WO2017183469A1 - Composition et élément d'affichage à cristaux liquides l'utilisant - Google Patents

Composition et élément d'affichage à cristaux liquides l'utilisant Download PDF

Info

Publication number
WO2017183469A1
WO2017183469A1 PCT/JP2017/014324 JP2017014324W WO2017183469A1 WO 2017183469 A1 WO2017183469 A1 WO 2017183469A1 JP 2017014324 W JP2017014324 W JP 2017014324W WO 2017183469 A1 WO2017183469 A1 WO 2017183469A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
composition
compound represented
preferable
Prior art date
Application number
PCT/JP2017/014324
Other languages
English (en)
Japanese (ja)
Inventor
長島 豊
和樹 栗沢
芳典 岩下
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2017547020A priority Critical patent/JP6269906B1/ja
Priority to CN201780009658.0A priority patent/CN108603119A/zh
Publication of WO2017183469A1 publication Critical patent/WO2017183469A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present invention relates to a composition having a positive dielectric anisotropy ( ⁇ ) useful as a liquid crystal display material and a liquid crystal display device using the same.
  • Liquid crystal display elements are used in various measuring instruments, automobile panels, word processors, electronic notebooks, printers, computers, televisions, watches, advertisement display boards, etc., including clocks and calculators.
  • Typical liquid crystal display methods include TN (twisted nematic) type, STN (super twisted nematic) type, vertical alignment type using TFT (thin film transistor), and IPS (in-plane switching) type.
  • the liquid crystal composition used in these liquid crystal display elements is stable against external stimuli such as moisture, air, heat, light, etc., and exhibits a liquid crystal phase in the widest possible temperature range centering on room temperature. And a low driving voltage is required. Further, the liquid crystal composition is composed of several to several tens of kinds of compounds in order to optimize the dielectric anisotropy ( ⁇ ) or the refractive index anisotropy ( ⁇ n) for each display element. .
  • a liquid crystal composition having a negative ⁇ is used, and in a horizontal alignment type display such as a TN type, STN type, or IPS (in-plane switching) type, a liquid crystal composition having a positive ⁇ . Is used.
  • a driving method has been reported in which a liquid crystal composition having a positive ⁇ is vertically aligned when no voltage is applied and a horizontal electric field is applied to display the liquid crystal composition, and the necessity of a liquid crystal composition having a positive ⁇ is further increased. Yes.
  • low voltage driving, high-speed response, and a wide operating temperature range are required in all driving systems.
  • is positive, the absolute value is large, the viscosity ( ⁇ ) is small, and a high nematic phase-isotropic liquid phase transition temperature (Tni) is required.
  • Tni nematic phase-isotropic liquid phase transition temperature
  • composition of the liquid crystal composition aimed at high-speed response examples include, for example, compounds represented by formulas (A-1), (A-2) and (A-3), wherein ⁇ is a positive liquid crystal compound, and ⁇ is A liquid crystal composition using a combination of (B) which is a neutral liquid crystal compound has been disclosed (Patent Documents 1 to 4).
  • liquid crystal display elements has expanded, and there has been a significant change in the method of use and manufacturing. In order to cope with these changes, it has become necessary to optimize characteristics other than the basic physical property values as conventionally known. That is, liquid crystal display elements using a liquid crystal composition are widely used, such as VA type and IPS type, and super large size display elements having a size of 50 type or more are practically used. Became. Along with the increase in substrate size, the method of injecting liquid crystal composition into the substrate has become the main method of injection from the conventional vacuum injection method (ODF: One Drop Fill) method. The problem that the drop marks when dropped causes the display quality to deteriorate is brought to the surface.
  • ODF One Drop Fill
  • liquid crystal composition used for the active matrix drive liquid crystal display element driven by a TFT element or the like while maintaining the characteristics and performance required for a liquid crystal display element such as high-speed response performance, in addition to the characteristics of having a high specific resistance value or high voltage holding ratio, which are emphasized, and being stable against external stimuli such as light and heat, development in consideration of the manufacturing method of liquid crystal display elements has been required. ing.
  • the problem to be solved by the present invention is a composition having a positive ⁇ , a liquid crystal phase in a wide temperature range, low viscosity, good solubility at low temperature, specific resistance and voltage holding ratio.
  • a liquid composition such as FFS, IPS, or TN type that provides a high and stable composition against heat and light, and has excellent display quality by using this composition, and display defects such as image sticking and dripping marks are difficult to occur.
  • the object is to provide display elements with high yield.
  • the present inventors have studied various liquid crystal compounds and various chemical substances, and found that the above problems can be solved by combining specific liquid crystal compounds, and have completed the present invention.
  • R i1 and R ii1 each independently represent an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently Optionally substituted by —CH ⁇ CH—, —C ⁇ C—, —O—, —CO—, —COO— or —OCO—,
  • X i1 to X i4 and X ii1 to X ii6 each independently represent a hydrogen atom or a fluorine atom
  • X ii7 represents a fluorine atom, —CF 3 or —OCF 3
  • W ii1 represents —CH 2 — or —O—.
  • liquid crystal display element using the composition
  • a TN Transmission Nematic
  • ECB Electrode Controlled Birefringence
  • IPS In Plane Switching
  • FFS Frringe Field liquid crystal display
  • composition having positive dielectric anisotropy of the present invention can obtain a significantly low viscosity, has good solubility at low temperatures, and changes in specific resistance and voltage holding ratio due to heat and light are extremely high. Since it is small, the practicality of the product is high, and an IPS type or FFS type liquid crystal display element using the product can achieve high-speed response. In addition, since the performance can be stably exhibited in the liquid crystal display element manufacturing process, display defects due to the process can be suppressed and manufacturing can be performed with a high yield, which is very useful.
  • the composition of the present invention preferably exhibits a liquid crystal phase at room temperature (25 ° C.), and more preferably exhibits a nematic phase.
  • the composition of the present invention contains a dielectrically nearly neutral compound ( ⁇ value is ⁇ 2 to 2) and a positive compound ( ⁇ value is larger than 2).
  • the dielectric anisotropy of the compound is a value extrapolated from a measured value of the dielectric anisotropy of a composition prepared by adding to a dielectrically nearly neutral composition at 25 ° C.
  • content is described in% below, this means the mass%.
  • R i1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or alkenyloxy having 2 to 8 carbon atoms.
  • a group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable.
  • An alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is more preferable, an alkyl group having 2 to 5 carbon atoms is more preferable, and R i1 may be an alkyl group when reliability is important. preferable.
  • the total of carbon atoms and oxygen atoms when present is preferably 5 or less, and is preferably linear.
  • X i1 to X i4 each independently represents a hydrogen atom or a fluorine atom, and among these, it is preferable that the number of fluorine atoms is 2 or less, and it is preferable that only one is a fluorine atom.
  • X i1 and X i2 are preferably hydrogen atoms.
  • X i3 is preferably a hydrogen atom, and X i4 is preferably a fluorine atom.
  • X i3 is preferably a fluorine atom, and X i4 is preferably a hydrogen atom.
  • the lower limit of the preferable total content of the compound represented by formula (i) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8% and 10%.
  • the upper limit of the preferable content is 35%, 33%, 30%, 28%, 25%, 23%, 20%, 18%, 15% 13%, 10% and 8%.
  • R i1 represents the same meaning as R i1 in the general formula (i).
  • compounds represented by general formulas (i-1) to (i-5) compounds represented by general formulas (i-2) to (i-3) are preferable.
  • the compounds represented are preferred.
  • the lower limit of the preferable total content of the compound represented by the formula (i-2) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8% and 10%.
  • the upper limit of the preferable content is 18%, 15%, 13%, 10%, 8%, and 5%.
  • the lower limit of the preferable total content of the compound represented by formula (i-3) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8% and 10%.
  • the upper limit of the preferable content is 18%, 15%, 13%, 10%, 8%, and 5%.
  • Particularly preferred compounds are compounds represented by the following formulas (i-1-1) to (i-4-3).
  • formulas (i-1-1) to (i-4-3) below formulas (i-2-1), (i-2-2), (i-3-1) and A compound represented by (i-3-2) is preferred, a compound represented by formulas (i-2-2) and (i-3-2) is preferred, and a compound represented by formula (i-2-2) Are preferred.
  • the lower limit of the preferable content of the compound represented by formula (i-2-2) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8% and 10%.
  • the upper limit of the preferable content is 18%, 15%, 13%, 10%, 8%, and 5%.
  • the lower limit of the preferable content of the compound represented by the formula (i-3-2) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8% and 10%.
  • the upper limit of the preferable content is 18%, 15%, 13%, 10%, 8%, and 5%.
  • R ii1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkenyloxy having 2 to 8 carbon atoms.
  • a group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable.
  • An alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is more preferable, an alkyl group having 2 to 5 carbon atoms is more preferable, and R ii1 is an alkyl group when reliability is important. preferable.
  • the total of carbon atoms and oxygen atoms when present is preferably 5 or less, and is preferably linear.
  • X ii1 to X ii6 each independently represents a hydrogen atom or a fluorine atom, and among these, 3 to 5 fluorine atoms are preferable, and 4 or 5 are preferably fluorine atoms. .
  • X ii7 is preferably a fluorine atom or —OCF 3 , and preferably a fluorine atom.
  • W ii1 is preferably —O— when emphasizing the effect of improving the compatibility with other liquid crystal compounds and the dielectric anisotropy.
  • the lower limit of the preferable total content of the compound represented by the general formula (ii) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%.
  • the upper limit of the preferable content is 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% And 5%.
  • R ii1 represents the same meaning as R ii1 in general formula (ii).
  • compounds represented by the general formulas (ii-1) to (ii-4) are preferable, and in the general formula (ii-1) The compounds represented are preferred.
  • the lower limit of the preferable total content of the compound represented by the formula (ii-1) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8%, 10%, 13%, 15%, 18%.
  • the upper limit of the preferable content is 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% And 5%.
  • the lower limit of the preferable total content of the compound represented by formula (ii-2) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8% and 10%.
  • the upper limit of the preferable content is 18%, 15%, 13%, 10%, 8%, and 5%.
  • Particularly preferred compounds are compounds represented by the following formulas (ii-1-1) to (ii-4-3).
  • the lower limit of the preferable content of the compound represented by the formula (ii-1-1) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8% and 10%.
  • the upper limit of the preferable content is 18%, 15%, 13%, 10%, 8%, and 5%.
  • the lower limit of the preferable content of the compound represented by the formula (ii-1-2) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8% and 10%.
  • the upper limit of the preferable content is 18%, 15%, 13%, 10%, 8%, and 5%.
  • the formula (ii-1) when the compound represented by formula (ii-1-1) and the compound represented by formula (ii-1-2) are used in combination, the formula (ii-1) relative to the total amount of the composition of the present invention is used.
  • the lower limit of the preferred total content of the compound represented by -1) and the compound represented by formula (ii-1-2) is 5%, 8%, 10%, 13% 15% and 18%.
  • the upper limit of the preferable content is 30%, 25%, 23%, 20%, 18%, and 15%.
  • the lower limit of the preferable total content of the compound represented by the general formula (i) and the compound represented by the general formula (ii) with respect to the total amount of the composition of the present invention is 8%, 10% 13%, 15%, 18%, 20%, 23%, 26%, 28%, 30%.
  • the upper limit of the preferable total content is 50%, 45%, 43%, 40%, 38%, 36%, 33%, 30%, 28% and 25%.
  • Formulas (i-2-1), (i-2-2), (i-3-1), (i-3-2), present in the composition relative to the total amount of the composition of the present invention
  • the lower limit of the preferred total content of the compounds represented by (ii-1-1) and (ii-1-2) and the compound represented by general formula (ii) is 8%, Yes, 13%, 15%, 18%, 20%, 23%, 26%, 28%, 30%.
  • the upper limit of the preferable total content is 50%, 45%, 43%, 40%, 38%, 36%, 33%, 30%, 28% and 25%.
  • the lower limit of the preferable content of the compound represented by the formula (L-1-1.3) with respect to the total amount of the composition of the present invention is 3%, 5%, and 7%.
  • the upper limit of the preferable total content is 20%, 15%, 13%, 12%, 10%, 9%, 8%, 7%, 6%.
  • the lower limit of the preferable content of the compound represented by the formula (L-1-2.2) with respect to the total amount of the composition of the present invention is 8%, 10%, 15%, 20%, 25%, 28%, 30%, 33%, 35%, 38%, 40%, 43%.
  • the upper limit of the preferable total content is 60%, 58%, 55%, 53%, 50%, 48%, 46%, 42%, 40%, 38%, 36%, 32%, 30%.
  • the preferred total content of both compounds with respect to the total amount of the composition of the present invention is 15%, 18%, 20%, 23%, 26%, 28%, and 30%.
  • the upper limit of the preferable total content is 60%, 55%, 53%, 50%, 47%, 45%, 43%, 40%, 38%, 36%, 33%, 30%.
  • the amount of the compound represented by general formula (i), (ii), formula (L-1-1.3) and formula (L-1-2.2) contained in the composition of the present invention is
  • the lower limit of the preferable total content is 25%, 30%, 35%, 38%, 40%, 43%, and 45%.
  • the upper limit of the preferable total content is 80%, 75%, 73%, 70%, 67%, 65%, 63%, and 50%.
  • composition of the present invention preferably contains one or more compounds represented by the general formula (J). These compounds correspond to dielectrically positive compounds ( ⁇ is greater than 2).
  • R J1 represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently —CH ⁇ CH—, — Optionally substituted by C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n J1 represents 0, 1, 2, 3 or 4;
  • a J1 , A J2 and A J3 are each independently (A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O-.)
  • the group (a), the group (b) and the group (c) are each independently selected from the group consisting of cyano group, fluorine atom, chlorine atom, methyl group, trifluoromethyl group or trifluoro May be substituted with a methoxy group
  • Z J1 and Z J2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C ⁇ C—
  • n J1 is 2, 3 or 4 and a plurality of A J2 are present, they may be the same or different, and n J1 is 2, 3 or 4 and a plurality of Z J1 is present.
  • X J1 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a fluoromethoxy group, a difluoromethoxy group, a trifluoromethoxy group or a 2,2,2-trifluoroethyl group,
  • R J1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or alkenyloxy having 2 to 8 carbon atoms.
  • a group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable.
  • An alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is more preferable, an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms is more preferable, and an alkenyl group having 3 carbon atoms. (Propenyl group) is particularly preferred.
  • R J1 is preferably an alkyl group when emphasizing reliability, and is preferably an alkenyl group when emphasizing a decrease in viscosity.
  • the ring structure to which it is bonded is a phenyl group (aromatic)
  • An alkenyl group having 4 to 5 atoms is preferable
  • the ring structure to which the alkenyl group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane
  • a straight-chain alkoxy group having 1 to 4 carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms are preferred.
  • the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, and is preferably linear.
  • the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dot in each formula represents the carbon atom in the ring structure to which the alkenyl group is bonded.)
  • a J1 , A J2 and A J3 are preferably aromatic when it is required to independently increase ⁇ n, and are preferably aliphatic to improve the response speed.
  • Z J1 and Z J2 each independently preferably represent —CH 2 O—, —OCH 2 —, —CF 2 O—, —CH 2 CH 2 —, —CF 2 CF 2 — or a single bond, OCH 2 —, —CF 2 O—, —CH 2 CH 2 — or a single bond is more preferred, and —OCH 2 —, —CF 2 O— or a single bond is particularly preferred.
  • X J1 is preferably a fluorine atom or a trifluoromethoxy group, and more preferably a fluorine atom.
  • n J1 is preferably 0, 1, 2 or 3, preferably 0, 1 or 2, preferably 0 or 1 when emphasizing the improvement of ⁇ , and preferably 1 or 2 when emphasizing Tni .
  • the types of compounds that can be combined are used in combination according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the content of the compound represented by the general formula (J) is low temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, image sticking, It is necessary to appropriately adjust according to required performance such as dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the general formula (J) with respect to the total amount of the composition of the present invention is 1%, 10%, 20%, 30%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
  • the upper limit of the preferable content is, for example, 95%, 85%, 75%, 65%, and 55% with respect to the total amount of the composition of the present invention. Yes, 45%, 35%, 25%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention keeps Tni high and a composition having good temperature stability is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • R J1 is preferably an alkyl group when emphasizing reliability, and is preferably an alkenyl group when emphasizing a decrease in viscosity.
  • composition of the present invention preferably contains one or more compounds represented by the general formula (M). These compounds correspond to dielectrically positive compounds ( ⁇ is greater than 2).
  • R M1 represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently —CH ⁇ CH—, — Optionally substituted by C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n M1 represents 0, 1, 2, 3 or 4;
  • a M1 and A M2 are each independently (A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O- or -S- And (b) a 1,4-phenylene group (one —CH ⁇ present in this group or two or more non-adjacent —CH ⁇ may be replaced by —N ⁇ ).
  • a hydrogen atom on the group (a) and the group (b) may be independently substituted with a cyano group, a fluorine atom or a chlorine atom
  • Z M1 and Z M2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C ⁇ C—
  • n M1 is 2, 3 or 4 and a plurality of A M2 are present, they may be the same or different, and n M1 is 2, 3 or 4 and a plurality of Z M1 is present
  • X M1 and X M3 each independently represent a hydrogen atom, a chlorine atom or a fluorine atom
  • X M2 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a
  • R M1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkenyloxy having 2 to 8 carbon atoms.
  • a group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable.
  • An alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is more preferable, an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms is more preferable, and an alkenyl group having 3 carbon atoms. (Propenyl group) is particularly preferred.
  • R M1 is preferably an alkyl group when emphasizing reliability, and is preferably an alkenyl group when emphasizing a decrease in viscosity.
  • the ring structure to which it is bonded is a phenyl group (aromatic)
  • An alkenyl group having 4 to 5 atoms is preferable
  • the ring structure to which the alkenyl group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane
  • a straight-chain alkoxy group having 1 to 4 carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms are preferred.
  • the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, and is preferably linear.
  • the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dot in each formula represents the carbon atom in the ring structure to which the alkenyl group is bonded.)
  • a M1 and A M2 are preferably aromatic when it is required to independently increase ⁇ n, and are preferably aliphatic for improving the response speed, and trans-1,4 -Cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group, 2, 3-difluoro-1,4-phenylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6- It preferably represents a diyl group, decahydronaphthalene-2,6-diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and more preferably represents the following structure:
  • Z M1 and Z M2 each independently -CH 2 O -, - CF 2 O -, - CH 2 CH 2 -, - CF 2 CF 2 - or preferably a single bond, -CF 2 O-, —CH 2 CH 2 — or a single bond is more preferable, and —CF 2 O— or a single bond is particularly preferable.
  • n M1 is preferably 0, 1, 2, or 3, preferably 0, 1 or 2, preferably 0 or 1 when emphasizing the improvement of ⁇ , and preferably 1 or 2 when emphasizing Tni .
  • the types of compounds that can be combined are used in combination according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the content of the compound represented by the general formula (M) is low-temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, image sticking, It is necessary to appropriately adjust according to required performance such as dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (M) with respect to the total amount of the composition of the present invention is 1%, 10%, 20%, 30%, 40% %, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
  • the upper limit of the preferable content is, for example, 95%, 85%, 75%, 65%, and 55% with respect to the total amount of the composition of the present invention. Yes, 45%, 35%, 25%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention keeps Tni high and a composition having good temperature stability is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (M) is preferably, for example, a compound selected from the group of compounds represented by the general formula (M-1).
  • R M11 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • X M11 to X M15 each independently represents hydrogen. represents an atom or a fluorine atom
  • Y M11 represents a fluorine atom or OCF 3.
  • the type of the compound used is, for example, one type as one embodiment of the present invention, two types, and three or more types.
  • the lower limit of the preferable content of the compound represented by the formula (M-1) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8% 10%, 13%, 15%, 18%, 20%, 22%, 25%, 30%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention keeps Tni high and a composition having good temperature stability is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (M-1) is specifically preferably a compound represented by the formula (M-1.1) to the formula (M-1.4).
  • a compound represented by M-1.1) or formula (M-1.2) is preferred, and a compound represented by formula (M-1.2) is more preferred. It is also preferred to use the compounds represented by formula (M-1.1) or formula (M-1.2) at the same time.
  • the lower limit of the preferable content of the compound represented by the formula (M-1.1) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 6% It is.
  • the upper limit of the preferable content is 15%, 13%, 10%, 8%, and 5%.
  • the lower limit of the preferable content of the compound represented by the formula (M-1.2) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 6% It is.
  • the upper limit of the preferable content is 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% It is.
  • the lower limit of the preferable total content of the compounds represented by the formulas (M-1.1) and (M-1.2) with respect to the total amount of the composition of the present invention is 1%, %, 5% and 6%.
  • the upper limit of the preferable content is 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% It is.
  • the compound represented by the general formula (M) is preferably a compound selected from the group of compounds represented by the general formula (M-2), for example.
  • R M21 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • X M21 and X M22 each independently represent hydrogen represents an atom or a fluorine atom
  • Y M21 represents a fluorine atom, a chlorine atom or OCF 3.
  • the lower limit of the preferable content of the compound represented by the formula (M-1) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8% 10%, 13%, 15%, 18%, 20%, 22%, 25%, 30%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention is required to maintain a high Tni and hardly burn-in, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (M-2) is preferably a compound represented by the formula (M-2.1) to the formula (M-2.5). 3) or / and a compound represented by the formula (M-2.5) is preferable.
  • the lower limit of the preferable content of the compound represented by the formula (M-2.2) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 6% It is.
  • the upper limit of the preferable content is 15%, 13%, 10%, 8%, and 5%.
  • the lower limit of the preferable content of the compound represented by the formula (M-2.3) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 6% It is.
  • the upper limit of the preferable content is 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% It is.
  • the lower limit of the preferable content of the compound represented by the formula (M-2.5) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 6% It is.
  • the upper limit of the preferable content is 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% It is.
  • Lower limit value of the preferable total content of the compounds represented by formulas (M-2.2), (M-2.3) and formula (M-2.5) with respect to the total amount of the composition of the present invention Is 1%, 2%, 5%, 6%.
  • the upper limit of the preferable content is 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% It is.
  • the content is preferably 1% or more with respect to the total amount of the composition of the present invention, more preferably 5% or more, further preferably 8% or more, further preferably 10% or more, and more preferably 14% or more. 16% or more is particularly preferable.
  • the maximum ratio is preferably limited to 30% or less, more preferably 25% or less, more preferably 22% or less, and more preferably 20%. Less than is particularly preferred.
  • the compound represented by the general formula (M) is preferably a compound selected from the group represented by the general formula (M-4).
  • R M41 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • X M41 to X M48 are each independently fluorine.
  • Y M41 represents a fluorine atom, a chlorine atom or OCF 3.
  • the content of the compound represented by the general formula (M-4) is an upper limit and a lower limit for each embodiment in consideration of properties such as solubility at low temperatures, transition temperature, electrical reliability, and birefringence. There is a value.
  • the lower limit of the preferable content of the compound represented by the formula (M-4) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8%, 10%, 13%, 15%, 18%, and 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • composition of the present invention When used for a liquid crystal display device having a small cell gap, it is suitable to increase the content of the compound represented by the general formula (M-4).
  • a liquid crystal display element having a low driving voltage When used for a liquid crystal display element having a low driving voltage, it is suitable to increase the content of the compound represented by the general formula (M-4).
  • a liquid crystal display element used in a low temperature environment it is suitable to reduce the content of the compound represented by the general formula (M-4).
  • a composition used for a liquid crystal display device having a high response speed it is suitable to reduce the content of the compound represented by the general formula (M-4).
  • the compound represented by the general formula (M-4) used in the composition of the present invention is specifically represented by the formula (M-4.1) to the formula (M-4.4).
  • it is a compound, and among them, it is preferable to contain a compound represented by the formula (M-4.2) to the formula (M-4.4), and a compound represented by the formula (M-4.2) It is more preferable to contain.
  • the compound represented by the general formula (M) is preferably a compound represented by the general formula (M-5).
  • R M51 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • X M51 and X M52 are each independently hydrogen. represents an atom or a fluorine atom
  • Y M51 represents a fluorine atom, a chlorine atom or OCF 3.
  • the lower limit of the preferable content of the compound represented by the formula (M-5) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8% 10%, 13%, 15%, 18%, 20%, 22%, 25%, 30%.
  • the upper limit of the preferable content is 50%, 45%, 40%, 35%, 33%, 30%, 28%, 25%, 23% 20%, 18%, 15%, 13%, 10%, 8%, 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention is required to maintain a high Tni and hardly burn-in, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (M-5) is preferably a compound represented by the formula (M-5.1) to the formula (M-5.4), and the formula (M-5.
  • a compound represented by formula (M-5.4) is preferable.
  • the lower limit of the preferred content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8%, 10%, 13% Yes, 15%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-5) is preferably a compound represented by the formula (M-5.11) to the formula (M-5.17), and the formula (M-5. 11), a compound represented by formula (M-5.13) and formula (M-5.17) is preferable.
  • the lower limit of the preferred content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8%, 10%, 13% Yes, 15%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-5) is preferably a compound represented by the formula (M-5.21) to the formula (M-5.28), and the formula (M-5. 21), a compound represented by formula (M-5.22), formula (M-5.23) and formula (M-5.25).
  • the lower limit of the preferred content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8%, 10%, 13% Yes, 15%, 18%, 20%, 22%, 25%, 30%.
  • the upper limit of the preferable content is 40%, 35%, 33%, 30%, 28%, 25%, 23%, 20%, 18% 15% 13% 10% 8% 5%
  • the compound represented by the general formula (M) is preferably a compound represented by the general formula (M-6).
  • R M61 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • X M61 to X M64 are each independently fluorine.
  • Y M61 represents a fluorine atom, a chlorine atom or OCF 3
  • the lower limit of the preferable content of the compound represented by the formula (M-6) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8%, 10%, 13%, 15%, 18%, and 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • composition of the present invention When the composition of the present invention is used for a liquid crystal display device having a low driving voltage, it is suitable to increase the content of the compound represented by the general formula (M-6). In the case of a composition used for a liquid crystal display device having a high response speed, it is suitable to reduce the content of the compound represented by the general formula (M-6).
  • the compound represented by the general formula (M-6) is specifically preferably a compound represented by the formula (M-6.1) to the formula (M-6.4). It is preferable to contain a compound represented by M-6.2) and formula (M-6.4).
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-6) is specifically preferably a compound represented by the formula (M-6.11) to the formula (M-6.14). It is preferable to contain a compound represented by M-6.12) and formula (M-6.14).
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-6) is specifically preferably a compound represented by the formula (M-6.21) to the formula (M-6.24). It is preferable to contain a compound represented by formula (M-6.21), formula (M-6.22) and formula (M-6.24).
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-6) is specifically preferably a compound represented by the formula (M-6.31) to the formula (M-6.34). Among them, it is preferable to contain a compound represented by the formula (M-6.31) and the formula (M-6.32).
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-6) is specifically preferably a compound represented by the formula (M-6.41) to the formula (M-6.44). It is preferable to contain a compound represented by M-6.42).
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M) is preferably a compound selected from the group of compounds represented by the general formula (M-7).
  • X M71 to X M76 each independently represents a fluorine atom or a hydrogen atom
  • R M71 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or 1 to 4 represents an alkoxy group
  • Y M71 represents a fluorine atom or OCF 3.
  • the compound represented by formula (i) is excluded.
  • the content of the compound represented by the general formula (M-7) is an upper limit and a lower limit for each embodiment in consideration of properties such as solubility at low temperatures, transition temperature, electrical reliability, and birefringence. There is a value.
  • the lower limit of the preferable content of the compound represented by the formula (M-7) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • composition of the present invention When used for a liquid crystal display device having a small cell gap, it is suitable to increase the content of the compound represented by the general formula (M-7).
  • the composition of the present invention When used for a liquid crystal display element with a low driving voltage, it is suitable to increase the content of the compound represented by the general formula (M-7).
  • it when used for a liquid crystal display element used in a low temperature environment, it is suitable to reduce the content of the compound represented by the general formula (M-7).
  • a composition used for a liquid crystal display device having a high response speed it is suitable to reduce the content of the compound represented by the general formula (M-7).
  • the compound represented by the general formula (M-7) is preferably a compound represented by the formula (M-7.1) to the formula (M-7.4), and the formula (M-7. It is preferable that it is a compound represented by 2).
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-7) is preferably a compound represented by the formula (M-7.11) to the formula (M-7.14), and the formula (M-7. 11) and a compound represented by the formula (M-7.12) are preferable.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-7) is preferably a compound represented by the formula (M-7.21) to the formula (M-7.24). 21) and a compound represented by the formula (M-7.22) are preferable.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M) is preferably a compound represented by the general formula (M-8).
  • X M81 to X M84 each independently represents a fluorine atom or a hydrogen atom
  • Y M81 represents a fluorine atom, a chlorine atom or —OCF 3
  • R M81 represents an alkyl group having 1 to 5 carbon atoms
  • a M81 and A M82 are each independently 1,4-cyclohexylene group, 1,4-phenylene group or
  • the hydrogen atom on the 1,4-phenylene group may be substituted with a fluorine atom.
  • the lower limit of the preferable content of the compound represented by formula (M-8) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when a composition that does not easily cause seizure is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (M-8) used in the composition of the present invention is specifically represented by the formula (M-8.1) to the formula (M-8.4).
  • it is a compound, and among them, it is preferable to contain a compound represented by formula (M-8.1) or formula (M-8.2).
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-8) used in the composition of the present invention is specifically represented by the formula (M-8.11) to the formula (M-8.14).
  • a compound is preferable, and among them, a compound represented by the formula (M-8.12) is preferably included.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-8) used in the composition of the present invention is specifically represented by the formula (M-8.21) to the formula (M-8.24).
  • a compound is preferable, and among them, a compound represented by the formula (M-8.22) is preferably contained.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-8) used in the composition of the present invention is specifically represented by the formula (M-8.31) to the formula (M-8.34).
  • a compound is preferable, and among them, a compound represented by the formula (M-8.32) is preferably contained.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by formula (M-8) used in the composition of the present invention is specifically represented by formula (M-8.41) to formula (M-8.44).
  • a compound is preferable, and among them, a compound represented by the formula (M-8.42) is preferably included.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-8) used in the composition of the present invention is specifically represented by the formula (M-8.51) to the formula (M-8.54).
  • a compound is preferable, and among them, a compound represented by the formula (M-8.52) is preferably included.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M) may have the following partial structure in its structure.
  • the black spot in the formula represents a carbon atom in the ring structure to which the partial structure is bonded.
  • the compound having the partial structure is preferably a compound represented by general formulas (M-10) to (M-18).
  • the compound represented by the general formula (M-10) is as follows.
  • X M101 and X M102 each independently represent a fluorine atom or a hydrogen atom
  • Y M101 represents a fluorine atom, a chlorine atom or —OCF 3
  • R M101 represents an alkyl group having 1 to 5 carbon atoms
  • W M101 and W M102 each independently represent —CH 2 — or —O—.
  • the lower limit of the preferable content of the compound represented by the general formula (M-10) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when a composition that does not easily cause seizure is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by formula (M-10) used in the composition of the present invention is specifically represented by formula (M-10.1) to formula (M-10.12).
  • a compound is preferable, and among them, a compound represented by formula (M-10. 5) to formula (M-10.12) is preferably contained.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-11) is as follows.
  • X M111 to X M114 each independently represents a fluorine atom or a hydrogen atom
  • Y M111 represents a fluorine atom, a chlorine atom or —OCF 3
  • R M111 represents an alkyl group having 1 to 5 carbon atoms
  • the lower limit of the preferable content of the compound represented by the general formula (M-11) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when a composition that does not easily cause seizure is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (M-11) used in the composition of the present invention is specifically represented by the formula (M-11.1) to the formula (M-11.8).
  • a compound is preferable, and among them, a compound represented by formula (M-11.1) to formula (M-11.4) is preferably contained.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-12) is as follows.
  • X M121 and X M122 each independently represent a fluorine atom or a hydrogen atom
  • Y M121 represents a fluorine atom, a chlorine atom or —OCF 3
  • R M121 represents an alkyl group having 1 to 5 carbon atoms
  • W M121 and W M122 each independently represent —CH 2 — or —O—.
  • the lower limit of the preferable content of the compound represented by formula (M-12) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when a composition that does not easily cause seizure is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (M-12) used in the composition of the present invention is specifically represented by the formula (M-12.1) to the formula (M-12.12).
  • a compound is preferable, and among them, a compound represented by formula (M-12.5) to formula (M-12.8) is preferably contained.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-13) is as follows.
  • X M131 to X M134 each independently represents a fluorine atom or a hydrogen atom
  • Y M131 represents a fluorine atom, a chlorine atom or —OCF 3
  • R M131 represents an alkyl group having 1 to 5 carbon atoms
  • W M131 and W M132 each independently represent —CH 2 — or —O—.
  • the lower limit of the preferable content of the compound represented by formula (M-13) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when a composition that does not easily cause seizure is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (M-13) used in the composition of the present invention is specifically represented by the formula (M-13.1) to the formula (M-13.28). It is preferable that the compound is a compound, and among them, from the formulas (M-13.1) to (M-13.4), (M-13.11) to (M-13.14), (M-13.25) to ( It is preferable to contain a compound represented by M-13.28).
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-14) is as follows.
  • X M141 to X M144 each independently represents a fluorine atom or a hydrogen atom
  • Y M141 represents a fluorine atom, a chlorine atom or —OCF 3
  • R M141 represents an alkyl group having 1 to 5 carbon atoms
  • W M141 and W M142 each independently represent —CH 2 — or —O—.
  • the lower limit of the preferable content of the compound represented by the general formula (M-14) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when a composition that does not easily cause seizure is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (M-14) used in the composition of the present invention is specifically represented by the formula (M-14.1) to the formula (M-14.8).
  • a compound is preferable, and among them, a compound represented by formula (M-14.5) and formula (M-14.8) is preferably contained.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-15) is as follows.
  • X M151 and X M152 each independently represent a fluorine atom or a hydrogen atom
  • Y M151 represents a fluorine atom, a chlorine atom or —OCF 3
  • R M151 represents an alkyl group having 1 to 5 carbon atoms
  • W M151 and W M152 each independently represent —CH 2 — or —O—.
  • the lower limit of the preferred content of the compound represented by formula (M-15) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when a composition that does not easily cause seizure is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (M-15) used in the composition of the present invention is specifically represented by the formulas (M-15.1) to (M-15.14).
  • the compound contains a compound represented by formula (M-15.5) to formula (M-15.8) or formula (M-15.11) to formula (M-15.14). It is preferable to do.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-16) is as follows.
  • X M161 to X M164 each independently represents a fluorine atom or a hydrogen atom
  • Y M161 represents a fluorine atom, a chlorine atom or —OCF 3
  • R M161 represents an alkyl group having 1 to 5 carbon atoms
  • the lower limit of the preferable content of the compound represented by formula (M-16) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when a composition that does not easily cause seizure is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (M-16) used in the composition of the present invention is specifically represented by the formula (M-16.1) to the formula (M-16.8).
  • a compound is preferable, and among them, it is preferable to include a compound represented by Formula (M-16.1) to Formula (M-16.4).
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-17) is as follows.
  • X M171 ⁇ X M174 are each independently a fluorine atom or a hydrogen atom, Y M171 fluorine atom, a chlorine atom or -OCF 3,
  • R M171 is an alkyl group having 1 to 5 carbon atoms, Represents an alkenyl group having 2 to 5 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and
  • W M171 and W M172 each independently represent —CH 2 — or —O—.
  • the lower limit of the preferable content of the compound represented by formula (M-17) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when a composition that does not easily cause seizure is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (M-17) used in the composition of the present invention is specifically represented by the formula (M-17.1) to the formula (M-17.52).
  • the compound is a compound (M-17.9) to (M-17.12), (M-17.21) to (M-17.28), (M-17. 45) to a compound represented by the formula (M-17.48) is preferably contained.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (M-18) is as follows.
  • X M181 to X M186 each independently represents a fluorine atom or a hydrogen atom
  • Y M181 represents a fluorine atom, a chlorine atom or —OCF 3
  • R M181 represents an alkyl group having 1 to 5 carbon atoms
  • the lower limit of the preferred content of the compound represented by formula (M-18) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when a composition that does not easily cause seizure is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (M-18) used in the composition of the present invention is specifically represented by the formula (M-18.1) to the formula (M-18.12).
  • a compound is preferable, and among them, it is preferable to include a compound represented by Formula (M-18.5) to Formula (M-18.8).
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • composition of the present invention preferably contains one or more compounds represented by the general formula (K). These compounds correspond to dielectrically positive compounds ( ⁇ is greater than 2).
  • R K1 represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently —CH ⁇ CH—, — Optionally substituted by C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n K1 represents 0, 1, 2, 3 or 4;
  • a K1 and A K2 are each independently (A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O- or -S- And (b) a 1,4-phenylene group (one —CH ⁇ present in this group or two or more non-adjacent —CH ⁇ may be replaced by —N ⁇ ).
  • a hydrogen atom on the group (a) and the group (b) may be independently substituted with a cyano group, a fluorine atom or a chlorine atom
  • Z K1 and Z K2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C ⁇ C—
  • n K1 is 2, 3 or 4 and a plurality of A K2 are present, they may be the same or different, and n K1 is 2, 3 or 4 and a plurality of Z K1 is present
  • X K1 and X K3 each independently represent a hydrogen atom, a chlorine atom or a fluorine atom
  • X K2 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a
  • R K1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or alkenyloxy having 2 to 8 carbon atoms.
  • a group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable.
  • An alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is more preferable, an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms is more preferable, and an alkenyl group having 3 carbon atoms. (Propenyl group) is particularly preferred.
  • RK1 is preferably an alkyl group when importance is placed on reliability, and an alkenyl group is preferred when importance is placed on lowering viscosity.
  • the ring structure to which it is bonded is a phenyl group (aromatic)
  • An alkenyl group having 4 to 5 atoms is preferable
  • the ring structure to which the alkenyl group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane
  • a straight-chain alkoxy group having 1 to 4 carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms are preferred.
  • the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, and is preferably linear.
  • the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dot in each formula represents the carbon atom in the ring structure to which the alkenyl group is bonded.)
  • a K1 and A K2 are preferably aromatic when it is required to independently increase ⁇ n, and are preferably aliphatic for improving the response speed, and trans-1,4 -Cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group, 2, 3-difluoro-1,4-phenylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6- It preferably represents a diyl group, decahydronaphthalene-2,6-diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and more preferably represents the following structure:
  • Z K1 and Z K2 are each independently -CH 2 O -, - CF 2 O -, - CH 2 CH 2 -, - CF 2 CF 2 - or preferably a single bond, -CF 2 O-, —CH 2 CH 2 — or a single bond is more preferable, and —CF 2 O— or a single bond is particularly preferable.
  • n K1 is preferably 0, 1, 2 or 3, preferably 0, 1 or 2, preferably 0 or 1 when emphasizing the improvement of ⁇ , and preferably 1 or 2 when emphasizing Tni. .
  • the types of compounds that can be combined are used in combination according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the content of the compound represented by the general formula (K) is low temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, image sticking, It is necessary to appropriately adjust according to required performance such as dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (K) with respect to the total amount of the composition of the present invention is 1%, 10%, 20%, 30%, 40% %, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
  • the upper limit of the preferable content is, for example, 95%, 85%, 75%, 65%, and 55% with respect to the total amount of the composition of the present invention. Yes, 45%, 35%, 25%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention keeps Tni high and a composition having good temperature stability is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (K) is preferably a compound selected from the group of compounds represented by the general formula (K-1), for example.
  • R K11 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • X K11 to X K14 are each independently hydrogen. represents an atom or a fluorine atom
  • Y K11 represents a fluorine atom or OCF 3.
  • the type of the compound used is, for example, one type as one embodiment of the present invention, two types, and three or more types.
  • the lower limit of the preferable content of the compound represented by the formula (K-1) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8% 10%, 13%, 15%, 18%, 20%, 22%, 25%, 30%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention keeps Tni high and a composition having good temperature stability is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (K-1) is specifically preferably a compound represented by the formula (K-1.1) to the formula (K-1.4).
  • a compound represented by formula (K-1.2) is preferred, and a compound represented by formula (K-1.2) is more preferred. It is also preferred to use the compounds represented by formula (K-1.1) or formula (K-1.2) at the same time.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by General Formula (K) is preferably a compound selected from the group of compounds represented by General Formula (K-2), for example.
  • R K21 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • X K21 to X K24 are each independently hydrogen. represents an atom or a fluorine atom
  • Y K21 represents a fluorine atom or OCF 3.
  • the type of the compound used is, for example, one type as one embodiment of the present invention, two types, and three or more types.
  • the lower limit of the preferable content of the compound represented by the formula (K-2) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8% 10%, 13%, 15%, 18%, 20%, 22%, 25%, 30%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention keeps Tni high and a composition having good temperature stability is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (K-2) is specifically preferably a compound represented by the formula (K-2.1) to the formula (K-2.6).
  • a compound represented by formula (K-2.5) or formula (K-2.6) is preferred, and a compound represented by formula (K-2.6) is more preferred. It is also preferred to use the compounds represented by formula (K-2.5) or formula (K-2.6) at the same time.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by General Formula (K) is preferably a compound selected from the group of compounds represented by General Formula (K-3), for example.
  • R K31 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • X K31 to X K36 are each independently hydrogen.
  • Y K31 represents a fluorine atom or OCF 3.
  • the type of the compound used is, for example, one type as one embodiment of the present invention, two types, and three or more types.
  • the lower limit of the preferable content of the compound represented by the formula (K-3) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8% 10%, 13%, 15%, 18%, 20%, 22%, 25%, 30%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention keeps Tni high and a composition having good temperature stability is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (K-3) is preferably a compound represented by the formula (K-3.1) to the formula (K-3.4).
  • a compound represented by K-3.1) or formula (K-3.2) is more preferable. It is also preferred to use the compounds represented by formula (K-3.1) and formula (K-3.2) at the same time.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (K) is preferably, for example, a compound selected from the group of compounds represented by the general formula (K-4).
  • R K41 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • X K41 to X K46 are each independently hydrogen.
  • An atom or a fluorine atom Y K41 represents a fluorine atom or OCF 3
  • Z K41 represents —OCH 2 —, —CH 2 O—, —OCF 2 —, or —CF 2 O—.
  • the lower limit of the preferable content of the compound represented by the formula (K-4) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8% 10%, 13%, 15%, 18%, 20%, 22%, 25%, 30%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention keeps Tni high and a composition having good temperature stability is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (K-4) is preferably a compound represented by the formula (K-4.1) to the formula (K-4.18). More preferred are compounds represented by (K-4.1), formula (K-4.2), formula (K-4.11), and (K-4.12). It is also preferred to use compounds represented by formula (K-4.1), formula (K-4.2), formula (K-4.11), and (K-4.12) at the same time.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by the general formula (K) is preferably a compound selected from, for example, a compound group represented by the general formula (K-5).
  • R K51 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • X K51 to X K56 are each independently hydrogen.
  • An atom or a fluorine atom Y K51 represents a fluorine atom or OCF 3
  • Z K51 represents —OCH 2 —, —CH 2 O—, —OCF 2 —, or —CF 2 O—.
  • the lower limit of the preferable content of the compound represented by the formula (K-5) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8% 10%, 13%, 15%, 18%, 20%, 22%, 25%, 30%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention keeps Tni high and a composition having good temperature stability is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (K-5) is preferably a compound represented by the formula (K-5.1) to the formula (K-5.18).
  • a compound represented by the formula (K-5.14) is preferable, and a compound represented by the formula (K-5.12) is more preferable.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by General Formula (K) is preferably a compound selected from the group of compounds represented by General Formula (K-6), for example.
  • R K61 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • X K61 to X K68 are each independently hydrogen. represents an atom or a fluorine atom
  • Y K61 represents a fluorine atom or OCF 3
  • Z K61 is -OCH 2 -, - CH 2 O -, - OCF 2 - or an -CF 2 O-).
  • the lower limit of the preferable content of the compound represented by the formula (K-6) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8% 10%, 13%, 15%, 18%, 20%, 22%, 25%, 30%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention keeps Tni high and a composition having good temperature stability is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the compound represented by the general formula (K-6) is preferably a compound represented by the formula (K-6.1) to the formula (K-6.18).
  • Compounds represented by formula (K-6.18) to formula (K-6.18) are preferred, and compounds represented by formula (K-6.16) and formula (K-6.17) are more preferred. It is also preferred to use the compounds represented by formula (K-6.16) and formula (K-6.17) at the same time.
  • the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • composition of the present invention preferably contains one or more compounds represented by the general formula (L).
  • the compound represented by the general formula (L) corresponds to a dielectrically neutral compound ( ⁇ value is ⁇ 2 to 2).
  • R L1 and R L2 each independently represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently Optionally substituted by —CH ⁇ CH—, —C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n L1 represents 0, 1, 2 or 3,
  • a L1 , A L2 and A L3 each independently represent (a) a 1,4-cyclohexylene group (one —CH 2 — present in the group or two or more —CH 2 — not adjacent to each other).
  • the group (a), the group (b) and the group (c) may be each independently substituted with a cyano group, a fluorine atom or a chlorine atom
  • n L1 is 2 or 3
  • a plurality of A L2 are present, they may be the same or different, and when n L1 is 2 or 3, and a plurality of Z L2 are present, May be the same or different, but are represented by the general formulas (i), (ii), (J), (L-1-1.3) and (L-1-2.2) Excluding compounds.
  • the compound represented by general formula (L) may be used independently, it can also be used in combination.
  • the types of compounds that can be combined but they are used in appropriate combinations according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention.
  • the content of the compound represented by the general formula (L) is low-temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, image sticking, It is necessary to appropriately adjust according to required performance such as dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L) with respect to the total amount of the composition of the present invention is 1%, 10%, 20%, 30%, 40 %, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
  • the upper limit of the preferable content is 95%, 85%, 75%, 65%, 55%, 45%, 35%, and 25%.
  • the above lower limit value is preferably high and the upper limit value is preferably high. Furthermore, when the composition of the present invention maintains a high Tni and requires a composition having good temperature stability, the above lower limit value is preferably high and the upper limit value is preferably high. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable that the above lower limit value is lowered and the upper limit value is low.
  • the number of halogen atoms present in the molecule is preferably 0, 1, 2 or 3, preferably 0 or 1, and 1 is preferred when importance is attached to compatibility with other liquid crystal molecules.
  • R L1 and R L2 are preferably both alkyl groups, and when importance is placed on reducing the volatility of the compound, it is preferably an alkoxy group, and importance is placed on viscosity reduction. In this case, at least one is preferably an alkenyl group.
  • R L1 and R L2 are each a linear alkyl group having 1 to 5 carbon atoms or a linear alkyl group having 1 to 4 carbon atoms when the ring structure to which R L1 is bonded is a phenyl group (aromatic).
  • a phenyl group aromatic
  • Alkyl groups, linear alkoxy groups having 1 to 4 carbon atoms and linear alkenyl groups having 2 to 5 carbon atoms are preferred.
  • the total of carbon atoms and oxygen atoms, if present, is preferably 5 or less, and is preferably linear.
  • the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dot in each formula represents the carbon atom in the ring structure to which the alkenyl group is bonded.)
  • n L1 is preferably 0 when importance is attached to the response speed, 2 or 3 is preferred for improving the upper limit temperature of the nematic phase, and 1 is preferred for balancing these. In order to satisfy the properties required for the composition, it is preferable to combine compounds having different values.
  • a L1 , A L2, and A L3 are preferably aromatic when it is required to increase ⁇ n, and are preferably aliphatic for improving the response speed, and are each independently trans- 1,4-cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6-diyl group, decahydronaphthalene-2,6 -It preferably represents a diyl group or a 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and more preferably represents the following structure:
  • it represents a trans-1,4-cyclohexylene group or a 1,4-phenylene group.
  • Z L1 and Z L2 are preferably single bonds when the response speed is important.
  • the number of halogen atoms in the molecule is preferably 0 or 1.
  • the compound represented by the general formula (L) is preferably a compound selected from the group of compounds represented by the general formulas (L-1) to (L-8).
  • the compound represented by the general formula (L-1) is the following compound.
  • R L11 and R L12 each independently represent the same meaning as R L1 and R L2 in General Formula (L), provided that the compound represented by Formula (L-1-1.3) and (Excluding compounds represented by the formula (L-1-2.2)
  • R L11 and R L12 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
  • the compound represented by the general formula (L-1) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content is 1%, 2%, 3%, 5%, 7%, 10%, and 15% with respect to the total amount of the composition of the present invention. %, 20%, 25%, 30%, 35%, 40%, 45%, 50%, and 55%.
  • the upper limit of the preferable content is 95%, 90%, 85%, 80%, 75%, 70%, 65%, based on the total amount of the composition of the present invention. %, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%.
  • the above lower limit value is preferably high and the upper limit value is preferably high. Furthermore, when the composition of the present invention requires a high Tni and a composition having good temperature stability, it is preferable that the lower limit value is moderate and the upper limit value is moderate. When it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable that the lower limit value is low and the upper limit value is low.
  • the compound represented by the general formula (L-1) is preferably a compound selected from the group of compounds represented by the general formula (L-1-1).
  • R L12 represents the same meaning as in general formula (L-1), except for the compound represented by formula (L-1-1.3)).
  • the compound represented by the general formula (L-1-1) is a compound selected from the group of compounds represented by the formula (L-1-1.1) or the formula (L-1-1.3). Is preferred.
  • the compound represented by the general formula (L-1) is preferably a compound selected from the group of compounds represented by the general formula (L-1-2).
  • R L12 represents the same meaning as in general formula (L-1), except for the compound represented by formula (L-1-2.2)
  • the lower limit of the preferable content of the compound represented by the formula (L-1-2) with respect to the total amount of the composition of the present invention is 1%, 5%, 10%, 15% 17%, 20%, 23%, 25%, 27%, 30%, 35%.
  • the upper limit of the preferable content is 60%, 55%, 50%, 45%, 42%, 40%, and 38% with respect to the total amount of the composition of the present invention. %, 35%, 33%, and 30%.
  • the compound represented by the general formula (L-1-2) is a compound selected from the group of compounds represented by the formula (L-1-2.1) to the formula (L-1-2.4). Preferably there is.
  • a compound represented by the formula (L-1-2.3) or the formula (L-1-2.4) it is preferable to use a compound represented by the formula (L-1-2.3) or the formula (L-1-2.4).
  • the content of the compounds represented by the formulas (L-1-2.3) and (L-1-2.4) is not preferably 10% or more in order to improve the solubility at low temperatures.
  • the lower limit of the preferable content of the compound represented by the formula (L-1-2.1) with respect to the total amount of the composition of the present invention is 10%, 15%, 18%, 20%, 23%, 25%, 27%, 30%, 33%, 35%, 38%, and 40%.
  • the upper limit of the preferable content is 60%, 55%, 50%, 45%, 43%, 40%, and 38% with respect to the total amount of the composition of the present invention. %, 35%, 32%, 30%, 27%, 25%, and 22%.
  • the compound represented by the general formula (L-1) is preferably a compound selected from the group of compounds represented by the general formula (L-1-3).
  • R L13 and R L14 each independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.
  • R L13 and R L14 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
  • the lower limit of the preferable content of the compound represented by the formula (L-1-3) with respect to the total amount of the composition of the present invention is 1%, 5%, 10%, 13% 15%, 17%, 20%, 23%, 25%, 30%.
  • the upper limit of the preferable content is 60%, 55%, 50%, 45%, 40%, 37%, and 35% with respect to the total amount of the composition of the present invention. %, 33%, 30%, 27%, 25%, 23%, 23%, 20%, 17%, 15%, 13%, 10% %.
  • the compound represented by the general formula (L-1-3) is a compound selected from the group of compounds represented by the formula (L-1-3.1) to the formula (L-1-3.12).
  • the compound represented by the formula (L-1-3.1) is preferable because the response speed of the composition of the present invention is particularly improved. Further, when obtaining Tni higher than the response speed, the equation (L-1-3.3), the equation (L-1-3.4), the equation (L-1-3.11), and the equation (L ⁇ It is preferable to use a compound represented by 1-3.12). Sum of compounds represented by formula (L-1-3.3), formula (L-1-3.4), formula (L-1-3.11) and formula (L-1-3.12) The content of is not preferably 20% or more in order to improve the solubility at low temperatures.
  • the lower limit of the preferable content of the compound represented by the formula (L-1-3.1) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, 7%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferable content is 20%, 17%, 15%, 13%, 10%, 8%, and 7% with respect to the total amount of the composition of the present invention. % And 6%.
  • the compound represented by the general formula (L-1) is preferably a compound selected from the group of compounds represented by the general formula (L-1-4) and / or (L-1-5).
  • R L15 and R L16 each independently represent an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.
  • R L15 and R L16 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
  • the lower limit of the preferable content of the compound represented by the formula (L-1-4) with respect to the total amount of the composition of the present invention is 1%, 5%, 10%, 13% 15%, 17%, 20%.
  • the upper limit of the preferable content is 25%, 23%, 20%, 17%, 15%, 13%, and 10% with respect to the total amount of the composition of the present invention. %.
  • the lower limit of the preferable content of the compound represented by the formula (L-1-5) with respect to the total amount of the composition of the present invention is 1%, 5%, 10%, 13% 15%, 17%, 20%.
  • the upper limit of the preferable content is 25%, 23%, 20%, 17%, 15%, 13%, and 10% with respect to the total amount of the composition of the present invention. %.
  • the compounds represented by the general formulas (L-1-4) and (L-1-5) are represented by the formulas (L-1-4.1) to (L-1-5.3).
  • a compound represented by the formula (L-1-4.2) or the formula (L-1-5.2) is preferable.
  • the lower limit of the preferable content of the compound represented by the formula (L-1-4.2) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, 7%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferable content is 20%, 17%, 15%, 13%, 10%, 8%, and 7% with respect to the total amount of the composition of the present invention. % And 6%.
  • the compound represented by the general formula (L-2) is the following compound.
  • R L21 and R L22 each independently represent the same meaning as R L1 and R L2 in the general formula (L).
  • R L21 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R L22 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom.
  • An alkoxy group of 1 to 4 is preferable.
  • the compound represented by the general formula (L-1) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (L-2) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7% and 10%.
  • the upper limit of the preferable content is 20%, 15%, 13%, 10%, 8%, 7%, and 6% with respect to the total amount of the composition of the present invention. %, 5%, 3%.
  • the compound represented by the general formula (L-2) is preferably a compound selected from the group of compounds represented by the formulas (L-2.1) to (L-2.6).
  • a compound represented by formula (L-2.1), formula (L-2.3), formula (L-2.4) and formula (L-2.6) is preferred.
  • the compound represented by the general formula (L-3) is the following compound.
  • R L31 and R L32 each independently represent the same meaning as R L1 and R L2 in General Formula (L).
  • R L31 and R L32 are each independently preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • the compound represented by the general formula (L-3) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (L-3) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7% and 10%.
  • the upper limit of the preferable content is 20%, 15%, 13%, 10%, 8%, 7%, and 6% with respect to the total amount of the composition of the present invention. %, 5%, 3%.
  • the effect is high when the content is set to be large.
  • the effect is high when the content is set low.
  • the compound represented by the general formula (L-3) is preferably a compound selected from the group of compounds represented by the formulas (L-3.1) to (L-3.4).
  • a compound represented by the formula (L-3.7) from (L-3.2) is preferable.
  • the compound represented by the general formula (L-4) is the following compound.
  • R L41 and R L42 each independently represent the same meaning as R L1 and R L2 in General Formula (L).
  • R L41 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R L42 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom.
  • An alkoxy group of 1 to 4 is preferable.
  • the compound represented by the general formula (L-4) can be used alone, or two or more compounds can be used in combination.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the content of the compound represented by the general formula (L-4) is low-temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, It is necessary to adjust appropriately according to required performance such as image sticking and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-4) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7%, 10%, 14%, 16%, 20%, 23%, 26%, 30%, 35%, 40% .
  • the upper limit of the preferable content of the compound represented by the formula (L-4) with respect to the total amount of the composition of the present invention is 50%, 40%, 35%, and 30%. 20%, 15%, 10%, 5%.
  • the compound represented by general formula (L-4) is preferably a compound represented by formula (L-4.1) to formula (L-4.3), for example.
  • the formula (L-4.2) Even if it contains a compound represented by formula (L-4.1), it contains both a compound represented by formula (L-4.1) and a compound represented by formula (L-4.2). Or all of the compounds represented by formulas (L-4.1) to (L-4.3) may be included.
  • the lower limit of the preferable content of the compound represented by formula (L-4.1) or formula (L-4.2) with respect to the total amount of the composition of the present invention is 3%, Yes, 7%, 9%, 11%, 12%, 13%, 18%, 21%, and the preferred upper limit is 45, 40% , 35%, 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% .
  • the amount of both compounds relative to the total amount of the composition of the present invention is The lower limit of the preferred content is 15%, 19%, 24%, and 30%, and the preferred upper limit is 45, 40%, 35%, and 30%. Yes, 25%, 23%, 20%, 18%, 15%, 13%.
  • the compound represented by the general formula (L-4) is preferably, for example, a compound represented by the formula (L-4.4) to the formula (L-4.6). It is preferable that it is a compound represented by this.
  • the formula (L -4.5) contains both the compound represented by formula (L-4.4) and the compound represented by formula (L-4.5). May be.
  • the lower limit of the preferable content of the compound represented by the formula (L-4.4) or the formula (L-4.5) with respect to the total amount of the composition of the present invention is 3%, Yes, 7%, 9%, 11%, 12%, 13%, 18%, 21%.
  • Preferred upper limit values are 45, 40%, 35%, 30%, 25%, 23%, 20%, 18%, 15%, 13% %, 10%, and 8%.
  • the amount of both compounds relative to the total amount of the composition of the present invention is The lower limit of the preferred content is 15%, 19%, 24%, and 30%, and the preferred upper limit is 45, 40%, 35%, and 30%. Yes, 25%, 23%, 20%, 18%, 15%, 13%.
  • the compound represented by the general formula (L-4) is preferably a compound represented by the formula (L-4.7) to the formula (L-4.10), and particularly the formula (L-4.
  • the compound represented by 9) is preferred.
  • the compound represented by the general formula (L-5) is the following compound.
  • R L51 and R L52 each independently represent the same meaning as R L1 and R L2 in the general formula (L).
  • R L51 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R L52 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom.
  • An alkoxy group of 1 to 4 is preferable.
  • the compound represented by the general formula (L-5) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the content of the compound represented by the general formula (L-5) includes solubility at low temperature, transition temperature, electrical reliability, birefringence index, process suitability, dripping marks, It is necessary to adjust appropriately according to required performance such as image sticking and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-5) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7%, 10%, 14%, 16%, 20%, 23%, 26%, 30%, 35%, 40% .
  • the upper limit of the preferable content of the compound represented by the formula (L-5) with respect to the total amount of the composition of the present invention is 50%, 40%, 35%, and 30%. , 20%, 15%, 10%, 5%
  • the compound represented by the general formula (L-5) is represented by the formula (L-5.1) or the formula (L-5.2).
  • the compound represented by formula (L-5.1) is particularly desirable.
  • the lower limit of the preferable content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, and 7%.
  • the upper limit of the preferable content of these compounds is 20%, 15%, 13%, 10%, and 9%.
  • the compound represented by the general formula (L-5) is preferably a compound represented by the formula (L-5.3) or the formula (L-5.4).
  • the lower limit of the preferable content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, and 7%.
  • the upper limit of the preferable content of these compounds is 20%, 15%, 13%, 10%, and 9%.
  • the compound represented by the general formula (L-5) is preferably a compound selected from the group of compounds represented by the formulas (L-5.5) to (L-5.7).
  • the compound represented by L-5.7) is preferred.
  • the lower limit of the preferable content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, and 7%.
  • the upper limit of the preferable content of these compounds is 20%, 15%, 13%, 10%, and 9%.
  • the compound represented by the general formula (L-6) is the following compound.
  • R L61 and R L62 each independently represent the same meaning as R L1 and R L2 in the general formula (L), and X L61 and X L62 each independently represent a hydrogen atom or a fluorine atom.
  • R L61 and R L62 are each independently preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and one of X L61 and X L62 is a fluorine atom and the other is a hydrogen atom. Is preferred.
  • the compound represented by the general formula (L-6) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (L-6) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7%, 10%, 14%, 16%, 20%, 23%, 26%, 30%, 35%, 40% .
  • the upper limit of the preferable content of the compound represented by the formula (L-6) with respect to the total amount of the composition of the present invention is 50%, 40%, 35%, and 30%. 20%, 15%, 10%, 5%.
  • the compound represented by the general formula (L-6) is preferably a compound represented by the formula (L-6.1) to the formula (L-6.9).
  • the compound represented by the general formula (L-6) is preferably, for example, a compound represented by the formula (L-6.10) to the formula (L-6.17).
  • a compound represented by L-6.11) is preferable.
  • the lower limit of the preferable content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, and 7%.
  • the upper limit of the preferable content of these compounds is 20%, 15%, 13%, 10%, and 9%.
  • the compound represented by the general formula (L-7) is the following compound.
  • R L71 and R L72 each independently represent the same meaning as R L1 and R L2 in Formula (L), A L71 and A L72 is A L2 and in the general formula (L) independently A L3 represents the same meaning, but the hydrogen atoms on A L71 and A L72 may be each independently substituted with a fluorine atom, Z L71 represents the same meaning as Z L2 in formula (L), X L71 and X L72 each independently represent a fluorine atom or a hydrogen atom.
  • R L71 and R L72 are each independently preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and
  • a L71 and A L72 Are each independently preferably a 1,4-cyclohexylene group or a 1,4-phenylene group, the hydrogen atoms on A L71 and A L72 may be each independently substituted with a fluorine atom, and
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, and four kinds.
  • the content of the compound represented by the general formula (L-7) includes solubility at low temperature, transition temperature, electrical reliability, birefringence index, process suitability, dripping marks, It is necessary to adjust appropriately according to required performance such as image sticking and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-7) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7%, 10%, 14%, 16%, 20%.
  • the upper limit of the preferable content of the compound represented by the formula (L-7) with respect to the total amount of the composition of the present invention is 30%, 25%, 23%, and 20%. 18%, 15%, 10%, 5%.
  • the content of the compound represented by formula (L-7) is preferably increased, and when an embodiment with low viscosity is desired, the content is It is preferable to reduce the amount.
  • the compound represented by the general formula (L-7) is preferably a compound represented by the formula (L-7.1) to the formula (L-7.4), and the formula (L-7. It is preferable that it is a compound represented by 2).
  • the compound represented by the general formula (L-7) is preferably a compound represented by the formula (L-7.11) to the formula (L-7.13). It is preferable that it is a compound represented by 11).
  • the compound represented by the general formula (L-7) is a compound represented by the formula (L-7.21) to the formula (L-7.23).
  • a compound represented by formula (L-7.21) is preferable.
  • the compound represented by the general formula (L-7) is preferably a compound represented by the formula (L-7.31) to the formula (L-7.34), and the formula (L-7. 31) or / and a compound represented by the formula (L-7.32).
  • the compound represented by the general formula (L-7) is preferably a compound represented by the formula (L-7.41) to the formula (L-7.44), and the formula (L-7. 41) or / and a compound represented by formula (L-7.42).
  • the compound represented by the general formula (L-8) is the following compound.
  • R L81 and R L82 each independently represent the same meaning as R L1 and R L2 in General Formula (L), and A L81 represents the same meaning or single bond as A L1 in General Formula (L)).
  • each hydrogen atom on A L81 may be independently substituted with a fluorine atom
  • X L81 to X L86 each independently represent a fluorine atom or a hydrogen atom.
  • R L81 and R L82 are each independently an alkyl group having 1 to 5 carbon atoms, an alkenyl group or an alkoxy group having 1 to 4 carbon atoms of 2 to 5 carbon atoms preferably, A L81 is 1, A 4-cyclohexylene group or a 1,4-phenylene group is preferable
  • the hydrogen atoms on A L71 and A L72 may each independently be substituted with a fluorine atom, and the same in the general formula (L-8)
  • the number of fluorine atoms in the ring structure is preferably 0 or 1, and the
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, and four kinds.
  • the content of the compound represented by the general formula (L-8) includes solubility at low temperature, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, It is necessary to adjust appropriately according to required performance such as image sticking and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-8) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7%, 10%, 14%, 16%, 20%.
  • the upper limit of the preferable content of the compound represented by the formula (L-8) with respect to the total amount of the composition of the present invention is 30%, 25%, 23%, and 20%. 18%, 15%, 10%, 5%.
  • the content of the compound represented by formula (L-8) is preferably increased, and when an embodiment with low viscosity is desired, the content is It is preferable to reduce the amount.
  • the compound represented by the general formula (L-8) is preferably a compound represented by the formula (L-8.1) to the formula (L-8.4), and the formula (L-8. 3), formula (L-8.5), formula (L-8.6), formula (L-8.13), formula (L-8.16) to formula (L-8.18), formula (L)
  • a compound represented by formula (L-8.28) to L-8.23) is more preferable.
  • the lower limit of the preferable total content of the compounds represented by general formula (i), general formula (ii), general formula (L) and (J) with respect to the total amount of the composition of the present invention is 80%. 85% 88% 90% 92% 93% 93% 94% 95% 96% 97% 97% 98% 99% and 100%.
  • the upper limit of the preferable content is 100%, 99%, 98%, and 95%.
  • the lower limit of the preferable total content of the compounds represented by general formula (i), general formula (ii), general formula (L) and (M) with respect to the total amount of the composition of the present invention is 80%. 85% 88% 90% 92% 93% 93% 94% 95% 96% 97% 97% 98% 99% and 100%.
  • the upper limit of the preferable content is 100%, 99%, 98%, and 95%.
  • the lower limit value of the total content of the compounds represented by M-18) and general formulas (K-1) to (K-6) is 80%, 85%, and 88%. 90%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100% .
  • the upper limit of the preferable content is 100%, 99%, 98%, and 95%.
  • composition of the present invention preferably does not contain a compound having a structure in which oxygen atoms such as a peracid (—CO—OO—) structure are bonded in the molecule.
  • the content of the compound having a carbonyl group is preferably 5% or less, more preferably 3% or less with respect to the total mass of the composition. Preferably, it is more preferably 1% or less, and most preferably not substantially contained.
  • the content of the compound substituted with chlorine atoms is preferably 15% or less, preferably 10% or less, based on the total mass of the composition. % Or less, preferably 5% or less, more preferably 3% or less, and still more preferably substantially not contained.
  • the content of a compound in which all the ring structures in the molecule are 6-membered rings is 80% relative to the total mass of the composition. % Or more, more preferably 90% or more, still more preferably 95% or more, and the composition is composed only of a compound in which all of the ring structures in the molecule are all 6-membered rings. Most preferably.
  • the content of the compound having a cyclohexenylene group as a ring structure, and the content of the compound having a cyclohexenylene group as the total mass of the composition is preferably 10% or less, preferably 8% or less, more preferably 5% or less, preferably 3% or less, and still more preferably not contained.
  • the content of a compound having a 2-methylbenzene-1,4-diyl group in the molecule, in which a hydrogen atom may be substituted with a halogen may be reduced.
  • the content of the compound having a 2-methylbenzene-1,4-diyl group in the molecule is preferably 10% or less, more preferably 8% or less, based on the total mass of the composition. It is more preferably 5% or less, further preferably 3% or less, and still more preferably substantially not contained.
  • substantially not contained in the present application means that it is not contained except for an unintentionally contained product.
  • the alkenyl group when the compound contained in the composition of the first embodiment of the present invention has an alkenyl group as a side chain, when the alkenyl group is bonded to cyclohexane, the alkenyl group has 2 to 5 carbon atoms.
  • the alkenyl group is bonded to benzene, the number of carbon atoms of the alkenyl group is preferably 4 to 5, and the unsaturated bond of the alkenyl group and benzene are directly bonded. Preferably not.
  • the composition of the present invention may contain a polymerizable compound in order to produce a liquid crystal display element such as a PS mode, a transverse electric field type PSA mode, or a transverse electric field type PSVA mode.
  • a polymerizable compound such as a PS mode, a transverse electric field type PSA mode, or a transverse electric field type PSVA mode.
  • the polymerizable compound that can be used include a photopolymerizable monomer that undergoes polymerization by energy rays such as light.
  • the structure has, for example, a liquid crystal skeleton in which a plurality of six-membered rings such as biphenyl derivatives and terphenyl derivatives are connected. Examples thereof include a polymerizable compound. More specifically, the general formula (XX)
  • Z 201 represents —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —COO—CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —OCO—, —COO—CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —OCO—, —COO—CH 2 CH 2 —, —OCO—CH 2 CH
  • X 201 and X 202 are each preferably a diacrylate derivative that represents a hydrogen atom, or a dimethacrylate derivative that has a methyl group, and a compound in which one represents a hydrogen atom and the other represents a methyl group.
  • diacrylate derivatives are the fastest, dimethacrylate derivatives are slow, asymmetric compounds are in the middle, and a preferred embodiment can be used depending on the application.
  • a dimethacrylate derivative is particularly preferable.
  • Sp 201 and Sp 202 each independently represent a single bond, an alkylene group having 1 to 8 carbon atoms, or —O— (CH 2 ) s —, but at least one of them is a single bond in a PSA display element.
  • a compound in which both represent a single bond or one in which one represents a single bond and the other represents an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s — is preferable.
  • 1 to 4 alkyl groups are preferable, and s is preferably 1 to 4.
  • Z 201 represents —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 — or a single bond
  • —COO—, —OCO— or a single bond is more preferred, and a single bond is particularly preferred.
  • M 201 represents a 1,4-phenylene group, a trans-1,4-cyclohexylene group or a single bond in which any hydrogen atom may be substituted by a fluorine atom, but the 1,4-phenylene group or the single bond is preferable.
  • C represents a ring structure other than a single bond
  • Z 201 is preferably a linking group other than a single bond.
  • M 201 is a single bond
  • Z 201 is preferably a single bond.
  • both ends shall be bonded to Sp 201 or Sp 202.
  • the polymerizable compounds containing these skeletons are optimal for PSA-type liquid crystal display elements because of the alignment regulating power after polymerization, and a good alignment state can be obtained, so that display unevenness is suppressed or does not occur at all.
  • general formula (XX-1) to general formula (XX-4) are particularly preferable, and among them, general formula (XX-2) is most preferable.
  • benzene may be substituted with a fluorine atom
  • Sp 20 represents an alkylene group having 2 to 5 carbon atoms.
  • the polymerization proceeds even when no polymerization initiator is present, but may contain a polymerization initiator in order to accelerate the polymerization.
  • the polymerization initiator include benzoin ethers, benzophenones, acetophenones, benzyl ketals, acylphosphine oxides, and the like.
  • composition in the present invention can further contain a compound represented by the general formula (Q).
  • RQ represents a straight-chain alkyl group or a branched-chain alkyl group having 1 to 22 carbon atoms, and one or more CH 2 groups in the alkyl group are —O—so that oxygen atoms are not directly adjacent to each other.
  • MQ represents a trans-1,4-cyclohexylene group, a 1,4
  • the compound represented by the general formula (Q) is preferably a compound represented by the following general formula (Qa) to general formula (Qd).
  • R Q1 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms
  • R Q2 is preferably a linear or branched alkyl group having 1 to 20 carbon atoms
  • R Q3 is A straight-chain alkyl group having 1 to 8 carbon atoms, a branched-chain alkyl group, a straight-chain alkoxy group or a branched-chain alkoxy group is preferred
  • L Q is preferably a straight-chain alkylene group or branched-chain alkylene group having 1 to 8 carbon atoms.
  • compounds represented by general formula (Qa) to general formula (Qd) compounds represented by general formula (Qc) and general formula (Qd) are more preferable.
  • the compound represented by the general formula (Q) preferably contains one or two kinds, more preferably contains 1 to 5 kinds, and the content thereof is from 0.001. It is preferably 1%, more preferably 0.001 to 0.1%, and particularly preferably 0.001 to 0.05%.
  • the polymerizable compound contained therein is polymerized by ultraviolet irradiation to impart liquid crystal alignment ability, and the amount of transmitted light is controlled using the birefringence of the composition.
  • liquid crystal display elements As liquid crystal display elements, AM-LCD (active matrix liquid crystal display element), TN (nematic liquid crystal display element), STN-LCD (super twisted nematic liquid crystal display element), OCB-LCD and IPS-LCD (in-plane switching liquid crystal display element)
  • AM-LCD active matrix liquid crystal display element
  • TN nematic liquid crystal display element
  • STN-LCD super twisted nematic liquid crystal display element
  • OCB-LCD OCB-LCD
  • IPS-LCD in-plane switching liquid crystal display element
  • the two substrates of the liquid crystal cell used in the liquid crystal display element can be made of a transparent material having flexibility such as glass or plastic, and one of them can be an opaque material such as silicon.
  • a transparent substrate having a transparent electrode layer can be obtained, for example, by sputtering indium tin oxide (ITO) on a transparent substrate such as a glass plate.
  • the color filter can be prepared by, for example, a pigment dispersion method, a printing method, an electrodeposition method, or a dyeing method.
  • a method for producing a color filter by a pigment dispersion method will be described as an example.
  • a curable coloring composition for a color filter is applied on the transparent substrate, subjected to patterning treatment, and cured by heating or light irradiation. By performing this process for each of the three colors red, green, and blue, a pixel portion for a color filter can be created.
  • a pixel electrode provided with an active element such as a TFT, a thin film diode, or a metal insulator metal specific resistance element may be provided on the substrate.
  • the substrate is opposed so that the transparent electrode layer is on the inside.
  • the thickness of the obtained light control layer is 1 to 100 ⁇ m. More preferably, the thickness is 1.5 to 10 ⁇ m.
  • the polarizing plate it is preferable to adjust the product of the refractive index anisotropy ⁇ n of the liquid crystal and the cell thickness d so that the contrast is maximized.
  • the polarizing axis of each polarizing plate can be adjusted so that the viewing angle and contrast are good.
  • a retardation film for widening the viewing angle can also be used.
  • the spacer examples include columnar spacers made of glass particles, plastic particles, alumina particles, a photoresist material, and the like. Thereafter, a sealant such as an epoxy thermosetting composition is screen-printed on the substrates with a liquid crystal inlet provided, the substrates are bonded together, and heated to thermally cure the sealant.
  • a sealant such as an epoxy thermosetting composition is screen-printed on the substrates with a liquid crystal inlet provided, the substrates are bonded together, and heated to thermally cure the sealant.
  • a normal vacuum injection method or an ODF method can be used as a method of sandwiching the polymerizable compound-containing composition between two substrates.
  • it can be suitably used for a display element manufactured using the ODF method.
  • a sealant such as epoxy photothermal combination curing is drawn on a backplane or front plane substrate using a dispenser in a closed-loop bank shape, and then removed.
  • a liquid crystal display element can be manufactured by bonding a front plane and a back plane after dropping a predetermined amount of the composition under air.
  • the composition of the present invention can be suitably used because the composition can be stably dropped in the ODF process.
  • an appropriate polymerization rate is desirable in order to obtain good alignment performance of liquid crystals. Therefore, active energy rays such as ultraviolet rays or electron beams are irradiated singly or in combination or sequentially.
  • the method of polymerizing by is preferred.
  • ultraviolet rays When ultraviolet rays are used, a polarized light source or a non-polarized light source may be used.
  • the polymerization is carried out in a state where the polymerizable compound-containing composition is sandwiched between two substrates, at least the substrate on the irradiated surface side must be given adequate transparency to the active energy rays. Don't be.
  • the orientation state of the unpolymerized part is changed by changing conditions such as an electric field, a magnetic field, or temperature, and further irradiation with active energy rays is performed. Then, it is possible to use a means for polymerization.
  • a means for polymerization In particular, when ultraviolet exposure is performed, it is preferable to perform ultraviolet exposure while applying an alternating electric field to the polymerizable compound-containing composition.
  • the alternating electric field to be applied is preferably an alternating current having a frequency of 10 Hz to 10 kHz, more preferably a frequency of 60 Hz to 10 kHz, and the voltage is selected depending on a desired pretilt angle of the liquid crystal display element.
  • the pretilt angle of the liquid crystal display element can be controlled by the applied voltage.
  • the pretilt angle is preferably controlled from 80 degrees to 89.9 degrees from the viewpoint of alignment stability and contrast.
  • the temperature at the time of irradiation is preferably within a temperature range in which the liquid crystal state of the composition of the present invention is maintained.
  • Polymerization is preferably performed at a temperature close to room temperature, that is, typically at a temperature of 15 to 35 ° C.
  • a lamp for generating ultraviolet rays a metal halide lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, or the like can be used.
  • a wavelength of the ultraviolet-ray to irradiate it is preferable to irradiate the ultraviolet-ray of the wavelength range which is not the absorption wavelength range of a composition, and it is preferable to cut and use an ultraviolet-ray as needed.
  • the intensity of the irradiated ultraviolet light is preferably 0.1 mW / cm 2 to 100 W / cm 2, more preferably 2 mW / cm 2 to 50 W / cm 2.
  • the amount of energy of ultraviolet rays to be irradiated can be adjusted as appropriate, but is preferably 10 mJ / cm 2 to 500 J / cm 2, and more preferably 100 mJ / cm 2 to 200 J / cm 2.
  • the intensity may be changed.
  • the time for irradiating with ultraviolet rays is appropriately selected depending on the intensity of the irradiating ultraviolet rays.
  • the liquid crystal display device using the composition of the present invention is useful for achieving both high-speed response and suppression of display failure, and is particularly useful for a liquid crystal display device for active matrix driving.
  • VA mode, PSVA mode, PSA It can be applied to a liquid crystal display element for mode, FFS mode, IPS mode or ECB mode.
  • the measured characteristics are as follows.
  • T ni Nematic phase-isotropic liquid phase transition temperature (° C.) ⁇ n: Refractive index anisotropy at 298K ⁇ : Dielectric anisotropy at 298K ⁇ : Viscosity at 293K (mPa ⁇ s) ⁇ 1 : rotational viscosity at 298 K (mPa ⁇ s) Vth: A voltage in which liquid crystal is sealed in a TN cell having a thickness of 6 microns, and the transmittance changes by 10% under a crossed Nicol polarizing plate at 298K.
  • VHR Voltage holding ratio (%) at 333 K under conditions of frequency 60 Hz and applied voltage 5 V
  • VHR TEG (test element group) for evaluation of electro-optical properties in which a composition sample was sealed was held in a thermostatic bath at 130 ° C. for 1 hour, and then measured under the same conditions as in the VHR measurement method described above.
  • Burn-in The burn-in evaluation of the liquid crystal display element is performed until the afterimage of the fixed pattern reaches an unacceptable afterimage level when displaying the predetermined fixed pattern in the display area for an arbitrary test time and then displaying the entire screen uniformly. The test time was measured.
  • test time referred to here indicates the display time of the fixed pattern, and the longer this time is, the more the afterimage is suppressed and the higher the performance.
  • the unacceptable afterimage level is a level at which an afterimage that is rejected in the shipment acceptance / rejection determination is observed.
  • Sample A 1000 hours
  • Sample B 500 hours
  • Sample C 200 hours
  • Sample D 100 hours Performance is A>B>C> D.
  • Drop marks The evaluation of the drop marks of the liquid crystal display device was performed by visual observation of the drop marks that appeared white when the entire surface was displayed in black by the following five-step evaluation.
  • Process suitability is determined by dropping a liquid crystal 50pL at a time, "0 to 100 times, 101 to 200 times, 201 to 300 times, " 100 times at a time using a constant volume metering pump in the ODF process. The mass of the liquid crystal for each 100 drops was measured and evaluated by the number of drops at which the mass variation reached a size that could not be adapted to the ODF process.
  • Low temperature storage For storage stability evaluation at low temperature, after preparing the composition, 0.5 g of the composition was weighed into a 1 mL sample bottle and stored in a temperature controlled test tank at -25 ° C. for 240 hours. Generation
  • Solubility at low temperature In order to evaluate the solubility at low temperature, after preparing the composition, 1 g of the composition was weighed into a 2 mL sample bottle, and the next operation state “ ⁇ 20 ° C. (held for 1 hour) in a temperature-controlled test tank. ⁇ Temperature rise (0.1 ° C / min) ⁇ 0 ° C (1 hour hold) ⁇ Temperature rise (0.1 ° C / min) ⁇ 20 ° C (1 hour hold) ⁇ Temperature drop ( ⁇ 0.1 ° C / every minute) Min) ⁇ 0 ° C. (hold for 1 hour) ⁇ fall temperature ( ⁇ 0.1 ° C./min) ⁇ 20° C.
  • Volatility / contamination of production equipment Evaluation of the volatility of the liquid crystal material was performed by observing the operating state of the vacuum stirring and defoaming mixer using a stroboscope and visually observing the foaming of the liquid crystal material. Specifically, 0.8 kg of the composition is placed in a special container of a 2.0 L vacuum stirring and defoaming mixer, and the vacuum stirring and degassing is performed at a revolution speed of 15 S-1 and a rotation speed of 7.5 S-1 under 4 kPa of deaeration. The foam mixer was operated and the time until foaming started was measured. The longer the time until foaming starts, the more difficult it is to volatilize and the lower the possibility of contaminating the production equipment, indicating high performance.
  • Example 3 Sample A: 200 seconds Sample B: 45 seconds Sample C: 60 seconds Sample D: 15 seconds The performance is A>C>B> D. (Example 1, Comparative Examples 1 to 3) A liquid crystal composition of the present invention and a liquid crystal display device using the composition were prepared and measured for physical properties.
  • Comparative Example 2 is a composition prepared by adjusting Tni of Comparative Example 1 so as to be the same as that of Example 1. As a result, Tni could be set to the same level as in Example 1, but ⁇ 1 greatly increased.
  • Comparative Example 3 is a composition in which the content of the compound represented by Formula (L-1-2.2) of Comparative Example 1 was adjusted to adjust Tni to be the same as that of Example 1. The method also greatly increased ⁇ 1.
  • composition of the present invention has extremely excellent characteristics. (Examples 2 to 4)
  • the composition of the present application can achieve the required ⁇ n value in a wide range, has a liquid crystal phase in a wide temperature range, has low viscosity, good solubility at low temperatures, and has a specific resistance and voltage holding ratio. Is high, stable to heat and light, hardly causes display defects such as image sticking and dripping marks, and the use of the composition of the present application yields liquid crystal display elements such as FFS type, IPS type and TN type. It turns out that it is possible to produce well.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

La présente invention vise à fournir une composition ayant un Δε positif, ayant une phase à cristaux liquides sur une large plage de températures, ayant une faible viscosité, ayant une bonne solubilité à basse température, ayant une résistivité élevée et un rapport de maintien de tension élevé, et étant stable par rapport à la lumière et à la chaleur ; et un élément d'affichage à cristaux liquides de type IPS, de type TN ou similaire qui, en résultat de l'utilisation de ladite composition, présente une excellente qualité d'affichage et n'est pas susceptible de présenter des défauts d'affichage tels que des images fantômes ou des marques de gouttes, ledit élément d'affichage à cristaux liquides étant fourni à un rendement élevé. La présente invention concerne par conséquent : une composition contenant au moins un type de composé indiqué par la formule générale (i), au moins un type de composé indiqué par la formule générale (ii), et au moins un type de composé indiqué par la formule (L-1-1.3) ou un composé indiqué par la formule (L-1-2.2) ; un élément d'affichage à cristaux liquides utilisant ladite composition; et un élément IPS ou un élément FFS utilisant ladite composition.
PCT/JP2017/014324 2016-04-20 2017-04-06 Composition et élément d'affichage à cristaux liquides l'utilisant WO2017183469A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017547020A JP6269906B1 (ja) 2016-04-20 2017-04-06 組成物及びそれを使用した液晶表示素子
CN201780009658.0A CN108603119A (zh) 2016-04-20 2017-04-06 组合物和使用其的液晶显示元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016084456 2016-04-20
JP2016-084456 2016-04-20

Publications (1)

Publication Number Publication Date
WO2017183469A1 true WO2017183469A1 (fr) 2017-10-26

Family

ID=60115991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014324 WO2017183469A1 (fr) 2016-04-20 2017-04-06 Composition et élément d'affichage à cristaux liquides l'utilisant

Country Status (3)

Country Link
JP (1) JP6269906B1 (fr)
CN (1) CN108603119A (fr)
WO (1) WO2017183469A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205791A (ja) * 2013-04-15 2014-10-30 Jnc株式会社 液晶組成物および液晶表示素子
WO2015029556A1 (fr) * 2013-08-28 2015-03-05 Jnc株式会社 Composition de cristaux liquides et élément d'affichage à cristaux liquides
WO2015098233A1 (fr) * 2013-12-26 2015-07-02 Jnc株式会社 Composition de cristaux liquides et élément d'affichage à cristaux liquides
JP2015131939A (ja) * 2013-12-12 2015-07-23 Jnc株式会社 液晶組成物および液晶表示素子
JP2015178589A (ja) * 2014-02-26 2015-10-08 Jnc株式会社 液晶組成物および液晶表示素子
WO2015159656A1 (fr) * 2014-04-15 2015-10-22 Jnc株式会社 Élément d'affichage à cristaux liquides

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5812221B2 (ja) * 2013-09-12 2015-11-11 Dic株式会社 組成物及びそれを使用した液晶表示素子
JP6435874B2 (ja) * 2014-07-29 2018-12-12 Jnc株式会社 液晶組成物および液晶表示素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205791A (ja) * 2013-04-15 2014-10-30 Jnc株式会社 液晶組成物および液晶表示素子
WO2015029556A1 (fr) * 2013-08-28 2015-03-05 Jnc株式会社 Composition de cristaux liquides et élément d'affichage à cristaux liquides
JP2015131939A (ja) * 2013-12-12 2015-07-23 Jnc株式会社 液晶組成物および液晶表示素子
WO2015098233A1 (fr) * 2013-12-26 2015-07-02 Jnc株式会社 Composition de cristaux liquides et élément d'affichage à cristaux liquides
JP2015178589A (ja) * 2014-02-26 2015-10-08 Jnc株式会社 液晶組成物および液晶表示素子
WO2015159656A1 (fr) * 2014-04-15 2015-10-22 Jnc株式会社 Élément d'affichage à cristaux liquides

Also Published As

Publication number Publication date
JP6269906B1 (ja) 2018-01-31
JPWO2017183469A1 (ja) 2018-04-26
CN108603119A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
JP6206605B2 (ja) 組成物及びそれを使用した液晶表示素子
JP5892296B2 (ja) 組成物及びそれを使用した液晶表示素子
JP6268562B1 (ja) 組成物及びそれを使用した液晶表示素子
JP6024855B2 (ja) 組成物及びそれを使用した液晶表示素子
JP5812221B2 (ja) 組成物及びそれを使用した液晶表示素子
JP5776955B1 (ja) 組成物及びそれを使用した液晶表示素子
JP5846464B2 (ja) 組成物及びそれを使用した液晶表示素子
WO2016052006A1 (fr) Composition et élément d'affichage à cristaux liquides utilisant celle-ci
JP5979465B1 (ja) 組成物及びそれを使用した液晶表示素子
JP6269906B1 (ja) 組成物及びそれを使用した液晶表示素子
JP5858313B2 (ja) 組成物及びそれを使用した液晶表示素子
JP5776861B1 (ja) 組成物及びそれを使用した液晶表示素子
JP6455645B1 (ja) 組成物及びそれを使用した液晶表示素子
WO2016098480A1 (fr) Composition, et élément d'affichage à cristaux liquides mettant en œuvre celle-ci
JP5862995B2 (ja) 組成物及びそれを使用した液晶表示素子
WO2016098478A1 (fr) Composition et élément d'affichage à cristaux liquides mettant en œuvre celle-ci
WO2016098479A1 (fr) Composition, et élément d'affichage à cristaux liquides mettant en œuvre celle-ci
JP2017155247A (ja) 組成物及びそれを使用した液晶表示素子
JP2016204479A (ja) 組成物及びそれを使用した液晶表示素子
WO2016059667A1 (fr) Composition et élément d'affichage à cristaux liquides l'utilisant

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017547020

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785811

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785811

Country of ref document: EP

Kind code of ref document: A1