5を示す(表2参照)。The result of Test Example 2 is shown. The vertical axis indicates the human insulin concentration in plasma, the horizontal axis indicates the elapsed time after administration, and each data indicates an average value ± SEM (n = 4). “0 μm” represents Comparative Example 1, “8 μm” represents Example 1, “16 μm” represents Example 4, and “40 μm” represents Example 5 (see Table 2). 試験例3の結果を示す。縦軸は血漿中のヒトインスリン濃度を示し、横軸は投与後の経過時間を示し、各データは平均値±SEM(n=3-4)を示す。「Insulin」は比較例1、「L-R」は実施例1、「L-K」は実施例6、「L-H」は実施例7を示す(表3参照)。The result of Test Example 3 is shown. The vertical axis represents the human insulin concentration in plasma, the horizontal axis represents the elapsed time after administration, and each data represents mean ± SEM (n = 3-4). "Insulin" indicates Comparative Example 1, "L-R" indicates Example 1, "L-K" indicates Example 6, and "L-H" indicates Example 7 (see Table 3). 試験例4の結果を示す。横軸は腸液中のLDH(lactate dehydrogenase)濃度を示し、各データは平均値±SEM(n=4)を示す。「PBS」は溶液1、「Insulin」は溶液2、「L-R」は溶液3、「Sodium taurodeoxycholate」は溶液4を示す。The result of Test Example 4 is shown. The horizontal axis represents the LDH (lactate dehydrogenase) concentration in the intestinal fluid, and each data represents the mean ± SEM (n = 4). “PBS” represents Solution 1, “Insulin” represents Solution 2, “L-R” represents Solution 3, and “Sodium taurodeoxycholate” represents Solution 4. 試験例5の結果を示す。横軸は、試験後のTEER(T120)を試験開始時のTEER(T0)で除して、100をかけた値を示し、各データは平均値±SEM(n=4)を示す。上から順に、試験溶液1、試験溶液2、試験溶液3、試験溶液4、試験溶液5、試験溶液6を用いた場合を示す。The result of Test Example 5 is shown. The horizontal axis shows a value obtained by dividing TEER (T 120 ) after the test by TEER (T 0 ) at the start of the test and multiplying by 100, and each data shows an average value ± SEM (n = 4). The case where test solution 1, test solution 2, test solution 3, test solution 4, test solution 5, and test solution 6 are used in order from the top is shown. 試験例6の結果を示す。縦軸は血漿中のヒトインスリン濃度を示し、横軸は投与後の経過時間を示し、各データは平均値±SEM(n=2-4)を示す。「Insulin」は比較例1、「L-R1」は実施例5、「L-R1+L-W1」は実施例8を示す(表4参照)。The result of Test Example 6 is shown. The vertical axis shows the human insulin concentration in plasma, the horizontal axis shows the elapsed time after administration, and each data shows mean value ± SEM (n = 2-4). “Insulin” indicates Comparative Example 1, “L-R1” indicates Example 5, and “L-R1 + L-W1” indicates Example 8 (see Table 4). 試験例7の結果を示す。縦軸は血漿中のヒトインスリン濃度を示し、横軸は投与後の経過時間を示し、各データは平均値±SEM(n=2-6)を示す。「Insulin」は比較例1、「16 mM」は実施例9、「32 mM」は実施例10を示す(表5参照)。The result of Test Example 7 is shown. The vertical axis represents the human insulin concentration in plasma, the horizontal axis represents the elapsed time after administration, and each data represents mean ± SEM (n = 2-6). “Insulin” indicates Comparative Example 1, “16 μm” indicates Example 9, and “32 μm” indicates Example 10 (see Table 5). 試験例8の結果を示す。縦軸は血漿中のヒトインスリン濃度を示し、横軸は投与後の経過時間を示し、各データは平均値±SEM(n=2-6)を示す。「Insulin」は比較例1、「16 mM」は実施例11、「32 mM」は実施例12を示す(表6参照)。The result of Test Example 8 is shown. The vertical axis represents the human insulin concentration in plasma, the horizontal axis represents the elapsed time after administration, and each data represents mean ± SEM (n = 2-6). “Insulin” represents Comparative Example 1, “16 μm” represents Example 11, and “32 μm” represents Example 12 (see Table 6). 試験例9の結果を示す。縦軸は腸液中のLDH(lactate dehydrogenase)濃度を示し、各データは平均値±SEM(n=3)を示す。「PBS」は溶液A、「Insulin」は溶液B、「+L-R1 (40 mM)」は溶液C、「+L-W1 (16 mM)」は溶液D、「+L-W1 (32 mM)」は溶液E、「+L-R1 (40 mM) +L-W1 (50 mM)」は溶液F、「Sodium taurodeoxycholate」は溶液Gを示す。The result of Test Example 9 is shown. The vertical axis represents the LDH (lactate dehydrogenase) concentration in the intestinal fluid, and each data represents the mean ± SEM (n = 3). “PBS” is solution A, “Insulin” is solution B, “+ L-R1 (40 mM)” is solution C, “+ L-W1 (16 mM)” is solution D, and “+ L-W1 (32 mM)” is Solution E, “+ L-R1 (40 mM) + L-W1 (50 mM)” represents solution F, and “Sodium taurodeoxycholate” represents solution G. 試験例10の結果を示す。縦軸は、血糖値の、投与前の値を100%とした場合の相対値を示し、横軸は投与後の経過時間を示し、各データは平均値±SEM(n=4-6)を示す。「L-R1」は L-アルギニンを示す。The result of Test Example 10 is shown. The vertical axis shows the relative value of the blood glucose level when the pre-administration value is 100%, the horizontal axis shows the elapsed time after the administration, and each data shows the mean value ± SEM (n = 4-6) Show. “L-R1” represents L-arginine.
 本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。 In this specification, the expressions “containing” and “including” include the concepts of “containing”, “including”, “consisting essentially of”, and “consisting only of”.
 本発明は、(a成分)塩基性アミノ酸、(b成分)2~5つの塩基性アミノ酸から構成されるペプチド、及び(c成分)トリプトファンからなる群より選択される少なくとも1種を含有する、薬物の経粘膜吸収促進剤(本明細書において、「本発明の経粘膜吸収促進剤」と示すこともある。)、並びに本発明の経粘膜吸収促進剤及び薬物を含有する、医薬組成物(本明細書において、「本発明の医薬組成物」と示すこともある。)に関する。以下に、これらについて説明する。 The present invention relates to a drug comprising (a component) a basic amino acid, (b component) a peptide composed of 2 to 5 basic amino acids, and (c component) at least one selected from the group consisting of tryptophan A transmucosal absorption enhancer (also referred to herein as “the transmucosal absorption enhancer of the present invention”), and a pharmaceutical composition (the present invention) containing the transmucosal absorption enhancer of the present invention and a drug. In the specification, it may be referred to as “the pharmaceutical composition of the present invention”). These will be described below.
 塩基性アミノ酸は、側鎖に塩基性官能基を有し、且つ等電点がアルカリ性領域にあるアミノ酸(好ましくはα-アミノ酸)であれば特に制限されない。 The basic amino acid is not particularly limited as long as the amino acid has a basic functional group in the side chain and an isoelectric point in the alkaline region (preferably an α-amino acid).
 塩基性官能基としては、例えばグアニジノ基、アミノ基、イミダゾリル基等が挙げられ、好ましくはグアニジノ基、アミノ基等が挙げられ、より好ましくはグアニジノ基が挙げられる。 Examples of the basic functional group include a guanidino group, an amino group, an imidazolyl group and the like, preferably a guanidino group and an amino group, and more preferably a guanidino group.
 塩基性アミノ酸の等電点は、例えば7超、好ましくは7.5以上、より好ましくは9以上、さらに好ましくは10以上である。等電点の上限は特に限定されないが、例えば14である。 The isoelectric point of the basic amino acid is, for example, more than 7, preferably 7.5 or more, more preferably 9 or more, and further preferably 10 or more. Although the upper limit of an isoelectric point is not specifically limited, For example, it is 14.
 塩基性アミノ酸の具体例としては、例えば天然アミノ酸であるアルギニン、リシン、ヒスチジン、オルニチン、シトルリン等が挙げられる。これらの中でも、経粘膜吸収促進効果の観点から、好ましくはアルギニン、リシン等が挙げられ、より好ましくはアルギニンが挙げられる。 Specific examples of basic amino acids include natural amino acids such as arginine, lysine, histidine, ornithine and citrulline. Among these, from the viewpoint of promoting transmucosal absorption, arginine, lysine and the like are preferable, and arginine is more preferable.
 塩基性アミノ酸の立体配置は、特に制限されず、L体又はD体のいずれでもよい。経粘膜吸収促進効果がより高いという観点、及び/又は用量依存的に経粘膜吸収促進効果がより向上するという観点から、塩基性アミノ酸はL-アミノ酸であることが好ましい。 The configuration of the basic amino acid is not particularly limited, and may be either L-form or D-form. From the viewpoint that the transmucosal absorption promoting effect is higher and / or the transmucosal absorption promoting effect is further improved in a dose-dependent manner, the basic amino acid is preferably an L-amino acid.
 塩基性アミノ酸から構成されるペプチドとは、複数の塩基性アミノ酸同士(好ましくは塩基性アミノ酸の主鎖上のアミノ基及びカルボキシル基)がペプチド結合してなるペプチドであり、この限りにおいて特に制限されない。 A peptide composed of basic amino acids is a peptide formed by peptide bonding of a plurality of basic amino acids (preferably an amino group and a carboxyl group on the main chain of the basic amino acid), and is not particularly limited as long as this is the case. .
 該ペプチドを構成する塩基性アミノ酸の数は2~5つであり、好ましくは2~4つである。 The number of basic amino acids constituting the peptide is 2-5, preferably 2-4.
 該ペプチドは、1種の塩基性アミノ酸のみから構成されるものであってもよく、2種以上の塩基性アミノ酸から構成されるものであってもよい。 The peptide may be composed of only one basic amino acid or may be composed of two or more basic amino acids.
 トリプトファンの立体配置は、特に制限されず、L体又はD体のいずれでもよい。経粘膜吸収促進効果がより高いという観点、及び/又は用量依存的に経粘膜吸収促進効果がより向上するという観点から、トリプトファンはL体であることが好ましい。 The configuration of tryptophan is not particularly limited, and may be either L-form or D-form. From the viewpoint that the transmucosal absorption promoting effect is higher and / or the transmucosal absorption promoting effect is further improved in a dose-dependent manner, tryptophan is preferably L-form.
 塩基性アミノ酸、塩基性アミノ酸から構成されるペプチド、及びトリプトファンは、経粘膜吸収促進効果を有する限りにおいて、化学修飾されたものであってもよい。なお、経粘膜吸収促進効果の有無は、公知の方法に従って又は準じて判定することができ、例えば後述の試験例1に記載の方法に従って又は準じて判定することができる。 The basic amino acid, the peptide composed of the basic amino acid, and tryptophan may be chemically modified as long as they have a transmucosal absorption promoting effect. In addition, the presence or absence of the transmucosal absorption promoting effect can be determined according to or according to a known method. For example, it can be determined according to or according to the method described in Test Example 1 described later.
 塩基性アミノ酸、塩基性アミノ酸から構成されるペプチド、及びトリプトファンは、主鎖末端のカルボキシ基が、カルボキシレート(-COO)、アミド(-CONH)またはエステル(-COOR)のいずれであってもよい。 In basic amino acids, peptides composed of basic amino acids, and tryptophan, the carboxyl group at the end of the main chain is either carboxylate (—COO ), amide (—CONH 2 ) or ester (—COOR) Also good.
 ここでエステルにおけるRとしては、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチルなどのC1-6アルキル基;例えば、シクロペンチル、シクロヘキシルなどのC3-8シクロアルキル基;例えば、フェニル、α-ナフチルなどのC6-12アリール基;例えば、ベンジル、フェネチルなどのフェニル-C1-2アルキル基;α-ナフチルメチルなどのα-ナフチル-C1-2アルキル基などのC7-14アラルキル基;ピバロイルオキシメチル基などが用いられる。 Here, as R in the ester, for example, a C 1-6 alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl; for example, a C 3-8 cycloalkyl group such as cyclopentyl, cyclohexyl; C 6-12 aryl groups such as α-naphthyl; phenyl-C 1-2 alkyl groups such as benzyl and phenethyl; C 7- such as α-naphthyl-C 1-2 alkyl groups such as α-naphthylmethyl; 14 aralkyl group; pivaloyloxymethyl group and the like are used.
 さらに、塩基性アミノ酸、塩基性アミノ酸から構成されるペプチド、及びトリプトファンには、主鎖末端のアミノ基が保護基(例えば、ホルミル基、アセチル基などのC1-6アルカノイルなどのC1-6アシル基など)で保護されているもの、側鎖上の置換基(例えばアミノ基、イミダゾイル基、グアニジノ基など)が適当な保護基(例えば、ホルミル基、アセチル基などのC1-6アルカノイル基などのC1-6アシル基など)で保護されているもの等も包含される。 Further, basic amino acids, peptides composed basic amino acids, and tryptophan, the main chain terminal amino group protecting group (e.g., formyl groups, C such as C 1-6 alkanoyl such as acetyl group 1-6 An acyl group or the like, or a substituent on the side chain (for example, an amino group, an imidazolyl group or a guanidino group) is an appropriate protecting group (for example, a C 1-6 alkanoyl group such as a formyl group or an acetyl group) And the like protected with a C 1-6 acyl group such as and the like.
 塩基性アミノ酸、塩基性アミノ酸から構成されるペプチド、及びトリプトファンは、酸または塩基との薬学的に許容される塩の形態であってもよい。塩は、薬学的に許容される塩である限り特に限定されず、酸性塩、塩基性塩のいずれも採用することができる。例えば酸性塩の例としては、塩酸塩、臭化水素酸塩、硫酸塩、硝酸塩、リン酸塩等の無機酸塩; 酢酸塩、プロピオン酸塩、酒石酸塩、フマル酸塩、マレイン酸塩、リンゴ酸塩、クエン酸塩、メタンスルホン酸塩、パラトルエンスルホン酸塩等の有機酸塩; アスパラギン酸塩、グルタミン酸塩等のアミノ酸塩等が挙げられる。また、塩基性塩の例として、ナトリウム塩、カリウム塩等のアルカリ金属塩; カルシウム塩、マグネシウム塩等のアルカリ土類金属塩等が挙げられる。 The basic amino acid, the peptide composed of the basic amino acid, and tryptophan may be in the form of a pharmaceutically acceptable salt with an acid or a base. The salt is not particularly limited as long as it is a pharmaceutically acceptable salt, and either an acidic salt or a basic salt can be employed. Examples of acid salts include inorganic acid salts such as hydrochloride, hydrobromide, sulfate, nitrate and phosphate; acetate, propionate, tartrate, fumarate, maleate, apple Organic acid salts such as acid salts, citrate salts, methanesulfonate salts, and paratoluenesulfonate salts; and amino acid salts such as aspartate salts and glutamate salts. Examples of basic salts include alkali metal salts such as sodium salts and potassium salts; alkaline earth metal salts such as calcium salts and magnesium salts.
 塩基性アミノ酸、塩基性アミノ酸から構成されるペプチド、及びトリプトファンは、溶媒和物の形態であってもよい。溶媒は、薬学的に許容されるものであれば特に限定されず、例えば水、エタノール、グリセロール、酢酸等が挙げられる。 The basic amino acid, the peptide composed of the basic amino acid, and tryptophan may be in the form of a solvate. The solvent is not particularly limited as long as it is pharmaceutically acceptable, and examples thereof include water, ethanol, glycerol, acetic acid and the like.
 塩基性アミノ酸(a成分)は、1種単独で用いることもできるし、任意の2種以上を組み合わせて用いることもできる。 Basic amino acids (component a) can be used singly or in combination of any two or more.
 塩基性アミノ酸から構成されるペプチド(b成分)は、1種単独で用いることもできるし、任意の2種以上を組み合わせて用いることもできる。 A peptide composed of basic amino acids (component b) can be used alone or in combination of any two or more.
 トリプトファン(c成分)は、1種単独で用いることもできるし、任意の2種以上を組み合わせて用いることもできる。 Tryptophan (component c) can be used singly or in combination of any two or more.
 本発明の経粘膜吸収促進剤は、有効成分として、a成分、b成分、及びc成分からなる群より選択される少なくとも1種を含有する限り、特に限定されない。経粘膜吸収促進効果がより高いという観点、及び/又は生体が日常的に接種しており安全性がより高いという観点から、本発明の経粘膜吸収促進剤は、有効成分としてa成分及びc成分からなる群より選択される少なくとも1種を含有することが好ましく、有効成分としてa成分及びc成分からなる群より選択される少なくとも1種のみを含有することがより好ましく、有効成分としてc成分のみを含有することがさらに好ましい。 The transmucosal absorption promoter of the present invention is not particularly limited as long as it contains at least one selected from the group consisting of a component, b component, and c component as an active ingredient. From the viewpoint that the transmucosal absorption promotion effect is higher, and / or from the viewpoint that the living body is inoculated daily and the safety is higher, the transmucosal absorption promoter of the present invention has an a component and a c component as active ingredients. It is preferable to contain at least one selected from the group consisting of, more preferably only at least one selected from the group consisting of a component and c component as active ingredients, and only c component as active ingredients It is more preferable to contain.
 a成分、b成分、及びc成分は、市販されているものをそのまま用いることができるし、公知の合成方法に従って又は準じて製造することもできる。 As the a component, the b component, and the c component, commercially available products can be used as they are, or they can be produced according to or according to a known synthesis method.
 限定的な解釈を望むものではないが、a成分及びb成分を採用する場合の本発明のメカニズムは以下のように考えられる。アルギニンオクタペプチド等の、塩基性アミノ酸を多く含む公知の細胞膜透過性ペプチドは、そのプラスチャージに起因して薬物と複合体を形成して細胞膜を透過することにより、薬物の経粘膜吸収性を向上させると考えられている(非特許文献6及び7)。よって、本発明の有効成分であるa成分及びb成分も、プラスチャージを有するものであり、同様のメカニズムに基づいてその効果を発揮していると考えられる。 Although a limited interpretation is not desired, the mechanism of the present invention in the case of employing the a component and the b component is considered as follows. Known cell membrane permeable peptides that contain many basic amino acids, such as arginine octapeptide, improve the transmucosal absorbability of the drug by forming a complex with the drug due to its positive charge and permeating the cell membrane (Non-Patent Documents 6 and 7). Therefore, the a component and the b component, which are effective components of the present invention, also have a positive charge, and are considered to exhibit the effect based on the same mechanism.
 したがって、本発明の経粘膜吸収促進剤が対象とする薬物は、特にa成分及びb成分を採用する場合は、生物活性を有し、且つa成分及び/又はb成分と電気的相互作用により複合体を形成できる薬物である限り特に限定されず、例えば等電点(pI)が中性領域から酸性領域、好ましくはpI:7以下(又は7未満)、より好ましくはpI:7~0.01、さらに好ましくはpI:6~0.1、よりさらに好ましくはpI:6~1の薬物が挙げられる。 Therefore, the drug targeted by the transmucosal absorption enhancer of the present invention has biological activity, particularly when the a component and the b component are adopted, and is combined with the a component and / or the b component by electrical interaction. The drug is not particularly limited as long as it is a drug capable of forming a body. For example, the isoelectric point (pI) is from a neutral region to an acidic region, preferably pI: 7 or less (or less than 7), more preferably pI: 7 to 0.01. More preferably, the drug has a pI of 6 to 0.1, and even more preferably a pI of 6 to 1.
 薬物の分子量は特に制限されない。例えば分子量100~1000000、好ましくは300~200000、より好ましくは800~100000、さらに好ましくは1500~50000、よりさらに好ましくは2000~10000の薬物が挙げられる。 The molecular weight of the drug is not particularly limited. For example, a drug having a molecular weight of 100 to 1000000, preferably 300 to 200000, more preferably 800 to 100000, still more preferably 1500 to 50000, and still more preferably 2000 to 10,000 can be mentioned.
 薬物の具体例としては、例えばペプチド、タンパク質、糖、多糖類、核酸、低分子化合物等が挙げられる。より具体的には、例えばインスリン、ガストリン、Exendin-4、GLP1、ロイプロリド、カルシトシン、インターフェロンβ、PEGylated protein、デキストラン、ナノ粒子等が挙げられる。 Specific examples of drugs include peptides, proteins, sugars, polysaccharides, nucleic acids, low molecular compounds, and the like. More specifically, for example, insulin, gastrin, Exendin-4, GLP1, leuprolide, calcitocin, interferon β, PEGylated protein, dextran, nanoparticles and the like can be mentioned.
 本発明の経粘膜吸収促進剤の対象となる粘膜は、特に制限されない。粘膜としては、例えば腸粘膜、胃粘膜、鼻粘膜、口腔粘膜、肺粘膜等が挙げられ、好ましくは腸粘膜が挙げられる。 The mucosa that is the target of the transmucosal absorption enhancer of the present invention is not particularly limited. Examples of the mucosa include intestinal mucosa, gastric mucosa, nasal mucosa, oral mucosa, lung mucous membrane, and the like, preferably intestinal mucosa.
 本発明の医薬組成物は、上述した本発明の経粘膜吸収促進剤と薬物とを含有する限り特に制限されず、必要に応じて他の成分を含んでいてもよい。他の成分としては、薬学的に許容される成分であれば特に限定されるものではないが、例えば基剤、担体、溶剤、分散剤、乳化剤、緩衝剤、安定剤、賦形剤、結合剤、崩壊剤、滑沢剤、増粘剤、保湿剤、着色料、香料、キレート剤等が挙げられる。 The pharmaceutical composition of the present invention is not particularly limited as long as it contains the above-described transmucosal absorption promoter of the present invention and a drug, and may contain other components as necessary. The other components are not particularly limited as long as they are pharmaceutically acceptable components. For example, bases, carriers, solvents, dispersants, emulsifiers, buffers, stabilizers, excipients, binders , Disintegrating agents, lubricants, thickeners, moisturizers, coloring agents, fragrances, chelating agents and the like.
 本発明の医薬組成物の剤形としては、粘膜からの吸収を目的とし得る剤形である限り特に限定されず、例えば錠剤、カプセル剤、顆粒剤、散剤、細粒剤、シロップ剤、腸溶剤、徐方性カプセル剤、咀嚼錠、ドロップ、丸剤、内用液剤、菓子錠剤、徐放剤、徐放性顆粒剤等の経口剤; 点鼻剤、吸入剤、肛門坐剤、挿入剤、浣腸剤、ゼリー剤等の外用剤等が挙げられる。また、本発明の医薬組成物は、固形剤、半固形剤、液剤のいずれでもよいが、好ましくは固形剤、半固形剤であり、より好ましくは固形剤である。 The dosage form of the pharmaceutical composition of the present invention is not particularly limited as long as it is a dosage form that can be absorbed from mucous membranes. For example, tablets, capsules, granules, powders, fine granules, syrups, intestinal solvents Oral preparations such as sustained release capsules, chewing tablets, drops, pills, liquids for internal use, confectionery tablets, sustained release agents, sustained release granules, etc .; nasal drops, inhalants, rectal suppositories, inserts, External preparations such as enemas and jelly agents can be mentioned. In addition, the pharmaceutical composition of the present invention may be any of a solid agent, a semisolid agent and a liquid agent, preferably a solid agent and a semisolid agent, more preferably a solid agent.
 本発明の医薬組成物中の薬物の含有量は、薬物の種類、投与対象、投与経路、剤形、患者の状態、及び医師の判断等に左右されるものであり、限定はされないが、例えば例えば0.0001~95重量%、好ましくは0.001~50重量%とすることができる。 The content of the drug in the pharmaceutical composition of the present invention depends on the type of drug, the subject to be administered, the administration route, the dosage form, the patient's condition, the judgment of the doctor, etc., and is not limited, for example, For example, it can be 0.0001 to 95% by weight, preferably 0.001 to 50% by weight.
 本発明の医薬組成物中のa成分及びb成分の合計含有量は、薬物の種類、投与対象、投与経路、剤形、患者の状態、及び医師の判断等に左右されるものであり、限定はされないが、例えば0.0001~95重量%、好ましくは0.001~50重量%とすることができる。 The total content of component a and component b in the pharmaceutical composition of the present invention depends on the type of drug, administration subject, administration route, dosage form, patient condition, doctor's judgment, etc. For example, it may be 0.0001 to 95% by weight, preferably 0.001 to 50% by weight.
 a成分及びb成分は比較的少なくともその効果を発揮することができる。このような観点から、本発明の医薬組成物は、例えば投与対象の体重1kgに対する1回あたりのa成分及びb成分の合計投与量が、1μg~200mg、好ましくは10μg~150mg、より好ましくは100μg~100mg、さらに好ましくは500μg~50mgとなるように用いられることが好ましい。 A component and b component can exhibit the effect relatively at least. From such a point of view, the pharmaceutical composition of the present invention has a total dose of component a and component b per 1 kg body weight of the subject to be administered, for example, 1 μg to 200 mg, preferably 10 μg to 150 mg, more preferably 100 μg. It is preferably used in an amount of ˜100 mg, more preferably 500 μg˜50 mg.
 以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
 試験例1:アルギニン又はアルギニンペプチドの経粘膜吸収促進作用の評価
 <試験例1-1:投与液の調製>
 各種量のリコンビナントヒトインスリン(27.5 IU/mg)(和光純薬工業社製)を、ポリプロピレンチューブ中で50μLの0.1N塩酸水溶液に溶解した後、これを、0.001%の濃度でメチルセルロースを含有する1.4 mLのPBS溶液(pH 6.0)で希釈して、さらに50μLの0.1N水酸化ナトリウム水溶液で標準化して、インスリン溶液を得た。一方で、被検物質として、各種量の塩基性アミノ酸(L-アルギニン)(和光純薬工業社製)又は各種量の塩基性アミノ酸オリゴペプチド(2 mer、4 mer、又は8 mer)をポリプロピレンチューブに量り採った後、これを、0.001%の濃度でメチルセルロースを含有するPBS溶液(pH 6.0)に溶解して、被検物質溶液を得た。上記のようにして得たインスリン溶液をそのまま、或いは上記のようにして得たインスリン溶液と被検物質溶液を等量ずつ混合したものを、投与液として以下の投与試験で用いた。
Test Example 1 : Evaluation of transmucosal absorption promoting action of arginine or arginine peptide < Test Example 1-1 : Preparation of administration solution>
Various amounts of recombinant human insulin (27.5 IU / mg) (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 50 μL of a 0.1N aqueous hydrochloric acid solution in a polypropylene tube, and this was then added to 1.4% containing methylcellulose at a concentration of 0.001%. The solution was diluted with mL of PBS solution (pH 6.0), and further standardized with 50 μL of 0.1N sodium hydroxide aqueous solution to obtain an insulin solution. On the other hand, various amounts of basic amino acid (L-arginine) (manufactured by Wako Pure Chemical Industries, Ltd.) or various amounts of basic amino acid oligopeptide (2 mer, 4 mer, or 8 mer) are used as a test substance in polypropylene tubes. Then, this was dissolved in a PBS solution (pH 6.0) containing methylcellulose at a concentration of 0.001% to obtain a test substance solution. The insulin solution obtained as described above was used as it was, or a solution obtained by mixing equal amounts of the insulin solution and the test substance solution obtained as described above was used as an administration solution in the following administration tests.
 <試験例1-2:投与試験>
 雄のSD(Sprague Dawley)ラット(体重180~220 g)(SLC社製)を用いて投与試験を行った。板上に固定された麻酔済みラットの腹部を正中切開して、回腸を露出させた。回盲部近位にカニューレを挿入し、液体の損失を防ぐためにしっかりと結紮してから腹腔内の元の場所に戻した。輸液ポンプを用いて、PBS(37℃)をカニューレを通して循環(5.0 mL/min、4分間)させた。カニューレのチューブを除去し、その部分を閉じた。手術による血糖値上昇を元に戻すために、ラットをそのまま30分間放置した。その後、上記試験例1-1で得た投与液0.5 mLを、回腸ループ内へ直接投与した。インスリン投与量、並びに投与液における被検物質の種類及び濃度を表1に示す。実施例1~3及び比較例2の被検物質の濃度は、アルギニンモノマーに換算した場合の濃度が同一に(8 mM)になるように調整されている。
< Test Example 1-2 : Administration test>
A male SD (Sprague Dawley) rat (body weight 180-220 g) (manufactured by SLC) was used for the administration test. A midline incision was made in the abdomen of the anesthetized rat fixed on the plate to expose the ileum. A cannula was inserted proximal to the ileocecum and ligated tightly to prevent fluid loss and then returned to its original position in the abdominal cavity. PBS (37 ° C.) was circulated through the cannula (5.0 mL / min, 4 minutes) using an infusion pump. The cannula tube was removed and the part closed. In order to reverse the increase in blood glucose level due to surgery, the rat was left for 30 minutes. Thereafter, 0.5 mL of the administration solution obtained in Test Example 1-1 was directly administered into the ileal loop. Table 1 shows the insulin dose and the type and concentration of the test substance in the administration solution. The concentrations of the test substances in Examples 1 to 3 and Comparative Example 2 are adjusted so that the concentrations when converted to arginine monomers are the same (8 mM).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <試験例1-3:経粘膜吸収促進作用の評価>
 試験例1-2において、投与前、並びに投与後5、10、15、30、60、120、及び180分経過後に採血した。得られた血液を遠心(13,400 g、1分間)して血漿を得た。血漿中のヒトインスリン(すなわち、投与された後、腸粘膜を経て吸収されたインスリン)の濃度を、ヒトインスリンELISAキット(メルコディア社製)を用いて測定した。測定結果を図1に示す。図1に示されるように、アルギニン又はアルギニンオリゴペプチドをインスリンと共に投与することにより、インスリン吸収が促進された。また、吸収促進作用の強さの順は、アルギニン(実施例1:L-R)>アルギニンジペプチド(実施例2:L-R2)>アルギニンテトラペプチド(実施例3:L-R4)>アルギニンオクタペプチド(比較例2:L-R8)であった。
< Test Example 1-3 : Evaluation of transmucosal absorption promoting action>
In Test Example 1-2, blood was collected before administration and after 5, 10, 15, 30, 60, 120, and 180 minutes after administration. The obtained blood was centrifuged (13,400 g, 1 minute) to obtain plasma. The concentration of human insulin in plasma (ie, insulin that was administered and then absorbed through the intestinal mucosa) was measured using a human insulin ELISA kit (Mercodia). The measurement results are shown in FIG. As shown in FIG. 1, insulin absorption was enhanced by administering arginine or arginine oligopeptide with insulin. Further, the order of the strength of the absorption promoting action is as follows: arginine (Example 1: LR)> arginine dipeptide (Example 2: L-R2)> arginine tetrapeptide (Example 3: L-R4)> arginine octapeptide ( Comparative Example 2: L-R8).
 試験例2:アルギニンの用量依存的な経粘膜吸収促進作用の評価
 投与液における被検物質の種類及び濃度を表2に示すものとする以外は、試験例1と同様にして試験した。結果を図2に示す。図2に示されるように、アルギニンは用量依存的にインスリン吸収を促進した。
Test Example 2 : Evaluation of dose-dependent transmucosal absorption promoting action of arginine Tests were conducted in the same manner as in Test Example 1 except that the types and concentrations of the test substances in the administration solution were as shown in Table 2. The results are shown in FIG. As shown in FIG. 2, arginine promoted insulin absorption in a dose-dependent manner.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 試験例3:塩基性アミノ酸の経粘膜吸収促進作用の評価
 投与液における被検物質の種類及び濃度を表3に示すものとする以外は、試験例1と同様にして試験した。結果を図3に示す。図3に示されるように、アルギニン以外の塩基性アミノ酸であっても、インスリン吸収を促進した。また、吸収促進作用の強さの順は、アルギニン(実施例1:L-R)>リシン(実施例6:L-K)>ヒスチジン(実施例7:L-H)であった。
Test Example 3 : Evaluation of transmucosal absorption promoting action of basic amino acid Test was conducted in the same manner as in Test Example 1 except that the type and concentration of the test substance in the administration solution were as shown in Table 3. The results are shown in FIG. As shown in FIG. 3, even basic amino acids other than arginine promoted insulin absorption. Moreover, the order of the strength of the absorption promoting action was arginine (Example 1: LR)> lysine (Example 6: LK)> histidine (Example 7: LH).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試験例4:腸上皮組織のintegrityへの影響の評価1
 試験例1の後、回腸を20 mLのPBS(37℃)で処理してから、空気を通じた。0.5 mLの溶液を、回腸ループ内へ直接投与した。投与に供した溶液は以下の4種である:
  溶液1:PBS
  溶液2:インスリンを含有するPBS(インスリン量:50 IU/体重(kg))
  溶液3:40 mMの濃度でL-アルギニンを含有するPBS
  溶液4:5%(w/v)の濃度でタウロデオキシコール酸ナトリウムを含有するPBS。
Test Example 4 : Evaluation of the effect of intestinal epithelial tissue on integrity 1
After Test Example 1, the ileum was treated with 20 mL of PBS (37 ° C.) and then air was passed through. 0.5 mL of the solution was administered directly into the ileal loop. There are four types of solutions used for administration:
Solution 1: PBS
Solution 2: PBS containing insulin (insulin content: 50 IU / body weight (kg))
Solution 3: PBS containing L-arginine at a concentration of 40 mM
Solution 4: PBS containing sodium taurodeoxycholate at a concentration of 5% (w / v).
 投与から3時間経過後、回腸ループを5.0 mLのPBSで洗浄し、腸液を回収した。腸液中のLDH(lactate dehydrogenase)濃度をLDHキットを用いて測定した。測定結果を図4に示す。図4に示されるように、ポジティブコントロールであるタウロデオキシコール酸ナトリウムを投与した場合、PBSを投与した場合に比べて、腸液中のLDH濃度が極めて高かった。このことは、タウロデオキシコール酸ナトリウムにより、腸上皮のintegrityが崩れたため、本来血中に存在するLDHが腸上皮を通して漏出したことを示す。これに対して、アルギニンを投与した場合の腸液中のLDH濃度はPBSを投与した場合からほぼ変化が無かったことから、アルギニンは、腸上皮組織のintegrityに対して影響が極めて少ない、安全性が高い成分であることが示された。 After 3 hours from administration, the ileal loop was washed with 5.0 mL of PBS, and the intestinal fluid was collected. The concentration of LDH (lactate dehydrogenase) in the intestinal fluid was measured using an LDH kit. The measurement results are shown in FIG. As shown in FIG. 4, the LDH concentration in the intestinal fluid was much higher when sodium taurodeoxycholate, which is a positive control, was administered, compared to when PBS was administered. This indicates that the integrity of the intestinal epithelium was disrupted by sodium taurodeoxycholate, so that LDH originally present in the blood leaked through the intestinal epithelium. In contrast, the LDH concentration in the intestinal fluid when arginine was administered was almost unchanged from that when PBS was administered. It was shown to be a high component.
 試験例5:上皮組織のタイトジャンクション構造への影響の評価1
 アルギニン等の被検物質を作用させた後の培養細胞層の電気抵抗(TEER:transepithelial electrical resistance)に基づいて、被検物質のタイトジャンクション構造への影響を評価した。具体的には次のように行った。
Test Example 5 : Evaluation 1 of the effect of the epithelial tissue on the tight junction structure
The influence of the test substance on the tight junction structure was evaluated based on the electrical resistance (TEER) of the cultured cell layer after the test substance such as arginine was allowed to act. Specifically, it was performed as follows.
 ヒト結腸がん由来細胞(Caco-2細胞)を12ウェルトランスウェルプレートに播種(1.0×105cells/cm2)し、DMEM培地中で、21日間(一定のTEER(>500Ωcm2)(単層中にタイトジャンクションが形成されたことを示す。)に達するまで)培養した。トランスウェルのapical側に500μLのトランスポートバッファー1(10 mMのMESで緩衝化したHBSS)を加え、basal側に1.5 mLのトランスポートバッファー2(10 mMのHEPES(pH7.4)で緩衝化したHBSS)を加えて、30分間のプレインキュベーションを行った。プレインキュベーション後に電圧抵抗計(Millicell ERS-2、ミリポア社製)を用いてTEERを測定し、得られた値を試験開始時のTEER(T0)とした。apical側のトランスポートバッファー1の内の100μLを、100μLの被検物質含有試験溶液に置換し、2時間インキュベーションした。試験溶液に置換後のapical側のチャンバー内における、被検物質の種類及び濃度は以下のとおりである:
  試験溶液1:インスリン15μM
  試験溶液2:インスリン15μM、L-アルギニン480μM
  試験溶液3:インスリン15μM、L-アルギニン960μM
  試験溶液4:インスリン15μM、D-アルギニン480μM
  試験溶液5:インスリン15μM、D-アルギニン960μM
  試験溶液6:インスリン15μM、D-アルギニンオクタペプチド60μM。
Human colon cancer-derived cells (Caco-2 cells) are seeded in a 12-well transwell plate (1.0 × 10 5 cells / cm 2 ) and cultured in DMEM medium for 21 days (constant TEER (> 500 Ωcm 2 ) (single It was shown that tight junctions were formed in the layer. 500 μL of transport buffer 1 (HBSS buffered with 10 mM MES) was added to the apical side of the transwell, and buffered with 1.5 mL of transport buffer 2 (10 mM HEPES (pH 7.4)) on the basal side HBSS) was added and a 30 minute preincubation was performed. After pre-incubation, TEER was measured using a voltage resistance meter (Millicell ERS-2, manufactured by Millipore), and the obtained value was defined as TEER (T 0 ) at the start of the test. 100 μL of the apical side transport buffer 1 was replaced with 100 μL of a test substance-containing test solution, and incubated for 2 hours. The types and concentrations of the test substances in the chamber on the apical side after replacement with the test solution are as follows:
Test solution 1: insulin 15μM
Test solution 2: insulin 15 μM, L-arginine 480 μM
Test solution 3: insulin 15 μM, L-arginine 960 μM
Test solution 4: insulin 15 μM, D-arginine 480 μM
Test solution 5: insulin 15 μM, D-arginine 960 μM
Test solution 6: insulin 15 μM, D-arginine octapeptide 60 μM.
 インキュベーション後、電圧抵抗計(Millicell ERS-2、ミリポア社製)を用いてTEERを測定し、得られた値と試験後のTEER(T120)とした。試験後のTEER(T120)を試験開始時のTEER(T0)で除して、100をかけた値を図5に示す。図5に示されるように、アルギニンを非常に高濃度で作用させても、TEERにほとんど変化は無かった。このことから、アルギニンは、腸上皮組織のタイトジャンクション構造への影響が極めて少ない、安全性が高い成分であることが示された。 After the incubation, TEER was measured using a voltage resistance meter (Millicell ERS-2, manufactured by Millipore), and the obtained value and TEER (T 120 ) after the test were obtained. FIG. 5 shows a value obtained by dividing TEER (T 120 ) after the test by TEER (T 0 ) at the start of the test and multiplying by 100. As shown in FIG. 5, there was almost no change in TEER even when arginine was allowed to act at a very high concentration. From this, it was shown that arginine is a highly safe component that has very little influence on the tight junction structure of the intestinal epithelial tissue.
 試験例6:塩基性アミノ酸とトリプトファンの併用による経粘膜吸収促進作用の評価
 投与液における被検物質の種類及び濃度を表4に示すものとする以外は、試験例1と同様にして試験した。結果を図6に示す。図6に示されるように、塩基性アミノ酸にトリプトファンを併用することにより、インスリン吸収がより促進された。
Test Example 6 : Evaluation of transmucosal absorption promoting effect by combined use of basic amino acid and tryptophan Test was conducted in the same manner as in Test Example 1 except that the type and concentration of the test substance in the administration solution were as shown in Table 4. The results are shown in FIG. As shown in FIG. 6, insulin absorption was further promoted by using tryptophan in combination with a basic amino acid.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 試験例7:L-トリプトファン単独の経粘膜吸収促進作用の評価
 投与液における被検物質の種類及び濃度を表5に示すものとする以外は、試験例1と同様にして試験した。結果を図7に示す。図7に示されるように、L-トリプトファンにより、インスリン吸収がより促進された。
Test Example 7 : Evaluation of transmucosal absorption promoting action of L-tryptophan alone Tested in the same manner as in Test Example 1 except that the type and concentration of the test substance in the administration solution were as shown in Table 5. The results are shown in FIG. As shown in FIG. 7, L-tryptophan further promoted insulin absorption.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 試験例8:D-トリプトファン単独の経粘膜吸収促進作用の評価
 投与液における被検物質の種類及び濃度を表6に示すものとする以外は、試験例1と同様にして試験した。結果を図8に示す。図8に示されるように、D-トリプトファンにより、インスリン吸収がより促進された。
Test Example 8 : Evaluation of transmucosal absorption promoting action of D-tryptophan alone Tested in the same manner as in Test Example 1 except that the type and concentration of the test substance in the administration solution were as shown in Table 6. The results are shown in FIG. As shown in FIG. 8, insulin absorption was further promoted by D-tryptophan.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 試験例9:腸上皮組織のintegrityへの影響の評価2
 投与液として、以下の7種の溶液を用いる以外は、試験例4と同様にして試験した:
  溶液A:0.001%の濃度でメチルセルロースを含有するPBS
  溶液B:インスリンを含有するPBS(インスリン量:50 IU/体重(kg))
  溶液C:40 mMの濃度でL-アルギニンを含有するPBS
  溶液D:16 mMの濃度でL-トリプトファンを含有するPBS
  溶液E:32 mMの濃度でL-トリプトファンを含有するPBS
  溶液F:40 mMの濃度のL-アルギニン及び50 mMの濃度のL-トリプトファンを含有するPBS
  溶液G:5%(w/v)の濃度でタウロデオキシコール酸ナトリウムを含有するPBS。
Test Example 9 : Evaluation of the effect of intestinal epithelial tissue on the integrity 2
The test was conducted in the same manner as in Test Example 4 except that the following seven solutions were used as the administration solutions:
Solution A: PBS containing methylcellulose at a concentration of 0.001%
Solution B: PBS containing insulin (insulin content: 50 IU / body weight (kg))
Solution C: PBS containing L-arginine at a concentration of 40 mM
Solution D: PBS containing L-tryptophan at a concentration of 16 mM
Solution E: PBS containing L-tryptophan at a concentration of 32 mM
Solution F: PBS containing L-arginine at a concentration of 40 mM and L-tryptophan at a concentration of 50 mM
Solution G: PBS containing sodium taurodeoxycholate at a concentration of 5% (w / v).
 測定結果を図9に示す。図9に示されるように、ポジティブコントロールであるタウロデオキシコール酸ナトリウムを投与した場合、PBSを投与した場合に比べて、腸液中のLDH濃度が極めて高かった。このことは、タウロデオキシコール酸ナトリウムにより、腸上皮のintegrityが崩れたため、本来細胞内に存在するLDHが腸上皮を通して漏出したことを示す。これに対して、トリプトファンを投与した場合の腸液中のLDH濃度はPBSを投与した場合からほぼ変化が無かったことから、トリプトファンは、腸上皮組織のintegrityに対して影響が極めて少ない、安全性が高い成分であることが示された。 The measurement results are shown in FIG. As shown in FIG. 9, when sodium taurodeoxycholate, which is a positive control, was administered, the LDH concentration in the intestinal fluid was extremely higher than when PBS was administered. This indicates that the integrity of the intestinal epithelium was disrupted by sodium taurodeoxycholate, so that LDH originally present in the cell leaked through the intestinal epithelium. On the other hand, the LDH concentration in the intestinal fluid when tryptophan was administered had almost no change from that when PBS was administered, so tryptophan has very little effect on the integrity of the intestinal epithelial tissue and is safe. It was shown to be a high component.
 試験例10:In vivo経口投与試験
 24 時間絶食後のマウスに、インスリン (50 IU/kg)、 L-アルギニン (200 mM)、 あるいはインスリンと L-アルギニン (40 or 200 mM) (100μL) 混合溶液を経口ゾンデ(i..d. 0.9 × length 50 mm) (Natsume Seisakusho Co., Ltd., Tokyo, Japan)を用いて経口投与した。 投与前、並びに投与後15、30、60、120、180、240、300、及び360分後に、尾静脈から採血し(一滴)、経時的に血糖値をOne Touch Ultra View( Johnson & Johnson K.K., Tokyo, Japan)を用いて測定した。
Test Example 10 : In vivo oral administration test In mice after a 24-hour fast, insulin (50 IU / kg), L-arginine (200 mM), or insulin and L-arginine (40 or 200 mM) (100 μL) mixed solution Was orally administered using an oral sonde (i..d. 0.9 × length 50 mm) (Natsume Seisakusho Co., Ltd., Tokyo, Japan). Before administration, and 15, 30, 60, 120, 180, 240, 300, and 360 minutes after administration, blood was collected from the tail vein (one drop), and blood glucose level was measured over time with One Touch Ultra View (Johnson & Johnson KK, Tokyo, Japan).
 測定結果を図10に示す。図10に示されるように、インスリン又はL-アルギニンを単独で経口投与しても血糖値は抑制されないが、インスリンをL-アルギニンと共に経口投与することにより血糖値が抑制された。 The measurement results are shown in FIG. As shown in FIG. 10, the blood glucose level was not suppressed by oral administration of insulin or L-arginine alone, but the blood glucose level was suppressed by oral administration of insulin with L-arginine.

Claims (13)

  1. (a成分)塩基性アミノ酸、
    (b成分)2~5つの塩基性アミノ酸から構成されるペプチド、及び
    (c成分)トリプトファン
    からなる群より選択される少なくとも1種を含有する、薬物の経粘膜吸収促進剤。
    (Component a) basic amino acid,
    (B component) A transmucosal absorption enhancer of a drug, comprising at least one selected from the group consisting of (b component) a peptide composed of 2 to 5 basic amino acids, and (c component) tryptophan.
  2. 前記塩基性アミノ酸がL-アミノ酸である、請求項1に記載の経粘膜吸収促進剤。 The transmucosal absorption enhancer according to claim 1, wherein the basic amino acid is an L-amino acid.
  3. 前記a成分を含有する、請求項1又は2に記載の経粘膜吸収促進剤。 The transmucosal absorption enhancer according to claim 1 or 2, comprising the component a.
  4. 前記塩基性アミノ酸がアルギニン、リシン、及びヒスチジンからなる群より選択される少なくとも1種である、請求項1~3のいずれかに記載の経粘膜吸収促進剤。 The transmucosal absorption enhancer according to any one of claims 1 to 3, wherein the basic amino acid is at least one selected from the group consisting of arginine, lysine, and histidine.
  5. 前記塩基性アミノ酸がアルギニンである、請求項1~4のいずれかに記載の経粘膜吸収促進剤。 The transmucosal absorption enhancer according to any one of claims 1 to 4, wherein the basic amino acid is arginine.
  6. 前記b成分が2~4つの塩基性アミノ酸から構成されるペプチドである、請求項1~5のいずれかに記載の経粘膜吸収促進剤。 The transmucosal absorption promoter according to any one of claims 1 to 5, wherein the component b is a peptide composed of 2 to 4 basic amino acids.
  7. 前記c成分を含有する、請求項1~6のいずれかに記載の経粘膜吸収促進剤。 The transmucosal absorption promoter according to any one of claims 1 to 6, comprising the component c.
  8. 前記粘膜が腸粘膜である、請求項1~7のいずれかに記載の経粘膜吸収促進剤。 The transmucosal absorption enhancer according to any one of claims 1 to 7, wherein the mucosa is intestinal mucosa.
  9. 前記薬物の等電点が7以下である、請求項1~8のいずれかに記載の経粘膜吸収促進剤。 The transmucosal absorption promoter according to any one of claims 1 to 8, wherein the drug has an isoelectric point of 7 or less.
  10. 前記薬物がペプチド又はタンパク質である、請求項1~9のいずれかに記載の経粘膜吸収促進剤。 The transmucosal absorption enhancer according to any one of claims 1 to 9, wherein the drug is a peptide or a protein.
  11. 請求項1~10のいずれかに記載の経粘膜吸収促進剤及び薬物を含有する、医薬組成物。 A pharmaceutical composition comprising the transmucosal absorption enhancer according to any one of claims 1 to 10 and a drug.
  12. 固形剤である、請求項11に記載の医薬組成物。 The pharmaceutical composition according to claim 11, which is a solid preparation.
  13. 経口剤である、請求項11又は12に記載の医薬組成物。 The pharmaceutical composition according to claim 11 or 12, which is an oral preparation.
PCT/JP2017/015181 2016-04-19 2017-04-13 Transmucosal absorption promoter for drug WO2017183559A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018513147A JPWO2017183559A1 (en) 2016-04-19 2017-04-13 Drug transmucosal absorption enhancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-083332 2016-04-19
JP2016083332 2016-04-19

Publications (1)

Publication Number Publication Date
WO2017183559A1 true WO2017183559A1 (en) 2017-10-26

Family

ID=60116713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015181 WO2017183559A1 (en) 2016-04-19 2017-04-13 Transmucosal absorption promoter for drug

Country Status (3)

Country Link
JP (1) JPWO2017183559A1 (en)
TW (1) TW201815410A (en)
WO (1) WO2017183559A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424239A (en) * 2018-07-11 2021-02-26 学校法人常翔学园 Polymer compound and intracellular compound introduction promoter using same
JP2021520391A (en) * 2018-04-06 2021-08-19 シプルメット・ゲーエムベーハー Pharmaceutical compositions for transmucosal delivery of therapeutic peptides and proteins
US11857547B2 (en) 2018-11-06 2024-01-02 Purdue Pharma L.P. Compositions and methods for opioid antagonist delivery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281589A (en) * 1999-03-26 2000-10-10 T T S Gijutsu Kenkyusho:Kk Transmucosal absorption adjuvant
JP2006510656A (en) * 2002-12-11 2006-03-30 チョン・クン・ダン・ファーマシューティカル・コーポレーション Oral preparations of polar drugs that are difficult to absorb
JP2006257074A (en) * 2005-02-16 2006-09-28 Toray Ind Inc Medicinal composition
US20150119340A1 (en) * 2013-10-29 2015-04-30 Samsung Electronics Co., Ltd. Fusion peptide and use thereof for cell membrane penetrating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281589A (en) * 1999-03-26 2000-10-10 T T S Gijutsu Kenkyusho:Kk Transmucosal absorption adjuvant
JP2006510656A (en) * 2002-12-11 2006-03-30 チョン・クン・ダン・ファーマシューティカル・コーポレーション Oral preparations of polar drugs that are difficult to absorb
JP2006257074A (en) * 2005-02-16 2006-09-28 Toray Ind Inc Medicinal composition
US20150119340A1 (en) * 2013-10-29 2015-04-30 Samsung Electronics Co., Ltd. Fusion peptide and use thereof for cell membrane penetrating

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BHARDWAJ I ET AL.: "Self-assembling tryptophan- based designer peptides as intracellular delivery vehicles", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 26, no. 2, 14 November 2015 (2015-11-14), pages 672 - 676, XP029380218 *
HIROSHI NAITO ET AL.: "Stimulation In Vitro of the Paracellular Calcium Transport by Lysine in Isolated Rat Ileum", REPORTS OF THE RESEARCH COMMITTEE OF ESSENTIAL AMINO ACIDS, vol. 152, 1998, pages 77 - 80 *
HITSUDA T ET AL.: "A protein transduction method using oligo-arginine(3R) for the delivery of transcription factors into cell nuclei", BIOMATERIALS, vol. 33, no. 18, 2012, pages 4665 - 4672, XP028411041 *
KAMEI N ET AL.: "Noninvasive insulin delivery: the great potential of cell -penetrating peptides", THERAPEUTIC DELIVERY, vol. 4, no. 3, 2013, pages 315 - 326 *
KAMEI N ET AL.: "Potential of single cationic amino acid molecule ''Arginine'' for stimulating oral absorption of insulin", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 521, no. 1, 2017, pages 176 - 183, XP029952216 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021520391A (en) * 2018-04-06 2021-08-19 シプルメット・ゲーエムベーハー Pharmaceutical compositions for transmucosal delivery of therapeutic peptides and proteins
JP7442823B2 (en) 2018-04-06 2024-03-05 シプルメット・ゲーエムベーハー Pharmaceutical compositions for transmucosal delivery of therapeutic peptides and therapeutic proteins
CN112424239A (en) * 2018-07-11 2021-02-26 学校法人常翔学园 Polymer compound and intracellular compound introduction promoter using same
CN112424239B (en) * 2018-07-11 2023-12-05 学校法人常翔学园 Polymer compound and intracellular compound introduction promoter using same
US11857547B2 (en) 2018-11-06 2024-01-02 Purdue Pharma L.P. Compositions and methods for opioid antagonist delivery
US11865112B2 (en) 2018-11-06 2024-01-09 Purdue Pharma L.P. Compositions and methods for opioid antagonist delivery

Also Published As

Publication number Publication date
JPWO2017183559A1 (en) 2019-02-21
TW201815410A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
JP5424887B2 (en) Transdermal delivery system for peptides and related compounds
US11129869B2 (en) Pharmaceutical compositions
EP0760677A1 (en) A pharmaceutical preparation comprising glucagon
NO326298B1 (en) Use of R&#39;-Glu-Trp-R &#39;&#39; dipeptides in the preparation of drugs
JPH08508299A (en) Cytokine inhibitor
WO2017183559A1 (en) Transmucosal absorption promoter for drug
ES2750258T3 (en) Methods and compositions for the prevention or treatment of Barth syndrome
RU2016110153A (en) New peptides and their analogues for use in the treatment of oral mucositis
CA2912635A1 (en) Angiotensin peptides in treating marfan syndrome and related disorders
ES2358018T3 (en) USE OF KAHALALIDA COMPOUNDS FOR THE MANUFACTURE OF A MEDICINAL PRODUCT FOR THE TREATMENT OF PSORIASIS.
JP5212492B2 (en) Pharmaceutical composition for nasal administration
JP5970439B2 (en) Transdermal delivery system for peptides and related compounds
JP6651493B2 (en) Transdermal delivery system for peptides and related compounds
WO2021129779A1 (en) Novel amphiphilic protein, preparation method therefor and use thereof
JP6421141B2 (en) Transdermal delivery system for peptides and related compounds
JP6853840B2 (en) Transdermal delivery system for peptides and related compounds
EP1740215A2 (en) Thiopeptide conjugates for drug delivery
AU2016213759B2 (en) Transdermal delivery systems of peptides and related compounds
WO2018147437A1 (en) Transmucosal absorption promoter for low-molecular pharmaceutical compound
JPH0645552B2 (en) Gastrointestinal atrophy improver
CN105440104A (en) Transdermal administration system of polypeptide and related compounds
WO2013044500A1 (en) Use of hepatitis c virus (hcv) immunogenic peptide or its derivatives in prevention or treatment of arthritis

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018513147

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785898

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785898

Country of ref document: EP

Kind code of ref document: A1